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Abstract 

The resonant excitation of an intense elastic wave in a crystal is described through a special nonspecular reflec-
tion close to a conversion when almost all the energy from the incident pump wave falls into the near-surface 
narrow high-intensity reflected beam. The resonance arises when the excited reflected wave is close to the bulk 
eigenmode satisfying the condition of free boundary. It is shown that the choice of the crystal surface parallel 
to a symmetry plane allows simultaneous optimization of reflection geometry when the intensity maximum for 
the excited wave is accompanied by the intensity minimum for the other (parasite) reflected wave. And 
the conversion criterion of vanishing of the above minimum is determined by one definite condition on elastic 
moduli. On this basis the series of real monoclinic, orthorhombic and hexagonal crystals were chosen where 
the resonant reflection in non-symmetric sagittal planes proves to be very close to conversion. 
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1. Introduction 

Modern acoustics of crystals create new principles of functioning of various instruments 
and devices based on the use of ultra- and hypersonic waves [1, 2]. Intense ultrasonic 
beams are widely used in engineering, medicine, scientific instrument technique, etc. 
The reflection and refraction of such beams at the interfaces between layered isotropic 
structures are commonly used for their transformation. Crystals open new possibilities of 
beams transformation. Many acoustic effects arise only due to medium anisotropy [2-4].  
For instance, piezoelectricity exists only in crystals and is widely used in acoustic devic-
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es. Another spectacular example of a nontrivial role of anisotropy is phonon focusing; 
the concentration of energy in a crystal along special directions for which the acoustic 
beam in Poynting vectors is much narrower than that in wave vectors. Here, we will 
consider another principle of energy concentration in acoustic waves that is also entirely 
attributable to crystal anisotropy. 

In [5, 6] the idea was proposed of resonant energy concentrating in narrow acoustic 
beams through a nonspecular reflection in the geometry close to a scheme of the total 
internal reflection (Figure 1). One of the two reflected beams propagates at a small angle 
βr to the surface and therefore narrows greatly to width dr upon the reflection of an inci-
dent beam with width Di . Then the intensity of the narrow reflected beam can exceed 
considerably the intensity of the pump wave. The beam amplification factor К2 is esti-
mated by the ratio ηDi/dr = ηsinαi /sinβr >> 1, where η is the fraction of energy falling 
into the compressed beam from the incident one.   

 

Figure 1. Scheme of resonant excitation of intense acoustic beam; arrows indicate 
Poynting vectors in the incident and reflected beams 

It is essential that we deal here with a purely anisotropic effect. In isotropic media 
an analogous beam compression for the incidence angles close to the angle of total inter-
nal reflection does not result in any amplification. In this case, the fraction η of energy in 
the reflected beam approaches zero as its width decreases. The same would occur in 
a crystal as well if the geometry of reflection is not chosen in a specific way. The choice 
of the plane and angle of incidence is dictated by the requirement that the excited re-
flected wave be close to the bulk eigenmode with its energy flow along a free boundary. 

The fraction η of the pump energy transferred to the excited beam depends on 
the specific relations between the elastic moduli for specially chosen crystals. The max-
imum effectiveness (η = 1) of the considered amplification effect is realized when 
the conversion reflection occurs, i.e. when the amplitude of the parasite quasi-specular 
reflected wave vanishes. As shown in [5], for unrestricted anisotropy the two basic char-
acteristics of the resonance, K2 and η, attain their maximums in different geometries of 
reflection. That is why in [5, 6] we considered more symmetric crystals and reflection 
geometries related to surfaces and sagittal planes close to symmetry planes. In these 
cases the extremal conditions for K2 and η are attained simultaneously for the same re-
flection geometries. And the maximum effectiveness η = 1 determined by only one con-
dition on elastic moduli may be approximately realized in a series of crystals.  
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In this paper we shall demonstrate that the minimum symmetry requirement provid-
ing a realizable high effectiveness of the resonance is more modest. Namely, for a coin-
cidence of the maximums of K2 and η it is sufficient to orient the surface of a crystal to 
be parallel to a symmetry plane. And the condition for a conversion, η = 1, is again re-
duced to only one relation between elastic moduli. This means that even for monoclinic 
system there is a good chance to find crystals providing the resonances of reflection 
close to conversion. Below we shall choose several monoclinic, orthorhombic and hex-
agonal crystals where the computations predict the effectiveness close to 100% for ge-
ometries related to surfaces parallel to symmetry planes whereas the propagation planes 
are non-symmetric and even are not close to symmetry planes.  

