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Introduction to the Volume XXVI Collection of Papers 
of the Conference Vibrations in Physical Systems -2014 

 
 

The phenomena of vibrations, oscillations and waves as physical phenomena are 
omni-present around us. They are the sign of life, the sign of the operation of ma-
chines and devices and they accompany any production processes. Their effects may 
be harmful, useful and they may also be a source of information on the technical 
condition of the supervised machines and devices. Volume XXVI of Vibrations in 
Physical Systems published every second year deals with these widespread phenom-
ena. It comprises the papers presented by specialists from our country but also from 
abroad at many sessions of XXVI Symposium of Vibrations in Physical Systems 
organized also every second year. The symposium has been organized since 1960 in 
Poznan by a local branch of the Polish Society of Theoretical and Applied Me-
chanics and the Institute of Applied Mechanics at Poznan University of Tech-
nology. 

This conference is unusual one; we are present in a scientific space 26th times 
since 1960. This means the subjects we are dealing are still important and still brings 
the attention of scientific community and co working practitioners. Of course, year 
by year our outlook is evolving; and the scope of current conference has been wid-
ened from the previous one, and is currently as follows: 

• Mathematical Modeling in Sound and Vibration Analysis 
• Experimental Techniques in Sound and Vibration Engineering 
• Wave Problems in Solid Mechanics 
• Analysis of the Non-Linear Deterministic / Stochastic Vibrations Phenomena 
• Computational Methods in Vibration Problems 
• Modeling and Identification of  Dynamical Systems 
• Signal Processing and Analysis 
• Active Vibration Control 
• Energy Methods in Vibration Engineering 
• Vibration and Energy Problems Related to Biomechanics 
• Dynamics of Machinery and Rotating Systems 
• Vibroacoustics of Machinery, Diagnostics 
• Vibrations and Noise of Transport Systems, Vehicles, Roads 
• Structural Dynamics, Vibrations of Composite Materials Structures 
• Vibration Problems in Environmental Engineering, Vibration of Granular 

Materials 
• Vibrations and Dynamic Stability of Structural Elements, Beams, Plates, 

Shells 
• Flow-induced vibrations, Fluid-structure interaction, Aeroelasticity 
• Dynamic behavior of Vibration Isolation Elements and Systems. 



 

As it is seen the topics of the publications relate to a wide range of issues con-
nected with modelling and identification of mechanical systems, their stability and 
dynamics of mechanical systems as well as physical phenomena such as propagation 
of acoustic waves and vibrations in all aspects of science and engineering, beginning 
from the theory and modelling up to the applicational subjects in machines, envi-
ronment and the human body 

The monograph comprises also numerously presented publications relating to the 
issues of dynamics in biological as well as biological and mechanical systems. They 
mainly concern mechanical properties of a human body and its organs or parts. Oth-
er publications describe the dynamic interaction of power between man and machine 
(Human – Hand-held Powered Tool) or distribution of power and the energy flow in 
Human-Machine Systems.  

Many of the publications present the results of research carried out through simu-
lation with the application of modern digital technologies worked out for the needs 
of solving linear and non-linear issues of the dynamics of solid bodies or physical 
phenomena such as propagation of acoustic waves or dynamics and stability of 
complicated structures. The publications comprise the results that are analysed from 
the point of view of the applied methodology or the validity of the obtained data. 

There are also some publications devoted to methods of passive, active and semi-
active reduction of vibrations and noise and to modelling of vibrations damping with 
viscous damper. The publications concerning dynamic issues also analysed the sta-
bility of the tested mechanical systems. 

Other significant publications concern the monitoring of technical facilities with 
the use of the propagation of elastic waves that allow us to detect cracks in the com-
posite structure under the test and to specify their location. They also describe meth-
ods of modelling the propagation of sound waves in public rooms, like churches, 
where the acoustic quality of sound is of prime interest. 

All the papers comprised in this volume have been reviewed by members of the 
Scientific Committee, and in some cases by specialists outside the Committee, 
should the issues concern problems outside the scope of knowledge of the Commit-
tee members. We would like to thank all those persons who help us review papers in 
this published monograph and improve their quality.  
 

Co-editors of the 26th Volume 

Czesław CEMPEL 
Marian W. DOBRY 
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Abstract 

The resonant excitation of an intense elastic wave in a crystal is described through a special nonspecular reflec-
tion close to a conversion when almost all the energy from the incident pump wave falls into the near-surface 
narrow high-intensity reflected beam. The resonance arises when the excited reflected wave is close to the bulk 
eigenmode satisfying the condition of free boundary. It is shown that the choice of the crystal surface parallel 
to a symmetry plane allows simultaneous optimization of reflection geometry when the intensity maximum for 
the excited wave is accompanied by the intensity minimum for the other (parasite) reflected wave. And 
the conversion criterion of vanishing of the above minimum is determined by one definite condition on elastic 
moduli. On this basis the series of real monoclinic, orthorhombic and hexagonal crystals were chosen where 
the resonant reflection in non-symmetric sagittal planes proves to be very close to conversion. 

 
Keywords: Elastic wave, resonance reflection, conversion, pump wave, anisotropy, diffraction divergence  

1. Introduction 

Modern acoustics of crystals create new principles of functioning of various instruments 
and devices based on the use of ultra- and hypersonic waves [1, 2]. Intense ultrasonic 
beams are widely used in engineering, medicine, scientific instrument technique, etc. 
The reflection and refraction of such beams at the interfaces between layered isotropic 
structures are commonly used for their transformation. Crystals open new possibilities of 
beams transformation. Many acoustic effects arise only due to medium anisotropy [2-4].  
For instance, piezoelectricity exists only in crystals and is widely used in acoustic devic-
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es. Another spectacular example of a nontrivial role of anisotropy is phonon focusing; 
the concentration of energy in a crystal along special directions for which the acoustic 
beam in Poynting vectors is much narrower than that in wave vectors. Here, we will 
consider another principle of energy concentration in acoustic waves that is also entirely 
attributable to crystal anisotropy. 

In [5, 6] the idea was proposed of resonant energy concentrating in narrow acoustic 
beams through a nonspecular reflection in the geometry close to a scheme of the total 
internal reflection (Figure 1). One of the two reflected beams propagates at a small angle 
βr to the surface and therefore narrows greatly to width dr upon the reflection of an inci-
dent beam with width Di . Then the intensity of the narrow reflected beam can exceed 
considerably the intensity of the pump wave. The beam amplification factor К2 is esti-
mated by the ratio ηDi/dr = ηsinαi /sinβr >> 1, where η is the fraction of energy falling 
into the compressed beam from the incident one.   

 

Figure 1. Scheme of resonant excitation of intense acoustic beam; arrows indicate 
Poynting vectors in the incident and reflected beams 

It is essential that we deal here with a purely anisotropic effect. In isotropic media 
an analogous beam compression for the incidence angles close to the angle of total inter-
nal reflection does not result in any amplification. In this case, the fraction η of energy in 
the reflected beam approaches zero as its width decreases. The same would occur in 
a crystal as well if the geometry of reflection is not chosen in a specific way. The choice 
of the plane and angle of incidence is dictated by the requirement that the excited re-
flected wave be close to the bulk eigenmode with its energy flow along a free boundary. 

The fraction η of the pump energy transferred to the excited beam depends on 
the specific relations between the elastic moduli for specially chosen crystals. The max-
imum effectiveness (η = 1) of the considered amplification effect is realized when 
the conversion reflection occurs, i.e. when the amplitude of the parasite quasi-specular 
reflected wave vanishes. As shown in [5], for unrestricted anisotropy the two basic char-
acteristics of the resonance, K2 and η, attain their maximums in different geometries of 
reflection. That is why in [5, 6] we considered more symmetric crystals and reflection 
geometries related to surfaces and sagittal planes close to symmetry planes. In these 
cases the extremal conditions for K2 and η are attained simultaneously for the same re-
flection geometries. And the maximum effectiveness η = 1 determined by only one con-
dition on elastic moduli may be approximately realized in a series of crystals.  

dr 
Di Dr 

αi 

βr 
Ds 

αr 
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In this paper we shall demonstrate that the minimum symmetry requirement provid-
ing a realizable high effectiveness of the resonance is more modest. Namely, for a coin-
cidence of the maximums of K2 and η it is sufficient to orient the surface of a crystal to 
be parallel to a symmetry plane. And the condition for a conversion, η = 1, is again re-
duced to only one relation between elastic moduli. This means that even for monoclinic 
system there is a good chance to find crystals providing the resonances of reflection 
close to conversion. Below we shall choose several monoclinic, orthorhombic and hex-
agonal crystals where the computations predict the effectiveness close to 100% for ge-
ometries related to surfaces parallel to symmetry planes whereas the propagation planes 
are non-symmetric and even are not close to symmetry planes.  

2. Statement of the Problem 

Consider an arbitrary half-infinite elastic medium of unrestricted anisotropy with the free 
surface. Let n be the internal unit normal to it. We suppose that on this surface there is 
such direction m0 along which an exceptional one-partial bulk eigenwave belonging to 
the intermediate sheet of the slowness surface may propagate with Poynting vector along 
the boundary and zero traction at it. There is the existence theorem [7] which guaranties 
such eigen-solutions occupying the whole lines on the sphere of propagation direction 
for any anisotropic media. In this sagittal plane {m0, n}, apart from the exceptional 
wave, a tree-partial special reflection must also exist [5] for the same tracing velocity v 
of stationary wave motion along the surface. It includes the incident and reflected waves 
from the outer sheet of the slowness surface and the localized partial component from 
the innermost sheet. In the case of a weak perturbation of the initial geometry in which 
the surface does not change and the exceptional direction m0 is rotated m0→m around 
the normal n through a small angle ),( 0mm∠=ϕ , none of the two wave solutions can 

be retained. In this case, instead of two disappeared solutions, their superposition should 
appear. The former exceptional bulk wave will enter this superposition as a new reflect-
ed component in which the energy flow makes a small angle with the surface. Clearly, 
a small perturbation of the initial geometry will violate relatively weakly the satisfaction 
of the boundary condition for a free surface by this near-surface component. This viola-
tion is compensated for by the remaining partial components. Therefore, the new near-
surface reflected wave should have amplitude exceeding considerably the amplitudes 
of other partial waves, including the incident one. This process may be considered as 
the resonant excitation of an intense bulk wave by a weak pump wave incident on 
the crystal surface at an appropriate angle.  

The combined displacement wave field of the perturbed four-partial reflection can be 
expressed in the form 

 ]})[(exp{),(
4

1
tpikCt v−⋅+= ∑

=
rnmAru αα

α
α  (1) 

where Cα and Aα are the scalar amplitudes and normalized polarization vectors of 
the partial waves, respectively, k is the common projection of all wave vectors onto 
the surface: k = kα⋅m = kx , pα = kα⋅n/k = kαy/k and v = ω/k is the tracing velocity. Each 
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partial wave uα(r, t) in (1) must satisfy the equation of the dynamical theory of elasticity 
[3]. And the sum of their tractions at the surface (y = 0) 

 )](exp[ˆ
0

txikikC
y

v−−≡
= ααασ Ln  (2) 

must vanish in accordance with the boundary condition of a free surface. Thus, we ob-
tain 

 0
4

1
=∑

=
α

α
α LC . (3) 

In further considerations we shall choose the numeration so that α = 4 would corre-
spond to the incident wave (C4→Ci), α = 1 to the parasite reflected wave of the same 
branch as the incident wave (C1→Cr1), α = 2 to the excited reflected wave being 
the perturbed exceptional wave (C2→Cr2), and α = 3 to the localized partial mode 
(C3→Cl). In these notations equation (3) leads to the following reflection coefficients [5] 
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where [abc] means the mixed product of the vectors a, b and c.  

3. The Case of Surface Parallel to a Symmetry Plane 

In the case when the surface is parallel to a symmetry plane of the crystal the expres-
sions in (4) acquire a more simple structure. Indeed, in this case the vectors Lα and Lα+3 
must be symmetric with respect to this plane. This relates both to the real vectors 

 
nsns
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and to the only complex conjugate pair 
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i 336 LLL −= . (6) 

Here the superscripts s and n indicate the in-plane ( nL ⊥s

α ) and out-plane ( nL ||
n

α ) 

orthogonal components of the vector Lα .  
With (5), (6), the equations in (4) acquire the structure 
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where 

 ][2    ],[    ],[    ],[ 131321321321
nssnssssnsns LLLLLLLLLLLL ==′′=′= µλλφ . (8) 

One should keep in mind that the vectors ns ,

αL  in (8) are determined by the perturbed 

reflection geometry, i.e. by the orientation of the sagittal plane, ),( 0mm∠=ϕ , and by 

the incidence angle δα counted from the angle α0i related to the total internal reflection. 
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The angle δα is directly connected with the shift ∆v of the tracing velocity and with 
the perturbation δp of the parameter p2 = k2y/k which vanishes at δα = 0 (Figure 2).  

The first equation in (7) transforms the conversion condition R1 = 0 into the follow-
ing two relations  

 0      , =′′=′ λφλ . (9) 

Here the first equation establishes the relation between the angles ϕ and δα (or δp) 
for arbitrary crystal moduli. And the second equation determines the condition for those 
moduli. In fact, this equation is reduced to a requirement of the vanishing component: 

 03 =n
L . (10) 

Thus, for a medium with the surface parallel to a symmetry plane we have got 
the simple general criterion for a choice of crystals with the high effectiveness of 
the resonance.  

 

 

Figure 2. Fragments of external sheets 1 and 2 of the slowness surface in its cut 
by the sagittal plane and schematic diagram of the reflection 

4. Approximate Analytical and Exact Computer Results 

Let us give more rigorous definitions to the earlier introduced two basic characteristics 
of the resonance, the amplification factor K2 and the effectiveness of excitation η :    

 4222 /
2|| ssRK = ,       

2||1 1R−=η  (11) 

where s2,4 are the group speeds of the excited and incident waves. After the substitution 
here the relations from (7) with parameters (8) found in the main order in ϕ and δp [5], 
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one obtains the approximate expressions for the functions ),(2 pK δϕ  and ),( pδϕη :  
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It is easily seen that the both functions in (13) have maximums under the same condi-
tion 

 pδλϕ 0

2 ′= , (14) 

which represents an approximate concretization of the first equation in (9). And 
the second equation in (9) is transformed with the same accuracy to the condition 

00 =′′λ  which is just the criterion for a choice of crystals close to conversion ( 1≈η ). 

The computer analysis was based on the exact formulae (7) and the data [8] for elas-
tic moduli of large number of crystals of various symmetry systems. We were interested 
in monoclinic, orthorhombic and hexagonal crystals admitting the propagation of excep-
tional waves in non-symmetric sagittal planes along surfaces parallel to symmetry 
planes. Many crystals were found where the fraction η of energy in the excited intensive 
wave exceeded 90% of energy in the incident wave. In some cases the magnitude of η 
proves to be close to 100% (Table 1). 

Table 1.  The effectiveness  η  of the resonance in some crystals for  K2 = 5,  ϕ0  is the 
azimuth of the exceptional wave normal m0 in the crystallographic coordinates 

Crystals ϕ0, rad δα, rad η 
Monoclinic system    

Stilbene 1.5562 0.14 0.996 
Тоlan C14H10 1.0332 0.063 0.968 

Triglycine sulphate (TGS)  1.4709 0.084 0.94 
Tartaric acid C4H6O6 -1.4282 0.02 0.966 

Orthorhombic system    
Rochelle salt 0.48 0.015 0.999 

Boron-epoxy composite 0.2 0.014 0.9999 
Hexagonal system    

AgI 0.1457 0.012 0.993 
CeF3 0.2918 0.011 0.99 

 
Figure 3 demonstrates the dependencies K2(ϕ, δα) and η(ϕ, δα) for the three crystals 

of monoclinic (a), orthorhombic (b) and hexagonal (c) systems for similar (monoclinic) 
symmetry of reflection geometry: the surface was parallel to a symmetry plane while the 
sagittal plane had non-symmetric orientation. As is seen from the Figure, the sensitivity 
of the resonance to changes δα in the angle of incidence is much sharper than to rotations 
of the sagittal plane. This manifests itself in different scales of the angles plotted along 
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two axes. The ranges of angles in Figure 3 were chosen so that the amplitude of 
the amplification factor K2 remained within the practically acceptable values.  

 

 

Figure 3.  Amplification factor K2 and fraction of energy in the excited beam η versus 
angle of incidence δα and the deviation angle ϕ of the sagittal plane in the stilbene (a), 

Rochelle salt (b) and AgI (c) crystals 

We note that the factor K2 in (13) fast increases with a decrease in perturbation pa-
rameters ϕ, δp and δα. However, the higher is the resonance peak, the narrower it be-
comes. Certainly, it is senseless to make the width of the peak in the angles δα less than 
the angle of diffraction divergence of the incident beam. And the divergence of the ex-
cited beam is even more limiting with respect to the increase in K2. Indeed, this critical 
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parameter δψr, together with K2, grows inversely proportionally to the width dr of this 
beam (Figure 1). Still, according to [5], one can obtain δψr ~ 10-2 rad keeping K2 ~ 5-10. 

3. Conclusions 

As is shown in the above analysis, the discussed effect of resonant reflection in crystals, 
where a wide incident acoustic beam converts almost all of its energy into a narrow high 
intensity reflected beam, appears to be quite realizable. By special choice of crystals 
with a definite relation between elastic moduli the resonance may be optimized up to 
the effectiveness η ~ 100%. Since the resonance region is narrow in angles of incidence, 
stringent requirements for a weak divergence of the incident beam, δψi ~ 10–3 rad arise, 
which can be realized only at sufficiently high ultrasonic frequencies ~100 MHz. For the 
same reason, the amplitude of the excitation coefficient is also limited to K2 ≈ 5–10. 
However, in the case of retransformation of the emergent beam through its narrowing in 
the perpendicular dimension as well, the intensification factor increases many fold, to 
~102. In the hypersonic frequency range, the amplification amplitudes can be increased 
significantly. In this case, however, one might expect additional restrictions due to 
an increase in the absorption of acoustic waves.  
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Abstract 

The paper formulates the need of the modification of currently applied solutions of uncertainty assessments in 
vibroacoustic investigations, including the ones which use the convention rules developed by 7 international 
metrological organisations and described in the ‘Guide to the Uncertainty’. Reservations versus currently used 
solutions are given in the hereby paper. It directs attention toward assumptions limiting the likelihood assess-
ment of uncertainties of the obtained acoustic results.  
 It draws the possible ways of the problem solutions and related to them methods. It presents the need of 
connecting belonging to them algorithms with not classic statistical methods, allowing taking into account 
departures from generally used assumptions in presently applied solutions of uncertainty estimations of acous-
tic investigations results. The paper presents new research trends related to the uncertainty assessment of 
the environment acoustic hazards control.   
 The presented results and their conclusions can constitute the base for wider verification of the correctness 
of the currently applied procedures of acoustic measurements assessment and related to them estimations of 
errors levels of the uncertainty estimation of acoustic investigations results. 

1. Introduction 

The basic task of vibroacoustic measurements is obtaining reliable information on 
the vibroacoustic effect being investigated, since only likelihood results enable taking 
proper decisions. The problem of the uncertainty assessment of effects identified in vi-
broacoustic experiments is inseparably related to the uncertainty of measurements. It 
requires the validation of measurement procedures, the analysis of sources of possible 
random errors and the way of their working out in dependence of the probability distri-
bution of their occurrence. The attention is focused on the determination methods of the 
standard uncertainty at direct and indirect measurements, on the uncertainty budget anal-
ysis and on determining conditions of selecting the expansion factor k, which is neces-
sary in the expanded uncertainty assessment.  

The unification of principles of calculations and uncertainty expressing was devel-
oped by the Joint Committee for Guides in Metrology (JCGM); under the aegis of 
the International Office of Measures (BIPM).  These principles are contained in 
the ‘Guide to the Expression of Uncertainty in Measurement (GUM) [2]. This Guide 
determines the methods of: drawing up measured data, principles of expressing uncer-
tainty of measurements, and also defines the basic terminology. They are contained in 
nine documents under the common title: ‘Evaluation of measurement data’ [1]. 
The document is accepted and recognised by the European co-operation for Accredita-
tion as the basic pattern for the uncertainty determination in the certified research labora-
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tories EA in every field of their activity, it means also in units dealing with vibroacoustic 
investigations. Whenever possible it is required, that the certified laboratories act accord-
ing to the GUM when determining uncertainties related to quantitative results. The rec-
ommendations are also contained in legal acts and standards determining principles of 
the estimation of environment acoustic hazards.  

The basic principle applied in uncertainty calculations, according to this document, is 
the uncertainty division into type A and type B. The type A uncertainty is determined on 
the basis of statistical conclusions, related to the analysis of the random measurement 
sample. The type B uncertainty is determined on the basis of the expert knowledge relat-
ed to available information on possible systematic errors, e.g. errors resulting from Cer-
tificates of Standardisation of the equipment applied in the experimental process.  

Both information on the possible errors of the type A and B should be treated equal-
ly, when estimating the uncertainty. This fact generates several methodological problems 
related to the compilation of the type A random error with the type B error being 
the determined variable.   

The basis assumption of the GUM convention - in the type A uncertainty estimation 
process - is building the model of the measurement result, as the random variable Y de-
scribed by the density probability function g(y), for which two basic parameters i.e.: 
expected value µ (y) and standard deviation σ(y) are determined. According to the idea 
contained in these guidelines, the uncertainty is understood as the numerical measure of 
the measurement inaccuracy, described in probabilistic categories and interpreted in 
the interval way. This interval is formed around the average value considered equitable 
with the expected value with the discussed parameter. It is given by the following rela-
tion: 

 � � �	��	 ∈ �� � 	; � � 	�
 (1) 

determining with the required probability, equal the confidence level  α, the fact that 
inside this interval the unknown, but real, measured value is present. This interval – 
determining the error of the measurement result U – is called the expanded uncertainty. 
It is estimated at assuming the known distribution g(y) of the discussed parameter of 
the analysed vibroacoustic effect, using the condition: 

                   
(2)

The expanded uncertainty:  U= k u,  is the product of standard uncertainty u and 
the expansion factor k, which is the quantile of the probability distribution of the meas-
urement error, for the required confidence level  α.    

The standard way of working out the results given by the measuring series yi ; i=1, 2, 
..   .., n, is based on calculating: average 

                   
   (3)

from control results and related to them standard deviation s(yi) during observations: 
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 ����� � � �
���∑ ��� � �������  (4) 

and the standard deviation of the average distribution observation yi: 

 ����� � �����
√� � ������		 (5) 

equated with the average uncertainty called the standard type A uncertainty  ������. 
In the common application of this approach it is assumed that the distribution of 

the measured value is - in approximation - the normal distribution, which at assuming 
the confidence level being 95%  leads to the expansion factor 2. In this case the meas-
urement result is hedged with the uncertainty interval: 

 � � �� 	∓ 2	������				 (6) 

The value of the discussed parameter Y can be inaccessible directly in measurements. 
This value can be a function of several measured values  Xi , being random variables 
described by affiliated to them density probability functions  gi (xi ), with expected values 
μ!�x!� and standard  deviations #��$��. It is usually assumed, in such investigation proce-
dure, that the function of this parameter y=f(x1 , x2 ,..     .., xn ) is selected in such way as 
to have input quantities not correlated and random values  Xi  independent.   

At such assumption concerning the discussed value Y, its expected value  μ�y� and 
standard deviation   #� 	�$��    are expressed as follows : 

 &	��� � 	∑ '� 	(��� &� 	�$��;       #��� � 	)∑ '��#���$��(���  (7) 

where:	'� �	 *+*	,�	, and between functions of density probability distribution the convolu-

tion occurs: 

-��� � 	-��$�� ∗ 	-��$��	…											…-(�$�� 	� 	-��$�� ∗ 	-�0��$�0�� �	 
1 -��$�� ∗ 	-�0��$ � $�0��
2

�2
3$� � 1 -��$ � $�� ∗ 	-�0��$�0��

2

�2
3$�  (8)

The problem of selecting the probability distribution for the estimated measurement 
results is the most difficult for the uncertainty estimation in such case. The determination 
of the convolution of the density probability of measured variables requires performing 
complex calculations not providing solution in a closed form. Generally the distribution 
form is either determined by numerical operations or approximated by the „Monte Car-
lo” method. 

2. Methodological problems in applications of classic solutions of the uncertainty 
estimation determined by the gum convention 

The problem of the uncertainty type A estimation in acoustic investigations is related to 
the determined statistical drawing up process. On the basis of the random measurement 
test the acoustic parameters of the considered effects are determined and equated with 
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these effects. The correctness of such conclusion drawing is relevant to the correctness 
of applying the proper statistical methods. Their improper application leads to significant 
errors, which was broadly described in papers [4,5].  

The lack of the probabilistic properties of the identified effect in relation to assump-
tions of the applied method of the statistical conclusions drawing should be recognised 
as the most often made methodological errors. Especially the attention should be di-
rected to: randomness of the measurement test, verification of the assumptions correct-
ness of the applied method of the statistical conclusions drawing, selection of the appro-
priately numerous measurement tests, and also to the selection of the proper estimators 
for the assessment of position statistics of the investigated acoustic effects, which deter-
mine uncertainties of considered identifications. 

Thus, the correct application of the recommended in the ‘Guide to the uncertainty’ 
[1] procedures of uncertainty estimations, requires fulfilling the determined class of 
assumptions, which acceptability should be analysed in-depth and which is often, unfor-
tunately a marginalised activity.   Especially, the uncertainty assessment of the result of 
the environment acoustic hazards control is related to the assumption, which takes 
the normal distribution form as the representative of the mathematical observation model 
for the sound level measurement results LAi ; i=1, 2, ..   .., n. The condition of the lack of 
the correlation of results in measurement series is essential. It seems obvious, that in case 
of inaccuracy of these assumptions, the average sound level value (representing the con-
trol assessment) or another noise indicator from the test measurement and their standard 
deviation (also from the test), cannot be the best estimation of the measurement result 
and thereby the best assessment of its standard uncertainty type A. 

The majority of scientists intuitively assume the normality of the sound measurement 
results distribution of the tested population (from which the random test for the estima-
tion of the controlled noise indicators is taken). They are relating it to the results of 
the central limited theorem of Lindeberg-Levy, determining the convergent form of 
the random events distribution with the normal distribution. They do not consider 
the mechanism, which generates the sound level measurements results. 

 Taking into account this mechanism leads to distributions significantly differing 
from the normal distribution, as it was shown in papers [22,23]. This fact was also con-
firmed in works [8-11], in which the likelihood of this assumption was verified. 

The condition that the results of sound level measurements in processes of control-
ling acoustic hazards must not be correlated can also be not fulfilled. A high level of 
noise disturbances can essentially influence successive calculations of the equivalent 
sound level constituting the investigated random test. Also measured tests of the equiva-
lent sound level, necessary for calculating the controlled noise indicators, estimated in 
not distant time intervals can be correlated by external factors generating noises. This is 
documented by the results presented in paper [31], in which the effects related to this 
fact are also shown. They cause essential increasing of the standard uncertainty of 
the controlled noise indicator results.  

Doubts related to a small likelihood of two out of three basic assumptions of the ap-
plied methodology of noise indicators estimation - according to the convention GUM 
presented in the ‘Guide to the Uncertainty’ [2]; generate the need of the development of 
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new model formalisms for the realisation of such tasks. Their realisation ideas will be 
presented in the next item. 

3. New concepts and their model formalisms dedicated to the uncertainty asses-
sments in environment acoustic investigations  

The described above limitations of generally applied estimation methods of the uncer-
tainty of the acoustic investigations results with restricted assumptions, generated ap-
proaches of looking for the new model. In works of Department of Mechanics and Vi-
broacoustics AGH an attention was directed towards model formalisms allowing analys-
ing statistic measurement data in which departures from classic assumptions, mainly 
from the assumption of normality of distribution of the controlled noise indicator results 
and of not correlated random sample results, are possible. The attention was directed 
towards the currently developed methodology of statistical investigations of effects, 
which have the same specificity of conditions, colloquially called ‘not classic statistical 
methods’ [15,20]. 

To the solutions of statistical conclusions drawing, related to these methods, enabling 
the estimation of the expected values of the investigated populations and assessment of 
their variance (i.e. allowing to create confidence intervals for the realised estimations) 
belong the methods based on the model formalism of:  

• time series [16,26], 
• kernel estimators [16], 
• bootstrap analysis  [13,19,20], 
• Bayes’ analysis [21], 
• propagation of distributions [22-25]. 

The analysis of the application possibility of these solutions and their adaptation for 
the needs of the estimation of long-term noise indicators and building of assigned to 
them confidence intervals was the subject of numerous scientific works in the Depart-
ment of Mechanics and Vibroacoustics and related to them Ph.D. Thesis, either finished 
or in the realisation stage . Their results were presented in several publications [15,-
17,19-21, 22-25].  

It is assumed, in the process of assigning to results of control measurements {x1 ,  x2 ,.     
.,xn} the representative in the form of time series [26]; (being a sequence of random 
values of variable X describing the state of the analyzed acoustic effect); that its proba-
bilistic structure can be shaped by the mechanism: 

 45 	� 	 &5		 �		65 	� 	75	; 						8 � 1,2, .		… , < (9) 

It has the following components: trend  &5		 related to a constant tendency forcing 
the level of changed values of the analyzed acoustic parameters, cyclic component 65 - 
representing cyclic changes related to recurrent characteristic excitations, and the residu-
al component representing random disturbances (or inaccuracy of the model description)  
75	 of the normal distribution N(0, #=�	�.  

In contrast to the classic model of the random control test (which assumes that ran-
dom observations are of a normal distribution), the proposed approach assumes the pres-
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ence of a certain mechanism forcing changes of control results values, which can be 
represented with the accuracy characteristic to Gaussian disturbances of the expected 
value being zero and variance #=� .  

The estimation problem, of the expected value and variance of the analyzed acoustic 
parameters in such approach, is reduced to the identification of the time series structure. 
It requires determining the proper approximation &5		>	, 65>		for components &5 and 65, 
which should provide the correct variability description of successively observed results 
of control tests (with a random Gaussian error ?5, of the expected value being zero and 
variance #@�).   

The correct selection of the approximation for the observed series of changes of 
the acoustic parameters values being controlled, requires the identification of its variabil-
ity properties. Helpful in this process are generally applied solutions allowing to resolve 
problems concerning: 

• stationary of the analysed time series;  
• presence of the cyclic component (in this time series);  
• homogeneity of the observation set and properties, including the random compo-

nent variance.  

The results of such identifications are helpful in selecting the correct modelling of 
time series formed from the control results values.   

The realised examples of such analyses, in relation to the estimation of noise indica-
tors determining the acoustic climate and assessments of their uncertainties, are given in 
the Ph.D. thesis of R. Bal [16]. They were referred to the results of the continuous noise 
monitoring, recorded at one of the main arteries in Krakow. They provided recommenda-
tions for the proper model selection for the estimation of the long-term sound indicators, 
describing the acoustic climate in the analysed areas and for the assessment of their 
uncertainty.   

The application of kernel estimators allowing the likelihood estimation of the density 
probability distribution function of the analysed acoustic parameters and related to them 
uncertainty assessments can become the helpful solution [18]. The unknown function of 
the density probability f(x) of n-dimensional random variable X, is – according to this 
procedure – calculated on the basis  of experimentally determined values of m-element 
test:  x1 ,x2,   …, xm   of the analysed random variable from the following dependence: 

 AB�$� � 	 �
CDE∑ F	 G,�,�D HC���  (10) 

in which  the function K(x) meets the condition: 

 I F	�$�3$	 � 12
�2  (11) 

It is called the nucleus, while the positive index  h is called the smoothing parameter. 
It is possible to apply various nuclear functions, presented in paper [18], in the estima-
tion process. The selection is related to the condition of the proper adapting of estimator  
AB�$�	 to the real density function f(x), characterised by the effectiveness factor, defined 
as: 
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The adaptation of this solution for the needs of the acoustic environment control, to-
gether with its effectiveness assessment was the subject of the Ph.D. Thesis of B. Stępień 
[20] and analyses given in papers [19,20]. They Illustrate conditions of the effective 
estimation of the long-term noise indicators expected values and assessments of their 
uncertainties.  

Similar analyses were performed in relation to the bootstrap method [13] recom-
mended for the uncertainty assessment in acoustic investigations. Its solution leads to 
the distribution function determination for the expected value and variance of the ana-
lyzed acoustic parameters, on the grounds of the results of the individual random sample  
{x1 ,  x2 ,.     .,xn }. It does not require the determined assumptions concerning the measur-
ing test probability distribution. It provides the way of creating research statistics. Boot-
strap copies constitute its data base. Their data are generated in such way that from 
the set of measurement results { xi } the test of the determined size is drawn �	$�∗	
 and 
the drawn numbers are not removed from the test. In such way not one but several cop-
ies,    allowing to calculate the statistical characteristic of the analyzed acoustic parame-
ters, are formed.   Functional properties of the bootstrap method  (based on copied data) 
analyzed in the estimation process of controlled noise indicators and assessments of their 
uncertainty, were published in several papers  [19,20]. The proposed solution occurred to 
be the efficient tool in the estimation of the expected value and variances of the con-
trolled noise indicators.  

The successive estimation method of the controlled noise indicators [  ] and assess-
ments of their uncertainties (recommended for using in environment control), currently 
being developed in KMiWA AGH, is the solution based on the Bayes’ method. 
The estimated parameter, is a random variable, for which the a priori distribution is 
assumed on the grounds of logical premises and analyses as well as on other information 
originated from outside of the control test. From the formal point of view the proposed 
Bayes’ mathematical formalism is reduced to treating the estimated acoustic parameters 
and assessments of their uncertainties (being random variables, not known a priori) in 
relation with the classic reasoning, based on the probability mathematics. Especially two 
probabilistic principles are applied: determinations versus the value of the observed 
measurement test (i.e. statistic control data) and the determination of boundary distribu-
tions ‘a posteriori’, for the variable being under investigations (i.e. possible future val-
ues of the controlled acoustic parameter).  

Bayes’ reasoning answers directly (intuitively) the question concerning the probabil-
ity of the hypothesis, in relation to the obtained measurements results. Thus, it should be 
expected that this solution can have a good, wider application perspective in practical 
control of acoustic investigations.  In favour of this approach application will act more 
and more general access to computational tools  (e.g. allowing multidimensional numeri-
cal integration), inseparably related to the Bayes’ analysis.  The studies performed with-
in this scope in the Department of Mechanics and Vibroacoustics [21] are reminding its 
realisation grounds and showing its practical potential from the perspective of the al-
ready realized long-term noise indicators and assessments of their uncertainties. 
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An important direction of works, concerning uncertainty assessments in the estima-
tion of the environment acoustic state, is looking for the density probability distribution 
Q[$�∑ S������ ], being the summary result of all measured variables qi, contributing to 
the final assessment of the controlled acoustic parameter.   

To this aim it is possible to look for the solution by the method of propagation of 
partial distributions  related to transformations of measuring results qi , in the analyzed 
control assessment. As the example of such task can serve the problem of the logarith-
mic mean estimation Lśr = 10 log(1/n ∑ 10V.�W����� ), being the sum of independent sound 
level random results Li,  i = 1, 2, .   .  , n.  The analytical solution of this problem is diffi-
cult, due to the necessity of performing complex transformations leading to the determi-
nation of the looked for probability distribution: 

 Q[$�∑ S����� �] � Q[$�S��] ∗ Q[$�S��] ∗	.								.∗ 	Q[$�S��] (13) 

which is the convolution of the partial variables distributions. On its grounds, it is possi-
ble to estimate the expected value of the controlled noise indicator and the expansion 
factor 	X�∝�, allowing to determine confidence intervals for the controlled variable. 

This problem was applied for the task of the estimation – of the mentioned above – 
average sound level Lśr = 10 log(1/n ∑ 10V.�W����� ), determined by the sum of independent 
random results   Li ,  i = 1, 2, .    .  , n  of sound level measurement [6, 7]. The possibility 
of obtaining – by this method – the recurrent algorithm for the expected value and vari-
ance (of this variable) estimation at the assumed form of the probability distribution of 
controlled results, was indicated.   

The new document of the Joint Committee for Guides in Metrology (JCGM 
102:2008) [28] Guide to Uncertainty [2] (edited by the International Standardisation 
Organisation) corresponds with the studies in KMiWA, the estimation approach to con-
trolled variables, based on the distributions propagation method. The ISO document 
propagates new standard in the scope of uncertainty calculations of the control result by 
distributions propagation method. The probability distribution of the controlled variable 
– according to the recommendations contained in this document – should be calculated 
by means of the Monte Carlo simulation by the mathematical model of input values, 
contrary to the analytical approached being developed in Department of Mechanics and 
Vibroacoustics AGH. 

4. Research challenges 

The analysis of the realisation basis of uncertainty assessments in identifications of 
acoustic investigations indicates that its correctness is fully attributed to the correctness 
of the statistic inferences with respect to the performed acoustic measurements. Analyses 
of assumptions related to inferences are indispensable as well as looking for the proper 
interpretation for the mechanism of generating measurements random test results. Ful-
filling these conditions is necessary for the correct statistic inferences, which are aimed 
at the determination of the confidence interval containing – with the determined proba-
bility – the hypothetic, true value of the acoustic variable being under control.  

Applications of estimated uncertainty solutions, based on not fully random tech-
niques of obtaining control data and also not having properties of random test, required 
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for the correct uncertainty assessment, is quite common in investigation practice of 
the identification of the determined acoustic effects parameters (including numerous 
control procedures of the environment acoustic hazards).  

It especially concerns the problems listed below: 

• The lack of investigation specifications related to the analyzed acoustic effect and 
– connected with it – randomness requirement and representativeness of the ran-
dom test (taking the measurement test for inferences from not properly defined, 
or not defined at all, investigation population).  

• None reflections on the correctness of assumptions of the estimated uncertainty 
solutions, including: the normality of the measurement results distribution and 
the lack of the correlation of the random test results. 

•  Not taking into consideration the requirement of the proper testing sample size 
versus the realised assessments of the measurement results uncertainty. 

• Not proper verification of the hypotheses - being assumptions of the assumed es-
timative solutions of uncertainties. 

• Using the same data base in processes of formulating and of testing of the as-
sumed investigation hypothesis -  in relation to the identified acoustic effects. 

Inferences concerning acoustic investigations uncertainties – according to the GUM 
convention – i.e. on the bases of the measurements results distribution creating random 
measurement series, are burdened by numerous faults and limitations in acoustic tests. 
The impossibility to assure properly numerous measurements series (in the majority of 
realised acoustic investigations) belongs to these limitations. This is usually related to 
a large size of the investigation task, its costs and labour-consumption. Assumptions 
contained in them are difficult to be accepted (as can be noticed in several references), 
and their correctness is questioned by several environmental noise tests.   

There is also a serious mathematical problem in selecting the model formalism, 
which would allow to join the type A uncertainty with type B, it means the uncertainty 
estimated by statistic methods with information on possible error ranges given by 
the a priori expertise.  

In case when information – on the possible error of the acoustic measurement – are 
not sufficient or of a small reliability the characteristics of the identified effect could be 
restricted only to the statistic description and not to the statistic inferring in relation to 
the uncertainty assessment of the obtained results. The observed correctness in the test 
should be treated as the test representative, however without attributing to it the error 
size with the determined probability of its correctness. The statistic inferring application, 
recommended by the GUM convention in uncertainty assessments, seems unjustified. 

The proposed in papers [30,31] formalisation based on interval algebra seems to be 
the worthy recommendation method of solving the problem. In this case the metrological 
interpretation for both ways of defining the measurement result uncertainty, i.e. de-
scribed in papers [30,31] and guidelines of the GUM, can be quite similar. However, 
within the range of the mathematical formalisation of both ways essential differences can 
be seen.  In case, when the uncertainty is defined as the interval of possible values of 
measurement variables, successive steps towards obtaining the interval result of 
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the control measurement can be consistently realised from the measuring process de-
scription. It does not require meeting – difficult for the measuring practice – assumptions 
of the GUM convention. 

This behaviour differs from the solutions recommended in the Guide, which applica-
tions can be really limited to laboratories, since only in laboratories the numerous, ho-
mogeneous and not correlated measurement series can be achieved. Such requirement is 
difficult to be accepted in the control of the acoustic environment state. Essential varian-
cies of measuring conditions, in which the results reproducibility is disturbed, occur in 
acoustic environment measurements. This type of limitations create uncomfortable situa-
tions in which legally recognised way of uncertainty determining has a limited applica-
tion and which in effect causes – very often – ignoring the needs of the verification of 
assumptions applied in the uncertainty assessment method, by persons performing meas-
urements.    

 The fact that for the solutions determined by the GUM convention it is difficult to 
find the mathematical justification in physical interpretations of the measurements of 
analysed acoustic effects, to assumed statistical models used for assessments of uncer-
tainties of their identification, is the essential argument for the possible marginalising of 
these solutions.   

The approach based on the Bayes’ method can be interesting for the application 
[20,21]. Admittedly, in such case a priori knowledge of probabilistic error characteristics 
is needed, but the modern technique provides several useful tools, and thus this will not 
constitute an essential limitation. 

Summarising, it can be stated that current analyses of the uncertainty in acoustic in-
vestigations based on the GUM convention (in basic assumptions and formal ways of 
their model solutions) are weakly justified. There is a noticeable gap between their as-
sumptions and constrains supplied so far by investigation experiences from the environ-
ment acoustic monitoring. 

Limitations in the currently binding assessments of the uncertainty of acoustic inves-
tigations results, sketched in the hereby paper, can become a source of inspiration for 
searching and development of better formal bases for the calculation procedures of their 
uncertainty. 

Thus, broader investigations concerning the model formalisms, indicated in the pa-
per,  based on ‘not classic statistics methods’ (free from limitations of the current meth-
ods of the uncertainty assessment) should be undertaken. This would allow to verify 
the divergence level in uncertainty assessments of the controlled acoustic effects.  
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Abstract  

This paper is devoted to analysis of the surface nonlinear elastic harmonic waves of four types (Rayleigh and Sto 
neley harmonic waves within the framework of plane strain state; Love and Mozhaev harmonic wave within 
the framework of anti-plane strain state). The nonlinear model is based on introducing the Murnaghan elastic 
poten tial, which includes both geometrical and physical nonlinearities. Each type of surface waves is discussed 

in four steps: statement of the problem, nonlinear wave equations, approximate solution (first two approxima-
tions), so-me conclusions. A nonlinear analysis of waves required many novelties: new variants of the Murna-
ghan poten-tial, new nonlinear wave equations and new nonlinear boundary conditions. The nonlinear wave 
equations were solved by the method of successive approximations. A new approach to analyze the boundary 
conditions is offe- red. Some new nonlinear wave effects are observed theoretically: a wave picture is reached 
by the 2nd harmonic and becomes changing in time of propagation, the wave numbers become depending on 
the initial amplitude.  
 
Keywords: surface nonlinear elastic harmonic waves, Rayleigh wave, Love wave, Stoneley wave, Mozhaev wave 

1. Introduction  

The theory of elastic harmonic waves forms the big fragment both linear and nonlinear 

theory of elasticity. Chronologically, the free waves were first studied. Their main charac-
teristics is that they propagate in the space without boundaries. The plane harmonic waves 
have to be referred just to this type of waves [7]. Further, the waves with curvilinear fronts 
(cylindrical, spherical and so on) were studied, where the curvilinear boundary is presen-
ted, on which the waves are generating and then passing to infinity. The surface waves pre-
sent the next, third, group in complexity of theoretical analysis [8]. A necessary here allo-
wance for the influence of interface and a condition of quick attenuation of the wave am-
plitudes while being gone from the boundary, form a more complicate wave picture. 

An intrinsic logics of development of the theory of elastic waves was dictated, at 
least, three lines of the subsequent study of elastic waves. The 1st

 line consists in compli-
cation of the model of elastic deformation (for example, transition from the structural 
model of the 1st order to the models of the 2nd

 order - micropolar, elastic mixture, micro-
morphic and so forth. The 2nd line includes allowance for the initial stresses what is im-
possible in the framework of the linear theory and has many applications. The 3rd line is 
associated with the full allowance for a nonlinearity of deformation and can be divided on 
different sub-lines, part of each is pure theoretical, whereas other one is more applied. 
Among the theoretical sublines, the Moscow, Tallinn, Nizhnii Novgorod, and Kyiv ones 
can be outlined. The shown in this paper analysis is related to the 4th subline. It is based 

on introduction in-to the model a nonlinearity, described by the Murnaghan elastic poten-
tial. Here, some re-sults from analysis of the Rayleigh, Love, Stoneley, and Mozhaev 
waves are shown. The Rayleigh and Stoneley waves are related to the surface waves and 

can be analyzed in the 3D approach. The 2D analysis (a statement in the framework of 
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the plane strain approach) seems the only more convenient for the pilot consideration. 
The Love and Mozhaev waves are related to the surface wave and are analyzed in the 2D 
approach (a statement in the fra-mework of the anti-plane strain approach). 

2. Nonlinear elastic surface Rayleigh wave 

2.1. Statement of the problem 
The case is considered, when an interface is the plane. Then the Cartesian coordinates are 
chosen in the way that interface is described by equation x3 = 0 and an elastic material 
occupies the upper half-space. Let the material is isotropic and the wave propagates along 
the axis Ox1. In this case, the motion becomes not depen-ding on the coordinate x2. 
The mechanical state becomes plane strain state. Consider now the problem of nonlinear 
Rayleigh waves within an approach based on the Murnaghan model of description of 
nonlinearity of elastic deformation. The starting point is then the variant of Murnaghan 
potential [5,7] is chosen 

 ( ) ( ) ( ) ( ) ( )( ){ }2 2 2 2

1,1 3,3 1,1 3,3 1,3 3,11 2 1 2W u u u u u uλ µ= + + + + + +L  

 ( ) ( ) ( ) ( )( )( )3 3

1,1 3,3 1,3 3,1 1,1 3,31 3 3 4A u u u u u u + + + + + +  
L  (1) 

 ( ) ( ) ( ) ( )2 2 2

1,1 3,3 1,1 3,3 1,3 3,1B u u u u u u + + + + +  
 ( ) ( )3

1,1 3,31 3 C u u+ + . 

The next basic formulas represent the components of the Kirchhoff stress tensor, that 
are evaluated from (1) using the rule tnm = (∂W/∂um,n). 

2.2. Nonlinear wave equations 
Substitution of these components into the motion equations 

11,1 31,3 1 13,1 33,3 3;t t u t t uρ ρ+ = + =&& &&  gives two nonlinear equations of Lame type  

 ( ) ( ) ( ) ( )1 1,11 3,13 1,33 1,1 1,112 3 2 2 3u u u u A B C u uρ λ µ λ µ µ λ µ− + − + − = + + + + +  &&  (2) 

 ( )( ) ( )1,1 1,33 1,3 3,11 1,3 3,33 3,3 1,332A B u u u u u u u uµ + + + + + + +   

 ( ) ( ) ( ) ( )1,1 3,13 3,3 3,13 1,3 1,33 3,1 1,132 3 2 3 2
2

A
B C u u u u A B u u u uλ µ λ µ

  + + + + + + + + + + + +       
 

 ( ) ( ) ( ) ( )3,1 3,11 3,1 3,33 3,3 1,112 2 2 .A B u u u u B C u uλ µ λ+ + + + + + + +        

The second equation can be obtained from the first one by a change of indexes 31 ⇔ . 
Each equation involves 12 nonlinear summands. The total number of distinguishing 

sum-mands is 24. A similar increase of nonlinear summands is typical for cylindrical 
waves [8]. 

2.3. Approximate solutions (first two approximations) 
The linear analysis is based on in-troduction of two new functions (potentials), which can 

be determined as solutions of the mutually independent linear wave equations. In 
the nonlinear case, the wave equations are nonlinear and coupled ones. To analyze the 

nonlinear case, let us introduce two potentials by the classical scheme [5,8] 
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 ( ) ( ) ( ) ( ) ( ) ( )1 1 3 1 3 1 3 3 1 3 1 3 1 3,1 ,3 ,3 ,1
, , , , , , ; , , , , , , .u x x t x x t x x t u x x t x x t x x tϕ ψ ϕ ψ= + = −                 (3) 

In the first approximation, these potentials have the form corresponding to harmonic 
wave with frequency ω, wave number kRlin and decaying by the exponential law, when 
being moved away from the plane x1 = 0 [4] 

 
( ) ( )

( ) 2 2 2 2
3 31

(1) (1)
1 3 1 3, , , , , ,

, , .Rlin Rlin L Rlin T

L T

k x k xi k x t k k k k

L T

x x t A EE x x t A EE

E e E e e E e eϕ ψ

ϕ ψ

ω

ϕ ψ

− −− − − − −

= =

= = = = =
 (4) 

The final expressions for the second approximation solution are as follows (below only 
one potential is shown) 

 

( )
( ) ( ) ( )

( ) ( )

( ) ( )

1

2 2 2 2
3 3

2 2
2 2(2) 1 3

1 3 1 3 22
22 2

1 3

2 2
2 21 3

22
22 2

1 3

1
, ,

4 2 4

1

4
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Rlin L Rlin T

i k x t Rlin L Rlin

L
Rlin L Rlin

k k x k k xL TRlin T Rlin

T
Rlin T Rlin

k k x ik x
x x t x x A e

k k k x k x

k k x ik x
M e M e

k k k x k x

ω
ϕ

ϕ ϕ

ρ
ϕ

λ µ
−

− − − −


− +

= − ×
+  − +



− +
× − +

− +

 (5) 

( )( )
( )

( ) ( )

( )( )2 2 2 2
3

2 2 2 2
1 3

22 2 2 2 2 22 2 2 2 2
1 3

2 41
;

4 16

Rlin L Rlin T
Rlin L Rlin T Rlin k k k k xLT

Rlin L Rlin T Rlin Rlin L Rlin T Rlin

x k k k k ik x
M e

k k k k k x k k k k k x
ϕψ

− − −

− + − + 


− − − − + − +


 

2.4. Some conclusions 

Conclusion 1. The 2nd approximation includes the 2nd harmonic, that is, it includes the 2nd 
harmonic relative to the harmonic wave propagating in direction of the horizontal coordina 
te and to the exponential decay of the wave along the vertical coordinate. New harmonics 
have amplitudes, which depend nonlinearly on coordinates and then increase with increa- 
sing the time of Rayleigh wave propagation. As a result, the 1st harmonic distorts. 
Conclu-sion 2. The dependence of amplitude of the 2nd

 harmonic on the squared corre-
sponding amplitude of the 1st harmonic is standard for the used method within an ap-
proach that the nonlinearity is weak. It has some consequence relative to the 2nd harmon-
ic distortion. 
Conclusion 3. For the pure surface wave (x3 = 0) the 2nd approximation is at beginning 
the zeroth, but for the near-the-surface wave this approximation can introduce the essen- 
tial contribution into the wave picture.   

3. Nonlinear elastic surface Stoneley wave 

3.1. Statement of the problem 
Consider the case, when two nonlinear elastic half-spaces with different densities and 
mechanical properties are separated by a plane and are joined according to the condition 

of full mechanical contact. Choose also the Cartesian coordinates Ox1 x2 x3 and assume 
that an interface is the coordinate plane and is described by equa- tion x3 = 0 [9]. Sup-
pose further that the mechanical state does not depend on coordinate x2 and the transverse 
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horizontal displacement u2 is absent. Then the problem is reduced to analysis of two 
half-planes (upper and lower) with the straight interface. This exhausts  the geometrical 
part of statement of the problem on Stoneley wave. The mechanical part consists in us-
ing the equations of motion for the present case of absence of the transverse horizontal 
displacements. 

This approach is based on introduction of nonlinearity of deformations of both half-
planes by use of the Cauchy-Green nonlinear strain tensor and the Murnaghan potential 

 ( ) ( ) ( ) ( )2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 1,1 3,3 ( ) 1,1 3,3 1,3 3,1

1 1

2 2
U L U L U L U L U L U L U L

U L U LW u u u u u uλ µ  = + + + + + + 
 

L  (6) 

 ( ) ( ) ( ) ( ) ( )2 2 2 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 1,1 3,3 1,1 3,3 1,3 3,1 ( ) 1,1 3,3

1

3
U L U L U L U L U L U L U L U L

U L U LB u u u u u u C u u + + + + + + +  
L , 

where the superscript U (upper) is used for the upper half-plane and the superscript L 
(lower) is used for the lower half-plane. 

3.2 Nonlinear equations of motion 

These equations are written through the nonsymmet-ric Kirchhoff stress tensor ( )U L
nmt   

 ( ) ( ) ( ) ( ) ( ) ( )
11,1 31,3 ( ) 1 13,1 33,3 ( ) 3;U L U L U L U L U L U L

U L U Lt t u t t uρ ρ+ = + =&& && , (7) 

The Kirchhoff tensors are determined by the formula ( )( ) ( ) ( )
,

U L U L U L
nm m nt W u= ∂ ∂ . 

Let us introduce the potentials like the case (3) 

 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
1 1 3 1 3 1 3,1 ,3

( ) ( ) ( )
3 1 3 1 3 1 3,3 ,1

, , , , , , ;

, , , , , , .

U L U L U L

U L U L U L

u x x t x x t x x t

u x x t x x t x x t

ϕ ψ

ϕ ψ

   = +   

   = −   
 (8) 

Substitute representations (8) into (7) and obtain a system of two geometrically nonlinear 
equations relative to potentials  

 ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ,3,1

2B H B H B H B H
B H B H B H B H B Hρ ϕ λ µ ϕ ρ ψ µ ψ   − + ∆ + − ∆ =  && &&  

 
( )

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ,11 ,111 ,11 ,133 ,33 ,111

( ) ( )
( ) ,33 ,111 ( ) ,11 ,111 ,33 ,133

( 2 ) 3

;

B H B H B H B H B H B H
B H B H

B H B H
B H B H

λ µ ϕ ϕ ψ ψ ψ ψ

λ ϕ ϕ µ ψ ψ ψ ψ

= + − − +

+ + +

L

L

 

 ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ,1,3

2B H B H B H B H
B H B H B H B H B Hρ ϕ λ µ ϕ ρ ψ µ ψ   − + ∆ − − ∆ =  && &&  (9) 

 
( )

( )
( ) ( ) ,13 ,133 ,13 ,133 ,13 ,111

( ) ,11 ,333 ( ) ,33 ,333 ,11 ,113

( 3 ) 3 2

.

B H B H

B H B H

λ µ ϕ ϕ ψ ψ ϕ ϕ

λ ϕ ϕ µ ψ ψ ψ ψ

= + + + + +

+ + +

L L

L

 

3.3. Approximate solutions (first two approximations) 

Apply now the method of success-ive approximations and choose the 1st approximation 
solution in the form of the classical linear representation of the Stoneley wave. Thus, 
the four potentials have the form of har-monic wave with frequency ω and wave number 
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k. These waves attenuate by the expo-nential law, when they move away from the plane 
x1 = 0 (different for the upper and lo-wer half-planes) 

                       
( ) ( )22

3 1 3 1( ) ( )(1)
1 3( , , ) ,

B B
S L S L S

k k x i k x t x i k x tB B Bx x t A e e A e eω β ω
ϕ ϕϕ

− − − − −= ≡% % K                

(10) 

                    
( ) ( )22

3 1 3 1( ) ( )(1)
1 3( , , ) .

H H
S T S T S

k k x i k x t x i k x tH H Hx x t A e e A e eω β ω
ψ ψψ

+ − − + −= ≡% %K                    

The amplitudes ( ) ( )
3 3( ), ( )B H B HA x A xϕ ψ  have to fulfill the condition of attenuation with 

increasing the distance 3x  and the wave number ks = (ω/vs) has to be determined from 

the additional considerations. 
The second approximation is as follows (only one potential is shown) 

 

( ) ( )

( ) ( ) ( )
( )

2 ( )( )(2) ( )(1) 2
1 3 1 3

( ) ( )

( ) ( )
21 3 ( ) ( )

2 2 2( ) ( ) ( )
1 3

1
, ,

4 2

1

4

B HB H B H

B H B H

B H B H
lin B H L B H

L
B H B H B H
L lin

x x t x x A E

k x ik x
M E

k k x k x

ϕ

ϕ
ϕ

ϕ

ρ
ϕ

λ µ
= ×

+

 +
× − −

+

  

 
( ) ( ) ( )

( )

( )
( )

( ) ( )

21 3 ( ) ( )
2 2 2( ) ( ) ( )

1 3

1 3 ( ) ( ) ( )
2 2 2( ) ( ) ( ) ( ) ( ) ( )

1 3

1

4

2 41
.

2 16

lin B H T B H
T

B H B H B H
T lin

lin B H LT B H B H
L T

B H B H B H B H B H B H
lin lin

k x ik x
M E

k k x k x

x k k ik x
M E E

k k k x k k k x

ψ
ϕ

ψ

ϕ ψ
ϕψ

ϕ ψ ϕ ψ

+
− +

+

+ + 
+ 

 − + +   

 (11) 

3.4. Some conclusions 
Conclusion 1. The 2nd approximation solutions include the 2nd harmonic relative the 1st 
(linear) approximation, that is, it includes the 2nd harmonic relative to harmonic waves 

propagating in direction of the horizontal coordinate and to the exponential decay of 
the wave along the vertical coordinate. New harmonics have amplitudes, which depend 
non-linearly on coordinates and then increase with increasing the Stoneley wave propa-
gation time. As a result, the 1st harmonic distorts. 
Conclusion 2. The characteristic feature of non- linearity is dependence of the 2nd approx-
imation on squared amplitudes and coordinates. This means that the 2nd harmonic can 
dominate with time. 

4. Nonlinear elastic surface Love wave 

4.1. Statement of the problem 
Consider the problem on the Love elastic wave in the clas- sical statement under addi-
tional assumption on nonlinearity of deformation process. From the geometrical point of 
view, the nonlinear problem statement coincides in many parts with the linear one and 
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consists in that the system is considered: the layer of constant thickness defined by con-
dition – h ≤ x1 ≤ 0  and the upper half-space x1 ≥ 0 are described by Cartesian coordi-
nates Ox1x2x3 (the abscissa axis is directed deep into the half-space, the ordinate axis is 
directed along the interface) [1]. 

From point of view of mechanics, the problem includes some initial assumptions: (1) 
It is supposed that the half-space and the layer are filled by nonlinearly elastic materials 
with distinguishing properties (further, the quantities describing the layer and half-space 
are assigned the indexes L and H, respectively). (2) Materials are deformed by the 

Murnaghan model and, therefore, the properties include density ρL(H) and five elastic 

constants λL(H), µL(H), AL(H), BL(H), CL(H). (3) It is supposed also that the half-space and 

the layer are in con ditions of full mechanical contact (equality of displacements and 
stresses at the interface) and the layer lower plane x1 = – h is free of stresses. 

The possibility of propagation of the harmonic plane vertically polarized transverse 
wave is studied under the condition of absence of displacements u1, u2 in longitudinal and 
horizontal directions, respectively. 

The form of Murnaghan potential corresponding to the stated problem is as follows 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
22 2 2 2 4 4 2

3,1 3,2 3,1 3,2 3,1 3,2 3,1 3,2

1 1 1 1 1 1

4 2 2 4 4 4
W u u u u u u u uλ µ   = + + + + + + +     

L  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 4 4 2 2 2

3,1 3,2 3,1 3,2 3,1 3,2 3,1 3,2

1
2 2

8
B u u u u u u u u   + + + + + + +      

L  (12) 

The main feature of representation (12) is only occurrence even degrees of nonzeroth 
components u3,1, u3,2: the 2nd degrees (corresponding to the linear approach), the 4th

 de-
grees (corresponding to the cubically nonlinear approach), and the 6th

 degrees (corre-
sponding to nonlinearity of the 5th order) are presented in (12). 

4.2. Nonlinear wave equation 

The stress tensor is determined by the classical formula tik = (∂W/∂uk,i). Only two t13, t23  

of nine components of the stress tensor are nonzeroth. 
Note the goal is stated to analyze the possibility of propagation in direction Ox1 (at 

the neighborhood of interface) of the wave with unknown amplitude ( )( )
3 1
L Hu x
)

and wave 

number k. Then the wave can be represented in the form  ( ) ( )2( ) ( )
3 3 1

i kx tL H L Hu u x e ω−=
)

. 

If the requirement is formulated that the wave is localized near the interface, that is, it 
has the maximal amplitude at the interface and the amplitude decays essentially with 
increase of the absolute values of x1, then the statement in the framework of linear theo-
ry of elasticity corresponds to the nonlinear statement of the problem on Love wave. Two 
of three equations of motion are degenerated into identities in this problem, whereas 
the third one has a form 13,1 23,2 3t t uρ+ = && ,  which can be transformed into the next nonline-

ar wave equation 

 ( ) ( ) ( ) ( )2 2 2

3 3,11 3,22 1 3,1 3,11 2 3,2 3,11 1 3,2 3,22u u u T u u T u u T u uρ µ− + = + + +&&  
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( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
1 2 1

2 3 4

3 1 4 1 2 , 1 2 , 5 4 ,

1 4 1 4 , 2 3 2 2 , 3 4 2 2 .
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F A B C F A B C F A B C

λ µ λ µ= + + + = + + + = + +      
= + + = + + = + +

 

The equation (13) contains the nonlinear summands of the 3rd (five summands) and 
the 5th (eight summands) orders. This feature of absence of even order summands is 
the consequence of the problem statement. A similar situation was arisen in the study of 
pla-ne transverse wave in the 3rd approximation [7]. 

Let us save in (13) only the cubic nonlinearity and search the solution by the method 
of successive approximations. 

4.3. Approximate solutions (first two approximations) 

The solution in the framework of first two approximations is as follows 

 for  ( ) [ )2 1, , 0;x x∈ −∞ ∞ ∈ ∞ :      ( ) (1) (2)
3 1 2 3 3, ,H H Hu x x t u u= + =  (14) 
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   + + − +        
 

 ( ) ( ) ( )2
2 2 3

3 1 3 1sin3 1 cos3 1 i kx tL L
s T c TK v v kx K v v kx e ω−   + − + −        

. 

The solutions (14) and (15) contain the unknown parameters: amplitude LH and wa-
ve number k. If the amplitude can be assumed to be arbitrary according to the fact that 
the Love wave is the running surface wave, then the wave number should be determined 
from the boundary conditions. But for the nonlinear statement these conditions are alrea-
dy nonlinear what enables allowance for effect of nonlinearity on the wave number. 
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4.4. Some conclusions 

Conclusion 1. The wave is dispersive one, because analysis of boundary conditions testi-
fies the nonlinear dependence of phase velocity v on wave number k: (1) For zero value 
of wave number (for infinite wave length), the velocity is equal to the phase velocity of 
plane transverse waves in the half-space H

Tv .  (2) With increasing the wave number, 

the velocity decreases. 
Conclusion 2. The 2nd

 approximation includes the 3rd harmonic relati-ve the 1st (linear) 

approximation, that is, it includes the 3rd harmonic relative to the harmo-nic wave propa-
gating along the horizontal coordinate and to the exponential decay of the wave along the 

ver tical coordinate. These new harmonics have amplitudes, which depend nonlinearly on 

coordinates and then increase with increasing the time of Love wave propa-gation. As 

a result, the 1st harmonic distorts. 
Conclusion 3. The dependence of amplitu- des of the 2nd harmonic on the cubed corre-
sponding amplitudes of the 1st harmonic is standard for the used method within an ap-
proach that the nonlinearity is weak [7].  

