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Abstract 

The paper is devoted to analysis of geometrically nonlinear vibrations of beams with geometric and material 

properties periodically varying along the axis. The 1-D Euler-Bernoulli theory of beams with von Kármán 
nonlinearity is applied. An analytical-numerical model based on non-asymptotic tolerance modelling approach 

and Galerkin method is applied. The linear natural frequencies and mode shapes are determined and the results 

are confirmed by comparison with a finite element model. Forced damped vibrations analysis in the large 
deflection range is performed to illustrate complex behaviour of the system. 
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1. Introduction 

Structures with physical properties arranged periodically or almost periodically in the 

body domain are often found in engineering and in the nature. Properly designed, they 

have many advantages, such as favourable mass to stiffness ratio. Furthermore, 

considering problems of dynamics, we can point out the frequency filtering properties of 

such structures, i.e. existence of frequency band gaps. 

In this paper, vibrations of beams with periodically varying geometric and material 

properties along the longitudinal axis are considered. Equations of motion of such 

structures have highly oscillating, periodic, often non-continuous coefficients. 

 

 

Figure 1. A fragment of a periodic beam 

There are numerous special techniques in analysis of periodic media, many of them 

based on strict mathematical asymptotic homogenization [1]. Extensive work has been 

done in homogenization of periodic beams, cf. [4]. The theoretical foundation of the 

analytical-numerical model used here is the non-asymptotic tolerance modelling 

approach to analysis of microstructured periodic or almost periodic media. It is based 

mainly on the concepts of slowly-varying and tolerance periodic functions, and the 
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indiscernibility relation, cf. [6]. The resulting partial differential equations with constant 

coefficients are then transformed into a set of ordinary differential equations using 

Galerkin method and then numerically integrated via the Runge-Kutta-Fehlberg method. 

The resulting model is an extension of a simplified one, presented in [3]. The new 

concept is the notion of a weakly slowly-varying function, cf. [5]. Some of the results of 

analysis geometrically nonlinear equilibrium problems of thin periodic plates via the 

tolerance modelling are confirmed in [2]. 

2. Equations of motion 

The object under consideration is a linearly elastic, piecewise-prismatic beam. Let Oxyz 

be an orthogonal Cartesian coordinate system, the Ox axis coincides with the axis 

of the beam, the cross section of the beam be symmetric with respect to the plane 

of the load Oxz, the load acts in the direction of the axis Oz. The beam is assumed 

to be made of small repetitive elements, called periodicity cells, each of which is defined 

as D≡[-l/2,l/2], where l<<L is the length of the cell and named the microstructure 

parameter. 

The assumptions of the Euler-Bernoulli theory of beams with von Kármán terms 

serve as a basis. The effects of axial and rotational inertia are neglected, as we 

investigate slender elements and we are interested in analysis of transverse vibrations. 

Let ¶k=¶k/¶xk be the k-th derivative of a function with respect to the x coordinate. Let the 

transverse deflection, the longitudinal displacement, tensile and flexural stiffness, the 

damping coefficient, mass of the beam per unit length, transverse load and dissipative 

force by w = w(x,t), u0 = u0(x,t), EA = EA(x), EJ = EJ(x), c = c(x), μ = μ(x), q = q(x,t), 

p = p(x,t), the system of nonlinear coupled differential equations for the longitudinal 

displacements u0 and the transverse deflection w can be written as: 
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The coefficients EA, EJ, μ, c, and in some cases the load q, are highly oscillating, 

often non-continuous functions of the x coordinate. 

3. Introductory concepts and basic assumptions of the tolerance modelling 

To become acquainted with the basics of the method, the reader is referred 

to the book [6]. Here, only the fundamental concepts are presented. 

Let D(x) = x + D, })(:{ WÌDWÎ=WD xx  be a cell with centre at DWÎx . 

The averaging operator for an arbitrary integrable function f is defined by: 
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It is assumed that each of the unknown displacements w and u0 can be decomposed 

into its averaged and fluctuating part, the latter of which is a finite sum of products 

of fluctuation shape functions (FS) and fluctuation amplitudes: 
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where the functions ),()(),( 2 DWÎ×× d
A WSVVW , ),(),( 1 DPÎ× d

K SVTU  are new basic 

unknowns, being weakly slowly-varying or slowly-varying functions in x; the fluctuation 

shape functions ),()( 2 DWÎ× d
A FSh , ),()( 1 DWÎ× d

K FSg  are postulated a priori in every 

problem under consideration. The new basic kinematic unknowns W(×) and U(×) are 

called the macrodeflection and the in-plane macrodisplacements, respectively; VA(×) and 

TK(×) are additional kinematic unknowns, called the fluctuation amplitudes. 

4. The averaged equations 

4.1. The tolerance model 

After substitution the micro-macro decomposition (3) into equations (1), the next step 

of modelling is averaging these equations over an arbitrary periodicity cell with weights 

1, hA and gK. After some manipulations we arrive at the following system of equations:
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where the averaged axial forces ˂NF(y)˃, F(y) = {1, ∂hA, ∂hA∂hB}, are independent of x: 
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(6) 

Equations (4-5) with denotations (6) stand for a system of 2+N differential equations 

for the macrodeflection W(×) and for its fluctuation amplitudes VA(×). As the axial inertia 

terms are neglected, the axial displacement U(×) and its fluctuation TK(×) 
can be eliminated. The coefficients of these equations are constant, some and of them 

depend on the size l of the periodicity cell. Note that the elimination of axial 
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displacement dependent terms is possible only when end displacements are restrained, 

but not necessarily equal to zero. 

