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Abstract 

In this note a free vibration analysis of periodic three-layered sandwich structures is performed. The equations 

of motion of such structures, which are derived basing on Kirchhoff's thin plate theory, contain periodic, non-

continuous and highly oscillating coefficients, which makes them difficult to solve. In this work, the tolerance 
averaging technique is applied in order to transform the mentioned system of equations into a form with 

constant coefficients, which takes into account the effect of the microstructure size. The differences between 
two modelling procedures are shown and discussed. Eventually, formulas for free vibration frequencies of an 

exemplary 2D structure are derived and an analysis of influence of certain varying material properties is 

performed. 
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1. Introduction 

Composites are more and more widely used in modern engineering. The possibility of 

combining several different materials into one heterogeneous structure, which material 

properties are outstanding when compared to 'classic' homogeneous materials, is very 

tempting for many researchers. All that is needed, is a proper model of such structures, 

which can be used in design and optimization process. 

In this article three-layered sandwich structures are considered. A typical sandwich 

structure consists of external layers, which are made of materials characterised by high 

mechanical properties, hence, they are main bearing parts of the whole structure,  

and an inner layer, so called core, which is usually a light-weight, porous material, 

standing for thermal- and acoustic isolation. As a result, we obtain a highly durable 

structure, which, properly designed, can be used in many branches of engineering, such 

as aviation or even space ship construction.  

On the other hand, sandwich structures also have disadvantages, such as vulnerability 

to local buckling, initial imperfections or concentrated loadings. Moreover, the 

mathematical models of such structures are complicated, with unclear and 

experimentally not proved assumptions connected with distribution of stresses and 

deflections. That is why, many different approaches towards the analysis of dynamic 

behaviour of such structures can be found in literature. Let us mention classic Euler-

Bernoulli deflection hypothesis, Reissner-Mindlin's first order deformation theory, 

together with its extension to nth-order deformation, or Zig-Zag hypothesis. For the exact 
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description of above mentioned approaches, one should refer to Magnucki [1], Carrera 

[2] or Carrera and Brischetto [3], among others. In this work, let us concentrate on one 

of the most simple approach, which can be found in the works of Chonan [4], Oniszczuk 

[5] or Szcześniak [6], just to name few. In this approach, a three-layered sandwich 

structure is considered as a system of two Kirchhoff's type thin plates (outer layers), 

connected with each other by elastic Winkler's type material. Such assumption is well-

fitted to our expectations, in which light-weight elastic core increase the stiffness of the 

structure by increasing its thickness, rather than being its bearing part. 

In all above mentioned approaches, considered structures are characterised by 

constant geometry and are made of homogeneous or quasi-homogeneous materials. 

However, most recent sandwich structures contain certain varying geometry and/or 

material properties (especially the core can take very complicated shapes). As a result, 

governing equations of such structures have non-continuous and highly-oscillating 

coefficients, which make them difficult to solve. An answer to this problem can be the 

application of finite element method analysis. However, the optimization process with 

the use of such approach can be much time-consuming and ineffective. That is why, in 

this work one can find a mathematical model describing the vibrations of sandwich 

structure, which every layer can be characterised by periodic microstructure.  

Solution to such problem was investigated by many researchers, for example by 

Brillouin [7], Mead [8] or Kohn and Vogelius [9], who created the basis of the 

asymptotic homogenisation method for plates. However, these models neglect the 

influence of microstructure on the behaviour of considered structures. The main aim of 

this paper is to derive a simple and useful model, which allows us to take into account 

this effect, with the use of the tolerance averaging technique, presented by Woźniak and 

Wierzbicki [10] or Woźniak et al. (eds.) [11], [12]. Eventually, as a result of two 

modelling procedures (tolerance modelling and asymptotic-tolerance modelling), free 

vibration frequencies of an exemplary rectangular sandwich plate are calculated. 

