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Introduction to the Volume XXVII Collection of Papers 

of the Conference on Vibrations in Physical Systems – 2016 

The phenomena of vibrations, oscillations and waves as physical phenomena are 

omni-present around us. They are the sign of life, the sign of the operation of machines 

and devices and they accompany any production processes. Their effects may be 

harmful, useful and they may also be a source of information on the technical condition 

of the supervised machines and devices. The successive Volume XXVII of Vibrations 

in Physical Systems published every second year deals with these widespread 

phenomena. It comprises the papers presented by specialists from our country but also 

from abroad at many sessions of XXVII Symposium of Vibrations in Physical Systems 

organized also every second year. The symposium has been organized since 1960 

in Poznan by a local branch of the Polish Society of Theoretical and Applied Mechanics 

and the Institute of Applied Mechanics at Poznan University of Technology. 

This conference is unusual one; we are present in a scientific space 27th times  

since 1960. This means the subjects we are dealing are still important and still brings 

the attention of scientific community and co working practitioners. One can say that each 

successive Volume is a special issue of some scientific Journal devoted mainly 

to vibration research. Of course, year by year our outlook is evolving; and the scope of 

current conference has been widened from the previous one, and is currently as follows: 

 Mathematical Modelling in Sound and Vibration Analysis 

 Experimental Techniques in Sound and Vibration Engineering 

 Wave Problems in Solid Mechanics 

 Analysis of the Non-Linear Deterministic / Stochastic Vibrations Phenomena 

 Computational Methods in Vibration Problems 

 Modelling and Identification of Dynamical Systems 

 Signal Processing and Analysis 

 Active Vibration Control 

 Energy Methods in Vibration Engineering 

 Vibration and Energy Problems Related to Biomechanics 

 Dynamics of Machinery and Rotating Systems 

 Vibroacoustics of Machinery, Diagnostics 

 Vibrations and Noise of Transport Systems, Vehicles, Roads 

 Structural Dynamics, Vibrations of Composite Materials Structures 

 Vibration Problems in Environmental Engineering, Vibration of Granular 

Materials 

 Vibrations and Dynamic Stability of Structural Elements, Beams, Plates, Shells 

 Flow-induced vibrations, Fluid-structure interaction, Aeroelasticity 

 Dynamic behaviour of Vibration Isolation Elements and Systems. 



As it is seen the topics of the publications relate to a wide range of issues connected 

with modelling and identification of mechanical systems, their stability and dynamics of 

mechanical systems as well as physical phenomena such as propagation of acoustic 

waves and vibrations in all aspects of science and engineering, beginning from 

the theory and modelling up to the application subjects in machines, environment 

and the human body. 

The monograph comprises also numerously presented publications relating to 

the issues of dynamics in biological as well as biological and mechanical systems. 

They mainly concern mechanical properties of a human body and its organs or parts. 

Other publications describe the dynamic interaction of power between man and machine 

(Hand-held Powered Tools) or distribution of power and the energy flow in 

Human-Machine Systems. 

Many of the publications present the results of research carried out through 

simulation with the application of modern digital technologies worked out for the needs 

of solving linear and nonlinear issues of the dynamics of solid bodies or physical 

phenomena such as propagation of acoustic waves or dynamics and stability of 

complicated structures. The publications comprise the results that are analysed from 

the point of view of the applied methodology or the validity of the obtained data. 

There are also some publications devoted to methods of passive, active and semi-

active reduction of vibrations and noise and to modelling of vibrations damping with 

viscous damper. The publications concerning dynamic issues also analysed the stability 

of the tested mechanical systems. 

Other significant publications concern the monitoring of technical facilities with 

the use of the propagation of elastic waves that allow us to detect cracks in the composite 

structure under the test and to specify their location. 

All the papers comprised in this volume have been reviewed by members of 

the Scientific Committee, and in some cases by specialists outside the Committee, 

should the issues concern problems outside the scope of knowledge of the Committee 

members. We would like to thank all those persons who help us review papers in this 

published monograph and improve their quality. 

Co-editors of the 27th Volume 

Czesław CEMPEL 

Marian W. DOBRY 

Tomasz STRĘK 
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Structural Damage Detection Using Non-Classical Vibro-Acoustic 

Approaches 

Kajetan DZIEDZIECH, Łukasz PIECZONKA, Phong Ba DAO, Andrzej KLEPKA, 

Tadeusz UHL, Wiesław J. STASZEWSKI 

Department of Robotics and Mechatronics, AGH University of Science and Technology 

Al. Mickiewicza 30, 30-059 Krakow, w.j.staszewski@agh.edu.pl 

Abstract 

The paper demonstrates how non-classical approaches can be used for structural health monitoring. Wavelet-

based modal analysis, various non-classical nonlinear acoustic techniques and cointegration are used for 
damage detection. These approaches are illustrated using various examples of damage detection in metallic and 

composites structures. 

 

Keywords: structural damage detection, fatigue cracks, delamination, time-variant modal analysis, nonlinear 
acoustics, cointegration 

 

1. Introduction 

Modern engineering structures utilise new stiffer and stronger materials (e.g. 

composites) and integrate various hybrid and complex elements (e.g. controllers, 

electronics, sensors). Such structures often operate under undesirable and harsh 

conditions. Therefore inspection and maintenance of such structures is a major challenge 

to designers and end-users. Although many reliable damage detect methods in Structural 

Health Monitoring have been developed over the last few decades challenges still remain 

due to ageing (e.g. aircraft structures), limited access (e.g. offshore wind turbines), 

environmental/operational conditions, intermittent nature of damage and data ambiguity. 

For example, the main difficulty with the application of ultrasonic guided waves for 

damage detection in composite materials is that signal changes - produced by defects - 

tend to be small when compared with those obtained from other effects (e.g. structural 

features, environmental conditions, variable load) and so are difficult to detect reliably. 

Finding a non-classical or unconventional solution could help to overcome many 

problems and challenges in Structural Health Monitoring. Taking advantage of undesired 

phenomena (e.g. nonstationarity or nonlinearity) is one of the possible approaches. 

Looking outside boundaries is the second possible approach used to overcome difficult 

research problems. The ability to see the problem from a new research perspective is 

often fundamental to creating breakthroughs in engineering. The paper illustrates how 

these two non-classical approaches can be used for structural damage detection.  

The paper consists of three major parts. Section 2 demonstrates how the time-variant 

Frequency Response Function can be used to detect abrupt stiffness change in building 

structures. Examples of damage detection - based on non-classical nonlinear acoustics - 

are demonstrated in Section 3. The application of cointegration – originally developed in 

mailto:w.j.staszewski@agh.edu.pl
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econometrics – for the removal of undesired operational trends from damage detection 

data is presented in Section 4. Finally, the paper is concluded in Section 5. 

2. Detection of Abrupt Changes to Natural Frequencies of Structures 

Analysis of vibration and dynamic testing are two critical components of structural 

design. Traditional vibration analysis relies either on time-domain or frequency-domain 

approaches. Various methods have been developed for vibration analysis, e.g. [1-3]. 

Classical vibration analysis assumes that systems/structures are time-invariant, i.e. the 

output for such systems does not change with a delay in the input. However, this 

assumption is not valid for many engineering systems with time-variant (global or local) 

coefficients in the corresponding governing equations. Traditional concepts, analytic 

methods and experimental techniques of linear time-variant analysis cannot be applied to 

such systems since modal analysis has been developed for linear time-invariant systems 

and is not appropriate for time-variant systems. Conventional definitions of modal 

parameters are not valid for time-variant systems. Varying mass and/or stiffness leads 

inevitably to varying natural frequencies and mode shapes whereas system responses to 

harmonic excitations are non-stationary. Such systems do not have even impulse 

response functions in the classical sense. 

A new, non-adaptive concept of the Frequency Response Function (FRF) - based on 

wavelet analysis - for time variant systems was proposed in [4]. The classical input-

output relation was transformed to the wavelet domain to obtained the wavelet-based 

FRF as  

)]([

)]([
=),(

txW

tyW
baH

ψ

ψ

ψ  (1) 

where )]([ tyWψ  and )]([ txWψ  are the wavelet transforms of the output y(t) and input 

x(t), respectively. The interpretation of the method - based on the generalised wavelet 

convolution [5] - was proposed in [4]. Although the wavelet-based extension of the FRF 

is quite natural and relatively simple, the computation procedure is not as 

straightforward as Equation (1) implies. Additional data post-processing (i.e. time-

frequency domain averaging, ridge extraction, crazy climbers optimisation algorithm) 

needs to be used in practice in order to obtain the smooth estimate of H(a,b), as shown in 

[6]. The amplitude and phase of the new FRF can be analysed to identify time-variant 

systems [6] and/or detect abrupt changes to modal parameters [7]. The latter problem is 

relevant to damage detection since damage often results in local stiffness reduction, 

leading to the abrupt change of natural frequency. Detection of abrupt changes in natural 

frequencies from vibration responses of time-variant systems is a challenging task due to 

the complex nature of physics involved.  

The application of the wavelet-based FRF for structural damage detection can be 

illustrated using a simple example that involves vibration analysis of a three-floor 

building model. The building model – shown in Figure 1 - consists of three plates 

connected with four continuous vertical rods. The top plate is additionally connected to 

the middle plate by a taut string (without any slack) that has been cut in the experiment 
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to simulate an abrupt change of stiffness resulting from structural damage due to 

earthquake or landslide. 

 

 

Figure 1. Time-variant three-floor building model 

Firstly, the classical experimental analysis was used to analyse vibration of the structure. 

The random excitation and vibration response were Fourier-transformed to obtain the 

classical FRF for the undamaged and damaged structure. The results -presented in Figure 

2a- clearly show that the FRF changes once the structure is damaged. The snapped string 

leads to local stiffness reduction that results in the shift of one natural frequency. An 

additional mode can be also observed when the structure is damaged. Despite all these 

changes to the classical FRF, structural damage can be identified reliably only when the 

actual moment of abrupt change of stiffness can be detected. This is illustrated in Figure 

2b, where the magnitude of the wavelet-based FRF is presented. The application of the 

wavelet transform leads to the exact detection of time of the abrupt change of stiffness. 

The string is snapped after approximately 20 seconds when the experimental modal test 

is performed. This moment can be clearly identified in the magnitude and phase of the 

wavelet-based FRF. The magnitude of the wavelet-based FRF also exhibit the change of 

natural frequency and the extra vibration mode. 
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(a)                                                                 (b) 

   

Figure 2. Modal analysis for the three-floor building: (a) classical FRF magnitude for the 

undamaged (blue line) and damaged (red line) three-floor building; (b) wavelet-based 

FRF magnitude. 

3. Structural Damage Detection Using Non-Classical Nonlinear Acoustics 

Ultrasonic testing used for damage detection relies on linear phenomena of wave 

propagation (e.g. reflection, scattering). Recent years have shown a considerable growth 

of interest in nonlinear damage detection ultrasonic approaches. Damage-related 

nonlinear ultrasonic phenomena are quite sensitive but not easy when used for damage 

detection. This mainly due to the fact that nonlinearities may result not only from cracks 

but also from other non-damage related effects such as: friction between elements at 

structural joints or boundaries, overloads, material connections between transducers and 

monitored surfaces, electronics and instrumentation measurement chain. 