5. Nonlinear elastic surface Mozhaev wave 

Analysis of the nonlinear elastic surface wave propagating within the condition of anti-
plane strain state in the half-plane (in contrast to the case of Love wave, where presence 
of layer is predicted) is proposed in [3]. In [2], such a virtual wave was called the Mozha-
ev wave. Unfortunately, the presented in this lecture four cases of harmonic and solitary 
waves do not certificate existence of such a wave. 
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Abstract  

Wheel-rail thermoelastic contact problem is analysed and numerically solved in the paper. The surface of 
the rail is assumed to consist from layers having distinct constant material parameters and a functionally grad-
ed material layer between.  Thermal and mechanical properties of the graded layer are dependent on its depth 
rather than constant as it is considered in the literature. Numerous laboratory experiments indicate that graded 
materials layers or coatings covering the conventional steel body can reduce the magnitude of contact and/or 
thermal stresses as well as the noise and the rolling contact fatigue. The contact phenomenon includes friction 
as well as frictional heat generation and wear. Quasistatic numerical approach is used to solve numerically this 
contact problem. Numerical results are provided and discussed.  
 
Keywords: thermoelastic rolling contact problem, functionally graded materials, quasistatic method 

1. Introduction  

Two-dimensional rolling contact problems including friction, frictional heat generation 
and wear are solved numerically in this paper. The unilateral contact of a rigid wheel 
with an elastic rail lying on a rigid foundation is considered.  The friction between 
the bodies is described by Coulomb law [1,2,3].  The coefficient of friction is assumed 
constant. Due to the heat conduction, the frictional heat flow is directed into the coated 
medium [4].  We employ Archard's law of wear [5]. In the model the wear is identified 
as an increase in the gap between bodies.  

The thermoelastic contact or rolling contact problems were  considered by many au-
thors (see references in [1,3,6,7,8,9,10,11,12]).  Numerous laboratory experiments indi-
cate [2,8] that the use of a coating material attached to the conventional steel body re-
duce the magnitude of residual or thermal stresses. It leads to the reduction of the rolling 
contact fatigue and noise. However in a conventional coating structure homogeneous 
materials are used. The abrupt change in the mechanical properties of the materials at 
the surface coating-substrate interface results in stress concentration or degraded bond-
ing strength [9]. Thermoelastic rolling contact problem with two layer surface model 
with the material properties governed by the power law are considered in [12].     
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In this paper, following [13], we assume that between the homogeneous coating layer 
and the homogeneous substrate there exists the graded interlayer which properties de-
pend on its depth according to the exponential law.    We consider also thermoelastic 
contact phenomenon with the frictional heat flow rather than elastic contact model as in 
[13].   

In the paper we take special features of this rolling contact problem and use so-called 
quasistatic approach [14] to solve it numerically. In this approach the inertial terms in 
elastic and heat equations are replaced by the stationary terms reflecting the dynamics of 
the body and heat transfer rather than completely neglect them as in the classical qua-
sistatic formulation.  Therefore, after brief introduction of the thermoelastic model of the 
rolling contact problem with friction and wear in the framework of two-dimensional 
linear elasticity theory the general coupled time dependent system describing this physi-
cal phenomenon is formulated. This system is transformed into equivalent stationary 
system in so-called quasistatic formulation  To solve numerically this stationary system 
we will decouple it into mechanical and  thermal parts. Finite element method is used as 
a discretization method. The numerical results including the distribution of temperature 
field in the contact zone are provided and discussed. 

2.  Problem formulation  

Consider deformations of an elastic strip lying on a rigid foundation (see Figure 1). 
The strip has constant height h and occupies domain Ω ⊂  R2 with the boundary Γ.  
 

 
 

Figure 1. Wheel rolling over the strip 
 

Figure 2. Three-layers model 

A wheel rolls along the upper surface ΓC of the strip. The wheel has radius r0, rotating 
speed ω and linear velocity V. The axis of the wheel is moving along a straight line at 
a constant altitude h0 where h0< h+r0, i.e., the wheel is pressed in the elastic strip. It is 
assumed, that the head and tail ends of the strip are clamped, i.e., we assume that 
the length of the strip is much bigger than the radius of the wheel. Moreover it is as-
sumed, that there is no mass forces in the strip.  The body is clamped along a portion Γ0 
of the boundary Γ of the domain Ω. The contact conditions are prescribed on a portion 
ΓC of the boundary Γ. Moreover, ∅=Γ∩Γ C0

.  
CΓ∪Γ=Γ 0

.     
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We denote by u=(u1,u2), u = u(x, t),  depending on the spatial variables x=(x1,x2) ∈   
Ω,  and time variable t∈  [0,T],  T>0,  a  displacement  of the strip and by θ the absolute  
temperature of the strip. Assume Ω=Ω1 ∪Ω2 ∪Ω3  where  Ω1, Ω2 and Ω3  denote 
the homogeneous coating layer, graded interlayer, and substrate layer, respectively. 
The heights of these layers are h1, h2, h3, respectively. In the middle layer Ω2 material 
parameters depend on the height of the layer according to the exponential law. The dis-
placement u of the strip satisfies  the evolution equation  [9] in  the cylinder   Ω × (0,T) : 

 θγλαρ ∇+−=
∂

∂
)23(*

2

2

DAuA
t

u
, (1) 

The temperature θ of the strip satisfies the parabolic equation in the cylinder   Ω × (0,T) :   

 θκ
θ

ρ ∆=
∂
∂

t
c p  (2) 

The following initial and boundary conditions are imposed:  

 u(0)= u0i ,     u’(0)= u1i ,   i=1,2,   θ(0) = θ0  in   Ω, (3)  

 u = 0  on  Γ0 × (0,T)  and  B*D Au = F    on ΓC × (0,T), (4)  

 )(tq
n

=
∂

∂θ
 on Γ (5) 

where u(0)=u(x,0), u’ = du/dt, u0i and u1i θ0 q(t) are given functions, ρ is a mass density 
of the strip material,  α is a coefficient of thermal expansion, κ is a thermal conductivity  
coefficient, cp is a heat capacity coefficient, Γ0 = Γ \ ΓC.  The operators A, B and D are 
defined as follows [10]  
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where n=(n1,n2) is the outward normal versor to the boundary Γ of the domain Ω, λ and γ 
are Lame coefficients, A* denotes a transpose of A. In Ω2 operator D is assumed to de-
pend on the depth of the graded interlayer according to the exponential law. By σ=(σ11, 
σ22, σ12) and F we denote the stress tensor in  domain Ω and surface traction vector on 
the boundary Γ, respectively. The surface traction vector  F=(F1,F2) on the boundary ΓC 
is a priori unknown and is given by conditions of contact and friction. Under the assump-
tions that the strip displacement is small  the contact conditions on  the boundary ΓC× 
(0,T)  take a form:  

             u2+gr + w ≤ 0,  F2 ≤ 0,    (u2+gr + w)F2 = 0,    gr=h-h0+ 2
11

2
0 )( xur +− , (7) 
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 | F1 | ≤  µ | F2 |,  F1  ≤ 0,  (| F1 |- µ | F2 |)  = 0,  (8) 

where µ is a friction coefficient. Conditions (5)-(6) describe the non-penetration condi-
tion as well as Coulomb law of friction, respectively [1,6]. Assuming that the dimen-
sional wear coefficient  k>0 is given the wear w=w(x,t)  is governed by the equation [4]:  

 = k V F2. (9) 

Remark, in (7) the wear w increases  the gap between the contacting surfaces.   

2.1 Material properties of functionally graded materials  

In subdomains Ω1 and  Ω3  the operator D characterizing the properties of the material 
occupying strip Ω or the conductivity coefficient take different constant values, respec-
tively (see Figure 2). In the subdomain Ω2  the operator D or the conductivity coefficient 
are assumed to depend on the depth of the layer. This dependence is governed by 
the exponential law   [8,9]:  

 P(x2) = PΩ1   exp (n ),   x2  ∈  [-h2-h1, -h1], (10)  

where n=log(PΩ1/PΩ3),  h1, h2 are given parameters,  x2 denotes the spatial variable and 
P(x2), PΩ1,  PΩ3 denote the height dependent material property (material density, conduc-
tivity coefficient or Young modulus) of layer Ω2 as well as  the material properties of 
layers Ω1 and Ω3, respectively. The continuity of the displacements, temperatures and 
the stresses along the interfaces  ∂Ω1∩ ∂Ω2 and ∂Ω2∩ ∂Ω3  are assumed.  

3. Quasistatic formulation   

Taking into account the special features of the contact problem (1)-(9)  one can reformu-
late it in the framework of the quasistatic approach. This approach is based on the as-
sumption that for the observer moving with a wheel its displacement does not depend on 
time [14].   

Consider an observer moving with the wheel with the constant linear velocity V. We 
introduce the new Cartesian coordinate system O’x1’x2’ hooked in the middle of 
the wheel. The systems O’x1’x2’ and Ox1x2 are related by: x1’ =  x1 – V t and  x2’ =  x2. 
Therefore  the displacement u(x1’,x2’) does not depend on time [14] and  we obtain:  
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Using the same arguments for the temperature field we obtain 
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Using (12)-(13) the inertial terms in equations (1)-(2) are  replaced by the stationary 
terms depending on the wheel velocity and spatial derivatives of displacement or tem-
perature fields and reflecting the dynamics of the moving body rather than completely 
neglected it as in the classical quasistatic formulation [1].  Taking into account (12)-(13), 
quasistatic approximation of the contact problem  (1)-(10) takes the form: find displace-
ment u and temperature θ satisfying:   

 A*D(x)Au – ρV2u1,1  – α(3λ + 2γ) θ∇  = 0  in Ω, (14) 
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as well as the boundary conditions 

u = 0   on  Γ0,    B*D(x) Au = F      on  ΓC,  (16)  

u2+gr + w ≤ 0,   F2 ≤ 0,     (u2+gr + w)F2 = 0,    on  ΓC ,  (17) 

 F1 | ≤  µ | F2 |,   F1 u1,1 ≤ 0,   (| F1 |- µ | F2 |) u1,1 = 0,    on  ΓC , (18) 
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−                   on ΓC,         (19) 

  = -k  F2,                        on ΓC ,  (20) 

where ui, j =  , ui,jk =  , i,j,k=1,2 and r denotes thermal resistant constant. 

Moreover,  u0i = u1i = 0 is set in (2).    

3.1 Friction Regularization 

In order to ensure the existence of solutions to the problem (14)-(20) we have to regular-
ize it,  i.e.,  we will consider it as the problem with the prescribed friction.  Let ε >  0 be 
a regularization parameter. We use the following formula relating tangential and normal 
tractions on the contact boundary  ΓC  [14]:  

 F1 = F1(ε, F2, u1 ) =  - µ | F2 | arc tan . (21)  

4. Numerical methods and results    

Finite element method is used to approximate thermoelastic contact problem (14)-(21) as 
the approximation method. Problem (14)-(21) is a coupled thermoelastic problem. Re-
mark, the contact traction depends on the thermal distortion of the bodies and wear pro-
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cess. On the other hand, the amount of heat generated due to friction depends on 
the contact traction. The main solution strategies for coupled problems are global solu-
tion algorithms where the differential systems for the different variables are solved to-
gether or operator splitting methods. In this paper we employ operator split algorithm. 
The numerical algorithm consists first in calculating for a given temperature field and 
wear the corresponding displacement and stress fields, i.e., in solving the mechanical 
subproblem. Next for the calculated displacement and stress fields we solve the thermal 
part of the system and calculate wear. The algorithm is terminated when the calculated 
temperature becomes steady, i.e., the temperature changes from iteration to iteration are 
less than the prescribed tolerance. The convergence of the operator split algorithm is 
shown using Fixed Point Theorem (see references in [12]). For details of the method see 
[14].    

The obtained distributions of normal and tangential temperature distributions in 
the contact zone for different values of parameter n=0.28, 0, -0.28 are displayed in Fig-
ures 3 and 4, respectively. These distributions are strongly dependent on parameter η. 
The temperature is rapidly decreasing inside the strip and in front of the wheel. Behind 
the wheel the decrease of temperature is mild.   
 

 

Figure 3. Rail temperature distribution along x2 direction 
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Figure 4. Rail temperature distribution along x1 direction 

 5. Conclusions  

The thermoelastic rolling contact problem where the properties of the elastic layer be-
tween the homogeneous surface coating and the substrate of the rail are dependent on its 
depth is solved numerically using the quasistatic approach. The material properties of 
the graded layer are assumed to be governed by the exponential law. The applied expo-
nential model of the graded material allows to control the normal contact pressure, tem-
perature and the size of the contact area comparing to the pure homogeneous case. 
The dependence of the obtained stress distributions on the parameter n is stronger than 
on the nonhomogenity index in power law (see [12]). The decrease in the non-
homogeneity index n reduces the maximum normal contact pressure and temperature at 
a cost of the widening of the contact area.  The relationship between the applied normal 
load and the size of the contact zone is nonlinear. Remark also, that using the quasistatic 
approach we can observe dynamic phenomena of the rolling wheel.   
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Abstract 

The study analyses differences in the flow of energy for two human physical models specified in 
the ISO 10068:2012 standard. For this purpose, two mathematical models of the Human–Tool system in ques-
tion were developed using the Lagrange equation of the second kind. Corresponding energy models were then 
created for each mathematical model and tested by means of digital simulation in the MATLAB/simulink 
environment.  The study revealed a discrepancy between the models in terms of different types of power and in 
the total power. 
 
Keywords: biomechanical system, local vibrations, power distribution 

1. Introduction 

Biomechanical models of the hand and the hand–arm system are effectively used to 
represent the human response to mechanical vibrations. At present, the impact of vibra-
tions can be studied based on any of the existing models, which differ in the number of 
degrees of freedom, the number of component parts of the dynamic structure and 
the manner in which they are connected (Fig. 1). 

 

 
 

Type 5 

Type 1 

Type 9 

Type 12 

Type 10 

Type 6 

Type 3 Type 2 

Type 4 Type 7 

Type 8 

Type 11 
Type 13 

 
 

Figure 1.  Biomechanical models of the hand and the hand–arm system [6] 
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One area that requires further research is the composition and verification of new 
models which are being developed to replace previous models and better represent 
the human response to mechanical vibrations. This kind of research is being conducted 
all over the world, including influential contributions from Griffin [5], Reynolds [8] 
and Meltzer [7]. 

To date, many studies into the impact of vibrations on the human body have relied on 
the “Type 12” model (Fig. 1), whose dynamic parameters are specified in 
the ISO 10068:1998 standard [9]. The fact that this long-favoured solution is being 
abandoned confirms that choosing the right model to assess the impact of vibrations on 
the human body is not an easy task. This study is an attempt at comparing power distri-
bution in two biomechanical models of the human body, which are specified in the ISO 
10068:2012 standard [10] – models 1 and 2 (Annexes B and C). The criterion for as-
sessing model validity was the equality of energy phenomena occurring the dynamic 
structure during operation. 

2. The First Principle of Power Distribution in a Mechanical System 

The First Principle of Power Distribution in a Mechanical System can be expressed 
in the following way [1 – 4]: 

„The net input power introduced into the mechanical system (after sub-
tracting power loss) is equal to reflected power (accumulated or stored) in 
the system and output power from the system.” 

A graphical interpretation of the First Principle of Power Distribution in 
a Mechanical System (FPoPDiMS) is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Pin(t) – Ploss(t) = Pref(t) + Pout(t) 

Pin(t) Pref(t) 

Pout(t) 

Ploss(t) 

MECHANICAL SYSTEM, 
SUBSYSTEM, ELEMENT, 
POINT OF REDUCTION 

M. W. DOBRY, 
17.02.1996 

  
Figure 2. Graphical interpretation of the First Principle of Power Distribution [1-4] 

This rule has the following mathematical form [1-4]: 

 )t()t()t()t( outreflossin PPPP +=−  (1) 

where: 

)t()t()t( ininin vWP
rr

⋅=  – the power of the resultant force – the drive input 
power introduced to the mechanical system, 
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)t()t()t()t( Rlossint loss vRPP
rr

⋅+=  – power loss equal to the sum of the internal losses 
in the system and the power of the forces of re-
sistance present during the operation of the system, 

)t()t()t()t()t( SBref vSvBP
rrrr

⋅+⋅=
 

– reflected power in the mechanical system, equal to 
the sum of inertial forces and the power of the 
forces of elasticity, 

)t()t()t( outout vOP
rr

⋅=  – output power equal to the power output of 
a mechanical system. 

3. The methodology of solving the problem – composition of energy models 

To conduct a comparative assessment of the two models it was necessary to create phys-
ical models of the Human–Tool system. These models are the result of combing 
the human physical models specified in the ISO 10068:2012 standard [10] with the tool 
model – Fig. 3. 
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Figure 3. A synthesis of the ISO 10068:2012-based human physical models and the tool 

model: a) model 1 – Annex B; b) model 2 – Annex C [10] 

The models in question are discrete in the sense that certain reduction points are con-
nected by means of spring and damping systems. Tables 1 and 2 present dynamic pa-
rameters for the models, as indicated in the ISO 10068:2012 standard [10]. In the dy-
namic analysis only one vibration direction was considered – the z direction, which is 
the most significant in tool testing   

The next step involved expressing the mathematical models of the dynamic structures 
using the Lagrange equation of the second kind in the following form: 
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 (2) 

where: E – kinetic energy of the system, qj 
– generalized coordinates, 

jq& – generalized velocities, jQ – external active forces, jPQ – potential forces, 

QjR 
– dissipation forces, s – number of degrees of freedom. 
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Table 1. Values of dynamic parameters for model 1 – Annex B [10] 

Parameter Unit 
Vibration direction 

x y z 
m1 kg 0.5479 0.5374 1.2458 
m2 kg 0.0391 0.0100 0.0742 
k1 N/m 400 400 1000 
k2 N/m 0 17648 50000 
c1 N·s/m 22.5 38.3 108.1 
c2 N·s/m 202.6 75.5 142.4 

Table 2. Values of dynamic parameters for model 2 – Annex C [10] 

Parameter Unit 
Vibration direction 

x y z 
m1 kg 0.4129 0.7600 1.1252 
m2 kg 0.0736 0.0521 0.0769 
m3 kg 0.0163 0.0060 0.0200 
m4 kg 0.0100 0.0028 0.0100 
k1 N/m 400 500 1000 
k2 N/m 200 100 12000 
k3 N/m 4000 4907 43635 
k4 N/m 8000 17943 174542 
c1 N·s/m 20.0 28.1 111.5 
c2 N·s/m 100 39.7 39.3 
c3 N·s/m 144.6 50.7 86.8 
c4 N·s/m 79.9 14.3 121.0 

For an unequivocal description generalized coordinates were adopted. For model 1 
from the ISO 10068:2012 standard [10], the following generalized coordinates were used 
(Fig. 3a): 

1j =  ⇒  (t)zq 11 =  – displacement of mass m1, 

2j =  ⇒  (t)zq 22 =  – displacement of mass m2 and mN. 

In the case of model 2 from the ISO 10068:2012 standard [10] combined with 
the tool model (Fig. 3b), the following generalized coordinates were used: 

1j =  ⇒  (t)zq 11 =  – displacement of mass m1, 

2j =  ⇒  (t)zq 22 =  – displacement of mass m2, 

3j =  ⇒  (t)zq 33 =  – displacement of mass m3, m4 and mN. 

On adopting generalized coordinates, it was possible to formulate mathematical 
models of the Human–Tool system. For the Human–Tool system (ISO 10068:2012 com-
bined with model 1 [10]) the mathematical model can be expressed as – Fig. 3a: 

j = 1, 
 

;0)()( 222212112111 =−−++++ zkzczkkzcczm &&&&  
 (3) 

 j = 2, 
 

(t).)( 121222222N2 Fzkzczkzczmm =−−+++ &&&&  
 

The mathematical model of the synthesis of the ISO 10068:2012-based model 2 [10] 
with the tool model – Fig. 3b, can be written as: 
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j = 1, 
 

;0)()( 222233331321132111 =−−−−++++++ zkzczkzczkkkzccczm &&&&&  
 

 
 

j = 2, 
 

;0)()( 3434121224224222 =−−−−++++ zkzczkzczkkzcczm &&&&&  (4) 
 

j = 3, 
 

(t).)()()( 131324243433433N43 Fzkzczkzczkkzcczmmm =−−−−++++++ &&&&&  

Based on differential equations of motion (3) and (4), corresponding energy models 
were created for the systems in question. By applying the First Principle of Power Dis-
tribution in a Mechanical System (1) one can move from a conventional dynamic analy-
sis based on amplitudes of kinematic quantities to an energetic analysis of power distri-
bution. 

The energy model for the Human–Tool system, based on the model with two reduc-
tion points from the ISO 10068:2012 standard has the form: 
j = 1, 
 

;0)()( 1221221121
2
121111 =−−++++ zzkzzczzkkzcczzm &&&&&&&&  (5) 

 j = 2, 
 

.(t))( 2212212222
2
2222N2 zFzzkzzczzkzczzmm &&&&&&&&& =−−+++  

The energy model for the other Human–Tool system – Fig. 3b can be formulated as: 

j = 1, 
 ;0
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2
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Energy models for the Human–Tool systems were implemented in 
MATLAB/simulink software to calculate timelines of power of inertia, dissipation and 
elasticity. The resulting data was used to compare models in terms of power distribution. 

4. An energy-based comparison of biomechanical Human–Tool systems  

The biomechanical systems were subjected to a sinusoidal driving force F(t) with 
the amplitude of 200 N. The analysis was conducted at following frequencies: 16Hz, 
30Hz, 60Hz and 90Hz, assuming the mass of the tool mN to be 6kg. Simulations were 
conducted for operation time t equal to 300 seconds, owing to the average deviation of 
the power value – below 1%. Simulations in the MATLAB/simulink software were im-
plemented using integration time steps ranging from a maximum of 0.0001 to 
a minimum of 0.00001 second. The integration procedure ode113 (Adams) with 
a tolerance of 0.001 was used. 

Figure 4 shows the impact of the frequency of driving impulses f on the percentage 
increase in the corresponding types of forces in for the model with three reduction points 
compared to values obtained for the model with two reduction points. The increase be-
tween the models is given by the following formula: 

%100
),RMS(X 2

),RMS(X 3
P ⋅=

f

f

P

P
I  (7) 

where: 
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fP ),RMS(X 3

 

– RMS power of inertia, dissipation and elasticity for the Human–Tool 
system with three reduction points – power (RMS) in [W]: 

• power of inertia expressed in [W]:  
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• power of elasticity expressed in [W]:  
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– RMS power of inertia, dissipation and elasticity for the Human–Tool 
system with two reduction points – power (RMS) in [W]: 

• power of inertia expressed in [W]:  
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• power of dissipation expressed in [W]:  
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• power of elasticity expressed in [W]:  
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Types of power: 

– inertia, 

– dissipation, 

– elasticity. 
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Figure 4. Impact of the frequency of driving impulses f on the increase 
in different types of powers  
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The comparison revealed that the contribution of the power of inertia in the human 
models from the ISO 10068:2012 standard is similar. Depending on the frequency of 
driving impulses, the maximum difference between the two models did not exceed 3%. 
Further analysis, however, showed much higher differences.  The difference in the pow-
er of dissipation ranged from 47% to 150%. In the case of the power of elasticity, differ-
ences were much higher and ranged from 304% to as much as 613%. It should be noted 
that the difference between the models in terms of the power of dissipation and elasticity 
grows with increasing frequency. Assuming the maximum relative error of 30%, one 
cannot conclude that the results generated by the models are similar, except for the pow-
er of inertia.  

Figure 5 depicts the influence of the frequency of driving impulses f on the percent-
age increase in the total power, which is the sum of the three kinds of power for 
the model with three reduction points in comparison with values obtained for the model 
with two reduction points, both from the ISO 10068:2012 standard. The percentage 
difference is given by the formula: 
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Figure 5. Influence of the frequency of driving impulses f on the increase 
in the total power 

The results shown in Figure 5 indicate that the model with three reduction points al-
ways predicts higher total power compared to the reference model. What is more, 
the compatibility between the models increases significantly with increasing frequency f. 
An almost five-fold increase in accuracy can be observed for frequencies of 16 and 90 
Hz, since the discrepancy between the models decreases from 152% to 32%. It is worth 
noting that even assuming the maximum relative error of 30% between the models, 
the corresponding results for each operating frequency of the Human–Tool system are 
never similar. 

5. Summary 

The comparison of human physical models specified in the  ISO 10068:2012 standard 
revealed evident differences between them. The study showed a discrepancy between 
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the models considering the criterion of model similarity: the equality of different types 
of power. More importantly, the results indicated the biggest degree of similarity in 
the case of power of inertia, with a difference of no more than 3%. The results were 
much worse when it comes to the power of dissipation and elasticity, with difference 
ranging from 47% to 150% and from 304% to 613% respectively. The resulting differ-
ences obviously contributed to the degree of discrepancy in the total power, as shown in 
Fig. 5. 

Moreover, the ISO 10068:2012-based model with three reduction points, shown in 
Fig. 3b, will undoubtedly provide a better protection for the operator of hand tools. This 
can be expected on account of a better power distribution predicted in the model, which 
is likely to increase the requirements for such tools. A more reliable verification of the 
models, would require energy measurements in a laboratory setting. For the time being it 
can only be concluded that the models we analysed are significantly different in their 
power distribution.  
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Abstract 

This article is a continuation of the article entitled „A comparison of human physical models used in 
the ISO 10068:2012 standard based on power distribution – Part 1” [5], which presented a method of energy-
based assessment of two human physical models.  The first article revealed a discrepancy between the models 
in terms of three types of power and the total power. The focus of the present study was to determine the order 
of energy inputs in the dynamic structure and link different types of power to potential threats they pose to 
human health. Additionally, differences between the models were discussed. 
 
Keywords: biomechanical system, energy flow, energy method, hand-arm vibrations 

1. Introduction 

Mechanical vibrations generated by vibrating systems of power tools or transport vehi-
cles can have a negative impact on the human body. Long-term exposure to vibrations 
can cause many disorders in the operator’s body, leading to permanent damage. 
The multitude of clinical symptoms is referred to as the hand-arm vibration syndrome 
[8]. In many countries, including Poland, HAVS has been classified as an occupational 
disease [1,7]. In Poland HAVS was added to the list of occupational diseases in 
1968 [13], and was ranked 6th most commonly diagnosed ailment in the period 1985-
1994 [10].  

It is worth noting that lists of occupational disease have been revised to reflect 
the development of knowledge in the area of occupational health and safety and new 
ways of protecting people against the harmful effects of occupational hazards. Nowa-
days, according to the ordinance of the Council of Ministers of 30 June 2009 [14], 
HAVS is listed as a 22nd occupational disease. Additionally, because of its varied symp-
tomatology, the list mentions different forms of the syndrome: 

• vascular-nervous disorders, 
• musculoskeletal disorders, 
• mixed disorders: vascular-nervous and musculoskeletal. 
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Health hazards can be connected with a concentrated energy flow through the human 
body.  This explanation is confirmed by physiological research in this area [8, 9, 11]. 

2. The influence of power distribution – changes in biological-mechanical systems 

In the case of Human–Tool systems it is possible to determine the level of health hazard 
that a human operator is exposed to [2-4]. In the Table 1 has been shown the distribution 
of total power and different types of power in the two systems under investigation. [12]. 
Data analysis reveals that maximum power distribution for both models can be observed 
at low frequencies of operation, with the power distribution decreasing as frequency f 
increases. This observation indicates an interesting relationship that characterises Hu-
man–Tool systems, which can be used as a preventive measure: to protect tool operators 
from exposure to negative effects of vibrations only tools with a higher operating fre-
quency, e.g. 60 Hz, should be used. 

Table 1. Three types of power and total power for the two models  
specified in ISO 10068:2012 [12] in watts and percentages 

ANALYZED MODEL 
ISO 10068:2012 

Model 1 (Annex B) 

2 points of reduction 

Model 2 (Annex C) 

3 points of reduction 

W % W % 

Frequency f 16 Hz 

Average Power 
(RMS) 

Inertia 21.27 28.28 21.27 11.24 
Dissipation 22.15 29.45 32.66 17.26 
Elasticity 31.80 42.28 135.3 71.51 

Total Power 75.22 100 189.2 100 

Frequency f 30 Hz 

Average Power 
(RMS) 

Inertia 13.61 49.44 13.35 27.01 
Dissipation 7.93 28.80 11.84 23.96 
Elasticity 6.00 21.78 24.23 49.03 

Total Power 27.53 100 49.42 100 

Frequency f 60 Hz 

Average Power 
(RMS) 

Inertia 6.82 81.78 7.00 54.89 
Dissipation 0.97 11.65 2.18 17.08 
Elasticity 0.54 6.49 3.57 27.99 

Total Power 8.34 100 12.76 100 

Frequency f 90 Hz 

Average Power 
(RMS) 

Inertia 4.30 89.58 4.34 68.65 
Dissipation 0.34 7.08 0.85 13.39 
Elasticity 0.16 3.36 1.14 17.97 

Total Power 4.80 100 6.33 100 

The energy-based comparison of the two models produces a power distribution, 
which can be used to identify those elements of the biological structure that are exposed 
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to the highest energy input. In this way, different types of power can be linked to specific 
effects in the human body [2-4].  

The two models exhibit a high degree of similarity only at operational frequency f = 
16 Hz. Simulation data show an almost identical order of energy input experienced by 
the biological structure. At this frequency, it is the spring elements that are exposed to 
the highest energy input levels. This can lead to upper limb dysfunction and result in 
tendon, muscle and joint damage. Under these circumstances one can observe a rise in 
temperature due to the dissipation of energy over time – the power of dissipation, and 
blood circulation disorders resulting from increased accelerations – the power of inertia. 
It is worth pointing out that for the model with two points of reduction (model 1) values 
of the three types of powers are similar.  This means that the resulting changes in 
the body will be nearly equally manifested in all the elements of the biological structure. 
In contrast, the model with three points of reduction (model 2) exhibits a different inten-
sity of changes. While the order of energy input into the biological structure remains 
largely identical, the contribution of the power of elasticity is much higher than that of 
the other two types. It can therefore be concluded that it is the elastic elements of 
the human body that will be exposed to the highest levels of energy input and most likely 
to be affected first.  Only later will changes be manifested in the other two systems: 
nervous and vascular. 

Energy input levels experienced by the dynamic structure at frequency of 30 Hz are 
quite different. In the case of the model with three points of reduction the energy analy-
sis revealed the highest energy input levels for spring elements, as evidenced by 
the power of elasticity, followed by mass elements, as measured by the power of inertia, 
with dissipation elements being least under energy input, as indicated by the loss power. 
An entirely different order of harmfulness of vibration could be observed in the case of 
the model with two points of reduction, with the biggest contribution of the power of 
inertia, followed by power of dissipation and elasticity. 

Further differences can be observed in the order of energy input levels for the re-
maining frequencies. The energy comparison of the two models revealed high levels of 
energy input applied to mass elements, as measured by the power of inertia. There is also 
a discrepancy between the order of energy input levels in the dynamic structure in terms 
of the two other types of power. 

The energy analysis shows partial similarity between the models in terms of the en-
ergy input experienced by the human biological structure. Nonetheless, the study pro-
vides the basis for a comparative evaluation of different construction variants of tools 
used – in this case estimating the impact of vibration on the human body depending on 
the operational frequency of the tool. 

3. The impact of mechanical vibrations on the human body – differences between 
the models 

Mechanical stimuli (vibrations) affect receptors, whose sensitivity varies depending on 
their location: on the skin, tendons, periosteum and internal organs. The intensity and 
the degree to which vibrations are transmitted depends on other factors, the most im-
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portant ones being intensity and frequency of vibrations and the place, time and rate of 
their propagation.  Another significant factor is the damping capacity of body tissues 
which are in contact with the vibrating source. The influence of vibration at a certain 
frequency can induce resonant vibration in individual tissues or whole organs, which is 
a very destructive phenomenon [8]. Resonant frequency values for different parts of 
the human body have been determined statistically based on detailed studies. However, 
these frequencies are only an approximation, since they depend on an individual’s physi-
cal characteristics [6]. The model of the human body developed by R. R. Coerman and 
shown in Figure 1 specifies resonant frequency values for different body parts. 
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Figure 1. A model of the human body according to R. R. Coerman [6] 

The model suggests that frequency is a critical factor considering the energy input in-
to the dynamic structure of a mechanical-biological system. Human–Tool systems can 
differ with respect to frequencies of their subsystems – which are represented by mathe-
matical models (3) and (4) in this study [5]. Our analysis also addresses this question. 
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Table 2 presents resonant frequency values for the human physical models at particular 
points of reduction. 

Table 2. Resonant frequencies for the human physical models from the ISO 10068:2012 
standard at different points of reduction  

human physical model from ISO 10068:2012 

Model 1 (Annex B)  

2 points of reduction 

Model 2 (Annex C)  

3 points of reduction 

j = 1 j = 2 j = 1 j = 2 j = 3 

Resonant frequency of a subsystem [Hz] 

31,28 14,44 35,71 247,88 30,27 

 
  

 

 
As can be seen in Figure 1, in the case of the Human–Tool system based on model 1 

– Annex B from the ISO 10068:2012 standard [12], resonant frequencies are similar to 
the resonant frequencies of the hand and forearm.  For model 2 – Annex C, the corre-
sponding values are also similar to the reference values for the upper limb. Additionally, 
this model exhibits another frequency of almost 248 Hz, which represents resonant vi-
brations of the whole upper limbs [6]. Studies have also shown the possibility of defor-
mations occurring in other internal organs, since local effects of vibrations can cause 
systemic disturbances [8]. In such cases, resonant vibrations can be induced in other 
parts of the body, such as the upper torso and backbone at 10÷14 Hz, the chest at 7÷11 
Hz, the head at 20÷30 Hz, muscles at 13÷20 Hz, eyeballs at 20÷90 Hz, etc. 

Different values of resonant frequencies for the models are due to dynamic parame-
ters specified in the ISO 10068:2012 standard [12] – tables 1 and 2 in [5]. This relation-
ship is especially visible in the case of resonant frequencies obtained for the model with 
three points of reduction.  The differences result from the third point of reduction added 
to the system, in particular, the way it is attached to the rest of the model by spring and 
damping systems – Fig. 3 in [5]. In this case large values of spring parameters k3 and k4, 
which significantly contribute to one of the resonant frequencies for this model. It should 
be noted that not all computed values are constant. Resonant frequencies computed for 
both Human–Tool systems depend on the tool mass mN –frequencies dependent on 
the tool mass mN are indicated 2. This situation results from the impact of mass on the 
dynamic characteristics of one point of reduction in each system and the dynamic reac-
tion of the whole Human–Tool system. 

Energy analysis is a synchronic method of analysis, in which results of conventional 
dynamic analysis {mathematical models (3) and (4) in [5]} of amplitudes of kinematic 
quantities are used for energy analysis {energy models (5) and (6) in [5]} – of energy 
flows. This implies that an analysis conducted in a new domain, i.e. power distribution, 
is very sensitive to the adequacy of the model used to describe the system’s dynamic 

frequencies depending on the tool 
mass mN 
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structure.  Undoubtedly, the development of the HAVS syndrome depends mostly on 
the intensity of vibrations and the amount of vibration energy introduced into the human 
body. For this reason, it is necessary to determine amplitude values, since the models in 
question can differ in this respect. Amplitude values of kinematic quantities for the mod-
els in question at specific points of reduction are shown in Table 3. 

Table 3. Maximum amplitude values of  kinematic quantities at specific points 
of reduction from the ISO 10068:2012 standard 
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j=1 

a 
[m/s2] 

31,79 31,73 36,20 38,26 15,77 18,31 8,45 9,24 

v 
[m/s] 

0,316 0,316 0,192 0,203 0,042 0,049 0,015 0,016 

z 
[m] 

3,15 
·10-3 

3,14 
·10-3 

1,02 
·10-3 

1,08 
·10-3 

1,11 
·10-4 

1,29 
·10-4 

2,66 
·10-5 

2,90 
·10-5 

j=2 

a 
[m/s2] 

28,08 28,76 30,42 30,95 33,86 33,97 33,44 34,34 

v 
[m/s] 

0,279 0,286 0,161 0,164 0,090 0,090 0,059 0,061 

z 
[m] 

2,78 
·10-3 

2,85 
·10-3 

8,56 
·10-4 

8,71 
·10-4 

2,38 
·10-4 

2,39 
·10-4 

1,05 
·10-4 

1,08 
·10-4 

j=3 

a 
[m/s2] 

– 28,36 – 29,92 – 34,08 – 33,48 

v 
[m/s] 

– 0,282 – 0,159 – 0,090 – 0,059 

z 
[m] 

– 
2,81 
·10-3 

– 
8,42 
·10-4 

– 
2,40 
·10-4 

– 
1,05 
·10-4 

Based on the maximum amplitude values of  kinematic quantities shown in table 3, it 
can be concluded that the results generated by the models are very similar. Moreover,  
amplitude values of  kinematic quantities for the model with three points of reduction are 
almost identical at the second (j = 2) and third (j = 3) point of reduction. A very similar 
level of energy input at these two points of reduction raises an interesting question of 
whether this model actually needs to be so complex.  

Finally, an important conclusion should be drawn from the study. The comparative 
analysis suggests that health hazards for the tool operator predicted on the basis of 
the dynamic analysis can be completely different from those indicated by the energy 
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analysis. The examples presented in the study lead to a more general conclusion that 
the similarity of models in terms of their dynamics by no means implies their energy 
identity. 

4. Conclusions 

The study demonstrated a partial compatibility between energy levels observed in two 
models of the human biological structure. The method of energy analysis enabled 
a comparative evaluation of different structural variants of tools – in this particular case, 
the impact of different operational frequencies. Moreover, with the method of energy 
analysis it was possible to assess the health hazard for the tool operator depending on the 
characteristics of the source of vibration. The order of energy inputs based on types of 
powers can also be determined when operating an impulse tool, e.g. a demolition ham-
mer.   

In addition, the study analysed the relationship between resonant frequencies of sub-
systems and those of the human bodies. It was possible to determine those points of the 
biological structure, where resonant vibrations can be induced, above all, the hands and 
forearms. Finally, amplitude values of kinematic quantities for both models were pre-
sented and found to be similar.  It can therefore be concluded that the human physical 
models specified in the ISO 10068:2012 standard exhibit both similarities and discrep-
ancies. 
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Abstract 

The work presents a dynamic model of a telescopic boom of a roadheader. The boom represents a load–
carrying structure of cutting heads and of their drive system. Together with the cutting heads’ drive, it repre-
sents a cutting system of a roadheader performing the roadheader’s basic function, that is cutting the heading 
face. A physical model with a discrete structure was created for the purpose of analysing the vibrations accom-
panying the operation of a roadheader. Due to the design of the telescopic boom, three vibrating masses are 
distinguished in this model concentrated in the centre of gravity of rigid bodies representing: the fixed part of 
the boom, the extendable part (telescope) and a reduction gear (with transverse cutting heads mounted in the 
output shaft journals) fitted to the extendable part of the boom. It is a spatial model with 18 degrees of free-
dom. The mathematical model established was used in simulation tests the aim of which was to identify 
the value and sources of vibrations in the selected structural nodes of the boom during the performance of a 
working process. The excitation of vibrations is an effect of a computer simulation of the rock cutting process 
with transverse heads with the set stereometry. The article presents selected results of numerical tests using 
the established dynamic model. 
 
Keywords: roadheader, boom, dynamic model, dynamic loads, vibrations 

1. Introduction 

Roadheaders are the fundamental cutting machines used in mechanised technologies for 
tunnelling in underground mines and civil engineering. The key process carried out by 
such type of machine is the cutting of rock deposited in the cross section of the drilled 
headings. In case of boom–type roadheaders commonly used in hard coal mines, cutting 
is accomplished with picks mounted to cutting heads. The heads are mounted at the end 
of a boom which is inclined in the line parallel and perpendicular to the floor, hence they 
can be advanced along the face surface of the drilled heading along any trajectory. 
A roadheader boom represents a load–carrying structure for cutting heads and their drive 
system. It ensures the required range of cutting determining the maximum size and shape 
of the drilled tunnel. 

The drive of cutting heads, their carrying structure (boom) and other roadheader sub-
assemblies functionally related to the cutting system (including boom swinging mecha-
nisms) are subject to the strong excitations of vibrations accompanying the working 
process carried out. The process of rock cutting is indeed a source of high dynamic 
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loads, especially when cutting rocks with poor workability. The excitation of vibrations 
is of a stochastic nature and similarly, as in the case of, e.g. machines for earthworks 
(excavators, bulldozers, etc.), it results to a large degree from the properties of the 
worked medium [1]. For the purpose of a dynamic state analysis of cutting machines, 
they are considered, however, as determined (polyharmonic), provided the cutting pro-
cess conditions remain unchanged [2]. An excessive dynamic load and overloads result-
ing from cutting process performance may lead to a boom’s failure conditions caused by 
immediate or fatigue damages to its parts. An analysis of dynamic states of a roadheader 
cutting system (cutting heads’ drive and their load–carrying structure – boom) is indis-
pensable for assessing the design correctness of the roadheaders currently produced and 
sets a starting point for developing new design solutions. 

2. Dynamic model of roadheader boom 

A dynamic model of a roadheader boom consists of a physical model and a mathematical 
model. Three rigid bodies connected with each other with weightless viscoelastic ele-
ments are distinguished in the structure of the physical model (Fig. 1) [3]. The bodies 
represent the key parts of a roadheader boom, i.e.: fixed part (1), extendable part (2) and 
a reduction gear (3) in the cutting head (6) drive attached to extendable part. The fixed 
part of the boom is mounted to the movable part of the turntable by means of two slide 
bearings and is supported with two hydraulic lifting cylinders (4) – a right one (SPR) and 
a left one (SPL). The extendable part of the boom (2) is seated as sliding in the fixed part 
of the boom (1), and its extended by means of a telescopic mechanism’s cylinders (5) – 
a right one (STR) and a left one (STL). The length of the boom may change within 
the range of L1 to L1+∆L1. 

The fixed part of the boom has the form of a rigid body with the mass mWS, 
concentrated in its centre of gravity OWS, and with moments of inertia IWSX, IWSY and IWSZ, 
determined in relation to the parallel axes to the axis of the system of coordinates 
XWYWZW, passing through the point OWS. The mounting of the fixed part of the boom to 
the turntable is modelled as three viscoelastic constraints with specific rigidity marked, 
respectively, as: kWSX, kWS1 and kWS2 and with the damping coefficients: cWSX, cWS1 and 
cWS2. The boom lifting actuators are modelled as viscoelastic elements with substitute 
specific rigidity kSPR (an actuator on the right side of the boom) and kSPL (an actuator on 
the left side of the boom) and the damping coefficient: cSPR and cSPL. The elastic 
properties of the working fluid in the cylinder were considered in the model of the 
hydraulic cylinders, along with piston rod flexibility and deformability of the cylinder 
walls [4]. The substitute values of the parameters mentioned are determined as for 
a serial connection of flexible parts. 

The coupling of the fixed part of the boom with the extendable part was modelled as 
16 viscoelastic constraints with the specific rigidity kTi and the damping coefficient cTi 
(for i=1, 2, ..., 16). The constraints are arranged in the same point of application of 
resultant reactive forces in the fulcrums of the extendable part relative to the fixed part 
of the boom. Eight of the reactions are parallel to the plane YWZW (points 1 – 8), while 
others are parallel to the plane XWYW. The elements which are modelling a connection 
of the extendable part with the fixed part of the boom carry compressive loads only. 
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The possible occurrence of clearances in this connection is predicted. The temporary 
location of a body modelling the fixed part of the boom is described by means of six 
coordinates: three translation coordinates – xWS, yWS and zWS and three rotation 
coordinates – φWSX, φWSY, and φWSZ (six degrees of freedom). 
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The extendable part of the boom is modelled as a rigid body with the mass mWT 
concentrated in its centre of gravity OWT and with the moments of inertia: IWTX, IWTY and 
IWTZ. The location of this part relative to the fixed part of the boom is determined by 
the length of telescopic mechanism cylinders: LSTP and LSTL. Similar, as in the case of 
boom lifting cylinders, the dynamic properties of boom extension are characterised with 
substitute rigidities kSTR and kSTL and damping coefficients cSTR and cSTL. The extendable 
part of the boom also has six degrees of freedom. The temporary location of this mass is 
hence described with the six coordinates: xWT, yWT, zWT, φWTX, φWTY, φWTZ. 

The third element of a physical model of the telescopic boom is a reduction gear 
together with transverse cutting heads mounted in the output shaft journals. It is 
modelled as a rigid body with the mass mR concentrated in its centre of gravity OR and 
the moments of inertia IRX, IRY and IRZ. The reduction gear is coupled with the extendable 
part of the boom by means of eight weightless viscoelastic elements with the specific 
rigidity kRi and the damping coefficient cRi (i=1, 2, ..., 8). The temporary location of 
the considered body is defined here with the following coordinates: xR, yR and zR as well 
as φRX, φRY, and φRZ. 

A spatial discreet model of the telescopic boom is subject to the activity of vibration 
excitations from the external load which are the result of working process performance 
(cutting the heading face). This load was reduced to the intersection point of the boom 
longitudinal axis with an axis of rotation of cutting heads and was described with six 
components – the concentrated forces applied in the point SG (PX, PY and PZ) and 
the moments of forces (MX, MY and MZ). 

The equations of motion in the physical model were written using the Lagrange 
second order equation. A system of 18  ordinary nonlinear second–order differential 
equations were obtained this way. For example, the equations of motion for 
the extendable part of the boom (telescope) assume the following form: 
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where:  
 ATi, BTi, ARi, BRi – auxiliary values connecting the coordinates of individual   

vibrating masses and their speeds; 
 AST, BST – auxiliary values describing displacement and speed of piston rods of 

telescopic mechanism cylinders; 
 H[ATi] – the Heaviside function modelling a possibility of conveying compressive 

loads only by the nodes situated in the fulcrums of the extendable part 
relative to the fixed part; 

 QWTXW, QWTYW, QWTZW – components of the gravity force of the boom extendable 
part in the direction of the axis of the reference system XWYWZW; 

 WX, WY, WZ, WTX, WTY, WTZ – components of friction forces in the fulcrums of 
the extendable part relative to the boom fixed part and moments of 
friction forces relative to axes parallel to the axis of the system of 
coordinates XWYWZW. 

The excitation curve of boom vibrations (components of an external load) is 
determined during a simulation of the process of cutting the heading face surface with 
cutting heads. The values of load components of the picks taking part in the cutting 
process are determined starting with the projections of cuts made by individual cutting 
head picks based on the values of cut parameters determined on the basis thereof. Next, 
by simulating the rotary motion of a cutting head, the curves of the following forces are 
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determined numerically: PX, PY, PZ, MX, MY and MZ being an external load of 
the roadheader boom in the dynamic model created. 

3. Analysis of dynamic state of telescopic boom 

The cutting of rock was simulated for the purpose of determining dynamic loads and 
vibrations in constructional nodes of the telescopic boom with the rock compressive 
strength of Rc=120 MPa with transverse heads fitted with 80 picks. The cutting of a rock 
layer with the height of h=0.45 m and with the web of z=0.2 m in the working motion 
was accompanied by boom deflection in a plane parallel to the floor with the angular 
velocity of ωow=0.022 rad/s. A rotary motion of the cutting head was simulated here with 
the angular velocity of ωG=4.4 rad/s. It was also assumed that the telescope is completely 
extended, so that boom length is L1+∆L1=4 m. 

Figure 2 shows fragments of vibration curves in the intersection points of the boom’s 
longitudinal axis with the axis of rotation of cutting heads (point SG). The vibrations are 
the response of the examined system to an excitation from cutting. The load generated 
with the cutting process is exciting the boom to vibrations in all the considered 
directions, with the largest displacement of the point SG along the axis ZW (Fig. 2a – 
dotted thick line). As far as the maximum displacement of this point in the direction of 
the axis XW and YW is, respectively:10–2 and −6⋅10–3 m, then in the direction of the axis 
ZW it reaches 4⋅10–2 m (the symbol “–” means displacement in the direction opposite to 
the assumed turn of the axis of the system XWYWZW). A much higher level of vibrations 
in the direction of the axis ZW results from the fact that the investigated system is highly 
flexible in the lifting plane (YWZW), which is a result of supporting the boom with 
hydraulic cylinders. Due to relatively low rigidity of the cylinders as compared to other 
elastic constraints, the boom is performing high–amplitude rotational vibrations around 
the axis XW. A manner of loading the external boom is also important. The forces 
exciting the vibrations, coming from cutting resistance, reduced to the point SG, are 
acting on a large arm (equivalent to the boom length). The boom is, therefore, subject to 
the activity of a large torque in the plane YWZW. 

The velocity of vibrations in the point SG of the boom, in the direction of the axis 
XW, ranges between ±0.13 m/s (Fig. 2b – thin continuous line), while acceleration varies 
within the range of –17 to +8 m/s2 (Fig. 2c – thin continuous line). The effective values 
of velocity and acceleration of vibrations in this case are: 0.05 m/s and ~3 m/s2. 
The maximum values, according to a relative value, of velocity and acceleration of 
vibrations in the direction of the axis YW are, respectively: 0.3 m/s and 70 m/s2 (thick 
continuous line), with the effective values of such values of: 0.11 m/s and 17 m/s2. On 
the other hand, the maximum values of the analysed boom vibration parameters in 
the direction of the axis ZW equal to: 0.6 m/s and 75 m/s2 (thick dotted line), while 
the effective vibration speed and acceleration values in this direction are, respectively: 
0.2 m/s and 18 m/s2. Boom vibrations in the direction of the axis XW are weakest. It is 
because the effective values of the parameters characterising the vibration motion in this 
direction are 4 times (velocity) and 6 times (acceleration) smaller as compared to 
the effective values determined for vibrations in the direction of the axis ZW. At the same 



 Vibrations in Physical Systems Vol.26 (2014) 71 

time, the effective values of vibration velocity and acceleration in the direction of 
the axis YW are only by 45% and 6% smaller compared to the effective values of such 
parameters for vibrations in the direction of the axis ZW. The highest intensity have, 
therefore, the vibrations in the boom lifting plane perpendicular to the displacement 
direction of cutting heads in the working motion. 

A spectral analysis of the studied curves has revealed that a number of characteristic 
vibration components exists (Fig. 3). The share of such components varies for relevant 
vibration directions. For example, vibrations with the frequency of 35 rad/s (Fig. 3a) 
dominate in the vibration acceleration spectrum in the direction of the axis XW. 
Components are also evident with the frequency of: 53; 87; 139 and 244 rad/s. 
Meanwhile, three components with the frequency of: 35; 209 and 297 rad/s dominate in 
the vibration acceleration spectrum in the direction of the axis ZW (Fig. 3b). 
The following vibrations: 35; 87 and 139 rad/s are the first three own frequencies of the 
studied system. Vibrations with the frequency of 53 rad/s result from the fact that picks 
are positioned along the helixes with a small twisting angle (helix frequency), and 
vibrations with the frequency of 209 rad/s are the result of the next picks advancing to 
the cutting zone (pick frequency). The other identified vibration components are higher 
harmonics of vibration excitations. 

4. Conclusions 

The created dynamic model allowed to perform comprehensive simulation tests in order 
to determine dynamic loads in the constructional nodes of a roadheader telescopic boom 
and analyse its vibrations. The numerical tests carried out allowed to identify the basic 
sources of boom vibrations and – for the set cutting process performance conditions – to 
determine the values of the parameters characterising telescopic boom vibrations with 
the defined constructional form. Conclusions from simulation tests were used for 
formulating requirements for dynamic properties of a telescopic boom for a newly 
designed roadheader in terms of reduction in dynamic loads and vibrations. 

The presented dynamic model of a roadheader’s telescopic boom has been created 
for the design of roadheader’s telescopic boom. The usefulness of this model and 
the reliability of the results will be soon verified based on the results of experimental 
studies of roadheader after manufacture developed telescopic boom. 
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Figure 2. Boom vibration components in the intersection point of the boom longitudinal 
axis with the axis of rotation of cutting heads: a) displacement, b) speed, c) acceleration 

 

 
 

Figure 3. Spectrum of vibration acceleration in the direction of the axis: a) XW, b) ZW 
1  – 35 rad/s  2  – 53 rad/s  3  – 87 rad/s  4  – 139 rad/s  5  – 209 rad/s  6  – 244 rad/s  7  – 297 rad/s 
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Abstract 

Geometrically nonlinear vibrations of beams with properties periodically varying along the axis are investigat-
ed. The tolerance method of averaging differential operators with highly oscillating coefficients is applied to 
obtain the governing equations with constant coefficients. The proposed model describes the dynamics of 
the beam with the effect of the microstructure size. 
 
Keywords: nonlinear vibrations, periodic beams, tolerance modelling  

1. Introduction 

The note concerns with geometrically nonlinear vibrations of beams with periodically 
varying mass, geometric and material properties along the beam axis. Moreover, this 
beam can interact with periodically nonhomogeneous viscoelastic subsoil. A fragment of 
such beam is shown in Fig. 1. Equations of motion of such structures have usually non-
continuous, highly oscillating, periodic coefficients. Since, various averaging methods 
which lead to approximate models, determined by equations with constant coefficients, 
are applied. Among them methods based on the asymptotic homogenization can be men-
tioned, cf. [3]. 

 
Figure 1. A fragment of a periodic beam 

In this contribution, in order to replace the differential equations with highly oscillat-
ing coefficients by equations with constant coefficients, the tolerance modelling is ap-
plied. This approach was introduced for the purpose of analysis of various thermome-
chanical problems of periodic elastic composites, e.g. it was used to analyse vibrations of 
beams within the linear theory, cf. [5], where equations and their generalization by in-
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cluding influence of the axial force, an elastic subsoil and viscous damping have been 
derived in this way. 

The main aim of this note is to derive the tolerance model equations with constant 
coefficients, which describe geometrically nonlinear vibrations of periodic beams resting 
on a periodic viscoelastic foundation, with taking into account the effect of the micro-
structure size. 

2. Formulation of the problem 

The object under consideration is a linearly elastic prismatic beam, bilateraly interacting 
with a periodic viscoelastic foundation. Let Oxyz be an orthogonal Cartesian coordinate 
system, the Ox axis coincides with the axis of the beam, the cross section of the beam be 
symmetric with respect to the plane of the load Oxz, the load acts in the direction of 
the axis Oz. The problem can be treated as one-dimensional. 

The beam is assumed to be made of many repetitive small elements, called periodici-
ty cells, each of which is defined as ∆≡[−l/2,l/2], where l<<L is the length of the cell and 
named the microstructure parameter. 

Our considerations are based on the Euler-Bernoulli theory of beams. Additionally 
large transverse deflection but small deformations are assumed, cf. [4]. The effects of 
axial and rotational inertia are neglected in further considerations. Let ∂k=∂k/∂xk be the k-
th derivative of a function with respect to the x coordinate. Let the transverse deflection, 
the longitudinal displacement, tensile and flexural stiffness, the elastic coefficient of the 
foundation, the damping coefficient of the foundation, density of beam material per unit 
length, transverse load and dissipative force by w = w(x,t), u0 = u0(x,t), EA = EA(x), 
EJ = EJ(x), k = k(x), c = c(x), µ = µ(x), q = q(x,t), p = p(x,t), the system of nonlinear 
coupled differential equations for the longitudinal displacements u0 and the transverse 
deflection w can be written as: 
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The coefficients EA, EJ, k, µ, c, and in some cases the load q, are highly oscillating, 
often non-continuous functions of the x coordinate. 

3. Introductory concepts and basic assumptions of the tolerance modelling 

The averaged equations of periodic beams with large deflections are derived using 
the tolerance averaging technique, cf. [7, 8]. 

Let ∆(x)=x+∆, })(:{ Ω⊂∆Ω∈=Ω∆ xx  be a cell with center at ∆Ω∈x . The aver-

aging operator for an arbitrary integrable function f is defined by: 
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It can be shown that for periodic function f of x, its averaged value (2) is constant. 
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The first of the basic assumptions is the micro-macro decomposition of the unknown 
functions: 

• for the transverse deflection: 

 ,,,1),,()(),(),( NAtxVxhtxWtxw AA
K=+=   (3) 

• and for the axial displacement x: 

 ,,,1),,()(),(),(0 MKtxTxgtxUtxu KK
K=+=   (4) 

where the functions ),()(),( 2 ∆Ω∈⋅⋅ d
A SVVW , ),(),( 1 ∆Π∈⋅ d

K SVTU  are new basic un-

knowns, being slowly-varying functions in x; the fluctuation shape functions 

),()( 2 ∆Ω∈⋅ d
A FSh , ),()( 1 ∆Ω∈⋅ d

K FSg  are postulated a priori in every problem under 

consideration. The new basic kinematic unknowns W(⋅) and U(⋅) are called the macrode-
flection and the in-plane macrodisplacements, respectively; VA(⋅) and TK(⋅) are additional 
kinematic unknowns, called the fluctuation amplitudes. 

4. The governing equations of proposed models 

4.1. The governing equations of the tolerance model 

After substitution the micro-macro decompositions (3) and (4) into equations (1), 
the next step of modelling is averaging (2) over an arbitrary periodicity cell. In case of 
symmetric or antisymmetric cell, some of the averaged coefficients yield zero automati-
cally. 

After some manipulations we arrive at the following system of equations: 
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It is a system of 2+N+M differential equations for the macrodisplacements U(⋅), W(⋅) 
and for the fluctuation amplitudes of the deflection VA(⋅) and of the axial displacement 
TK(⋅). The coefficients of these equations are constant, some of them (the underlined 
ones) depend on the size l of the periodicity cell. Hence, the tolerance model describes 
the effect of the microstructure size on vibrations of the beams under consideration. For 
instance, free vibration frequencies of higher order vibrations can be analysed, which are 
related to the microstructure of these beams. 

4.2. The governing equations of the simplified tolerance model 

In order to formulate a simplified model it can be assumed that the deflection fluctuation 
impact on the relative elongation of the beam middle axis is negligible. Therefore, 
the nonlinear components of the strain that involve the fluctuation amplitudes can be 
omitted. 

Introducing the following denotations: 
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governing equations of the simplified tolerance model take the form: 
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 (7) 

Because the matrix BKL in equation (7)4 is nonsingular there exists a matrix (BKL)-1 
and this equation can be written as: 
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Introducing the effective tensile stiffness of the beam: 
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denoting: 
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and after substituting the right-hand side of (8) into (7)1 we have, instead of (7), the fol-
lowing equations: 
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Equations (11) stand the system of differential-algebraic equations. Similarly to 
equations (7) the above equations have the terms dependent of the microstructure param-
eter l. Hence, the simplified tolerance model makes it possible also to investigate 
the effect of the microstructure size on vibrations of these beams. 

4.3. The governing equations of the asymptotic model 

Neglecting in equations (7) or (11) the terms with the microstructure parameter l and 
introducing the effective stiffness of bending of beam: 
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we arrive at the equations in the form: 
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The above equations do not describe the effect of the microstructure size on the be-
haviour of the periodic beams under consideration. Hence, the asymptotic model makes 
it possible to analyse vibrations on the macrolevel only. 

5. Remarks  

In this contribution the mathematical model, called the tolerance model, is shown, which 
describes dynamics of a periodically nonhomogeneous beam. The governing equations 
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of this model are obtained by using the tolerance method, cf. [9, 8, 7]. Hence, the fun-
damental equations with highly oscillating, periodic, noncontinuous functional coeffi-
cients are replaced by the equations with constant coefficients. 

The following general remarks can be formulated. 
1. It can be observed that only the tolerance model and the simplified tolerance mod-

el make it possible to investigate the effect of the microstructure size on dynamic 
problems of periodic beams under consideration, e.g. the “higher order” vibrations 
related to the beam microstructure. 

2. The governing equations of both the tolerance models have a physical sense for 
unknowns W, U, VA, A=1,...,N, TK, K=1,...,M, being slowly-varying functions.  

3. The asymptotic model of periodic beams makes it possible to investigate only low-
er order (fundamental) vibrations. 
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Abstract  

The system of human locomotion is very complex. Generally we can divide it into the skeletal and muscle 
systems. The muscle system (muscles) enable to move the body which is formed by the skeletal system 
(bones). Electromyography is a technique of measurement the electrical activity of muscles which is related 
with shortening or lengthening of muscle fibers (muscle contraction). In the paper analysis of the electromyo-
graphic signal (EMG) recorded during knee rehabilitation exercises was conducted. The records of EMG from 
person after knee injury were compared with records of EMG from healthy person. 
 
Keywords: electromyography, knee rehabilitation, rehabilitative exercises 

1. Introduction 

The human movement is possible by interaction between three systems: the nervous 
system, the muscle system and the skeletal system. Each of the aforementioned systems 
has specified functions for human movement performing. The skeletal system maintains 
the shape of human body. The joints which are part of the skeletal system enable move-
ment of the body. The movements of the body in the joints are performed by contraction 
of muscles which are connected to the bones by the tendons. Decisions about human 
movement are taken in the brain which is part of the nervous system.  

The nerves which directly innervate the muscle fibers are located in the vertebrae and 
they are called alpha motor neuron. The alpha motor neuron, muscle fibers which are 
innervated by single alpha motor neuron and axons constitute the motor unit. One alpha 
motor neuron can innervate from several to several thousand muscle fibers. The muscle 
fibers are grouped together in the muscle fibers bundles (which contain from 10 to 100 
muscle fibers).  

A single signal which is received by the group of muscle fibers is called motor unit 
action potential. The disorder propagates along the muscle fibers. Electromyographic 
signal is a sum of the disorders at the time and the place of electrodes application. There-
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fore electromyographic signal depends on many factors (internal and external) which are 
detailed described in [1]. 

Electromyography plays more and more important role in medicine, kinesiology re-
habilitation, biomechanics, sport and ergonomics [2,5,6]. Many interesting articles on 
analysis and applications of electromiographic signal can be find in Journal of Electro-
myography & Kinesiology. Recommendable publication on electromyographic signal, 
its recording and processing was written by Merletti and Parker [4]. 

In the paper the results of electromiographic signal recording results during knee re-
habilitation exercises with pillow were presented. The main purpose of the paper is to 
show the relationship between muscle activity and assessing progress of rehabilitation. 

2. Description of the knee rehabilitation exercises   

Causes of motor organs injury can be divided into internal and external factors. 
The main internal factors are: anatomical abnormalities, friction forces in the motor 
system and extensive stretching of tendons. The external factors are associated with 
training errors (extensive training volume and training intensity, errors in technique of 
performing exercises).   