2. Modelling foundations 

Let Ox1x2x3 be an orthogonal Cartesian coordinate system, where x≡(x1,x2), x3≡z,  

and let us denote t as a time coordinate. The three-layered plate under consideration is 

assumed to have spans L1 and L2 in x1 and x2-axis directions, respectively, and total 

thickness H(x). Hence, it can be stated, that undeformed structure occupies the region 
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Let us assume, that both outer layers are Kirchhoff's type thin plates. Moreover they 

are made of the same set of materials and they have the same geometry, hence, all 

material and mechanical properties of these layers are the same, cf. Figure 1. Let us 

introduce their bending stiffness Bαβγδ(x,t) and mass density per unit area μ(x,t) as: 
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where h(x) is the thickness of the outer layers, Cαβγδ(x,z) is their elastic modulus tensor 

and ρ(x,z) is their mass density. Both outer layers are connected by an elastic Winkler's 

type material, so called core, characterized by elasticity modulus k(x), mass density 

ρc(x,z) and thickness hc(x). 
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Figure 1. A part of periodic sandwich plate 

The whole structure is build of small, repeatable elements, called periodicity cells. 

Every cell has dimensions l1 and l2 in x1- and x2-axis direction, respectively, while its 

diameter is referred to as to the microstructure parameter l. It is assumed, that 

dimensions of the plate and the microstructure parameter must satisfy following 

normalizing conditions: ),min()( 21 LLlh <<<<x , hence, the outer layers of the structure 

can be treated as thin plates not only in a macro-scale, but also when a single periodicity 

cell is considered. 

Let us follow the simplified approach presented by Szcześniak [6]. According to the 

Kirchhoff's type thin plate theory, governing equations of this structure takes the form: 
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where u1(x,t), u2(x,t) are deflections of upper and lower outer layers along z-axis 

direction, respectively, and f1(x,t), f2(x,t) are their loadings, defined as: 
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where p1(x,t), p2(x,t) are external loadings applied to outer layers of the structure. It 

should be emphasized, that coefficients in system of equations (2) are periodic, non-

continuous and highly oscillating. In order to derive a system of governing equations 

with constant coefficients, the tolerance averaging technique will be used. 

3. Basic modelling assumptions of the tolerance averaging technique 

The whole modelling procedure with the use of the tolerance averaging technique uses 

several introductory concepts, such as: an averaging operator, a slowly varying function, 

a tolerance-periodic function or a highly oscillating function. The idea standing behind 

those concepts, as well as a detailed description of the tolerance averaging technique, 

can be found in a various literature, for example by Woźniak and Wierzbicki [10] or by 

Woźniak et al. (eds.) [11], [12]. 

Let us introduce the definition of the averaging operator, which for an arbitrarily 

chosen basic periodicity cell Δ(x) can be formulated as follows: 
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where ),(
~ )( yf k

x  is periodic approximation of kth gradient of certain function f(x). 

There are two main assumptions of the tolerance averaging technique. The first of 
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them is the micro-macro decomposition, which stands, that  the deflections of outer 

plates u1, u2 can be formulated as sums of macrodeflections w1(x,t), w2(x,t) and products 

of mode shape functions g1
A(x), g2

B(x) and fluctuation amplitudes v1
A(x,t), v2

B(x,t): 
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Both macrodeflections w1(x,t), w2(x,t) and fluctuation amplitudes v1
A(x,t), v2

B(x,t) are 

basic unknowns, additionally assumed to be slowly varying functions for every t. 

The second assumption contain the tolerance averaging approximations. By 

introducing certain given ‘a priori’ tolerance parameter δ and keeping in mind 

properties of functions mentioned as introductory concepts, it is possible to prove the 

following equations: 
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where F is tolerance-periodic function, F  is periodic approximation of F, F is slowly 

varying function, g is highly oscillating function and O(δ) is negligibly small term, 

0<δ<<1. 

4. Tolerance modelling procedure and model equations 

The starting point of the tolerance modelling procedure is the system of equations (2) 

together with denotations (3). By applying the averaging operator to (2) and 

transforming it with the use of both the micro-macro decompositions and the tolerance 

averaging approximations, the averaged form of system of equations (2) can be obtained 

in the form: 
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The above system of equations constitute the tolerance model of the periodic 

sandwich structures under consideration. It is the system of 2N+2 partial differential 

equations with constant coefficients, where the exact number of equations depends on 

the amount of assumed mode shape functions g1
A, g2

B, A,B = 1,...,N. System of equation 

(7) should be followed by four boundary conditions for every macrodeflection and a two 

initial conditions for every unknown function. It can be also observed, that only the 

underlined terms in (7) are dependent on the microstructure parameter l. 
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5. Asymptotic-tolerance modelling procedure and model equations 

The asymptotic-tolerance model can be obtained in two steps, which are described for 

example by Woźniak et al. [12] or for plates by Kaźmierczak and Jędrysiak [13]. In the 

first step, the asymptotic solution to the problem is derived. In our considerations it can 

be obtained by omitting the underlined terms in equations (7). As a result, we arrive at: 
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By analyzing the above system of equations, one can observe, that it can be easily 

transformed into a system of two equations with unknowns macrodeflections. Hence, 

macro-scale vibrations can be estimated regardless of the micro-scale fluctuations. 