Nonlinear acoustics is particularly attractive to detect contact-type damage. This 

includes fatigue cracks in metals or delamination/debonding in composites. Nonlinear 

acoustics methods used for damage detection include classical and non-classical 

approaches. The former methods utilise higher harmonics generation or frequency 

shifting. These methods are well established and used for many years for material 

testing. The latter approaches are based on various recently developed non-classical 

nonlinear phenomena observed in materials. These methods use for example frequency 

mixing and various approaches based on wave modulation. Non-classical nonlinear 

phenomena are relatively weak in undamaged and remarkably strong in damage 

material. Physical mechanisms behind these phenomena are often complex and not easy 

to explain, as reviewed in [8].  
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The method based on vibro-acoustic wave modulation [9-11] is one of the most 

widely used non-classical techniques. When a monitored structure is excited modally 

(fL - low-frequency excitation), an ultrasonic wave (fH - high-frequency excitation) is 

introduced, as illustrated in Figure 3. Then ultrasonic responses are used for damage 

detection. Intact (or undamaged) structures exhibit mainly two frequency components 

associated with the high- and low-frequency excitations. In contrast damage (e.g. fatigue 

crack in metals or delamination in composites) leads to additional vibro-acoustic wave 

modulations that can be observed as a pattern of sidebands in ultrasonic response 

spectra. The frequencies of these additional sideband components are equal to 

LHs nfff
n

±=  (2) 

where n = 1,2,3, … . The presence of sidebands and their amplitude indicate possible 

damage and its severity, respectively. It is important to note that often modulation 

sidebands can be observed in undamaged specimen due to intrinsic (e.g. material) 

nonlinearities. However the amplitude of these sidebands increases significantly when 

damage is present in the structure. 

 

 

Figure 3. Nonlinear vibro-acoustic wave modulations used for damage detection 

The intensity of modulation R = (A1 + A2)/A0, where A1, A2 are the amplitudes of the 

first pair of sidebands and A0 is the amplitude of the carrier ultrasonic spectral 

component, can be used as a damage indicator. 

Figure 4 demonstrates the application example. An a rectangular (400×150×2 mm) 

aluminium plate was in the presented application, as shown in Figure 4a. Low-profile PI 

Ceramics PIC-155 piezoceramic transducers of diameter 10 mm and thickness 1 mm 

were surface-bonded to the plate and used for ultrasonic excitation and response 

measurement. A PI Ceramics PL-055.31 piezoceramic stack actuator (5 × 5 × 2 mm) 

was additionally bonded on the plate for low-frequency modal excitation. Once the plate 

was modally excited with the frequency equal to 625 Hz (corresponding to one of the 

strongest 10th vibration mode), an ultrasonic wave of 60 kHz frequency was introduced 
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to the plate. Figure 4b shows the ultrasonic response spectra for the intact (upper part) 

and cracked (lower part) plate. A clear pattern of modulation sidebands can be observed 

when the plate is damaged (11 mm fatigue crack). The intensity of modulation R, 

defined above, can be used to investigate the severity of damage, as illustrated in [9-11]. 

(a)                                                      (b) 
 

   

Figure 4. Nonlinear acoustics used for fatigue crack detection: (a) aluminium specimen 

instrumented with low-profile, surface-bonded piezoceramic transducers; (b) damage 

detection results for the intact (upper part) and cracked (lower part) plate.  

Damage location is one of the major problems when non-classical nonlinear acoustics is 

used to monitor structures. However, recent studies in [12] demonstrated that modulation 

sidebands can be used not only to reveal damage or assess its intensity but also to locate 

damage. An example of damage location based on nonlinear acoustics is illustrated in 

Figure 5. A rectangular (300×150×2 mm) composite plate (carbon/epoxy prepreg) was 

impacted in the centre. The impact energy was equal to 3.9 J. The Monit SHM 

vibrothermographic system with the 35 kHz ultrasonic excitation column – was used to 

reveal butterfly-like delamination in the plate, after impact (Figure 5a). Following these 

investigations, a non-classical nonlinear acoustic test was performed. Low-profile, 

surface bonded transducers were used again for low- and high-frequency excitations. 

Once the plate was excited, ultrasonic responses were gathered The plate was scanned 
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using a 3-D laser vibrometer to analyse sideband amplitudes at various positions. The 

intensity of modulation R was calculated to reveal the same delamination in Figure 5b.  

A new damage detection method was proposed recently in [13] to combine damage 

location capability offered by Lamb waves and damage sensitivity offered by nonlinear 

acoustics. Lamb waves are guided plate waves that are widely used for inspecting large 

areas of structure to reveal damage. 

(a)                                                              (b) 

  

Figure 5. Impact damage detection in composites using. Delamination after 3.9 J impact 

revealed by: (a) vibrothermography; (b) nonlinear acoustics. 

Fatigue testing was used to introduce a crack in the mid span of an 300×20×10 mm 

aluminium beam (Figure 6). A guided ultrasonic wave (150 kHz) was introduced to the 

beam when the structure was modally excited (harmonic sinusoidal 10 Hz excitation). 

Then ultrasonic responses were gathered for two different scenarios of low-frequency 

excitation, i.e. when the beam was not excited modally and when the beam was excited 

with the maximum modal amplitude. This measurements were gathered for various 

positions on the surface of the beam using a 3-D scanning laser vibrometer. Then 

Ultrasonic responses were band-pass filtered, and their difference was calculated. The 

RMS values for different measurements are shown in Figure 7, were B-scan 

(measurements for various positions vs. time) are presented for the intact and cracked 

beam. The crack is clearly revealed by the increased amplitude of the analysed image 

(150 mm from the edge of the beam) in Figure 7b. 
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1 mm

 

Figure 6. Fatigue crack in an aluminium beam 

(a)                                                    (b) 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. B-scans for the difference signals gathered in the non-linear acoustic test:  

(a) intact beam; (b) cracked beam  

4. Structural Damage Detection Using Non-Classical Nonlinear Acoustics 

It is well known that sensor data often needs to be processed and refined before any 

analysis that can reveal structural damage. Various undesired features – such as noise -

are removed from the data. Data drifts, outliers and trends are common undesired non-
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stationarities. Low-frequency drifts can be removed relatively easy using statistical 

regression. Unknown trends - caused for example by environmental and operational 

conditions - are very difficult to remove. These trends often mask damage-related 

features in analysed signals. For example., it is well known Lamb wave responses - used 

monitored structures - can be severely affected by temperature changes. Since the 

majority of Lamb wave based damage detection procedures rely on baseline 

measurements it is very difficult to find whether signal changes are caused by damage or 

by temperature. Therefore, compensation for trends - caused for example by temperature 

or load variation is important to develop methods that are sensitive only to damage but 

insensitive to other effects. 

Various approaches can be used to compensate for undesired effects in the data. The 

method of cointegration – developed originally from the field of econometrics [14] – has 

been applied recently in structural damage detection for the removal of undesired 

environmental and operational effects. temperature effect from bridge vibration data and 

Lamb wave responses [15-16]. The major idea used in these investigations is based on 

the concept of stationarity. Time series are considered to be co-integrated if they are 

themselves non-stationary but their linear combinations are stationary. The method 

assumes that it is possible for a linear combination of a set of (non-stationary) variables 

to be stationary if these (non-stationary) variables are integrated of the same order and 

share common trends. In this context, these variables are said to be co-integrated. 

Monitored variables are cointegrated to create a cointegrating residual whose stationarity 

represents normal condition. Then any departure from stationarity can indicate that 

monitored structures no longer operate under normal condition. More details about this 

mathematical procedure can be found in [16]. 

Following the work presented in [16] this section shows an example demonstrating 

how damage detection can be performed using Lamb wave data corrupted by trends due 

to temperature. Lamb wave responses were gathered from an aluminium plate with a 

seeded damage. The seeded damage was a 1 mm hole drilled in the middle of the plate. 

The plate was exposed to various temperatures in the range between 35 and 700C. This 

was sufficient to corrupt the data, so the effects of damage and temperature on Lamb 

wave responses were undistinguishable. The cointegration procedure was then applied to 

the corrupted data to obtain the residual vectors. The residual vectors were wavelet-

transformed – using the orthogonal wavelet transformed – and the variance of wavelet 

coefficients were calculated. Figure 8 shows result, where the logarithmic wavelet 

variance for various wavelet levels is presented for the first three residual vectors of data 

after cointegration. The results in Figure 8a – for the undamaged plate – exhibit self-

similarity through linear variance characteristics. This pattern is broken due to damage in 

Figure 8b. The temperature trend was removed from the data leaving the nonstationarity 

related to damage. 
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     (a) 

 

 

               (b) 

 

Figure 8. Wavelet variance characteristics calculated from the first three cointegration 

residuals from Lamb wave data for: (a) intact plate; (b) damaged plate 

5. Conclusions  

The paper has demonstrated how unconventional modal analysis (wavelet-based FRF), 

undesired effects (nonlinear phenomena in ultrasonic data) and methods originally 

developed in other research fields can be applied successfully for structural damage 

detection. damage detection. Various examples related to structural stiffness reduction, 

crack detection, impact damage detection have been presented to illustrate that non-

classical approaches can often solve damage detection problems for which classical 

solutions are difficult or impossible. It is anticipated that the work presented will 

stimulate more research in this area. 
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Abstract 

Owing to the specificity of the experimental tests conducted in impact biomechanics, whose subjects are 

volunteers, cadavers or animals, ethical and legal aspects are just as formidable as the restrictions of 'technical 
nature'. The first part of the paper presents fundamental ethical principles, universally accepted by the 

international community, which must be followed in the course of conducting biomedical experimental tests 
(including those that fall under the category of impact biomechanics). The second part is a presentation of the 

preparation (e.g. to install a great number of measurement sensors, necessary for collection of as much data as 

possible regarding the behaviour of individual body parts under impact load) and course of experimental tests 
in which human cadavers were subjected to different loading scenarios of the thorax. The purpose of these tests 

was to identify the parameters and to validate an advanced simulation model of the human thorax developed 

within the THOMO project. 

 

Keywords: impact biomechanics, ethical and legal aspects, human cadavers, experimental works 

 

1. Introduction 

Impact biomechanics is a field of research dedicated to the examination of phenomena 

that occur in the bodies of humans (or animals), especially in their musculoskeletal and 

circulatory systems, as well as in their internal organs, under conditions of loading 

characterized by short time of duration (usually of few/few tens of milliseconds) and 

very high amplitudes (such as acceleration reaching few tens/few hundred times the 

gravitational acceleration). 

Experimental tests constitute an important element of the cognitive process in 

science. This applies also to biomechanics of the human body, including impact 

biomechanics. However, the specificity of the issues that are investigated by impact 

biomechanics places certain limitations on the options of experimental tests. This 

especially concerns tests with the participation of volunteers. In this case, tests 

conducted under conditions closely imitating real-life incidents could potentially lead to 

severe injuries or even death. 

For this reason, experimental tests in impact biomechanics resemble puzzle pieces –

tests avail themselves of both volunteers, animals and post-mortem human subjects 

(PMHS) that complement each other. 