4.2. The tolerance-asymptotic model 

In cases when we restrict ourselves to investigate the low frequency vibrations, we can 

pass with the periodicity cell length to zero, l → 0. Then, some of the coefficients of 

equations (4)-(5) vanish. Introducing the following denotations: 
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equations of the tolerance-asymptotic model take the form: 
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The usefulness of the above formulation is restricted to analysis of long-wave modes, 

for which the length scale effect is not of high importance. Nevertheless, in many 

practically important issues such approximation is acceptable. 

5. Applications 

Let us investigate a piecewise-prismatic beam of length L, and periodically variable 

cross-section, as it is shown in Figure 2. The material of the beam is elastic 

and homogeneous. 

L

periodic boundary conditions

l l

αl

l

hM ×bM
hR×bR hM ×bM

(a)

(b) (c)

 

Figure 2. Scheme of the analysed beam (a), a periodicity cell (b), 

and periodic boundary conditions (c) 

The fluctuation shape functions were obtained from a finite element analysis 

of a two-cell system. Each subsection of a periodicity cell was divided into two elements 

based on Hermite polynomials and the periodic boundary conditions were assumed, 

as indicated in Figure 2(c). The obtained mode shapes can be divided into two groups 

of even (ESF) and odd (OSF) shape functions, cf. Figure 3. 

The solutions to the tolerance model and the load were assumed as finite sums: 
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where the functions Xm and YA
n were chosen to satisfy the boundary conditions 

of a simply supported beam: 
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That leads to the following system ordinary differential equations of second order: 
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After dropping the nonlinear, damping and forcing terms the linear natural 

frequencies and mode shapes are determined from analysis of the generalized eigenvalue 

problem. The results of comparison with a full finite element model of a beam 

are presented in Section 5.1. 

Then, the nonlinear model based on the asymptotic approximations (8) is applied 

in analysis of damped forced vibrations. It is justified only when the forcing frequency 

is of the order of the few lowest natural frequencies of the beam. The analysed equations 

and used denotations are given by formulas (12) and (13), respectively.  
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The results of analysis are briefly described in Section 5.2.  
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Figure 3. The first four modes of a two-cell system used as fluctuation shape functions 
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5.1. Natural linear frequencies and mode shapes 

The object of this section is to perform a limited confidence check of the model 

accuracy. The analysed beam (cf. Figure 2) has length L = 1.0 m, the elastic modulus 

is E = 205 GPa, the mass density ρ = 7850 kg/m3. The cross section is rectangular: 

bM = bR = 10 mm, hM = 5 mm, hR = 10 mm, other geometric parameters of the cell 

are l = 1/10 m, α = 1/2. 
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Figure 4. Comparison of first 51 (left) and first 21 (right) natural frequencies obtained 

from tolerance (closed circles) and finite element model (open circles) 
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Figure 5. Comparison of chosen natural modes of considered beam obtained from 

tolerance (TA - dotted lines) and finite element (FE - solid lines) model. 

The first four of 23 modes of a two-cell assemblage used as fluctuation shape 

functions are shown in Figure 3. For comparison, a finite element model of the full beam 

has been formulated. The natural frequencies and mode shapes were determined 

from the equation det(K0 - ω2M)=0, cf. (11). Figure 4 presents the comparison between 

tolerance modelling (TA) and finite element (FE) results for first 51 frequencies and 
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its close-up in the range of first 21 frequencies, where the lower band-gaps 

are more visible. The 3rd, 6th, 9th, 10th, 20th and 21st natural modes obtained from both 

models are depicted in Figure 5. The results are in good agreement. It has 

to be mentioned that all the upper and lower boundaries of band gaps correspond 

to the first (n=1) modes of fluctuation amplitudes, cf. relationships (9) and (10). 

The proposed model gives satisfactory results not only in the low frequency range. 

 

 

Figure 6. Backbone and amplitude-frequency curves 

 

Figure 7. Bifurcation diagram of central deflection w versus forcing amplitude f0 

5.2. Nonlinear vibrations analysis 

Let us consider a problem of forced damped vibrations of a beam introduced 

in the beginning of this section, governed by the equations (12). The material 

and geometric parameters remain the same, although three cases were considered here: 

a) α = 4/5, hR / hM = 13/8; b) α = 1/2, hR / hM = 2; c) α = 1/5, hR / hM = 3. That is, the total 
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mass of the beam is kept constant, but the effective bending and axial stiffness is: 

Deff = {55.259; 37.963; 26.538} Nm2, and Beff = {1.481; 1.367; 1.196}×107 N, 

and the first natural linear frequencies are ω1 = {95.617; 79.253; 66.263} rad/s. 

The coefficient of the external damping was assumed to be c = 2.5 Ns/m. 

First, the one-term approximation of to the equations (12) has been used to determine 

the backbone curves and amplitude-frequency response curves shown in Figure 6. Light 

forcing amplitude (f0 = 4.25) and forcing frequency near the fundamental frequency 

was assumed. Next, five-term approximation to these equations has been applied 

in analysis of long-term forced vibrations for case (b). The forcing frequency is equal 

to the first natural frequency of the beam. The bifurcation diagram with forcing 

amplitude f0 as a parameter is displayed in Figure 7. Complicated behaviour 

of the system is exposed, including periodic oscillations, symmetry breaking and saddle-

node bifurcations, as well as period-doubling routes to chaos. More detailed analysis 

of the results will be presented and discussed in forthcoming papers. 

6. Conclusions  

It can be concluded that the presented model properly describes the crucial dynamic 

characteristics of beams with periodic structure and it can be used as a reliable tool in 

parametric analysis of vibration problems. The advantage of proposed approach is that it 

allows for the construction of models of low degree of freedom number. 
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