2. Statement of the Problem 

Consider an arbitrary half-infinite elastic medium of unrestricted anisotropy with the free 
surface. Let n be the internal unit normal to it. We suppose that on this surface there is 
such direction m0 along which an exceptional one-partial bulk eigenwave belonging to 
the intermediate sheet of the slowness surface may propagate with Poynting vector along 
the boundary and zero traction at it. There is the existence theorem [7] which guaranties 
such eigen-solutions occupying the whole lines on the sphere of propagation direction 
for any anisotropic media. In this sagittal plane {m0, n}, apart from the exceptional 
wave, a tree-partial special reflection must also exist [5] for the same tracing velocity v 
of stationary wave motion along the surface. It includes the incident and reflected waves 
from the outer sheet of the slowness surface and the localized partial component from 
the innermost sheet. In the case of a weak perturbation of the initial geometry in which 
the surface does not change and the exceptional direction m0 is rotated m0→m around 
the normal n through a small angle ),( 0mm∠=ϕ , none of the two wave solutions can 

be retained. In this case, instead of two disappeared solutions, their superposition should 
appear. The former exceptional bulk wave will enter this superposition as a new reflect-
ed component in which the energy flow makes a small angle with the surface. Clearly, 
a small perturbation of the initial geometry will violate relatively weakly the satisfaction 
of the boundary condition for a free surface by this near-surface component. This viola-
tion is compensated for by the remaining partial components. Therefore, the new near-
surface reflected wave should have amplitude exceeding considerably the amplitudes 
of other partial waves, including the incident one. This process may be considered as 
the resonant excitation of an intense bulk wave by a weak pump wave incident on 
the crystal surface at an appropriate angle.  

The combined displacement wave field of the perturbed four-partial reflection can be 
expressed in the form 

 ]})[(exp{),(
4

1
tpikCt v−⋅+= ∑

=
rnmAru αα

α
α  (1) 

where Cα and Aα are the scalar amplitudes and normalized polarization vectors of 
the partial waves, respectively, k is the common projection of all wave vectors onto 
the surface: k = kα⋅m = kx , pα = kα⋅n/k = kαy/k and v = ω/k is the tracing velocity. Each 
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partial wave uα(r, t) in (1) must satisfy the equation of the dynamical theory of elasticity 
[3]. And the sum of their tractions at the surface (y = 0) 
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= ααασ Ln  (2) 

must vanish in accordance with the boundary condition of a free surface. Thus, we ob-
tain 
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In further considerations we shall choose the numeration so that α = 4 would corre-
spond to the incident wave (C4→Ci), α = 1 to the parasite reflected wave of the same 
branch as the incident wave (C1→Cr1), α = 2 to the excited reflected wave being 
the perturbed exceptional wave (C2→Cr2), and α = 3 to the localized partial mode 
(C3→Cl). In these notations equation (3) leads to the following reflection coefficients [5] 
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where [abc] means the mixed product of the vectors a, b and c.  

3. The Case of Surface Parallel to a Symmetry Plane 

In the case when the surface is parallel to a symmetry plane of the crystal the expres-
sions in (4) acquire a more simple structure. Indeed, in this case the vectors Lα and Lα+3 
must be symmetric with respect to this plane. This relates both to the real vectors 

 
nsns
114111      , LLLLLL −=+= , (5) 

and to the only complex conjugate pair 
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Here the superscripts s and n indicate the in-plane ( nL ⊥s

α ) and out-plane ( nL ||
n

α ) 

orthogonal components of the vector Lα .  
With (5), (6), the equations in (4) acquire the structure 
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where 
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One should keep in mind that the vectors ns ,

αL  in (8) are determined by the perturbed 

reflection geometry, i.e. by the orientation of the sagittal plane, ),( 0mm∠=ϕ , and by 

the incidence angle δα counted from the angle α0i related to the total internal reflection. 
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The angle δα is directly connected with the shift ∆v of the tracing velocity and with 
the perturbation δp of the parameter p2 = k2y/k which vanishes at δα = 0 (Figure 2).  

The first equation in (7) transforms the conversion condition R1 = 0 into the follow-
ing two relations  

 0      , =′′=′ λφλ . (9) 

Here the first equation establishes the relation between the angles ϕ and δα (or δp) 
for arbitrary crystal moduli. And the second equation determines the condition for those 
moduli. In fact, this equation is reduced to a requirement of the vanishing component: 

 03 =n
L . (10) 

Thus, for a medium with the surface parallel to a symmetry plane we have got 
the simple general criterion for a choice of crystals with the high effectiveness of 
the resonance.  