Computer modelling methods, whose rapid advancement is observed in parallel with 

the increasing computing power of computers and development of specialized software, 

play an important role as regards correct interpretation and generalization of results 

obtained from such experimental testing. 
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Owing to the specificity of these tests, whose subjects are volunteers, cadavers or 

animals, ethical and legal aspects are just as formidable as the restrictions of 'technical 

nature'. 

2. Ethical and legal aspects of conducting experimental research with the 

participation of volunteers and with the use of cadavers/biological material 

The use of human cadavers or segments/tissues extracted from them in experimental 

tests raises particularly heated controversies. For moral, ethical and religious reasons, 

some parts of the public opinion (these parts vary in size depending on the 

country/cultural circle/religion/...) are convinced that the use of human cadavers (PMHS 

– Post-mortem Human Subjects) in biomechanics research, including for the purpose of 

enhancing traffic safety, should not be taking place. 

This belief is often supported by the message sent out by the mass media, which tend 

to purport that dummies and computer models are sufficient to conduct research on 

systems designed to improve vehicle safety. This is not true – both dummies and 

computer models (despite the very rapid advancements in the field of modelling over the 

recent years) are still far from perfect. 

Of pivotal significance is the improvement of biofidelity of dummies and computer 

models. This requires tests with the use of PMHS in order to collect data regarding 

properties of tissues, of the mechanisms of their injuries, as well as the global responses 

of human bodies, indispensable for their validation. 

The use of human cadavers is not only one of the methods of researching crash 

impact on the injuries of accident victims, but also one of the most important ones. In 

1995, King and Viano [1] estimated the number of survivors attributable to the 

development of safety engineering and they compared this number with the number of 

PMHS used in biomechanics testing. They have calculated that each PMHS employed in 

research on the improvement of safety has saved the lives of over 60 people. 

Two documents contain a collection of fundamental ethical principles, universally 

accepted by the international community, which must be followed in the course of 

conducting biomedical experimental tests (including those that fall under the category of 

impact biomechanics): The Nuremberg Code (1946) [2]and the Declaration of Helsinki 

(1946, as subsequently amended) [3]. 

The provisions laid down in these documents have been introduced, directly or 

following relevant adaptations, to the national legislation all over the world. 

The above-mentioned documents do not deal directly with the use of cadavers in 

scientific research, but they do not contain prohibition of such research, either. Given the 

absence of other legal regulations, it is assumed that they may be expanded to include 

research with the use of human corps. 

The first of the foregoing document, released in 1946 as a result of the Nuremberg 

Trials in response to information about the criminal medical experiments conducted on 

prisoners of Nazi concentration camps, sets out what may be referred to as the decalogue 

(formulated in 10 points) establishing the fundamental principles of conducting 

(generally speaking) medical experiments on human subjects. 
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Particular focus, in the form of an extensive commentary, has been placed on its first 

point: "The voluntary consent of the human subject is absolutely essential". 

This provision – of pivotal significance in 1946, that is shortly following the plight of 

prisoners of WWII concentration camps – still holds as the central tenet. 

The second of these documents (Declaration of Helsinki), repeatedly amended by 

experts connected to the Council for International Organizations of Medical Sciences 

(CIOMS), in collaboration with the World Health Organization (WHO), upholds all the 

vital principles set out in the Nuremberg Code, expanding its scope to cover purely 

medical research associated with the introduction of new medications and medical 

procedures. It also offers interpretations and clarifications of the Nuremberg principles. 

An important new element, formulated in Guideline 2: Ethical Review Committees, is the 

requirement to conduct all research whose subjects are human beings under the close 

supervision of an appropriate ethical committee/commission. 

Human cadavers are only used for biomechanics research in a small number of 

countries. This is owing to a number of reasons. In some countries, such research is 

prohibited by law or by religious principles; in others, they are not conducted due to the 

pressure exerted by the public opinion. 

Everywhere where such research is allowed, it is subject to tight supervision and 

conducted with observance of established rules [4, 5]. 

In France, the Bioethics Law no. 94-654 of 29 July 1994 concerns the extraction of 

organs for diagnostics, transplantation or other scientific purposes. It is presumed that, 

unless otherwise stated, organs may be used for transplantation. 

On the other hand, if a body or its individual organs are to be used for purposes other 

than transplantation or establishment of the causes of death, a relevant consent must be 

signed and pre-registered (body donation programme). 

If the deceased had previously signed consent for the donation of his body for 

research, his family may not object to this. If the will of the deceased is not known, the 

decision is made by the family. 

In Germany, use of bodies is subject to the law on organ transplantation, even though 

this piece of legislation does not make any explicit stipulations about whole-body 

donations. 

A part of the PMHS comes from people who had signed a relevant agreement, 

establishing the scope of purposes for which their bodies may be used after their death. 

However, in the majority of cases, members of the closest family of the deceased are 

asked for consent to donate bodies for biomechanics research (this consent must be 

expressed in writing). Prior to signing, they are informed of the type of load that will 

impact the body, the expected type and gravity of injury, the type of autopsy which will 

be carried out, and of the collection and keeping of samples for further testing. 

As for the United States, there exists the obstacle of mutually exclusive acts of law, 

as well as of differences between states. 

The violation of bodily integrity (profanation) is prohibited. 

In some states, body donation for scientific purposes is allowed, yet under various 

conditions. In some cases, consent to such donation must be registered prior to death, 

while the family may still object to it. 
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In other states, such consent may not be expressed prior to death. It is only after a 

person has passed away that their family may agree to the use of the body for scientific 

purposes. 

Scientific activities in the area of impact biomechanics is regulated by detailed 

provisions of law (such as NHTSA Orders 700-3 and 700-4). 

In the United States, there are a few places where PMHS research is conducted. Each 

of these places has their own, strict protocol to be followed. Below are the basic 

principles in place at one of the Laboratories in the USA. 

This particular state has a body donation programme – interested parties sign consent 

for their bodies to be used for scientific purposes following their death. 

Additional consent is necessary for civil-purposes crash tests. 

Another consent must be expressed for military-purposes crash tests. 

After death, and upon verification of the scope of consent granted by the given 

person, the coroner/another authorized institution, forwards the information to the 

Laboratory, and enquires whether they are interested in such particular body. 

If so, the Laboratory contacts the closest family members (if possible) and asks 

whether they agree to the use of the body in the planned tests. The family receives 

general information only, no specific descriptions of the tests are provided. 

If the family's answer is NO (regardless of the consent given by the deceased), the 

Laboratory withdraws from taking over the body. 

If the answer is YES, the body undergoes medical tests (carriage of determined 

viruses, CT scans, etc.) and, based on the results, it either qualifies to be used in given 

tests (recorded in the database and placed in a freezer), or is returned. 

Prior to the test, a protocol outlining in detail how the body is to be handled, as well 

as a thorough description of tests to be conducted, is presented to a specially committee. 

During these tests, each of the Laboratory employees must follow the internal 

protocol regarding tests involving biological material (special outfits, covering the face 

of the deceased, etc.). 

In each test, great emphasis is placed on the proper collection, recording and storing 

of the greatest amount of data possible, both for ongoing and future research, so as to 

ensure that each test with the use of PMHS renders as much information as possible. 

Following the tests, the whole body or its individual segments/tissues may be re-

used. 

If the body/segments can no longer be used, they are returned to the family (if the 

family wishes to have it returned), or cremated. Once a year, the Laboratory organizes a 

scattering ashes ceremony, of which families are also notified. 

 

To sum up: 

 Tests with the use of PMHS are an important source of data indispensable for 

getting to know the mechanisms of how human bodies are injured when subjected 

to impact loads, which is the necessary condition for further progress in 

preventing injuries that result from, among others, traffic accidents. 
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 In order to minimize the critical attitude of some portions of the public opinion 

toward such research, it must be conducted with observance of ethical principles 

and in strict conformity with the provisions of law in the each country. 

 Ethical Committees, responsible for adopting the test scopes and protocols, as 

well as for the oversight of these tests, have an important role to fulfil in this 

respect. 

 It is necessary to improve the collection of test results and make them available to 

all interested science centers in order to avoid repetitions, and to ensure the 

fulfilment of the principle that guides those willing to donate their body after 

death to science: donation for science = donation for the humanity. 

3. An example of experimental tests with the purpose of identification of 

parameters and validation of an advanced model of human thorax 

What follows is a presentation of the preparation and course of experimental tests in 

which human cadavers were subjected to impact loads. The purpose of these tests was to 

identify the parameters and to validate an advanced simulation model developed within 

the THOMO project [7, 8]. 

THOMO project (Development of a Finite Element Model of the Human Thorax and 

Upper Extremities), was carried out under FP7 of the European Community (contract 

number: SCP7-GA-2008-218643), in the period from 2009.01.01 to 2012.10.30, by an 

international consortium which included 4 research teams: CEESAR – Centre 

Européend’Etudes de Sécurité et d’Analyse des Risques (Nanterre, France), UVHC –

Université de Valenciennes et du Hainaut Cambrésis (Valenciennes, France), UWB – 

University of West Bohemia (Plzen, Czech Republic) and the Institute of Aeronautics 

and Applied Mechanics of the Warsaw University of Technology– Virtual Safety 

Engineering and Biomechanics Laboratory (ViSEB). CEESAR was the project 

coordinator. 

THOMO aimed to develop new, greatly improved models of the human thorax with 

upper extremities, both 'standard' (5th, 50th and 95th percentile) and 'personalized' (for 

any type of body build). 

The developed models should ensure appropriate (stable, resilient to changes of 

parameters, natural for biological systems and with proper biofidelity properties) 

behaviour of solutions during simulation tests with their use (the problem of 3-R: Rating, 

Reliability, Robustness [6]). 

The complicated structure of the thorax model was described with ca. 400 thousand 

elements, which allowed for a detailed modelling of the thorax anatomy, accounting for 

many different muscle groups, bones, main blood vessels, etc., as well as for the 

interactions between them and the varied material properties. 

The method used was the Finite Element Method (FEM), implemented in the 

LS-DYNA package. 

Already at the initial stage of drafting the project application, cooperation was 

initiated with the Global Human Body Model Consortium (GHBMC). This was 

facilitated by a research group from University of Virginia (USA), which acts as the 

centre of expertise of GHBMC for the thorax and upper extremities. This cooperation 
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made it possible to exchange data and information about test results and updates 

introduced based on them, as well as about the research methods used/developed. 

Results of the THOMO project were implemented in the final human body model 

developed by GHBMC. The employment of such an advanced model by the automotive 

industry and by research centres which work for it, including academic centres, should 

facilitate the design of increasingly safe vehicles, thus reducing the number of traffic 

accident injuries, especially serious ones, and deaths. 

Two basic research directions were pursued under the THOMO project – 

experimental tests and computer modelling works. 

The experimental tests were carried out by French teams: CEESAR (primarily crash 

tests with the use of whole-body cadavers) and UVHC (research over selected 

anatomical structures). 

