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Abstract 

In this article dynamical properties of auxetic lattice structures will be analysed. Auxetic structures are 
materials, which have negative Poisson’s ratio and some of these have got specific dynamic properties. Their 

dynamic behaviour in the frequency domain will be also shown in this article. The possibility of isolation of 

auxetics will show the factor VTL – Vibration Transmission Loss. 
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1. Introduction 

Auxetic materials are materials characterized by negative Poisson’s ratio which means 

that they expand during stretching and shrinks during compressing in the transverse 

directions to direction of compressing or stretching force. The Poisson’s ratio (PR) of 

isotropic is between -1 and +0.5. Anisotropic materials have non-bounded range for 

Poisson’s ratio. 

Materials with negative Poisson’s ratio (NPR), at present often referred to as 

auxetics, have been known for over 100 years and the key to this auxetic behaviour is the 

negative Poissons ratio [1]. In early 1900s a German physicist Woldemar Voigt was the 

first to report this property [2] and his work suggested that the crystals somehow become 

thicker laterally when stretched longitudinally, nevertheless it was ignored for decades.  

Gibson [3] in 1982 realized the auxetic effect in the form of the two-dimensional 

silicone rubber or aluminum honeycombs is deformed by flexure of the ribs. The first 

mechanical [4] and thermodynamical [5] models were presented by Almgren in 1985 

and Wojciechowski in 1987. 

Evans et al. paper [6] introduces the term auxetic, from the root word for growth, to 

describe transverse expansion under uniaxial (longitudinal) tensile load. Re-entrant 

foams were reported for the first time by Lakes [7]. A negative Poisson ratio implies the 

substances with negative Poisson's ratio that can be readily compressed but are difficult 

to bend [8]. 
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Nowadays, it is known that negative Poisson’s ratio may also characterize many 

other structures with other shape and geometries [9]. In the literature are described also: 

fibre materials, centre-symmetric or gradient honeycombs, chiral structures, auxetic 

laminates, composites or lattice-like cell structures - sometimes are also designed the 

combinations of this arts of auxetics. All of them have negative Poisson’s ratio. Some of 

these because of their auxeticity exhibit extraordinary dynamic properties and have great 

attention by the scientists from many countries [10-19]. 

Ruzzene et al. [18] in their work have presented the structural and acoustic analysis 

of truss-core beams. They obtained the optimal geometry of truss-core with the best as 

possible acoustic behaviour. Their numerical model was created by employing dynamic 

shape functions derived exactly from the distributed parameter model of beam elements. 

 Joshi et al. [15] in their works has presented dynamic, acoustic analysis of auxetic 

composites and its dependency on geometry or number of single repeated cells of 

material. Structures with negative Poisson’s ratio may have unknown and unexpected 

dynamic behaviour e.g they can be a good isolator or protector from the resonance. The 

parameter which circumscribed isolation properties is Vibration Transmission Loss, 

which shows the range of frequency where the structure doesn’t transmit vibrations. In 

order to determine this factor it is useful to define Vibration Transmission Coefficient τυ. 

The Vibration Transmission Loss (VTL) is given by the formula: 

Jt

1
log10

10
=VTL  (1) 
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where: w  is frequency [Hz], ),( wxu
y

- displacement in y-direction, indices t, b – top 

and bottom layer of auxetic structure. 
t

L  and 
b

L  are lengths of top and bottom boundary 

of structure. 

2. Numerical results 

Auxetic lattice-like structure is designed for the analysis of dynamical properties. The 

structure is built of a repeated unit cell which has geometry parameters as follows: height 

a, width b and parameter c – height of the notch in the bottom. The Poisson’s ratio of this 

cell is negative and equals -0.915. The single cell can be multiplicated and analysed as 

complex 3D structure (see Figure 2). This lattice-like structure was tested to find 

vibration transmission factors. For the simulations the following values were taken: a = 1 

m, b = 0.5 m, c = 0.3 m. 

In order to facilitate the analysis only one quarter of the 3D structure is considered 

The boundary conditions are: constant displacement 0.1 m on the top, on the one side of 
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x-axis, y-axis and bottom - roller boundary and on the rest boundaries - free boundary 

condition. 

 

 

Figure 1. Three-dimensional auxetic unit cell 

 

 

 

Figure 2. Three-dimensional auxetic structure 

 

The results of simulation by the frequency analysis of the auxetic structure are 

presented in Figures 3 and 4. These diagrams can be used to analyse the possibility of 

using the structure to reduce the level of vibrations. 
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Figure 3. Vibration Transmission Coefficient (VTC) of auxetic structure 

 

 

Figure 4. Vibration Transmission Loss (VTL) of analysed auxetic structure 
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3. Conclusions  

A finite element model was developed to evaluate the effective properties and dynamic 

response of the auxetic lattice structure. The influence of the parameter structure on 

effective properties and dynamic response (VTL) of structure was investigated. 

To cover a wide range of structural resonances, the excitation frequencies of 

sandwich panels varied from 0 to 1000 Hz. The range of frequency vibration which are 

most damped is around 200 Hz and 600 Hz. The values of Vibrations Transmission Loss 

for these frequencies are 90 and 130 decibels respectively. The numerical experiment 

confirms also the transmission loss of auxetics by some frequencies. 

If the geometry parameters are changing e.g. by increasing the value of c twice - to 

0.15 m – the auxetic effect is smaller: Poisson’s ratio is -0,2. The value of the VTL is 

greater in 0-1000 Hz and dampens vibration better as in the previous case. Minimal 

value of VTL in this situation is about -10 dB for frequency 500 Hz. In this case we 

observe strengthening of vibration. 
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