The main aim of knee rehabilitation exercises is to learn maintaining of the equilibri-
um state and appropriate technique of the performed exercises [3]. Bad habits in 
the technique of rehabilitation exercises can result in deepening the disease state. 
The knee rehabilitation exercises are static exercises with load. There were three knee 
rehabilitation exercises taking into account in our research: partial squat on the pillow 
(Fig. 1), one leg partial squat (Fig. 2) and one leg partial squat on the pillow with per-
forming of the semicircle (Fig. 3). 

 

 
 

Figure 1. Partial squat on the pillow 
 

 
 

Figure 2. One leg partial squat on the pillow 
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Figure 3. One leg partial squat on the pillow with performing of the semicircle 

3. Method of measurements  

The measurements were performed using NORAXON electromyographic system and 
were collected from four muscles on each leg (together eight muscles): the rectus femo-
ris muscle, the vastus medialis muscle, the semitendinosus muscle and the biceps femo-
ris muscle, which were depicted in Fig. 4.   
 

 

Figure 4. Arrangement of the electrodes on the leg muscles  

The EMG signal was recorded for muscles presented in Fig. 4, during described ex-
ercises. The raw electromiographic signal is difficult to analyse and therefore various 
algorithms for its processing are applied. In the paper the RMS algorithm with 100 ms 
frame was used.    

4. Results  

The first tested person was a woman who as a result of wrong settings of mechanical 
axis of the left leg, has a diagnosed injury in her left knee. In this case is extremely im-
port to develop the rectus femoris muscle which is responsible for keeping the kneecap 
in the correct position. In all considered cases each of experiences performed at least ten 
times.  

In Fig. 5 one can observed big differences between left and right rectus femoris mus-
cle and biceps femoris muscle in the first month of the rehabilitation. The activity partial 
squat on the pillow in the first month of the rehabilitation of these muscles show that 
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the left leg is significant weaker than right one. In order to observe the rehabilitation 
progress similar measurements were done after second month of the rehabilitation 
(Fig. 6). 

 

 
Figure 5. Comparison of the RMS signal for selected muscles of left and right leg during  

 

 
Figure 6. Comparison of the RMS signal for selected muscles of left and right leg during 

partial squat on the pillow in the second month of the rehabilitation  

After two months of the rehabilitation improvement of the left leg could be observed. 
Significant increase of recorded EMG signal is noticed in the case of  the vastus medialis 
muscle. The difference between left and right muscles activity smaller than the differ-
ence in the first month of rehabilitation.  

During the one leg squat exercise average activity of muscles is much higher than in 
the first exercise (Fig. 7). One can conclude that it is difficult to observe find the differ-
ence between the healthy leg and the leg with injury. The progress of the rehabilitation in 
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all considered muscles could be observed analysing graphs presented in Fig. 8. That fact 
shows efficiency of the used rehabilitation. 

 
Figure 7. Comparison of the RMS signal for selected muscles of left and right leg during 

one leg squat on the pillow in the first month of the rehabilitation  

 
Figure 8. Comparison of the RMS signal for selected muscles of left and right leg during 

one leg squat on the pillow in the first month of the rehabilitation 

The last considered exercise (Fig. 8) is very good indicator which shows whether 
the muscles are proper protection (stabilization of the knee). In this case one can see 
disproportion between left and right leg. Shapes of signals from leg with injury are less 
regular than from healthy one. The vastus medialis muscle, the rectus femoris muscle 
and the biceps femoris muscle in the left leg have similar activity graph. On the other 
hand the biceps femoris muscle in the right leg has completely different characteristic. It 
could be caused by necessity of participating the left biceps femoris in stabilization of 
the injured knee in that kind of motion. 
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Records of electromyographic signal for the same exercise but after two months of 
the rehabilitation was presented in Fig. 10. The average activity of muscles in the left 
and the right legs is very similar.   

 

 
Figure 9. Comparison of the RMS signal for selected muscles of left and right leg 

during partial one leg squat on the pillow with performing of the semicircle 
in the first month of the rehabilitation  

 
Figure 10. Comparison of the RMS signal for selected muscles of left and right leg 

during partial one leg squat on the pillow with performing of the semicircle 
in the second month of the rehabilitation 

In Fig. 11-13 records of EMG signal for healthy person were presented. One can ob-
served that in all cases of considered exercises the muscles activity measured for both 
legs is alike. Work of the considered muscles for left and right leg respectively is much 
more symmetric than in case of injured person. That kind of signal analysis can be useful 
for injury prediction.  
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Figure 11. Comparison of the RMS signal for selected muscles of left and right leg 

during partial squat on the pillow – healthy person 

 
Figure 12. Comparison of the RMS signal for selected muscles of left and right leg 

during one leg squat on the pillow – healthy person 

 

Figure 13. Comparison of the RMS signal for selected muscles of left and right leg 
during partial one leg squat on the pillow with performing of the semicircle  

– healthy person 
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5. Conclusions  

The paper presents the electromyographic signal as valuable source of information in the 
rehabilitation of the knee joint. Injuries of the knee can be manifested by increased activ-
ity of some muscle groups which can be seen in electromyographic signal records. Pre-
sented results of the research show that progress of the rehabilitation could be in 
the easily way observed. The difference between muscles activity in healthy and injured 
leg is well visible. Therefore the electromyographic signal can be a good source of in-
formation about progress of the rehabilitation process and potential joints injuries.   
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Abstract 

The paper introduces a method of discrete-continuous systems modelling. In the proposed method a three-
dimensional system is divided into finite elements in only two directions, with the third direction remaining 
continuous. The thus obtained discrete-continuous model is described by a set of partial differential equations. 
General difference equations of discrete system are obtained using the rigid finite element method. The limit of 
these equations leads to partial differential equations. The derived equations, expressed in matrix form, allow 
for the creation of a global matrix for the whole system. The equations are solved using the distributed transfer 
function method. Proposed approach is illustrated with the example of a simple beam fixed at both ends. 

Keywords: modelling, model reduction, modal analysis, mechanical system, dynamic systems, 
vibration. 

1. Introduction 

Many different methods for modelling dynamic systems are known [1,2,5]. However, 
there is no universal approach which is both accurate and applicable to the wide range of 
dynamic systems. One of the most commonly used approaches is the finite element 
method, which is particularly useful in providing approximate models of the real sys-
tems. Its accuracy depends on the number of finite elements. The greater their number, 
the more accurate the model. However, there is an optimal division density, above which 
rounding errors start to seriously affect numerical calculation. The use of finite element 
methods for slender elements or structures is inefficient and basically ineffective, as 
maintaining appropriate proportions would require a very fine mesh, leading to the said 
rounding errors in numerical calculations. A very large number of finite elements also 
means creating a high-order model. Such models are not suitable for designing control 
systems. Additionally, the exact analytical solutions for a slender elements, such as 
strings, bars and beams, are already known and therefore more suitable for continuous 
models.  

This paper proposes a hybrid method of modelling that combines the advantages of 
spatial discretization methods with the advantages of continuous systems modelling 
method. In the classical finite element method, the body is divided into all three spatial 
directions (Fig. 1a, 1c). In the proposed method, the same body is divided into one (Fig. 
1b) or two (Fig. 1d) spatial directions, with one direction remaining continuous. Such 
a division results in finite elements with parameters distributed along one of the axes. 
Two-dimensional elements are called strips (Fig. 1b) and three-dimensional elements are 
called prisms (Fig. 1d). Both these elements are one-dimensional distributed systems and 
are therefore described by second order partial differential equations. However, these 
equations also have terms related to interactions between elements. Hence, the given 
system is described by coupled second order partial differential equations. 
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Figure 1. Spatial discretization of 2D and 3D body: a), c) conventional finite element 
method, b), d) proposed hybrid method 

2. General model of discrete-continuous system 

In order to derive a general model of the discrete-continuous system, let us consider two 
prisms, r and p, connected together by a layer of spring-damping elements, k, with dis-
tributed parameters (Fig. 2a). Such a discrete model is shown in Fig. 2b. Each element 
has 6 degrees of freedom. By applying the rigid finite element method to this discrete 
model, one obtains an appropriate system of ordinary differential equations for prism r. 
Such an FEM model may be transformed into a continuous model by letting dx→0. In 
this way small differences, divided by dx, become derivatives. After these transfor-
mations, the following six differential equations of the r-th prism are obtained: 
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where: E – Young’s modulus, G – shear modulus, Iαβ – geometric moment of inertia of 
cross section area perpendicular to the β axis about α axis, ∆y, ∆z – elementary dimen-
sions of finite element (Fig. 2b), κ – numerical shape factor of cross section, ρ – mass 
per unit volume, qi – transverse displacements in i direction, fr,i – distributed general 
force applied at r-th element (excitation) in i direction , i=1,2,…,6, sα,β,γ – distance be-
tween body α and distributed spring-damping element β in γ direction, cxα,β – distributed 
stiffness coefficient of spring element α in β direction. 

 

Figure 2. General model of considered system: a) discrete-continuous, b) discrete  

In the same way equations for the p element can be determined. These p element 
equations can also be obtained from equations (1÷6) by replacing r indices with p indi-
ces and p indices with r indices. Equations (1÷6) for the r element and the corresponding 
equations for the p element may be written in matrix form: 
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T
rpkprk KK = , matrices ppkK  and p10A  are obtained from rrkK  and r10A  by replacing indices r 

with p. 
A global model for the whole system is built the same way as the FEM model. Glob-

al matrices A02, A20, A10 include sub-matrices of each prism element, located on their 
main diagonal. Matrix A00 is formed by summing the stiffness matrices of each prism 
element in the global system. 

The solution of these equations with appropriate boundary conditions gives semi-
analytical results for the tree-dimensional structure. To solve partial differential equation 
(7), the distributed transfer function method was used [2,4].  
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The proposed approach may be applied in modelling 1D, 2D and 3D continuous sys-
tems. In the case of a 1D system, there are of course no interactions between prisms.  

3. Example of method application  

As a simple example, let us consider a beam fixed at both ends (Fig. 3) with the follow-

ing parameters: 11102⋅=E [Pa], 10108 ⋅=G [Pa], 8000=ρ [kg/m3], ∆y=0.15 [m], 

∆z=0.15 [m], l=1 [m], 2.1=κ . 
 

 

Figure 3. Fixed beam 

The beam is divided into four prisms (Fig. 4) and four distributed spring elements. 
Each prism has three degrees of freedom – displacement along x1 and x2 axes and rota-
tion angle around x3 axis.  

For this example the frequency responses of the proposed model are compared with 
those of  Euler and Timoshenko beam models (Fig. 5).  

The beam frequency responses (Fig. 5) are obtained for the unit step force input sig-
nal acting at beam point x=0.1 [m] (Fig. 3) and the displacement output signal is ob-
served at the x=0.4 [m] point. 

 

 

Figure 4. Discrete model of beam: a) general scheme, b) equivalent scheme 

The characteristic in Fig. 5 shows that the first two frequencies of the proposed mod-
el and that of the Timoshenko beam model are very similar. This proves that the pro-
posed model is correct. The later trend shows that the frequencies in the proposed model 
are even more to the left than in Timoshenko’s model. The characteristic of the Euler 
beam model differs significantly from the other two. This is because the Euler beam 
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model does not take into account the effect of shear deformation and is therefore less 
accurate. Timoshenko included shear deformation to produce a more accurate model 
than Euler, with a frequency trend more to the left. The beam model proposed in this 
paper is closer to Timoshenko’s model but the subsequent frequency trend is even more 
to the left. In the future, these results will be verified and compared with a corresponding 
FEM model. 

 

 
 

Figure 5. Frequency characteristics 

4. Conclusions 

This paper has presented a discrete-continuous modelling method. For the proposed 
method, general partial differential equations were derived. These equations were next 
written in a formalized matrix form that is very easily applied in computer algorithms. 
A beam fixed at both ends was used to illustrate the general concept. The obtained nu-
merical calculation results show that the proposed method is efficient and applicable to 
discrete-continuous dynamic system modelling. 
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Abstract 

In this paper it is presented a problem of free vibrations of thin microstructured plates, which can be treated as 
made of functionally graded material on the macrolevel. The size of the microstructure of the plates is of 
an order of the plate thickness. In order to obtain averaged governing equations of these plates the tolerance 
modelling technique is applied, cf. [14, 15, 7]. The derived tolerance model equations have the terms depend-
ent of the microstructure size. Hence, the tolerance model describes the effect of the microstructure size. In 
order to evaluate results, the asymptotic model is introduced. Obtained results can be compared to those calcu-
lated by using the finite element method. 
 
Keywords: thin functionally graded plates, microstructure, tolerance modelling 

1. Introduction 

The objects under consideration are thin functionally graded plates with microstructure 
in planes parallel to the plate midplane along one, i.e. the x1-axis direction. All plate 
properties along the perpendicular direction are assumed to be constant. Moreover, let 
the size of the microstructure be of an order of the plate thickness. An example of these 
plates is shown in Figure 1.  

 
Figure 1. Fragment of a functionally graded plate with the microstructure 
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L1

L2
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Plates of this kind are consisted of many small elements along the x1-axis, called 
the cells, which have a span equal l, cf. Figure 2, (x≡x1). This length l is called the mi-
crostructure parameter and describes the size of the microstructure. 

 
Figure 2. Element of a functionally graded plate with an example 

of the fluctuation shape function 

A description of various thermomechanical problems of functionally graded struc-
tures or composites is often made using averaging approaches for macroscopically ho-
mogeneous structures, cf. Jędrysiak [6]. Between them it has to be mentioned models for 
periodic plates, cf. Kohn and Vogelius [11], based on the asymptotic homogenization 
method. Other method, used to describe various problems of thermoelasticity for beams, 
plates and shells are shown in a lot of papers, cf. [4, 13, 1, 2]. Unfortunately, model 
equations, obtained in this way, do not take into account the effect of the microstructure 
size. 

However, in order to describe this effect the tolerance averaging technique can be 
used, cf. [14, 15, 6]. This method is applied to model various periodic structures in 
a series of papers, [5, 3]. Moreover, the tolerance method is also adopted to functionally 
graded structures like transversally tolerance-periodic plates, cf. [6, 7, 8, 9, 10] and for 
longitudinally functionally graded structures [12].  

2. Modelling foundations 

Let Ox1x2x3 stand orthogonal Cartesian coordinate system and t be the time coordinate. 
Denote: x≡(x1,x2), z≡x3 and the region of the undeformed plate by  
Ω≡{(x,z):‒d/2≤z≤d/2,x∈Π}, with the midplane Π and the plate thickness d. Let ∆≡[‒
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l/2,l/2] be the “basic cell” in the interval Λ=(-L1/2,L1/2) on the x1-axis, and l be the length 
of cell ∆, called the microstructure parameter. It is assumed that this parameter l satis-
fies the conditions d∼l<<L1.  

Let us introduce tolerance-periodic functions in x: a mass density µ, a rotational iner-
tia ϑ and bending stiffnesses dαβγδ given by:  
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Using the Kirchhoff-type plates theory assumptions we can write the equation for de-
flection w(x,t) of functionally graded plates under consideration in the following form:  

 0)()( =δ∂ϑ∂−µ+∂∂ αββαγδαβγδαβ wwwd &&&& , (2) 

which describes free vibrations of these plates.  
The above equation has highly oscillating, tolerance-periodic, non-continuous coeffi-

cients being functions in x. 

3. Modelling concepts  

Averaged equations for functionally graded plates will be obtained using the tolerance 
averaging technique. The basic concepts of the modelling procedure are defined in 
books, cf. [14, 15, 6]. 

Let ∆(x)≡x+∆, Λ∆={x∈Λ: ∆(x)⊂Λ}, be a cell at x∈Λ∆. The averaging operator for 
an arbitrary integrable function f is defined by 

 .,),(),(
)(

2
1

2 ∆
∆

Λ∈=>< ∫ xdyxyfxxf
x

l
 (3) 

If a function f is tolerance-periodic in x, then averaged value by (3) is a slowly-
varying function in x. 

Following the aforementioned books let us denote a set of tolerance-periodic func-
tions by TPδ

α(Λ,∆), a set of slowly-varying functions by SVδ
α(Λ,∆), a set of highly oscil-

lating functions by HOδ
α(Λ,∆), where α ≥ 0, δ is a tolerance parameter. Denote by h(·) 

a continuous highly oscillating function, h∈FSδ
1(Λ,∆), having a piecewise continuous 

and bounded gradient ∂1h. Function h(·) is called the fluctuation shape function of the 1-
st kind, if it depend on l as a parameter and satisfies conditions: ∂kh∈O(lα-k) for 
k=0,1,…,α, ∂kh≡h, and <µh>(x)≈0 for every x∈Λ∆, µ>0, µ∈TPδ

1(Λ,∆). 

4. Fundamental assumptions of the tolerance modelling  

The tolerance modelling is based on two fundamental modelling assumptions, cf. 
the book edited by Woźniak et al. [14,15] and for thin functionally graded plates by 
[6,7]. 

The first assumption of this procedure is the micro-macro decomposition, where 
the plate displacements are decomposed as: 
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2 ∆Λ∈⋅∆Λ∈⋅ δαδ SVtxvSVtxw  are basic kinematic unknowns, 

called the macrodeflection and the fluctuation amplitudes, respectively; h(·) is the known 
fluctuation shape function, cf. Figure 2. 

The second assumption is the tolerance averaging approximation, i.e. terms of an or-
der of O(δ) are treated as negligibly small, cf. [14, 15, 7], e.g. for ),,(2 ∆Λ∈ δTPf  

),,(1 ∆Λ∈ δFSh  ,2,1),,( =∆Λ∈ δ aSVF a  in: ),()()( δ+>=<>< Oxfxf  
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5. The outline of the tolerance modelling procedure 

The tolerance modelling procedure is shown in the books [14, 15, 7]. Here, there is pre-
sented only an outline of this method. 

In the tolerance modelling two basic steps can be introduced. In the first step micro-
macro decomposition (4) is applied. In the second step averaging operator (3) is used to 
the resulting formula. Hence, the tolerance averaged lagrangean >< hΛ  is obtained: 
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From the principle of stationary applied to (5) the Euler-Lagrange equations for 
w(⋅,x2,t) and vα(⋅,x2,t) can be derived: 
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6. Governing equations of presented models 

In this section equations of two models are presented: the tolerance model, the asymptot-
ic model. 

Substituting >< hΛ , (5), to the Euler-Lagrange equations (6), after some manipula-

tions we arrive at the following system of equations for w(⋅,x2,t) and vα(⋅,x2,t): 
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where all coefficients are slowly-varying functions in x. Equations (7) together with 
micro-macro decomposition (4) stand the tolerance model of thin functionally graded 
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plates with the microstructure size of an order of the plate thickness. These equations 
describe free vibrations of these plates. There are the underlined terms, which depend on 
the microstructure parameter l, in these equations. Hence, the effect of the microstructure 
size on dynamic problems of these plates is taken into account. All coefficients of equa-
tions (7) are slowly-varying functions in x≡x1 in contrast to equation (2), in which there 
are non-continuous, highly oscillating and tolerance-periodic coefficients. The basic 
unknowns w, vα, α=1,2, are slowly-varying functions in x≡x1. It can be observed that 
boundary conditions have to be formulated for the macrodeflection w on all edges, and 
for the fluctuation amplitudes vα only for edges normal to the x2-axis. 

The asymptotic modelling procedure is shown in [15, 6, 7]. However, in order to ob-
tain equations of an approximate model, which does not take into account the effect of 
the microstructure size, the underlined terms in equations (7) can be neglected. Hence, 
we arrive at the following equations of the asymptotic model: 
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These equations have smooth, slowly-varying coefficients in the contrast to equation 
(2). The asymptotic model equations describe free vibrations of thin plates under consid-
eration on the macrolevel only.  

7. Final remarks  

Two modelling procedures are applied to the known differential equation of Kirchhoff-
type plates with functionally graded macrostructure and the microstructure size of 
an order of the plate thickness in this note. Using these procedures the governing equa-
tion with non-continuous, tolerance-periodic functional coefficients of x1 can be replaced 
by the systems of differential equations with slowly-varying, continuous coefficients of 
x1 for each model. 

Using the tolerance model, where the effect of the microstructure size is taken into 
account, not only macrovibrations can be investigated, but also microvibrations, which 
are related to the microstructure of the functionally graded plates. 

The the tolerance model equations have a physical sense for unknowns w, vα, which 
are slowly-varying functions in x1. However, these conditions can be treated as a certain 
a posteriori criterion of physical reliability for the model. 

The second presented model, the asymptotic model, with the governing equations 
neglecting the aforementioned effect, can describe only macrovibrations of these plates 
under consideration. 
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Abstract 

This paper presents a problem of vibrations of thin functionally graded plates. To describe this kind of plates 
three averaged models are proposed: a tolerance model, an asymptotic model and a combined asymptotic-
tolerance model, cf. [10]. Calculational results obtained for a functionally graded plate band using the proposed 
models are compared to each other. 
 
Keywords: thin functionally graded plates, tolerance-periodic microstructure, tolerance modelling 

1. Introduction 

There are considered thin plates with functionally graded macrostructure in planes paral-
lel to the plate midplane. However, the microstructure is tolerance-periodic, cf. Figure 1.  

 
Figure 1. Fragment of a functionally graded plate 

Plates of this kind consist of many small elements, where adjacent elements are near-
ly identical but the distant ones may be variable. Every element is treated as a thin plate 
with spans l1 and l2 along the x1- and x2-axis, respectively, cf. Figure 2. 
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Figure 2. Element of a functionally graded plate 

Structures made of functionally graded material are often analysed using averaging 
approaches for macroscopically homogeneous structures. Models, which are proposed, 
based on the asymptotic homogenization, where the effect of the microstructure size is 
neglected in the governing equations. 

Using the tolerance averaging technique the effect of the microstructure size can be 
taken into account in governing equations for structures under consideration, cf. [9,10]. 
Some applications of this method to the modelling of various periodic structures are 
shown in a series of papers, [1,5]. The tolerance modelling was adopted to functionally 
graded structures like transversally tolerance-periodic plates, cf. [2,3,4,5,6] and for lon-
gitudinally functionally graded structures [8].  

2. Modelling foundations 

Denote by Ox1x2x3 orthogonal Cartesian coordinate system and by t the time coordinate. 
Set x≡(x1,x2) and z≡x3. The region of the undeformed plate is denote by  
Ω≡{(x, z): ‒d(x)/2 ≤ z ≤ d(x)/2, x∈Π}, where Π is the midplane and d(·) is the plate 
thickness. The “basic cell” on Ox1x2 is denoted by Ω≡[‒l1/2, l1/2]×[‒l2/2, l2/2]. The di-
ameter of cell Ω, called the parameter of microstructure, is defined by l≡[(l1)

2+(l2)
2]1/2 

and satisfies the condition dmax<< l << (L1, L2). Thickness d(·) can be a tolerance-
periodic function in x. 

Define tolerance-periodic functions in x: a mass density µ, a rotational inertia ϑ and 
bending stiffnesses dαβγδ in the form:  
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From the Kirchhoff-type plates theory assumptions the equation for deflection w(x, t) 
of functionally graded plates with highly oscillating, tolerance-periodic, non-continuous 
coefficients is described by: 

 .)()( pwwwd =∂ϑ∂−µ+∂∂ ααγδαβγδαβ &&&&  (2) 

3. Modelling concepts and assumptions 

Averaged equations for functionally graded plates will be obtained using the tolerance 
averaging technique. The basic concepts of the modelling procedure are defined in 
books, cf. [9,10]. 

Let Ω(x)≡x+Ω, ΠΩ={x∈Π: Ω(x)⊂Π}, be a cell at x∈ ΠΩ. The averaging operator for 
an arbitrary integrable function f is defined by 
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If a function f is tolerance-periodic in x, then averaged value by (3) is a slowly-
varying function in x. 

Following the aforementioned books let us denote a set of tolerance-periodic func-
tions by TPδ

α(Π, Ω), a set of slowly-varying functions by SVδ
α(Π, Ω), a set of highly 

oscillating functions by HOδ
α(Π, Ω), where α ≥ 0, δ is a tolerance parameter. Denote by 

h(·) a highly oscillating function, h∈ HOδ
2(Π, Ω), continuous together with gradient ∂1h 

and having a piecewise continuous and bounded gradient ∂2h. Function h(·) is called the 
fluctuation shape function of the 2-nd kind, if it depend on l as a parameter and satisfies 
conditions: ∂kh∈O(lα-k) for k=0,1,…,α, ∂kh≡h, and <µh>(x)≈0 for every x∈ΠΩ,  
µ > 0, µ∈ TPδ

1(Π, Ω). 

4. Governing equations 

In this section will be presented equations for three models: the tolerance model, the 
asymptotic model and the combined asymptotic-tolerance model. 

The tolerance modelling procedure is outlined here following the book [3]. 
The first assumption of this procedure is the micro-macro decomposition plate de-

flection w: 

 .,,...,1),,()(),(),( Π∈=+= xxxxx NAtQhtUtw AA  (4) 

Functions U(·,t) and QA(·,t) are kinematic unknowns, called the macrodeflection and  
the fluctuation amplitudes, respectively, hA(·) are the known fluctuation shape functions. 

The second assumption is the tolerance averaging approximation, i.e. terms of an or-
der of O(δ) are negligibly small. 

Using the above assumptions in equation (2), after some manipulations we obtain 
the system of equations: 
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where all coefficients are slowly-varying functions in x. Equations (5) together the mi-
cro-macro decomposition (4) present the tolerance model of thin functionally graded 
plates. These equations take into account the effect of the microstructure size on dynam-
ic problems of this kind of plates. 

The asymptotic modelling procedure is shown in books [3,10]. 
The starting point of this procedure is equation (2). We introduce a parameter 

ε∈(0,1], an interval Ωε≡ [‒εl1/2, εl1/2]×[‒εl2/2, εl2/2], ε-cell Ωε(x)≡x+Ωε , x∈Π. For 
function f ̃ (x,·)∈H1(Ω), x∈ Π, we define fε̃ (x,y)≡ f ̃ (x,y/ε), fε̃ (x,·)∈H1(Ωε) ⊂H1(Ω), 
y∈Ωε(x). Functions hA(·), hA(·)∈ HOδ

2(Π, Ω), A=1,…,N, have their periodic approxima-
tions h̃A(x,·), given by h̃ε

A(x,y)≡ h̃A(x,y/ε), y∈Ωε(x). 
The fundamental assumption of the asymptotic modelling in the asymptotic decom-

position for the deflection w(x,t), 
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where y∈Ωε(x), t∈(t0, t1), functions w, U, QA (A=1,…,N) are continuous and bounded in 
Π with they derivatives. 

Using the assumption (6) and the limit passage ε→0, after some manipulations we 
obtain the equations of the asymptotic model in the form: 
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These equations have smooth, slowly-varying coefficients in the contrast to equa-
tion (2). The effect of the microstructure size is neglected. 

The last model presented in this paper is the combined asymptotic-tolerance model, 
 cf [10, 6]. 

At the beginning we apply the asymptotic modelling procedure. Because 
the macrodeflection U is the solution to equation (7)1 and the fluctuation amplitudes QA 
are determined by relation (7)2, we have the known following function 

 ).,()(),(),(0 tQhtUtw AA xxxx +=  (8) 

The next step of this modelling procedure is to apply the tolerance modelling proce-
dure. Using the known function w0(·,t) and introducing the known fluctuation shape 
functions gK(·)∈FSδ

2(Π,Ω), K=1,…,N, we assume the plate deflection as 
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 ),,()(),(),( 0 tVgtwtw KK xxxx +=  (8) 

where VK are slowly-varying unknown functions in x. 
Finally, after some manipulations, we arrive at the system of equations for the as-

ymptotic-tolerance model, which can be written in the following form: 
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This model makes it possible to analyse the effect of the microstructure size on vibra-
tions of the plates under consideration. 

5. Conclusions  

In this paper three modelling procedures are applied to the known differential equation 
of Kirchhoff-type plates with functionally graded structure. These procedures make it 
possible to replace the governing equation with non-continuous, tolerance-periodic coef-
ficients by the systems of differential equations with slowly-varying, continuous coeffi-
cients for each model. 

All three models can be used to analyse various dynamic problems of functionally 
graded plates.  

The tolerance model, which describes the effect of the microstructure size, makes it 
possible to investigate not only macrovibrations, but also microvibrations, which are 
related to the microstructure of the functionally graded plates. 

Also the governing equations of the combined asymptotic-tolerance model take into 
account the effect of the microstructure size on vibrations of these plates. 

The third presented model, the asymptotic model, neglecting the aforementioned ef-
fect, can describe only macrovibrations of the plates. 

Acknowledgments 

This contribution is supported by the National Science Centre of Poland under grant  
No. 2011/01/N/ST8/07758. 

References 

 Ł. Domagalski, J. Jędrysiak, On the elastostatics of thin periodic plates with large 1.
deflections, Meccanica, 47 (2012) 1659-1671. 

 J. Jędrysiak, Higher order vibrations of thin periodic plates, Thin-Walled Struc-2.
tures, 47 (2009) 890-901. 



104 

 J. Jędrysiak, Thermomechanics of laminates, plates and shells with functionally 3.
graded structure, Lodz, Publishing House of Lodz University of Technology 2010 
[in Polish]. 

 J. Jędrysiak, B. Michalak, On the modelling of stability problems for thin plates with 4.
functionally graded structure, Thin-Walled Structures, 49 (2011) 627-635. 

 M. Kaźmierczak, J. Jędrysiak, Tolerance modeling of vibrations of thin functionally 5.
graded plates, Thin-Walled Structures, 49 (2011) 1295-1303. 

 M. Kaźmierczak, J. Jędrysiak, A new combined asymptotic-tolerance model of vi-6.
brations of thin transversally graded plates, Engineering Structures, 46 (2013) 322-
331. 

 B. Michalak, Dynamics and stability of wavy-type plates, Lodz, Publishing House of 7.
Lodz University of Technology 2001 [in Polish]. 

 B. Michalak, Thermomechanics of solids with a certain inhomogeneous microstruc-8.
ture, Lodz, Publishing House of Lodz University of Technology 2011 [in Polish]. 

 Cz. Woźniak, B. Michalak, J. Jędrysiak, Thermomechanics of heterogeneous solids 9.
and structures, Lodz, Publishing House of Lodz University of Technology 2008. 

 Cz. Woźniak, et al. (eds.), Mathematical modeling and analysis in continuum me-10.
chanics of microstructured media, Gliwice, Publishing House of Silesian University 
of Technology 2010. 

 
 



Vibrations in Physical Systems Vol.26 (2014) 

Fluctuations of Multi-section Aboveground Pipeline Region 
Under the Influence of Moving Diagnostic Piston  

Lidiya KHARCHENKO 
Lviv Polytechnic National University 

Institute of Computer Science and Information Technology 
St. Bandery str., 12, 79013 Lviv, Ukraine 

lida.kharchenko@gmail.com 

Yevhen KHARCHENKO 
University of Warmia and Mazury in Olsztyn, The Faculty of Technical Sciences 

Oczapowskiego str., 11, 10-719 Olsztyn, Poland  
kharchen@wp.pl 

Abstract 

A mathematical model of transverse fluctuations of the pipeline straight section is considered in this article. 
Such fluctuations occur during the movement of diagnostic piston in the pipeline. The analysis is based on 
the method of generalized displacements. This method provides setting modes of links with distributed pa-
rameters according to the boundary conditions. Diagnostic piston is considered as a solid in the calculation 
model. The equations of mechanical systems motion are derived by the Lagrange scheme equations of 
the second kind. As the result, we illustrate the influence of the mechanical system parameters and the speed of 
the piston on the pipeline section deflections, bending moments and stresses in the pipe. 
 
Keywords: mechanical fluctuations, multi-section region of the pipeline, diagnostic piston 

1. Introduction 

Analysis of oscillatory phenomena in mechanical systems under the action of moving 
loads is an important problem of modern dynamics of machines and structures [1–8, 10–
12]. Its practical value is explained by the need to improve methods of lifting and 
transport systems calculation, mechanical transmission with flexible links, pipelines, 
bridges etc. Problem solving of such systems dynamics using continuum computational 
models is reduced to the integration of partial differential equations with moving bound-
ary conditions [3, 6, 10, 12]. Mathematical models in the form of integral equations are 
used in studies of fluctuations of rods and filaments of variable length [7]. 

Building of closed analytical solutions of the equations of motion for these cases is 
associated with considerable mathematical difficulties. It is only feasible for relatively 
simple systems. Links of such systems have constant elastic-inertial parameters, and the 
laws of motion of the boundary conditions are given. Analysis of dynamic processes in 
real load carrying structures appropriate to perform with the use of mechanical sampling 
units, which greatly simplifies the problem solving. Method of generalized displace-
ments [9] is quite effective. This method is based on presetting of modes of lengthy 
items. It allows to describe oscillatory processes by ordinary differential equations 
through the use of amplitude functions coefficients as generalized coordinates. This 
approach was successfully tested in the study of the dynamics of continuum-discrete 
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mechanical systems with lengthy load carrying elements. In this work, it develops on 
the example of transverse fluctuations of multi-section part of the pipeline under the 
influence of moving diagnostic piston. 

2. Mathematical model of bending fluctuations of multi-section part of the pipeline 
under the influence of moving diagnostic piston  

The mechanical system that includes multi-section part of a pipeline and intelligent mov-
ing piston is shown schematically in figure 1, where l – the total length of the part; l1, l2, 
…, lp – distance from the left edge of the area corresponding to the intermediate sup-
ports; mk, Jk, ck, νk (k = 1, 2, …, p) – mass, central moments of inertia, stiffness and vis-
cous friction coefficients of reference sites; m, J – mass and central moment of inertia of 
the diagnostic piston; v – speed of the piston, which we assume constant; xOy – coordi-
nate system, where we analyse bending fluctuation of the pipeline; xm – coordinate of the 
mass center of the diagnostic piston. Density and modulus of elasticity of pipe material 
are designated as ρ and E; area and the axial moment of inertia of the cross-section tube 
as A and Iz . 
 

 

Figure 1. Diagram of the above-ground sections of the pipeline 
with a moving diagnostic piston 

The function, that describes the curved axis of the pipeline section, is presented in 
the form 

 ∑
=

ψ⋅=
n

i
ii xtYtxy

1

)()(),( ,  (1) 

where t – time; y(x,t) – deflection of the pipeline; ψi(x) – shapes of oscillations, which 
must be chosen so that the boundary conditions are fulfilled at the ends of sections; Yi(t) 
– amplitude coefficients; n – number of degrees of mechanical system freedom, which is 
equal to the number of discounted modes of pipeline. 

We set depending ψi(x) as its own form of transverse fluctuation of rod with pinched 
ends, 
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where 

 xkxkx iii chcos)(1 −=ψ ;    xkxkx iii shsin)(2 −=ψ . (3) 

Results of kil, which are calculated for lower ten own forms: 
 

i 1 2 3 4 5 6 7 8 9 10 
kil 4,730 7,853 10,996 14,137 17,279 20,420 23,562 26,704 29,846 32,989 

 

Taking the generalized coordinate values Yi(t) (i = 1, 2, …, n), we apply the Lagrange 
equations of the second kind to describe the motion of a mechanical system, 
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where Т and П – kinetic and potential energies; qj – generalized coordinate; Ф – Ray-
leigh function; Qj – non-conservative generalized force. 

The kinetic energy is written in the form of 
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The potential energy of pipe section deformation is expressed as 
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Rayleigh function, which is used to calculate the energy dissipation of fluctuations 
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where ν – coefficient of hysteresis material deviation from Hooke's law. 
Considering the relationships (1), we summarize the expressions (5) – (7) to the fol-

lowing form  
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We transform relationships (8) to a suitable form for the equations of mechanical sys-
tem motion, 
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where 
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Differentiating the expression (9) and substituting the obtained results to the equali-
ty (4) 
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where Y&  – matrix-column of generalized coordinates, 
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Q – matrix-column of generalized forces, 

 [ ]nQQQQ ,...,,col 21= . 

To determine the generalized forces of the system, we write the vertical movement of 
the gravity center of the diagnostic piston as 
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Virtual work of weight force of piston follows the relationship 
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where δy(xm, t) – virtual displacement, which is found with considering (12), 
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moreover, δYi (i = 1, 2, …, n) – variations of the generalized coordinates. 
With taking into account (13), (14) write the virtual work as 
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As follows from the relationship (15), generalized forces are defined by the depend-
encies 

 )( mii xmgQ ψ= . (16) 

Thus, the non-stationary bending vibration of the aboveground pipeline section under 
the moving diagnostic piston are described by the differential equations (11), solution of 
which perform with consideration the expressions of the generalized forces (16) and 
the corresponding initial conditions. If at t = 0 the mechanical system is at resting state, 
then the value of the generalized coordinates and their time derivative are equal to zero, 
i.e., 

 0)0( =iY ;    0)0()0( == ii YV &    (i=1, 2, …, n). (17) 

For the application of the widespread software for solving this task, transform 
the system of differential equations (11) to the normal form of the Cauchy: 
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where X, D(t, x) – matrix-column, 
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Thus, the analysis of dynamic phenomena in the mechanical system reduces to 
the solving the Cauchy problem for a system of 2n differential equations (18) with taking 
into account the dependencies for determination the modes of the pipeline section (2), 
(3), the generalized forces (16) and the initial conditions (17). After finding the general-
ized coordinates Yi(t) (i = 1, 2, …, n) determine pipeline section deflection by the formu-
la (1) and bending moments – by the ratio 
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which follows directly from the theory of technical bending. 
Taking into account dependencies (19), the maximum bending stress in the cross sec-

tion of the pipeline is calculated as 

 ∑
=

ψ ′′⋅==σ
n

i
ii

z

xtY
Ed

W

txM
tx

1

)()(
2

),(
),( , 

where Wz and d – the resistance moment and the outer diameter of tube cross-section. 
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3. The calculation results of the dynamic processes and their analysis 

The dynamic phenomenas in the multi-section straight pipeline area with a length of 47 
m, an outer diameter of 529 mm and a wall thickness of 10 mm during the passage of 
the diagnostic piston with mass of 1200 kg at a speed of 5 m/s illustrate the graphical 
dependencies on the Fig. 2. 
 

 
 

 
Figure 2. The dependencies of deflections (a) and bending moments (b) from 

the longitudinal coordinates of the pipeline section. Curves 1–9 correspond to the time 
points: 0,94 s; 1,88 s; 2,82 s; 3,76 s; 4,7 s; 5,64 s; 6,58 s; 7,52 s; 8,46 s 

During the calculation accept that the ends of the pipeline sections are strangulated, 
in addition, the pipe is based on five intermediate pillars with coordinates l1 = 7.833 m; l2 
= 15.667 m; l3 = 23.500 m; l4 = 31.333 m; l5 = 39.167 m. The supporting nodes have 
equal masses mi = 200 kg, moments of inertia Ji = 12 kg·m2, stiffness ci = 2·105 N/m and 
the friction coefficients νi = 2·103 Ns/m, where і = 1, 2, ..., 5. Curves 1, 2, ..., 9 in Fig. 2 
correspond to the time points when the diagnostic piston has passed the way 0,1 l; 0,2 l; 
...; 0,9 l. 

The greatest deflection value of 18.613 mm has the point on the axis of the pipe with 
coordinate x = 23.400 m at the time moment t = 4,675 s. Significant bending moments 
that may affect on the strength of the pipeline, arise as in outer cross sections of the area, 
as well as in cross sections located in the middle of the area. The largest absolute value 
of the bending moment was 43.814 kN·m and appeared in cross section with coordinate 
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x = 47 m at the time t = 8,016 s. The maximum bending stress reached value of 21.102 
MPa. Note that in the absence of intermediate pillars maximum deflection is 55.944 mm, 
the maximum absolute value of the bending moment – 83.343 kN·m, the maximum 
stress – 40.139 MPa. Thus, the installation of the intermediate pillars contributes signifi-
cantly on stress and strain reducing of the aboveground sections of the pipelines. 

The built mathematical model of the bending vibration of the multi-section construc-
tions makes it possible to choose required number of the intermediate pillars and rational 
values of their stiffness during the design of the aboveground pipeline sections for ensur-
ing the strength of the pipe and supporting constructions. In the operation of the built 
pipelines proposed calculation algorithm can be used to determine the permissible speed 
of the diagnostic piston.  

References 

 C.I. Bajer and B. Dyniewicz, Space-time approach to numericalanalysis of a string 1.
wich a moving mass. Int. J. Numer. Meth. Engng., 76(10) (2008) 1528-1543. 

 B. Dyniewicz and C.I. Bajer, New featureof the solution of a Timoshenko beam 2.
carrying the moving mass particle. Arch. Mech., 62(5) (2010) 327-341. 

 L. Fryba, Vibrations of solids and structures under moving loads. Thomas Telford 3.
House, 1999. 

 Jia Jang Wu, Study on the inertia effect of helical spring on the absorber on sup-4.
pressing the dynamic responses of a beam subjected to a moving load. J. os Sound 
and Vibration, 297 (2006) 981-999. 

 В.В. Болотин, Задача о колебаниях мостов под действием подвижной 5.
нагрузки. Механика и машиностроение, № 4 (1961) 109-115. 

 А.И. Весницкий. Волны в системах с движущимися границами и нагрузками. 6.
М., ФИЗМАТГИЗ, 2001, 320 с. 

 О.А. Горошко, Г.Н. Савин, Введение в механику деформируемых одномерных 7.
тел переменной длины. К., Наукова думка, 1971, 224 с. 

 И.И. Иванченко, Метод расчета на подвижную нагрузку стержневых систем, 8.
моделирующих мосты. Изв. АН РФ, Механика твердого тела. №4 (2001) 151-165. 

 Р. Клаф, Дж Пензиен, Динамика сооружений. М., Стройиздат, 1979, 320 с. 9.
 А. Я. Коган, Динамика пути и его взаимодействие с подвижным составом. 10.

М., Транспорт, 1997, 326 с. 
 С.С. Кохманюк,  Е. Г. Янютин,  Л. Г. Романенко, Колебания деформируемых 11.

систем при импульсивных и подвижных нагрузках. К., Наукова думка, 1980, 231 с. 
 С.П. Тимошенко, Д. Х. Янг, У. Уивер, Колебания в инженерном деле. М., 12.

Машиностроение, 1985, 472 с. 
 А.П. Филиппов, Колебания деформируемых систем. М., Машиностроение, 1970, 13.

736 с. 
 
 



Vibrations in Physical Systems Vol.26 (2014) 

Free Vibration of Structures by Radial Basis Function –                          
Pseudospectral Method   

Artur KROWIAK 
Cracow University of Technology, Institute of Computing Science 

Al. Jana Pawła II 37, 31-864 Kraków, Poland 
krowiak@mech.pk.edu.pl 

Abstract 

The paper deals with the use of the radial basis function-pseudospectral method in vibration analysis of two-
dimensional mechanical structures. The method combines meshless features of radial basis function (RBF) 
with efficiency and simplicity of the pseudospectral method. In present work the main emphasis is laid on 
appropriate assumption of the interpolant for the sought function due to the number of the boundary conditions 
in analysed problem. This interpolation function enables to obtain the weighting coefficients for derivative 
approximation in a governing equation. The method is applied to free vibration analysis of arbitrarily shaped 
membrane and plate.     
 
Keywords: meshless methods, radial basis function, pseudospectral methods  

1. Introduction  

Due to some problems encountered during the application of the mesh discretization 
numerical techniques, in recent years, some methods that discretize the domain with 
scattered nodes are strongly developed. Many formulations of these so-called meshless 
techniques have been applied to solve problems from various disciplines of science. 
An interesting overview can be found in [1,2]. Some formulations of these methods take 
advantage of radial basis functions (RBF) [3] to approximate the sought solution of 
the problem analysed. Since the work of Hardy [4], it is well-known that these types of 
functions are very useful in scattered data approximation.   

An interesting example of the mentioned methods is the approach that combines RBF 
approximation with pseudospectral method [5,6] (RBF-PS). In this approach, derivatives 
in the governing equation are approximated by a linear weighted sum of unknown func-
tion values from all over domain   

 ( )

1

( )

i

r N
r

ij jp q
j

u
a u

x y ==

∂
=

∂ ∂
∑

x x

x
 (1) 

where ( )r
ija  are the weighting coefficients for the rth order derivative and N denotes 

the number of nodes x=(x, y). With these coefficients and by the use of collocation tech-
nique, the governing equation and boundary conditions are discretized reducing the 
problem to the set of algebraic equations. Since the method involves all nodal function 
values to approximate a derivative at a node, the method leads to relatively fast conver-
gence, what has been proved by the examples [5].   
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2. RBF-PS for lower order equations 

To obtain the weighting coefficients one has to start from the approximation of 
the unknown function u by the use of RBF 

 ( )
1

( )
N

j j
j

u
=

= α ϕ −∑x x ξ  (2) 

where αj are the interpolation coefficients and ( )jϕ −x ξ denote the radial function.  

There are different types of RBS [3,5], but their common feature is the dependence on 

the distance between a collocation point x and the point jξ called as a center , n
j ∈x ξ � . 

In this method, the centers are also considered as the collocation points. 
From the interpolation problem one can express the interpolation coefficients in 

terms of function values, what can be put in the following matrix form  

 1−=α Φ u  (3) 

where α denotes the vector of interpolation coefficients, u is the vector that contains 
the function values at the nodes and the entries of the interpolation matrix has the form: 

( ) , , 1,...,
j

i j i i j N
=

= ϕ − =
ξ x

Φ x ξ .  

Computing appropriate derivative of the interpolant (2) at each node of the domain 
and introducing the expression (3) one gets the weighting coefficients for the rth order 
derivative approximation 

 ( ) ( ) 1r r −=u Φ Φ u  (4) 

where the entries of matrix ( )rΦ are as follows: ( ) ( )

j

i

r
r

i j p qx y =
=

∂ ϕ −
=

∂ ∂ ξ x
x x

x ξ
Φ  

Once the weighting coefficients ( ) 1r −=A Φ Φ are determined, the differential equation 
can be discretized.  

In the method, the discretization of the mathematical model of a problem is carried 
out by the collocation technique. Therefore the approach presented can be directly ap-
plied to lower order equations that possess one boundary condition at the edge.   

In the present work the method is used to solve eigenvalue problem for pre-stretched 
uniform membrane, for which the governing equation and boundary condition have 
the form  

 2 , 0 forW W W∆ = −Λ = ∈∂Γx  (5) 

where ∆ is Laplacian operator, W is the mode of vibration and TΛ = ω ρ is the wave-

number (ω – circular frequency, ρ – mass per unit length, T – uniform tension per unit 
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length). The membrane of the shape presented in Fig.1 is analysed in the work. Irregular-
ly distributed nodes are applied to discretize the domain – an example of the node distri-
bution is shown in Fig. 1.  
 

 

Figure 1. The membrane analysed in the work with an example of the node distribution 

Using multiquadrics RBF, the weighting coefficients, described in general way by 
Eq. (4), for Laplacian operator have been determined. With these coefficients Eq. (5) is 
reduced to standard eigenvalue problem of the form   

 2= −ΛAW W  (6) 

where vector W contains the nodal function values and A is the matrix reflecting 
the discrete form of the Laplacian operator.   

The wavenumbers obtained from (6) are presented in Tab. 1 and some modes of vi-
bration are shown in Fig. 2. 

Table 1. Wavenumbers of the membrane for various numbers of nodes assumed. 

    Λ1 Λ2 Λ3 Λ4 Λ5 

N = 155 2.7093 4.2283 4.3580 5.5679 5.9328 

N = 221 2.7092 4.2263 4.3577 5.5616 5.9340 

N = 314 2.7099 4.2292 4.3579 5.5676 5.9337 

N = 390 2.7096 4.2278 4.3579 5.5648 5.9336 

Reference results [9] 2.7097 4.2279 4.3579 5.5649 5.9336 

 
The results presented in Tab. 1 are in great agreement with the reference values. 

The method indicates a proper convergence trend.    
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Figure 2. First four modes of vibration of the membrane 

3. RBF-PS for higher order equations 

For higher order equation, where more than one boundary condition is defined at 
an edge, one should write more than one discrete equation for each boundary node. It 
leads to overdetermined system of algebraic equations. Although this system can be 
solved by least squares technique this approach does not reflect the main idea of 
the method based on the interpolating function.        

To make the method be conveniently applied for higher order equations, one can ex-
tend the interpolation formula (2) introducing the additional degrees of freedom. These 
quantities should correspond to differential operators contained in boundary conditions. 
The approach can be viewed as a Hermite interpolation problem defined for RBF and in 
the case of two boundary conditions can be generally written as  

 ( ) ( ) ( )1 2
1 1 1

( )
I B B

I B B
j j j

N N N

j j j
j j j

u B B
= = =

= = =

   = α ϕ − + β ϕ − + γ ϕ −   ∑ ∑ ∑ξ ξ
ξ x ξ x ξ x

x x ξ x ξ x ξ  (7) 

where NI and NB denote the numbers of interior ( I
ix ) and boundary ( B

ix ) nodes, respec-

tively, 1Bξ and 2Bξ are differential operators that act on the radial function treated as 

a function of ξξξξ variable. 
Following the same procedure as previous one can solve interpolation problem (7) 

and express the interpolation coefficients αj, βj, γj in terms of function values as well as 
the values of the derivatives of the function defined at boundaries. Then, by computing 
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appropriate derivative of the interpolant (7) at each interior node of the domain and in-
troducing the expression for interpolation coefficients one obtains 

 ( ) ( ) 1r r −=u Φ Φ u  (8) 

where the objects from Eq. (8) have the forms 

1 2

1 1 1 1 11 2 1 2
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u uΦ Φ Φ

In the above expressions Lx is the differential operator corresponding to the rth order 

derivative contained in governing equation, 1Bx and 2Bx  denote the same differential 

operators as 1Bξ and 2Bξ , but acting on the radial function viewed as a function of x varia-

ble. The details of the approach as well as the entries of the objects presented can be 
found in [7].    

Since vector u  in Eq. (8) contains the values of the derivatives defined at boundary 
nodes, all boundary conditions can be directly involved during discretization process.  

The approach presented has been used in the work to solve the free vibration problem 
for thin, isotropic, plate of the shape presented in Fig. 3. Governing equation for this 
problem is as follows 

 2 2w w∆ = Ω  (9) 

where w denotes the form of vibration and Ω is the free vibration parameter related to 

free vibration frequency by the formula 2a h Dω ρΩ =  (ρ – density of the plate mate-

rial, D –  plate stiffness, h – plate thickness, a – characteristic plate dimension). 
 

 

Figure 3. Triangular plate with corner cutout with an example of node distribution 
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In present paper, the plates with combination of simply supported and clamped 
boundary conditions are considered  

 0, 0 forw B w= = ∂Γx  (10) 

For simply supported edge (S) differential operator Bx has the form 
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2 2 2
2 2 2 2

2 2
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x yx y
θ ν θ θ ν θ ν θ θ
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= + + + + −
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and for the clamped edge (C) Bx is as follows 

 
cos( ) sin( )B

x y
θ θ

∂ ∂
= +
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x

  

where θ is the angle between the normal to the plate boundary and the x-axis. 
Adapting the approach presented in this section one can reduce Eq. (9) to algebraic 

problem of the following form 

 2= ΩAw w  (11) 

where vector w contains the nodal function values at the inner nodes and the values of 
the function as well as the values of derivatives at boundary nodes and A is the matrix 
reflecting the discrete form of the biharmonic operator. 

Taking into account that only function values at interior nodes can have non zero 
values, appropriate columns of the matrix A has to be deleted and then standard, algebra-
ic eigenvalue problem can be solved.  

The eigenvalues obtained for various configurations of boundary conditions are pre-
sented in the Tab. 2 and some chosen form of vibration are shown in Fig. 4.  

Table 2. Results for the triangular plate with corner cutout 

 Ω1 Ω2 Ω3 Ω4 Ω5 

SSSS 

N =235, NI =175  22.262 45.692 58.994 77.843 96.239 

N =323, NI =256  23.198 47.163 60.624 79.699 98.017 

Reference results  22.365 47.187 58.968 80.812 97.498 

CCCC 

N =235, NI =175 41.655 71.250 87.967 110.389 130.327 

N =323, NI =256 41.786 71.256 87.915 110.685 130.421 

Reference results  41.787 71.256 87.896 110.688 130.415 

SCSC 

N =323, NI =256 28.761 55.707 70.089 89.372 113.577 

Reference results 28.869 57.071 69.634 91.974 113.957 
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Figure 4. First four modes of vibration of triangular plate with corner cutout 

The reference results presented in Tab. 2 have been obtained by the differential quad-
rature method combined with coordinate transformation. The details of this approach can 
be found in [8]. 

The results presented in Tab. 2 show great agreement with reference values. Regard-
less of the node distribution, the eigenvalues computed are very close to reference results 
for each configuration of boundary conditions assumed in the work.  

4. Conclusions 

In the paper the RBF-PS method is applied to free vibration analysis of two-dimensional 
structures. The basic approach of this method can be easily used for lower order equa-
tions, while an extension of this method can be conveniently applied for higher order 
equations that possess more than one boundary conditions at an edge. Due to the use of 
RBF, the discretization of the domain can be done by irregularly (randomly) distributed 
nodes. This feature facilitates the analysis of arbitrarily shaped structures. To show 
the usefulness of the method, the free vibration analysis for irregularly shaped membrane 
and plate has been carried out. The results indicate that the method has a potential to 
become an effective, meshless, numerical technique for wide range of problems.   
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Abstract  

The paper presents the numerical analysis of transmission loss and pressure drop of acoustic helicoidal resona-
tors with constant pitch to cylindrical duct diameter ratio and different number of helicoidal turns n. The duct-
ed system consists of a straight cylindrical duct of constant diameter  d=0.125m. The ratio of helicoidal pitch s 
to cylindrical duct diameter d equals s/d=1,976. Other geometrical relationships of helicoidal resonator, as 
a mandrel diameter dm to duct diameter ratio dm/d=0.024 and thickness g of helicoidal profile g/d=0.0024, were 
constant as well. The investigated range of numbers of helicoidal turns n was analyzed in the range from 0 to 
2.0 for transmission loss parameter and from 0 to 1.0 for pressure drop. The values of normal inflow velocity v 
[m/s] equals 1, 5, 10, 15 and 20. 
 
Keywords: helicoidal resonator, transmission loss, pressure drop, numerical analysis  

1. Introduction  

Helicoidal resonator is the newly patented invention [1] in the domain of passive silenc-
ers. It is an acoustic filter that attenuates sounds inside cylindrical duct due to its reso-
nant properties. The sound attenuation is realized by the acoustic resonance inside heli-
coidal profile. The geometrical relationships between helicoidal profile, mandrel and 
duct diameter determine the acoustic properties of helicoidal resonators. Also its main 
property is the sound attenuation, and the next are flow properties, as the usually most 
important pressure drop. 

The first predicted acoustic parameter of helicoidal resonators like twisted helicoidal 
screws with different pitches and turns inside 1m long cylindrical duct was a Noise Re-
duction (NR) in [2]. This parameter showed the sound pressure level difference between 
inlet and outlet of duct with screws and the conclusions underlined that the increase of 
the number of helicoidal turns results in bigger NR in the low- and mid-frequencies. But 
there were no any informations about band-stop filtering of noise by the helicoid inside 
duct. Thus, the Transmission Loss (TL) parameter was firstly used for analysis of acous-
tic attenuation performance of a round silencer with the helicoidal resonator at the inlet 
in [3]. The increase of TL for the range of helicoid pitch s to cylindrical duct diameter d, 
ratio s/d, from 0.4 to 8.0 were presented. Also the specific sound pressure levels (SPL) 
distribution inside the silencing system with selected helicoidal resonator for the highest 
value of the TL increase was showed. The fully compatible comparison of numerical and 
experimental SPL distributions for the same type and dimensions of helicoidal resonator 
was presented in [4]. 



122 

Already well known Band Stop Filter (BSF) is the Helmholtz Resonator, and it can 
be substituted by the Helicoidal Resonator, as it was presented in [5]. There was intro-
duced, that for some cases the helicoidal resonator can be much more efficient solution, 
when considering the sound attenuation inside duct, than the Helmholtz resonator - espe-
cially in large diameter cylindrical ducts. The next important step on the recognition of 
helicoidal resonators properties was the comparison of numerical and experimental 
acoustic attenuation performances. The simple experimental set-up was prepared to 
measure Insertion Loss (IL) parameter in [6]. Another time almost full compliance was 
observed, "almost" due to not so strong resonances in reality. But the range of frequen-
cies of attenuated sounds and so important resonance frequencies were matched. 
The lack of mathematical descriptions of helicoidal resonators acoustical properties was 
partially filled by the presented in [7] its substitutional transmittance function. But it is 
correct for Band Stop Filters with symmetric distribution of attenuation in the frequency 
domain, also for selected types of helicoidal resonators. 

The second importand parameter of helicoidal resonators - pressure drop - was raised 
in the paper [8], about comparison of this parameter obtained in aeroacoustical module 
and turbulent flow in computational fluid dynamics (CFD) module in the same numeri-
cal environment. It showed that the difference between aeroacoustics and CFD turbulent 
flow is bigger when the mean air volume velocity grew up. The reason is the weak for-
mulation of flow equations for aeroacoustics. But the other way, the aeroacoustic module 
was used to make some researches on the influence of the air volume velocity on 
the acoustic attenuation performance of selected helicoidal resonators presented in [9]. 
The results showed that the greater air volume velocity the lower resonance frequencies 
of the helicoidal resonators. But, to make the exact conclusions in this field, the experi-
mental researches should be undertaken.   

The multi-resonant helicoidal resonators as a passive noise control device in ducted 
systems was presented in [10]. Conducted research presented helicoidal resonators with 
different ratio s/d in relation to the existence of a multi resonances. The real industrial 
application of a large multi-resonant helicoidal resonator was presented in [11].  

The other side of scientific considerations under helicoidal resonators was presented 
in [12], when studying the acoustic-structure interaction of selected helicoidal resonator 
with flexible helicoidal profile. There were considered properties of metals and non-
metals, especially rubber. Final conclusion: applying the elastic material on the helicoi-
dal profile could decrease the acoustic resonance - in the worst case amplify the sound.  

The study of pressure drop depending on the air flow rate in duct of selected helicoi-
dal resonators with constant ratio s/d=1,976 was presented in [13]. The experimental set-
up for testing silencers was used to measure pressure drop of three helicoidal resonators 
with numbers of turns n that equaled 0.671, 0.695 and 1.0. Also three total pressure drop 
coefficients ζ were determined for each resonators, that equal 4.3, 4.4 and 4.9, respec-
tively. Thus, the consequent conclusion that the more helicoidal turns the more pressure 
drop is induced. 

This work presents the numerical analysis of transmission loss characteristics and 
pressure drop for a range of helicoidal resonators with constant s/d ratio that equals 
1,976, but for different numbers of helicoidal turns n. As the acoustic attenuation proper-
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ties are the most important part of helicoidal resonators considerations, the pressure drop 
is the consequence and it must be taken into account during the functional analysis of 
ducted system. Firstly are characterized acoustical and CFD models, and then are pre-
sented the results of TL [dB] for the range of n from 0 to 2.0 and pressure drop ∆p [Pa] 
for the range of n from 0 to 1.0. The main objective of this paper is to show the proper 
way of selection of acoustical and flow properties of helicoidal resonators with ratio 
s/d=1,976, as a continuation of previous research work [4-9, 12, 13]. 

2. Description of investigated models 

In this chapter are characterized investigated acoustic (2.1) and turbulent flow (2.2) 
models of helicoidal resonators inside a cylindrical duct. In both cases were analyzed 
three dimensional (3D) models of cylindrical duct with helicoidal resonator in the mid-
dle, as presented in Figure 1. 
 

 

Figure 1. Investigated cylindrical duct with helicoidal resonator 

The ducted system consists of a straight cylindrical duct of constant diameter  
d=0.125m. The ratio of helicoidal pitch s to cylindrical duct diameter d equals s/d=1,976. 
Other geometrical relationships of helicoidal resonator, as a mandrel diameter dm to duct 
diameter ratio dm/d=0.024 and thickness g of helicoidal profile g/d=0.0024, were con-
stant as well. The length of the cylindrical duct at the inlet and outlet sides of helicoidal 
resonators equaled 1m. 

2.1. Acoustical model 

The investigated acoustical model has the same parameters as in previous, well de-
scribed studies under helicoidal resonators [2-7]. It was used the finite element method 
in Comsol Multiphysics-Acoustic Module numerical environment [14]. The investigated 
range of numbers of helicoidal turns n was analyzed in the range from 0 to 2.0. The 
transmission loss (TL) [15] was computed as the acoustic attenuation performance pa-
rameter and the sound propagation in air of temperature 20ºC without flow was consid-
ered. The following boundary conditions were established: 

• hard walls of all elements of helicoidal resonators (perfect reflection) and cylin-
drical duct,  

• plane waves radiation - inlet (incident pressure p=1Pa) and outlet surfaces of 
the cylindrical duct - that satisfies the anechoic terminations to calculate TL. 

The free tetrahedral mesh [14] was created automatically with satisfying the rule of 
minimum 5 finite elements per sound wave length [16] for maximum frequency- here it 

helicoidal resonator                             cylindrical duct 

inlet outlet 
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is fmax=2000Hz at 20 Celsius degrees. Also the speed of sound in air cs=343m/s. Maxi-
mum finite element size equals he=0,2(cs/fmax). Example mesh is presented in Figure 2. 

 

 
 

Figure 2. Example view on free tetrahedral mesh of investigated acoustic system 

2.2. CFD turbulent flow model 

The CFD turbulent flow model was analyzed as the single-phase flow k-ω turbulence 
RANS model [14, 17, 18] with compressible flow (Mach number less than 0,3). 
The main feature is fluid properties, which adds the Navier-Stokes equations and 
the transport equations for the turbulent kinetic energy k and the specific dissipation ω, 
and provides an interface for defining the fluid material and its properties [14]. The fluid 
properties are: temperature T=20ºC, reference atmospheric pressure pa=1atm, density 
and dynamic viscosity of air were calculated automatically from COMSOL material 
library [14]. The boundary conditions were described as follows: 

• wall slip - there are no viscous effects at the slip wall at all surfaces of cylindrical 
duct and helicoidal resonators, 

• normal inflow velocity at the inlet in the air flow velocities 1m/s, 5m/s, 10m/s ,15 
m/s and 20m/s, 

• no viscous stress at the outlet, pressure equaled 0Pa. 

Finite element mesh was automatically generated as a free tetrahedral and controlled 
by physics-fluid dynamics. The stationary solver was used. The investigated range of 
numbers of helicoidal turns n was analyzed in the range from 0 to 1.0 with the step 
of 0.1. 

3. Results 

This chapter contains the results of solved 3D pressure acoustics and fluid dynamics 
problems for investigated models of helicoidal resonators with constant ratio s/d=1,976 
and different numbers of helicoidal turns n. Due to the acoustic attenuation performance 
is the most important parameter of helicoidal resonators the TL characteristics as a sur-
face plot are contained in subchapter 3.1. On this basis were performed computations for 
fluid dynamics of helicoidal resonators with numbers of helicoidal turns n from 0 to 1.0 
as it is presented in subchapter 3.2.  