This latter research direction focused on the development of simulation computer 

models (reference 50th percentile model and scaled 5th and 95th percentile models, as 

well as 'personalized' models). A research group from the ViSEB Laboratory at the 

Warsaw University of Technology participated in these works (among others, they have 

developed an effective method of scaling and personalization), as well as groups from 

UWB and CEESAR. Proper scaling is a particularly important issue in the case of 

building models of children's bodies. Owing to the virtually complete absence of 

experimental tests with the use of paediatric PMHS, such models are usually developed 

based on scaling adult body models (usually of the 5th percentile). 

The experimental stage comprised 18 crash tests conducted with the use of both male 

and female bodies. The tests were designed specifically for the needs of this project. 

Different loading scenarios of the thorax were tested. 

 

Figure 1. Cadaver ready for the test – side impact onto thorax 
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Particular attention has been paid to preparing the cadavers for the tests (Figure 1). 

One important element was to install a great number of measurement 

sensors/instruments, necessary for collection of as much data as possible regarding the 

behaviour of individual body parts under impact load. 

In order to obtain proper rib strain profiles, over 100 strain gauges (Figure 2) were 

attached to the ribs and sternum. Accelerometers were also fixed onto the vertebrae T1, 

T4, T12 and onto the sternum. Pressure transducers were installed in the aorta, pleurae, 

inferior vena cava, trachea, and stomach in order to analyze the pressure wave 

transmission through the different organs. 

 

Figure 2. Visualization of the thorax bones, with location of the strain gauges to register 

strain during crash 

Besides the crash tests, also tests regarding ribcage shape and material properties 

played an important role. In order to obtain correct geometrical data, important from the 

point of view of durability of the ribcage which protects internal organs, a multistep 

procedure of scanning thoracic skeleton (Figure 3) was used, with particular focus on the 

ribs. This has allowed for identification of both differences between individual ribs, as 

well as of the change of shape (including the change of the cortical bone cross-section 

area, particularly significant for evaluating the durability) along individual ribs. 

The first task was to image the entire thorax with the use of typical computer 

tomography. Next, external surfaces of individual bones were scanned with the use of a 

laser 3D scanner. The next step was to cut the examined ribs into segments with a length 

of 3.5 cm and to scan each segment with the use of micro-CT scanning (CT), which 

provides much higher resolution of the obtained images. Based on the micro-CT 

scanning data, detailed geometrical models were developed, which included both 

internal and external surfaces and the boundary of the cortical bone, which allowed for, 

among others, finding characteristics that describe the changing cortical bone cross-

section area along individual ribs. 
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Figure 3. The three-step process of collecting geometrical data of the thorax bones 

Information on the external geometry of individual ribs, previously collected with the 

use of a laser scanner, as well as CT images of the whole thorax, rendered it possible to 

put together accurate geometrical data for specific segments into a single model of the 

thoracic skeleton. 

 

Figure 4. An example of a fifth rib strain profile for the reference model, developed as 

a result of simulation with the use of the reference model, with side impact, at the 

moment of maximum ribcage deflection 



Vibrations in Physical Systems Vol. 27 (2016) 33 

In order to verify the correctness of computer modelling of the consequences of injuries 

caused by impact with the amplitude and character typical of traffic accidents, it was 

important to conduct comparative analyses of the strain profiles and fields in ribs. They 

were identified in experimental tests with cadavers. Strain gauges had been fixed onto 

their ribs (Figure 2) and individual experiments were simulated on the computer. The 

conformity levels have been found satisfactory (Figure 4). The broken lines show the 

corridor built on the basis of experimental tests conducted under the THOMO project. 

4. Conclusions 

Based on many years of experience, I can state that:  

 The future of research on impact biomechanics and its practical applications rest 

mainly on virtual methods (based on computer models of the human body). 

 Owing to significant limitations, the role of experimental tests will increasingly 

boil down to identification of parameters and validation of virtual models. 

However, for many years to come, these tests will continue to serve as a very 

important source of information. 

 Owing to the number and complex nature of the problems (medical, ethical, legal, 

biomechanical, numerical, equipment-related, etc.), which must be solved in 

order to develop improved virtual models representing the behaviour of human 

body under load impact, at a degree enabling reliable assessment of injury risk, 

works conducted by large interdisciplinary teams are much more likely to 

succeed, as they combine the necessary experience, computing, experimental, 

human and financial resources. This is the case of the GHBMC project, for 

example. 
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Abstract 

In this paper the numerical studies of parametric resonance phenomenon in vibrating screen are presented. 

Numerical simulations are performed in Ansys Workbench software. Modal analysis is carried out to find the 
natural frequencies and mode shapes of the sieve. The effect of the excitation frequency on the sieve vibrations 

in parametric resonance conditions was investigated using the transient analysis. The comparison of numerical 

and experimental results is presented. It is shown, that two mode shapes of sieve vibrations occur close to the 

screen operation frequency. Linear dependence between excitation frequency and sieve vibration frequency is 

obtained. The most stable transient response and the highest vibration amplitude of the sieve is obtained for 

excitation frequency 47.07 Hz. The range of excitation of parametric resonance is nearly the same as for 
experimental data. 

 

Keywords: screen, parametric resonance, forced vibrations 

 

1. Introduction 

Screening operations are very important part of processing mineral materials. Screens 

are fundamental instrumentation for minerals separation in order to produce final 

mineral products for customers. Vibrating screens are one of the most extensively used 

tools in screening processes. Rapid evolution of vibrating screens occurred in 19th and 

20th centuries. Nowadays the level of screens development is stabilized and machine 

building companies often produce similar screens, and their construction differs in 

details [10]. 

The screening process of the naturally wet mineral materials is generally more 

difficult in comparison to screening of the dry mineral materials. Here, particles of the 

material combine to form aggregates, that significantly increase the time of the screening 

process [11]. Therefore, the water supply need to be applied for material particles 

disintegration. The other solution of this problem is to generate high impact energy by 

increasing vibration amplitude, that can crush glutted grains of material and degrease 

adhesion forces between the material and the sieve. The large mass of the conventional 

screens connected with large amplitude vibration results in reduced life of a machine and 
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increases the energy consumption [9]. Exciting of sieve parametric vibrations in the 

screen results in the large amplitude vibrations with relatively low energy consumption 

and can be suitable for screening wet materials. 

The first screen with parametrically excited sieve was designed by Slepyan et al. [5]. 

They also found the mathematical model of the simplified vibrating screen system, 

where the sieve is modelled as a string connected with two masses [6-7]. The dynamic 

analysis of vibrating screen was presented in work [1]. The analytical and numerical 

methods were used to find the sieve natural frequencies and mode shapes. In work [2] 

the experimental analysis of vibrating screen operation in parametric resonance 

conditions was presented. In this paper the full plate was used instead of the perforated 

sieve. Complex dynamic analysis of the large vibrating screen was presented by Zhao et 

al. [12]. They found optimal dynamic design of the screen by performing structural 

optimization. Li and Song [4, 8] presented the dynamic analysis of chaotic vibrating 

screen. Another dynamic analysis of vibrating screen with variable elliptical trace was 

presented by He and Liu [3]. They analyzed characteristics of the screen by applying 

multi-degree-of-freedom theory. The kinematic parameters for different motion traces 

were also determined. 

The present paper concerns the dynamic analysis of vibrating screen system with 

parametrically excited sieve. Numerical simulations were performed to find the effect of 

excitation frequency on sieve parametric oscillations. 

2. Numerical modelling of parametric resonance screen system 

As shown in Fig. 1 the model of parametric resonance screen system was prepared 

according to laboratory parametric resonance screen in Ansys Workbench software [2]. 

It is simplified to two beams, that are connected with a sieve (plate with rectangular cut-

outs). The sieve is fixed inside the beams between the rubber pads. The whole system is 

suspended by springs with stiffness k equal to 275 N/mm and preload equal to quarter of 

sieve preload - Ft/4. 

 

Figure 1. The simplified screen system prepared in Ansys Workbench Design Modeler 

The material models of all components was assumed as elastic. In the model, density 

of external vibrators mounting plates was increased to compensate a mass of electrical 
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vibrators. Contact in the whole model is defined as bonded, except the interactions 

between the rounded part of the rubber pads and the sieve, where frictionless contact was 

applied. The finite element model is composed of 131 990 elements. The sieve is 

modeled by using 4-nodes shell elements. For the beams and the rubber pads meshing 

the 3-dimentional 20-nodes hexahedron elements and 10-nodes tetrahedron elements 

were used. 

Three steps of numerical analysis were performed in Ansys Workbench software to 

find the dynamic response of the screen system. In the first step the static structural 

analysis was carried out in order to apply the sieve preload (Ft) with value 1000 N. For 

this tension value the natural frequency of the screen system is close to 25 Hz, what was 

verified experimentally. Then the modal analysis was realized to obtain the natural 

frequencies of the screen. Afterwards the transient analysis was performed. The time of 

the analysis equal to 0.4 s was established. This is the minimal time, where the sieve 

vibrations is being stabilized. Two sinusoidal phase shifted forces (F1 and F2) were 

applied to the beams to simulate the excitation force, which in the real model is 

generated by rotating eccentric masses (Fig. 1). Excitation frequencies, close to double 

natural frequency of the screen system were applied with different excitation forces that 

correspond to the parameters from laboratory parametric resonance screen (Table 1). 

Table 1. Excitation parameters used in transient analysis 

Excitation frequency, Hz Magnitude of excitation force, N Sieve preload, N 

41.23 833.6 1000 

43.7 936.1 1000 

47.07 1086.4 1000 

51.13 1282.2 1000 

55.82 1528.1 1000 

58.74 1692 1000 
 

3. Results and discussion  

Two vibration mode shapes occurred close to the screen operation frequency equal to 

25 Hz (Fig. 2). The first mode - one side sieve bending, is determined for the natural 

frequency equal to 25.564 Hz, while the second mode - double side sieve bending is 

observed for the frequency value of 25.607 Hz. These very close natural frequencies 

may cause appearance of different mode shapes and lead to unstable vibration amplitude 

level during the screen operation. 

Screen system excitation with frequency close to double natural frequency of the 

system results in fast vibration amplitude grow (Fig. 3). This phenomenon is observed 

for all respected cases of excitation frequencies. The most stable transient response of 

the sieve is obtained for excitation frequency 47.07 Hz. This value is lower than double 

natural frequency of the screen system obtained in the modal analysis. This is the effect 

of numerical dumping, which is applied in Ansys Workbench during the problem 

solving. Numerical dumping eliminates the high frequency modes and stabilizes the 

numerical integration schemes, but it also affects in lower modes. For all values of 

excitation force, except 47.07 Hz and 58.74 Hz, the beat phenomenon is observed. 
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Vibration excitation with a frequency of 58.74 Hz is characterized by unstable sieve 

motion and the lowest amplitude. Therefore, to obtain stable sieve motion the excitation 

frequency need to be very close to double natural frequency of the system. The first 

vibration mode shape is observed for all cases, even when additional loads on the sieve 

surface were applied to excite the second mode. 

 

Figure 2. Free vibrations mode shapes of screen system: a) first mode; b) second mode 

 

 

Figure 3. Transient response of the sieve for excitation frequency: 51.13 Hz 

The effect of excitation frequency on sieve vibration frequency is presented in Fig. 4. 