 

 

Figure 2. Fragments of external sheets 1 and 2 of the slowness surface in its cut 
by the sagittal plane and schematic diagram of the reflection 

4. Approximate Analytical and Exact Computer Results 

Let us give more rigorous definitions to the earlier introduced two basic characteristics 
of the resonance, the amplification factor K2 and the effectiveness of excitation η :    

 4222 /
2|| ssRK = ,       

2||1 1R−=η  (11) 

where s2,4 are the group speeds of the excited and incident waves. After the substitution 
here the relations from (7) with parameters (8) found in the main order in ϕ and δp [5], 

m 

n 

y 

x 

 
 

 

 
 

 

 

 

2 

1 

α0i 

δα 



18 

 ϕκµµδλκλδλκλκϕφ 000

2
     ,     ,     , ≈′′≈′′′≈′≈ pp , (12) 

one obtains the approximate expressions for the functions ),(2 pK δϕ  and ),( pδϕη :  
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It is easily seen that the both functions in (13) have maximums under the same condi-
tion 

 pδλϕ 0

2 ′= , (14) 

which represents an approximate concretization of the first equation in (9). And 
the second equation in (9) is transformed with the same accuracy to the condition 

00 =′′λ  which is just the criterion for a choice of crystals close to conversion ( 1≈η ). 

The computer analysis was based on the exact formulae (7) and the data [8] for elas-
tic moduli of large number of crystals of various symmetry systems. We were interested 
in monoclinic, orthorhombic and hexagonal crystals admitting the propagation of excep-
tional waves in non-symmetric sagittal planes along surfaces parallel to symmetry 
planes. Many crystals were found where the fraction η of energy in the excited intensive 
wave exceeded 90% of energy in the incident wave. In some cases the magnitude of η 
proves to be close to 100% (Table 1). 

Table 1.  The effectiveness  η  of the resonance in some crystals for  K2 = 5,  ϕ0  is the 
azimuth of the exceptional wave normal m0 in the crystallographic coordinates 

Crystals ϕ0, rad δα, rad η 
Monoclinic system    

Stilbene 1.5562 0.14 0.996 
Тоlan C14H10 1.0332 0.063 0.968 

Triglycine sulphate (TGS)  1.4709 0.084 0.94 
Tartaric acid C4H6O6 -1.4282 0.02 0.966 

Orthorhombic system    
Rochelle salt 0.48 0.015 0.999 

Boron-epoxy composite 0.2 0.014 0.9999 
Hexagonal system    

AgI 0.1457 0.012 0.993 
CeF3 0.2918 0.011 0.99 

 
Figure 3 demonstrates the dependencies K2(ϕ, δα) and η(ϕ, δα) for the three crystals 

of monoclinic (a), orthorhombic (b) and hexagonal (c) systems for similar (monoclinic) 
symmetry of reflection geometry: the surface was parallel to a symmetry plane while the 
sagittal plane had non-symmetric orientation. As is seen from the Figure, the sensitivity 
of the resonance to changes δα in the angle of incidence is much sharper than to rotations 
of the sagittal plane. This manifests itself in different scales of the angles plotted along 
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two axes. The ranges of angles in Figure 3 were chosen so that the amplitude of 
the amplification factor K2 remained within the practically acceptable values.  

 

 

Figure 3.  Amplification factor K2 and fraction of energy in the excited beam η versus 
angle of incidence δα and the deviation angle ϕ of the sagittal plane in the stilbene (a), 

Rochelle salt (b) and AgI (c) crystals 

We note that the factor K2 in (13) fast increases with a decrease in perturbation pa-
rameters ϕ, δp and δα. However, the higher is the resonance peak, the narrower it be-
comes. Certainly, it is senseless to make the width of the peak in the angles δα less than 
the angle of diffraction divergence of the incident beam. And the divergence of the ex-
cited beam is even more limiting with respect to the increase in K2. Indeed, this critical 
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parameter δψr, together with K2, grows inversely proportionally to the width dr of this 
beam (Figure 1). Still, according to [5], one can obtain δψr ~ 10-2 rad keeping K2 ~ 5-10. 

3. Conclusions 

As is shown in the above analysis, the discussed effect of resonant reflection in crystals, 
where a wide incident acoustic beam converts almost all of its energy into a narrow high 
intensity reflected beam, appears to be quite realizable. By special choice of crystals 
with a definite relation between elastic moduli the resonance may be optimized up to 
the effectiveness η ~ 100%. Since the resonance region is narrow in angles of incidence, 
stringent requirements for a weak divergence of the incident beam, δψi ~ 10–3 rad arise, 
which can be realized only at sufficiently high ultrasonic frequencies ~100 MHz. For the 
same reason, the amplitude of the excitation coefficient is also limited to K2 ≈ 5–10. 
However, in the case of retransformation of the emergent beam through its narrowing in 
the perpendicular dimension as well, the intensification factor increases many fold, to 
~102. In the hypersonic frequency range, the amplification amplitudes can be increased 
significantly. In this case, however, one might expect additional restrictions due to 
an increase in the absorption of acoustic waves.  
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