In the second step, an additional micro-macro decomposition, with the use of already 

known macrodeflections w1
0, w2

0, is applied to system of equations (2): 

 ).,()(ˆ),(),(),,()(ˆ),(),( 22
0
2211

0
11 tVgtwtutVgtwtu

BBAA
xxxxxxxx +=+=  (9) 

Following the tolerance modelling procedure, after several manipulations, we arrive at 

the system of differential equations for fluctuation amplitudes V1
A(x,t), V2

B(x,t): 
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Systems of equations (8) and (10) together constitute the asymptotic-tolerance model 

of the periodic sandwich structure under consideration. As a result, using this modelling 

procedure allows to perform a simplified analysis of vibrations in only macro- or micro-

scale without the necessity of evaluating both. The amount of boundary and initial 

conditions is the same as in the tolerance model. 

6. Calculation example - the analysis of free vibrations 

Let us consider a rectangular three-layered plate, which is simply supported on all four 

edges. It is assumed, that the relations between characteristic dimensions of the structure 

can be formulated as follows: L2/L1=2, l2/l1=2. The outer layers of the plate are assumed 

to be made of periodically varying isotropic materials, having different Young's modulus 

E1, E2 and densities ρ1, ρ2, but constant Poisson's ratio ν=0.2 and thickness h=0.1l1, cf. 

Figure 2. 

Let us introduce only one mode-shape function, the same for both upper and lower 

outer layer. Moreover, in order to obtain comparable results, let it be the same function 

for both tolerance and asymptotic-tolerance models: 
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Figure 2. A periodicity cell of plate in the calculation example 

By defining 
iii Vvw AAA ,,  as amplitudes of unknowns, i = 1,2, λ1, λ2 as wave numbers 

and ω as a frequency, solutions to all governing equations can be assumed in the 

following forms, which satisfy boundary conditions: 
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Let us neglect all external loadings. Free vibration frequencies are calculated by 

solving characteristic equations of homogeneous systems of equations (7) and (8), (10) 

and presented in dimensionless form, derived with the transformation below: 
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Moreover, all calculations are performed for constant wave numbers: λ1=0.1/l1,  

λ2=0.1/l2. On charts in Figure 3 and 4 lower order frequencies are denoted as "a" and 

"b", while higher order frequencies as "c" and "d". Moreover, the tolerance model results 

are distinguished by subscript "1" and the asymptotic-tolerance model - by subscript "2". 

 

 

Figure 3. Dimensionless free vibrations frequencies' parameters w  versus parameter X: 

A) E2=XE1, ρ2=2ρ1, k=0.03E1/l1, ρc=0.03ρ1,  

B) E2=2E1, ρ2=Xρ1, k=0.03E1/l1, ρc=0.03ρ1 
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Figure 4. Dimensionless free vibrations frequencies' parameters w  versus parameter X: 

C) E2=2E1, ρ2=2ρ1, k=XE1/l1, ρc=0.03ρ1, 

D) E2=2E1, ρ2=2ρ1, k=0.03E1/l1, ρc=Xρ1 

7. Remarks 

In this article, two averaged models describing vibrations of periodic three-layered plates 

are presented. The simple model of sandwich plate, described by Szcześniak [6], 

is extended and modified with the use of two modelling procedures of the tolerance 

averaging technique, so as structures with periodic microstructure can also be analyzed. 

As a result of these modifications, systems of governing equations with constant 

coefficients are obtained and solved. 

Basing on the considered calculation examples, it can be observed that results of both 

models are comparable even for structures with much varying material properties. 

Hence, presented solutions can be used in the process of optimization of mechanical 

properties of considered sandwich structures, as a simple and convenient way of 

estimating the frequency of vibrations. 

In the future investigations, the consistency of the proposed averaged models with 

finite element method will be presented. Moreover, a physical correctness of derived 

models will be described and justified. 
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