The value of vibration frequency increased with the excitation frequency level. This 

dependence is nearly linear. The linear character of these relations is confirmed 

experimentally.  

The value of excitation frequency has a significant impact on sieve vibration 

amplitude (Fig. 5). The vibration amplitude increases together with an increase of 

excitation frequency level, until its maximal value is obtained. This takes place when the 

excitation frequency is equal to 47.07 Hz. Further increasing of the excitation frequency 

results in amplitude decrease. The range of the excitation frequency, where the 

parametric resonance was observed, is nearly the same for both numerical and 

experimental data. However, the maximum value of vibration amplitude obtained 

numerically is almost two times larger than in the experiment. Moreover, the amplitude 

value in a function of excitation force from experimental data exhibits two local 

maximums, what cannot be observed in the numerical analysis. This could be the 

 

a) b) 
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structural damping effect, which was not taken into consideration in the numerical 

analysis. 

 

Figure 4. Effect of excitation force on sieve vibration frequency 

 

Figure 5. Effect of excitation force on sieve vibration amplitude for different excitation 

frequencies 

4. Conclusions  

Two vibration mode shapes occurred close to the screen operation frequency - one side 

bending and double side bending. This may cause appearance of different mode shapes 

and lead to unstable vibration amplitude level during the screen operation. 

The value of vibration frequency increased with the excitation frequency level. The 

linear character of this dependence is observed in both numerical and experimental 

results. 

The most stable transient response and the highest vibration amplitude of the sieve is 

obtained for the excitation frequency of 47.07 Hz. The range of excitation of parametric 

resonance is nearly the same as for experimental data. Differences of the amplitude level 
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between numerical and experimental results are observed. It is an effect of damping, 

which is not considered in the numerical simulation. 

Acknowledgments 

This work was supported by the European Research Agency - 7th FP PEOPLE 

PROGRAMME Marie Curie Industry-Academia Partnerships and Pathways, grant 

agreement No. 284544 

References 

1. Ł. Bąk, S. Noga, A. Skrzat, F. Stachowicz, Dynamic analysis of vibrating screener 

system, Journal of Physics: Conference Series, 451 (2013), article No. 012028. 

2. Ł. Bąk, S. Noga, F. Stachowicz, The Experimental Investigation Of The Screen 

Operation In The Parametric Resonance Conditions, Acta Mechanica et 

Automatica, 9(4) (2015). 

3. X.-M. He, Ch.-S. Liu, Dynamics and screening characteristics of vibrating screen 

with variable eliptical trace, Mining Science and Technology, 19 (2009) 

0508 – 0513. 

4. Z. Li, Chaotic vibration sieve, Mechanism and Maschine Theory, 30 (1995) 

613 – 618. 

5. V. I. Slepyan, I. G. Loginov, L. I. Slepyan, The method of resonance excitation of a 

vibrating sieve and the vibrating screen for its implementation, Ukrainian patent on 

invention no. 87369, 2009. 

6. L. I. Slepyan, V. I. Slepyan, Modeling of parametrically excited vibrating, Journal 

of Physics: Conference Series, 451 (2013), article No. 012026. 

7. L. I. Slepyan, V. I. Slepyan, Coupled mode parametric resonance in a vibrating 

screen model, Mechanical Systems and Signal Processing, 43 (2014) 295 – 304. 

8. Y. Song, X.-H. Jiang, J. Song, J.-X. Zhang, Dynamic analysis of a chaotic vibrating 

screen, Procedia Earth and Planetary Science, 1 (2009) 1525 – 1531. 

9. K. Sztaba, Screening, ŚWT, Katowice 1993 (in Polish). 

10. P. Wodziński, Screens - classification and systematic single-plane screens, 

Physicochemical Problems of Mineral Processing, 41 (2007) 237 – 249. 

11. P. Wodziński, Screens and screening, WPŁ, Łódź 1997 (in Polish). 

12. Y.-M. Zhao, Ch.-S. Liu, X.-M. He, Ch.-Y. Zhang, Y.-B. Wang, Z.-T. Ren, Dynamic 

design theory and application of large vibrating screen, Procedia Earth and 

Planetary Science, 1 (2009) 776 – 784. 

 



Vibrations in Physical Systems Vol. 27 (2016) 

Effect of Exciting Force Amplitude on Occurrence of 

Parametric Resonance Phenomenon in Vibrating Screen 

Łukasz BĄK 

Department of Materials Forming and Processing, Rzeszow University of Technology 

Al. Powstańców Warszawy 12, 35-959 Rzeszów, lbak@prz.edu.pl 

Feliks STACHOWICZ 

Department of Materials Forming and Processing, Rzeszow University of Technology 

Al. Powstańców Warszawy 12, 35-959 Rzeszów, stafel@prz.edu.pl 

Stanisław NOGA 

Department of Mechanical Engineering, Rzeszow University of Technology 

Al. Powstańców Warszawy 12, 35-959 Rzeszów, noga@prz.edu.pl 

Andrzej SKRZAT 

Department of Materials Forming and Processing, Rzeszow University of Technology 

Al. Powstańców Warszawy 12, 35-959 Rzeszów, askrzat@prz.edu.pl 

Abstract 

The paper considers the effect of exciting force amplitude on occurrence of parametric resonance phenomenon 

in vibrating screens by using experimental methods. The measuring test is performed for three cases of 

excitation force levels. For each force level sieve parametric vibrations are excited by using proper excitation 
frequency. It is shown that an increase of the excitation force results in an increase in the sieve vibration 

amplitude. The dependence between excitation force and sieve parametric vibrations is nonlinear. The value of 

excitation force has an effect on the sieve vibration mode shape. Two vibration mode shapes are detected. It is 
found that the excitation frequency influenced the vibration amplitude. An increase of sieve preload has no 

effect on the amplitude level, however it results in an increase of the sieve vibration frequency. 

 

Keywords: vibrating screen, parametric resonance, natural frequencies  

 

1. Introduction 

In many physical, engineering, electrical and biological systems appearance of 

parametric resonance in the system is of great interest. Parametric oscillations are the 

case of system oscillatory motion caused due to time varying (periodic) parameters of 

the system. These parameters can be stiffness or inertia. Parametric resonance appears 

when the external excitation is equal to integral multiple of natural frequency of the 

system. Parametric oscillations for the first time were described by Hill and Mathieu. 

They elaborated the fundamental theory related to parametric resonance phenomenon (so 

called Hill's and Mathieu equations). The problem of parametric oscillations was 

investigated in numerous researches. Many of them are connected with simple structures 

(e.g. beams or rods) [4, 5, 7, 12]. Bolotin [4] well documented the elementary problems 

of parametric instability in elastic systems. He also described the damping influence on 

the regions of stability. Parametric oscillations of preloaded Bernoulli beam with 
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constant transverse load was presented by Osiński [7]. In this research he also considered 

the case of the beam with periodically changing length. For analysis of parametric 

vibrations of the beam system, Hagedorn and Koval [5] considered Timoshenko theory. 

In work of Yang and Chen [12] parametric stability is presented for the beam with 

periodical axial load. They considered Newton’s second law and Boltzmann 

superposition theorem. A lot of authors have studied the parametric resonance problems 

for plates and cylindrical shapes by using both analytical and numerical methods. 

Nguyen [6] presents the parametric resonance problem in simply-supported plate with 

parametric excitation. In this paper Karman large deflection theory and governing 

equation are considered. For computation of finite element discretization method is 

proposed. Dynamic stability analysis of axially moving viscoelastic plates is presented 

by Tang and Chen [11]. Here the time-dependent speed of plate moving on parametric 

resonance is investigated. 

Most investigations on parametric resonance are carried out to predict the response of 

the system. Periodic changes of system parameters may result in rapid amplitude grow 

and lead to fatigue and damage. The examples are gear wheels cooperation, axially 

loaded slender structures or rolls of ships. However, in some cases the target excitation 

of resonance brings measurable effects. This is especially in the case of vibrating screens 

and conveyors, where operation in conditions of resonance can significantly increase the 

process efficiency. The application of parametric resonance in the screen construction 

was proposed by Slepyan et al. [8]. In works [9-10] they presented the simplify dynamic 

screen system consisted of two masses connected by a string. The analytical and 

numerical analysis of natural vibration of the screen is presented in work [2]. The 

experimental analysis of the parametric resonance occurrence in screen operation is 

carried out by Bąk et al. [3]. In this paper the plate without cut-outs is used instead of the 

sieve. In presented papers the screen system operating in parametric resonance 

conditions is included. 

The paper deals with experimental investigation of the vibrating screen operation in 

parametric resonance conditions. The changes of the excitation force and the excitation 

frequencies are executed to measure of their effect on the sieve vibration amplitude. 

2. Laboratory parametric resonance screen 

The laboratory parametric resonance screen construction (Fig. 1a) is based on the first 

PR screen designed by Slepyan et al. [8]. The screen system consists of two beams 

connected by a sieve. The sieve is a simple sheet metal plate with rectangular cut-outs 

(Fig. 2) made from spring steel grade 1.8159. The rubber pads between the sieve and the 

beam are applied to limit the bending stresses concentration. Screening surface 

dimensions are 750 mm length and 500 mm width. This system is suspended on the base 

frame by set of sixteen springs with stiffness equal to 275 N each one, and the whole 

machine weight is equal to approx. 200 kg. Excitation force is generated by two 

electrical vibrators screwed down to the beams. The nominal value of excitation force is 

equal to 2972 N (for 2954 rpm vibrators rotational speed). This force can be adjusted 

with 10 % step of its nominal value. Rotational speed of electrical vibrators was read by 

using laser speedometer. Hence, the excitation frequency has been calculated. The 
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suspension assembly (Fig. 1b) is supplied with strain gauges sleeves, that enable sieve 

preload measurement. Two piezoelectric accelerometers with the range up to ±1000 g 

are used for measurement of sieve vibration amplitude and frequency. They are located 

in two opposite sides of the sieve. 

 

            

Figure 1. Laboratory parametric resonance screen: a) general view; 

 b) suspension assembly 

 

Figure 2. Sieve geometry and cut-outs enlargement 

3. Experimental methods 

The first step of experimental investigation was carried out for value of sieve preload 

equal to 1000 N. In this case three levels of excitation force were applied: 30%, 40% and 

50% of nominal force. For each value of excitation force the excitation frequency was 

adjusted until the parametric resonance occurrence. 

The second part of the investigation was performed for sieve preload values: 1600 N, 

2400 N and 3000 N. Here only 40 % level of excitation force was applied. Data from 

accelerometers were collected as an acceleration in a function of time. Output signal was 

processed during the measurement by using Chebyshev filter. Further signal processing 

was performed in MATLAB software. Fast Fourier Transform was used to find the 

resonant frequency of the system. Maximum sieve displacement was obtained by double 

numerical integration of input signal. 

a) b) 
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4. Results and discussion 

The value of sieve vibration amplitude increased with the excitation force level (Fig. 3). 

For each considered cases this dependence is nonlinear. For the first two values of the 

excitation frequency (49.24 Hz and 50.21 Hz) there is no significant increase of 

vibration amplitude. In this case an increase in excitation force of 10 % results in 

amplitude increase of 33 %. For the two last cases (52.16 Hz and 57.02 Hz) this increase 

is much greater and respectively is equal to 250% and 325%. Further increasing of 

excitation force level (from 40% to 50%) has a small effect on the amplitude value. For 

each considered cases the amplitude increase is less than 20 %. 