 Vibrations in Physical Systems Vol.26 (2014) 125 

3.1. Transmission Loss  

The surface plot of TL of helicoidal resonators with ratio s/d=1,976 and the range of 
numbers of helicoidal turns n from 0 to 2.0 for the frequency range from 10Hz to 
2000Hz with the calculation step of 10Hz, are presented in Figure 3. 
 

 

Figure 3. Surface plot of TL [dB] of helicoidal resonators with ratio s/d=1,976 
and the range of numbers of helicoidal turns n from 0 to 2.0 

As it can be observed from Figure 3 the specific band attenuation of sounds of heli-
coidal resonators with ratio s/d=1,976 exist almost for all investigated cases. But 
the most interesting part of TLs starts from about n=0.4 and ends for n=1.0. Globally 
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the attenuation range of TL=1dB starts from about 1000Hz for n=0.55, and it ends on 
about 1580Hz for few numbers of helicoidal turns n. 

3.2. CFD turbulent flow 

The pressure drop ∆p [Pa], as a difference between pressure at the inlet and outlet of 
the duct, of helicoidal resonators with ratio s/d=1,976 and the range of numbers of heli-
coidal turns n from 0 to 1.0 with the step of 0.1 are presented in Figure 4. 
 

 

Figure 4. Pressure drop ∆p [Pa] of helicoidal resonators with ratio s/d=1,976 and the 
range of numbers of helicoidal turns n from 0 to 1.0 

As it can be observed from Figure 4, the pressure drop increases when the mean air 
volume velocity grows up for all investigated cases. Although the biggest and nearly 
linear increase of pressure drop takes place for the numbers of helicoidal turns n from 
about 0.1 to about 0.6. From 0.6 to 1.0 the pressure drop increases nonlinearly. 

4. Conclusions  

The numerically calculated transmission loss and pressure drops of helicoidal resonators 
with constant ratio s/d=1.976 and different numbers of helicoidal turns n were presented. 

The range of helicoidal turns n from 0 to 2.0 was investigated for acoustic modelling. 
The specific band attenuation of sounds of helicoidal resonators with ratio s/d=1,976 
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exist almost for all investigated cases. But the most interesting part of TLs starts from 
about n=0.4 and ends for about n=1.0. Globally the attenuation range of TL=1dB starts 
from about 1000Hz for n=0.55, and it ends on about 1580Hz for few numbers of helicoi-
dal turns n. Also for investigated models the frequency range of sound attenuation equals 
nearly 580Hz. 

On the basis of most interesting values of acoustic attenuation performance parame-
ter TL, the range of helicoidal turns n from 0 to 1.0 was investigated for computational 
fluid dynamics with turbulent flow. The pressure drop increases when the mean air vol-
ume velocity grows up for all investigated cases. Although the biggest and nearly linear 
increase of pressure drop takes place for the numbers of helicoidal turns n from about 0.1 
to about 0.6. From 0.6 to 1.0 the pressure drop increases nonlinearly. 
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Abstract 

In this paper, the design sensitivity of the frequency response function and amplitudes of the steady-state 
vibration of planar frames with viscoelastic (VE) dampers mounted on them is considered. The dampers are 
modeled using a five-parameter rheological model with fractional derivatives. The design sentisivity with 
respect to change of damper parameter is analyzed in detail. The direct method is used to determine the first 
and the second order sensitivities. Moreover, the results of typical calculations are presented and discussed. 
 
Keywords: Fractional models of VE dampers, Dynamic characteristics, Design sensitivity 

1. Introduction 

The design sensitivity analysis of structures and mechanical systems is a very important 
issue, which is helpful in solving many engineering problems, such as: optimization of 
structures, parametric identification problems, structural health monitoring problems, 
model updating problems [1], structural reliability problems, damage detection [2] and 
others. In the recent years, studies on the analysis of sensitivity for systems with viscoe-
lastic dampers have been started e.g., the eigensensitivity analysis of viscoelastic (VE) 
structures is presented in [3].  

The frequency response function is one of the most important tools of evaluation of 
the dynamic response of structure. Its design sensitivity analysis has been studied by 
several authors. For example, the direct differentiation method is presented in paper [4] 
and both the direct differentiation method and the adjoint variable method is described in 
[5,6].  

In this paper, the direct differentiation method for the design sensitivity analysis of 
structure with viscoelastic dampers modeled by fraction derivatives is presented. This 
work is an extension of the previous paper [7], which dealt with the sensitivity analysis 
of eigenvalues and eigenvectors of structure with fractional dampers. 

Firstly, in this paper, the model of damper and the equation of motion of a structure 
with dampers described by fractional derivatives are presented. Then the method of 
calculation of the frequency response functions (FRF) and amplitudes of steady-state 
vibration is presented. Next, the design sensitivity analysis is shown. Finally, the two-
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storey planar frame is considered. In the example, the sensitivity of FRF with respect to 
change of parameter of damper is calculated and the correctness of the presented method 
is proved. At the end, the conclusions are presented. 

2. Description of structures with VE dampers 

Many rheological models of dampers have been proposed in the literature. The most 
popular among them are the two classic ones: the Maxwell and the Kelvin models. In 
order to better describe the damper, so-called fractional models are often used. They 
describe the rheological properties of dampers more efficiently than the classic ones [8]. 
A so-called the springpot element, shown as a small diamond in Figure 1, is described by 
the two constants c and α, where α denotes the order of the fractional derivative. 

In this paper, the fractional model of a damper is used (see Figure 1). The damper is 
described by five parameters: stiffnesses k0 and k1, springpot factors c0 and c1, and 
the fractional parameter α (0 < α < 1). As special cases, it contains a number of specific 
models, e.g., the three-parameter Maxwell and Kelvin models, the four-parameter frac-
tional Maxwell model. 

 
 
 
 
 
 

Figure 1. A model of the damper 

The force in the considered model of damper is written as: 

 )()()( 10 tututu +=  (1) 

where u0(t) is the force in the fractional Kelvin element and u1(t) is the force in the frac-
tional Maxwell element.  

Evaluation equations for the Kelvin model can be written as follows: 

 )()()( 000 tqDctqktu t ∆+∆= α  (2) 

where: ( ) jki qqtq −=∆ , qk and qj  denote the nodal displacements of the considered 

model of damper. Dt
α  denotes the Riemann-Liouville fractional derivative of the order α 

with respect to time t [9,10]. For the Kelvin model, the evaluation equations could be 
described in the following way: 

 ( ) ( ) ( )tqDctuD
k

c
tu tt ∆=+ αα

11
1

1
1  (3) 

After taking the Laplace transform, Equation (1) can be written in the form: 

 )()()( 10 sususu += , (4) 

and Equations (2) and (3) take the following form: 

k1 c1,α 

c0,α 

k0 

qk qj 

u u 
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 )()()( 000 sqscsqksu ∆∆∆∆∆∆∆∆ α+=  (5) 

 )()()( 1111 sqscsussu ∆∆∆∆αατ =+  (6) 

where the quantities with the bar denote the Laplace transform, i.e.: [ ])()( tqLsq ∆=∆ , 

[ ])()( 00 tuLsu = ., [ ])()( 11 tuLsu = , [ ])()( tuDLsus t
αα = , and s  is the Laplace variable.  

Finally: 

 )()()( sqsGsu ∆=  (7) 

where: 

 α
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1

1
100

1
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+
++=  ,        000 / kc=τ ,       111 / kc=τ  (8) 

The classic Kelvin and Maxwell models are obtained by introducing 1=α . 
The equation of motion of structures with VE dampers can be written in the follow-

ing form: 

 )()()()()( ttttt sss fpqKqCqM +=++ &&&  (9) 

where: Ms, Cs and Ks, denote the mass, the damping and the stiffness matrix of structure, 
respectively. The structure is modeled as a shear frame with mass lumped at the storey 
level. Moreover, q(t) = [q1 ... qn]

T is the vector of displacements of the structure, 
p(t) = [p1 ... pn]

T  is the vector of excitation forces and f(t) = [f1 ... fn]
T  is the vector of the 

interaction forces between the frame and the dampers (see Figure 2). 
Vector f(t)  is a sum of the vectors fi(t) . Each of them is formed if only the damper i 

is located on the frame, i.e.: 

 ∑
=

=
m

i
i tt

1

)()( ff . (10) 

 

 

 

 

Figure 2. Diagram of frame with VE dampers 

For the damper located between the floors j and j + 1 (see Fig. 2), the following may 
be written: 

 ( )tut iii ef =)( ,     [ ]Tjji ee 0...11...0 1 −=+== +e . (11) 

After taking the Laplace transform, the equation of motion could be written as: 

 )()()( )( 2 sssss sss fpqKCM +=++  (12)  
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where: [ ])()( tLs qq = , [ ])()( tLs pp = , [ ])()( tLs ff = .  

For m dampers, the following equation is obtained: 

 )()(
1

sus i

m

i
i∑

=

= ef  (13) 

Substituting Equation (7) written for damper i to Equation (13) leads to: 

 )( )()(
1

ssGs i

m

i
i qLf ∑

=

−= , (14) 

where: T
iii eeL = . After substituting Equation (14) into (12) the equation of motion of 

structure with VE dampers could be written as: 

 )()()( sss pqD =  (15) 

where: 

 ∑
=

+++=
m

i
isss ssss

1

2  )()( GKCMD ,       ii sGs LG )( )( i= . (16) 

3. Frequency response function (FRF) 

The dynamic response of structure can be described by using the frequency response 
functions. In this context, we assume that  

 )exp()( tit λPp =  (17) 

where T
nPP ], ... ,[ 1=P  (compare Figure 2), λ is the excitation frequency. The steady-state 

solution to the motion equation could be assumed in the two equivalent forms: 

 )exp()exp()()( titit λλλ aPHq ==  (18) 

where )(λH  is the matrix of frequency response functions and a is the vector of ampli-

tudes of steady-state vibration. After substituting Formulae (17) and (18) into (9) we 
obtain: 

 IHD =)()( λλ  (19) 

hence  

 1)()( −= λλ DH . (20) 

We can also obtain the formula describing the matrix )(λD  by substituting relation-

ship λis =  into Equation (16). Hence: 
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Based on Relationship (18) we can also write: 

 PHa )(λ=  (22) 

4. Design sensitivity 

In order to determine the relationship describing the sensitivity of FRF, it is necessary to 
use the following obvious equation: 

 IHH =−1)()( λλ  (23) 

Differentiating Equation (23) with respect to the design parameter p leads to: 
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where: 
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Differentiating the Equation (23) the second time, we obtain the second order sensitivity: 
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where: 
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In the calculation of sensitivity, the first and the second order with respect to the cho-
sen parameter of structure or damper, only the matrices pp ∂∂ ),(λD  and 

22 ),( pp ∂∂ λD  change and can be reduced to a much simpler form.  

After calculating the sensitivity of FRF, it is possible to determine the sensitivity of 
amplitudes of steady-state vibration in a simple way. Differentiating Equation (22) with 
respect to the design parameter leads to: 

 P
Ha

p

p

p ∂
∂

=
∂
∂ ),(λ  (26) 

where sensitivity of FRF  is described by Equation (24). 

5. Example  

In order to illustrate the presented method, a two-storey building with a three-parameter 
Maxwell damper situated on the second storey is considered (see Fig. 3). The following 
data are adopted: the mass of every floor m = 1000kg, the storey stiffness ks = 
100000N/m and the damper parameters: k1 = 50000N/m, c1 = 8000Nsα/m and α = 0.6. 
The damping properties of the structure are neglected. 
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In this example, the frequency response matrix H(λ)is determined for the excitation 
frequency taken from the range λ ∈ (0, 20rad/sec). The calculation results are presented 
in Figure 4, where the real and the imaginary parts of the function H11(λ) are shown.  

The sensitivity of H11(λ) with respect to the change of the stiffness parameter k1 of 
the damper is calculated and the frequency taken from the range λ ∈ (0, 20rad/sec). 
The results are presented in Figure 5. 
 

 
 
 
 
 
 
 
 

Figure 3. a) Diagram of the considered frame, b) Maxwell model of damper 
 

 
Figure 4. The real and the imaginary parts of the function )(11 λH : (a) real, 

b) imaginary) 
 
 

 
Figure 5. The real and the imaginary parts of sensitivity of )(11 λH : (a) real, 

b) imaginary) 

In order to verify the correctness of the calculation, the values of FRF after change of 
the parameter are determined according to the formula: 
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where ∆p denotes a change of the design parameter. The obtained values were compared 
with the exact solution, when the design parameter changed its own value by 1%. 
The calculation is carried out for the selected frequencies and the obtained results are 
presented in Table 1. The results proved the presented method to be correct. 

Table 1. A comparison of ( )111 ,kH λ  

Frequency 
λ  [rad/sec] 1

1

111
111

),(
),( k

k

kH
kH ∆∆∆∆

∂
∂

+
λ

λ  Exact value of ),( 1111 kkH ∆∆∆∆+λ  

4.0 0.153048∙10-4-0.624154∙10-7i 0.153048∙10-4-0.624135∙10-7i 

6.0 0.824470∙10-4-0.158672∙10-4i 0.824476∙10-4-0.158668∙10-4i 

6.5 -0.983082∙10-4-0.418210∙10-4i -0.983076∙10-4-0.418190∙10-4i 

7.0 -0.291213∙10-4-0.522328∙10-5i -0.291211∙10-4-0.522308∙10-5i 

7.5 -0.153077∙10-4-0.235479∙10-5i -0.153076∙10-4-0.235470∙10-5i 

Moreover, a comparison was made by using first-order sensitivity values according 
to Equation (27) and second-order sensitivity values according to the following equation: 
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The calculations are carried out for a change of parameter k1, taken from the range  
1% – 50% and presented in Figure 6. Now, we can conclude that the second order sensi-
tivity gives results which are very close to an exact solution if the change of parameter k1 
is smaller than 20% . 
 

 

Figure 6. The comparison of ),( 1111 kkH ∆∆∆∆+λ  

6. Conclusions  

In this paper the design sensitivity analysis of FRF and amplitudes of the steady-state 
vibration of structures with VE dampers is presented. The formulae are calculated by 

1k∆∆∆∆  

H11 Sensitivity  
the second order 

Exact solution 

Sensitivity  
the first order 
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using the direct method. The obtained eqations enable determination of the sensitivity of 
the dynamic characteristics of structures with VE dampers with respect to a chosen de-
sign parameter. The considered five-parameter damper model can be used for an analysis 
of structures with different dampers, described by selected classic and fractional rheolog-
ical models. In the example, the correctness of the present method is proved. 

The method used to calculate the sensitivities of FRF and amplitudes of the steady-
state vibration of structures with VE dampers is easy to formulate, systematic to apply, 
simple to code, and it agrees well with the exact results. Such an analysis has been car-
ried out for the first time. 
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Abstract 

The paper deals with forced vibration of Euler-Bernoulli beam with variable cross-section equipped with  
a distributed dynamic absorber. The beam is subjected to the concentrated and distributed harmonic excita-
tions. The problem is solved using Galerkin’s method and Lagrange’s equations. Performing time-Laplace 
transformation the displacement amplitude of arbitrary point of the beam may be written in the frequency 
domain. The aim of the paper is to find the effectiveness of the distributed vibration absorbers  
in beams. As an example numerical results of vibration reduction in wind turbine’s tower are presented. 
 
Keywords: distributed dynamic vibration absorber, beam vibration, vibration reduction 

1. Introduction 

As a main application the dynamic vibration absorbers [DVA] (the most common are 
tuned mass dampers – TMD), correctly attached to vibrating structure and tuned to 
the frequency of harmonic excitation, can cause to cease the motion at the point  
of attachment [1-2].  

Vibration analysis and the proper choice of the absorbers parameters in beam struc-
tures have been very often the subjects of study [3-10]. For continuous structures, such 
as beams, usually the best location of the vibration absorber is the point  
of excitation, but it may be difficult due to technical limitations. Depending upon 
the situation if the local optimization problem (for example minimization of the vibration 
amplitude at the given point) or global optimization problem (minimization of the kinetic 
energy of the whole structure) are to be considered, one may obtain different optimal 
parameters of the single absorber or the system of absorbers and the main issue 
in optimization is the proper placement of the absorbers. 

In many cases there are used systems of tuned mass dampers [MTMD] which may be 
tuned for several resonant frequencies if broadband excitation is applied or for 
a single frequency [3,5] [11-14]. To suppress the structural waves in beams there may be 
used the absorbers distributed continuously along the  length of the beam. A special 
application is the reduction of noise from railway track [15]. Compared with absorber 
applied at a single point, the distributed absorber is effective in case of arbitrary location 
of the exciting force and by appropriate tuning may work in a wide frequency band. 

In this article a model based on Euler-Bernoulli theory is built for a beam with varia-
ble cross-section, subjected to the continuous and concentrated excitation, equipped with 
a dynamic vibration absorber with distributed parameters. Numerical example presented 
concerns the problem of passive vibration control in the real-world wind-turbine’s tow-
er-nacelle system. 
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2. Theoretical model 

Figure 1 presents a system considered in the paper – a beam with variable cross-section 
subjected to the distributed and concentrated forces, with a distributed vibration absorber 
attached. The beam is of length l, the physical and geometrical parameters are functions 
of the position: mass density ρ(x), cross-section area A(x), area moment  
of inertia I(x), Young's modulus E(x), viscous damping coefficient α(x) (Voigt-Kelvin 
rheological model). 
 

x

w

P2(t) Pp(t)P1(t) g(x,t)

xp
O

xR

xL

  

Figure 1. Beam with a distributed dynamic vibration absorber 

Assuming Euler-Bernoulli model of the beam deformation and Voigt-Kelvin model 
of the beam material, the kinetic energy, the elastic potential energy and the dissipative 
function are given by: 
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The transverse displacement is assumed to have the form of the series: 

 
1

( , ) ( ) ( )
n

i i

i

w x t q t xϕ
=

= ∑  (4) 

In the above expression ϕ i(x) are the basic functions, chosen in calculations as 
the modes of vibration of the beam with constant cross-section area, without absorbers 
attached. The functions qi(t) are time-dependent generalized co-ordinate that should  
be determined. 
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Substituting the series (4) into discretization (1)–(3) leads to: 
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The terms mij, kij, bij are given by: 
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For any given loading of the beam H(x,t) the generalized force is obtained from for-
mula: 
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Using Lagrange’s equations leads to a system of ordinary second order differential 
equations in the time domain with the unknown generalized co-ordinates qi(t):  
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Performing time-Laplace transform (with initial conditions equal to zero) the system 
of differential equations (12) may be written in the form of the system of linear algebraic 
equations: 
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where Qi(s), Hi(s) denote Laplace transforms of qi(t), Hi(t). 
Having calculated from the system (13) the transforms Qi(s) the transforms of 

the beam deflection may be obtained:  
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W x s Q s xϕ
=

= ∑  (14) 

The loading H(x,t) depends on the distributed force g(x,t) and p concentrated forces  
Pj(t) applied to the beam at the points of coordinate xj

0, additionally it depends on 
the distributed force f(x,t) applied to the beam from the distributed vibration absorber: 
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Generalized force Hi(t) for the i-th generalized coordinate qi(t) is obtained from (11): 
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where xL, xR are the limits of the distributed dynamic absorber (Figure 1). 
The Laplace transform of the i-th generalized force may be expressed as: 
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where it is introduced notations: 
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In the above expressions g(x,s), f(x,s) are Laplace transforms of the g(x,t), f(x,t). 
The Laplace transform of the distributed force applied to the beam from the vibration 

absorber is given by [10]: 
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where: ( )m x% , ( )c x% , ( )k x%  – linear mass density, linear damping and stiffness coefficients 

densities of the distributed vibration absorber. 
Insertion of (19) into (18) gives the system of linear equations (13) written in 

the form: 
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Having solved the system (20) the transform of the beam deflection may be obtained 

from series (14). Assuming steady state vibration, after substituting s jω=  ( 1j = − ), 

it may be obtained the deflection of the beam in the frequency domain. 

3. Numerical results: tuned distributed vibration absorber – wind-turbine’s tower-
nacelle system 

It has been built a numerical algorithm which determines in s-domain the transform of 
the deflection of the beam for any set of functions describing its physical  
and geometrical characteristics: A(x), I(x), E(x), α(x), ρ(x), and for arbitrary boundary 
conditions at the ends of the beam. When harmonic excitation is considered the algo-
rithm allows to obtain the amplitude-frequency characteristics of the beam deflection 
and allows for further calculations of the similar frequency characteristics  
of the slope, bending moment, transverse force and the time-averaged kinetic energy. 

 

x

w

P(t)

xL=0.5l

xR=lx0=l

 

Figure 2. Model of the wind-turbine’s tower-nacelle system with a distributed  
vibration absorber attached 
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Wind turbine towers are slender structures built usually as steel pipes with a diameter 
decreasing with altitude. Because of the simplicity of the tower geometry it is modeled 
as a vertically oriented beam, fixed to the ground at the bottom and with a solid mass, 
modeling a nacelle, attached to the upper end of the beam. Due to the low intrinsic 
damping, steel slender structures are prone to low frequency vibration (caused by wind 
flow, seismic motions) and for this reason are provided with damping devices, such  
as pitch actuators and vibration absorbers, tuned usually to the very first natural frequen-
cies. The Figure 2 presents a model of the wind-turbine’s tower-nacelle system with 
a distributed vibration absorber attached along half the length of the tower. The follow-
ing parameters of the real-world full-scale Vensys 82 wind tower are taken  
in calculations [16–17]: 

• length of the tower: 85.0 m; 
• mass of the tower: 169000 kg; 
• mass of the nacelle: 90000 kg; 
• mass density ρ = 7800 kg/m3; 
• Young's modulus E = 2.1·1011 N/m2. 

The functions approximating cross-section area A(x) and area moment of inertia I(x) 
are determined based on the actual dimensions of the tower cross-section, where maxi-
mal values are as follows: AMAX = 0.2949 m2, IMAX = 0.746 m4. The internal damping of 
the tower is neglected. 

The basic functions in formula (4) are chosen as the modes of vibration of the beam 
with constant cross-section area and moment of inertia, equal the average values for 
the tower, with the bottom end fixed and with a solid mass, equal the mass of a nacelle, 
attached to the upper end.  

The proposed distributed vibration absorber may be an alternative to the absorber ap-
plied at a single point near the nacelle, because it can be easier attachment of a number 
of smaller masses along the tower instead of one large mass at the top. 

The total weight of the absorber is 4225 kg, 2.5 percent of the weight of the turbine’s 
tower. Parameters of the distributed absorber are taken to be constant along the length  

of the beam: ( ) constm x =% , ( ) constc x =% , ( ) constk x =% . The first three natural fre-

quencies of the presented tower-nacelle system are: f1 = 0.352 Hz, f2 = 2.721 Hz,  
f3 = 8.132 Hz. In numerical calculations presented it is assumed that the tower   
is excited by a concentrated harmonic force applied at the top (Figure 2). 

As the first mode of vibration is the most important, as the easiest excited, it will  
be presented the results of tuning of the distributed absorber to the first natural frequency 
f1 = 0.352 Hz. The calculated dimensionless displacement amplitude of the top of 
the beam, referenced to the static deflection, is shown in Figure 2 for a few sets of the 
distributed absorber physical parameters. 

The graphs show the amplitude as a function of frequency for the case without 

the absorber attached, for the absorber with optimal values of stiffness ( )k x%  and damp-

ing ( )c x%  coefficients densities (calculated for a given absorber mass distribution along 

the length of the beam) and additionally for other values of parameters.  
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Figure 3. Dimensionless displacement amplitude of the top of the beam: 

a) without absorber attached; 

b) ( ) 40370 N/mc x l⋅ =% , ( ) 2800 Ns/mk x l⋅ =% ; 

c) ( ) 40370 N/mc x l⋅ =% , ( ) 4000 Ns/mk x l⋅ =% ; 

d) ( ) 40370 N/mc x l⋅ =% , ( ) 1500 Ns/mk x l⋅ =%  

4. Conclusions 

The computational model presented can be used in local and global problems  
of optimal choice of the distributed vibration absorber parameters in Euler-Bernoulli 
beam with variable cross-section. Theoretical calculations are illustrated by an example 
of the possible use of the distributed vibration absorber in wind turbine’s tower vibration 
passive control.  Distributed absorbers can be effective in those cases when it is not 
precisely defined a position of the concentrated force applied and in a case of the distrib-
uted load. 

The model presented in the paper can be further used in investigation of the optimal 
location of the absorber band on the beam and various tuning methods, in particular 
studying of the tunable absorber and with variable parameters along its length. 
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Abstract 

The paper deals with vibration of the beam with a system of the translational-rotational dynamic vibration 
absorbers attached. The beam is subjected to the distributed and concentrated harmonic excitation forces. 
Assuming small and linear vibration, an analytical Euler-Bernoulli model is applied and the solution to 
the problem is found with the use of Fourier method. Performing time-Laplace transformation the displacement 
amplitude of arbitrary point of the beam may be written in the frequency domain. The aim of the paper  
is to investigate the improvement of the efficiency of the translational-rotational absorbers compared with 
the translational ones in global vibration control problems. As an example reduction of the kinetic energy of 
the host structure is considered. Numerical simulations shows a considerable improvement of vibration reduc-
tion when the translational-rotational absorbers are utilized. 
 
Keywords: dynamic vibration absorber, beam vibration, vibration reduction 

1. Introduction 

The primary task of dynamic vibration absorbers [DVA] – mainly the most common 
passive tuned mass dampers [TMD] – attached to the vibrating structure subjected  
to harmonic loading is to cease the steady-state oscillations at the point of attachment  
[1–4]. They are used both for damping of longitudinal and torsional vibration. Many 
theoretical studies have been devoted to methods of optimal choice of tuned mass damp-
ers parameters for both linear and nonlinear problems [5–17]. 

Due to the number of possible applications in a wide variety of structures a lot  
of attention has been directed to the proper selection of TMD parameters in beam struc-
tures [20–26]. For continuous systems such as beams, usually the best location  
of a mass damper is a point of application of the load, but it might be technically impos-
sible. In such situation and in the case of distributed loading, improperly chosen localiza-
tion may increase the amplitude of vibration in certain areas of the system.  

Depending on whether there is considered a local optimization problem – for exam-
ple, minimization of  the amplitude of the structure at a fixed point, or a global optimiza-
tion problem – for example, minimization of the kinetic energy of the vibrating system, 
there may be obtained different optimal parameters of the damper and a key issue in 
global optimization problems is the right location of the damper [24,27]. 

To improve the efficiency of damping there are used systems of tuned mass dampers, 
tuned in the most general case for a single or several resonant frequencies for broadband 
excitation [17–19, 28] [20,22]. 

In this article a model based on Euler-Bernoulli theory is built for a beam subjected 
to the distributed and concentrated harmonic excitation forces, equipped with a system 
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of the translational-rotational dynamic vibration absorbers. It is shown that the rotational 
vibration absorbers used together with the translational ones can significantly improve 
the effectiveness of vibration isolation. 

2. Theoretical model 

Figure 1 presents a system considered in the paper – a beam subjected to the distributed 
loading and p concentrated forces, with r translational-rotational vibration absorbers. 
The beam is of: length L, mass density ρ, cross-section area A, geometrical moment of 
inertia I, Young's modulus E. 
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Figure 1. Beam with a system of translational-rotational vibration absorbers 

Assuming small, linear vibrations of the Euler-Bernoulli beam with internal damping 
described by parameter α  (Voigt-Kelvin model) the equation of motion takes the form 
[27]: 
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where: 
( , )q x t  –distributed loading; 

( )
j

P t  – j-th concentrated force applied at the point of coordinate O

j
x ; 

( )
j

F t  – j-th concentrated force applied from the translational vibration absorber at 

the location of coordinate E

j
x ; 

( )
j

M t  – j-th concentrated torque applied from the rotational vibration absorber at 

the location of coordinate E

j
x ; 
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j
m ,

j
c ,

j
k  – mass, damping and stiffness coefficients of the j-th translational vibra-

tion absorber; 

j
J ,

j
γ ,

j
κ  – moment of inertia, damping and stiffness coefficients of the j-th rota-

tional vibration absorber; 
p – number of concentrated forces; r – number of translational-rotational vibration 
absorbers. 
To solve the equation of motion (1) the method of separation of variables is utilized: 
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In the above expression ϕ i(x) are the eigenfunctions of the beam without absorbers at-
tached, which depend on the boundary conditions. The functions of time qi(t) need  
to be determined. It is assumed the following form of the distributed loading: 
q(x,t) = h(t)g(x). 

After substitution of the series (2) into equation (1) the time Laplace transformation 
is performed (with initial conditions equal to zero) and it is obtained: 

  

2 4 4

1 1

1 1

[ ( ) ( ) ( ) ( ) ( )

( ) ( )] ( ) 0

p

i i i i i i ji j

i j

r r

ji j ji j i

j j

As Q s EI sQ s EI Q s a H s d P s

b F s e M s x

ρ αβ β

ϕ

∞

= =

= =

+ + − − −

− =

∑ ∑

∑ ∑
 (3) 

Assuming that the eigenfunctions ϕ i(x) are orthogonal with the weight function 
η (x), the numerical values of the coefficients in equation (3) can be expressed as: 
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where: 2 2

0

( ) ( )
L

i i
K x x dxη ϕ= ∫ , and additionally 
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i i

A

EI

ρ
β ω= ; 

i
ω  is the i-th resonance 

frequency of the beam without vibration absorbers attached and with the internal damp-

ing neglected ( 0α = ). In equation (3) the symbols: ( )
i

Q s , ( )H s , ( )
j

P s , ( )
j

F s , 

( )
j

M s  denote the Laplace transforms of the: ( )
i

q t , ( )h t , ( )
j

P t , ( )
j

F t , ( )
j

M t  respec-

tively. 
Taking into account the linear independence of the eigenfunctions ϕ i(x) it can be ob-

tained from equation (3) an expression for the Laplace transform W(x,s) of the beam 
deflection w(x,t): 
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and the Laplace transform of the beam slope 
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Transforms of the force Fj(s) and torque Mj(s), transmitted on the beam from the j-th 
translational-rotational vibration absorber, mounted at the point of coordinate xj

E, are 
given by the expressions [27]: 
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where it is introduced the symbol: 
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The transforms given by formulas (7) and (8) should be substituted into expressions 
(5) and (6). The resulting transforms of the line deflection and slope of the beam should 
be satisfied at the points where the translational-rotational absorbers are attached to the 
beam. These conditions furnish with the system of linear equations to determine W(xk

E,s) 
and Θ(xk

E,s) (k = 1,2,..r).  
In order to simplify the notation, the following symbols are introduced: 
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System of 2r linear equations for the unknown Wk, Θk (k = 1,2,..r) takes the form: 
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Having solved the system (10) the transforms of the forces Fj(s) and torques Mj(s) 
may be obtained from expressions (7–8) and utilized then to calculate from formulas (5) 
and (6) the transforms of the deflection and slope of the beam. Assuming steady state 

vibration, after substituting s jω=  ( 1j = − ), it may be obtained the expressions for 

the deflection and slope of the beam in the frequency domain. 

3. Numerical results: tunable translational-rotational vibration absorber – global 
control problem 

It has been built a numerical algorithm which determines in s-domain the transforms of 
the deflection and slope for arbitrary boundary conditions at the ends of the beam. When 
harmonic excitation is considered the algorithm allows to obtain the amplitude-
frequency characteristics at any cross-section of the beam for the deflection and slope 
respectively, for the bending moment and transverse force, the time-averaged kinetic 
energy of the system or its part can also be determined. 
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Figure 2. Cantilever beam of length l  excited by a uniform distributed harmonic loading 
with a tunable translational-rotational absorber attached  

A cantilever steel beam is considered excited by a uniform distributed harmonic 

loading in the region: 
1

0
E

x x< <  (Figure 2), with parameters: 1.0 ml = , 
1

0.3
E

x l= , 

11 22.1 10 N/mE = ⋅ , 
37800 kg/mρ = . The internal damping of the beam is neglected. 

The beam has a rectangular cross-section with a width of 0.05 mb = and  

a height of 0.005 mh = . There is only one translational-rotational absorber of mass 

1
0.1kgm =  and moment of inertia 2

1
0.0001kgmJ =  attached at 

1
0.3

E
x l=  – the right 

border of the loading. The aim of the absorber is isolation of vibration transferred from 
the loaded to the unloaded area of the beam. As a global measure of vibration is used 

the time-averaged kinetic energy in the unloaded region: 
1

E
x x l< < . 
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Because a simple control algorithm can be used, from the practical point of view  
it is preferable to use the tunable dampers [24]. The first four natural frequencies of 
the presented beam are: f1 = 4.191 Hz, f2 = 26.264 Hz, f3 = 73.541 Hz, f4 = 144.110 Hz.  

The calculated time-averaged kinetic energy of the unloaded region of the beam  
is shown in Figure 2, for comparison, for three cases: 

• only the translational vibration absorber attached to the beam; 
• the translational-rotational vibration absorber attached to the beam; 
• the beam alone, without any vibration absorber attached. 

It is assumed in further calculations that the absorbers attached are tuned so that they are 
resonant at each single frequency and do not have energy dissipating appliances (c1 = 0, 
γ1 = 0). 

It can been seen from the graph in Figure 2 that there is a much improvement in 
the efficiency of the translational-rotational absorber compared to the translational one –  

a reduction of the kinetic energy in the range of frequency 1.0 Hz, 8.0 Hz is almost  

of two orders of magnitude (around eighty times for the frequency equal 8.0 Hz).  
The drawback of the tunable absorbers is that they cause an increase in global vibra-

tion at the new natural frequencies of the resulting structure which coincide with 
the excitation frequency. In this case the better performance may be obtained by de-
tuning the absorber [24]. 

 

Figure 3. Kinetic energy of the unloaded region of the cantilever beam: 
 without any absorber; with the translational absorber; with the translational-rotational 

absorber – the absorbers attached are tuned to be resonant at each frequency 

1 2 3 4 5 6 7 8 9 10

Frequency [Hz]

-40

-30

-20

-10

0

10

E
n
e
rg

y
 [
d
B

]

Translational vibration absorber
Translational-rotational vibration absorber

Without absorber



 Vibrations in Physical Systems Vol.26 (2014) 151 

4. Conclusions 

The computational model presented can be used in local and global problems  
of optimal choice of position and parameters of the system of translational-rotational 
vibration absorbers in beams. Theoretical calculations are illustrated by an example  
of the use of tunable translational-rotational absorber in global control of vibration. 
The numerical results obtained demonstrate the possible significantly improved effec-
tiveness of the translational-rotational absorber compared to the translational one, due it 
can absorb and isolate both the translational and rotational motion of the beam. 
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Abstract 

The algorithm for finding a finite number of the first values of natural frequencies and forms of geometrically 
nonlinear free transverse vibrations of thin-walled elongated panels with arbitrary generatrix is proposed and 
verified. Under normal coordinate quadratic the approximation of displacements is used. Along the tangential 
coordinates used one-dimensional finite elements. The discrete variation problem is built. For its solving 
the perturbation method is applied. The numerical results are compared with previously obtained by other 
authors. 
 
Keywords: elongated panels, vibrations, nonlinearity, perturbations method 

1. Introduction   

Thin elongated panels with various curves as generatrix medial surfaces are widely used 
in the construction and hardware for various purpose. In the operating conditions they 
are subjected to intense dynamic loading, in particular, cyclic. These loads are causing in 
panels the normal displacement commensurate with their thickness. The last are causing 
to their geometrically nonlinear dynamic stress-strain state. 

To avoid resonance phenomena for the actions of cyclic loading is necessary at 
the design stage to determine the spectrum of frequencies of said structural elements. 
Issues of geometrically nonlinear vibrations of plate and shell elements of the construc-
tions on the basis classical and shear theories thoroughly examined in [11] for the defini-
tion of the fundamental frequency. Significant progress in this field together with exper-
imental approaches is done in [1, 2] and some analytical results are given in [8]. Howev-
er, for nonlinear oscillations in many cases it is necessary to define a number of first 
frequencies and forms to detect the phenomena of internal, subharmonic and combina-
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tion resonances [4]. A numerical method for determining the first several frequencies 
and forms at geometrically nonlinear vibrations of shells is proposed in the work [5]. 

In this paper is developed and verified algorithm for determining a finite number of 
natural frequencies and forms elongated thin panels for geometrically nonlinear vibra-
tions. For the primary relations is taken spatial equation geometrically nonlinear dynam-
ic theory of elasticity. Used quadratic approximation of displacements by the normal 
coordinate and finite-element by tangential. The discrete variation problem is built. For 
its solving the method of perturbations is applied.  

2. Problem statement 

Curved anisotropic elastic layer with thickness h we take to natural mixed system of 
coordinate α1, α2, α3 on the median surface. This surface is formed by the motion of 
the line α1 = 0; α3 = 0 on the segment of arbitrary generatrix. We consider that layer is 
significantly larger along the axis α2 to the length of the section arc α2 = 0 of the middle 
surface α3 = 0. So we have an elongated panel. If the conditions of fixing the ends of 
the panel α1 = ±α1

0 and the initial conditions are independent of the coordinate α2, then 
through little influence of conditions fixing the edges α2 = ±α2

0, the functions, that de-
termine the characteristics of geometrically nonlinear vibration processes in the plane of 
the middle section, are dependent from α1, α3. To find these functions are [9]: 

• motion equations 
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2
ˆ
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Sdiv

∂

∂
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• elasticity relations 
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k
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• relation between the components ijS of the nonsymmetrical Kirchhoff stress ten-

sor Ŝ  and the components ikσ  of the symmetric Piola stress tensor Σ̂  

 ∑ ∇+=
k

j
k

j
k

ikij uS )(δσ . (4) 

In equations (1) and (2) A
~

– tensor of elastic properties of anisotropic layer, and ρ – 

its density. 
Boundary conditions on the front surface of the panel α3 = ±h/2 for the free vibra-

tions has the form  
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At the elongated ends of the panel α1 = ±α1
0under the conditions of the fixing 

the hinge on the lower surface of the front α2 = −h/2 boundary conditions  has the form 
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The motion equations (1) together with relations (2)–(4) and boundary conditions 
(5)–(7) are describe geometrically nonlinear transverse vibrations of the middle section 
of the panel, if the initial conditions specify as follows: 
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∂

∂
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3 αααα vv >> ,   ]2/,2/[],[),( 0

1
0
131 hh−×−=Ω∈ αααα . (9)  

3. Discretezed problem  

Considered above differential formulation of the problem of geometrically nonlinear free 
vibrations is equivalent to the problem of minimizing the functional L [10]: 
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 (10)  

Boundary conditions (5) and (6) for the variation formulation of the problem is a nat-
ural [10], and condition (7) must take into account during its solution. 

Assuming that the considering panel is thin-walled, approximate the unknown dis-
placement at transverse coordinate [7]: 

 ∑
=

=
2

1
3121 )()(),(

k
kiki puu αααα ,   3,1=i , (11) 

where 
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For finding unknown coefficients uik(α1) in (11) we use approximation by the tangen-
tial coordinate α1 on one-dimensional izoparametrical linear finite elements [10]: 
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where e – element number; )( )(
1

)( e
mik

e
ikm uu α= ; )( 1

)(
1 αα e
m , 2,1=m  – coordinates of the 

element nodes; )1(
2

1
)()(

1 ξξϕ −=e ; )1(
2

1
)()(

2 ξ+=ξϕ e . 

After substituting (11) into (4) and the result together with (11) into (10) we obtain: 

 min}{}{}){(}{}{}{ →++=∆ uMuuuKuuKuL T
NL

T
L

T
&& , (13) 

where {u} = {u}(t) – vector of values of the coefficients )(e
ikmu  at points in the finite-

element partition of the section [−α1
0, α1

0]; KL – linear, and KNL – nonlinear components 
of stiffness matrix; M – matrix of mass [10]. 

Non-linear component of stiffness matrix KNL presented in the form 

 ))}(({)(}{))}(({))}(({ tuBtutuBtuK TT
NL ⋅⋅= . (14) 

Matrix B({u}(t)) we obtain by integrating in (10) members, who are the product of 
partial derivatives, the displacement ui [10]. 

Minimum of discrete functional (13) is achieved at the point {u}(t), where the equa-
tion is satisfied  

 0))}(({)}()){}(({))}(({ =++ tuMtutuKtuK NLL && . (15) 

4. The method of perturbations 

The system of nonlinear equations (15) is written as  

 0))}(({)}()){}(({))}(({ =++ tuMtutuKtuK NLL &&µ , (16) 

where µ (0 ≤ µ ≤ 1) – the parameter perturbation. At µ = 0 have a system of linear alge-
braic equations for the vector{u}, while µ = 1 the nonlinearity is taken into account ful-
ly. The method of perturbations the desired vector of functions {u}(t) and matrix KL 
presented in the form  

                 ...)(}{)(}{)}({ 10 ++= tututu µ  , 

 ...1 −−= LL KKK µ  . (17)  

The result of substituting (17) into (16) and grouping expressions under the same 
powers of µ are the equations  

 0)(}{)(}{ 00 =+ tuKtuM && , (18) 

 0)(})){(}({))(}({)(}{)(}{ 000111 =+−+ tutuKtuKtuKtuM NLL&& . (19) 

Solution of equation (18) is written as  
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 tutu ωcos~)(}{ 0 = , (20) 

and the solution of (19) can be written as follows. Consider equation (17), which seeks a 
solution in the form 

 )(}{)(}{)(}{ 1
*
11 tututu ×+= , (21) 

where )(}{ *
1 tu  і )(}{ 1 tu ×  – solutions of homogeneous and inhomogeneous equations (19). 

According to [6] matrix 1LK  can be represented as  

 TT
L BuuBK }~}{~{

4

3
1 = . (22) 

After substituting (20) and (22) into (19) and taking into account formula [3] 

 ttt ωωω 3coscos3cos4 3 += , (23) 

for finding )(}{ 1 tu ×  we obtain the equation  

 tuBuuBtuKtuM TT ω3cos}~{}~}{~{
4

1
)(}{)(}{ 11 −=+ ××

&& , (24) 

solution of which we take as 

 tctu ω3cos~)(}~{ 1 =× . (25) 

After substituting (25) into equation (24) we arrive at a relations for determination of 
parameter c~ : 

 }~{}~}{~{
4

1~)9( 2 uBuuBcMK TT−=− ω . (26) 

If the initial moment the panel is deformed on a certain law, which describes the first 
formula in (8) and is stationary, then the initial conditions for the functions {u}0(t) and 
{u}1(t)  can be represented as 

 Au =)0(}{ 0 ,   0)0(}{ 0 =u& , (27) 

 0)0(}{ 1 =u ,   0)0(}{ 1 =u& . (28) 

In view of (21), we write:  

 tctcAtu ωω 3cos~cos)~()}({ +−= . (29) 

This allows you to build an algorithm for partial finding a finite number of the first 
natural frequencies and amplitudes geometrically nonlinear vibrations of the panel: 

1. Set 1=r  and 0)0( =a . 
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2. Compute TT
rrr BaBaKK )1()1()1( 4

3
−−− += . 

3. Find the eigenvalues )(rω  and eigenvectors )(ra  from the system  

0)( )()()1( =−− rrr aMK ω . 

4. If the conditions are satisfied 1)()1()( / ε≤− − rrr aaa ,   

2)()1()( / εωωω ≤− − rrr ,  

where 1ε  and 2ε  – specified accuracy, then go to step 5, otherwise 1: += rr , and 

go to step 2. 
5. As the solution we accept )(: raa = , )(: rωω =  and find a vector c~  having solved 

the a system of algebraic equations  

aBBaacMK TT
r 4

1~)9( 2
)( −=− ω . 

5. Analysis of results and conclusions 

To verify the proposed algorithm practicing it for problem, where are known analytical 
and numerical solutions [6]. We consider an isotropic plate-strip elongated edges which 
are fixed by with stationary hinges on the lower front of the plane (see Fig. 1), with 
characteristics: geometric l = 1 m; h = 0.1 m and mechanical E = 40000 N/m2; ν = 0.3. 
 

 
Figure 1. The plate-strip with stationary hinges on the elongated edges 

In Figure 2 shows graphs of free vibrations of the point that has coordinates )0;2/(l  

for linear ( ), analytical ( ) and obtained using the proposed algorithm ( ).Sufficiently 
good correlation with the analytical solution is marked. 

In Figure 3 shows the first four own forms (modes) for geometrically nonlinear vi-
brations the considered plate-strip. 

In Figure 4 shows the skeletal curves [11], constructed using the proposed method 
(dashed line) and the results presented in the work [5] (solid line). The maximum rela-
tive error does not exceed 9%, indicating a sufficiently good approximation property of 
the proposed method. Subsequently, it is advisable to perform a similar study for a wider 
class of thin-walled elements of constructions and anisotropy of mechanical properties.  
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Figure 2. Free vibrations of point )0;2/(l  

 

 

Figure 3. View panels in different modes: a) – the first mode; 
b) – second; c) – third; d) – the fourth 

 

 

Figure 4. Comparison of amplitude-frequency characteristics obtained from the use of 
perturbation method and the results of the work [5] 
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Abstract 

In this note vibrations of thin periodic plate strips with periodically distributed system of two concentrated 
masses are analysed. Moreover, it is assumed that every concentrated mass is connected to a string, which 
cause the effect of damping in vibrations. Governing equation for such structure is defined as a differential 
equation with highly oscillating, periodic and non-continuous coefficients. In order to solve the equation, 
tolerance averaging technique is applied. As a result, governing equations with constant coefficients are ob-
tained. In an example, derived model is used to calculate lower and higher frequencies of the travelling wave 
related to the internal periodic structure. 
 
Keywords: periodic plate strip, vibrations, tolerance averaging technique 

1. Introduction 

In this paper thin plate strips with span L are considered. It is assumed, that these plate 
strips have certain internal periodic microstructure related to a system of two concentrat-
ed masses, distributed periodically along the x1-axis. Additionally, there are strings at-
tached to concentrated masses, which make it possible to observe the effect of damping 
on plate's strips vibrations. Given system of concentrated masses and strings makes it 
possible to distinguish a small, repeatable element, called the periodicity cell. The span 
of every cell is equal to l, which is called the microstructure parameter and is small 
compared to the plate span L. 

Vibrations of these structures are described by the governing equation with highly 
oscillating, periodic, non-continuous coefficients, which is not a good tool to analyse 
special problems. Hence, investigations of such structures can be performed using dif-
ferent models. The most popular one is based on the homogenization method, which 
uses e.g. effective plate stiffness (cf. [3]). However, equations of these models neglect 
the effect of the microstructure size on the plate strip behaviour. Thus, to take into ac-
count this effect the tolerance averaging technique is used to average the differential 
equation of this plate strip. As a result, governing equations with constant coefficients 
are obtained. 

The main aim of this paper is to derive exact formulas for frequencies of the travel-
ling wave for the plate strip using the tolerance averaging technique, which was pro-
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posed and explained by Woźniak and Wierzbicki [5], Woźniak, Michalak and Jędrysiak 
(eds.) [4]. Afterwards, some numerical examples of the plate strips behaviour are pre-
sented. 

2. Modelling foundations 

Let Ox1x2x3 be an orthogonal Cartesian coordinate system and define t as the time coor-
dinate. It is also assumed, that our considerations are treated as independent of 
x2-coordinate. Let us introduce the following denotations: 1xx ≡ , 3xz ≡ , ],0[ Lx ∈ , 

]2/,2/[ hhz −∈ , where h is the constant thickness of the plate. Hence, it can be as-

sumed that the plate strip is described in the interval ),0( L=Λ , with the basic cell 

]2/,2/[ ll−≡Ω  in the interval Λ , where l is the length of the basic cell, called  
a microstructure parameter. For further transformations, it is crucial, that the micro-
structure parameter l satisfies conditions: Ll <<  and lh << . Deflections of the plate 

strip are denoted as w(x,t) ( Λ∈x , ),( 10 ttt ∈ ). 

Let us assume, that the material properties of the plate strip ,Λ),ρ(),( ∈xxxE  are 

periodic functions in x. Hence, functions describing the mass density per unit area of 
midplane µ and the bending stiffness B can be stated as follows: 

 ).(),(ρ)(µ
)ν1(12 2

3

xEBxhx h

−
≡≡  (1) 

Moreover, the plate strip is connected to a system of periodically distributed strings, 
which are described by the damping parameter c(x). In order to apply the tolerance aver-
aging technique, the parameter c(x) must satisfy all conditions of a periodic function. 

It is assumed, that the plate strip fulfils prerequisites of the Kirchhoff-type thin plate 
theory. Denoting the derivative of x by ∂, and the time derivative by dots, the partial 
differential equation of the fourth order for deflection w(x,t) takes the following form: 

 ,0),()(µ),()()],()([ =++∂∂∂∂ txwxtxwxctxwxB &&&  (2) 

with coefficients being highly oscillating, non-continuous, periodic functions  
in x. Equation (2) describes free vibrations of the plate strip with the effect of damping 
on its vibrations and stands a starting point for further investigations in the framework of 
the tolerance averaging technique. 

In the tolerance modelling procedure some introductory concepts, like: an averaging 
operator, a slowly varying function, a tolerance-periodic function and a highly oscillat-
ing function, are used. These concepts were presented in a various literature, for exam-
ple: by Woźniak and Wierzbicki [5]. 

3. Modelling assumptions 

There are two main assumptions in the tolerance averaging technique. The first of them 
is the micro-macro decomposition of the plate strip deflection w, which can be formulat-
ed as follows: 

 ,,,,1),,()(),(),( Λ∈=+= xNAtxQxgtxWtxw AA
K  (3) 
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where ),( tW ⋅  is the macrodeflection of the plate strip, ),( tQ A ⋅  are the fluctuation am-

plitudes and )(⋅Ag  are the known fluctuation shape functions. Functions ),( tW ⋅  and 

),( tQ A ⋅  are the new basic kinematic unknowns, which are for every t slowly varying 

functions. 
The tolerance averaging approximation is the second modelling assumption. Assum-

ing that the terms O(δ) are negligibly small, the following relations can be proved in 
the course of modelling: 

 

;10;,,1;2,1;

,)δ()()()()(

),δ()()()(),δ()()(

 

<<<==Λ∈

+>∂Φ=<>∂Φ<

+>Φ=<>Φ<+>Φ=<>Φ<

δα

αα

NAx

OxFxgxFg

OxFxxFOxx
AA

K

 (4) 

where δ is a tolerance parameter, Φ  is tolerance periodic function, Φ  is a periodic 

approximation of Φ , F is a slowly varying function and )(⋅Ag  is a fluctuation shape 

function. 

4. Modelling procedure 

Basing on the introductory concepts presented in [4] nad [5] and the calculations devel-
oped by Jędrysiak in [1] and Jędrysiak and Michalak [2], the modelling procedure can be 
outlined as follows. 

As mentioned before, the starting point is the Kirchhoff-type thin plate free vibra-
tions differential equation (2). In order to obtain equations with constant coefficients, 
some transformations must be performed. These transformations are: substituting 
the micro-macro decomposition (3) to equation (2), applying the averaging operator and 
using the tolerance averaging approximations (4). As a result, we arrive at a system of 
equations for W(⋅,t) and QA(⋅,t) in the form: 

 

.0µ

,0µ

=><+><+><+

+>∂∂∂∂<+∂∂>∂∂<

=><+><+><+∂∂>∂∂<+∂∂∂∂><

ABAABAA

ABAA

AAAA

QggQgcgWcg

QggBWgB

WQcgWcQgBWB

&&&&

&&&&

 (5) 

In the system of equations (5) the first equation describes vibrations of the plate strip 
in the macro scale, while the second stands for the system of N equations, which refers to 
microvibrations. It can be observed, that only the underlined terms are dependent on the 
microstructure parameter l. Keeping in mind the fact, that coefficients in the system of 
equations above are constant, it is possible to obtain a convenient solution describing 
free vibrations of the plate strip, including both the effect of the microstructure and 
damping.  
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5. Frequencies of plate strip free vibrations with the influence of damping 

In this section a homogenous weightless and unbounded plate strip along the x-axis is 
considered. Periodicity of the structure is related to a system of two periodically distrib-
uted concentrated masses M1 and M2 and strings attached to those masses. Strings are 
described by their damping parameters, c1 and c2 respectively, cf. Figure 1. 
 

 
Figure 1. The plate strip with a system of two periodically distributed concentrated 

masses and strings 

In the further investigations Young’s modulus E, Poisson’s ratio ν and thickness h of 
the plate are assumed to be constant. Moreover, the plate mass is negligibly small when 
compared to concentrated masses M1 and M2. 

According to a structure of the periodicity cell of plate strips and bearing in mind 
the normalizing condition <µg>=0, only one fluctuation shape functions gA, A=1, is 
assumed. Denoting as follows: 

 

,ˆ,,~
,µˆ,µ~
,ˆ,
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42
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1

><≡><≡>≡<

><≡>≡<

>∂∂∂∂≡<>≡<

≡

−−

−

cgglccglccc

gglmm

ggBDBD

gg

 (6) 

equations (5) take the form: 

 
.0ˆˆˆ

,0~~~

442

2

=+++

=+++∂∂∂∂

QmlQclQDWcl

QclWmWcWD

&&&&

&&&&

 (7) 

Equations (7) stand for a system of equations for the macrodeflection W and the fluc-
tuation amplitude Q. The first equation describes fundamental vibrations of the plate 
strip (e.g. lower frequencies of the travelling wave), while the second refers to micro-
structural vibrations (related to higher frequencies of the travelling wave). Solutions to 
those equations can be assumed in the form: 
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)],ω(exp[),(

)],ω(exp[),(

tkxiAtxQ

tkxiAtxW

Q

W

−=

−=
 (8) 

where WA , QA  are amplitudes, k is a wave number, t is a time coordinate and ω  is a 

frequency. After some transformations formulas for the lower ( −ω ) and higher ( 1:ω+ ) 

frequencies can be obtained as roots of the characteristic equation in the form: 
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 (9) 

By solving the equation above, it is possible to obtain four different roots of the char-
acteristic equation: a pair of numbers, which refers to lower frequencies of the plate 
strip's free vibrations (macrovibrations) and a pair of complex conjugate numbers, which 
describes higher frequencies of the structure (vibrations related to microstructure). 

6. Eigenvalue problem 

Coefficients in equations (7) are strongly dependent on the type of assumed fluctuation 
shape function gA. In the following calculations, the exact fluctuation shape function is 
derived as a solution to an eigenvalue problem on the periodicity cell. In the case under 
consideration, eigenvalue problem takes the following form: 

 ,0)(λ)(µ)( 2 =−∂∂∂∂ xgxxgB  (10) 

where B is the stiffness defined by (1)2 and g(x) is a periodic function related to eigen-
value λ≡αl (α is the wave number). Assuming that the plate mass is negligibly small 
when compared to the concentrated masses and applying proper periodic boundary con-
ditions and the normalizing condition <µg>=0, it is possible to obtain only one eigen-
function g(x), which describe a shape of free vibrations of the cell. 

In order to obtain the exact fluctuation shape function g(x), methods known from 
the structural mechanics can be used. For each point, in which the concentrated mass is 
posed to the plate, equilibrium equations for transversal forces and moments can be 
written. By applying certain boundary conditions in the form: 

 
),()0(),()0(

),()0(),()0(

lgglgg

lgglgg

∂∂∂=∂∂∂∂∂=∂∂

∂=∂=
 (11) 

we arrive at the characteristic equation in the form of determinant equal to zero: 

 .4..1,,0det == rpL pr  (12) 

As a result, the second order equation for ω is obtained. Hence, it is possible to de-
rive one eigenvalue ω2. Basing on the obtained eigenvalue, the exact values of deflec-
tions along the periodicity cell can be calculated similarly to deflections of beams. 
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7. Results of calculations 

Using the tolerance averaging technique is a convenient way of investigating plate strips 
behaviour in the micro-scale. In this section, several numerical examples are presented in 
order to verify obtained formulas. 

Let us assume, that the concentrated mass M2 is a mass of reference, to which 
the mass M1 is compared. Similarly, let the damping coefficient c2 be a reference value 
for the coefficient c1. As a result, the following denotations can be made: 

 ,ξ,ζ 2121 ccMM ≡≡  (13) 

where ζ is a mass ratio and ξ is a damping coefficient ratio. 
Calculation examples has been performed for several different calculation cases. In 

every case, it has been assumed that the plate strip thickness h is equal to 0.1l. Addition-
ally, in order to obtain the exact dimensionless parameters of free vibrations frequencies, 
the ratio between reference mass M2 and stiffness coefficient B are defined as follows: 

 2

3

12
M

h
B ≡  (14) 

The calculation cases differ from each other with mass distributions (coordinates x1  
and x2), mass proportion and values (M1 and M2), and dispersion coefficients (c1 and c2). 
For details, cf. Table 1. 

Results are shown in Table 1 and Table 2 and in the form of charts describing the mi-
crovibrations amplitude versus time coordinate, cf. Figure 2. Additionally, all the calcu-
lations are performed for different values of dimensionless wave number 

];[ ππ−∈≡ klq , cf. Table 2. 

  
Figure 2. Damping of fluctuation amplitudes in chosen cases 

Table 1. Lower and higher frequencies of travelling wave in calculation cases 
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and for dimensionless wave number q=1.0 

Case 
Mass coordinates 

Mass propor-
tions 

Dispersion coeffi-
cients 

Lower frequ-
encies 

Higher frequencies 
x1 x2 M1 M2 c1 c2 

I 0,25l 0,75l 1 1 10-1 10-1 
-0,00042 
-0,09958 

-0,05±0,1718i 

II 0,25l 0,75l 3 1 10-1 10-1 
-0,00021 
-0,09979 

-0,05±0,1372i 

III 0,25l 0,75l 3 1 2·10-1 10-1 
-0,00012 
-0,18557 

-0,057±0,1297i 

IV 0,25l 0,75l 1 1 2·10-1 2·10-1 
-0,00021 
-0,19979 

-0,10±0,1483i 

V 0,4l 0,7l 1 1 10-1 10-1 
-0,00042 
-0,09958 

-0,05±0,2070i 

VI 0,4l 0,7l 3 1 10-1 10-1 
-0,00021 
-0,09979 

-0,05±0,1665i 

VII 0,4l 0,7l 3 1 2·10-1 10-1 
-0,00012 
-0,18328 

-0,058±0,1595i 

VIII 0,4l 0,7l 1 1 2·10-1 2·10-1 
-0,00021 
-0,19979 

-0,10±0,1880i 

Table 2. Comparison of lower and higher frequencies of travelling wave in different 
calculation cases depending on different dimensionless wave number q 

Case 
Lower frequencies Higher frequencies 
q=0.1 q=1.0 q=2.0 q=0.1 q=1.0 q=2.0 

I 
-4,2·10-8 
-0,10000 

-0,00042 
-0,09958 

-0,00718 
-0,09282 

-0,05±0,1718i -0,05±0,1718i -0,05±0,1718i 

II 
-2,1·10-8 
-0,10000 

-0,00021 
-0,09979 

-0,00345 
-0,09655 

-0,05±0,1372i -0,05±0,1372i -0,05±0,1372i 

III 
-1,2·10-8 
-0,18568 

-0,00012 
-0,18557 

-0,00192 
-0,18391 

-0,057±0,1297i -0,057±0,1297i -0,057±0,1297i 

IV 
-2,1·10-8 
-0,20000 

-0,00021 
-0,19979 

-0,00339 
-0,19661 

-0,10±0,1483i -0,10±0,1483i -0,10±0,1483i 

V 
-4,2·10-8 
-0,10000 

-0,00042 
-0,09958 

-0,00718 
-0,09282 

-0,05±0,2070i -0,05±0,2070i -0,05±0,2070i 

VI 
-2,1·10-8 
-0,10000 

-0,00021 
-0,09979 

-0,00345 
-0,09655 

-0,05±0,1665i -0,05±0,1665i -0,05±0,1665i 

VII 
-1,2·10-8 
-0,18340 

-0,00012 
-0,18328 

-0,00192 
-0,18157 

-0,058±0,1595i -0,058±0,1595i -0,058±0,1595i 

VIII 
-2,1·10-8 
-0,20000 

-0,00021 
-0,19979 

-0,00339 
-0,19661 

-0,10±0,1880i -0,10±0,1880i -0,10±0,1880i 
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8. Final remarks 

In this paper the tolerance averaging technique has been used to obtain the governing 
equations with constant coefficients for thin plate strips with internal periodic structure. 
By analyzing results shown in Tables 1 and 2 and Figure 2, it can be observed that: 

• the tolerance model is a convenient tool for the analysis of micro- and macro vi-
brations in case, in which the effect of damping has to be taken into account; 

• the lower frequencies of the travelling wave are dependent on the dimensionless 
wave number q; 

• as long as the mass proportions ζ and the dimensionless wave number q are con-
stant and 1ξ = , the lower frequencies do not depend on the mass distribution; 

• the obtained values of the higher frequencies are complex numbers, which real 
part describes the damping of vibrations while the imaginary part describes 
the period of vibrations; 

• the mass proportions and coordinates of the concentrated masses have an influ-
ence on the imaginary part of the higher frequency, but it seems that they have no 
effect on its real part; 

• the damping coefficients affect both real and imaginary part of the higher fre-
quencies; 

• the higher frequencies are not dependent on the dimensionless wave number q; 
• higher damping coefficients make vibration amplitudes decrease faster. 
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Abstract  

In the paper the possibility of model based detection of local faults in helical gears is analysed. Presented 
methods allow early detection of anomalies in the time vibration signal that could be linked to the fatigue tooth 
damages like pitting and tooth fracture. They relies on calculation of different signal parameters for the con-
secutive meshes and allows for acquiring information about the disturbances of the meshing process for partic-
ular tooth pairs. They permit the observation of the energy density changes for the consecutive teeth (or tooth 
pairs) during the normal exploitation of the gearbox. 
All the described methods are based on analysis of the time signals. Contrary to the methods based on spectral 
analysis these methods allow for precise localisation of gear defects and linking them to the particular pinion or 
gear teeth. Additionally they could be used in the procedure of gear manufacturing quality assessment. 
 

Keywords: local meshing plane tooth fault detection, helical gear diagnostics, gear meshing model 

1. Introduction  

Local damage to the gear teeth causes short-term, local impulses in gear vibration signal 
repeated every rotation of the shaft and resulting in the phenomenon of amplitude and 
phase modulation [1–3]. It could be proved [4], that in the initial stage of failures devel-
opment, when the energy of signal changes is particularly small, the signal is dominated 
by the phenomenon of phase modulation. This type of disturbances, manifested in 
the formation and evolution of the phenomena of amplitude, frequency, and multi-
parametric modulation are referred to as low-energy [5]. Low-energy means that 
the power increase of the vibroacoustic signal as a result of the development of nonlinear 
effects is small compared to the changes in the power structure of the individual meshing 
harmonic. 

The main difficulty with studying these phenomena stems from the fact that in 
the signal spectrum the difference between the frequency and amplitude modulation, 
particularly in the initial period characterized by a small modulation index, are difficult 
to distinguish. The main differences are apparent in the phase dependencies of the fre-
quencies modulating the carrier frequency [6]. Phase relationships between these spec-
trum components are at the same disturbed by the difficult to be determined signal trans-
fer function from the signal source to the sensor. 