 

 

Figure 3. Effect of excitation force on sieve vibration amplitude for different excitation 

frequencies 

 

Figure 4. Effect of excitation frequency on sieve vibration amplitude for different 

excitation forces 

The amplitude level increase is caused not only by growing excitation force but also 

by changes of the excitation frequency (Fig. 4). For the excitation force adjustment on 

30% level, parametric resonance is detected for excitation frequencies in a range from 49 

Hz to 62 Hz. Here the second mode of natural vibrations was observed [2]. The 

amplitude reaches the maximum value equal to 13 mm. Further increase of the excitation 

frequency results in a decrease of the amplitude till 5 mm. The curves of the excitation 
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force levels equal to 40% and 50% are similar. Two local maximum can be 

distinguished. The first can be observed for the excitation frequency close to 50 Hz. For 

both excitation force levels the local maximum of amplitude is equal to 19.5 mm. The 

second one appeared for the frequency near to 59 Hz. Here the increasing of excitation 

force resulted in 20% increase of the sieve vibration amplitude. For force levels 40% and 

50% the first mode of parametric vibrations was observed.  

The sieve preload value has no significant effect on the amplitude level (Fig. 5). For 

each considered tension forces the maximum value of amplitude is within the range 

between 22 mm and 24 mm, however it is obtained for different excitation frequencies. 

This is caused by increasing natural frequency of the system due to sieve preload 

increase [3]. The increase of sieve preload also results in fading of first local maximum 

of amplitude. For tension forces 2400 N and 3000 N only one local maximum can be 

visible (Fig. 5). 

 

 

Figure 5. Effect of excitation frequency on sieve vibration amplitude for different sieve 

preloads 

5. Conclusions 

The dependence between excitation force and sieve vibration amplitude is nonlinear. 

Initially the increase of excitation force results in large amplitude grow, further increase 

has no significant effect on the amplitude value. The amplitude of vibrations excited 

with 30 % force level is relatively small in comparison with 40 % and 50 % force levels. 

Changes of excitation frequency result in sieve vibration amplitude value. It is found 

that when the excitation force level is equal to 40% or more, two local maximums of 

amplitude appears for excitation frequencies close to 50 Hz and 59 Hz. 

The value of excitation force has an effect on the sieve vibration mode shape. Two 

mode shapes of parametric vibrations were observed. 

An increase of sieve preload results in higher natural frequency of the system, 

therefore to obtain maximum amplitude higher excitation frequencies must be applied. 

However, there is no significant effect of preload increase on the amplitude value. 
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Abstract 

This paper presents impact absorption system based on magnetorheological elastomer with Halbach magnetic 
arrays used for tuning. Its design and results of experimental evaluation are presented together with proposition 

of a non-linear model to describe the system. In the end validation of the model is presented based on energy 

and power balance method for its parametrization. This paper presents both novel approach to impact 
absorption and to modelling of a system based on smart material such as magnetorheological elastomer. 
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parametrization, simulation 
 

1. Introduction 

Magnetorheological elastomer (MRE) is smart material that allows innovative approach 

to impact and vibration control in mechanical and civil structures. It is a composite 

material made out of rubber matrix and soft magnetic particles mixture. Application of 

magnetic field influences change of rheological and mechanical properties of the 

material as the particles try to arrange themselves into chain like structures inside of the 

material, along magnetic field vectors. Therefore material properties can be controlled 

with use of external magnetic field, what can be used in controllable impact and 

vibration control [1-4]. In the paper design and construction of the impact absorption 

system based on MRE material and Halbach arrays have been presented. Double dipolar 

circular Halbach array is an important element of this system as it is innovative method 

for low power consuming magnetic generator that can be used for stimulation of MRE 

absorbers and isolators [5, 6]. Testing of presented system have shown its potential for 

change of resonance frequency and its damping properties. On base of the experimental 

results a non-linear models of the system have been proposed. For its validation and 

parametrization energy and power balance method have been used [7, 8]. Results of the 

parametrization indicate need for search of another model as the results do not match 

with experiment. 

2. Absorption system design 

Presented impact absorption system is designed to absorb impact energy and mitigate 

vibrations occurring after impact. It was thought as single degree of freedom system, 

however for testing purposes second degree was added. The idea of the system is 

presented in Figure 1. a), where element between mass M1 and M2 is MRE material and 

spring K correspond to suspension the system is hanging on. The system is based on 
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a magnetorheological elastomer working as damping material. For magnetic stimulation 

of the MRE material double dipolar circular Halbach arrays were designed and 

manufactured. Due to need for use of strong magnetic fields all elements used in the test 

rig are made out of non-magnetic materials, like marble, aluminium and brass. The test 

system is presented in Figure 1. b). 

 

a) 
 

b) 

Figure 1. Schematic idea of the absorption system a), picture of the absorption system, 

where: 1 - upper mass (4.25 kg), 2 - bottom mass, 3 - Halbach magnetic arrays, 

4 - acceleration sensor, 5 - impact head, 6 - force sensor, 7 - shaker 

For measurement purposes system is equipped with two sensors: accelerometer 

(353A33, PCB) located at the back of the upper mass and force sensor (208A02, PCB) 

between impact head and shaker. Signals were collected with use of DAQ board 

(U2355A, Keisight). It was also used to control shaker (2075E, The Modal Shop Inc.) 

powered by amplifier (SmartAmp Power Amplifier 2100E21 series, The Modal Shop 

Inc.). Modal shaker was used for controlled impact impulse generation. For programing 

purposes computer software (VEE 9.32, Keisight) was used [6]. 

Upper mass was placed on four magnetorheological elastomer dampers surrounded by 

double dipolar circular Halbach arrays. They were placed on CNC milled aluminium 

plate with locking holes for Halbach arrays. The base of the system was marble block 

with weight of almost 40 kg to provide low frequency swing of the system after each 

excitation.  

2.1. Magnetorheological elastomer 

Magnetorheological elastomer is a smart material that changes its mechanical and 

rheological properties under influence of external magnetic field. It is rubber material 

filled with soft magnetic particles that tend to create chain like structures in the direction 

of the magnetic field that stimulates the material. MRE material used in the test stand is 

made out of three components: thermoplastic elastomer matrix Tefabloc TO..222 

(Mitsubishi Chemical Performance Polymers), iron particles ASC 300 (Höganäs) and 

paraffin oil Onida 934 (Shell) in weight ratio 83 : 14 : 3. This material was previously 
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developed and described in papers [9, 10]. Material was prepared using in mixing 

chamber of Plasti-Corder Lab-Station (Brabender). Samples were made by extrusion 

pressing. Figure 2. presents picture of the samples and their cross-section showing its 

uniform structure. Each sample was 15 mm high and had diameter of 25 mm. 

 

Figure 2. Magnetorheological elastomer sample 

2.2. Magnetic field generator 

To stimulate magnetorheological elastomer enquired is magnetic field, the stronger it is 

the bigger change of the materials properties. Therefore for the purpose of the test stand 

double dipolar circular Halbach arrays were designed and fabricated. Figure 3. a) 

presents picture of one of the arrays. The circular Halbach array is a set of magnets 

oriented is a specific way that can generate dipolar magnetic field inside of its opening. 

By setting two or more such arrays around one another it is possible to change generated 

magnetic field by rotating them around one another. 

 

a) 
 

b) 

Figure 3. a) Double dipolar circular Halbach array, where 1 - outer array frame, 

2 - inner array frame, 3 - neodymium magnets, 4 - rotation arm with locking pin hole, 

b) relation of normal value of magnetic flux density B generated by Halbach array and 

its angle of deviation from y axis to the angle of rotation of outer array to inner one 

Magnetic Halbach arrays used in the study was made out of 32 N48 grade neodymium 

magnets 12 mm x 12 mm x 12 mm. It allowed to generate magnetic field in range from 

190 mT to 70 mT. In Figure 3. b) is presented graph showing change normal value of 
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magnetic flux density B generated versus rotation of the outer array around inner one 

and change of deviation angle of the magnetic field vector from y axis. 

3. Experimental evaluation 

Experimental investigation of impact absorption and vibration damping with use of the 

test stand was conducted for set of impact force and magnetic flux density values. Tests 

were run in series for different values of magnetic field. After each test setup there was 

a 20 minute brake that allowed mitigation of vibration caused by the suspension of the 

system (refer to Figure 1. a)). In the paper are presented results of acceleration time 

traces for two representative values of impact force and corresponding frequency 

response functions. 

 

a) 

 

b) 

Figure 4. Time traces of acceleration of the upper mass for range of magnetic field 

values for two representative values of impact force: a) 100 N and b) 200 N 

Figure 4. presents time traces of acceleration collected with acceleration sensor mounted 

on the upper mass of the test system. For both values of impact force presented it is 

visible that the stimulation with stronger magnetic field caused faster damping of the 

vibrations occurring after impact. 

 

a) 

 

b) 

Figure 5. Frequency response functions for range of magnetic field values for two 

representative values of impact force: a) 100 N and b) 200 N 
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Figure 5. show frequency response functions for range of magnetic fields and two 

representative values of impact force. It was calculated on base of acceleration and force 

signals with use of the double channel signal analysing method [6, 11]. On base of 

presented results it is clearly visible that magnetic field can significantly influence 

properties of the MRE material and therefore increase its damping properties what can 

be used for better reduction of vibration in civil and mechanical structures.  

4. Parameter estimation 

To analyse obtained results a non-linear constitutive model have been proposed. It is 

four parameter model with one elastic element (C0) connected with viscous element (K0) 

in series and they are connected in parallel with elastic non-linear element (C1) and 

viscous element (K1). For parametrization of this model energy and power balance 

method is used [7, 12, 13]. Figure 6. presents schematic representation of the model. 

 

Figure 6. Four parameter constitutive models chosen for analysis of the obtained results 

[8, 14] 

To describe the model following equations are used: 
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Equations (1) and (2) describe dynamic equilibrium state of the model with non-linear 

elastic element. On their base equation (3) is created to eradicate ξ from those equations 

and join them in one. On base of this uniform equation two formulas for the energy and 

power balance are formulated and are presented in equation (4) and (5). In those 

equations x

x represent area of the hysteresis loop created from displacement x and 

velocity x . With use of multiple linear regression parameters of the model are 

determined and are presented in Table 1. Parameters are presented in form of function 

where B is normal value of magnetic field used for stimulation of the MRE material. 

Table 1. Results from parametrization, where B is value of magnetic field 

K0 K1 C0 C1 Mean squared error 

0.0108 B3 - 

4.5659 B2 + 

636.23 B 

+3.34*104 

-0.0108 B3 

+ 4.5388 B2 

– 631.45 B 

+3.29*104 

4*107 B – 

3*1011 

-104 B 

+2*107 
0.999969 

On base of those parameters simulation have been done with initial parameters matching 

those from experiment. The unexpected result was that scatter instead of tending to zero 

what means that the model does not match presented results and therefore presented 

parameters are wrong. Nevertheless presented method gives a promising approach for 

modelling and parametrization of the presented system, with use of different model. 