 In recent years, the time-frequency and wavelet methods are used more frequently 
for the diagnosis of fatigue damage of gears [7-11]. These methods allow locating of 
the disturbed portion of the signal that could be linked to the fatigue local damages like 
pitting and tooth fracture. One of them is the method of spectral Kurtosis developed by 
Antoni [12,13]. This method allows finding the local nonstationarities occurring in 
the signal and determining the signal frequency for which the nonstationarity occur. 
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The method was adapted by Gelman [14] to detect pitting in its early stage. An example 
of its use in the diagnosis of tooth break in the planetary gear of a wind turbine can be 
found in [15]. 

As could be seen from the above short preview of the diagnostic methods of gears, 
current trends in their development are aimed at searching for the detection of individual 
defects. More and more methods are focused not only on the assessment of the technical 
state of a gear, but also on precise determining the location, type and size of the damage. 

The main imperfection of most of these methods is that in the search for diagnostic 
information they use integration methods that are by default averaging analyzed signals. 
In this way, small changes in the signals appropriate for the initial phases of develop-
ment failures are further minimized by the use of signal analysis algorithms. 

The aim of this study was to present diagnostic methods enabling the identification of 
local damage of gears, allowing at the same time precise locations of the damage. 
The objective of these methods was the direct use of time signal processing algorithms. 
Their advantage is the simplicity and speed of action that is of great significance for 
the implementation in the autonomous transmission diagnostic systems and diagnostic 
systems working online. These methods were first tested on a simulation model of 
the gear assembly and later tested during the experiments on a back-to-back test stand. 

2. Simulation model used for testing of the methods  

Possibility of testing new diagnostic methods on a well identified simulation model that 
behaves similarly to the mechanical system simplifies their development allowing gener-
ation of signal frequently impossible to obtain in real experiments. Additionally it opens 
the unique chance to analyse the signal in connection with the known gear behaviour. 

All the developed diagnostic methods were tested on a simulation model which uses 
the method of apparent interference for modelling tooth mesh [16, 17]. The simplified 
diagram of the model is presented on Figure 1. In the model the mating of teeth is real-
ized by means of a complex flexible element representing meshing. It is assumed that 
both the gear and the pinion have the possibility of making an additional rotation in 
relation to the motion resulting from the revolution of their base circles. Thus the princi-
ple of the constant transmission ratio is not maintained enabling analysis of the modula-
tion effects which occur during the toothed gear's operation. This requires modelling of 
the forces working between the mating teeth to define the relationship between the angu-
lar velocities of both toothed wheels. The result of such a wheels motion is the apparent 
interference, i.e. mutual penetration of meshing teeth which should be interpreted as 
their deflection. This interference can be determined by taking into account the meshing 
geometry and is being compensated by the flexible deformation of teeth. 

While calculating the interference of the teeth and the meshing force, a series of fac-
tors which influence the geometry of meshing were taken into account: 

• variable distance between gear axes (shaft runout or flexible shaft deformation), 
• instantaneous error of standard contact angle, 
• pitch errors, variable meshing stiffness along the path of contact etc. 
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Figure 1. Simplified scheme of the simulation model of helical gear [18] 

The meshing stiffness and the changes of its value for the entire path of contact were 
defined by way of a three-dimensional model of a toothed wheel developed with the use 
of FEM. More information about the model with comparison of the digital results with 
results obtained on the test stand could be found in [17]. 

3. Simulation of local gear faults 

Possibility of modelling of the teeth stiffness along the path of contact makes possible 
simulation of tooth fatigue cracks as changes of stiffness for the particular tooth pair and 
pitting as a lack of contact on a part of the tooth profile. As for now the model does not 
allow for the similar changes of friction coefficient that would made pitting simulation 
more realistic. 

In order to show the possibilities offered by the analysis of the signals recorded on 
the test bench supported with simulation model, gear acceleration measurement signals 
are listed together with the simulated meshing force waveforms (continuous and dashed 
lines on upper diagrams of Figure 2). For easiest comparison all the signals were re-
scaled to obtain the same maximum amplitudes. In addition, these waveforms were 
compared with waveforms of the simulated meshing stiffness (bottom diagram). Pre-
sented signal fragments waveforms correspond to about half rotation of the pinion shaft.  

Figure 2 corresponds to the 68 minutes of the tooth fatigue experiment [17], lasting 
a total of about 72 minutes, when the local signal amplitude change caused by 
the change of the pinion tooth stiffness caused by emerging crack at its base is evident. 
The corresponding simulated signal of the total meshing force that matched this was 
obtained for a case of reducing the stiffness of one of the teeth of the pinion by about 
6%. It is worth noting that despite of various manufacturing and mounting deviations of 
the transmission, the amplitude of the signal transmissions in the damaged spot does not 
still exceed the peak amplitude of the entire signal.  
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Figure 2. Comparison of gearbox acceleration recorded during the experiment and 

simulated meshing force for 6% reduction of stiffness on one tooth pair 

On the diagrams on Figure 2, using simulated stiffness waveforms, the vertical cur-
sors were used to mark the changes in mesh conditions. Successively: entering of 
the damaged tooth into two-pair contact, beginning of the one-pair contact, second be-
ginning of the two-pair contact and exiting from the contact of the damaged tooth. It 
should be noted similarity of the total meshing force waveforms obtained through simu-
lation (with a fatigue crack at the base of the tooth) to the actual measurement results of 
the gear. Please note that the pitch errors in the simulation were chosen at random, not 
mapping actual deviations of the test drive. Additionally, used a model is not completely 
consistent with a kinematics of the back-to-back test stand. 

Closer look at Figure 2 point out slightly increased amplitude and disturbed time 
waveform during the second two-pair contact phase of the pair with a damaged tooth. 
Detailed analysis of these waveforms allows drawing conclusions according to the quali-
ty of meshing in case of emerging tooth crack. Entering into contact of the damaged 
tooth causes only slight disturbances in the signal. This is due to its higher stiffness dur-
ing the contact around the tooth base and the fact that the contact is two-pair. Working 
properly previous pair of teeth then carries most of the load torque and reduce of 
the stiffness of the damaged pair is of minor importance.  

Significant changes in the signal occur at the time of the transition to one-pair con-
tact, since the occurrence of increased susceptibility of the tooth gap caused by fatigue 
causes the increased deflection, resulting in a greater impulse of force at the time of 
entering into contact of  the next pair of teeth [19]. Additional impulse is visible in 
the moment of exiting from the contact of the damaged pair. 

4. Methods of detection of local disturbances in the gear signal  

Local disturbances of the vibroacoustic signal caused by fatigue defects discussed in 
the previous chapter could be detected with the use of envelope analysis. Signal enve-
lope is usually calculated as the absolute value of the analytic signal [20-22]. 
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 Z�8� � |$\�8�| � )$��8� � ℋ[$�8�]� (1) 

As calculating Hilbert Transform is time and resource consuming in the digital sys-
tems requiring performing FFT and inverse FFT alternatively Teager Kaiser Operator 
(TKEO) could be used to obtain similar results. TKEO energy operator was first pro-
posed by Teager [23], but the method of its calculation for digital signals and analyzes 
its properties for the first time gave Kaiser [24]. 

TKEO operator is the operator of a non-linear, for continuous signals it has the fol-
lowing form: 

 Ψ[$�8�] ≜ $̀��8�– $�8�$b�8� (2) 

This operator allows the estimation of the instantaneous signal energy, so-called. 
Teager energy, and is often used in the process of demodulating signals instead of 
the traditional approach of using a Hilbert transform [25-26]. 

For digitally sampled signals Teager Kaiser Energy Operator takes the form: 

 Ψ[$�] � $��– $�–�$�0� (3) 

where  $�–�,$�	, $�0� are consecutive signal samples. 

Let us note the simplicity of calculation resulting in multiplying the signal by itself 
and multiplication of the signal by the time shifted signal, which is very easy to obtain in 
digital systems. Trouble-free is also its online calculation since it requires simultaneous 
access to only the last three samples of the signal. Note also the similarity of the operator 
(3) to the square of the amplitude of the signal (see also Figure 3). 

 

 
Figure 3. Comparison of squared envelope and TKEO for the acceleration signal from 

the 68 min. of the experiment (see Figure 2) 

As it was proved above pure signal envelope is not sensitive to the detection early 
stages of defect resulting in subtle changes of the structure of time signals. In the work 
[27] author proposes a methodology to diagnose such lesions based on the segmentation 
of instantaneous signal power. It was later developed in the works [28-29]. 

The method involves comparing each of successive segments of the envelope of 
the averaged signal synchronously related to the lengths of the transverse radial pitch. 
A contractual beginning of segments are determined by the geometry of the gears and 
shaft speed marker, and therefore shifts of the beginning of contacts resulting from teeth 
inaccuracies, def lection of teeth etc. are reflected in the resulting parameter. The enve-
lope of the signal, as opposed to the measured signal is less sensitive to the slow-
changing phase shift, which allows obtaining accurate results for the comparison of 
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the respective segments. The inclusion of a square envelope further enhances the sensi-
tivity of the method to small changes in the signal. Developed diagnostic parameter, 
called Envelope Contact Factor (ECF) is a new time signal calculated as the difference 
between the squares of the envelope waveform of the signal for the related segments of 
adjacent teeth contacts at subsequent times. 

 Jcd�8� � eZ��f, 8�– Z�gf– 1, 8he (4) 

where i–1 and i are numbers of consecutive signal segments. Time symbol t existing in 
equation (4) should be treated conventionally. It means further samples of the signal in 
the respective segments. 

ECF is the energy parameter emphasizing changes in cooperating teeth, due to differ-
ences in meshing forces in neighbouring contacts, as a result of pitch errors, differences 
in the stiffness of the teeth and any inaccuracies of manufacturing of shafts and gears. 
Differences in tooth contacts result in a growth of the teeth dynamic loading and result-
ing stress growth. The higher the volatility index, the more loaded is appropriate pair of 
teeth and the greater the probability that damage will occur at this place. Parameter ECF 
due to the fact that it is a differential parameter is insensitive to slow the changes in 
the signal, and is very well suited for the detection of signals containing pulse-type 
changes that often occur in the case of pitting and breaking gear teeth. Its calculation is 
very fast, because it can be obtained by moving the cyclic data buffer corresponding to 
the entire rotation of the shaft of one segment of the signal (i.e. the first segment be-
comes final), and subtracting the two buffers from each other. 

 Jcd�8� � eZ�g8– ih– Z��8�e (5) 

where τ is the time shift corresponding to the transverse radial pitch.  
While calculating the ECF index in this way one does not have to divide the signal 

into segments. What is important is that the length of the sample corresponding to 
the averaged rotation of the shaft was divisible by the number of teeth on a gear mounted 
on this shaft. This means adopting the same length for each segment corresponding to 
transverse radial pitch. 

Figure 4 shows changes of the ECF index for the last 40 minutes of the experiment 
lasting 72 minutes calculated for the envelope of the signal. Exactly the same results 
were obtained substituting envelope with TKEO operator.  

5. Conclusions  

The proposed methods, in part relate to the differential transforms (e.g. Teager-Kaiser 
Energy Operator), show that it is possible to trace the source of diagnostic information 
without the use of commonly used integral transforms. These methods allow the identifi-
cation of the type of defects and their location, both in terms of damage of the individual 
shafts (e.g., the appearance of eccentricities, or damage of the coupling), as well as dam-
age to the individual teeth of the pinion or wheel. They refer directly to the time signals 
bypassing the most complicated procedures of integration. Their advantage is the sim-
plicity and speed of action of great significance for their implementation in autonomous 
diagnostic systems of gears [30] and diagnostic systems working online. 
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Figure 4. ECF signal for the last 40 min. of the experiment (total of 72 min.) 
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Abstract 

The analysis of the dynamic stability of cellular rotor in asynchronous motor with deformable stator has been 
determined. The values of magnetic tension and angular velocities of the rotor under which the loss of stability 
is observed has been determined. A model of rotor with continuous mass distribution and changeable rigidity 
has been applied in the analysis. In order to estimate the stability of the rotor the equations of its transverse 
vibration has been formulated. This equations connecting the dynamic deflection of rotor with space and time. 
Then the differential equations has been solved. On the basis of the mentioned equations the values of magnet-
ic tension and angular velocities of the rotor under which the loss stability is observed, have been determined. 
 
Keywords: rotor, dynamic stability. 

1. Introduction 

Among in electric machines, the squirrel-cage asynchronous motors occupy a particular 
space. These motors have small value of the magnetic gap. For this reason, the basic 
problem encountered in the phase of construction of such machines is to estimate the 
stability of the rotors. The problem of stability rotors is in relation to the problem of 
vibration. On certain values of some quantities, such as rotational speed, magnetic ten-
sion, rigidity etc., the effect of unstability can take place. The assessment of the stability 
is of particular importance in the case of long rotors loaded by axial force, for example 
rotors of motors of deep-well pumps. Such pumps works in deep waters. Problem of 
estimation of stability of transverse motion of rotors collaborations in non-deformable 
stator are presented in the works [3, 4, 5, 6]. In this paper the influence of deformability 
of the stator on the dynamic stability of rotor has been determined. 

2. Dynamic stability of rotor 

The model of rotor accepted for calculations shown in Fig. 1. 
In order to simplify the considerations a vertical position of the rotor has been as-

sumed. The basis for describing the dynamic stability of the rotor is the differential equa-
tion of the centre line of the beam. The equation can be written as: 

 j *k�
*,k � S, (1) 

where: 
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S  –  flexural rigidity of the section 2, 
y – deflection of the rotor, 
qx – load intensity. 

 

 

Figure 1. The model of rotor accepted for calculations; 1, 2, 3 – sections of the rotor 

The load intensity qx can be introduced in the form: 

 S, � S�, � S�, (2) 

where: 
q1x – load intensity related to the influence of the forces of inertia, 
q2x –  load intensity related to the influence of the magnetic tension. 
 

Deflection of the rotor y(x) can be introduced in the form: 

 ��$� � ���$� � ���$� (3) 

where: 
y1(x) – deflection of the rotor, 
y2(x) – deflection of the stator. 
 

The load intensity q1x can be expressed as: 

 S�, � �& *P�
*5P  (4) 

where: 
μ – unit mass (per unit length) of the section 2 for rotor, 
t – time. 
 

The load intensity q2x can be expressed as [1, 2, 3]: 

 S�, � c ∙ ��$� (5) 
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where: 
C – coefficient of magnetic tension [1, 2, 3]. 
 

Based on equations (1) and (3) differential equations described vibrations of the rotor 
and of the stator has been introduced: 

 m�� *k�O
*,Ok �

*P�O
*5P � n���� � ��� � 0 (6) 

where: 

 m�� � oO
pO , n� �

q
pO (7) 

 
S1 – flexural rigidity of the rotor (of the section 2), 
μ1 – unit mass (per unit length) of the section 2 for rotor. 

 m�� *k�P
*,Pk �

*P�P
*5P � n���� � ��� � 0 (8) 

where: 

 m�� � oP
pP , n� �

q
pP (9) 

 
S2 – flexural rigidity of the stator (of the section 2), 
μ2 – unit mass (per unit length) of the section 2 for stator, 
x – spatial variable. 
 

The solutions of the equation (6) and (8) can be presented in the form an infinite se-
ries: 

 ���$, 8� � ∑ 4���$�r���8�2��� , ���$, 8� � ∑ 4���$�r���8�2���  (10) 

After a separation of variables the following equation has been obtained: 

 
sktEO
s5k � u� sPtEO

s5P � v�r�� � 0 (11) 

where: 

 u� � w��� �w��� � w����0� � w����0� � �n� � n�� (12) 

 v� � w���w��� � n�n� � w����0�w����0� � w����0�n� � w����0�n� (13) 

ωn1 denotes the n-order frequency of free vibrations of rotor (with non-deformable 
stator), 

ωn2 denotes the n-order frequency of free vibrations of stator (with non-deformable 
rotor),  
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ωn1(0) and ωn2(0) denotes n-order frequency of free vibrations of rotor and stator in 
which γ1 = γ2 = 0. 

 
Based on the equation (11) the characteristic equation has been obtained: 

 x�y � u�x�� � v� � 0 (14) 

 

The solutions of the above equation can be presented in the following form: 

 x�,� � ±��{E�){EP�y|E	
�  (15) 

 xK,y � ±��{E0){EP�y|E	
�  (16) 

 

Based on the equation (11) the following condition of instability has been obtained: 

 w����0�w����0� � w����0�n� � w����0�n� ≤ 0 (17) 

The above condition has been obtained: 

 c ≥ pOpP�EOP�V�
�pO0pP 						or						c ≥ q�

��0� (18) 

where: 

 Q � �EOP�V�
�EPP�V� (19) 

 c2 � &�w����0� (20) 

 � � pO
pP (21) 

C∞ – coefficient of magnetic tension of the rotor with non-deformable stator. 
 

Based on inequality (18) the values of magnetic tension under which the loss of sta-
bility is observed has been determined: 

 c�� � q�
��0� (22) 

Ckr – coefficient of magnetic tension of rotor with deformable stator. 
 

The following angular velocities of the rotor in which the loss of stability is observed 
has been determined: 

 w � ��
� gu� � )u�� � 4v�h     or     w � ��

� gu� � )u�� � 4v�h (23) 
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3. Example of calculations 

This chapter presents calculations of a rotor for following data: L = 0,7 m, l = 0,375 m, 
d = 0,05 m, D = 0,08 m. Dimensions of the stator: 

 �� � 0,11	�,					�� � 0,1	� 

has been accepted. Dz and Dw the outside and inside diameters has been signified. The 
unit mass of the rotor: 

 &� � 39,2	 ��C  

and unit mass of the stator: 

 &� � 16,72	 ��C  

has been accepted. 

 w���0� � 873,33	���, w���0� � 3370,8	��� 

 c2 � 29,9	��u,									c�� � 25,83	��u. 
Then angular velocities of the rotor in which the loss of stability occurs has been ob-

tained. 
In which c � 19,62	��u,w � 451,7	��� (with deformable stator). 
In which c � 19,62	��u,w � 512,12	��� (with non-deformable stator). 
In which c � 24,525	��u,w � 370,37	��� (with non-deformable stator). 

4. Conclusions 

1. The deformability of the stator of asynchronous motor decrease of the values of 
the magnetic tension at which the loss of stability occurs. 
 

2. The deformability of the stator of asynchronous motor decrease of the values an-
gular velocity at which the loss of stability occurs. The first velocity is less than 
natural frequency of free vibrations rotors in case of non-deformable stator. The 
second velocity is less than natural frequency of free vibrations 
stator in case of non-deformable rotor. 
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Abstract 

In the paper influence of the damping in the sandwich bar on its dynamic stability is studied using analytical 
methods. This paper presents an analysis of dynamic buckling of a sandwich bar compressed by a periodically 
variable force. In order to determine the dynamic stability of the bar equations of its transverse vibration were 
formulated. From the equations of motion, differential equations interrelating of the dynamic deflection with 
space and time were derived. The partial differential equations were solved using the method of separation of 
variables (Fourier’s method). Then the ordinary differential equation describing the bar vibrations was solved. 
An analysis of the solution became the basis for determining the regions of sandwich bar motion instability. 
Finally, the value of the compressive force at which dynamic stability occurs have been calculated. 
 
Keywords: sandwich bars, stability. 

1. Introduction 

Sandwich constructions are characterized by light weight and high strength. Such fea-
tures are highly valuable in aviation, building engineering and automotive applications. 
The primary aim of using sandwich constructions is to obtain properly strong and rigid 
structures with vibration damping capacity and good insulating properties. Figure 1 
shows a scheme of a sandwich construction which is composed of two thin faces and 
relatively thick core [4, 5, 6, 7, 8]. The core, made of plastic and metal sheet or foil, 
transfers transverse forces and maintains a constant distance between the faces. Sand-
wich constructions are classified into bars, plates and beams. A major problem in 
the design of sandwich constructions is the assessment of their stability under axial loads 
causing their buckling or folding. The existing methods of calculating such structures are 
limited to the assessment of their stability under loads constant in time [7, 8]. There are 
no studies dealing with the analysis of parametric vibration and dynamic stability. 

 
Figure 1. Scheme of sandwich construction: 1 – faces, 2 – core 
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This paper presents a dynamic analysis of a sandwich bar compressed by a periodi-
cally variable force, assuming that the core is linearly viscoelastic. Differential equations 
describing the dynamic flexural buckling of bars are derived and regions of instability 
are identified. The dynamic analysis of sandwich constructions is of great importance for 
vehicles and aeroplanes, since most of the loads which occur in them have the form of 
time-dependent forces. 

2. Equation of sandwich bar motion 

The basis for describing the dynamic buckling of a sandwich bar is the differential equa-
tion of sandwich beam centre line. 

The equation can be written as 

 J5� *k�*,k � S � X ���
o ∙ *P�*,P (1) 

where: 
Et  –  Young’s modulus of the plate, 
I  – moment of inertia of the plates, 
y – deflection of the bar, 
q – load intensity, 
k – a coefficient representing the influence of the transverse force on the deflec-

tion of the bar, 
S – transverse rigidity of the bar, 
x – coordinate signifying position of the cross section of the sandwich bar. 
 
The cross section of the sandwich bar is shown in Fig. 2. 
 

 

Figure 2. Cross section of sandwich bar 

In sandwich constructions a coefficient k = 1. 

 j � 2v'��  (2) 

where: 
b, c  – dimensions of the core (Fig. 2), 
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Gc – modulus of the rigidity of the core material. 
 

Load intensity q can be written in the form: 

 S � S� � S� � SK (3) 

 S� � �d *P�
*,P , S� � �& *P�

*5P , SK � ��� *�
*5  (4) 

where: 
F – compressive force 
µ –  unit mass of the sandwich bar 
ηr – damping coefficient of the core material. 
 

Force F can be expressed as follows: 

 d � d� � d� ∙ cosQ8 (5) 

where: 
F1 – constant component of the compressive force, 
F2 – amplitude of the variable component of the compressive force, 
p – frequency of the variable component F2, 
t – time. 
 

After substituting equations (3) into differential equation (1) the following differen-
tial equation is obtained: 

 J5� G1 � �
oH *k�

*,k � d *P�
*,P � ���

o & *k�
*,P*5P � & *P�

*5P � �� *�
*5 � ���

o �� *��
*,P*5 � 0 (6) 

The above equation is a fourth-order homogenous equation with time-dependent co-
efficients. It was solved by the method of separation of variables (Fourier’s method). 
The solution can be presented in the form of an infinite series: 

 � � ∑ 4��$�r��8�2���  (7) 

where: 
Xn(x) –  eigenfunctions, 
Tn(t) –  functions dependent on the time t. 
 

The eigenfunctions Xn(x), satisfying the boundary conditions at the supports of 
the bar at its ends, have the following form: 

 4��$� � Z�sin ¢�,
£  (8) 

where: 
l – length of the bar. 
 

Having substituted equations (7) and (8) into equation (6), one gets the following or-
dinary differential equation describing functions Tn(t). 

 rb� � 2ℎr̀� �wV���1 � 2¥�cosQ8�r� � 0 (9) 
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where: 

 2ℎ � ¦§
p , 2¥� � �PG¨E© H

P

p�ªEP  (10) 

The square of frequency ω0n can be expressed as follows: 

 wV�� � wV� � �OG¨E© H
P

p  (11) 

where: 
ω0 – the natural frequency of vibration of the bar when F1 = 0, F2 = 0, ηr = 0. 
 

The square of frequency ω0 can be expressed as follows: 

 wV� � ���G¨E© H
k

p«�0¬�­® G¨E© H
P¯

 (12) 

Differential equation (9) is Hill’s equation in the form [1, 2, 3, 4, 5, 6]: 

 rb� � 2ℎr̀� � Ω��[1 � A�8�]r� � 0 (13) 

where h and Ωn are coefficients. 
By solving of equation (13) the boundary lines of the first region of instability has 

been obtained (Fig. 3). 

 

Figure 3. First region of instability (ξ1=0 – without damping, ξ1≠0 – with damping) 

Hence the “wedge” of the first region instability has the coordinates: 

 ¥�� � 2�7� � 27��, n�� � 2)1 � 37� (14) 
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where: 

 7� � G D
±OH

�
 (15) 

From formula (14) the boundary value of coefficient ψw1 at which parametric reso-
nance occurs has been obtained. If ψ1 < ψw1, no parametric resonance arises. It follows 
from the above that there exists compressive force F1 and F2 at which the bar does not 
lose stability. Then the component F2 satisfies a condition: 

 d� ² ��=O��=OP∙p�ªEP

G¨E© H
P  (16) 

3. Example of calculations 

Calculations of the sandwich bar has been performed for the following data assumed: 

v � 25	mm, ' � 7,5	mm, 8 � 0,5mm, ´ � 50	cm, J5 � 7 ∙ 10y	MPa, �� � 70	MPa 
& � 7 ∙ 10��	kg ∙ m��,		 
7� � 0,01:  

If d� � 800	N, then d� ² 78,87	N 
If d� � 1000	N, then d� ² 39,6	N 
If d� � 1100	N, then d� ² 20,6	N. 

 
7� � 0,1: 

If d� � 800	N, then d� ² 225,34	N 
If d� � 1000	N, then d� ² 113,14	N 
If d� � 1100	N, then d� ² 58,86	N. 

4. Conclusions 

Stability of sandwich bar depends on damping in the core. Damping reduces the areas of 
instability sandwich bar compressed by periodically variable force. Exist values of 
damping in which motion of sandwich bar is stability. It follows from the above that 
there exist compressive force components F1 and F2 at which the sandwich bar does not 
lose stability. 

References 

 Z. Dżygadło, S. Kaliski, L. Solarz, E. Włodarczyk, Vibrations and waves, WAT, 1.
Warsaw 1965. 

 N.W. McLachlan, Theory and application of Mathieu functions, Oxford 1947. 2.
 W. Morzuch, Stateczność dynamiczna pręta przekładkowego ściskanego siłą okre-3.

sowo-zmienną, Rozprawy Inżynierskie, 37, 2, 1989. 
 W. Morzuch, Wyboczenie dynamiczne pręta przekładkowego ściskanego siłą okre-4.

sowo-zmienną, Przegląd Mechaniczny, 7-8, 2006 



188 

 W. Morzuch, Dynamic buckling of a sandwich bar compressed by periodically 5.
variable force, Engineering Transations,55,3,217-227,2007 

 W. Morzuch, Dynamic Stability of Sandwich Rod and of Rotor in Bipolar Electric 6.
Drive Motor with Damping, Mechanics and Mechanical Engineering, Vol 14, Num-
ber 2, Łódź 2010. 

 J.F. Plantema, Sandwich construction, Stanford University, London 1966. 7.
 F. Romanów, L. Sticker, J. Teisseyre, Stability of sandwich structures [in Polish], 8.

Skrypt Politechniki Wrocławskiej, Wrocław 1972. 
 
 

 

 



Vibrations in Physical Systems Vol.26 (2014) 

Novel Method of Physical Modes Generation 
for Reduced Order Flow Control-Oriented Models 

Marek  MORZYŃSKI  
Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland 

Marek.Morzynski@put.poznan.pl  

Michał NOWAK  
Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland 

Michal.Nowak@put.poznan.pl 

Witold STANKIEWICZ 
Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland 

Witold.Stankiewicz@put.poznan.pl  

Abstract  

Physical flow modes are of particular interest for Reduced Order Flow Control-Oriented Models. Computation 
of  physical modes as the eigensolution of linearized Navier-Stokes equations is a cumbersome and difficult 
task, especially for large, 3D problems. Instead we propose the solution of Navier-Stokes equation in 
the frequency domain and investigation of the system response to local or global perturbation. The flow varia-
bles are perturbed around steady basic state and the system response is  used to construct mode basis suitable 
for ROMs. 
 
Keywords: Navier-Stokes equation, eigenmodes, Reduced Order Modelling, flow control. 

1. Introduction  

The Reduced Order Models (ROMs) of flow are often based on Galerkin Method [1]. 
This method strongly depends on flow mode basis. In flow modelling we can employ 
mathematical modes, empirical ones or eigenmodes of linearised system. The use of 
mathematical modes is rather a hypothetical solution as the mode basis can be hardly 
defined for general flow conditions. It has been proven that adequate use of both, empir-
ical and physical modes assures high dynamical quality of the flow model [2]. 

There are many well established methods to generate the empirical modes basis. Tra-
ditionally, Proper Orthogonal Decomposition (POD) [3,4] and its modifications are used 
for this purpose. Recently Dynamic Mode Decomposition (DMD) [5,6] being the dy-
namical system identification method is widely used. In the same time there is a substan-
tial progress in eigensolution of linearized Navier-Stokes equations [7,8,9] but eigenso-
lution of generalized, non-hermitian, complex eigenvalue problem remains  a cumber-
some and difficult task. It is particularly pronounced for discretized 3D flow problems, 
described  by systems of (0)106 Degrees of Freedom and requiring the eigensolution of 
such large eigenvalue problems. 

We present here an alternative, novel method of physical modes generation. It is 
based on solution of linearized disturbance equation in frequency domain. Flow varia-
bles are perturbed around steady basic state. Flow responses to random or localized 
volume forces characterized by assumed frequencies closely resemble eigenmodes.  
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2. Governing equations 

The incompressible fluid motion is described by the unsteady Navier-Stokes equation in 
the form: 

  (1) 

 The incompressibility condition is expressed by the continuity equation: 

  (2) 

The Reynolds number is defined as: 

  (3) 

where U  is characteristic velocity, L characteristic length and  kinematic viscosity of 
the fluid. 

We assume that the unsteady solution of the Navier-Stokes equation (1) can be ex-
pressed as the sum of its steady solution and the disturbance: 

  (4) 

This assumption leads us to the disturbance equation, in the form: 

  (5) 

Further we assume small value of the disturbance and linearize equation (5). In the dis-
turbance equation we separate the time and space dependence 

  (6) 

With introduction of equation (6) to the linearized disturbance equation (5) we obtain 
a differential eigenvalue problem having form: 

                  (7) 
Discretization of (7) gives: 

  (8) 

This equation represents the generalized complex, non-hermitian eigenvalue problem. 
The number of DOFs for (8) is usually very large, of order of (0)105 for two-dimensional 
problem and (0)106 for three-dimensional one. 

Particularly three-dimensional eigensystem is a challenging numerical problem to be 
solved. Eigenvalues are often complex conjugate pairs what causes additional problems 
for solution algorithms. 
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Instead of direct solution of (9) we investigate frequency response function having 
form: 

  (9) 

to localized or random forcing. In equation (9) we split real and imaginary part of 
the equation to use real value computer algebra. 

3. Flow solver for 2D and 3D computations 

Solution of disturbance equation in frequency domain required development of adequate 
numerical solver. It is based on our earlier UNS3 system (MF3 for structural problems) 
widely used in flow stability, control and Reduced Order Modelling [1]. UNS3 is based 
on unstructured FEM in penalty formulation and employs second and third order triangu-
lar (2D) or tetrahedral elements (3D).  

The three-dimensional version of the program is  parallelized and based on METIS 
[10] domain partitioning. UNS3 scales linearly up to hundreds of CPUs enabling compu-
tation on grids having several millions of  grid points. Two-dimensional solver uses 
scalar, single processor code. 

For purpose of frequency domain computation the Finite Element has doubled (for 
real and imaginary part) number of DOFs in comparison to our regular Navier-Stokes 
computations. In Figure 1 example grid partitioning to 16 domains, used later for 
the computations  of a  flow around sphere is shown. 

 

 
 

Figure 1. Finite Element (FEM) grid, domain partitioning and grid refinement 
for flow around a sphere  

4. Numerical results 

Solution of disturbance equation requires firstly steady basic solution of the Navier-
Stokes equations. It has been obtained with classical version of UNS3 code. In Figure 3 
the example steady solution for flow around the sphere at Re=250 is shown.  

In Figure 2 we present real and imaginary parts of the modes. It is relatively easy to 
obtain von Karman mode as depicted in the first row. It is  the response of the flow for 
random forcing and the complex value  of (0.1 + i 0.87) yields neutral stability  corrobo-
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rating the  results of flow stability analysis based on eigensolutions of the equation (8). 
In the second row the response to point volume force  at different frequencies and loca-
tions is shown. 

With the 2D results, closely following earlier stability analysis we apply the method 
to three-dimensional flows. For 3D flow the stability investigations are much more rare 
[8]. 

The results for the flow around a sphere at Re=250 are depicted in Figure 3. The so-
lution is obtained for random perturbation of the flow and develops around steady solu-
tion shown in the left part of the figure. Dominating mode is shown with the use of 
Lambda2 criterion. It shows characteristic periodicity of the flow and spreading angle of 
the shedding vortices.  

It should be noted that dominating mode can be relatively easy retrieved also with 
DMD or  POD method. In the case of POD physical modes can be found by analysis of 
time history of slightly perturbed steady solution.   
 

 

Figure 2. Real (left) and imaginary (right) part of the mode for different forcing of the 
flow around two-dimensional circular cylinder at Re = 100 

While for finding the dominating mode any of the mentioned method can be used, 
physical modes characterized by higher frequencies are difficult to determine. DMD 
method shows Fourier modes, doubling the mode frequency and POD determines ener-
getically optimal modes for the limit cycle being, however, not physical ones.   
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Figure 3. Steady flow around a sphere at Re=250 (left). Streamlines and wake contour 
is shown (isosurface of Vx = 0). Right: real (top) and imaginary (bottom) part 

of the dominating shedding mode visualized with the Lambda2 criterion 
 

 

Figure 4. Real and imaginary part of modes for the flow around the wall-mounted 
cylinder. Left: von Karman mode, right: higher, shear-layer mode 

In the next Figure 4 we show both, dominating Karman mode and higher one, deter-
mined with the presented here method. Flow develops around a wall-mounted cylinder.  

In Figure 5 the Lambda2 visualization (top view) of unsteady flow is also shown as 
the reference.   

5. Conclusions 

We presented a novel method of finding physical modes for complex, two- and three-
dimensional flows with the use of frequency domain solutions of linearized Navier-
Stokes equations. It has been shown that the method enables  computation of dominant 
modes as well as higher frequency ones. The modes determined with this method will 
serve as the basis for Reduced Order Models of the flow. The method can be also ap-
plied for  investigation of effect of flow actuators. Both placement and actuation charac-
ter can be modelled with the presented method. In this way flow control can be more 
effectively planned.   
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Figure 5. Unsteady flow around wall-mounted cylinder (top view) visualized 

with the Lambda2 criterion 
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Abstract  

The problem of motion of a unicycle – unicyclist system in 3D is studied. The equations of motion of 
the system were derived using the Boltzmann-Hamel equations. Automatic generation of the Hamel coeffi-
cients eliminates all the difficulties associated with the determination of these equations. Description of 
the unicycle – unicyclist system dynamical model and simulation results are presented in the paper.  
 
Keywords: unicycle, unicyclist, 3D dynamic model, Boltzmann-Hamel equations 

1. Introduction  

1.1. Unicycle – one wheel vehicle 

Unicycle – one wheel vehicle is a specific type of single track vehicle commonly named 
a bicycle. It has only one road wheel. Unicycle is a "descendant" of Penny-farthing 
which is a bicycle with a large front driving wheel and a small rear rolling wheel. Penny-
farthing and unicycle are shown in Fig. 1. 
 

a)  b)  

Figure 1. a) Penny-farthing [1]; b) unicycle [2] 
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Unicycle was created in the late nineteenth century, after removing from penny-
farthing rear wheel with frame [3]. Unicycle has considerably fewer parts than a regular 
bicycle. Its parts resemble counterparts for bicycles only visually. 

The main feature of unicycle is fixed gear. It means that the cranks are connected rig-
idly to the wheels. Therefore, the rotation of the cranks directly controls the rotation of 
the wheel. Riding is impossible without pedalling. This gives the option to ride back-
wards or to stand up. Furthermore, the fixed gear imposes that the bicycle has only one 
ratio. 

The average person standing in upright position has a centre of gravity around 
the belly button, as shown in Fig. 2. The unicyclist can easily maintain upright position. 
However, to ride comfortably, the distance between the saddle and the pedal in its lowest 
position must be slightly shorter than the length of the unicyclist’s leg. Thus, the centre 
of gravity is higher than the distance from the ground to the pedal at its lowest position. 
Undoubtedly, it makes riding more difficult. 

 

 

Figure 2. Average person’s centre of gravity and the unicyclist’s 
centre of gravity position 

Riding a unicycle is more difficult than a regular bicycle, also due to the fact that 
there is only one point of support. For this reason, balance must be maintained in two 
planes simultaneously. Maintaining the balance in the plane transversal to the direction 
of riding (lateral) involves balancing with hips to maintain the centre of gravity above 
the fulcrum of the wheel. In contrast, maintaining balance in the plane parallel to 
the direction of travel ("forward - backward"), consists of accelerating or slowing down 
the drive wheel so that the centre of gravity oscillates above the fulcrum of the wheel. 

1.2. Unicycle in technical aspect 

In mechanical aspect unicycle with unicyclist, can be considered as a moving double 
inverted spherical pendulum. The first part is the unicyclist’s body, while the second, 
unicycle’s frame with unicyclist’s legs. If we assume that the wheel is also one of 
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the links of the pendulum the model has the form of triple spherical pendulum. Such 
approach to the unicycle – unicyclist system fully corresponds to reality. It is impossible 
to stand in place without balancing. 

During riding a unicycle the initial set value is the vertical position. Theoretically, 
unicyclist begins to lose balance. By measuring element, which is the membranous laby-
rinth feels that swings from a position of unstable equilibrium. This deflection is treated 
as a control error. Then, the control unit, in this case the unicyclist’s brain, sends signals 
to appropriate parts of the body, or actuators. As the result the unicyclist balances with 
the whole body and returns to the upright position. 

Summarizing, the unicycle with a ride-on unicyclist, in control aspect can be treated 
as a follow-up control system. 

 

 
Figure 3. Follow-up control system 

1.3. Boltzmann-Hamel equations 

Quasi-velocities are convenient in description of motion of variable configuration sys-
tems. The introduction of quasi-velocities into the description of motion of a system is 
convenient when their use allows compact notation of kinetic energy and equations of 
motion, e.g. when investigating systems containing elements undergoing relative motion.  

The Boltzmann-Hamel equations are rarely used because of complicated formulae 

containing Hamel coefficients ( i
njγ ) and complex relationships for the determination of 

these coefficients [4-8].  
The classic form of the Boltzmann-Hamel equations for a system with the number of 

coordinates equal to k is as follows (see [4, 5]) 
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where ( )kjw j K,1=  denotes quasi-velocities defined by generalized velocities nq&  
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Introducing Hamel coefficients ( i
njγ ) defined as 
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we obtain simple form of Boltzmann-Hamel equations 
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Matrix form [9] of Boltzmann-Hamel equations  
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allows to automate generation of Hamel coefficients and eliminates all the difficulties 
associated with the determination of these quantities [9].  

Analysis of dynamics of unicycle based on Boltzmann-Hamel formalism is presented 
in the next section. 

2. Description of the analysed model  

For the unicycle-unicyclist model description we use fixed inertial frame Oxyz (Fig. 4) as 
well as moving frame Bx’y’z’ – parallel to Oxyz. Third frame Bx1 y1 z1  is the wheel plane 
embedded no inertial frame. 

 

 

Figure 4. Model of the unicycle – without unicyclist  

To consider the motion of the unicycle wheel model, we introduce the following 
generalized coordinates  
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 Tyx ],,,,[ ψϕθ=wq , (6) 

where θ, φ, ψ are Euler angles describing wheel spatial orientation and x, y are coor-
dinates of the contact point P. The unicycle frame orientation with respect to the wheel 
(frame Bx1 y1 z1) is described by angle β1 whereas the unicyclist upper torso orientation 
by angles α2, β2 and γ2. The frame-unicyclist model generalized coordinates are 

 T],,,[ 2221 γβαβ=fq . (7) 

Unicyclist legs orientation depends on coordinates θ, φ, ψ, β1.  
Quasi-velocities (Fig. 4) defining the wheel model velocities are assumed in the fol-

lowing form: 
 

θω &== 11w , θψϕω cos22 && +==w , θψω sin33 &==w , 

ψϕ cos4 && axw +−= , ψϕ sin5 && ayw +−= , 
(8) 

 

(a is the radius of the wheel). Equations (8) are valid under assumption that the wheel is 
a rigid disc making point contact with the road and rolls without longitudinal slip on a 
flat surface. It means that the constraint equations for the wheel are: w4=0, w5=0. 

Matrix form of (8) defines matrices B and A used in equation (5): 
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Kinetic energy of the wheel is obtained by formula  
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Kinetic energy for the other parts of unicycle-unicyclist model are expressed similarly 
(however, these relations are more complicated). 

Equations of model dynamics based on Boltzmann-Hamel equation (5) were generat-
ed automatically and solved using Mathematica. 

3. Simulation results  

Some results of numerical simulation for the unicycle-unicyclist model motion are 
shown in Figures 5-8.  

Wheel – floor contact point trajectory and wheel centre trajectory for particular data 
(a = 0.3 m; mw = 5 kg; J1 = 0.25 kgm2; J2 = 0.25 kgm2; J3 = 0.5 kgm2) are depicted in Fig. 
5. The comparison of trajectories for different initial velocity (ϕ& ) and roll angle (θ ) are 

shown in Figures 6-7. 
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Accuracy of simulation results is shown in the Figure 8 where changes in quasi-
velocities values w4 and w5 during simulation process are presented. Constraints equation 
errors have values 10 –11 [m] (for exact solution w4=0, w5=0). 
 

 

 

Figure 5. Unicycle wheel simulation results: a) 3D view, b) wheel – floor contact point 
trajectory (dashed line) and wheel centre trajectory (solid line) 

 

 

Figure 6. Comparison of contact point trajectories and wheel centre trajectory 
for different initial velocity (ϕ& ) and roll angle (θ ): 

a) srad /3)0( −=ϕ&  and srad /6)0( −=ϕ&  (for o110)0( =θ ), 

b) srad /3)0( −=ϕ&  and srad /5)0( −=ϕ&  (for o90)0( =θ ) 
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Figure 7. Comparison of contact point trajectories and wheel centre trajectory for 
srad /3)0( −=ϕ&  and srad /5)0( −=ϕ&  ( o80)0( =θ ) 

 

   

Figure 8.  Constraints equations error (quasi-velocities values w4 and w5) 

4. Conclusions  

The matrix notation of Boltzmann-Hamel equations eliminates drawbacks occurring 
with the classical formulation of these equations. Its use allows the automation of 
the process of generating equations of motion. To obtain equations of motion in the form 
of quasi-coordinates and quasi-velocities it is sufficient to set the matrix transforming 
the generalized velocities into quasi-velocities, the kinetic energy and the vector of gen-
eralized forces. This procedure is general and can be used for solving many problems.  

Motion analysis of a unicycle – unicyclist 3D model presented in the paper is the first 
step of larger work. In the future, the model will be extended and the system control 
method will be proposed in order to design a prototype of the unicycle, which can keep 
balance for unicyclist. Dynamic stability of unicycle will be also analysed. 

References 

 http://www.weranda.pl/galeria-zdjec/bicykl/1/?id=23758 [dostęp: 18-12-2011] 1.
 http://qu-ax.com/en/products [dostęp: 18-12-2011] 2.

�1 1 2 3 4 5
x �m�

1

2

3

y �m�

1 2 3 4 5 6
t �sec�

2.�10�11

4.�10�11

6.�10�11

8.�10�11
w4

quasi velocity w4�a�
•

cos��x
•
�0

1 2 3 4 5 6
t �sec�

�8.�10�11

�6.�10�11

�4.�10�11

�2.�10�11

w5
quasi velocity w5�a �

•
sin��y

•
�0



202 

 Pawełczak K.: Poradnik monocyklisty. Wydanie I, Warszawa 2009. 3.
 R. Gutowski R, Mechanika analityczna, PWN Warszawa 1971. 4.
 J.I. Nejmark, N.A. Fufajew, Dynamika układów nieholonomicznych, PWN Warsza-5.

wa 1971. 
 W. Blajer, Metoda projekcyjna - teoria i zastosowania w badaniu nieswobodnych 6.

układów mechanicznych. WSI Radom, 13/1994. 
 W. Blajer, Projective formulation of Lagrange's and Bolzmann-Hamel equations for 7.

multibody systems. ZAMM, 75 (1995). 107 – 108. 
 J.M. Maruskin, A.M. Bloch, The Boltzmann's Hamel equations for the optimal con-8.

trol of mechanical systems with nonholonomic constraints, Int. J. Robust. Nonlinear 
Control 21 (2011). 

 J. Grabski, J.Strzałko, Automatic Generation of Boltzmann-Hamel Coefficients for 9.
Mechanical Problems. Mechanics and Mechanical Engineering International Jour-
nal, 1 (1997) 61 – 77. 

 
Paper presented on XXVI Symposium on Vibrations in Physical Systems, Poznan – Bedlewo, May 4-8, 2014. 

 

 



Vibrations in Physical Systems Vol.26 (2014) 

Finite Element Analysis of Dynamic Properties of Thermally Optimal 
Two-phase Composite Structure 

Maria NIENARTOWICZ  
Institute of Applied Mechanics, Poznan University of Technology 

ul. Jana Pawla II 24, 60-965Poznan, Poland 
maria.nienartowicz@doctorate.put.poznan.pl 

Tomasz STRĘK 
Institute of Applied Mechanics, Poznan University of Technology 

ul. Jana Pawla II 24, 60-965Poznan, Poland 
tomasz.strek@put.poznan.pl 

Abstract 

This paper presents modelling and a FEM analysis of dynamic properties of a thermally optimal two-phase 
composite structure. Simulations were provided for 2D models. At the first step, topology optimization was 
performed, where an internal energy was minimized. At the second step, analysis of dynamic properties was 
executed. Calculations allowed to determine eigenfrequencies and the mode shape of the structure. Solid 
isotropic material with penalization (SIMP) model was used to find the optimal solution. The optimization 
algorithm was based on SNOPT method and Finite Element Method. 
 
Keywords: topology optimization, SIMP model, SNOPT, internal energy  

1. Introduction 

Determination of natural frequencies and mode shapes of the structure are usual first 
steps in performing a dynamic analysis. It is caused by the fact that these factors show 
how the structure will respond to dynamic load.  

Natural frequencies of a structure are the frequencies at which system tends to oscil-
late without the absence of damping or driving force, whereas the mode shape (normal 
mode of vibration) is a deformed shape of the structure which appears at a specific natu-
ral frequency of vibration. Natural frequencies and mode shapes are functions of bound-
ary conditions and structural properties.  

There are many reasons why the analysis of dynamic properties is executed. One of 
them is to determine the dynamic interaction between a component and a structure to 
which it is attached, like for example, an air conditioner installed on the roof of a build-
ing. In this case, it is essential to check if the operating frequency of the rotating fan is 
not too close to the eigenfrequency of the building. Another example is comparing 
the results of the analysis with results obtained in real tests. Thereby, the results of the 
analysis can support the experiment, e.g. showing areas where accelerometers should be 
placed. Determination of eigenfrequencies and mode shapes is also used in the design 
process. It is necessary to check the influence of particular design changes of the struc-
ture on the dynamic parameters. 
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There are many examples of analysis of dynamic properties in literature. Paper [1] 
presents an investigation into the frequency dependant viscoelastic dynamics of a multi-
functional composite structure from a finite element analysis and experimental valida-
tion. After model parameter identification, a numerical simulations were carried out. 
Thereby, the damping behaviour of first two vibrations modes was predicted. At the next 
step, the numerical results were validated by the experimental tests on the layered com-
posite beam. 

The dynamic problem of reinforced concrete slabs stiffened by steel beams with de-
formable connection including creep and shrinkage effect is considered in [2]. In 
the papers, authors took into consideration the in-plane forces and deformations of 
the plate in the adopted models and also the axial forces and deformations of the beam. 
The mode shapes and eigenfrequencies of the stiffened concrete slab were determined. 

In papers [3], a four types of integral finite elements were developed and used to es-
timate the dynamical characteristics of elastic-viscoelastic composite structures. 
The composite structures were sandwich beam, plate and shell structures with viscoelas-
tic materials as core layers. The results from the direct frequency response method and 
experiment were compared to the results of the integral finite element prediction, which 
revealed that integral finite elements are passable regarding to engineering applications. 

An analysis of the dynamic properties of multiple damping layer, laminated compo-
site beams with anisotropic stiffness layers was investigated in [4]. For this purpose 
the finite-element-based modal strain energy method was used. In this study the varia-
tion of resonance frequencies and modal loss factors of various beam samples with tem-
perature were analyzed. 

The dynamic behaviour of fibre reinforced plastic sandwich plates with PCV foam 
core was considered in [5]. The equations of motion, which were obtained by authors, 
are used to perform steady state analysis and to determine the natural frequencies and 
modal loss factors of specific composite sandwich plates. 

Study [6] is intended to analyze the damping of PVC foams under flexural vibrations 
of clamped free beams. A finite element analysis based on the sandwich theory was used 
to model the natural frequencies and the damping of the beams. Authors took into ac-
count the numerical and experimental results to derive the shear modulus and the damp-
ing of PVC foams as functions of the frequency. 

Papers [7] were devoted to examination of the viscoelastic damping model of the cy-
lindrical hybrid panels with co-cured, free and constrained layers. For this purpose, 
the refined finite element method based on the layerwise shell theory was used. In this 
study, the damped natural frequencies, modal loss factors and frequency response func-
tions of cylindrical viscoelastic hybrid panels were determined and compared with those 
of the base composite panel without a viscoelastic layer. 

In [13] authors present computational analysis of sandwich-structured composites 
with an auxetic phase. The total energy strain is analyzed. In papers the application of 
SIMP model was used to find the optimal distribution of a given amount of materials in 
sandwich-structured composite. Authors also propose a multilayered composite structure 
in which internal layers surfaces are wavy. 



 Vibrations in Physical Systems Vol.26 (2014) 205 

2. Optimization of the average internal energy 

The first step in presented effort was to optimize the average internal energy in consid-
ered two-phase structure. The average internal energy Ei½¾¿ is calculated using equa-
tion 1: 

 Jf{À� � �
�I Jf± 3Ω  (1) 

Here Ω refers to the design domain, Ei is the internal energy and A is the area of 
the domain. 
The objective function of the considered design optimization problem depends on 
the design variable � � ��$� as follows: 

 Jf{À���� � �
�I Jf± ���3Ω (2) 

The internal energy of the solid was calculated by the following equation:  

 Jf{À���� � '�r��� (3) 

where cÁ is the heat capacity and T�r� is the temperature. 
The temperature is calculated using Fourier's equation 4 (Fourier's law of steady state 
pure conduction) [12]: 

 �Ã ∙ �X���Ãr� � Ä, (4) 

where k�r� is the thermal conductivity and Q is the heat source. 
Using the Solid Isotropic Material with Penalization (SIMP) model in topology op-

timization in a two-phase structure [8], one can write the generalized thermal conductivi-
ty in the form of: 

 X��� � X� � �X� � X�� ∙ ��, Q > 1, X� ² X� (5) 

Here � is a control variable (design variable), Q is a penalty parameter, X� and X� are 
thermal conductivity values of the first and the second material respectively. 

In the considered case, the control variable is related to thermal conductivity parame-
ter of the isotropic material and is interpolated from 0 to 1, which corresponds to the first 
and the second material respectively, using penalty scheme which affects the material 
distribution. The value of the penalty parameter above 1 ensures that density values of 0 
(first material) or 1 (second material) are favoured ahead of the intermediate values. 

One can interpret a control (design) variable � � ��$� as a generalized material den-
sity which satisfies the following constraints: 

 0 ≤ I ��$�Ç 3È ≤ É,  0 ≤ ��$� ≤ 1, (6) 

where V is the second material's volume available for distribution. 
In the considered structure, the optimal material distribution is found for a given ob-

jective and constraints by assigning each element an individual control variable value. 
For the purposes of this research, Sparse Nonlinear Optimizer (SNOPT) code was used. 
This gradient optimization algorithm was developed by P. E. Gill, W. Murray and M. A. 
Sunders [9]. In this method, the objective function can have any form and any con-
straints can be applied. SNOPT is suitable for large-scale linear and quadratic program-
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ming and for linearly constrained optimization, as well as for general nonlinear pro-
grams. This algorithm minimizes a linear or nonlinear function subject to bounds on the 
variables and sparse linear or nonlinear constraints. 

3. Equation of motion of the solid 

For the purpose of calculation the Navier's equation of motion was used which takes 
a form of [10]: 

 Ë *PÌ
*5P � ∇ ∙ Î � 0 (7) 

where the force has been omitted, u is the displacement vector, Ë is the density, # is 
the stress tensor and can be written as [11]:  

 Î � ÐÑ � x�∇ ∙ Ì�Ò � 2&Ñ. (8) 

Here I is the identity matrix, ε � �
� �∇ ∙ u � �∇ ∙ u�Õ� is the strain tensor, x i & are Lame 

parameters presented in the equation: 

 & � � � �
���0Ö�, x � �∙Ö

����Ö���0Ö� (9) 

where J – Young's modulus, � – shear modulus, × – Poisson's ratio. 
Using the aforementioned equation one can write Navier's equation of motion for iso-

tropic solid for the linear constitutive relation between stresses and deformations [10] as:  

 Ë *PÌ
*5P � �&∇�Ì � �x � &�∇∇ ∙ Ì� � Ø. (10) 

A real harmonic displacement satisfies the equation: 

 
*PÌ
*5P � �w�Ì. (11) 

where ω is the circular frequency with period 2π/ω. 
The displacement vector can be written in the complex form of: 

 Ì�$� � Ì��$� � fÌ��$�. (12) 

Here the harmonic displacement became a real part of complex field: 

 Ì�Ü, 8� � ℛℯ[Ì�Ü�ß���5]. (13) 

Pursuant to the above equations the harmonic equation of motion satisfies formula: 

 �Ëw�Ì � �&∇�Ì � �x � &�∇∇ ∙ Ì� � 0. (14) 

The foregoing equation can be viewed as an eigenvalue equation for the operator 
&δ!á∇� � �x � &�∇!∇á with eigenfunction u�x� and eigenvalue in the form of �Ëw� [10]. 

4. Numerical results 

This section presents an analysis of dynamic properties for a two-phase structure whose 
topology was optimized. The considered model consists of steel and polyurethane foam. 
The thermal and mechanical properties are presented in Table 1. 

As it was mentioned above, the first step was to minimize the average internal ener-
gy. For this purpose, a 2D model, with applied boundary conditions, was prepared (see 
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Figure 1). A fraction of the domain to use for the distribution of the second material is 
equal to Afrac and took the value of 0.4. 

Table 1. Thermal and mechanical properties of the model 

Property Material 1– Polyurethane foam Material 2 – Steel 
J [Pa]

 
4e9 2e11 

× 0.4  0.25 
Ë [kg/m3] 50 8000 
X [W/mK] 0.03 58 

 

 

Figure 1. Boundary conditions for topology optimization 

During the optimization process, a distribution of the control variable was obtained, 
as it is presented in Figure 2. In the figure below, value 1 is assigned to material 2 (white 
colour) with higher thermal conductivity, and value 0 is assigned to material 1 (black 
colour) [14]. 

 

Figure 2. Distribution of control variable for Afrac=0.4 
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In Figure 3, boundary conditions for analysis of dynamic properties are presented. At 
the top of the model, boundary load d�8� was applied, additionally the model was fixed 
on two sections at the bottom boundary. 

At the second step of calculations, six eigenfrequencies were determined. The values 
of the eigenfrequencies are presented in Table 2. In Figures 4–9, the amplitude of 
the forced vibration and mode shapes are presented for each eigenfrequency.  

Table 2. Determined eigenfreqiencies 

No. 1 2 3 4 5 6 
Value of eigenfrequency [Hz] 5502.93 7712.40 14618.93 15047.05 17713.10 19548.60 

 

 

Figure 3. Boundary conditions for analysis of dynamic properties 

The boundary load can be written as: 

 d�8� � d£â{s sin�w8�, (15) 

where d£â{s � 10000	[ã/��]. 
For the purpose of the analysis of dynamic properties Young modulus, Poisson's ratio 

and material density were written in the form of interpolation scheme SIMP for isotropic 
materials, as it is presented in formulas (16), (17) and (18). 

 J��� � J� � �J� � J�� ∙ ��, Q > 1	, 			J� ² J� (16) 

 ×��� � ×� � �×� � ×�� ∙ ��, Q > 1	, 			×� > ×� (17) 

 Ë��� � Ë� � �Ë� � Ë�� ∙ ��, Q > 1	, 			Ë� ² Ë� (18) 

where: E� and E� are Young's moduli, ν� and ν� are Poisson's ratios, ρ� and ρ� are den-
sities for the first and the second material respectively. 
 

 
Figure 4. a)The amplitude of the forced vibration 

 
Figure 4. b) Mode shape for the first eigenvalue 
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Figure 5. a) The amplitude of the forced vibration 

 
Figure 5. b) Mode shape for the second eigenvalue 

 
Figure 6. a) The amplitude of the forced vibration 

 
Figure 6. b) Mode shape for the third eigenvalue 

 
Figure 7. a) The amplitude of the forced vibration 

 
Figure 7. b) Mode shape for the fourth eigenvalue 

 
Figure 8. a) The amplitude of the forced vibration 

 
Figure 8. b) Mode shape for the fifth eigenvalue 

 
Figure 9. a) The amplitude of the forced vibration 

 
Figure 9. b) mode shape for the sixth eigenvalue 

5. Conclusions 

The paper presents an analysis of the dynamic properties of a thermally optimal two-
phase structure. In the first stage of the calculations, a 2D model of a two-phase structure 
was optimized. Thereby, the minimum average internal energy was achieved. At 
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the second step, six eigenfrequencies were determined for the model with the optimal 
topology. Subsequently, the amplitude of the forced vibration and mode shapes are pre-
sented for each eigenfrequency. 

References 

 Y. Wang, D. J. Inman, Finite element analysis and experimental study on dynamic 1.
properties of a composite beam with viscoelastic damping, Journal of Sound and 
Vibration, 332 (2013) 6177-6191. 

 E.J. Sapountzakis, Dynamic analysis of composite steel–concrete structures with 2.
deformable connection, Computers and Structures, 82 (2004) 717-729. 

 Q. Chen, Y.W. Chan, Integral finite element method for dynamical analysis of elas-3.
tic-viscoelastic composite structures, Computers and Structures, 74 (2000) 51-64. 

 M. D. Rao, R. Echempati, S. Nadella, Dynamic analysis and damping of composite 4.
structures embedded with viscoelastic layers, Composites Part B, 28B (1997) 547-
554. 

 M. Meunier, R. A. Shenoi, Dynamic analysis of composite sandwich plates with 5.
damping modelled using high-order shear deformation theory, Composite Struc-
tures, 54 (2001) 243-254. 

 M. Assarar, A. E. Mah, J. M. Berthelot, Evaluation of the dynamic properties of 6.
PVC foams under flexural vibrations, Composite Structures, 94 (2012) 1919-1931. 

 I. K. Oh, Dynamic characteristics of cylindrical hybrid panels containing viscoelas-7.
tic layer based on layerwise mechanics, Composites: Part B, 38 (2007) 159-171. 

 M.P. Bendsøe, O. Sigmund, Topology Optimization Theory, Methods, and Applica-8.
tions, Springer 2003. 

 P.E. Gill, W. Murray, M.A. Saunders, SNOPT: An SQP Algorithm for Large-Scale 9.
Constrained Optimization, SIAM REVIEW, 47(1) (2005) 99-131. 

 B. Lautrup, Physics of Continuous Matter, Exotic and Everyday Phenomena in the 10.
Macroscopic World, IOP 2005. 

 O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, Volume 2, Solid Me-11.
chanics, Butterworth-Heinmann 2000. 

 S. Wiśniewski, T. S. Wiśniewski, Heat Transfer (in Polish: Wymiana ciepła), WNT 12.
2000. 

 Strek T., Jopek H., Maruszewski B. T., Nienartowicz M., Computational analysis of 13.
sandwich-structured composites with an auxetic phase, Phys. Status Solidi (b)., Vol. 
251, Issue 2, DOI: 10.1002/pssb.201384250, (2014) 354-366,  

 M. Nienartowicz, T. Strek, Topology optimization of the effective thermal proper-14.
ties of two-phase composites, Recent Advances in Computational Mechanics, T. 
Łodygowski, J. Rakowski, P. Litewka (Red.), CRC Press (2014) 223-236 

 
 
 



Vibrations in Physical Systems Vol.26 (2014) 

Transverse Vibration Analysis of a Compound Plate 
with Using Cyclic Symmetry Modeling 

Stanisław NOGA 
Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology 

al. Powstańców Warszawy 12, 35–959 Rzeszów, Poland 
noga@prz.edu.pl 

Abstract 

In the paper the transversal vibration of a representative annular plate with complex geometry is studied on 
the basis of the numerical method and simulation. The research is focused on preparing the numerical model 
by using the cyclic symmetry modeling approach. The obtained results are discussed and compared with 
the experimental data. FE models are formulated by using ANSYS code. 
 
Keywords: transversal vibration, cyclic model, annular plate 

1. Introduction 

Problems of transverse vibration of annular plates have been the subject of many recent 
investigations [1, 4]. This is due to the fact that some rotating systems can be treated as 
annular plates, where both their shape and dimensions are affected by the design of these 
systems. In papers [1, 4] the authors analyse free transverse vibration of toothed gears by 
using the finite element (FE) technique. In papers [3, 4] the cyclic symmetry modeling is 
included in the solving process of the vibration problems of compound systems. In 
the above presented article free transverse vibration of a compound annular plate is ana-
lysed by using the FE technique and experimental investigation. 

2. Formulation of the problem 

The objective of this paper is to present the methods of FE modeling of the compound 
annular plates transverse vibration and analyse their usefulness in the representation of 
the vibration process. For that purpose, a set of two compound circular plates has been 
analysed. The analysed systems have the geometry as it is displayed in Figure 1. Primary 
geometrical dimensions of the systems (diameters: dz, dw, d1; thickness: lr, lw) are shown 
in Table 1. 

Table 1. Parameters characterizing the analysed plates 

No of 
models 

dz 
[m] 

dw 
[m] 

d1 
[m] 

lr 
[m] 

lw 
[m] 

E 
[Pa] 

ρ  
[kg/m3] 

ν 

1 0.191 0.159 
0.02 0.008 0.002 2.1⋅1011 7.85⋅103 0.28 

2 0.203 0.147 
 

In these Table, E is Young’s modulus of elasticity, ρ is the mass density and ν is 
the Poisson ratio, respectively. 
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Figure 1. Geometrical models of the systems 

For each case the problem of free vibration is solved by the finite element method. After 
elaboration of discrete models of the structures to be analysed, the differential equations 
of motion of the each analysed system can be written in the form [2] 

 0=+ KuuM &&  (1) 

where M is the global mass matrix, K is the global stiffness matrix, and u is the nodal 
displacement vector. Both global mass and stiffness matrices are obtained from the ele-
ment matrices that are given by [2] 

 ( ) ( ) ( )
( )

( ) ( )
( )∫∫ ==
ee V

eTe

V

eTee dVdV BEBKNNM ,ρ  (2) 

where ρ (e) is density of the element, N is the matrix of the element shape functions, B is 
the element shape function derivatives matrix, E is the material stiffness matrix, and V (e) 
is volume of the element. The natural frequencies of the system are obtained by solving 
the eigenvalue problem 

 ( ) 02 =− uMK ω  (3) 

where ω  is natural frequency and u  is corresponding mode shape vector, which is 
determined by the relation (3). The number of eigenpairs ( ii u,ω ) corresponds to 

the number of degrees of freedom of the system. The block Lanczos method is applied to 
solve the eigenvalue problem (3). Because of the discretization process, the FE models 
of the considered systems are treated as approximations of the exact systems. The error 
between the objects and the FE models is defined by 

 ( ) [ ]%100×−= eef ωωωε  (4) 

where fω  is the natural frequency from the FE solution, while eω  is the natural fre-
quency of the exact system. Equation (4) is the so–called frequency error [2]. For 
the investigation presented in this paper the needed accurate values of the natural fre-
quencies are achieved by the realization of experimental investigation. 
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3. Numerical analysis 

In this section, the FE models of the systems under consideration are prepared and natu-
ral frequencies of the transverse vibration are determined. In accordance with the circu-
lar and annular plate vibration theory [2] the particular natural frequencies of vibration 
are denoted as ωmn where m refers to the number of nodal circles and n is the number of 
nodal diameters. For each system, three FE models are realized. The first FE model is 
prepared as follows. Each geometrical model of these systems is meshed by using stand-
ard procedures of the ANSYS software. The 3–D solid mesh is prepared and the ten 
node tetrahedral element (solid187) with three degrees of freedom in each node is em-
ployed to realize each model. During the mesh generation process, it is assumed that 
the maximum length of each element’s side needs to be no more than 2 [mm]. The big-
ger FE model refers to the second object and includes 143760 solid elements. The small-
er FE model includes 97404 solid elements. For all models discussed here, calculations 
were continued until the natural frequency ω16 was determined. Tables 2 and 5 display 
the natural frequencies obtained by using the discussed FE models. 

Table 2. Natural frequencies of the first FE model related to the object no 1 ωmn [Hz] 

 
n 

 0 1 2 3 4 5 6 

m 
1 236.5 149.4 643.6 1770 3340 5292 7523 
2 1932 2240 2899 3931 5327 7009  
3 4531 5167 6580     

 

The second FE model of each system is prepared by using cyclic symmetry feature of 
the analysed systems. Geometrical model of each system consists of six sectors 
(see Fig. 1b) which have the cyclic symmetry feature. One of these segments is meshed 
by using standard procedures of the ANSYS software and the cyclic symmetry boundary 
conditions are included. The mesh generation and the computation process are conducted 
under the same conditions as for the previously discussed FE model cases (the full model 
cases). The bigger cyclic FE model refers to the second object and includes 23960 solid 
elements. The smaller cyclic FE model includes 16234 solid elements. Thus, the solution 
of free vibration is obtained on the basis of these single symmetric sectors. Tables 3 and 
6 display the natural frequencies obtained by using the discussed cyclic symmetry FE 
models (the first cyclic model cases). 

Table 3. Natural frequencies of the second FE model related to the object no 1 ωmn [Hz] 

 
n 

 0 1 2 3 4 5 6 

m 
1 236.4 149.4 643.6 1770 3340 5292 7523 
2 1935 2240 2898 3930 5327 7009  
3 4530 5166 6579     

 

The third FE model of each system is prepared in the same manner as the second FE 
model cases, but the maximum length of each element’s side is different. For these cases 
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the maximum length of each element’s side is no more than 1.5 [mm]. So, the bigger 
cyclic FE model, which refers to the second object, includes 57834 solid elements and 
the smaller cyclic FE model includes 38131 solid elements, respectively. Tables 4 and 7 
show the natural frequencies obtained by using the above cyclic symmetry FE models 
(the second cyclic model cases). 

Table 4. Natural frequencies of the third FE model related to the object no 1 ωmn [Hz] 

 
n 

 0 1 2 3 4 5 6 

m 
1 235.8 148.9 643.4 1770 3340 5291 7519 
2 1928 2233 2890 3922 5317 6997  
3 4520 5157 6566     

 

Table 5. Natural frequencies of the first FE model related to the object no 2 ωmn [Hz] 

 
n 

 0 1 2 3 4 5 6 

m 
1 213.5 123.4 658.9 1804 3398 5403 7781 
2 1916 2458 3337 4507 6059   
3 4109 4680 6321     

 

Table 6. Natural frequencies of the second FE model related to the object no 2 ωmn [Hz] 

 
n 

 0 1 2 3 4 5 6 

m 
1 213.5 123.3 658.9 1804 3398 5403 7781 
2 1916 2457 3336 4507 6059   
3 4108 4679 6321     

 

Table 7. Natural frequencies of the third FE model related to the object no 2 ωmn [Hz] 

 
n 

 0 1 2 3 4 5 6 

m 
1 212.8 122.9 658.8 1804 3398 5403 7781 
2 1913 2452 3326 4496 6046   
3 4092 4666 6312     

4. Experimental studies 

In this section the results related to the experimental verification of the considered nu-
merical models are discussed. LMS measurement environment is used in the experi-
mental study. The measuring set contained the PCB model 086C03 type modal hammer, 
accelerometer PCB model 353B18, LMS SCADA data acquisition system, and SCM-
V4E type measuring module supported by LMS Test.Lab software. The experimental 
study is conducted to identify natural frequencies and corresponding mode shapes relat-
ed to the transverse vibration of the considered objects. The values of the excited natural 
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frequencies are shown in Table 8 (for the first object) and in Table 12 (for the second 
object), respectively. 

Table 8. Natural frequencies of the first object ωmn [Hz] (experimental investigation) 

 
n 

 0 1 2 3 4 5 6 

m 
1 263.8 141.9 575.6 1697 3272 5233 7463 
2 1847 2247 2948 3976 5318 6941  
3 4397 5001 6453     

 

In Tables 9–11 the values of the frequency error related to the FE models of the first 
object are displayed. In each FE model case, only for two natural frequencies (ω10 and 
ω12) the frequency error is above 10 [%]. In Tables 13–15 the values of the frequency 
error related to the FE models of the second object are displayed. In this object, only 
nine natural frequencies were excited. In each FE model case, for two natural frequen-
cies the frequency error is above 10 [%]. 

Table 9. Frequency error related to the first FE model of the first object εmn [%] 

 
n 

 0 1 2 3 4 5 6 

m 
1 -10.35 5.29 11.81 4.3 2.08 1.13 0.8 
2 4.6 -0.31 -1.66 -1.13 0.17 0.98  
3 3.05 3.32 1.97     

 

Table 10. Frequency error related to the second FE model of the first object εmn [%] 

 
n 

 0 1 2 3 4 5 6 

m 
1 -10.39 5.29 11.81 4.3 2.08 1.13 0.8 
2 4.76 -0.31 -1.7 -1.16 0.17 0.98  
3 3.02 3.3 1.95     

 

Table 11. Frequency error related to the third FE model of the first object εmn [%] 

 
n 

 0 1 2 3 4 5 6 

m 
1 -10.61 4.93 11.78 4.3 2.08 1.11 0.75 
2 4.39 -0.62 -1.97 -1.36 -0.02 0.81  
3 2.8 3.12 1.75     

 

Table 12. Natural frequencies of the object no 2 ωmn [Hz] (experimental investigation) 

 
n 

 0 1 2 3 4 5 6 

m 
1 221.3 106.3 596.3 1740  5330 7709 
2  2444 3254 4389    
3        
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Table 13. Frequency error related to the first FE model of the second object εmn [%] 

 
n 

 0 1 2 3 4 5 6 

m 
1 -3.53 16.09 10.5 3.68  1.37 0.93 
2  0.57 2.55 2.69    
3        

 

Table 14. Frequency error related to the second FE model of the second object εmn [%] 

 
n 

 0 1 2 3 4 5 6 

m 
1 -3.53 16 10.5 3.68  1.37 0.93 
2  0.53 2.52 2.69    
3        

 

Table 15. Frequency error related to the third FE model of the second object εmn [%] 

 
n 

 0 1 2 3 4 5 6 

m 
1 -3.84 15.62 10.48 3.68  1.37 0.93 
2  0.33 2.21 2.44    
3        

5. Conclusions 

The present paper deals with free transverse vibration of a compound annular plate. 
Three FE models are proposed. For all the FE model cases discussed, comparable results 
have been obtained. The most attractive is the second FE model case, which includes 
cyclic symmetry features. Moreover, this model includes a substantially lower number of 
finite elements compared to the remainder of models. It is worth pointing out that in 
the preferred FE model case the maximum length of each element’s side equal to the 
lesser plate thickness was assumed. At this stage of the research, it seems that further 
investigation needs to be continued. 
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Abstract 

In this study the in plane flexural vibration of a thick ring interacting with Winkler foundation is analysed on 
the basis of the analytical and numerical method. The effect of rotary inertia and shear deformation is included. 
The normal frequencies and natural mode shapes of the system vibration are determined. Achieved results are 
discussed and compared with an experimental data. FE models are formulated by using ANSYS code. 
 
Keywords: in–plane vibration, Timoshenko’s theory, thick ring with foundation 

1. Introduction 

The problems of in–plane flexural vibration of circular rings with wheel–plate as an 
elastic foundation find application in several practical problems [6]. The fundamental 
circular rings vibration theory is presented in [5]. In the article [6] authors analyse free 
vibration of a ring gear by using thin ring theory. Free vibration of Timoshenko beam 
attached to linear elastic foundation are investigated in the paper [1]. The introductory 
studies related to the systems of the rings with wheel–plate as the elastic foundation are 
conducted in [3, 4]. In paper [2] the special three–parameter elastic foundation is pro-
posed. In above paper the free in–plane flexural vibration of a circular ring with wheel–
plate as a special three–parameter elastic foundation is analyzed using the classical thick 
ring theory, and the finite element (FE) technique. The procedure of determining 
the substitute mass density of a ring with massless foundation is presented. Obtained 
results of calculation are discussed and compared with experimental data. Experimental 
investigation are conducted by using two objects with the arbitrary chosen geometry. 

2. Theoretical formulation 

The mechanical model of the system under study consists of circular ring with wheel–
plate as a special three–parameter, linear, elastic foundation. It is assumed that ring is 
homogeneous, perfectly elastic and it has rectangular, and constant cross–sectional area. 
It is additionally assumed that the centerline of the ring has radius R and an element of 
the ring, fixed by angle θ, displaces in the radial and circumferential direction, respec-
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tively (see Fig. 1). The small displacements in these directions are denoted as u(θ,t) and 
w(θ,t), respectively, and t is time. According with the theory, discussed in [2], the foun-
dation is represented by the special three–parameter Winkler model. The coefficients kf, 
kp and kS represent the radial and the tangential stiffness per length unit, and the ring 
cross-section angle rotation stiffness modulus, respectively. 
 

 

R 

θ 

ρ 

ring 

foundation 

w 

dθ 

u 

0 

 

Figure 1. Vibrating system under study 

Making use of the classical theory of vibrating thick rings [5], the partial differential 
equations of motion for the free in–plane flexural vibration can be combined into an only 
one equation in terms of the radial deflection u(θ,t) as 
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where E denotes Young’s modulus of elasticity, G is the Kirhoff modulus, I1 is the area 
moment of inertia of the rim cross section, ρ is the mass density, A is the cross section 
area, k is the shear correction factor. The general solution of equation (1) is assumed to 
be harmonic, i.e. 

 ( ) ( ) tUtu ωθθ ie=,  (2) 
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where ω is the natural frequency and 1i −=  is the imaginary unit. Substituting solu-
tion (2) into equation (1) gives the following expression 
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The solution of equation (3) is assumed in the form 

 ( ) ( )∑
=

+=
3

1

sin
j

jnjn nCU ϕθθ ,    K,3,2=n  (5) 

where Cjn and ϕjn are constants. When equation (5) is substituted into equation (3), it 
yields the following frequency equation. 
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Equation (6) is a quadratic equation in ωn
2 and hence two frequency values are associat-

ed with each value of n. The smaller value of ωn
2 corresponds to the flexural mode, and 

the higher value corresponds to the thickness–shear mode. In equation (6) n must be 
an integer with a value greater than 1. 

3. The finite element models 

In this section the FE models of the system under consideration are formulated to discre-
tize the continuous model given by the equation (1). To find the eigenpairs (eigenvalue, 
eigenvector) related to the natural frequencies and natural mode shapes of the ring with 
elastic foundation, the block Lanczos method is employed [5]. The essential problem of 
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this section is prepared the FE model of the system with proper value of the ring substi-
tute mass density ρz and massless elastic foundation, respectively. Two objects are con-
sidered. Analysed systems have the geometry as it is shown in Figure 2. For each object, 
the FE model is realized as follows. The ring part is modeled as the solid body and 
the foundation part is modeled as the massles solid body. The ten node tetrahedral ele-
ment (solid187) with three degrees of freedom in each node is used to solve the problem. 
For each case, the proper value of the ring substitute mass density ρz is selected during 
calculations to minimise the frequency error defined by [2, 3] 

 ( ) %100⋅−= c
n

c
n

f
nn ωωωε  (7) 

where ωn
f is the natural frequencies of the model and ωn

c is the the natural frequencies of 
the object, respectively. 
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Figure 2. (a) geometrical dimensions, (b) model of the system 

The prepared models include 97404 (for the first object) and 143760 (for the second 
object) solid elements, respectively. 

4. Numerical analysis 

Numerical analysis results of the circular ring with wheel–plate free vibration are ob-
tained using the models suggested earlier. For all results presented here, the first seven 
natural frequencies and mode shapes are discussed. 

Table 1. Parameters characterizing the systems of rings with foundation 

No. of 
object 

dz 
[m] 

dw 
[m] 

h 
[m] 

ρ 
[kg/m3] 

R 
[m] 

d1 
[m] 

lr 
[m] 

lw 
[m] 

E 
[Pa] ν 

1 0.191 0.159 0.016 7.85⋅103 
0.0875 0.02 0.008 0.002 2.1⋅1011 0.28 

2 0.203 0.147 0.028 7.85⋅103 
 

Table 1 displays the parameters characterizing the objects under investigation. In this 
table, h is the depth of the ring; ν is the Poisson ratio and the rest of geometrical dimen-
sions are defined as shown in Figure 2. At first the computations are conducted to evalu-
ate the ring substitute mass density ρz of the FE models related to the corresponding 
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objects. Satisfactory results are obtained for the following values of ρz. So, for the FE 
model related to the first object ρz = 9.8⋅103 [kg/m3] and for the FE model referred to 
the second object ρz = 9.17⋅103 [kg/m3]. For both cases, the same values of ρz are includ-
ed in the analytical solutions. Moreover the proper values of stiffness modulus kf, kp and 
kS in the corresponding analytical models are selected during numerical simulations. 
The results of calculation of the natural frequencies are shown in Table 2. 

Table 2. Results of computation related to the systems 

 n 2 3 4 5 6 7 8 
No. kf 

[N/m2] 
kp 

[N/m2] 
kS  

[N/m] 
natural frequencies of the considered models ωn [Hz] (analytical solutions) 

1 2.65⋅109 6⋅107 3.6⋅107 8747 12939 17243 21582 25944 30328 34734 
2 1.2⋅109 6⋅107 8.85⋅107 7065 12189 17158 22033 26865 31682 36500 

natural frequencies of the considered models ωn [Hz] (FE solutions) 
1 – – – 8903 13296 16796 20277 23931 27806 31898 
2 – – – 7363.4 11786 15980 20439 25142 30012 34982 

 

In the Figure 3 two mode shapes comes from the FE model of the first object are dis-
played. 
 

                      
Figure 3. Mode shapes related to the following frequencies:(a) ω2, (b) ω3 (FE solution) 

5. Experimental verification 

In this section the results related to the experimental verification of the considered ana-
lytical and numerical models are discussed. LMS measurement environment is used in 
the experimental investigation. The measuring set consisted of the PCB model 086C03 
type modal hammer equipped with a gauging point made of steel, accelerometer PCB 
model 353B18, LMS SCADA data acquisition system, and SCM-V4E type measuring 
module  supported by LMS Test.Lab software. The experimental investigation is con-
ducted to identify natural frequencies and corresponding mode shapes related to the in–
plane flexural vibration of the considered objects. As mentioned earlier, for the meas-
urement experiment, two objects with the geometry shown in Figure 2 and Table 1 are 
made. The values of the excited natural frequencies are shown in Table 3. These values 

b) a) 
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are compared with the values of natural frequencies from the FE and analytical models, 
respectively. In the same Table the values of the frequency error related to the discussed 
models are presented. Achieved results are satisfactory albeit, the best fit is obtained for 
the analytical model related to the first object. 

Table 3. Results of verifications of the systems 

n 2 3 4 5 6 7 8 
No. of models 

natural frequencies of the considered objects ωn [Hz] (experimental data) 
1 8660 12943.8 16802.5 20618.1 25211.9 29550.6 34155.6 
2 7207.5 11537.5 16058.8 20933.8 26278.8 31647.5 37106.3 

frequency error εn [%] (comparison of the analytical solutions with the experimental data) 
1 1.01 -0.04 2.62 4.68 2.9 2.63 1.69 
2 -1.98 5.65 6.84 5.25 2.23 0.11 -1.63 
frequency error εn [%] (comparison of the FE solutions with the experimental data) 
1 2.81 2.72 -0.04 -1.65 -5.08 -5.9 -6.61 
2 2.16 2.15 -0.49 -2.36 -4.33 -5.17 -5.73 

6. Conclusions 

Based on the classical theory of vibrating rings, a comprehensive study of the free in–
plane flexural vibration analysis of thick rings with wheel–plate as a three–parameter 
Winkler elastic foundation is investigated. The separation of variables method is applied 
to solve the eigenvalue problem. Obtained analytical solutions are compared with 
the corresponding FE solution results. Presented in the paper theoretical and numerical 
investigation, are verified successfully during experimental studies. 
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Abstract  

Phenomena occurring in the flows are very complex. Their interpretation, as well as an effective impact on 
them in the flow control is often only possible with the use of modal analysis and low-dimensional models. 
In this paper, the selected modal decomposition techniques, namely Proper Orthogonal Decomposition (POD), 
Dynamic Mode Decomposition (DMD) and global stability analysis, are briefly introduced. The design of 
Reduced Order models basing on Galerkin projection is presented on the example of the flow past a bluff body. 
Finally, the issues of widening of the application of the models are addressed. 
 
Keywords: Reduced Order Models, ROM, Galerkin method, modal analysis, POD, DMD, stability  

1. Introduction 

The progress in the aerospace and automotive industry is possible by improvement of 
newly-designed vehicles. The reduction of aerodynamic drag, generated noise and ex-
haust fumes emission, as well as the increase of lift and the growth of performance might 
be achieved by the change in the flow phenomena, that might be obtained by the means 
of flow control. Such control is expected to be the most effective when the operation of 
the actuators is in accordance with the state/phase of the flow, measured by the sensors 
and processed by the controller with proper model of the flow. 

The high-fidelity solution based on Navier-Stokes, LES/DES, RANS or even Euler 
equations, is very time-consuming. Real-life problems consisting of millions of degrees 
of freedom are possible to be solved only on parallel machines like computer clusters. 
Due to the high computational complexity of the high-fidelity flow models, an essential 
element of the closed-loop controller is low dimensional model of the flow. Such a mod-
el strongly depends on the proper choice of modal basis used in the approximation and 
projection stages. 

In this paper, a short overview of the methods of modal analysis of viscous flows, de-
scribed by incompressible Navier-Stokes equations (1) is presented, and a design of 
Reduced Order Models of the flow basing on the modal decomposition is described.  
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Finally, the methods of the design of broadband Galerkin models, capable to cover 
wide range of operating and boundary conditions, are briefly discussed. 

2. Modal decomposition techniques  

The most popular method of modal analysis is Proper Orthogonal Decomposition (POD) 
[1,2]. In this method, the M flow vectors (snapshots), resulting from experiment or nu-
merical analysis, are centred using time-averaged solution U0:  
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Next, the auto-correlation matrix for the matrix containing fluctuation vectors is cal-
culated:  
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The eigenvectors of the auto-correlation matrix (POD modes, fig. 1), related to 
the eigenvalues of the largest module, might be used in Reduced Order Modelling of 
the flow.  

 

 

Figure 1. The most dominant POD mode for a flow past a sphere. Iso-surfaces of 
transverse velocity Vy are depicted 

Another, physical mode basis results from global, linear stability analysis of the flow 
[3,4]. The decomposition of the instantaneous flow field onto base (steady or time-

averaged) solutionV  and small, oscillatory disturbance:  

 teVV λ−=′
~

 (4) 

and the linearization of the resulting equation leads to the generalized eigenvalue prob-
lem:  