5. Conclusions 

This paper presents design, construction and an approach to modelling of the system. 

The impact absorption system is based on magnetorheological elastomer is and active 

smart magnetic material that presents controllable damping properties. To control its 

properties double dipolar circular Halbach arrays have been designed and fabricated. 

They allow to change generated magnetic field in a range from 70 mT to 190 mT. 

Experimental testing of the system have proven its possibility to shift frequency 

resonance by more than 10 Hz and to effectively reduce vibrations occurring in the 

system after impact. An approach to modelling with use of the energy and power balance 

method have been made, however obtained results do not match with experimental 

results and indicate need for search of a different model. 
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Abstract 

This paper presents the results of numerical analysis and physical simulation of the vertical steel tank for usage 

in the vibration condition monitoring system. For purposes of the numerical analysis the tank is considered as 

the double steel cylinder consisting of the inner and outside shells. The discrete model of a tank is developed. 
The estimations of stress and deformation are obtained when the following vertical loads are exerting: weight 

of the fuel, weight of the tank roof and other structural elements or equipment. The physical model of a tank is 

used for physical simulation. The impulse responses of this model are measured and analyzed for different 
levels of tank filling. The methods of Prony and Steiglitz-McBride are used for estimation of the vibration 

damping factor which depends on the level of tank filling. 

 

Keywords: vertical steel tank, numerical analysis, stress, deformation, vibration analysis, damping factor 

 

1. Introduction  

Ensuring safe operation is a very important problem for many complex objects located in 

hard-to-reach regions and influenced by the dynamic excitation. 

As a complex object we will consider a vertical weld-fabricated steel tank with 

environmentally hazardous substances, whose operation is associated with various 

internal and external influences. For example, such tank was installed at the Ukrainian 

Antarctic Station Vernadsky. Modal (natural modes and shapes) and dynamic (vibration) 

characteristics of the tank are caused by the structural and technological conditions of its 

assembling. In addition, these characteristics also depend on the external dynamic 

excitations (wind load, earthquake load), temperature variations, and the changes of the 

fuel level in the tank. 

The following factors make such tanks extremely dangerous for people and the 

environment: (a) defects caused by fabrication, transportation, or installation, (b) 
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changes of mechanical characteristics of the used materials under the influence of 

dynamic excitation, (c) damages in the tank structure, which саn lead to the fuel leakage. 

The condition monitoring system is developed for prevention of the tank failure and 

environmental pollution [1]. The bases of such system are: vibration measuring 

subsystem, control subsystem, signal processing and decision making subsystem, 

subsystem for simulation, determination and prediction of parameters and characteristics 

of the mode of deformation. 

The purposes of this work are: a) numerical analysis of the vertical steel tank when 

the vertical loads are exerting, b) physical simulation of the tank, analysis of the impulse 

response and determination of features of changes in the tank model condition. 

2. Development and analysis of tank model 

We consider the testing object (tank) as the double steel cylinder which consists of the 

inner shell and the outside shell. The shells consist of welded walls, besides there are 

steel tubes for fuel dispensing and tank unloading. 

We use Finite Element (FE) Analysis to design the discrete model of the tank, which 

can be representative of an actual object. For this purpose we consider the walls of shells 

made from steel with the following properties: density 7850 kg/m3; modulus of elasticity 

2,05 105 N/m2; Poison’s ratio 0,3; shear modulus 0,79∙105 N/m2. Each wall is modeled 

by the set of the quadrilateral plane FE with six degrees of freedom. Mechanical data of 

weld seams are accepted the same as of the material of walls. Therefore, additional finite 

elements for simulation of weld seams are not used. The NASTRAN is used for design 

of discrete model of the tank, the presence of weld seams is ensured by the simulation of 

walls in the form of surfaces (bodies). Two mentioned tubes connect the inner and 

outside shells are modeled by two rod FE “tube”, two quadrilateral FE are replaced by 

eight triangle FE at the attaching point. Thus, the developed discrete model of tank 

consists of 3548 FE and 3393 nodes. The discrete model of tank is presented in Figure 1.  

 

Figure 1. Discrete model of vertical steel tank as a double cylinder 
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The aim of analysis of the developed model is to estimate the mode of deformation 

when the vertical loads are exerting. We consider the following loads: weight of the fuel, 

weight of the tank roof and other structural elements or equipment. 

Results of analysis of the stress and deformation of inner tank caused by weight of 

the fuel are presented in Table 1, values of the stress and deformation do not exceed the 

allowable values. 

Table 1. Dependencies of stress and deformation on weight of the fuel 

Characteristic of tank  

condition 

Cases of fuel filling as part of tank volume 
1/4 1/2 3/4 1 

Stress, MPa 12 27 41 56 
Deformation, mm 0,207 0,476 0,728 0,978 

Maxima of stress and deformation of the inner tank are obtained at the bottom of 

walls for the four cases of fuel filling. Fig 2 shows the result of estimation of the mode 

of deformation for full filling. 

а) 

 

b) 

 

Figure 2. Mode of deformation of inner tank full filling: a) deformation; b) stress 

The results of analysis of the stress and deformation of the tank as a double cylinder 

caused by weight of the tank roof and other structural elements or equipments are 

presented in Fig. 3. Maxima of stress (0,6MPa) and deformation (0,016 mm) are 

observed in elements of the bottom of walls and in elements of the top of the tank ring 

(in part in weld seams). The obtained value of load caused by weight of the tank roof and 

other equipments is considerably less than the bound of calculated stress. Received 

results show that the surface pressure caused by weight of the fuel on the tank's wall 

stresses the model elements much more than the axial load weight of the tank roof and 

other equipment. 
Thus, for the purposes of further research, different levels of tank filling can be 

considered as a cause of changes in the tank condition. 
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a) 

 

b) 

 

Figure 3. Mode of deformation of tank as a double cylinder caused by weight of the tank 

roof and equipments: a) deformation; b) stress 

3. Physical simulation of tank and analysis of impulse responses 

A small-size vertical steel container, with capacity of 0,04m3, is considered as a physical 

model of a tank. We use the vibration method of free oscillations, which consists in the 

impact excitation of the testing object and further analysis of object’s impulse response. 

The unit of two MEMS MS8002.D accelerometers are used to measure the impulse 

responses in two directions: in horizontal plane and vertical plane [2]. Figure 4a shows 

the physical model of the tank with mounted unit of accelerometers, and Figure 4b 

illustrates the object’s simulation model, on the surface of which the spots of impact 

excitation are indicated as “x” and the spots of impulse responses measurement are 

indicated as “o”. 

a) 

 

b) 

 

Figure 4. Models of tank: a) physical model of tank with mounted unit of 

accelerometers; b) three-dimensional simulation model 

Measurements of the object’s impulse responses are carried out for the mentioned 

above cases of liquid filling. The example of Welch periodogram of impulse response is 

presented in Fig. 5 (impact is in the orthogonal direction to axes of sensitivity of both 
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accelerometers, container is empty). Figure 5 shows the presence of two spectral 

components in the frequency band (300 Hz, …, 500 Hz), whose amplitudes exceed the 

others. 

   S, dB 

 
Frequency, Hz 

Figure 5. Welch periodogram of impulse response under impact in the orthogonal 

direction to axes of sensitivity of both accelerometers 

The methods of Prony and Steiglitz-McBride are used for analysis of the impulse 

responses and estimation of vibration damping factor depending on the level of liquid 

filling. In conformity with Prony’s method, the impulse response, consisting of the N 

samples, is approximated by the model of sum of q complex exponents [3]: 
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where T is a sampling period; n is a number of time step; kkkk ,f,,A  indicate the 

amplitude, damping factor, frequency, and phase angle of k component respectively. 

The equation (1) can be presented in the form of z-transform: 
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where  kkk jexpAh  ;   Tfjexpz kkk  2 and  fTjexpz 2 . 

Estimations of the unknown parameters kkkk ,f,,A   are obtained by using the 

estimations of coefficients of the discrete transfer function of certain filter with the finite 

pulse characteristic. The N-sampling impulse response of testing object is used as the 

filter pulse characteristic h(k). It is necessary to assure the identical equality of the 

discrete transfer function of the filter to transformation (2), if Prony’s method is used. 

The method of Steiglitz-McBride [4] also allows synthesizing the filter if the pulse 

characteristic is given. But this method does not demand the identical equality (2), in this 

case the following condition is fulfilled: 
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where h*(k) is the pulse characteristic of recursive filter with given polynomials order of 

numerator and denominator of the discrete transfer function. 

The following data are used for estimation of vibration damping factor by the method 

of Steiglitz-McBride: N=4096 and q=10. Results of estimation of frequency and 
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damping factor for two low-frequency components of impulse responses are presented in 

Table 2 for different levels of liquid filling. 

Table 2. Estimations of frequencies and damping factors (modulus) depending on the 

level of liquid filling 

Cases of liquid filling as part of tank 

volume 

0 1/4 1/2 3/4 1 

Component 1 
Frequency, Hz 340 354 327 367 337 
Damping factor 20 36 39 54 102 

Component 2 
Frequency, Hz 445  476 444 465 449 
Damping factor 2 11 14 34 45 

It can be seen, the increase of liquid filling results in increase of damping of 

components of the impulse response. This fact can be used as feature of changing of the 

tank condition during the vibration condition monitoring of vertical steel tanks. 

4. Conclusions 

The numerical analysis of the vertical steel tank is carried out when vertical loads are 

exerting. Received results show that surface pressure caused by weight of the fuel on 

wall of tank stresses of elements of tank model much more than axial load weight of the 

tank roof and other elements and equipment. 

The physical simulation of tank is done. Impulse responses of tank’s physical model 

are measured and analyzed for different levels of liquid filling. Estimations of vibration 

damping factor are obtained by the method of Steiglitz-McBride for different levels of 

liquid filling. Received results show that increase of liquid filling results in increase of 

damping of components of the impulse response. 

Results of the presented work can be used for vibration condition monitoring of 

vertical steel tanks. 
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Abstract 

This work is devoted to further research and improvement of the vibration diagnostics of the initial crack-like 
damage of rotation shaft in aviation gas-turbine engines (GTE). We propose to use fractal analysis of the 

accelerating shaft response in order to increase the damage detection efficiency. Responses of the accelerating 

shaft are derived by using simulation in absence and in presence of the initial traverse crack. The responses of 

the cracked shaft have sub-critical peaks; the increase in size of a crack leads to the increase in peak values of 

the vibration amplitude in the range of sub-harmonic resonances. The Hurst exponent is obtained for the time 

series in the range of sub-harmonic resonances. The research shows that a small change in the crack size 
results in considerable change of the Hurst exponent, which allows to detect the mentioned sub-harmonic 

resonances of the measured signal in order to identify the initial crack-like damage of the rotation shaft. 