 ( ) ( ) 0
~~~~~

Re

1 =VPVVVVV ∆−∇+∇+∇+ ⊗⊗λ  (5) 

Complex eigenvectors of such problem (global stability eigenmodes, Fig. 2) repre-
sent the behaviour of the dynamical system close to fixed point, describing, for example, 
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the transition between symmetrical wake and von Karman street of vortices in the case 
of bluff body wakes. 
 

 

Figure 2. Real part of the most dominant eigenmode for a flow past a sphere. Iso-
surfaces of transverse velocity Vy are depicted 

The two aforementioned methods for modal basis design have very important draw-
backs. For example, as will be discussed in further section of this paper, POD modes 
represent very narrow range of the conditions of the flow. Additionally, there might be 
problems to obtain correct modes outside the limit cycle, when the oscillation is ampli-
fied or suppressed. On the other hand, eigenmodes of global stability analysis are very 
difficult to obtain, particularly for 3D flows. 

To overcome these problems, the idea of Dynamic Mode Decomposition [5,6] has 
been proposed. In DMD, it is assumed that any instantaneous solution might be obtained 
from a linear combination of previous solutions:  

 )()( tqettq tA∆≈∆+  (6) 

The product of previous state vectors and a linear operator tAeA ∆≈
~

 might be ap-
proximated using the product:  
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where V0..n is the sequence of known solutions and S is the companion matrix as defined 
below:  
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The coefficients c0...cn are obtained from the solution of the over-determined system 
of equations (1). The eigenvectors of matrix S are used to obtain the DMD modes 
(Fig. 3), while the eigenvalues determine modal growth ratios (real part) and frequencies 
(imaginary parts). 
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Figure 3. Real part of the most dominant DMD mode for a flow past a sphere. 
Iso-surfaces of transverse velocity Vy are depicted 

3. Reduced Order Models  

Reduction of dimension of the flow model is based on the assumption that the velocity 
field might be decomposed onto the sum of the base flow U0 and n products of spatial 
modes Uj and temporal coefficients aj (9):  
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Such decomposition leads to approximated governing equation. Truncation of mode 
basis to a limited (preferably small) number of modes results in the residuum:  

 ( ) ][][
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Projection of the residuum onto the space spanned by the modes, called Galerkin pro-
jection [7], is equivalent in Hilbert space to the zeroing of the integrals of the products of 
modes and the residuum:  
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The result of this projection is a system of ODEs, called Galerkin system:  
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where linear and quadratic terms are derived as follows:  

 ( )
Ω

∆= jiij UUl ,   and  ( )( )
Ω

⊗⋅∇−= kjiijk UUUq , . (13) 

The proper choice of mode basis makes the resulting model comparable to the high-
fidelity data from Direct Numerical Simulation (DNS) of Navier-Stokes equations. 

4. Enhanced Galerkin models 

Reduction of fluid model by projection of governing equations onto orthonormal mode 
basis (Galerkin Projection) results in approximate flow solution. Truncation of mode 
basis, as well as differences between low-dimensional model formulation and high-
dimensional data used in mode expansion (like the neglection of pressure term, assump-
tion of incompressibility, etc.), result in the deterioration of model quality.  
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To improve the quality of the Reduced Order Models of fluid flow, corrections to 
the linear and quadratic terms might be added, as computed in Genetic Algorithm-based 
calibration [8]:  
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Mode basis used in Galerkin expansion allows reconstruction of the flow for a given 
set boundary and operating conditions. In the case of changing flow conditions, used 
mode basis has to be adjusted, for example using hybrid models [7] designed with 
the basis consisting of both empirical and physical modes, or mode parameterization, for 
example with some kind of look-up table [9] or Double-POD [10] approach. Another 
choice is Continuous Mode Interpolation [11], where the mode bases for two or more 
operating/boundary conditions are interpolated by referring to the Fredholm eigen-
problem in space domain:  

 ),()(),( xUdyyUyxA ii λ=∫
Ω

 (15) 

with autocorrelation function (kernel) A:  

 )()()()(),( 2211 yUxUyUxUyxA κκκκκ
⊗⊗ +=  (16) 

In the case of interpolation between two states, the Fredholm kernel is linearly inter-

polated in [ ]1;0∈κ :  

 ( )010 AAAA −+= κκ  (17) 

The approach presented above allows smooth and continuous interpolation between 
corresponding structures (modes) for different operating conditions, enabling e.g. the 
modelling of the transition from fixed point dynamics to limit-cycle oscillations (Fig. 4). 

 

   
Figure 4. Phase portraits of Galerkin models, compared to reference data (thick black 
line): empirical POD-based (left), stability-based models (center) and the model using 

Continuous Mode Interpolation (right) for a flow past a NACA-0012 airfoil [12] 

5. Conclusions  

Modal analysis of the flow and its Reduced Order Models are key enablers for feedback 
flow control. In this paper basic issues related to the model order reduction and Galerkin 
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projection are presented and the most popular methods for obtaining the mode basis, 
such as POD, global stability analysis and DMD, are described. Modelling of the flow in 
changing boundary and operating conditions is possible with the use of parameterization 
methods such as Continuous Mode Interpolation. 

Acknowledgments 

This work has been funded by National Centre of Science under research grant no.  
DEC-2011/01/B/ST8/07264. 

References 

 P. Holmes, J. Lumley, G. Berkooz, Turbulence, Coherent Structures, Dynamical 1.
Systems and Symmetry, Cambridge University Press, Cambridge, 1998. 

 L. Sirovich, Turbulence and the dynamics of coherent structures. Quart. Appl. 2.
Math., 45 (1987), 561–590. 

 M. Morzyński, K. Afanasiev, F. Thiele, Solution of the eigenvalue problems result-3.
ing from global non-parallel flow stability analysis, Comput. Meth. Appl. Mech, 
Engrng., 169 (1999), 161-176. 

 W. Stankiewicz, M. Morzyński, B.R. Noack, F. Thiele, Stability Properties Of 2D 4.
Flow Around Ahmed Body, Math. Model. Analysis (2005), 129-134.  

 P.J. Schmid, J. Sesterhenn, Dynamic Mode Decomposition of Numerical and Exper-5.
imental Data, J. Fluid Mech., 656 (1) (2010),  5-28. 

 O. Frederich, D.M. Luchtenburg, Modal analysis of complex turbulent flow, 7th 6.
International Symposium on Turbulence and Shear Flow Phenomena (2011). 

 B.R. Noack, K. Afanasiev, M. Morzyński, G. Tadmor, F. Thiele, A hierarchy of 7.
low-dimensional models for the transient and post-transient cylinder wake, J. Fluid 
Mech., 497 (2003), 335-363. 

 W. Stankiewicz, R. Roszak, M. Morzyński, Genetic Algorithm-based Calibration of 8.
Reduced Order Galerkin Models, Math. Model. Anal., 16 (2) (2011), 233 – 247. 

 O. Lehmann, M. Luchtenburg, B. Noack, R. King, M. Morzyński, G. Tadmor, Wake 9.
stabilization using POD Galerkin models with interpolated modes, 44th IEEE Con-
ference on Decision and Control and European Control Conference ECC 2005, Se-
ville, Spain, 12.-15.12.2005, 500–505. 

 S. Siegel, J. Seidel, C. Fagley, D.M. Luchtenburg, K. Cohen, T. Mclaughlin, Low-10.
dimensional modelling of a transient cylinder wake using double proper orthogonal 
decomposition, J. Fluid Mech., 610 (1) (2008), 1-42. 

 M. Morzyński, W. Stankiewicz, B. Noack, F. Thiele, G. Tadmor, Generalized 11.
mean-field model with continuous mode interpolation for flow control, 3rd AIAA 
Flow Control Conference, San Francisco, 5-8.06.2006, AIAA-Paper 2006-3488. 

 W. Stankiewicz, M. Morzyński, B.R. Noack, G. Tadmor, Reduced Order Galerkin 12.
Models of Flow around NACA-0012 Airfoil, Math. Model. Analysis, 13 (1) (2008),  
113-122 

 



Vibrations in Physical Systems Vol.26 (2014) 

On-board vibration diagnostics of shaft damage 
of the aviation engine 

Oleksii PAVLOVSKYI  
National Technical University of Ukraine "Kiev Polytechnic Institute" 

37 Peremogy Pr., Kyiv, Ukraine 
a_pav@ukr.net  

Nadiia BOURAOU   
National Technical University of Ukraine "Kiev Polytechnic Institute" 

37 Peremogy Pr., Kyiv, Ukraine 
burau@pson.ntu-kpi.kiev.ua 

Abstract   

This work is devoted to the further researches and development a new on-board multilevel vibration control 
system of aviation gas-turbine engines (GTE). We propose to introduce new diagnosis level (subsystem) into 
development multilevel vibration control system for detection of the initial crack-like damage of rotor shaft. 
The proposed subsystem works at the non-steady-state modes of GTE, for example during startup at the accel-
eration to operating speed. The basis of this approach is the fact of the occurrence of sub harmonic resonances 
of accelerating cracked shaft response. It is necessary to extract the main rotor harmonic vibration at the non-
steady-state mode for crack diagnosis in practice. The narrow-band digital tracking  filter is carried out for this 
aim, the central frequency of pass band is changing according the rotor rotation frequency. The efficiency of 
the proposed subsystem is demonstrated by the results of computer simulation. 
 
Keywords: gas-turbine engine, cracked shaft, vibration diagnosis, digital tracking narrow-band filter.  

1. Introduction  

Available on-board vibration control systems of aviation gas-turbine engines (GTE) are 
destined for current control and awareness about actual levels of vibration at 
the harmonics of the rotor rotation. However, many initial defects of rotor elements 
(microcracks of shafts, blades, disks) cannot be detected at early stages of the crack 
development in this case. We proposed to expand the functional capabilities of the above 
mentioned systems by using the auxiliary level for diagnostics of initial crack-like dam-
ages of engine blades. The new multilevel vibration control system of aviation GTE has 
been presented in the previous work [1]. The developed system contains complementary 
dedicated microcontroller for analysis of  the “normal vibration” in order to predict or 
detect small damages of engine blades. In addition, another diagnostic level can be car-
ried out for diagnostics of dangerous damages rotor elements such as crack-like damages 
of rotor shaft. 

The theoretical bases of the vibration method were presented in [2] for diagnosis of 
the cracks of rotating shafts during acceleration through resonance. The model of 
the transverse crack is a function of “breathing”, the changing of the rotor rigidity ∆K 
depends on cross location of crack section and stress-strain area of shaft. The accelerated 
rotation of the shaft with crack is investigated. It has been shown, the responses of 
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cracked shaft have sub-critical peaks (1/2 order and 1/3 order sub-harmonics resonance 
of the main harmonic of rotor rotation). For example, the absence and the presence of 
1/2 order sub-critical peak are illustrated in Fig. 1 at the absence (∆К=0) and the pres-
ence of initial crack (∆К=0,05), accordingly. The time plots are represented in the rela-
tive scale on the ordinate axis (non-dimensional vibration amplitude z) and on the ab-
scissa (non-dimensional time τ). Value τ=1000 corresponds to transition through critical 
frequency of rotation. 

 

 

Figure 1. Vibration amplitude of accelerated rotor at the ∆К=0 (a) and ∆К=0,05 (b) 

Researches have shown, that sensitivity of sub-critical peaks to crack presence many 
times over surpasses sensitivity of nature frequencies and shapes of oscillations. Howev-
er it is necessary to estimate vibration levels on the rotor rotation harmonics at the essen-
tial changing of frequency of rotation for the usage of sub-critical peaks values as 
the features of crack-like damages of rotor shaft. 

The purpose of this work is the development a new diagnostics subsystem of above 
mentioned multilevel vibration control system for diagnostics of crack-like damages of 
rotor shaft at the non-steady-state mode of GTE.  

2. Subsystem development 

The generalized block scheme of the developed diagnostics subsystem is shown in 
Fig. 2. Signals arrive from vibration sensors to the digital tracking narrow-band filter 
after preliminary processing and conversion. The central frequency f0 of a pass-band of 
the filter is time-dependent and changes synchronously with change of frequency of 
rotation of a rotor shaft. Sensors of frequency of rotation are used for this purpose. In-
stantaneous value ωr(t) of the frequency of main rotor harmonic is defined, then coeffi-
cients of the tracking narrow-band filter are calculated for the given value of mentioned 
frequency. Recalculation of coefficients is carried out for each new value of the central 
frequency of a pass-band of the filter which is equal to the calculated value of instanta-
neous frequency of shaft rotation. Peak values of vibration amplitudes are determined 
after a filtration in the field of sub-harmonic resonances. The received values are com-
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pared with threshold and the decision is made on crack presence or absence of a shaft. 
The algorithm of the synthesis of digital tracking narrow-band filter and a filtration of 
a non-stationary vibrating signal is shown in Fig. 3. 
 

 

Figure 2. Generalized block scheme of the subsystem for diagnostics of crack-like 
damages of rotor shaft at the non-steady-state mode of GTE 

 

 
 

Figure 3. Algorithm of the synthesis of digital tracking narrow-band filter 
and the filtration of the non-stationary vibrating signal 

The following symbols are indicated on Fig. 3: 1 - speed sensor; 2 - unit of determi-
nation of instantaneous rotation frequency; 3 - unit of calculating coefficient of digital 
filter; 4 - vibration sensor; 5 - filtration unit; ∆ (t) - noise of measurement of the time-
dependent rotation frequency; hf(t) - filter impulse response; w(t) – input vibration sig-
nal; z(t) - selected component of vibration. 
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Recalculation of coefficients of the digital tracking narrow-band filter is carried out 
at change of the central frequency of a pass-band according to change of frequency of 
rotor rotation. It is necessary to provide recalculation of coefficients with the period of 
definition of current frequency of rotor rotation in this case. As a rule, regular means of 
registration of parameters of the engine provide the period of registration 0,25 second at 
flight tests. Therefore, it is necessary to consider the restrictions connected with change 
of frequency rotation and the period of registration. We propose to use filters with 
the infinite pulse characteristic [3] and the least optimum order for a delay exception in 
calculations of filter coefficients. The Butterworth adaptive (tracking ) filter is designed,  
minimal order is equal to 10 at the change of central frequency f0 of a pass-band in 
the range of 10….100 Hz,  the pass-band of filter is constant and it is equal ∆fp=3 Hz. 
The time of calculation of coefficients of the mentioned filter is equal to 0,122 second. 

Computer simulation is carried out for the validation of efficiency of the designed fil-
ter. Vibration signals are simulated at the accelerated rotation of a shaft without damage 
(∆К=0) and with damage (∆К=0,05; 0,1; 0,15; 0,2) by using the mathematical model of 
rotary shaft, presented in [2]. Various corners of crack orientation relative to vector of 
vibration and various corners of unbalanced weight orientation relative to a middle line 
of a crack are considered. The mentioned vibration signals together with the white noise 
and high-frequency interferences are used as the input signals to the filtration unit (Fig. 
3). Difference values ∆z of amplitudes of signals after filtering at the presence (∆К≠0) 
and at the absence (∆К=0) shaft damages and their approximations are used for an esti-
mation of quality of tracking filtration [4]. The non-dimension time set of values ∆z and 
approximation are represented in Fig. 4. 

 

 

Figure 4. Set of difference values ∆z  (1) and approximation (2) of amplitudes of signals 
after filtering by using Butterworth adaptive (tracking ) filter 

Maxima of difference values ∆z are located in a range of 1/2 order and 1/3 order sub-
harmonics resonances of the main harmonic of rotor rotation. The presence of crack do 
not influence on resonance of main harmonic of rotor rotation, therefore difference val-
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ues ∆z are small. The presented results confirm the efficiency of the adaptive (tracking) 
filtering of non-steady vibration signals. 

The subsystem for diagnostics of crack-like damages of rotor shaft at the non-steady-
state mode of GTE is developed as virtual device by using LabVIEW (NI, USA). 
The front panel of virtual device is represented in Fig. 5. 

 

 

Figure 5. The front panel of virtual device - subsystem for diagnostics of crack-like 
damages of rotor shaft at the non-steady-state mode of GTE 

The window “Diagnostic signal” contain the informative part of vibration signal to 
resonance of main harmonic of rotor rotation. Peak values zp are estimated in this range 
and compared with the installed threshold (vibration amplitude is egual to 10 m/s).  
The alarm indicator “Defect is detected” lights up at excess of threshold value. 

The carried out researches of virtual device have shown, that the increase of a crack 
parameter ∆К calls increase in peak values of vibration amplitude in the range of a sub-
harmonic resonances at the same values of corners of crack orientation relative to vector 
of vibration and corners of unbalanced weight orientation relative to a middle line of 
a crack. The functional relation is similar to linear function (Fig. 6).  
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Figure 6. Relation between peak values of vibration amplitude and the crack parameter 

3. Conclusions  

The new diagnostics subsystem of multilevel vibration control system is developed for 
diagnostics of crack-like damages of rotor shaft at the non-steady-state mode of GTE. 

The generalized block scheme of the subsystem is designed and principle of its oper-
ation is substantiated. The digital tracking narrow-band filter is designed in order to 
extract of vibration signal on the time-depended frequency of rotor rotation. The central 
frequency of a pass-band of filter is changing according to change of frequency of rotor 
rotation. Sub-critical peaks values (1/2 order and 1/3 order sub-harmonics resonances) of 
extracted vibration signal are used as the features of crack-like damages of rotor shaft. 
The diagnostics subsystem as a virtual device is developed and investigated. 

The developed subsystem of multilevel vibration control system will allow to detect 
initial crack-like damages of rotor shaft and to ensure awareness of GTE.  
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Abstract  

Development of complicated machines and need for maintaining high efficiency and safety of their work is 
main reason for development of new and more reliable monitoring techniques. One of the main aims of condi-
tion monitoring is detection of early stage of failure and monitoring of its development [1]. Such techniques 
should be sensitive for change in diagnostic signal due to arise of failure.   
 Paper presents exemplary representations of signals types on energetic plane calculated using Teager-
Kaiser energy operator (TKEO). First basic information on TKEO is presented. Next energetic plane is intro-
duced and models of signals are showed. In final section of the paper example of model of signal containing 
disturbance related with mashing is presented. Teager-Kaiser energy operator, due to is properties, can be used 
for detection of transient events such as impulses resulting from disturbances of mating of teeth in gearboxes. 
Such a disturbance of mating is related with decrease of stiffness of given tooth due to crack or development of 
pitting [2]. Sensitivity of Teager-Kaiser energy operator allow for earlier detection of transient disturbances 
then use of raw data methods such as Hilbert transform demodulation. 
 
Keywords: Teager-Kaiser energy operator, energetic plane, vibration signal, gearbox  

1. Introduction  

Constant development of machines, use of new, lighter materials, care for environment 
and socio-economical costs of machine failures are main reasons of making every effort 
to develop new and reliable techniques of determination of technical condition of ma-
chines and structures. Among these techniques one can list new techniques of signal 
processing [3, 4], application of sensors embedded in structure [5], use of different phys-
ical phenomena for detection of early stages of failures [6, 7]. Teager-Kaiser energy 
operator (TKEO) is signal processing technique which allow for calculation of energy 
waveform of diagnostic signal.  

Change of technical condition of machine, or its component, due to arise and devel-
opment of failure, is related with change of amplitude and frequency structure, or in 
general energetic structure, of vibration signal generated by working machine [1] This 
change of technical state of machine is related with change of energy dissipated in form 
of noise, vibrations or heat [8]. Early detection of change of energy can allow determin-
ing early phase of failure and monitoring its development. This can lead to choose of 
optimal maintenance strategy and allow for measureable savings.  
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At present number of signal processing techniques are used for detection of symp-
toms of change of technical state. However still new techniques are developed and ap-
plied in task of condition monitoring. Such technique is Teager-Kaiser energy operator. 
One might find publications presenting successful application of TKEO in different tasks 
of condition monitoring, such as: bearing fault diagnosis [9, 10] or detection faults of 
gears [11]. 

2. Teager-Kaiser energy operator 

Teager-Kaiser energy operator is non-linear operator which applied to time signal calcu-
lates measure which can be interpreted as energy of this signal [12]. Publications [13-16] 
contain description and analysis of properties of TKEO. For continuous signals this 
operator has following form:  

 )()()())(( 2 txtxtxtx &&& −=Ψ  (1) 

However for implementation of TKEO in numeric environments following discrete 
version is most common:  

 11
2)( +−−=Ψ nnnnd xxxx  (2) 

In publication authors will constantly refer to discrete signals and energy operator of 
discrete signals so for simplicity Ψ(x) will be used as denotation of result of TKEO act-
ing on analyzed signal x and will be called measure of energy of signal. 

Teager-Kaiser energy operator acting on time signal x calculates waveform of meas-
ure of energy of analyzed signal. As a result one obtains new signal Ψ(x) which is also a 
function of time. Number of publications presents results of implementation of TKEO as 
useful tool for bearing [9, 10]  and gearbox failure detection [11].  

An important issue, one should remember using Teager-Kaiser energy operator, is 
that Ψ(x) is not energy in classical meaning but its measure. As pointed out in [12] Ψ(x) 
can have negative values and its result can differ depending on parameters of analyzed 
signal. 

For discrete single harmonic signal xn = Acos(Ωn), Teager-Kaiser energy operator 
calculates result (3) which for low values of Ω = 2πf / fS estimates product of square of 
amplitude multiplied by square of frequency. 

 2222 )(sin)( Ω≈Ω=Ψ AAx  (3) 

This result depend both from amplitude and frequency structure of signal. Change of 
amplitude or frequency in signal will influence measure of energy of signal indicating 
change in monitored machine. Interesting property of Teager-Kaiser energy operator (2) 
is its sensitivity to sudden changes in analyzed signal due to transient disturbances such 
as impulses.  
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3. Energetic plane – examples of signals 

Concept of energetic plane assumes observation of diagnostic signal represented in co-
ordinates of measure of energy, expressed by equation 3, and velocity of change of 
measure of energy. Nomenclature of Lie brackets allows for calculation of higher order 
energetic operators as it is presented in [15]. From point of view of concept of energetic 
plane most interesting is energetic operator of order 3: 

 ( ) dtxdxxxxxxx )(],[)( )2(
3 Ψ=−==Υ &&&&&&  (4) 

which can be treated as velocity of change of measure of energy of signal x . 
To present representation of few types of signals on energetic plane following absic 

models were created:  

• single harmonic signal: 

 )2cos()( φπ += ftAtx  (5) 

• signal with amplitude modulation 

 )2cos(*))2cos(*1(*)( φππ ++= fttfMAtx AMAM  (6) 

• signal with frequency modulation 

 )))2cos(*2cos()( φππ ++= tfmftAtx FMFM  (7) 

• signal with amplitude and frequency modulation 

 ))(2cos(*)()( φπ ++= txfttxtx FMAMAMFM  (8) 

where: A – amplitude of carrier signal, f – frequency of carrier signal, M – modulation 
depth, fAM – frequency of amplitude modulation, m – modulation index, fFM – frequency 
of frequency modulation, φ – initial phase. 

Figures 1 to 4 present representation of mentioned above signals on energetic plane. 
All presented have same parameters of carrier signal, i.e. amplitude A, frequency f, phase 
φ,  and differ only with values of modulation depth and index. As one may see, for single 
harmonic signal representation on energetic plane is constant and has form of a point. It 
is due to unchangeable amplitude and frequency of signal. Change of amplitude or fre-
quency value would cause shifting of point along energy axis. Appearance of amplitude 
or frequency modulation change signal’s representation significantly. Increase of modu-
lation depth M or index m causes increase of size of curve being representation of the 
signal. It is worth to point out that however size of curve changes its general character is 
similar for given type of modulation: in case of AM – elliptic-like curve, in case of FM – 
curve creates characteristic loops. Occurrence  of amplitude and frequency modulation 
creates complicated shape. This representation will depend most importantly from values 
of modulation parameters (M, fAM, m, fFM). However, also in this case, it can be seen that 
increase of parameters M and m will result in increase of size and centre of gravity of 
curve. Change of modulation frequencies will also change location and size of signal’s 
representation on energetic plane.  
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Figure 1. Single harmonic signal on energetic plane 

 

 
 

Figure 2. Signals with amplitude modulation with different depth of modulation 
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Figure 3. Signals with frequency modulation with different index of modulation 

on energetic plane 

 

 
Figure 4. Signals with AM and FM modulation with different parameters of modulation 

on energetic plane 
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During operation of gearbox, progressing degradation process causes appearance of 
local disturbances in signal. This can be caused by coming in to contact of tooth with 
lower stiffness. Such disturbance can have form of transient change of depth of modula-
tion [17, 2]. To analyze usability of energetic plane based on calculation of Teager-
Kaiser energy operator for detection of transient events in signal, model was created 
allowing occurrence of transient disturbance of depth of amplitude modulation. The 
purpose of the model is to model local and transient change of meshing of tooth in gear-
box. For purpose of test, AM signal was generated with bell-shape disturbance of depth 
of modulation M. Such shape of disturbance was chosen in order to perform change of 
parameter as smooth as possible. Duration of disturbance was chosen in such way it 
would correspond to time of mesh of pair of teeth. Parameters of signal were constant 
except modulation depth which for one tooth increased 20% from its nominal value. 
Figure 5 presents comparison of representation of signal with and without disturbance. 
Change is easily observable.  

 

Figure 5. Signal with and without distribution of depth of AM, disturbance 20% 

Change of size of signal representation due to disturbance of modulation parameter 
might be use as a diagnostic information testifying about change in meshing of gearbox. 
During modelling process other values of disturbance were also tested to analyse sensi-
tivity of energetic plane to size of disturbance. According to observations it can be con-
cluded that lowest realistic value of change of modulation depth which can be detected is 
between 2 and 5% of its nominal value. 
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Figure 5. Signal with and without distribution of depth of AM, disturbance 2% 

4. Conclusions 

Paper presented concept of energetic plane which presents representation of signal in 
coordinates of measure of energy and value of velocity of change of measure of energy 
calculated using Teager-Kaiser energy operator. On this plane, given types of signals 
have similar representations which size depends from modulation parameters. Presented 
results shows usability of energetic plane in detection of transient events and disturb-
ances of modulation parameters. Further research will be carried out in order to analyse 
usability of energetic plane in condition monitoring based on vibration signals from real 
gearbox.  
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Abstract 

Construction of a generalized hyperbolic model of sediment dynamics predicting a sediment evolution on the 
bottom surface with a finite velocity is presented. The transport equation is extended with introducing a gener-
alized operator of flux change and a generalized operator of gradient. Passing to the convenient model is  a 
singular degeneration of extended model. In this case the results are obtained in the class of generalization 
solutions. Some expressive examples of constructions of hyperbolic models predicting a finite velocity of 
disturbance propagation are presented. This problem is developed starting from Maxwell (1861). His approach 
in the theory of electromagnetism and the kinetic theory of gases is commented. A brief review on  propagation 
of heat and diffusive waves is presented. The similar problems in the theory of probability and diffusion waves 
are considered. In particular, it was shown on the microscopic level for metals that the conservation law can be 
violated. 
 
Keywords: sediment dynamics, hyperbolic equation, finite velocity, disturbance propagation 

1. Introduction 

The problem of sediment reformation under the effect of water waves is referred directly 
to ocean lithodynamics [1, 2]. Thus interconnected processes of hydro- and lithomass 
transport occur under the wave action. Mathematical modeling of such processes in the 
shoreline zone on the basis of the classical approach is presented in [3]. 

We consider the generalized hyperbolic model of sediment evolution which predicts 
a finite velocity of sediment transport [3] unlike the convenient model of parabolic type 
predicting an infinite velocity of propagation of small perturbations.  

It is known that a real process of sediment transport occurs with a finite speed [4]. As 
it is shown in the natural observations, a velocity of transport of the energy and   sub-
stance mass  in the coastal zone is a finite magnitude. It can be noted that some investi-
gations  have been conducted for aggraded channels in [5] and for the channel degrada-
tion which fits to the observed degradation in [6]. 

The question, which is of great interest, is a comparison of possibilities and a physi-
cal content of “parabolic” and “hyperbolic” models of sediment dynamics in a coastal 
zone. A generalized hyperbolic model was firstly proposed in [7].  

Some examples are presented in this paper but the problems of thermoelasticity are 
not considered. 

2. Mathematical model 

Wave motion of the inviscid incompressible fluid of the variable depth in the rectangular 
Cartesian co-ordinate system (x, y, z) is considered. A plane z = 0 coincides with the 
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undisturbed free surface and an axis Oz is directed upwards. The ground surface can be 
deformed and it is described by the equation 

 ( ), ,dz H x y t= − . 

So the depth H(x, y, z, t) varies in time due to the sediment transport. Hereinafter a plane 
problem is considered corresponding to frontal incoming waves. 

The mathematical problem is formulated as follows: to determine the fluid depth  

H(x, z, t) and the energy flux vector ( ), ,Q Q x z t=
r r

 in the area TΩ = Σ × , where 

{ [ ]}3
1, | 0,R T t tΣ ⊂ = ∈ , as solutions of equations (1) and (2), which satisfy correspond-

ing boundary and initial conditions.  
The conservation law is written in the form 

 0
H

Q
t

∂
+ ∇⋅ =

∂

rr

. (1) 

The transport equation for the closure of the system, unlike the previous researches, 
is postulated in the generalized form [7] 

 LQ MH= −
r r

, (2) 

where the scalar operator L characterizes a flux change in time: 

 
( )

0 1 3 2 1 ...
2 1 times

t ttt n tt t
n

L γ γ γ γ +
+

≡ + ∂ + ∂ + ⋅⋅⋅+ ∂∂ , (3) 

with coefficients 0 1 3, , ,...γ γ γ , and a vector operator M
r

 is represented by the operator 

of gradient type: 

 2 2
0 1 3 2 1

n
nM k k k k +≡ + ∇ + ∇∇ +⋅⋅⋅+ ∇∇

rr r r r

 (4) 

with coefficients 0 1 3, , ...k k k
rrrr

. 

Keeping operators to a certain order generates a set of the generalized hyperbolic 
models [8]. 

In the case when all the terms in (3) are equal to zero except γ1, i.e. γ0 = 0, γ1 ≠ 0, 
γ3 − 0,..., γ2n+1 = 0, and all the terms in (4) are equal to zero except k1, i.е. 

( )0 1 3 2 10, 0, 0,..., 0 1, 2,....nk k k k n+= ≠ = = =
r

, we obtain the known parabolic 

model of sediment evolution. However if all the operators remain to a certain order s, in 
(3), (4), in that case we obtain a set of the generalized hyperbolic models [7].  

For the case n = 1 from relations (3), (4) the elementary hyperbolic model can be de-
rived in the form 

 
2

2
2 2

11

1 1
0

H H
H

k tc t

∂ ∂
∇ − − =

∂∂
, (5) 

where c1 is the speed of propagation of disturbance, which is defined as 1 1 /c k η= , η is 

the relaxation parameter, k1 is the kinematic viscosity. 
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In the classical case, when relaxation parameter η tends to zero, equation (5) is de-
generates into (6) and for the depth H(x, y, t) we obtain the equation of parabolic type  

 2

1

1
0

H
H

k t

∂
∇ − =

∂
, (6) 

which satisfies the conservation law and is used in all traditional studies [3]. In what 
follows consider the case of frontal approach  waves (plane problem). 

3. Singular degeneration 

Statement of the initial boundary value (IBV) problem for the equation (5) has the form 

 1tt t xxH H k Hε + = ,  (7) 

 ( )00t
H u x

=
= ,   ( )10t t

H H x
=

= ,   
0 1

0
x x

H H
= =

= = , (8) 

where ε is the small parameter, ε = η. 
We investigate the singular degeneracy problem (7), (8) with 0ε → . Called a gener-

alized solution of problem (7), (8) the function H  из ( )11
20 TW Q of satisfying to integral 

identity  

 

( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

1
0 0

1
0 0

1,1
2

, ,

, , 0 0,

, 0, , ,

T T

t t x x

T T

t

T

H dt k H dt

H dt H x

W Q T H H dx

ε

ε

Ω Ω

Ω Ω

Ω
Ω

− Φ + Φ +

+ Φ + Φ =

∀Φ ∈ Φ = Φ = Φ

∫ ∫

∫ ∫

∫

 (9) 

where ( ) [ ]0, 1 , 0,TQ TΩ = = ×Ω . 

For the generalized solution of the problem (7), (8) the theorem is true: if 

( ) ( )1 2H x L∈ Ω , ( ) ( )
0

1
0 2u x W∈ Ω , then for the problem (7), (8) there exists a  unique 

generalized solution. The proof of solvability  is given in [9]. 
Passing in (7) to the limit at 0ε → , we can obtain the identity that is a solution of 

the problem  
 1t xxH k H= , 

 ( )0 10 0
, 0.xt x

H u x H H == =
= = =  (10) 

Thus, we arrive to the following theorem: a Generalized solution of the problem (7), 
(8) passes at 0ε →  to the generalized solution of the problem (6). 

4. Some examples 

A finite propagation velocity of electromagnetic waves. A development of the general-
ized models originates from the works of Maxwell. He was the first who realized the 
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FV-principle (the principle of the propagation velocity finiteness of perturbation) at the 
development of the electromagnetic field model (1861-1864), and then he has general-
ized this principle to the theory of gases [10]. 

We consider Maxwell's equations for the nonconducting homogeneous isotropic me-
dium. Before the Maxwell work the following system of equations described a 
perturbation propagation with the infinite velocity 

 0H∇× =
r rr rr rr r

,   
B

E
t

∂
∇ × = −

∂

rrrr
r rr rr rr r

, 

 0B∇× =
r rr rr rr r

,   0D∇ × =
r rr rr rr r

, (11) 

 B Hµ=
r rr rr rr r

,   D Eε=
r rr rr rr r

. 

After the Maxwell work the system of equations describes a perturbation propagation 
with the finite velocity, which equals to the speed of light 

 
D

H
t

∂
∇× =

∂

rrrr
r rr rr rr r

,   
B

E
t

∂
∇ × = −

∂

rrrr
r rr rr rr r

, 

 0B∇× =
r rr rr rr r

,   0D∇ × =
r rr rr rr r

, (12) 

 B Hµ=
r rr rr rr r

,   D Eε=
r rr rr rr r

. 

The system (12) can be reduced to the hyperbolic equation (wave equation) 

 
2

2
2 2

1
0

e

H

c t E

  ∂  
∇ − =    ∂     

rrrr

rrrr , (13) 

where 1/ec µε=  is the speed of light. 

A comparison of (11) and (12) shows that (12) differs from (11) by a symmetry. 
From the mathematical point of view this procedure is an expansion of the nonhyperbol-
ic differential operator to the hyperbolic one [11]. 

Heat propagation [10]. The transport equation following from the kinetic theory of 
gases is represented as 

 1 q k
t

ξ θ
∂ + = − ∇ ∂ 

rrrrrrrr
, (14) 

and the conservation equation can be taken in the form 

 m q
t

θ
γ

∂
= −∇ ⋅

∂

rrrr rrrr
. (15) 

The resolving equations for the flux q
rrrr

 and heat θ , following from (14) and (15), take 

the form 

 ( )
2

2
2

0
m m

q q
k k tt

ξγ γ
 ∂ ∂

∇ ×∇ ×∇ − − = 
∂∂ 

r rr rr rr r rrrr
, (16) 
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2

2
2

0
m m

k kt
ξγ θ γ θ

 ∂
∇ − − =  ∂ 

, (17) 

where the propagation speed is equal to /mc m kξγ= , for example, 150mc =  m/s for 

nitrogen. 
Fock (1926) [12] considers probabilities u(x,t) of light particles to be at time t  in the 

point x and to move upwards, and probabilities v(x,t) of light particles to be at the same 
place, but to move downwards. As a result functions u and v satisfy to the hyperbolic 
equation  

 
2 2

2 2 2

1 1U U U

D tx c t

∂ ∂ ∂
= +

∂∂ ∂
. (18) 

Presence of the term 
2

2 2

1 U

c t

∂

∂
 in (18) shows, that any perturbation and concentration 

inhomogeneities are spread with a finite velocity c. But after these inhomogeneities have 
smoothed out (that happens quickly, if a velocity c is large), the further process differs a 
little from the process, which is described by the usual diffusion equation  

 
2

2

1U U

D tx

∂ ∂
=

∂∂
. (19) 

Later on for more extended discussion this result considered by  Kac (1956) [13] and 
announced again in [14]. 

It is well known that the classical theory of the thermoconductivity is based on the 
Fick law. According to this law the heat flux q is directly proportional to the gradient of 
temperature T: 

 
T

q k
x

∂
= −

∂
, (20) 

where k is the heat conductivity coefficient. This law leads to the heat conduction equa-
tion of parabolic type 

 
2

2

T T
k

t x

∂ ∂
=

∂ ∂
. (21) 

It follows from (20) and (21) that the heat flux is directed from areas with a high temper-
ature to areas with a low temperature. Thus, the infinite large propagation speed of tem-
perature perturbations is postulated. 

The hyperbolic heat conduction equation is investigated in [15] according to [16]. On 
the basis of the works [17] and [18] it is shown that a time of the mean free part of an 
electron with a velocity 106 m/s in metals is on 2-4 order less than the electron - photon 
relaxation time tp ∼10-11 s [19]. This value coincides well with a magnitude tp for alumin-
ium [16] and the velocity  

 pt tac /=  (22) 
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has a value of some kilometers per second, i.e. in the order of magnitude it is equal to the 
sound velocity (22). It leads to the hyperbolic heat conduction equation 

 
2

2 2
t

T a T
a T

t c t

∂ ∂
+ ⋅ = ∆

∂ ∂
. (23) 

In the work of [20] the estimation of the geometrical area has been carried out, when 
a thermal process is described by the hyperbolic equation (23) at the given initial and 
boundary conditions. It was shown that for a copper l = 0.0002 mm, for a cork l < 2 mm. 
This effect can be important for the armor penetration or for explosion. 

At the same time it should be noted that the analysis of propagation of thermal waves 
in metals at the microscopic level was conducted in the work [21]. It has been shown 
that generalization of the transport equation (Fourier’s law) by taking into account the 
relaxation time is inadmissible, as it leads to a violation of the fundamental law of ener-
gy conservation. 

For the case of the heat propagation within very short time intervals the classical 
equation should be substituted by the more general equation of hyperbolic type [22] 

 
2 2

2 2

T T T
k

tt x
τ

∂ ∂ ∂
+ =

∂∂ ∂
. (24) 

The calculations on the basis of the equation (24) and comparisons with the data of ex-
periments [22] have shown that in many cases, which are important for modern applica-
tions, the diffusion equation (21) leads to the rather underestimated values of tempera-
ture at the wave front. The qualitative effect consisting in the strong concentration of 
energy in a peak zone, which appears at the wave front, according to the hyperbolic 
equation, is also has been discovered. In the diffusion theory the energy is always 
“spread” on the whole area. Mc Nelly (1970) [23] obtained experimental results for 
dielectric crystals of sodium fluoride NaF. Distribution of thermal impulse (pulse height) 
as a function of arrival time (µs) shows clearly the presence of two front zones. 

There are some considerations about diffusion waves which lack wave fronts and 
don’t travel very far [24]. These considerations are based on revolutionary measurement 
thechnologies. 

Useful contribution to the study of wave propagation with a finite speed is presented 
in the works [25-32]. Recently, a numerical simulation of hyperbolic heat equation has 
been presented in [33]. It is remarkable that the similar situation also takes place in the 
classical mechanics. As it is known, the classical Galilei-Newton mechanics is a special 
case of the Einstein mechanics when the speed of light is considered as an infinite big 
magnitude. Such an analogy gives the grounds to pay much attention to the problem of 
the group transformations of dependent and independent variables [34], which considers 
diffusion and hyperbolic heat conduction equations as invariants. Similarly it could be 
expected, that the equations of “diffusion” and “hyperbolic” heat conduction could as-
sume various groups of transformations. 
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5. Conclusions 

A new generalized hyperbolic model for the evolution of sediment is presented. It pre-
dicts a finite speed of formation of bottom sediments unlike the traditional model of 
parabolic type , predicting infinite speed of propagation of small disturbances . This is 
consistent with field observations from which it follows that the rate of transport of en-
ergy and mass of the substance in the coastal zone is a finite quantity [4]. On the basis of 
the corresponding initial-boundary value problem, a singular degeneration of the gener-
alized hyperbolic model into traditional parabolic ones is carried out. The existence of 
generalized solutions is demonstrated. Some examples of generalization of parabolic 
models into hyperbolic ones starting from Maxwell ( 1867) are considered. 
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Abstract 

In this paper a problem pertaining to the damped lateral vibrations of a beam with different boundary condi-
tions and with a rotational spring is formulated and solved. In the adopted model the vibration energy dissipa-
tion derives from the internal damping of the viscoelastic material (Kelvin–Voigt rheological model) of 
the beam and from the resistance motion in the supports. The rotational spring can be mounted at any chosen 
position along the beam length. The influence of step changes in the cross-section of the beam on its damped 
lateral vibrations is also investigated in the paper. The damped vibration frequency and the vibration amplitude 
decay level are calculated. Changes in the eigenvalues of the beam vibrations along with the changes in 
the damping ratio and the change in the model geometry observed on it are also presented. The considered 
beam was treated as Euler- Bernoulli beam. 
 
Keywords: Vibration damping, non-prismatic beam, rotational spring.   

1. Introduction 

The transverse vibration of prismatic and non-prismatic beams with additional discrete 
elements has been investigated in a number of studies. Study [1] presents the transverse 
vibration of a beam with a stepped cross-section together with the phenomenon of 
damped vibration in the body where the system is present. The problem of the vibration 
and dynamic stability of beams with different boundary conditions with additional dis-
crete elements was presented in study [2]. Study [3] concerned the modal analysis of 
a semi-infinite Euler-Bernoulli beam with discrete elements in the form of a rotational 
and a translational spring. Investigations concerning damped vibration were discussed in 
[4-7]. Study [4] discussed the effect of small internal and external damping on the stabil-
ity of non-conservative beam systems. The authors of study [5] demonstrated the effect 
of internal damping on the vibrations of a supported beam with a mass attached to 
the free end of the beam. Study [6] examined the vibration of an axially-loaded Timo-
shenko beam with local internal damping. The effect of constructional damping of the 
fixations on free vibration of the Bernoulli-Euler beam was presented in study [7].  

This study formulates and solves the problems of transverse damped vibration in a C-
P (clamped-pinned) beam with a stepped cross-section and with a rotational spring. Dis-
sipation of the vibration energy occurs as a result of the simultaneous internal damping 
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of the viscoelastic material of the beam and structural damping in the support. The con-
structional damping was modelled using a rotational viscous damper. The study analyses 
the simultaneous effect of the structural damping and internal damping, the spring rigidi-
ty and its location and the effect of the location of the stepped cross-section of the beam 
on the properties of the considered system. The results obtained in the study are present-
ed as 2D figures and spatial presentations. 

2. Mathematical model 

A scheme of the considered C-P beam is presented in Fig. 1. 

 
Figure 1. Model of the C-P beam with step changes in the cross-section 

with a rotational spring CS and rotational viscous damper CR 

Viscoelastic material was characterized by the Young's modulus En and the viscosity 
coefficient En* of the beam material. The coefficient of constructional damping in 
the rotational viscous damper was denoted as CR. 

The vibration equation for the two parts of a beam is known and has the following 
form: 
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where:  
Wn(x,t) – the lateral displacement of beam,  
An – the cross-section area of the beam, 
Jn – the moment of inertia for the beam section, 
ρn – the density of the beam material, 
Pn – longitudinal forces in beam, 
n = 1,2 
x – space coordinate, 
t – time, 
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Solutions to equations (1) take the form: 

 ti
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where: ω* – the complex eigenvalue of the system, 1−=i  
Substitution of (2) into (1) leads to: 
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Boundary conditions: 
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The solution to equations (3) is expressed in the form of functions: 
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By substituting (6) into (5) a homogeneous system of equations was obtained with 
respect to unknown constants Dkn , and can be written in the matrix form as: 

 [ ]( ) 0* =DA ω  (8) 

where: 

 ( ) [ ]pqaA =*ω , ( )8..2,1, =qp , [ ] T
knDD = , 42,1 −=k    (9) 

The system has a nontrivial solution when the matrix determinant of coefficients is 
equal to zero with constants Dkn. 

 ( ) 0det * =ωA  (10) 

Finding the complex eigenvalues of matrix A(ω*) leads to the determination of 
damped vibration frequency Re(ω*) and the vibration amplitude decay level Im(ω*) of 
the considered system.  
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3. Numerical calculation results 

Computations were carried out assuming the following dimensionless quantities: 
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where: PC – the critical load of the tested beam with a constant cross-section. 
The results of the calculations are presented in Figs. 2 to 6. Investigations were car-

ried out for different ratios of the moments of inertia for the two parts of the beam 
(J=0.5, J=5) and for a beam with a constant cross-section (J=1). The system was loaded 
with longitudinal force P (p=0.05). The dependency of the eigenvalues (real parts Re(ω*) 
and imaginary parts Im(ω*)) on the coefficients of constructional damping µ, spring 
rigidity c and location of the change in the beam cross-section l was also determined.  

 

      

Figure 2. The dependency of real parts (Re(ω*)) and imaginary parts (Im(ω*)) of the first 
beam eigenvalue on the coefficient l at η=0.002, µ=0.3, c=10 

 

      
Figure 3. The dependency of real parts (Re(ω*)) and imaginary parts (Im(ω*)) of the first 

beam eigenvalue on the spring rigidity coefficient c at η=0.002, µ=0.3 and l=0.2 
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Figures 5 and 6 present collective diagrams of the dependency of eigenvalues 
(Re(ω*) and Im(ω*)) in the studied system on the change in the rigidity of elastic support 
c and constructional damping µ. The calculations were carried out for selected values of 
internal damping and for a central location of the rotational spring and two values of 
the relation of the moments of inertia (J=5 and J=0.5). The results are presented as spa-
tial diagrams. 

 

      
Figure 4. The dependency of real parts (Re(ω*)) and imaginary parts (Im(ω*)) of the first 

beam on structural damping µ at η=0.002, c=10 and l=0.2 
 

      
Figure 5. The dependency of real parts (Re(ω*)) and imaginary parts (Im(ω*)) of the first 

eigenvalue of the beam on the coefficient of structural damping µ and spring rigidity 
coefficient c for l=0.5 and J=0.5, η=0.002 

 

      
 

Figure 6. The dependency of real parts (Re(ω*)) and imaginary parts (Im(ω*)) of the first 
eigenvalue of the beam on the coefficient of structural damping µ and spring rigidity 

coefficient c for l=0.5 and J=5, η=0.002 
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4. Conclusions 

The damped frequencies of system Re(ω*) and the degree of amplitude decay Im(ω*) in 
the system depend on the location of the rotational spring along the beam. No uniform 
tendency for changes was observed in the case studied (Fig. 2). Improved spring rigidity 
causes a constant increase in the damped frequencies of the first eigenvalue of the sys-
tem (for selected values of coefficients η, µ and l). The degree of amplitude decay in this 
case depends on the ratio of rigidity J for the two beam parts. For the central location of 
the change in the cross-section (l=0.5), an increase in c causes a decrease in the coeffi-
cient of the amplitude decay for J=0.5, and an increase for J=5 (Fig. 5 and 6). The con-
structional damping of the fixation points with selected values of spring rigidity causes 
much more substantial changes in the eigenvalues of the system than in the reverse case 
(the change in coefficient c for selected value µ). The results presented in the study help 
determine the geometric parameters and values of the coefficients that characterize 
the damping and elasticity of the system for which the maximum degree of amplitude 
decay is maintained.  
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Abstract 

The paper presents the formulation and solution of Γ-type frame damping vibration. The physical system 
model takes into account the energy dissipation of the vibrating frame due to the internal vibration damping of 
the viscoelastic frame material and the constructional damping in the place of frame bolt support. As the results 
of the problem solution, the damping and system geometry effects on the first frame eigenvalue (damped 
frequencies and coefficients of amplitude decay factor) were presented. 
 
Keywords: vibration damping, Γ-type frame, eigenvalue, amplitude decay factor.   

1. Introduction 

The constructional damping vibration problems of frames are extremely significant from 
the point of view of mechanical structural designs. Also the structures of frames in 
a square Γ-type [1], T-type [2, 3, 4] or other two or three bar frames [5] form have been 
described in many scientific publications. Experimental, theoretical and numerical study 
associated with Γ type frame with reference to stability and free vibrations, have been 
carried out in the monograph [1].  

The type of instability of a T-type frame with joint mass M subjected to 
a compressive follower force P applied at the joint was researched in the work [2]. In 
paper [3] a formulation and solution for the problem of damped vibration in T-type 
frame was presented. The energy dissipation in a vibrating frame as a result of construc-
tional damping in the points of the frame mounting and the supports in physical model 
was also took into account. T-type frame theoretical, numerical and experimental re-
search on the stability and free vibrations was also described in [4]. The author investi-
gated frame loaded by longitudinal force in relation to its bolt. 

Importance of two-bar frames research was emphasized by describing the variational 
method for investigation of the stability of a rectangular two-bar frame in the work [5]. 
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Also interesting studies in the field of numerical procedure for the complex frequencies 
and vibration modes evaluation were carried out in the article [6]. Interesting research 
results related to the effects of small both internal and external damping on the stability 
of disturbed non-conservative systems could be found in the paper [7]. 

In this paper the formulation and solution of Γ-type frame damped vibration was pre-
sented. In the vibration model, internal damping of viscoelastic material in frame (rheo-
logical model by Kelvin-Voigt) and constructional damping in the place of frame bolt 
support was taken into account. As the results of the problem solution, the damping and 
system geometry effects on the first frame eigenvalue were presented. The results ob-
tained in the study were presented in 2D figures and spatial presentations. 

2. Physical and mathematical model 

Physical model of the considered system is shown in Fig. 1. Considered frame consists 
of a column with an l1 length and l2 long bolt. Constructional damping of the bolt support 
vibrations was modelled by viscous rotary damper with a damping factor denoted as CR. 
Viscoelastic material has been characterized by the Young's modulus Ei and the viscosity 
coefficient Ei* of frame material.  
 

 

Figure 1. Physical model of the Γ-type frame 

The equations of motion of the individual frame beams can be written as: 
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where:  
Wi(x,t) –  the lateral displacement for individual beams of frame, i = 1,2, 
Ai – the cross-section area of the beams, 
Ji – the moment of inertia for beam section, 
Ei – Young's modulus, 
Ei* – material viscosity coefficient, 
ρi – the density of the beam material, 
x – space coordinate, 
t – time. 
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Geometric boundary conditions and continuities are as follows: 
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The boundary issues are complemented by the natural boundary conditions of 
the form: 
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The last boundary condition for x2=0 in many publications is assumed to be 
0),0(2 =tW  (cf. [8]). Adoption of such condition requires the assumption that during the 

vibration the vertical rod (pole) of the frame at the end of x1=l1 performs so small vibra-
tions (displacement) that they could be identified as negligible. However, assuming that 
displacement is 0),( 11 ≠tlW  and taking into account the restoring force of the bending 

frame (slender system) in x2=0, then one of the variances of the potential energy element 

is 
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3. The solution to the problem 

The solutions of the equation (1) are as follows: 

 tj
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where: ω* – the complex eigenvalue of the system, 1−=j . 

By substituting (4) to (1-3) we obtain: 
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where: 
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The boundary conditions (after the separation of variables) of considered system, are 
as the following: 
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The solution of equations (5) is expressed in the form of functions: 
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The substitution of the solution (8) into equation (7) leads to a system of equations 
because of the constant Dki (k=1,2-4). The solution of such a system is the solution of 
boundary problem and it leads determine the eigenvalues of studied system, in the form 
of damped frequencies  Re(ω*) and the amplitude decay factor Im(ω*).   

4. The results of numerical computations 

The study of the analyzed frame damping vibrations were performed for the following 
geometrical and material data: (EJ)i = 6.443 [Nm2], (ρA)i = 15.433 [kg/m] and for 
the beam lengths: l1 =2 and l2 = 0.5. Calculations were made after the adoption of 
the dimensionless damping coefficients and the relationship of moments of inertia of 
the column sections and bolt frame J in the form of: 
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In Figures 2-5 results of the calculation are shown. In Fig. 2 the results of research of 
dependency between the frame eigenvalues and constructional damping in the place of 
bolt support. 

 

 

Figure 2. The dependence between the real parts (Re(ω1
*)) and imaginary parts (Im(ω1

*))  
of the first beam eigenvalue and the constructional damping µ 

In the next figure (Fig. 3) the results of frame eigenvalues (with the selected con-
structional damping value µ = 0.2) changes along with the bolt length (l2) changes were 
presented. 

 
Figure 3.  The dependence between the real parts (Re(ω1

*)) and imaginary parts 
(Im(ω1

*))  of the first beam eigenvalue and the horizontal beam  l2 

The results of studies on the impact of changes in stiffness of the bolt and the column 
of the frame on the eigenvalues of the system are shown in Fig. 4. The constructional 
damping factor in this case also was  µ = 0.2. By changing the relation between the mo-
ments of cross-section inertia J, in each case constant inertia moment J2 was taken. 

In Figure 5 the results of research on the frame's viscoelastic material internal damp-
ing influence on its eigenvalues were presented.  
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In Figure 6 the summary graphs of the dependence of the real (Re(ω1
*)) and imagi-

nary parts (Im(ω1
*))  of the first beam eigenvalue in analyzed system, relative to the 

constructional damping µ parameter and internal damping coefficient η, were presented. 
 

 
Figure 4. The dependence between the real parts (Re(ω1

*)) and imaginary parts (Im(ω1
*))  

of the first beam eigenvalue and the beam cross-section J moment of inertia 
 

 
Figure 5. The dependence between the real parts (Re(ω1

*)) and imaginary parts (Im(ω1
*)) 

of the first beam eigenvalue and internal damping coefficient η 

       
Figure 6. The dependence between the real parts (Re(ω1

*)) and imaginary parts (Im(ω1
*)) 

of the first beam eigenvalue and the constructional damping parameter µ and internal 
damping coefficient η 
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4. Conclusions 

The paper presents a model of damped vibrations of Γ-type frame. Based on the obtained 
results it could be concluded that including constructional damping mounting, causes 
significant changes in the frame eigenvalues. The change of the damping coefficient µ, 
significantly affects on the first eigenvalue (both on the damped frequency Re(ω1

*) and 
the amplitude decay factor Im(ω1

*)).The damped frequency Re(ω1
*) is increasing to 

a value corresponding to the two-sided rigid frame mounting. It can be seen that with 
the increase of the rotary damper damping coefficient, the amplitude decay coefficient 
rises to a maximum value and then tends to 0 when µ → ∞ .  

Analyzing the impact of the frame bolt length on its eigenvalues, it could be conclud-
ed that that suitable damped vibrations Re(ω1

*)  decrease with the elongation of the bolt 
(l2), which was to be expected. However, the amplitude decay factor increases to a max-
imum value, and then decreases. 

Significant changes in the eigenvalues of research system could be seen when chang-
ing relations of cross-section inertia moments of the two parts of frame. The increase in 
the ratio of J moments causes stronger vibration damping in the system (growth of coef-
ficient Im(ω1

*)).  The inclusion of internal damping in the frame vibration model, causes 
a slight change in the first eigenvalue  (damped vibrations Re(ω1

*) as well as the ampli-
tude decay factor Im(ω1

*)). 
Based on the research it could be determined such geometric parameters of 

the frame, for which the amplitude decay factors are greatest, and hence it is possible to 
design systems providing minimum vibration amplitudes. 
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Abstract  

The paper concerns analysis of nonlinear vibration of the rotating system consisted of two disks and shaft. The 
analytical multiple time scale method is applied to the analysis dynamics of the system near main resonance. 
The transition phenomenon depending on the value of the nonlinearity parameter is discussed. All the analyti-
cal results have been confirmed numerically. 
 
Keywords: nonlinear vibrations, asymptotic methods, resonance 

1. Introduction 

Torsional vibrations are one of main problem in design of the power transmission sys-
tems [2]. Dynamic stresses caused by torsional vibrations, especially when their ampli-
tudes grow significantly near resonance, may be very large and lead to failure of the 
whole system. 

Both discrete and continuous models are commonly used in order to investigate the 
torsional vibrations of the power transmission systems [1,4,6]. We have attempted to 
apply the Limiting Phase Trajectories (LPT) method in order to investigate nonlinear 
torsional vibrations. LPT is an analytical approximate method, developed recently by 
Manevitch and used to analyse of discrete systems [3]. The discrete model was chosen as 
the most convenient to use this method. Similar approach was applied in [5]. 

2. Mathematical model 

Let us consider a rotating system, consisting of two disks mounted on a shaft. The sys-
tem studied is shown in Fig. 1. The disks are considered as rigid. Their moments of iner-
tia around the axis of rotation are denoted by I1 and I2, respectively. The shaft is relative-
ly thin and light, so its mass may be neglected. The shaft provides torsional stiffness 
only. The nonlinear relationship between the angle of twist and the torque was assumed. 
Two coefficients of stiffness, marked by k and kn, are introduced. Moreover viscous 
damping, of which the damping coefficient equal to c, is taken into account. The whole 
system is mounted on frictionless bearings which are also ideal in the geometric sense. 
One of the disks is under the action of the harmonically changing torque 
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)cos()( 00 tpMtM = . The system has two degree of freedom. The angles of rotation of 

both wheels are chosen as the generalized coordinate. 
 

 

Figure 1. Model of rotating system 

The Lagrangian of the system is as follows:  

 ( ) ( )4
12

2
21

2
22

2
11 4

1

2

1

2

1

2

1
ϕϕϕϕϕϕ −−−−+= nkkIIL && , (1) 

where I1 and I2 are the moments of inertia, k and kn are the stiffness coefficients. 
The equations of motion are as follows 

 ( ) ( ) ( ) ( )tpMckkI n 0012
3

121211 cos=−−−−−− ϕϕϕϕϕϕϕ &&&& , (2) 

 ( ) ( ) ( ) 012
3

121222 =−−−−−− ϕϕϕϕϕϕϕ &&&& ckkI n . (3) 

Dividing eqs. (2) and (3) respectively by I1 and I2 and substracting then eq (2) from eq 
(3) we obtain the equation, in which only the differences of  the unknown functions and 
their derivatives are present. Hence let us introduce the new function 

 )()()( 21 ttt ϕϕ −=Φ . (4) 

The function )(tΦ  is simply the angle of twist of the shaft between the discs. The substi-

tution (4) leads to the equation  

 tp
I

M
tCtKtKt n 0

1

032 cos)()()()( =Φ+Φ+Φ+Φ &&& , (5) 

where 21 // IkIkK += , 21 // IkIk nne +=η , 21 // IcIcC += . 

The eq. (5) describes the internal motion which is especially important with respect of 
vibrational process.   

Introducing dimensionless time tK=τ , the more convenient form of the equation 

of motion can be written: 

 τµτφγτφητφτφ pee cos)()()()( 3 =+++ &&& , (6) 

where 2
10 / KIM=µ , Kpp /0= , KCe /=γ  and φ  is the angle of twist with respect to τ . 
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3. Asymptotic solution 

Further analysis concerns the eq. (6). Let us assume that the system is weakly nonlinear 
and moreover the damping coefficient and the amplitude of the external torque are of the 
order of small parameter. The above assumptions allow to write the governing equation 
in the form: 

 ( )τεεηφφφεγφ pf cos282 3 =+++ &&& , (7) 

where µεηεηγεγ === fee 2,8,2 . 

The initial conditions are assuming to be homogeneous ( ) 00 =φ , ( ) 00 =φ& . 

Let us introduce the function ( ) ( )τφτ &=v . Then the eq. (7) can be written as the set of 

equations of the first order: 

 
( ).cos282
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3 τεεηφφφεγ

φ
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&&
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 (8) 

The key point for the next analysis is the introduction complex functions 

 φψ iv +=  and φψ iv −= . (9) 

Substituting the definitions (9) into eq. (8) we obtain the equation  

 ( ) ( ) ( )τεψψηεψψγεψ
τ
ψ

pfii
d

d
cos232 =−+++− , (10) 

with the initial conditions ( ) 00 =ψ , which is equivalent to the system (8).  

After introducing once more substitution 

 τψ ieΨ=
 
and τψ ie−Ψ= , (11) 

\we get the following equation with unknown complex function )(τΨ .  
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( ),cos2
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eeeie
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=ΨΨ+ΨΨ−Ψ−Ψ+Ψ+Ψ+
Ψ

 (12) 

with the initial condition ( ) 00 =Ψ . The appropriate complex conjugate formulation 

could be written as well.  
Let us focus attention on the case of the main resonance, that occurs when 1≈p . In 

order to consider this case, the small detuning parameter σ is introduced in the form 
σεσ ~11 +=+=p . 

The initial value problem (12) is solved with the help of the Multiple Scale Method. 
Let us introduce two time scales ττ =0  and εττ =1 . The assumed form of the solution 

is as follows: 
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 ( ) ( ) ( )101100 ,, ττετττ Ψ+Ψ=Ψ . (13) 

After substituting (13) into eq. (12) and arranging it with respect to powers of small 
parameter ε  we obtain 

• the equation of order ε0  

 0
0

0 =
∂

Ψ∂

τ
, (14) 

• the equation of order ε1  
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From eq. (14) appears that ( )100 τΨ=Ψ . 

The solution of eq. (15) should be limited. In that reason, the secular terms in (15) 
should be eliminated. That leads to the solvability condition 

 ( )1
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. (16) 

Introducing polar representation 

 ( ) ( ) ( )1
110

τδττ iea=Ψ , (17) 

where ℜ∈δ,a , we obtain the new form of the solvability condition  

 ( ) δτσηγ
τ
δ

τ
ii efeaia

d

d
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da −=−++ 1
~3

11

3 . (18) 

Taking advantage of the fact that a(τ1) and δ(τ1), then multiplying the eq. (18) by ε 
and returning to the original denotations occurring in (6), one can obtain  

 ( ) δστµ
ηγ

τ
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τ
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ee eeaia
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28

3

2

1 3 . (19) 

Writing the exponential functions in the trigonometric form, and then separating real 
and imaginary parts in the equation, we have 
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where θ  = στ  - δ  is modified phase. The eqs. (20) describe the modulation of the am-
plitude a and the modified phase θ. 
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4. Non-steady vibrations 

In order to apply the LPT method, let us consider the non-damped vibrations (γe = 0). In 
that case the set of equations (20) has the first integral 

 const
32

3

2
sin

2
4

2

=−+−= a
a

aH eησθ
µ

, (21) 

where the constant of the right side depends on the initial conditions. The eq. (21) repre-
sents one-parameter family of the curves on the plane (a, θ). 

We are especially interested in the case, when maximal energy exchange between the 
system and the external loading appears. This situation takes place for H=0. In that case 
the first integral (21) has the form: 

 0316sin16 3 =−+− aa eησθµ . (22) 

It is easy to show that the curve given by eq. (22) has extrema for θ = - π/2 and 
θ = π/2. The qualitative change in the behaviour of the system is observable for the criti-
cal value of nonlinearity parameter   
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3

81

64

µ
σ

ηη == ce . (23) 

In Figure 2 the trajectory curves on the plane (a, θ) for three values of ηe obtained 
from (22) are presented. All the graphs presented in the Figs. 2-6 are made assuming σ 
= 0.01, µ= 0.002. 

 

 

Figure 2. Phase trajectories for three values of ηe. 
Points 1, 2, 3, 4 identify roots of the eq. (22) for  θ = –π/2 and θ = π/2 
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The maximum values of the amplitude amax(ηe) of vibrations are presented in Fig. 3. 
Points 1,2,3 and 4 in this figure identify the same solutions as in Fig. 2.  

 

 

Figure 3. Graphs of  amax(ηe) according to  (22); thick line identifes amax; thin line 
reflect the open trajectories in the plane (a, θ) and do not describe vibrations 

There is one more qualitative change in the phase portrait of vibrations on the plane 
(a, θ) for ηe = 2ηc. The metamorphoses of behavior of the system is clearly visible in 
time history of general co-ordinate. When ηe exceeds the critical value ηc or 2ηc, the 
shape of modulation of amplitude rapidly changes. Amplitude modulation in time τ, 
obtained from the eqs. (20), are presented in Figs. 4-6.  

 

 

Figure 4. Amplitude modulation for eη  just below cη   (σ = 0.01, µ = 0.002) 



 Vibrations in Physical Systems Vol.26 (2014) 271 

 

Figure 5. Amplitude modulation for eη   just above cη   (σ = 0.01, µ = 0.002) 
 

 

Figure 6. Amplitude modulation for eη  just above 2 cη   (σ = 0.01, µ = 0.002) 

There are no other transformations of the phase-plane portraits and qualitative chang-
es in behavior of a and θ  for eη  > 2 cη . 

5. Conclusions  

Analysis of the nonlinear disks-shaft system has been done. The  asymptotical Multiple 
Time Scale method has been adopted to solve the problem. It allowed us to exhibit an 
important dynamical transition in the non-steady state vibrations, leading to the drastic 
change of amplitude with increasing nonlinearity parameter (see Figs. 4- 6). The maxi-
mal amplitudes and trajectories on the plane (a, θ)  have been presented (see Figs. 2,3). 
The graphs presented in the paper indicate the intensive energy exchange between the 
system and external excitation. All presented results have been obtained analytically and 
confirmed numerically.   
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Abstract 

Tilting-pad journal bearings are applied in high-speed rotor systems. Excellent stability properties allow ob-
taining the reliable, vibration free, operation of bearings and rotor. There is still need for better knowledge of 
such bearings static and dynamic characteristics. In case of tilting-pad journal bearings the stability can be 
evaluated by the system damping. The system damping gives the damping reserve of the bearings-rotor system 
and can be obtained by the solution of basic hydrodynamic and rotor motion equations. In this paper the hy-
drodynamic equations were solved by means of finite difference method. As result, the dynamic characteristics 
of bearings in form of stiffness and damping coefficients were obtained. These coefficients were the basis for 
the determination of the system damping. 
 
Keywords: tilting-pad journal bearings, stability of rotor 

1. Introduction 

The journal bearing systems of modern high speed rotating machinery apply widely the 
radial tilting-pad journal bearings [1-6]. For such bearings the determination of both 
static and dynamic characteristics of system rotor-bearings, critical speeds, response 
of system on the dynamic load, stability of rotor and system damping, are very essential.  

Titling-pad pivot (pad support) can be positioned centrally or shifted from the centre 
of pad angular length. Angular position of pad pivot has an effect on the bearing static 
and dynamic characteristics. At assumed load applied to the bearing there are different 
bearing characteristics for the case of centrally pivoted pad or for the pivot offset, e.g. 
0.6 to 0.7. The shifting of pivot from the central position to at least 55 percent position 
leads to a decrease of the maximum temperature of about 150C [1]. Klumpp [3] obtained 
an increase in the values of oil film pressure at the increase of pivot-offset to 0.7. 

The representative of tilting-pad journal bearings is the bearing with 4-pads. Some 
performances and applications of this bearing are showed in Table 1. 

In case of tilting-pad journal bearings there is no stability limit [3-5]. It means that 
the stability properties of these bearings cannot be evaluated by method used for 
the multilobe or cylindrical bearings [1]. In case of tilting pad bearing the magnitude 
of stability reserve for the point of bearing operation in the range of stability is im-
portant. The value of damping determines how fast the vibrations decline after the dis-
turbance of static position of operation [1-5]. 
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Table 1 Performances of centrally pivoted, tilting 4-pad  (4-PT) journal bearing 

Type of bearing 
Peripheral 
speed m/s 

Unit load 
MPa 

Sommerfeld 
number 

Stiffness, 
Damping 

Costs Application 

 

30…100 
0…2,5 
(3,0) 

0…1,0 
oooo, 
oooo 

oooo 

Gear trains 
Steam turbines 
One shaft com-
pressors 

oooo – very high (.) maximum values 
 

Calculation of system damping consists in the application of the characteristic equa-
tion of the system rotor-bearings. But quite different as in case of the calculation of lim-
iting speed, the damping is determined from characteristic equation at different angular 
speeds [1].  

The paper presents the results of the theoretical investigation into the stability of 
Jeffcot rotor (symmetrically supported one mass rotor) operating in tilting 4-pad journal 
bearings at adiabatic, laminar oil film. The Reynolds’, energy, viscosity and geometry 
equations determine the oil film pressure, temperature distributions, oil film resultant 
force that are the starting point for the calculations of dynamic characteristics of bearings 
and stability of rotor. Perturbation method was applied for the calculation of stiffness 
and damping coefficients of oil film. Stability limit was determined on the basis of sys-
tem damping [5-8].  

2. Oil film pressure and temperature distributions 

The oil film pressure, temperature and viscosity distributions have been determined by 
means geometry, Reynolds, energy and viscosity equations [9-11]. The geometry of 
tilting 4-pad journal bearings and the system of coordinates show Fig. 1; the pads can be 
arranged in such a way that the applied load goes between the bottom pads (Fig. 1a) or is 
directed on the bottom pad (Fig. 1b). 

The geometry of lubrication gap besides of the pad relative clearance ψs and the an-
gle τ0 of lobe centre line at stationary state is decided by angular orientation τ1 centre 
point of pad.  During determination of static equilibrium position of pad, the angle τ1 
should be varied as long as the magnitude of lubricating gap allows obtaining the oil film 
pressure distribution, which gives the resultant force to go through the support point of 
pad [3,9]. 

Geometry of lubricating gap of tilting pad journal bearing determines Eqn. (1). 

 )cos()cos(
)cos(

1
)( 1

1

αϕετϕ
ττ

ψ
ψϕ −⋅−−⋅

−

−
+=

o

s
sH  (1) 

where: ψ s-pad relative clearance, ϕ - peripheral coordinate,  α - attitude angle, ε - rela-
tive eccentricity of journal. 
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Figure 1. Geometry of tilting 4-pad journal bearings with centrally pivoted pads; a) – 
load between pads, b) – load on pad; ϕ b , ϕ c, ϕ e, ϕ s - angle of pad: begin, centre, end 

and support, respectively, ΩΩ /F  - pivot offset, ( ) ( )1111 bebsF ϕϕϕϕ −−=ΩΩ //   

Reynold’s equation applied in this paper has the form: 
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where: H  = h/(R-r) - dimensionless oil film thickness,  h - oil film thickness (m), p  - 

dimensionless oil film pressure, p =pψ2/(η ω), p - oil film pressure (MPa), L - bearing 

length (m), D-sleeve diameter (m), R, r – sleeve and journal radius (m), z – dimension-
less axial co-ordinate, η  - dimensionless viscosity, ∆R – radial clearance, ∆R=R-r (m), 

φ =ω t - dimensionless time, t – time, ψ - bearing relative clearance , ψ =∆R/r (‰), ω -
angular velocity (sec-1). 

It has been assumed for the pressure region that on the bearing edges the oil film 
pressure p (ϕ , z )= 0 and in the regions of negative pressure, p ( ϕ  , z ) =0. The oil 

film pressure distribution computed from Eqn. (2) was introduced in the transformed 
energy equation [9]. Temperature and viscosity distribution were found by the iterative 
solution of equations (1), (2) and energy one [9-11]. 

3. Stability of Jeffcot rotor 

The equations of motion for the journal and the centre of elastic shaft are given in matrix 
form by Eqn. (3). All the stiffness and damping coefficients were calculated by means 
of perturbation method [1,6].  

The motion of simple symmetric rotor can be described by the following equa-
tion [2]: 
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 tbtaxCxBxM ωω sinˆcosˆ +=⋅+⋅+⋅ &&&
  (3) 

where: M, B, C –matrices of mass, damping and stiffness, ba ˆ,ˆ  - coefficients of dynamic 

constraints.  
After transformations of equation (3) the real and imaginary part was obtained [2,3]. 

The stability of elastic rotor-bearing system is analysed based on the following charac-
teristic frequency equation of 6-th order with regard to (λ/ω) [2-6]. 
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6 =++++++ ccccccc ωλωλωλωλωλωλ  (4) 

Solution assumption for Eqn. (4) is: λ = - u + iv, where: u=1/(ωTz) and v=ωe/ωcr with ωe 
as self-frequency. The coefficients c0 through c6 in Eqn. (4) give the set of equations (5): 
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where: a0 – ratio of angular velocity to the angular self-frequency of stiff shaft, a0=
22 / crωω , b0 – ratio of Sommerfeld number to the relative elasticity of shaft, b0 =So/cs , 

c* – shaft stiffness, (Nm-1), cs – relative elasticity of shaft, cs= f/∆R = )/( 2 Rg cr ∆⋅ω , f- 

static deflection of shaft, (m), F.- resultant force of oil film (N), Fstat – static load of bear-
ing, (N), g – acceleration of gravity, (ms-2), m – mass of the rotor, (kg), So – Sommerfeld 

number, )/( ωηψ ⋅⋅⋅⋅= DLFSo 2 , Sok – critical Sommerfeld number, Sok = So ω/ωcr , 

ω cr – angular self frequency of stiff rotor, ω cr= mc /* . 
The terms A0, A1, A2, A3, A4, consist the stiffness gik (i=1,2 and k=1,2) and damping 

bik (i=1,2 and k=1,2) coefficients and they have the following meaning: 

 
2211422113211222112

12212112112222111211222110

;;

;

ggAbbAbbbbA

bgbgbgbgAbgbgA

+=+=⋅−⋅=

⋅−⋅−⋅+⋅=⋅−⋅=
 (6) 

where: gik - dimensionless stiffness coefficients,  gik = So(∆R/Fstat), ⋅g’ik ,  - stiffness coef-
ficients, (N/m), bik- dimensionless damping coefficients, bik =So(∆R/Fstat)ω⋅b’ik , b’ik - 
damping coefficients, (N sec/ m), 

In case of bearing with the tilting pads interesting is not the absolute stability limiting 
speed but the magnitude of stability reserve (Fig. 2) for the point of bearing operation in 
the range of stability. Glienicke [1] investigated into the reserve of stability based on the 
damping of free vibration and introduced the term “System-damping”. The physical 
meaning of this term is shown in Fig. 2. The value of damping u determines how fast the 
vibrations decline after the disturbance of the static position of operation. It gives the 
magnitude of the stabilizing action of oil film with regard to the destabilizing effect of 
outside effects. 

The damping is determined from characteristic equation (4) at different angular 
speeds ω. The explanation according to Fig. 2 has such advantage that the system damp-
ing u can be obtained as the function of revolutions or as the limiting speed  (u = 0). 
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Figure 2. Damping of system according to Glienicke [1]; Tz – time constant 

4. Results of calculations 

The tilting 4-pad journal bearings of the length to diameter ratio L/D=0.5, the bearing 
relative clearance ψ =2.0‰ and ψ =1.16‰, relative clearance of the pad ψS = 2 and the 
pivot offset ΩF/Ω =0.5 and ΩF/Ω =0.6 (Fig. 1) were taken into consideration. Calcula-
tions of dynamic characteristics were carried out for the bearings with the laminar oil 
film for the range of relative eccentricities ε = 0,1 to ε = 0,8. Vertical direction of load 
was assumed. The values of thermal coefficients were assumed as KT = 0,114 and KT = 
0,712 at the oil feeding temperature T0=300C and T0=500C, respectively and rotational 
speed 30000 rpm.  

Some results of calculations of journal displacements ε versus Sommerfeld number 
So, the stiffness gik and damping bik coefficients as well as the system-damping are 
shown in  Fig. 3 through Fig. 7.  

 
Figure 3. Journal displacement ε versus Sommerfeld number S0 at different bearing 

parameters of tilting 4-pad journal bearing 
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The displacements of journal ε versus the load capacity So (Sommerfeld number) at 
the length to diameter ratio L/D=0.5, different values of bearing relative clearance ψ , 
pad relative clearance ψs, pad offset ΩF/Ω and the feeding oil temperature Ts=500C is 
shown in Fig. 3. At assumed Sommerfeld number So and pad offset ΩF/Ω , and increase 
in the bearing relative clearance ψ at decreasing pad relative clearance ψs causes the 
increase in the journal displacement ε. However, at assumed bearing relative clearance ψ 
and pad relative clearance ψs the pad offset decreases the journal displacements (e.g. Fig. 
3, at So=0.2 and ΩF/Ω=0.5 the displacement ε=o.6 but at ΩF/Ω=0.6 the displacement is ε 
=0.45).  

Exemplary dynamic characteristics in form of stiffness gik and damping bik coeffi-
cients determined for the pad pivot offset ΩF/Ω=0.6 are shown in Fig. 4 and Fig. 5. 
Stiffness g11 and g22 as well as damping b11,b22 coefficients show the increase at the in-
crease in Sommerfeld number S0. Among these coefficients the largest values have the 
stiffness g22 and damping b22 coefficients particularly at lager values of Sommerfeld 
numbers (e.g. Figure 4 and Figure 5). The coupled stiffness coefficients g12 = g21 (Figure 
4) and damping ones b11 = b22 (Figure 5) are equal, respectively. However, the coupled 
stiffness g12 , g21 and damping coefficients b11 , b22 decrease at the increase in Sommer-
feld numbers (Figure 4 and Figure 5); this is in agreement with the results of another 
authors, e.g. Klumpp [3]. 

The Systemdamping u/ωcr was calculated with the use of the program Mathematica 
5.0. 

 

  

Figure 4 Stiffness coefficients of tilting 4-
pad journal bearing 

 

Figure 5 Damping coefficients of tilting 4-
pad  journal bearing 

The system-damping u/ωcr obtained by Klummp [3] and Walle [4] is presented in 
Fig. 6. Author’s results that were obtained for two values of pad offset, i.e. ΩF/Ω=0.6 
and ΩF/Ω=0.6 are showed in Fig. 7; the run of all curves is similar to the runs that were 
obtained by Klummp [3] and Walle [4] but different in the values of system-damping. 
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Figure 6. System-damping of tilting 4-pad 
journal bearing [3,17]  

 

Figure 7. System-damping of tilting 4-
pad journal bearing at different pad offset 

5. Conclusions 

The calculations and analysis of results has allowed drawing the conclusions given be-
low. 

1. An increase in pad offset ΩF/Ω causes the variations in the journal displacements 
at assumed Sommerfeld number. 

2. The stiffness and damping coefficients show changes at the variations of pad off-
set 

3. An increase in pad offset generates the decrease in the system damping. 
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Abstract  

The paper discusses acoustic issues of contemporary churches. Church interiors should be designed so as to 
obtain intelligibility of speech and simultaneously take organ music into account. It is a tough task as acoustic 
parameters required for speech and organ music are entirely different. Analysis of the issue was carried out on 
the basis of investigations in five contemporary churches in Poznań. In total, seven interiors were investigated 
as two of the churches were two-storeyed. The acoustic investigations were conducted by means of an omnidi-
rectional sound source, a SVAN 945A Sound Level Meter and the DIRAC programme. RT, Ts, C80 and C50 
were measured. The acoustic parameters were compared with values recommended for churches. The investi-
gations allowed to draw clear conclusions concerning the influence of architecture of the interior on acoustic 
parameters. 
 
Keywords: church acoustics, acoustic investigation in church. 

1. Introduction  

Acoustics of the interior are tightly connected with the architecture of the building. Ar-
chitecture of many churches promotes the occurrence of excessive reverberation, which 
limits intelligibility of speech.  In result, the main function of the sacral interior, i.e. the 
conduct of liturgy, is considerably hindered. In addition, it is crucial to realize that 
acoustics in church interiors is a complex issue as it is difficult to combine entirely dif-
ferent acoustic requirements in one interior. The basis of a Roman Catholic liturgy is 
intelligibility of speech; however, liturgy involves organ music. Acoustic requirements 
for speech differ diametrically from those for organ music. Depending on the main func-
tion designed for a sacral interior, the recommended reverberation time takes different 
values, contingent on the cubature (Fig. 1). 

In literature dealing with the issues of church acoustics, there are books like “Czynni-
ki akustyki w architektonicznym projektowaniu kościołów” by Dominika Wróblewska 
and Andrzej Kulowski [10] and “Podstawy akustyki obiektów sakralnych” by Zbigniew 
Engel, Jacek Engel, Krzysztof Kosała and Jerzy Sadowski [4]. Worship Space Acoustics 
by Mendel Kleiner, David Lloyd Klepper and Rendell R. Torres [8] discusses issues of 
religious buldings of different faiths. 

The issue of reverberance was described, among others, in the papers mentioned be-
low. “Akustyka wielofunkcyjna wnętrz sakralnych” by Kosała K., Kamisiński T. [9] 
discusses the issue of excessive reverberance on the example of the St. Paul's Church in 
Bochnia. On the basis of measurements and acoustic simulations, acoustic treatment was 
suggested. Acoustic properties of the selected churches in Poland by Z. Engel, K. Kosała 
[5] presents a new method of acoustic assessment of religious buildings by means of the 
global index of the acoustic quality. The paper describes the application of the indexing 
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method for five Roman Catholic churches. Acoustical characterization of the under-
ground chapels of the new Holy Trinity church in the Fatima shrine by Carvalho A. P. 
O., Nascimento B. F. O.  [3] discusses acoustics of chapels of the Church of the Holy 
Trinity  in Fatima. Acoustic measurements were taken and acoustic properties of the 
chapels were compared with typical religious buildings in Portugal. Acoustic rehabilita-
tion of middle twentieth century Portuguese churches by Carvalho A. P. O., Cruz M. T., 
Pereira G. C. G. [2] describes the issue of too long reverberation time and poor intelligi-
bility of speech in two churches from the first half of the 20th century. After investiga-
tions, acoustic treatment was suggested. The improvement of acoustic situation in two 
modern churches by Horvat M., Domitrovic H., Jambrosic K. [7] describes acoustic 
treatment of two newly built churches in Croatia. Results of the investigations were 
presented for each stage of the applied acoustic treatment. 

 

 

Figure 1. Range of optimum reverberation time for churches [6] 

2. Description of the investigations 

Acoustic problems of interiors were presented on chosen examples of contemporary 
churches in Poznań. The acoustic investigations were conducted by means of an omnidi-
rectional sound source, a SVAN 945 A Sound Level Meter and the DIRAC programme. 
The Brüel & Kjær ZE-0948 USB Audio Interface was used.The e-sweep signal was 
generated and RT, Ts, C80 and C50 were measured. The measured acoustic parameters 
were compared with values recommended for churches. In total, seven interiors were 
investigated as two of the buildings were two-storeyed. The churches under investigation 
were compared in Table 1. 
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Table 1 Investigated churches 

 

1 and 1a. Visitation of Blessed Virgin Mary 
Church 

(two-storey church) 
 

1. Upper church - cubature = 19000 m³ 
1a. Lower church – cubature = 4800 m³   

 

2. Church of the Blessed Virgin Mary Moth-
er 

of the Church 
 
 

Cubature = 6700 m³ 

 

3 and 3a. Christ the King church  
(two-storey church) 

 
3. Upper church - cubature = 4600 m³ 
3a. Lower church – cubature = 315 m³ 

 

4. Church of the Nativity 
 

Cubature = 4800 m³ 
 

 

5.  Church of the Ascension 
 

Cubature = 4800 m³ 
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Table 2 shows the comparison of reverberation time RT and centre time Ts. Fig 2. 
shows the comparison of reverberation time RT in the frequency characteristics. The 
recommended values in all tables were taken from the book [10]. 

Table 2 Comparison of reverberation time and centre time 

 
 

Name of the church 

RT  [s] Ts  [ms]  

mean 
500-1000  

[Hz] 
recommended  

mean 
mean recommended 

1.  Visitation of Blessed 
Virgin Mary Church – 
upper church 

5.9 7.1 1.5-3.3 410 120 - 180 

1a. Visitation of Blessed 
Virgin Mary Church –
lower church 

3.8 4.1 1.3 -2.7 298 

60-100 

organ music 
to 180 

2.  Church of the Blessed 
Virgin Mary Mother of 
the Church 
 

2.7 3.2 1.3-2.8 196 

70 – 120 

organ music 
120 -180 

3.  Christ the King church 
– upper church 3.3 3.8 1.3 -2.7 248 

60-100 

organ music 
to 180 

3a.  Christ the King 
church  
- lower church 

1.6 1.6 1.3 -2.7 135 

60-100 

organ music 
to 180 

4.  Church of the Nativity 
 5.0 5.4 1.3 -2.7 367 

60-100 

organ music 
to 180 

5.  Church of the Ascen-
sion  
 

2.9 3.2 1.3 -2.7 194 

60-100 

organ music 
to 180 
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Figure 2. Frequency characteristics of averaged reverberation time 
in the investigated churches 

In most of the investigated cases, reverberation time was too long. Most notably, 
church No 1 (of cubature equal to 19000 m³) had a considerably exceeded reverberation 
time. The measured reverberation time was RT = 5.9 s, whereas the recommended rever-
beration time for a church of this cubature equals RT = 1.5 – 3.3 s. Reverberation time 
close to the recommended value occurred in churches No 2, 3a and 5. To asses the clari-
ty of music sound, centre time Ts is applied; Ts is the center of gravity along the time 
axis of the squared impulse response [1]. Ts close to the recommended value occurred in 
churches No 2 and 5.  

Table 3 shows results of measurements of clarity index C80. This parameter is ap-
plied to determine quality of the music sound. In the logarithmic scale, it describes the 
ratio of the energy of the sound reaching the measuring point within first 80 ms to the 
energy of the sound reaching it after 80 ms [6]. According to recommendations given in 
literature [10], C80 was averaged for 0.5, 1, 2 kHz. Apart from the rear part of church 
No 1a, the investigated churches had conditions suitable for organ music. 

Table 4 presents results of measurements of clarity index C50. By analogy, the index 
is defined like C80. The measurements allow to calculate the weighted value of clarity 
index C50. Octave bands 0.5, 1, 2, 4 kHz are multiplied by the weighting factor equal to 
0.15, 0.25, 0.35 and 0.25 for each band respectively; thus obtained results are added. In 
all examined churches, index C50 did not reach recommended values. It was at its clos-
est to the recommended value in church No 3a, while it was particularly unfavourable in 
the rear part of church No 1a. 

 
 



286 

 
Table 3 Comparison of clarity index C80 

 

Name of the 
church 

C80 [dB] 

first  
row 

recommended 
 

last 
row 

recommended 
 

general 
recommendations 

1.  Visitation of 
Blessed Virgin Mary 
Church 
 – upper church 

-2.6 
-4.5 
-8.2 

>0 
-5.9 
-7.3 
-8 

-1 to1 

organ music 
-8 to -3 
oratorio music 
-3 to 6 

1a. Visitation of 
Blessed Virgin Mary 
Church  
– lower church 

-1.8 
-2.3 
-3.3 

>0 
-17.3 
-18.6 
-17.9 

>2 

symphonic and 
oratorio music 
-3 to 6 
organ music 
< -3 

2.  Church of the 
Blessed Virgin Mary 
Mother of the Church 
 

-2.5 
-1.4 
-0.4 

>0 
-3.5 
-5.1 
-5.3 

>2 

symphonic and 
oratorio music 
-3 to 6 
organ music 
< -3 

3.  Christ the King 
church  
– upper church 

-2.0 
-4.8 
-6.2 

>0 
-5.3 
-6.0 
-5.3 

>2 

symphonic and 
oratorio music 
-3 to 6 
organ music 
< -3 

3a.  Christ the King 
church  
– lower church 

-0.7 
0.3 

3 to 8 
-1.7 
-1.6 

- 
> 6 
electronic organ 

4.  Church of the 
Nativity 
 

-4.5 
-5.0 
-5.6 

>0 
-8.4 
-8.2 
-8.0 

>2 

symphonic and 
oratorio music 
-3 to 6 
organ music 
< -3 

5.  Church of the 
Ascension  
 

-1.3 
-3.3 
-0.4 
-3.6 

>0 

-4.6 
-4.0 
-4.1 
-3.6 

>2 

symphonic and 
oratorio music 
-3 to 6 
organ music 
< -3 
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Table 4 Comparison of clarity index C50 

3. Conclusions  

The interiors of the examined churches show prominent lack of acoustic adaptation. 
Acoustic conditions in the churches result from the applied building materials with low 
sound absorptive coefficient. They are materials typical of the Polish religious buildings, 
i.e. brick, concrete, plaster, stone and glass. If the acoustic conditions are close to the 
recommended values, it is owing to either a small cubature of the building or the applica-
tion of truss roof construction with a suspended ceiling. Church 3a with a small cubature 
is actually used as a chapel, while churches 2, 3 and 5 have suspended ceilings mounted 
on bottom chord of the truss. In church No 2, thin aluminium plates tiles were applied; 
the way of mounting ensures penetration of the sound to the spaces between the bars of 
the trusses. In church No 5, a construction of plaster-cardboard tiles was attached to the 
truss; among the tiles, there are several centimetres spaces. This way of mounting en-
sures penetration of the sound to the space between the ceiling and the roof. In both 
churches, such ceiling constructions boost sound absorption in contrast with a monolithic 
reinforced concrete ceiling in church No 4. Church No 3 also has a suspended ceiling 
mounted on trusses, but the church's timber construction tightly cuts off the interior from 
the space between the bars of the trusses, which results in the decrease of sound absorp-

Name of the church 

C50 [dB] 

mean 
range of 
variation 

recommended 

1.  Visitation of Blessed Virgin Mary 
Church 
 – upper church 

- 8.6 -2 to -13 > -2 

1a. Visitation of Blessed Virgin Mary 
Church 
 – lower church 

- 15.4 -3.8 to -41 > -2 

2.  Church of the Blessed Virgin Mary 
Mother of the Church 

-8.1 -4.3 to -17 > -2 

3.  Christ the King church  
– upper church 

-7.9 -2.9 to -12 > -2 

3a.  Christ the King church  
– lower church 

-3.7 -2.7 to -5.5 > -2 

4.  Church of the Nativity 
 

-8.6 -5.8 to -10.5 > -2 

5.  Church of the Ascension  
 

-5.4 -0.6 to -8.0 > -2 
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tion. It is recommended that churches with considerably exceeded reverberation time (1, 
1a and 5) undergo acoustic treatment. 
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Abstract 

The subject of the results of theoretical and numerical studies measures to designate the effect of pre-stress on 
the vibration of geometrically non-linear column exposed to the load force directed to the positive pole. Con-
sidering the total mechanical energy of the system the equation of motion and the boundary conditions neces-
sary to solve the boundary problem were determined. Based on the kinetic stability criterion the range of 
values of internal compression forces was determined in which the growth of critical load of the column above 
the local loss of stability was achieved. In the research the geometrically non-linear system was analysed with 
variable asymmetry of bending stiffness and at selected values of geometrical parameters of the head realizing 
the load. 
 

Keywords: free vibrations, geometrically non-linear system, pre-stressing 

1. Introduction 

The geometrically non-linear slender systems are the subjects of many scientific papers 
in which considered the issue of their stability and free vibrations at different ways of 
load and setup. In terms of stability testing of slender systems different load cases were 
investigated including conservative load (Euler's – [1]) and specific ([2]) and non- con-
servative load (generalized of Beck - 3). For columns which are geometrically non-linear 
critical load was determined using linear ([4]) and curvilinear ([5]) form of static bal-
ance. The course of changes in frequency of free vibrations as a function of the external 
load ([4,5]). 

Another issue are the study of local and global instability geometrically non-linear 
systems ([4]). In this case, comparative analyses on the value of bifurcation load of geo-
metrically non-linear columns and critical load of the respective linear columns. Under 
consideration of this system load cases the value of the external load at which loss of 
linear static balance was obtained, a function of the asymmetry factor bending stiffness 
between the rods geometrically non-linear column was determined. The local loss of 
stability occurs with much lower coefficients of bending stiffness asymmetry of models 
geometrically non-linear systems. In this case, the value bifurcation load of these models 
is less than the critical force of suitable linear model. 
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2. The physical model of the system 

Figure 1 shows the physical model of geometrically non-linear column (KN) realizing 
the load force directed to the positive pole ([6]). The column consists of two pairs of 
rods (1,2) with symmetrical distribution of bending stiffness(EJ)1, (EJ)2, compressive 
stiffness (EA)1, (EA)2 and mass per unit length (ρΑ)1, (ρA)2. Linear system (KL) ([7]) 
was built with two rods with a total bending stiffness (EJ)1 (without internal rods). The 
column is loaded by a Q-force by redundancy beam (5) and tension member (3) with a 
length lB, whose angle with respect to the undeformed column axis x has a value of β. 
The rods of column are rigidly constrained (x = 0). At the free end (x = l) are hingedly 
connected to tie rod (3) by means of redundancy cubes (4) having a mass m. The direc-
tion of the external load P passes through a fixed point P, lying on the undeformed axis 
of the column. Variable position of the pole O was achieved by mechanical system (6). 
 

 

Figure 1. Physical model of geometrically non-linear column (KN) loaded with force 
tracking directed to the positive pole ([6]) 

In the description of the column (KN) is defined asymmetry value of bending stiffness µ: 
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The rigidity in bending of the column rods (KL) is the same as the stiffness of rods 
the column index 1 (KN) with accepted asymmetry of bending stiffness of the model of 
geometrically nonlinear column described by coefficient µ. 

Taking into account the physical model of the column shall be determined according 
with Bernoulli - Euler's theory of bending components of kinetic and potential energy. 
Kinetic energy T is the sum of kinetic energy of the individual column rods and body 
with a concentrated mass m : 
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The total potential energy of the system is composed of energy: internal forces, elasticity 
in bending and components of external load. 
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where in: Wi(x,t), Ui(x,t) are appropriately transverse and longitudinal movement, and - 
the pair of rods of the geometrically non-linear system. 

3 The wording of problems, the equations of motion, the boundary conditions 

The issue of stability and vibration of geometrically nonlinear column solved using 
Hamilton's principle ([8]): 
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where: δ means the operator of variations 
Taking into account dependences (3) and (4) in equation (5) the prior use property of 

the commutative integration operation (with respect to x and t) and calculating the varia-
tion of mechanical energy, the equation of motion were obtained ([9]): 

 0
),(

)(
),(

)(
),(

)(
2

2

2

2

4

4

=
∂

∂
+

∂

∂
+

∂

∂

t

txW
A

x

txW
tS

x

txW
EJ i

i
i

i
i

i ρ  i=1, 2,  (7a,b) 

and the equation of longitudinal displacements of the individual rods of system: 
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where in dependencies (6a,b) and (7a, b) included the definition of the longitudinal force 
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Geometrical boundary conditions considered system: 
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substituted into the equation (5) to give the other boundary conditions necessary to solve 
the boundary problem: 
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4. The results of calculations 

Considering the solution of boundary value problem obtained on the basis of equations 
(6a, b), (7a, b) and the boundary conditions (9a-j) numerical studies on stability and free 
vibration on considered system was obtained. 

In the figure 2a presented change of the force values of geometrically nonlinear bi-
furcation column (KN) and the critical load of the linear column (KL) as a function of 
the asymmetry bending stiffness factor µ. Critical load parameter λ∗

cr system (KN) and 
(KL) refers to the total bending stiffness of the system (KN) (Formula 10). It has been 
shown that this geometrically nonlinear system is characterized by a local and a global 
loss of stability. In terms of changes in values µ∈ (0, µgr) bifurcation load (loss of linear 
static balance) is less than the critical load of the column (KL). For the local loss of 
stability corresponds instability of pair of rods with a smaller bending stiffness. Removal 
of geometrically nonlinear column of said bars causes a rapid increase in the critical 
force (transition from point A1 to point A2). Consequently in terms of the variation of 
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asymmetric distribution coefficient to bending stiffness of the rods µ∈ (0, µgr) there is 
local instability of the system. For µ> µgr there is a global loss of stability. 
 

  

Figure 2a. Change of the critical 
parameter of load λ∗

cr in function of 
asymmetry factor bending stiffness 

distribution µ 

 

Figure 2b. Change the factor of length of 
the tendon lB

* as a function of the limit 
distribution of the asymmetry factor u to 

the bending stiffness of the column 
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Characteristic of curve describing the range of variation values of the distance to the 
pole lB

* (implementing head load parameter) based on the limit value of the asymmetry 
factor µgr bending is shown in Figure 2b. Discussed curve describes the value of the 
parameters (lB

*, µgr), and where there is equality of bifurcation load column (KN) and the 
critical load corresponding column (KL). On the basis of the presented curve range of 
local and global stability loss rectilinear form of static equilibrium system has been des-
ignated (KN). 

In a paper considered the problem of the impact of pre-stress on the stability of the 
geometrically non-linear (KN). Figure 3 presents value range of critical load of geomet-
rically non-linear column at initial pressurization (KNW) as a function of pre-stress 
(solid line). Calculations were performed at the selected asymmetry bending stiffness µ 
and given lB

* parameter of implementing load head. Pre-stressing was achieved by intro-
ducing an additional force which initially stretched rods of smaller bending stiffness 
(EJ)2 In this case the pair of rods - index (1) is subjected to a compression by force S0. 
Taking into account the description of the phenomenon of pre-stress, equal longitudinal 
displacement at the free end of the system (cf. formula (9e)) and Hooke's law, distribu-
tion of internal forces in each pair of rods of the geometrically non-linear system was 
defined (KNW). 
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where in Si > 0 - strut, Si <0 – tension rebar 
The lines number 3 and 4 mean the distribution parameter of internal forces S1

* 
(curve 3), S2

* (curve 4) corresponding to the critical load. S0
*, S1

*, S2
* are defined as 

follows: 
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If S0
* > 1.45 hat the loss of stability occurs only as a result of the instability of rods bend-

ing stiffness (EJ)1. In this case, the parameter S2
* internal force in the rods of the bending 

stiffness (EJ)2 is negative (tensile). It has been shown that in the range of pre-stress S0
*∈ 

(S0
', S0

'',) to an increase of the critical load (λ∗ cr)KNW of the column (KNW) above the 
critical force contribution (λ∗ cr)KL  line (line 2) - "out" from the scope of the local loss of 
stability. At point C, the column loses the stability as a result of the exclusive action of 
pre-stress. 
 

 

Figure 3. Critical force parameter λ∗
cr as a function of the internal forces S0

* 

Comparing the values of the bifurcation load of system (KN) and the column load 
(KNW) at selected values of the parameter S0

* (Fig. 4a) showed that pre-stressing should 
be used in a limited range of changes in the asymmetry factor of flexural rigidity µ such 
µ∈ (0, µ2) for S0

* = 3.434 µ∈ (0, µ3) for S0
* = 1.717. The positive effects of pre-stress are 

obtained when the critical load parameter λ∗
cr column (KNW) is larger than the column 

parameter (KN) (curve 2, 3). In the case of S0
* = 4.85 (curve 1), the -pre-stressing should 

not be used. 
Figure 4b shows an example of the course of the frequency of free vibrations the sys-

tem under consideration. In terms of parameter changes the internal force of the rods S1
* 
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the bending stiffness (EJ)1 in the range of S1
*∈ (0, S0

*) is pre-compressed system. Then 
the rod is exposed to external load λ∗ where in: 
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The value of the critical load were obtained for Ω =0 parameters. 
 

  

Figure 4a. Critical force parameter λ∗
cr as 

a function of variables internal forces S0
* 

 

 

Figure 4b Mileage frequency of free 
vibrations of the system studied pre-

compressed and loaded a dimensionless 
value of the external force λ∗ 

5. Conclusion 

The subject of the paper was an analysis of vibration and stability of geometrical nonlin-
ear column loaded with a force directed to the positive pole. The analysis of numerical 
results shows that the system under consideration depending on the value of the asym-
metry factor decomposition bending stiffness is characterized by local or global loss of 
stability. Asymmetry parameter bending stiffness affects the value of the critical force of 
the geometrically nonlinear column. In terms of the influence of pre-stress on the vibra-
tion and stability of geometrically nonlinear column loaded with a force directed to the 
positive pole defines the scope of the pre-stressing for which it receives an increase in 
the critical load of the column above the limit of local loss of stability. It was found that 
the initial compression of the column in whole possible extent from the viewpoint of the 
value of bifurcation force is undesirable.   

This applies especially to high pre-stress force values for which the results are oppo-
site to expected (a significant reduction of the critical load). Pre-compression should be 
used for the columns characterized by local loss of stability. 
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Abstract  

The paper presents the results of theoretical research and numerical calculations of the vibration and the stabil-
ity of a twin rod flat frame subjected to the Euler's load. Considering the total mechanical energy of the system 
and using the kinematic stability criterion (Hamilton's principle) is determined by the equations of motion and 
boundary conditions considered system. The results of numerical calculations are presented at selected geomet-
rical and physical parameters in the system for selected values of the rotary spring stiffness modeling the 
structural rigidity of the node connecting bolt with the column of frame. 

 
Keywords: flat frame, free vibrations, Euler's load 

1. Introduction 

In the scientific literature concerning the stability of slender elastic systems stands 
out conservative and non-conservative load. Euler load and a force directed to the pole 
are classified as a conservative load type [1]. However Beck's generalized load [2] and 
Reut's load [3] are the cases of non-conservative load. Euler's load is a load by the longi-
tudinal force and have a fixed anchor point and the direction who does not change during 
buckling. 

In the case the conservative load there are also the system realizing a specific load 
[4]. The cases of this load formulated by L. Tomski [4, 5] combine the features of gener-
alized load [6] or tracking load [2] and the load with force directed to the pole [7]. 

The flat frames are classified as open or closed. At the ends of closed frame system 
[11, 12] has been installed the support or heads which are carrying the load. In case 
when one of the ends of the system is free this system is called an open frame [8]. Most 
of scientific publications are considered a simple frames type Г who have got the form 
of angle [8], three-rod type T [10, 15] and portal systems which is built of several simple 
framework [14]. In many scientific papers many of the theoretical and numerical re-
search of framework due to the type of system load and the criteria of loss of stability 
had been drawned. In paper were presented the range of variation of the natural frequen-
cies of system as a function of the external force [9] and the changes in the value of the 
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critical load [17] for the selected parameters of carrying load  heads. In the studied issues 
of stability of flat frame also had been considered the initial inaccuracies of systems in 
the form of an eccentric load application [15] the elasticity of structural components 
(translational and rotational springs ) for the method of connection the pole and bolt 
frame [16] or fixing these elements in the supports [8,12]. Shows the results of analysis 
of the influence of geometric imperfections in the form of right angle to the stability of 
the flat frames. 

In this paper had been studied the impact of structural node connecting the bolt and 
the column to its own vibration and stability of twin rod closed flat frame type  Г treated 
Euler's load. Based on the kinetic stability criterion determined the equation of motion 
and the boundary conditions necessary to solve the boundary value problem. Taking into 
account the adopted geometric and physical parameters of the system the results theoret-
ical  and numerical calculations had been showed.  

2. The physical model  

Figure 1 shows the diagram of a flat frame type  Γ subjected to the Euler's load.  
 

 

Figure 1. The physical model of frame type Γ subjected to Euler's load 

The frame bolt of flexural rigidity (EJ)2 was fixed rigidly but there is a possibility to 
longitudinal displacement  however the pole of flexural rigidity (EJ)1 was fixed rigidly 
without a possibility to longitudinal displacement. Both of them are connected by using       
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C - rigid spring. In the considered load case the pole of frame was charged by conserva-
tive force P which the direction of action passes through the pole and bolt connection. 

3. Mechanical energy of systems, the equations of motion, boundary conditions 

The kinetic energy T of  contemplated flat frame is the sum of the kinetic energy of its 
individual bars: 
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The V- potential energy recording takes into account the elasticity of bending of the 
individual rods the direction of the external load and susceptibility structural node of 
flatframe (C-spring stiffness): 
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Considering the total mechanical energy of the system defined by (1), (2), the equation 
of motion  and the boundary conditions of a frame were determined using principle of 
Hamilton [14]: 
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The equation of motion: 
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Geometrical boundary conditions: 
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Natural boundary conditions: 
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4. The results of numerical calculations 

In this part of the paper the results of numerical calculations was presented. They were 
made on the basis of the solution of boundary value problem, while taking a constant 
flexural rigidity of the frame (EJ)1 + (EJ)2 = const and a fixed sum of lengths of the bars 
of the l1+l2 = const. The results were presented using the following dimensionless size: 

 

( )
( ) ( )

( )
( )

( )
( ) ( )

( ) ( )[ ] ( )
( ) ( )21

4
21

2
21

21

21
1

1

2

1

2

21

2
21

EJEJ

llAA
,

EJEJ

llC
c

,
l

l
,

EJ

EJ
,

EJEJ

llP

*
r

kr*

+

++
=

+

+
=

==
+

+
=

∗ ωρρ
Ω

φµλ

  (8a-e) 

The results of numerical simulations concerning the course of changes in the critical 
load parameter λ* as a function of the parameter µ was presented in relation to the pa-
rameter of elasticity of the structural node c* (Fig. 2). Taking into account a variable 
value of the parameter µ and maximum value of critical parameter of load  λ* obtained 
with the rigid connection of the column and the bolt of frame (1/c*= 0). The nature of the 
presented curves mainly due to the assumed condition of constant bending stiffness of 
the system. 

Figure 3 shows the sequence of changes in the critical load parameter λ* as a function 
of the parameter of elasticity of the structural node c*. The results are shown for various 
asymmetry value of the bending stiffness of the column and the bolt of frame µ. In any 
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case, you can determine the value of c* above which the value of the critical load is only 
slightly modified. The graph curves 1.a - 4.a presents the stabilization of critical load λ* 
with increasing rigidity of structural node. This occurs irrespective of the value of the 
asymmetry factor bending stiffness of the column and the bolt frame µ. 

 

 

Figure 2. change the critical load parameter λ* as a function of the parameter µ 
 

 

Figure 3. Change of the critical parameter of load λ* as a function of c* parameter 
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Figure 4 presents the results of numerical calculations for the free vibration of the 
frame. Illustrated are the relationship of the dimensionless external load parameter λ* as 
a function of the dimensionless parameter  frequency of free vibrations Ω*. In terms of 
numerical calculations the nature of changes in the value of the first two fundamental 
natural frequencies Ω1

*, Ω2
* was determined. Constant asymmetry value of the bending 

stiffness of the column and lock the frame and the constant µ asymmetry value of the 
length of the bolt to the length of the pole frame φ was assumed. In the case of presented 
the course of changes in frequency of free vibrations, the value of the critical load λ* 
obtained with the parameter frequency of free vibrations Ω1

*= 0 The results obtained 
parameter values of the critical load obtained on the basis of the kinetic stability criterion 
are the same as when using the static stability criterion. 

 

 

Figure 4. The curves in the plane: load parameter λ*, the parameter resonance frequency 
Ω* for a variable elasticity of connecting the pole with bolt of frame c* 

5. Conclusions  

This paper presents the results of theoretical studies and numerical calculations on the 
twin rod  flat frame type Γ vibration subjected to Euler's load. Taken into account the 
total mechanical energy of the system and based on kinematic stability criterion deter-
mined the equations of motion and boundary conditions considered system. Numerical 
calculations were performed at different valuesof the parameters under consideration, 
which include the asymmetry coefficient µ bending stiffness and rigidity of the structural 
node c* connecting the pole with bolt frame. Taking into account the structural rigidity 
of the node connecting bolt to the column increases the critical load. The diagram 



 Vibrations in Physical Systems Vol.26 (2014) 303 

changes in frequency of free vibrations corresponds to systems with a load of slender 
conservative (divergent type system). 
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Abstract   

In the paper there is presented a discrete-continuous model of the Split Hopkinson Pressure Bar (SHPB) for 
numerical simulations of a dynamic behaviour of material specimens under high strain-rates. For this purpose 
several material theories describing visco-elasto-plastic properties of the tested specimens can be applied. 
Using this model impact-type dynamic responses are sought by means of the longitudinal elastic wave analyti-
cal solution of the d’Alembert type. The proposed model enables us theoretical strength investigations for 
various elasto-plastic materials under great deformation velocities as well as structural parameter determination 
of the real SHPB designed to play a role of the laboratory test-rig.  
 
Keywords: Hopkinson bar, elastic wave propagation, d’Alembert solution, numerical simulation  

1. Introduction  

High strain rate experimental tests are important in mechanical property analysis of 
materials under strongly dynamic conditions. The Split Hopkinson Pressure Bar (SHPB) 
has been widely used to investigate dynamic behaviour of various materials within the 
strain rate range of 102 to 104 s-1 [1-4]. In 1872 John Hopkinson investigated a stress 
wave propagation in a wire [1] which was the starting point for his son Bertram, who 
developed a measurement method for the movement recording of a cylinder during 
strongly dynamic conditions [2]. In 1948, Kolsky used two elastic bars instead of one 
with the specimen placed between them [3]. Since that date, this device has been known 
as the SHPB. Such experimental technique can be applied in many configurations, for 
example in compression, tension, torsion and shear. According to the one-dimensional 
elastic wave propagation theory, the “safe” maximum impact velocity is directly related 
to the elastic limit of the incident bar. Such condition limits the maximum strain rate in 
the test. As it was mentioned above, many problems appear using the SHPB technique. 
In order to provide better understanding of this technique, in this paper a discrete-
continuous, semi-analytical model of the SHPB with an elasto-plastic material specimen 
has been developed as an alternative to the commonly applied, time-consuming, non-
linear finite element models with huge numbers of degrees of freedom.  
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2. Continuous modelling and wave solution for the Split Hopkinson Pressure Bar 

Since the longitudinal elastic wave propagation process is going to be investigated as a 
measurement tool for material specimens under high strain rates, in the proposed model 
the incident and transmitting bar of the SHPB are represented by continuous and homo-
geneous elastic cylindrical elements of mutually identical circular cross-sections and 
lengths l1 and l2, respectively. The transmitting bar is visco-elastically fixed to a rigid 
wall by the use of the mass-less spring of stiffness k0 and damping coefficient c0. The 
material specimen of mass 2m, the length of which is much smaller than these of the 
incident and transmitting bar, can be substituted by two rigid bodies of identical masses 
m connected with each other by means of the mass-less, non-linear spring with response 
dependent visco-elastic characteristics c(∆ů(t)) and k(∆u(t)) describing visco-elasto-
plastic properties of the investigated material. The wafer has usually a cylindrical shape 
with length l0 << l1, l2 and cross-sectional stiffness EA equal to these of the incident and 
transmitting bar. Despite of its natural continuous structure, in order to simulate the 
impact process, the wafer can be regarded as a rigid body of mass m0 impacting the inci-
dent bar with initial velocity v0 using an intervention of the mass-less spring. Stiffness ke 
of this spring has been determined assuming that the incident wave excited due to the 
impact has a length corresponding to the double-period of the longitudinal elastic wave 
propagation in the wafer. Thus, ke = EAπ2/l0. According to the above assumptions, the 
proposed discrete-continuous model of the SHPB has a structure demonstrated in Fig. 1.  
 

 
Figure 1. Discrete-continuous model of the SHPB 

Motion of cross-sections of the continuous elements representing the incident and 
transmitting bar is governed by the following homogeneous partial differential equations  
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where E is Young’s modulus, ρ denotes the material density and ui(x,t) are the longitudi-
nal displacements of bar cross-sections, x is the spatial co-ordinate and t denotes time. 
Equations of motion (1) are solved with the following boundary conditions describing 
the support of the SHPB by the rigid wall, dynamic interaction of the elasto-plastic mate-
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where A denotes the area of the bar cross-section and u0(t) is the generalized co-ordinate 
describing motion of the wafer mass center.  

A dynamic response of the SHPB model excited by a wafer impact is sought using 
the d’Alembert wave solutions of motion equations (1) in the similar form, as in [5]: 

 ( ) ( ) .2,1,0)0(0)0(),( =−+−++−−= iixxittaigixxittaiftxiu  (3) 

The functions fi and gi represent longitudinal waves induced by the excitation im-
pulse due to the wafer impact, where the function fi represents a longitudinal wave prop-
agating in the i-th continuous macro-element along the x-axis positive sense, Fig. 1; 
however, the function gi represents a longitudinal wave propagating along the x-axis 
negative sense and a denotes the wave propagation velocity. According to the one-
dimensional wave propagation theory, it is taken into account in (3) that the first pertur-
bation in the i-th macro-element occurs in the cross-section of the co-ordinate x0i after 
the finite time delay t0i. Furthermore, it is assumed that the functions fi and gi are contin-
uous and are null for negative arguments, i.e. before arriving the first perturbation.  

Since solutions (3) identically satisfy motion equation (1), actual values of the wave 
functions, fi and gi are determined by the boundary conditions of the problem. Thus, by 
substituting the wave solutions (3) into the boundary conditions (2), denoting the largest 
argument in each equation by z, and by rearranging these equations in such a way that 
their right-hand sides are always known, in the considered case of the bars with a con-
stant cross-sections we obtain the following system of ordinary differential equations of 
the second order with a “retarded” argument for the functions fi and gi, i=1,2:  
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p=R+C, r=R-C  and ls [m],  ms [kg] are the reference distance and mass, respectively.  
The above equations have been solved numerically by means of the Newmark meth-

od using the appropriately small direct integration step in order to obtain a sufficient 
accuracy of results of simulation of the impact-type dynamic process. The right-hand 
sides of the equations with a shifted argument, which are known after each integration 
step, similarly as in [5], enable us their very efficient solving one after another, i.e. in the 
sequence defined here by (4). In the considered case, it has been assumed that when the 
impact process is over, i.e. when the elastic strain in the incident bar cross-section x=0 
goes back to zero value, the quantities m0 and ke in (2) and (4) will become null during 
simulation.  

3. Computational example 

An object of consideration is the discrete-continuous model of the real laboratory test rig 
in the form of a classical SHPB. Here, the diameters of the incident and transmitting 
steel bar as well as of the wafer are equal to 0.02 m. The incident bar length l1 is equal to 
1.05 m and the length of the transmitting bar l2=1.07 m. By means of the presented 
SHPB model three cylindrical specimens of diameter 0.01 m and length 0.01 m each and 
made of 34GS steel, M1E copper and 7075 aluminium alloy have been tested. In all 
cases the SHPB was impacted by the wafer of mass m0=0.61 kg with an initial velocity 
50 m/s. The characteristics c(∆ů(t)) and k(∆u(t)) for all specimens mentioned above have 
been properly identified using the simplified Burgers material model, [6], which for the 
force equilibrium formulation in (2) can be reduced to the Voigt material model. This 
approach seems to be very convenient at the introductory stage of this problem investi-
gation, where a demonstration of system dynamic responses in the form of longitudinal 
elastic wave propagation due to wafer impact is the main goal of the presented consider-
ations. Nevertheless, the functions c(∆ů(t)) and k(∆u(t)) in (2), (4) can be regarded here 
as properly identified constants or response dependent variables, [7].  

In Fig. 2 there are shown plots of the system dynamic response in the form of time-
histories of the incident bar impacted free end velocity (Fig. 2a), specimen dynamic 
strain (Fig. 2b) and of the specimen strain rate (Fig. 2c). In all figures the grey lines 
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correspond to the steel specimen, the solid black lines to the copper specimen and the 
dashed black lines correspond to the aluminium alloy specimen. As a reference, by the 
dotted line in Fig. 2a there is denoted the time history of the wafer velocity which natu-
rally tends to zero, when the impact process is over. Here, according to [4], the specimen 
strain and strain rate are respectively defined as:  

 ),(1)(),(/)()()),((ln)( tptttptstts εψψεεψε −==−= &&   

where εp=(f1(at-l1)+g1(at+l1) - f2(at) - g2(at))/lp and lp denotes the initial specimen length. 

a)  

b)  

c)  
time [s] 

Figure 2. Dynamic response of the SHPB due to the wafer impact 

In Fig. 2a there is shown a rapid increase followed by the gradual decrease of the in-
cident bar free end velocity and then there are observed three subsequent velocity per-
turbations caused by successive longitudinal wave reflections upon each time interval 
(l1+ l2)/a ≅ 0.0004 s. However, the plots in Figs. 2b and 2c are characterized by three 
significant perturbations, where the first ones are excited by the incident waves transmit-
ted by the specimen after l1/a ≅ 0.0002 s and the two next perturbations are induced by 
the successive reflected waves of the strain and strain rate, respectively. It is to remark 
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that the greatest perturbations resulting from the dynamic response of the assumed SHPB 
model have been obtained for the aluminium specimen which is characterized by the 
smallest values of functions k and c in (2) and (4). Here, the maximum strain reaches 
0.08 and the greatest strain rate is close to 5000 1/s. The steel specimen, however, is the 
hardest one and thus, it experiences the smallest extreme values of velocity, strain and 
strain rate in comparison to the analogous extremes obtained for the copper specimen, 
see Fig. 2.  

4. Conclusions  

In the paper there was investigated a longitudinal elastic wave propagation process in the 
cylindrical homogeneous rods representing the incident and transmitting bar in the dis-
crete-continuous model of the SHPB. For this purpose, an analytical wave solution of the 
d’Alembert type has been applied in order to simulate system dynamic responses ob-
tained for various metallic specimens. Although the specimen material models assumed 
here require essential improvements in the next steps of research in this field, the ob-
tained results of computations have indicated reasonable values of the commonly ex-
pected maximal strains and strain rates observed during analogous experimental meas-
urements. According to the above, the proposed model of the SHPB, apart of theoretical 
investigations of material elasto-plastic properties, can be successfully used for design-
ing of test rigs in the form of Hopkinson bars.  
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Abstract  

In this paper the geometrically nonlinear system subjected to compressive external Euler's load has been inves-
tigated. The column is composed of pipe and rod. The rod is concentrically installed in the pipe. Between pipe 
and rod at given distance from the end of the column the two-parametric elastic connector has been placed. The 
numerical calculations were performed for different parameters of the system on the basis of free vibration 
boundary problem. The parameters are as follows: spring stiffness (translational and rotational) which models 
elastic connector, coefficient of asymmetry flexural rigidity, location of the connector. 
 
Keywords: column, free vibrations, elastic connector 

1. Introduction 

In the investigations on slender supporting systems the discrete elements (rotational and 
translational springs, dumpers) are being considered. These elements have an influence 
on critical or bifurcation load magnitude and natural vibration frequency of the systems. 
When the non-conservative load is taken into account the discrete elements have an 
effect on type of instability (see [3-10]). By means of these elements an influence of real 
life elements on instability and free vibrations can be modeled. In the literature the pa-
pers devoted to instability and free vibrations with consideration of elastic and viscoelas-
tic supports can be found (see [1,2]).  

In [12] the investigations of one-parametric elastic connector on vibration and insta-
bility of a system built out pipe and rod have been presented. Elastic connector has been 
placed between pipe and rod. It has been shown that the translational stiffness of elastic 
connector at specific magnitude of coefficient of asymmetry flexural rigidity causes the 
increase of bifurcation load. This element of elastic connector has an influence on vibra-
tion frequency and change of buckling mode. In the case when the system is character-
ized by the local instability the presence of the elastic connector becomes more signifi-
cant. The viscoelastic connector has been taken into account in [11]. In this paper an 
influence of the connector on first vibration frequency in the range of external load from 
zero up to bifurcation force has been investigated. In the mathematical model the Kelvin 
- Voigt model of viscoelastic connector was considered. An increase of connector dump-
ing factor causes an increase of the first vibration frequency magnitude. 

The main scope to this paper is to study an influence of two-parametric elastic con-
nector on natural vibrations of the system built out pipe and rod. Particularly the parame-
ter of rotational elasticity has been investigated. 
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2. Boundary problem formulation on the basis of Hamilton's principle  

The column composed of pipe and rod is presented in the Figure 1. The system is sub-
jected to Euler's compressive load. Between pipe and rod the two-parametric elastic 
connector has been modeled. This connector consists of two springs: translational (CT 

stiffness) and rotational (CR stiffness). The length l11 describes connector location. The 
column is hinged on both ends. The model of the system is created by means of four 
elements. Elements marked as 11 and 22 corresponds to pipe while 21 and 22 stands for 
rod. 
 

   

Figure 1. Considered column loaded by Euler's load: a) mathematical model, 
b) column consists of pipe and rod 

The differential equations of motion in the transversal direction of the investigated sys-
tem are as follows: (comp. [11]): 
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Moreover the differential equations of motion in the transversal direction (1) there exists 
the differential equation of longitudinal displacements. Performing mathematical opera-
tions on it allows one to obtain (see [12]): 
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In equations (1) and (2) the following designations were made: Wij(xij,t), Uij(xij,t) – trans-
versal and longitudinal displacements respectively, (EJ)ij, (EA)ij, (ρA)ij – bending, com-
pression stiffness, mass attributable to length unit of each member, Sij – longitudinal 
force in element of the system. The investigated column is characterized by: 

• geometrical boundary conditions: 
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• natural boundary conditions: 
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The equation of longitudinal displacements is a non-linear one. Due to geometrical non-
linearities the small parameter method has been used to solve the boundary problem (see 
[12]). The non-linear equations are being written in a power series of small parameter. 
Rectilinear and curvilinear forms of static equilibrium are present in the investigated 
system. The power series for each form are different. In this paper the rectilinear form of 
static equilibrium has been considered. The power series are as follows: 
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where: ω – natural vibration frequency. 
The power series (5-8) are being introduced into equations (1-2) and boundary condi-

tions. The coefficients at the same power of small parameter are being collected what 
leads to sequences of equations with corresponding boundary conditions. In this paper 
the basic vibration frequency ω(0) has been presented (obtained on the basis of equations 
at zero and first power of the small parameter). The first components of expansions 
(Wij(1)(xij,t), Uij(0)(xij), Sij(0)) are only considered in computations of basic vibration fre-
quency. Separating space and time variables in the form: 

 ( )( ) ( )( ) ( )txYtxW ijijijij ωcos, 11 =  (9) 

allows one to write the differential equation of transversal displacements:  
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The distribution of internal forces S11(0) i S21(0) can be calculated from equation (2). 
The relation between forces is as follows: 
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The solution of equations (10) can be presented as a function:  
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where: B1ij(1), B2ij(1) ), B3ij(1) ), B4ij(1) are constants of integration and αij(1), αij(1) are quanti-
ties obtained from the characteristic differential equations (10). Introducing solution (12) 
into boundary condition allows on to write system of equations. The determinant 
of the matrix of coefficients equated to zero leads to transcendental equation on the basis 
of which the vibration frequency ω(0) can be calculated. 

3. Results of numerical calculations 

In Figures 2 and 3 the characteristic curves on the plane external load - natural vibration 
frequency have been plotted. Numerical calculations were performed at different magni-
tude of the rotational spring. Graphs presented in Figures 2 and 3 have been created for 
different magnitudes of coefficient of asymmetry flexural rigidity µ = 0.004 and µ = 0.5. 
Parameters at which the numerical calculations were performed are as follows: 

 ( )EJ

Pl2

=λ , 
( )

( )

( )EJ

lA
i

i
2

1
2
0 











=Ω
∑ ρω

, 
11

21

E

E
=κ , 

( )
( )11

21

EJ

EJ
=µ ,   (13a-d) 

 
( )EJ

lC
c R

R = , ( )EJ

lC
c T

T

3

= , 
l

l11=ζ  (13e-g) 

The total flexural stiffness of the system (EJ) is constant. It has been shown that with 
lower magnitude of coefficient of asymmetry flexural rigidity the mode of free vibration 
is changing. The mode of free vibration depends on rotational spring stiffness cR. 
At smaller stiffness of cR the investigated system is characterized by buckling mode M3. 
At greater rotational spring stiffness the mode M1 is present. The characteristic curve 
corresponding to mode M3 may cross the ones related to modes M2 and M1. At greater 
magnitude of coefficient of asymmetry flexural rigidity the mode of free vibrations does 
not change. The modes of free vibrations were plotted in the Figure 4. An influence 
of the rotational spring stiffness on investigated parameters is greater at lower magnitude 
of coefficient µ. The characteristic curves related to modes M1 and M2 do not depend 
on rotational spring stiffness. 
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Figure 2. Parameter of loading force λ in relation to parameter of free vibration 
frequency Ω at µ = 0.004  

 

 

Figure 3. Parameter of loading force λ in relation to parameter of free vibration 
frequency Ω at µ = 0.5 
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Figure 4. Modes of free vibrations  

4. Conclutions 

In this paper the result of theoretical study and numerical calculations of slender system 
built out pipe and rod have been presented. Between pipe and rod the two-parametric 
elastic connector is placed. The main purpose of numerical studies was to describe an 
influence of rotational stiffness of elastic connector on vibration frequency. It can be 
concluded that at smaller magnitude of coefficient of asymmetry flexural rigidity an 
influence of rotational stiffness of elastic connector on vibration frequency becomes 
intensified than at greater magnitudes of µ coefficient. There exist modes of vibrations 
irrespective of considered stiffness. 
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Abstract  

In this paper the single-rod cantilever column subjected to compressive Euler's load is investigated. The 
boundary problem has been formulated on the basis of Hamilton's principle and Timoshenko's theory. Numeri-
cal simulations of characteristic curves have been plotted on the plane external load-vibration frequency for 
different magnitudes of slenderness factor of the system. The results of numerical calculations of Timoshenko's 
beam are compared to the ones obtained from mathematical Bernoulli-Euler's model. The comparison of the 
results of characteristic curves calculated by means of Timoshenko's theory and Bernoulli-Euler's model are 
done for first three vibration frequencies. 
 
Keywords: column, Timoshenko’s theory, Bernoulli-Euler’s theory, free vibrations, kinetic criterion 

of stability, divergence instability, characteristic curves  

1. Introduction 

The results of numerical calculations of supporting systems subjected to external loads 
of various types are often presented in the form of characteristic curves (see [5-8]). By 
means of these curves the relation between vibration frequency and external load which 
changes from zero up to the critical load can be observed. In the case when the system is 
subjected to a non-conservative load (it is destroyed by the vibrations of increasing am-
plitude - flutter type of instability) the critical force can be only determined on the basis 
of the characteristic curves (kinetic stability criterion) (see [5, 7, 8]). The supporting 
systems (columns) are generally characterized by great slenderness factor. For systems 
with great slenderness in order to formulate the boundary problem it is sufficient to ap-
ply the theory of Bernoulli - Euler. With the decrease of slenderness factor magnitude 
the noticeable effect of shear potential energy and cross-section rotational kinetic energy 
on the characteristic curves can be observed (see [1-4]). An influence of these two com-
ponents is taken into account in the theory of Timoshenko's beam. 

The study on the influence of non-dilatational strain and rotational inertia on the crit-
ical flutter loading have been performed by Kounadis and Katsikadelis (comp. [3]). They 
have studied the different types of supports and column shapes by means of variable 
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slenderness magnitude of the considered system. Stability of columns subjected to the 
follower force with consideration of Timoshenko's theory has been presented by Nemat-
Nasser in [4]. It has been concluded that, at lower magnitudes of slenderness factor asso-
ciated with shear force and rotational inertia of the cross-section a significant effect of 
these parameters on the critical load can be observed (destabilizing effect). In considera-
tions of Namat-Nasser the material of the rod was Kelvin's type. 

In the paper [1] Glabisz solved the vibrations problem of the column with considera-
tion of Timoshenko's theory. The areas of instability of the cantilever column loaded by 
independently of one another conservative and non-conservative force have been pre-
sented. 

The main purpose of this paper is to study an influence of non-dilatational strain 
(shear effect) and rotational inertia of cross-section on characteristic curves (curves plot-
ted on the plane external load - vibration frequency). 

2. Boundary problem formulation on the basis of Hamilton's principle 

The investigated system has been presented in the figure 1. The cantilever column is 
subjected to compressive load (force P) with constant line of action (Euler's load). The 
investigated system is considered as a single-rod column. 
 

 

Figure 1. Considered column subjected to Euler’s load 

In this paper the boundary problem of natural vibrations has been formulated on the 
basis of Hamilton's principle: 
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The kinetic energy of the column is expressed as follows: 
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The potential energy is equal to potential energy of bending and shear and compression 
caused by external load:  
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where: W(x,t) – deflection of the section, Ψ(x,t) – rotation angle of the section, E –
Young modulus, G – Kirchhoff modulus, A – cross-section area, J – axial geometrical 
moment of inertia of the column's section, κ - the shear coefficient which depends on 
section's shape (for circular cross-section  κ = 0.91), ρ - density of the material. 

Introducing the kinetic and potential energies (2 and 3) into Hamilton's principle al-
lows one to obtain the two differential equations: 
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Performing mathematical operation and seperating space and time variables W(x,t) = 
(Y(x)cos(ωt); Ψ(x,t) = ψ(x)cos(ωt) (where: ω − natural vibration frequency) leads to 
differential equations in the form:  

 ( ) ( ) ( ) 0=Φ−Γ+ ξξξ yyy IIIV  (6) 

 ( ) ( ) ( ) 0=Φ−Γ+ ξψξψξψ IIIV  (7) 
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The non-dimensional parameters ξ, y(ξ), λ, Θ, φ  and Ω are expressed as follows: 
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The introduction of geometrical boundary conditions into Hamilton's principle  

 ( ) ( ) 000 ==ψy  (11a,b) 

allows one to obtain the natural ones: 
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2. Solution of the boundary problem 

The solution of differential equations (6) and (7) depends on relation between Γ and Φ. 
The three different types of solutions are presented in the form: 

• solution A - if (Γ > 0 and Γ/2 < (Γ 2/4+Φ)0.5) or (Γ < 0 and (Γ/2 + (Γ 2/4+Φ)0.5) > 
0):  

 ( ) ( ) ( ) ( ) ( )ξβξβξαξαξ AAAAAAAA BBBBy sincossinhcosh 4321 +++=  (13) 
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• solution B - if (Γ > 0 and Γ/2 > (Γ 2/4+Φ)0.5):   
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• solution C - if (Γ < 0 and (Γ/2 + (Γ 2/4+Φ)0.5) < 0):  

 ( ) ( ) ( ) ( ) ( )ξαξαξαξαξ 24231211 sinhcoshsinhcosh CCCCCCCC BBBBy +++=  (19) 
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The constants of integration of solutions ψ(ξ) depend on constants of integration of solu-
tions y(ξ). Constants of integration CAi, CBi, CCi are expressed as follows: 

• solution A: 
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• solution C: 
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Introducing solutions y(ξ) and ψ(ξ) into boundary conditions one obtains: 

 [ ] { } 0,,, 4321 =iiiiij BBBBcola , i ≡ A or B or C (25) 

The determinant of the matrix of coefficients equated to zero is a equation from which 
the natural vibration frequency can be computed for given system's parameters:  

 0=ija  (26) 

3. Results of numerical calculations 

In the Figures 2-4 the change of Λωi parameter have been presented (where i stands for 
natural vibration frequencies, i = 1, 2, 3) in relation to external load of the system λ. By 
means of Λωi parameter the comparison of natural vibration frequencies computed on the 
basis of Bernoulli - Euler's model ωB-E and Timoshenko's theory ωT are presented. The 
Λωi parameter is expressed as follows: 
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The investigated system with circular cross-section is made of duraluminium. The nu-
merical calculations were performed for different slenderness parameter λS magnitude 
(λS = 300, 250, 200, 150, 100, 50). The slenderness parameter λS is expressed as follows: 

 

A

J

lb
S

µ
λ =  (28) 

where: buckling factor for investigated system is µb = 2. 
 

 

Figure 2. External load parameter λ in relation to parameter of free vibration 
frequency Λω1  

 

 
Figure 3. External load parameter λ in relation to parameter of free vibration 

frequency Λω2 
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On the basis of the performed numerical simulations it can be concluded that the 
greatest change in Λω  parameter in relation to external load λ appears for first natural 
vibration frequency. In this case an increase of external load magnitude results in in-
crease of difference in magnitudes of natural vibration frequencies calculated with Ber-
noulli - Euler's model and Timoshenko's theory. The slenderness factor has also an influ-
ence on Λω parameter. While taking into account second and third natural vibration fre-
quencies the change in Λω parameter is inconsiderable with the increasing magnitude of 
external load. 

At smaller magnitudes of external load the slenderness factor has greater influence 
on difference between frequencies (second and third) computed with Bernoulli - Euler's 
model and Timoshenko's theory.  

 

 

Figure 4. External load parameter λ in relation to parameter of free vibration frequency 
Λω3 

At the greatest slenderness λS = 300 and external force λ = 0 parameters Λωi are as 
follows: Λω1 ≈ 0.04%, Λω2 ≈ 0.27%, Λω3 ≈ 0.67%. While λS = 50 (the lowest considered 
slenderness) and external force λ = 0 parameters Λωi are:Λω1 ≈ 1.4%, Λω2 ≈ 9.4%,  
Λω3 ≈ 18%. 

4. Conclusion 

In this paper column subjected to a compressive Euler's load has been investigated. 
Comparison of results of numerical calculations of natural vibration frequencies obtained 
on the basis of two theories: Bernoulli - Euler (ωB-E) and the Timoshenko (ωT) have been 
performed. In order to demonstrate the differences in the frequencies of vibrations ωB-E 
and ωT the new parameter has been defined on the basis of which the percentage change 
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in the first three natural frequencies can be presented for different magnitudes of the 
external load. The calculations are also concern on different values of slenderness pa-
rameter. The greatest differences in the two mathematical models (Euler - Bernoulli and 
Timoshenko) occurs at the third vibration frequency. The differences between the theo-
ries of Bernoulli - Euler and Timoshenko are increasing with greater magnitude of exter-
nal load. In the case of the first characteristic curve corresponding to the first vibration 
frequency the differences are the greatest. For the second and third curves the change in 
magnitude of external load results in small difference between ωB-E and ωT frequencies. 
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Abstract   

The paper presents noise evaluation for a 2 MW wind turbine. The obtained results have been analyzed with 
regard to infrasound and low frequency noise generated during work of the wind turbine. The evaluation was 
based on standards and decrees binding in Poland. The paper presents also current literature data on the influ-
ence of the infrasound and low frequency noise on a human being. It has been concluded, that the permissible 
levels of infrasound for the investigated wind turbine were not exceeded. 
 
Keywords: low frequency noise, infrasound, wind turbine  

1. Introduction 

Research that has been conducted in the world for many years shows that noise can be 
described as sound below and above so called hearing threshold. It can be assumed that 
the infrasound, which cannot be heard by a human being, concerns frequencies below 
20 Hz, and the ultrasound concerns frequencies above 20 kHz [1]. We receive it as me-
chanical vibrations of the medium it passes through, transferring energy from the source 
in the form of acoustic waves. Puzyna in [1] describes infrasound as infraaccoustic vi-
brations. Some investigations show that for some people the hearing level begins already 
at 16Hz, and sometimes even at 4Hz. Such a phenomenon occurs at appropriate condi-
tions and at a high level of sound pressure [2]. According to standards PN-ISO 
7196:2002P, ISO 9612:1997 and PN-Z-01338:2010 [3, 4, 5] the infrasound noise con-
cerns frequencies between 1 and 20 Hz.  

The term low frequency noise is more and more commonly used to describe the fre-
quency range from 10 Hz to 250 Hz (e.g. according to Polish instruction ITB 358/98) 
[6]. In other countries this range is defined differently and it is closely related to medical 
research concerning the influence of infrasound noise on the hearing organ [6, 7].  

2. Influence of infrasound and low frequency noise on a human being 

The influence of infrasound on a human being is closely related to conduction of the 
middle ear and internal ear, i.e. its effect on the hearing organ (hearing effects) and on 
the whole body, and particularly on the nervous system and internal organs (non-hearing 
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effects). Infrasound is annoying and its effects appear already when the hearing threshold 
is slightly exceeded [8]. 

Figure 1 shows hearing thresholds for infrasound and low frequency noise obtained 
by Watanabe and Møller [9, 10] set against the values from the ISO:226 2003 standard 
and compared with the respective levels in other countries [11,12]. 

Based on Watanabe and Møller’s results, Leventhall determined the hearing thresh-
old for infrasound and low frequency sound [10] – Table 1. 

Figure 2 shows so called equal annoyance contours for infrasound obtained by 
Whittla (1972) set against Møller’s and Andresen’s results (1984) [12] and equal loud-
ness contours from ISO 226: 2003 standard [11]. 
 

 
Figure 1. Hearing thresholds in the infrasound and low frequency ranges  

a) acc. to ISO 226:2003, Watanabe and Moller b) in selected countries [9, 10, 11, 12] 
 

 
Figure 2. Equal annoyance contours for infrasound and equal loudness contours from the 

ISO 226: 2003 standard for  audible sound [11, 12] 
 

Table 1. Hearing threshold according to Leventhall[10] 

Frequency (Hz) 4 8 10 12,5 16 20 25 31,5 40 50 63 80 100 125 160 200 
Sound pressure 

level (dB) 
107 100 97 92 88 79 69 60 51 44 38 32 27 22 18 14 

 



 Vibrations in Physical Systems Vol.26 (2014) 329 

Like in case of equal loudness contours for audible sound, the equal annoyance con-
tours for infrasound were obtained using the expressed in phons loudness level based on 
subjective sensing of sound by the hearing organ. A frequency drop causes sudden in-
crease in audio perception, which means that even at small change the annoyance of 
infrasound increases. In the range of 127-132 dB a painless constriction is observed in 
the middle ear. Earache and so called temporary shift of the hearing threshold appear 
most often at the level of 140 dB for frequency 40 Hz and 160 dB for 3 Hz [13]. At 
higher frequencies the internal ear can be damaged. 

At the levels above 100 dB the perception of vibrations generated by infrasound is 
similar to the perception of vibrations generated mechanically [14]. Infrasound may be 
sensed by telereceptors of vibrations located, for example, in muscles, joints and ten-
dons, and so called sensory receptors (mechanoreceptors). In this case the threshold of 
vibration sensing is higher than the hearing threshold by about 20-40 dB. Landström in 
[15] claims, that the vibrational perception of infrasound occurs at the level of 124 dB 
for frequency 4 Hz, for which the hearing threshold equals 107 dB. 

The most typical symptom of influence of infrasound and low frequency sound on a 
human being is the pressure in ears together with the sensation of internal vibration. At 
the levels of 140-150 dB vibrations of the rib cage cause voice modulation and suffoca-
tion in the throat leading to coughing. It can be said that infrasound may cause arhyth-
mia, fatigue and increase in heart rate [13, 16]. All these symptoms may appear after the 
hearing threshold has been exceeded, which has been confirmed by the research con-
ducted on the deaf [13]. 

3. Evaluation of infrasound noise under the current regulations 

The evaluation of exposure to infrasound noise is made based on spectral analysis in 
third octave or octave bands using G-weighting [3] developed based on the analysis of 
hearing perception threshold. Its peak lies at the frequency of 20 Hz, and the average 
value of the hearing threshold equals 102 dB [17]. It has been observed, that to evaluate 
low frequency noise the A-weighting cannot be used because it gives too low values 
[18]. 

The PN-Z-01338:2010P standard, which defines permissible values of infrasound 
noise at work-places, being a criterion for annoyance, and a regulation of the Ministry of 
Labour and Social Policy, where additionally the peak, unweighted acoustic pressure 
level is determined [4,19] are in force in Poland – Table 2. 

Table 2. Permissible values of infrasound noise – annoyance criterion [4] 

Evaluated quantity                                                                          Permissible value, dB 
Equivalent, G-weighted sound pressure level normalized to an 8-hour 
working day, LGeq,Te=LGeq,8h  

102 

Equivalent, G-weighted sound pressure level related to a nominal 
working week, LGeq,Te=LGeq,w 102 

Equivalent, G-weighted sound pressure level during the occupation 
of a workstation by an employee (at work places for conceptual work 
requiring particular concentration) 

86 
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4. Noise evaluation for a 2 MW wind turbine 

A wind farm consisting of several 2.0 MW wind turbines Gamesa G90 with tower height 
of 100 m and blade length of 45 m was analyzed (Figure 3). The measurements of noise 
was performed by a research laboratory accredited by Polish Centre for Accreditation.  
 

 
 

Figure 3. A 2 MW wind turbine with a total height of 145 m 

The obtained results were analyzed paying special attention to evaluation of infra-
sound and low frequency noise generated by a working wind turbine, located  at the edge 
of the wind farm [23, 24]. The evaluation was made based on standards and regulations 
being in force in Poland. 

Figure 4 shows the equivalent, G-weighted sound pressure levels for the turbine for 
various distances of measuring points from the turbine and at the wind velocities of 3-
4 m/s and 4-5 m/s measured at the height of 10 m above the ground in frequency bands 
of 1-20 Hz and 0,8–250 Hz. The measuring points were selected at places without any 
buildings and natural obstacles. 

 

a)

 

b)

 

Figure 4. Equivalent, G-weighted sound pressure level for a 2 MW  turbine determined 
based on the standard [3] in the range of a) infrasound and b) low frequency noise 
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As it can be seen from Figure 4 the annoyance criterion of 102 dB has not been ex-
ceeded.  

At a distance of 600 m from the turbine, where the closest residential property was 
located, additional measurements at variable wind velocity were performed. The wind 
velocity measured at 10 m height can be converted into the velocity at the tower height 
by means of a coefficient, which equals about 1.45. It means that acoustic measurements 
were performed for the wind velocity between 4.3 m/s and 13 m/s at the tower height 
(Figure 5).  

 

 

 

Figure 5. Method of conversion of wind velocity measured at 10 meters 
above the ground W10 into the velocity at any tower height WS [25] 

As it can be seen from the tables shown above, the G90 turbine reaches the maxi-
mum level of acoustic power for the wind velocity of 6 m/s at 10 m height, i.e. 8.7 m/s at 
the tower height.  The infrasound levels during measurements were generated by the 
wind turbines for maximum acoustic power (determined according to PN-EN 61400-11) 
and maximum rotational speed of the turbine [22]. 

 

 
Figure 6. Equivalent sound pressure level for a 2 MW turbine in the infrasonic range 

for the distance of 600 m  

The equivalent sound pressure level for the 600 m distance which can be seen in Fig-
ure 6 increases significantly with the increase of the wind velocity. It does not exceed, 
however, the permissible values specified in Polish regulations. 
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The obtained results for the low frequency range and the 600 m distance, at different 
wind velocities has been set against the data from Table 1 (Leventhall), the current hear-
ing threshold in Germany and the 40 phon equal loudness contour from the ISO 226: 
2003 standard [10, 11, 12, 21] – Figure 7. 

 

 
Figure 7. Sound pressure level of a 2 MW turbine for the 600 m distance, set against 

hearing thresholds 

Analyzing the data from Figure 7 it can be clearly seen that in the infrasonic range 
the levels generated by the turbine working at maximum electrical power and maximum 
rotational speed are safe. We have different situation at frequencies above 40 Hz, i.e.  
already in the audible range, where the hearing threshold was exceeded at some places 
even by 50 %. If, however, we take into account the equal loudness contours [11] for the 
audible range, and particularly the most frequently used 40 phon one, the values ob-
tained for the turbine in this range are below the threshold.  

5. Conclusions  

Based on the conducted analyses it can be said, that the investigated wind turbine does 
not pose any danger to people staying in its vicinity. Such a conclusion can be drawn 
based on the current regulations related to infrasound and low frequency sound. One 
should remember, however, that the regulations concern the 8-hour-exposition, and peo-
ple stay in the area of the turbine continuously, even at night.  

The permissible levels in the infrasonic range have not been exceeded. In the low 
frequency range above 40 Hz it would be necessary to conduct an in depth analysis, 
because the results are equivocal.  

Referring to the report of the American Wind Energy Association and the Canadian 
Wind Energy Association from 2009 [20] it can be said, that at present there is no scien-
tific evidence, that modern wind turbines generate vibrations perceptible by people and 
pose any danger related thereto. 
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Abstract 

Dynamics of the spacecraft with giro-gravitational system of stabilisation, in which the pantograph design 
deployed in an orbit and containing on the end the concentrated mass is used as the gravitational stabilizer and 
the carrier of solar batteries, is investigated. The analysis of the obtained information is carried out and graphs 
that illustrate behaviour of characteristic variables are discussed. 

 
Keywords: Spacecraft, pantograph structure, deployment 

1. Introduction 

The deployment of spacecraft delivered into orbit in a compact form perturbs their atti-
tude. The study of such transformed configurations is required for minimization of de-
ployment duration, mass, and power resources, for analysis of the effect of such struc-
tures on the spacecraft attitude motion. There exist a large number of studies in the lit-
erature dedicated to the deployment of elastic appendages of different shape from the 
fixed basis as well as from a rotating SC. A short review of these publications is con-
tained in [1]. 

Works, except for work [2], which would investigate the dynamics of deployment in 
orbit of pantograph designs, are unknown to the author. This research generalises the 
work [2] by the additional account of transversal displacements of the deployed panto-
graph design with objective to study their effect on the dynamics of the SC and its ele-
ments. 

2. Physical model of system 

Here the SC that includes the gyro-gravitational system of stabilization is studied during 
the deployment of the flexible pantograph structure according to the program motion 
into the elongated flexible gravitational stabilizer (GS). It serves also as the carrier of 
solar batteries and tip mass. The SC includes two gyro-dampers (GD) which are installed 
for attitude stabilization. The SC is injected in a circular earth orbit with altitude 400 km. 
Basic elements of the SC are shown in Fig. (1). Here, element 1 is the SC main module, 
element 2 is the spatial structure that consists of two plain coupled pantographs, ele-
ments 3 and 4 represent the GD. 

The deployment is initiated when the points joining each plain pantograph to the 
main module start to approach synchronously. The distance between these points in each 
pantograph is ( )b t . The dynamics of the deployment actuating drive are not taken into 
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consideration here since this mechanism is very simple and may be realized as a device 
that has no effect on the SC dynamics.  

 

 

Figure 1. Basic elements of the spacecraft 

The deployable structures possess considerable flexibility. Because of requirements 
to maintain the shape of the gravitational stabilizer, some restrictions must be imposed 
on the deployment and design parameters. They can be determined via the process of 
numerical simulations. The GD role in the process of deployment and after its comple-
tion is also studied further. 

3. Mechanical model of system 

The generalized mechanical model of the system under consideration may be represent-
ed as a main rigid body S1 and body S2 of variable configuration attached to it. The body 
S1 is the gyro-static part and includes the GD, which do not change the rotational body 
inertia. The motion of the body S1 is defined by the velocity vector vO of the point O and 
vector of absolute angular velocity ω . 

The following frames of reference will be useful for the problem statement: CXYZ is 
an earth-centered inertial reference frame; Oxyz is the body S1 fixed reference frame 
(Figure 1) with Oz  along the design position of the GS axis; the orbital frame of refer-
ence or or orCx y z  is fixed in the SC mass centre. These frames are introduced in such a 

way as in Ref. [3].  
The position vector r defines the location of the arbitrary point P with respect to the 

reference frame CXYZ , and the position vector 'r  – with respect to the reference frame 
Oxyz. In contrast to the problem of the relative motion of attached bodies described by 
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Lurie [5], here one has the more general case when the expression for 'r  depends on 
time t explicitly, and not only through the generalized coordinates:  

 1' '( , , , )nq q t=r r K  (1) 

As a result, 'r varies during deployment even in the absence of the relative elastic 
motion of the design.  

Each of two pantographs is made of elastic rods in length 2a and mass 2ma(i), where 
index i is used for the numbering of tiers that form full rhombuses. These rods are con-

nected at the joints ( ) ( )
( ) ( ),  , ( 0, )R L
i iE E i N= , where N is the number of the tiers, and at 

points ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),  , ,  , ( 1, )R L R L
i i i iH H F F i N= , where the superscripts identify the pantograph 

as per Figure 1. 
The pantograph structure has a compact form in the beginning (a transport condi-

tion). The inclination angles of the rods of all pantograph tiers with respect to axis Ox 

are equal to 5o . After deployment of the design, values of the specified angles reach 75o .  
Elastic rods of the physical model have been replaced in the mechanical model by 

equivalent constructions of two rigid rods connected by the spring-bias cylindrical hing-
es with damping. Damping is used in order to approach the dynamics to reality at least in 
a qualitative sense. Stiffness of the springs in the hinges is defined from the condition of 
equal deflections of two constructions (Figure 2) under equal loads. The equivalent con-
struction (in Figure 2 below) has the same deflection when spring resistance cjoint in the 
hinge is equal to 3EJ/(2a). Such a replacement is completely justified, as the configura-
tion of the design is defined by mutual positions of the middle and end points of the rods. 
Besides, all dynamic values for the real design and its mechanical model at identical 
positions and velocities of mentioned above points with the same name are almost iden-
tical. It is applicable to the expressions for their tensor of inertia, moment of momentum, 
kinetic energy, and potential energy. 

 

 

Figure 2. Beams with equivalent bending stiffness 

4. Mathematical model of system 

The equations of motion of the system under consideration become the most compact 
and convenient for numerical integration, if one chooses the instantaneous position of 
the mass centre C as an origin. Then one can obtain the following Lagrange’s equations 
of the second kind for the generalized co-ordinates qs: 

 
**

*' 1
( ) ' ( )

2

CC
O CC r

s r C s r s

s s s

T M Q
q q q

∂ ∂∂
Ε − ⋅ − ⋅ ⋅ + ⋅ + ⋅ Ε =

∂ ∂ ∂

r KΘ
r ω ω ω ω K&

&
 (2) 
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The equation of the attitude motion may be obtained as the Euler-Lagrange equation 
[4] 

 
*

( )C C C C C
r⋅ + ⋅ + × ⋅ + × =Θ ω Θ ω ω Θ ω ω K m&  (3) 

The following notations are used here: CΘ is the inertia tensor of the whole system 

with respect to point C , 
* *

' ' ' 'C
r C C

m

dm M= × − ×∫K r r r r  is the relative moment of momen-

tum of the deployed part with respect to point C; '
Cr  is position vector of the instant 

position of the mass centre C in the frame of reference Oxyz; the symbol * denotes time 
differentiation in the reference frame Oxyz; M is the total mass of the system; O

rT is the 

kinetic energy of the relative motion of the carried bodies calculated under condition of 
definition of relative velocities of their points with respect to O; Qs are generalized forc-
es that take into account the elastic and dissipative characteristics of the construction;

( ) ( )
( )j

j j

d
E

dt q q

∂ ⋅ ∂ ⋅
⋅ = −

∂ ∂&
 is the Euler’s operator; 

( ) ( )
( )

j

j j

E
t q q

∗ ∂ ∂ ⋅ ∂ ⋅
⋅ = −

∂ ∂ ∂&
is also the Euler’s 

operator, but the time differentiation is performed in the reference frame Oxyz;  Cm is 
the gravitational torque; symbols × and ⋅  in Eqs. (2), (3) denote vector and scalar prod-
uct respectively. 

If to supplement Eqs. (2), (3) with the kinematical equations, one obtains a closed 
system of equations of motion. The parameters of Rodrigues-Hamilton were chosen as 
the attitude parameters [4]. Further, it is necessary to choose proper generalized co-

ordinates qs and determine expressions for c′r , CΘ , C
rT , C

rK , Π  and all their deriva-

tives with respect to time and generalized co-ordinates, which appear into expressions 
for factors of the equations (2), (3). 

During deployment, Coriolis forces act on the material points because of the rota-
tional-translational motion. These forces can produce deformations of an elastic structure 
in the transverse direction. At the same time, transverse forces are absent in the direction 
of the orbit binormal. Hence, the displacements of the design along the axis Oy can be 
neglected. 

In this study, values of co-ordinates ,   ( 1, )i ix z i N=  of points iE  of each tier, lying 

on axis Oz on the straight lines connecting points ( ) ( )
( ) ( ),  L R
i iE E , and angles kβ% (k=1,2) 

(Figure 1) have been chosen as the generalized co-ordinates. (Note that zi = zi,p(t) + zi,e, 
where zi,p(t) are prescribed functions of time and zi,e  are independent variables). The 
pantograph structures having 20 tiers were studied. 

The original computation package is developed for the numerical integration of the 
obtained ordinary differential equations in the frame of the Cauchy problem. The majori-
ty of operators of the program is obtained as Fortran-expressions in Mathematica5© in 
the codes written specifically for the system studied. 
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It is obvious that the dynamics of a complex flexible structure depend on the time 
history of the deployment. Two such time histories were used here. The deployment of 
space designs often used such a law b(t) that the velocity time history of an actuating 

motor ( )b t&  looks like the line 1 in Figure 3. Such a function ( )b t&  has two angular points, 

and a function ( )b t&&  (so and a function of an actuating force or torque) has four points of 

discontinuities. Action of such a force on an oscillating system brings additional pertur-
bations in its dynamics. 

Therefore, the alternative law of deployment of the design was considered. For this 

law ( )b t&&  does not contain points of discontinuities. Such a law can be constructed using 

the solution of the optimal control problem (see [6], Special Case II). It brings essentially 
less perturbation in the dynamics of the system than the first one as the numerical simu-
lations had shown. 

 

 

Figure 3. Laws of deployment 

5. Numerical simulation 

The torque of the central Newtonian field, corresponding to a circular orbit of 600 km 
altitude was considered as the external perturbing torque. Though the SC movement 
along an orbit is not considered here, the orbit parameters are used to calculate the gravi-
tational torque and projections of the total SC moment of momentum to the inertial 
frame of reference. It is necessary for the monitoring of errors of the numerical integra-
tion of the initial value problem. Expressions governing the change of the total moment 
of momentum of the system are derived and numerically integrated along with the equa-
tions of motion for the system dynamics in order to identify mistakes in the code. The 
results agree within eight significant figures for each projection during monitoring. 

Key system parameter values are: mass of main body m1 = 350 kg, rods mass 
m1 = 1 kg, bending stiffness EJ = 20–80 N m2, decrement of oscillations ϑ = 0.001, 
components of the main body inertia tensor Jxx=4000 kg m2, Jyy=5000 kg m2, 
Jzz=2000 kg m2, angular momentum of one GD rotor hrot=20 kg m2/s, GD damping coef-

ficient 
1 23 ,k β β =40 N m / s2, duration of deployment Tf =100-1000 s. 

The pantograph deployment essentially increases the components of the inertia tensor 

1,1
CΘ  and 2,2

CΘ  and decreases slightly the component 3,3
CΘ . Generally speaking, the inertia 

tensor is not a diagonal one in the presence of transverse design deviations along Ox 
axis. Because of transverse deviations, there is a nonzero component 1,3Θ , but it is neg-
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ligible small also as compared to the diagonal components of the inertia tensor and has 
no essential effect on the SC dynamics. 

The increase in the inertia tensor components leads to the sharp decrease in the 2ω  

magnitude (Figure 4) and to the SC orientation violation. Figure 5 shows how amplitude 
of 2ω  attenuate in the long-term consideration because of the GD operation.  

 

Figure 4. Time histories of absolute angular velocity projection 2ω  

 

Figure 5. Time history of absolute angular velocity projection 2ω  

in long-term consideration 

At the same time, generalized co-ordinates ( 1,20)iz i =  behave as it is shown in Fig-

ure 0. (Note that , ,( )i i p i ez z t z= + , where , ( )i pz t  are functions of time and ,i ez  are inde-

pendent variables that determine elastic oscillations.) The dash lines correspond here to 
the usual deployment law, the solid lines – to the optimal law (Figure 0). This behaviour 
shows the appreciable longitudinal oscillations of the design at the deployment stage. 
Optimization of the deployment law reduces the vibration amplitudes considerably. 
The oscillating motions are induced by excitation of elastic oscillations of the design 
rods with the spring hinges. Their amplitudes grow with increase of the number of the 
tiers. Longitudinal oscillations have noticeable influence upon the components of the 
inertia tensor (Figure 4). In Figure 6 one may see that amplitude of oscillatory compo-
nent of  z20,e (opt) is half of the same value for z20,e (nonopt).  
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The transverse relative deviations of the design longitudinal axis that are defined by 
the generalized co-ordinates x20 are shown in Figure 7. Practically all these deviations 
are directed opposite to the vector of the SC velocity under the effect of the Coriolis 
forces.  

 

 

Figure 6. General coordinates z20 vs time 
 

 

Figure 7. General coordinates ix  vs time 

SC with switched off GD enters into a condition of simple harmonic pitch oscilla-
tions under the influence of the gravitational torque. Taking into account the Coulomb 
friction in design hinges practically has no influence on damping of these oscillations 
since elastic longitudinal oscillations of the design damp quickly enough. Transverse 
vibrations, on the contrary, damp very slowly as compared to deployment duration even 
under the influence of forces of structural damping since their amplitudes and velocities 
are very small as one can see in Fig. 7. 

At twice as long deployment, the behaviour of the generalized co-ordinates becomes 
smooth enough; the oscillation amplitudes of overall design length do not exceed 0.15 
m. The transversal deviations have a smooth mode. The design replicates the behaviour 
of a cantilever beam. The oscillating components are superimposed on these deviations. 
These deviations lead to a reduction of the amplitudes of vibration because of their 
strong connectedness with the pitch oscillations, which damp through the GD effect, 
even if the structural damping is not taken into consideration. At deployment of this 
design during 500 s from very heavy ideally stabilized space station, the amplitudes and 
frequencies of longitudinal and transversal oscillations visibly decrease. 
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The deviations of the GD angles iβ%  during the stabilization process do not exceed 0.1 

rad.  

6. Conclusions 

The present study deals with the exploration of the dynamics of the gyro-gravitational 
stabilized spacecraft in the mode of the deployment of the flexible pantograph structure. 
A novel mathematical model, computer simulations, new control profile for design de-
ployment is presented. Novelty of the approach consists in the taking into account addi-
tional internal degrees of freedom of the pantograph design in comparison with known 
earlier settings of the problem; in using the developed by author method of  derivation of 
the dynamic equations of mechanical systems with internal degrees of freedom and non-
stationary connections; in using optimum with respect to damping of elastic oscillations 
control profile for deployment of flexible designs. A detailed simulation study has al-
lowed to analyze the dynamic behaviour of the design at various values of parameters 
both the spacecraft with flexible pantograph structure and the laws of deployment. Data 
obtained permit the designer to select the most appropriate deployment, structure and 
gyro-dampers parameters. The results obtained from using the optimum control profile 
have been compared with those of the standard control profile. The comparison demon-
strates that the proposed profile can significantly reduce the vibration of the flexible 
structure during deployment operations.  

The developed computational FORTRAN code may be easily adopted for other de-
ployed systems.  
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Abstract 

The use of graphs for the research of a rotor crush machine work on elastic foundation is offered. For machines 
the structure graph of its design is being written. The graph of levels structure of the generalized coordinates 
of mathematical model is being formed on the basis of structure graph of machine design. It allows building 
of the mathematical model, which describe the physical processes of the machine work quickly and qualitative-
ly. 
 
Keywords: mathematical model, rotor crush machine, elastic foundation. 

1. Introduction 

The process of solid bodies crushing is used in many industries in which this or that 
material has to be crushed. The costs of crushing within of total costs can reach 70% [1-
2]. 

2. The analysis of recent studies 

Analyzing the state of the crushing theory and practice [3-7], it is necessary to conclude 
that the efficiency of modern crushing machines is rather low. The existent types of 
these machines do not contain elements, the improvement of which would radically 
increase the effectiveness of crushing process. One of the possible ways of the crushing 
process improvement can be the realization of the idea of combining several methods of 
crushing, for example, the impact with vibration [8-10]. In such circumstances, the study 
of mechanisms of crushing machines, in which several methods of crushing are used 
simultaneously, is perticularly expedient. Thus, the body vibration of crushing machine 
of percussion action would help to destroy the established layer of material, which is 
crushed. In addition, the elastically fixed rotor crusher beaters would have a greater 
amplitudes of relative fluctuations, that would facilitate better offtaking of the crushing 
products. Accordingly, it is expedient to elaborate new machine schemes, in which two 
physical phenomena: impact and vibration, would be used simultaneously, in order to 
increase the efficiency of the rotor crushing machine. 

In the process of new machine models of creation, it is expedient to use computer 
experiments that allows developers to use efficiently their resources and time. At the 
same time, to carry out the computer experiments it is necessary to have the  designed 
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machines mathematical model of the sufficient quality level. The elaboration of the con-
struction methods of such mathematical models is an urgent problem. 

3. General regulations 

As an example of the graphs usage in the study of crushing machines work, let’s consid-
er the rotor crushing machine work with the crusher on the elastic foundation and rigidly 
fixed gear and beaters. 

Subsequently, generally accepted assumptions in studies of the machines dynamics 
will be used [11,12]: – the body of crusher, which is in the plane-parallel movement in 
the vertical plane, the rotor with imbalances and beaters which are in a compaund mo-
tion in the vertical plane, are considered to be hard inert bodies; – elastic elements of the 
body crusher bearer – inertialess bodies with tensile stiffness and shearing rigidity; – 
ignoring elasticity of rotor crushing machines drive components it is concidered to be 
rigid inertial body, the rotation of which is caused by the driving torque of the drive 
engine; it is changed according to the external static mechanical characteristic. 

Accepted third assumption leads to a change of graphs structures of constructive 
schemes of rotor crushing machine [13]. In this case it takes the form (Fig. 1). Based on 
the constructive scheme graph structure (Fig. 1), the design diagram of the rotor crushing 
machine was formed (Fig. 2) with discretly distributed elastic inertialess and rigid iner-
tial elements. This design diagram allows to investigate the crusher body dynamics of 
plane-parallel motion, compound motion of its rotor with imbalance and beaters, rota-
tional motion of the crush machine drive members, operation of crushing and, conse-
quently, to study the impact of crusher vibration on the crushing process, to find out the 
peculiarities of the interaction of elements of the "energy source – vibration exciter – 
working body – technological loading" in various operation modes of the machine with 
stable or variable masses of technological loading. 

 

 

Figure 1. Graph of constructive scheme structure of rotor crushing machine with the 
crusher on the elestic foundation and and rigidly fixed positive drive 
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Based on the first assumption was adopted the plane coordinate system XОY, which 
is rigidly joined with the land and is located in the vertical plane. In addition, X1О1Y1, 
system was rigidly joined with the crusher body of the rotor crushing machines, the axes 
of which form a plane parallel to the coordinate plane XОY. Subsequently, it is more 
convenient to use the term " free state of the mechanical system". In the case of rotor 
crushing machine –  it is a condition of state of rest of its inertial elements that are be-
yond the gravitational and electromagnetic forces (machine engine drive is disconnected 
from electric energy sources). 

 

 

Figure 2. Desigh diagram of rotor crushing machine with the crusher on the elastic 
foundation and rigidly fixed positive drive and beaters a); accepted coordinate system 

and generalized coordinates b) 

Taking into consideration the research tasks, based on constructive scheme structure 
graph (Fig. 3) and designed diagram (Fig. 4) through the modernization of the graph 2 a, 
which is represented in the table 1, the graph structure of generalized coordinates level 
couplings (Fig. 3) of rotor crush machine work mathematical model on elastic founda-
tion and rigidly fixed positive drive, was recorded, where as the generalized coordinates 
were taken: 

 

 

Figure 3. The graph structure of generalized coordinates level couplings (Fig. 3) of rotor 
crush machine work mathematical model on elastic foundation 

and rigidly fixed positive drive  
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q1, q2, q3 – coordinates of point O1 (Fig. 4) of the coordinate system X1О1Y1begining, 
in a fixed coordinate system XОY and the angle of its rotation relatively to the fixed 
system, that is: q1 = x01; q2 = y01; q3 = ϕ;q4 = ψ – angle of the rotor crusher rotation with 
imbalance and beaters relatively to the variable coordinate system X1О1Y1; q5 = β– angle  
of shaft rotation of the leading semicoupling of machine gear; the angles of bodies rota-
tion counterclockwise were considered as additional. 

Using the general equation of dynamics [14] of a discrete mechanical systems in 
generalized coordinates (1), based on the graph of level relations strucuture of general-
ized coordinates (Fig. 3) futher, a mathematical model of rotor crush machine work on 
elastic foundation and rigidly fixed positive drive was being built. 

 
s

s s

d T T
Q

dt q q

 ∂ ∂
− = ∂ ∂ &

,      s = 1,    n;  (1)             

where Т– the total kinetic energy of the movable inertial elements of rotor crush ma-

chine; sq& – the time derivative of the generalized coordinates; n– the number of freedom 
degrees of rotary crush machine elements; Qs– generalized force, which corresponds to 
the generalized coordinate qs.  

The total kinetic energy T of the entire mechanical system equals: 

 ТдвТдТвТкТ +++= , 

where ( )[ ]2
1

22

2

1
ϕ&& ⋅++⋅= кkkк ІyxmТк – kinetic energy of the crusher body; кк Іm , – mass 

of the body and its central moment of inertia; kk yx ,  – coordinates of the center of the 

body weight in a coordinate system XOY; ( )[ ]222 )(
2

1
ψϕ &&&& +++= ввввв IyxmT  – kinetic 

energy of the clusher rotor shaft with the beaters and semicoupling; вв Im ,  – correspond-

ingly, the mass and moment of inertia of the shaft with the beaters and semicoupling of 
elastical joining coupling relatively to the axis of their rotation in the crusher body;

вв yx ,  – coordinates of the rotation axis of the shaft with beaters in a coordinate sys-

tem XOY; ( )[ ]222 )(
2

1
ψϕ &&&& +++= ддддд IyxmT  – kinetic energy of the imbalances; дд Іm ,  – 

the mass and moment of inertia of the imbalances relatively to the axis of shaft rotation 

in the crusher body; дд y,x  – coordinates of the imbalances center of gravity in a coor-

dinate system XOY; 2

2

1
β&⋅= двдв ІТ – kinetic energy of the machine drive elements that 

are in rotational motion; двІ  – total moment of inertia of these elements is brought to the 

axis of the leading semicoupling shaft of the drive gear; β&  – the angular velocity of the 

leading semicoupling shaft. 
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The left parts of the equation (1) have the form of (2). The right parts of equation (1) 
have the form of (3). 

Dependencies(2) and (3) are the sets of left and right parts of the equations of the ro-
tor crush machine work mathematical model on elastic foundation and rigidly fixed 
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positive drive, which is based on the graph of level relations strucuture of generalized 
coordinates (Fig. 5). The comparison of the results of the study of the machine obtained 
by means of physical and mathematical model experiment shows its good matches. 

As a result of the research the following conclusions can be made:  

 The character of engine’s drive machine operation does not change by the pres-1.
ence of vibrating crusher body. The reaction of the engine on the change of the 
necessary productivity values, type of crushed grain and its moisture content is 
similar to the machines with rigidly fixed crusher body. 

 Movement of the crusher body doesn’t alternate with a change of the  material 2.
quantity in it within a wide range of changes in the estimated productivity, be-
fore the reduction of the drive motor rotation. Amplitude of drum vibration de-
creases at the moment of initial loading at the sudden gate opening. 

 The drum instalation on the elastic foundation leads to the appearance of three 3.
additional frequencies, the values of which are determined by the ratio between 
the mass and moment of the drum inertia, rigidity in the horizontal and vertical 
directions of its elastic bearing, place of its fixation to the drum. 

Amplitude of the drum body vibration, the form of  its values field in a vertical plane 
conciderably depends on the ratio between the values of the vibration exciter mass im-
balance, distance from the point of suspension to the center of mass, angular velocity of 
the rotor rotation, drum machines mass and rigidity of elastic bearings. 

Value of the amplitudes of the drum forced vibrations along the coordinate axes x, y 
by the dependency: 
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where ∑ im  – the total mass of all drum elements; .номψ&  – the nominal angular velocity 

of the machine rotor. It is necessary to replace "Cx" by "Cy" in order to estimate the am-
plitude along the axis "ym" to the dependency (8). 

The values, obtained theoretically and experimentally at different intervals of adjust-
able parameters varying are presented on the diagrams (Fig. 4). 

Studying the relationship of crusher productivity with its structural and dynamic pa-
rameters one cleared out the following: 

 Oscillograms of beaters acceleration in the crushing mode have non-sinusoidal 1.
shape (Fig. 4, a) with amplitude factor kA = 4,1. Boundary frequency of the 
signal spectrum on the 10% amplitude criterion is fhr = 300 Hz, harmonic factor 
kh = 0,58, the distortion factor ky = 0.87. Considering the allocation of the 
normalized power of the spectrum harmonics (Fig. 6, b) it appears that more 
than 80% of power is transferred by the first harmonic. 

 The crusher productivity QTEOP at the constant access rate n and width of dis-2.
charge gap δ with increasing bias of imbalance h is decreased. 
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Figure 4. Oscillogram of acceleration (a) and the allocation of the normalized power 

of the spectrum harmonics (b)  

4. Conclusions 

The proposed methodology of the creation of mathematical models using graphs of nec-
essary complexity allows to describe the physical processes of the machine work quickly 
and qualitatively. 
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