 

Keywords: gas-turbine engine, cracked shaft, vibration diagnosis, fractal analysis, Hurst exponent 
 

1. Introduction 

This paper is a continuation of the previous researches [1,2] dedicated to development of 

the multilevel vibration control system of aviation gas-turbine engines (GTE) and its 

practical implementation. The system mentioned above comprises the following three 

levels: (i) the first (main) level - for current control and awareness of the actual levels of 

vibration at the harmonics of the rotor rotation, (ii) the second (auxiliary) level - for 

diagnostics of the initial crack-like damages of the engine blades and (iii) the third 

(auxiliary) level - for diagnostics of the initial crack-like damage of the rotor's shaft 

during startup at the acceleration to operating speed. In order to diagnose the damage of 

the rotor's shaft, the peak values of vibration amplitude in the range of sub-harmonic 

resonances of accelerating cracked shaft response are used as fault features. Therefore, 

the narrow-band digital tracking filter was developed in order to extract the main rotor 

harmonic vibration at the non-steady-state mode, as presented in [2]. The peak values of 

vibration amplitudes are determined after filtration in the field of sub-harmonic 

resonances. The received values are compared with the threshold and the decision on the 

presence or absence of a crack in the shaft is made. 
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We propose to improve the diagnostics of the initial crack-like damage of the rotating 

shaft by using fractal analysis of the accelerating shaft response in order to increase the 

efficiency of the damage detection. It is very important for detection of the initial crack-

like damage and especially in case of the low signal-to-noise ratio. 

Fractal analysis is a promising signal processing method used for the noise-like 

signals [3]. The analysis of fractal and multifractal properties of time series allows 

obtaining simple and suitable characteristics of the investigated signals, such as the 

fractal dimension, Hurst exponent, and other characteristics (correlation dimension, 

embedding dimension), if necessary. Changes of the mentioned characteristics can be 

used to detect the local changes in the measured signal which are generated by the initial 

crack-like damage of the rotation shaft. 

2. Estimation the Hurst exponent  

We propose to use the Hurst exponent of the accelerating shaft response as a faul feature. 

The oldest and best-known method to estimate the Hurst exponent is R/S 
analysis [4]. Ratio R/S indicates ratio of the range R to the standard deviation S of 

the analyzed time series. The procedure of estimation of the Hurst exponent presented in 

[4] is as follows: 

1. It is necessary to find the mean E and the standard deviation S of the analyzed time 

series Zi (i = 1, ... , n). 

2. The data of the series Zi has to be normalized by subtracting the sample mean  

EZX ii    

3. Create the cumulative time series for i = 1, ... , n: 





i

j

ji XY
1

  

4. Find the range 

)Y,...,Ymin()Y,...,Ymax(R nn 11    

5. Calculate the mean value (R/S) of the series of length n. 

6. Obtain the value of Hurst exponent H, taking into consideration that the R/S statistic 

asymptotically follows the relation 
HSR  ,  

where τ is a time interval of the analyzed time series Zi.  

The value of Hurst exponent allows to recognize a persistent process (H > 0,5) and 

anti-persistent process (H < 0,5), for a Gaussian noise H = 0,5.  

3. Simulation and analysis of accelerating shaft response  

The equations of motion for a Jeffcott rotor with a cracked shaft in presence of the 

gravity forces and unbalance excitation, and subject to constant acceleration, were 

presented and investigated in [5]. The following from among the equations of motion 

mentioned above are used for simulating of the accelerating shaft response: 
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where M is the mass matrix; F is the damping matrix; K is the stiffness matrix; z and y 

are the displacements; θ is the angle of orientation of unbalance mass ε relative to the 

axes z; 

 in body-fixed rotating coordinate frame (ξης): 
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where ω(t) is the instantaneous speed of rotation; a is the constant acceleration of 

rotation; Φ is the angle of position of the rotating coordinate frame (ξης) relative to the 

inertial coordinate frame (xyz); β is the angle of orientation of unbalance mass ε with 

respect to crack; ΔKξ is the shaft rigidity decrease at the crack presence; f(ψ) is the 

function for crack accounting to the shaft stiffness according to the crack angular 

position ψ. 

 The transformation between the inertial and rotating coordinate frames is carried out 

according to the following dependence: 
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The model of the transverse crack is a function of “breathing”, the relative rigidity 

changing of the shaft ΔK = ΔKξ/K depends on the cross location of crack section and 

stress-strain area of the shaft.  

The computer simulation of the accelerating shaft response in absence (ΔК = 0) and 

in presence of a small crack (ΔК = 0,005,...,0,1) is carried out by using the transformed 

equations (2) to non-dimensional form and dependence (3). The time plots of non-

steady-state vibration of the rotating shaft are shown in Figure 1 for the following data: 

ΔК = (0; 0,01; 0,05; 0,1) and ψ = β = 00. These plots are represented in the relative scale 

on the ordinate axis (non-dimensional vibration amplitude z) and on the abscissa (non-

dimensional time τ). Value τ = 1000 corresponds to transition through critical frequency 

of rotation. It can be seen that the initial transverse crack results in presence of 1/2 order 

sub-critical peak, and the increase of the crack parameter ΔК leads to the increase in sub-

critical peak values of vibration amplitude. 

Simulated signals were processed using the above presented procedure of estimation 

of the Hurst exponent. We used two separate parts of each signal for the analysis:  

a) a sample of 500 values of non-dimensional vibration amplitude z in the range of sub-

harmonic resonances and b) a sample of 500 values of non-dimensional vibration 

amplitude z in the range of main resonance. Figure 2 represents the dependence of 
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obtained values of Hurst exponent H on the relative rigidity changing ΔK of the shaft for 

the mentioned samples. 

a) b) 

   z 

 
τ 

   z 

 
τ 

c) d) 

   z 

 
τ 

   z 

 
τ 

Figure 1. Non-dimensional vibration amplitude of accelerated rotor at the ΔК = 0 (a), 

ΔК = 0,01 (b), ΔК = 0,05 (c) and ΔК = 0,1 (d) 

In general, the Hurst exponent is decreasing at the increasing of a crack parameter 

ΔК for both analyzed parts of simulated signal. It can be seen in Figure 2b that the initial 

transverse crack results in small changing of Hurst exponent of signal in the range of 

main resonance (decreasing is about 19%). In the range of sub-harmonic resonances 

(Fig. 2a) the value of Hurst exponent is decreasing to a considerable extent, this 

decreasing is more than 3 times at the interval of relative rigidity changing 

ΔK = 0,005, …, 0,1. In the case of ΔK < 0,005, the Hurst exponent dependence on ΔK is 

not informative for crack detection.  
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а) b) 
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ΔK 

   H 

 
ΔK 

Figure 2. The Hurst exponent dependencies on relative rigidity changing ΔK in the range 

of sub-harmonic resonances (a) and in the range main resonance (b) 

Another simulation and fractal analysis of signals are carried out taking into account 

of additive Gaussian noise. The value of noise standard deviation is selected 10-2, in this 

case the value of signal to noise ratio (SNR) is different for each simulated signal. The 

noisy vibration amplitudes zn in the range of sub-harmonic resonances for ΔK = 0 and 

ΔK = 0,05 are illustrated in Fig. 3.  

а) b) 

    zn 

τ 

    zn 

 
τ 

Figure 3. Non-dimensional noisy vibration amplitude in the range of sub-harmonic 

resonances at the ΔК = 0 (a) and ΔК = 0,05 (b) 

Fig. 4 shows dependence of values of Hurst exponent H on the relative rigidity 

changing ΔK, which are obtained for the noisy vibration amplitudes zn in the range of 

sub-harmonic resonances. The presented result show, that values of Hurst exponent is 



66 

decreasing at the increasing crack parameter ΔК. The form of depengence is simiral to 

the graph represented in Figure 2a, the changing of Hurst exponent is more than 3 times 

in the presented interval of ΔК. Taking into account of additive Gaussian noise 

eliminates method error of Hurst exponent estimation at the ΔK < 0,005. 

  H 

 
ΔK 

Figure 4. The Hurst exponent dependence on ΔK for the noisy vibration amplitudes 

in the range of sub-harmonic resonances 

4. Conclusions  

Research presented in this paper shows that a small change in the relative rigidity 

changing of shaft in presence of the initial crack-like damage results in considerable 

change of the Hurst exponent. This fact allows to detect the small sub-harmonic 

resonances of the noisy measured signal and to identify the initial crack-like damage of 

the rotation shaft. The usage of proposed approach to improvement of diagnostics of the 

crack-like damage will promote to ensure awareness of GTE. 
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Abstract 

Boom–type roadheaders represent heavy working machines used in underground mines for the drilling of dog 
headings, for tunnelling and – to a certain extent – for surface mining. The key working process carried out by 

such roadheaders is rock mining. This process, especially when cutting rocks with low workability, causes 

strong vibration excitations and dynamic loads not only in a roadheader cutting system, but within its entire 
construction. The article presents a dynamic model of a boom–type roadheader body. Four vibrating masses, 

representing the key subassemblies of the studied object and a seat together with a roadheader operator, are 

distinguished in a spatial physical model with a discrete structure. They are subject to the activity of an 
excitation from the loads generated in the cutting process. A mathematical model is comprised of 19 non-linear 

ordinary differential quotations of the second order. The model was implemented in the MATLAB/Simulink 

environment, in which a simulation model was created. The article presents the examples of results of 
numerical simulations using the established model. 

 

Keywords: roadheader, dynamic model, dynamic loads, vibrations 

 

1. Introduction 

Roadheaders are working machines used in mechanised technologies for drilling dog 

headings and chamber headings in underground mines and tunnels in civil engineering. 

Roadheaders are multi–functional machines designed for the mechanisation of the basic 

activities connected with the drilling of mine headings, namely tunnels. The activities 

encompass, in particular, rock cutting, loading the mined rock into the means of 

transport, transporting the mined rock from the heading face, as well as mechanised 

erection of a dog heading support. For this reason, such machines are subject to the 

activity of vibration excitations originating from different sources, with their varied 

intensity. As the key process carried out by such type of machine is the mechanical 

cutting of rock, the vibrations they are susceptible to and the dynamic loads of their 

construction are basically caused by interactions taking place in the machine–mined rock 

configuration. Such an activity is not limited here only to a drive of the working units 

directly performing the cutting process, but is transmitted by such working units’ load-

carrying structure onto the roadheaders’ other subassemblies. The vibrations excited by 
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and the dynamic loads generated by the cutting process of rocks with especially low 

workability, are having the greatest effect on the durability and reliability of not only the 

roadheader cutting system, but also its other subassemblies and systems. 

The dynamic state of the group of heavy working machines discussed is analysed 

here not only to draw conclusions concerning the improvement of their construction. The 

investigations of roadheaders’ dynamics are of high significance also for ensuring the 

operational safety and ergonomics of such type of mining machines. Such investigations 

include, notably, those aimed at identifying the magnitude and character of the excited 

vibrations transferred onto an operator’s station for evaluating the impact of mechanical 

vibrations on a human organism and an operator’s vibration isolation [1,7], or examining 

the stability of the discussed machines. A roadheader may lose its stability as a result of 

the vibrations generated in a working process, and a serious hazard may be posed for 

people working in the confined space of dog headings or tunnels (this concern also 

applies to numerous mobile machinery, for instance cranes [4]). The vibrations excited 

by roadheader operation, transferred through a substrate (the floor plane of a heading 

being driven) to the environment may also be a source of paraseismic vibrations 

(tremors) [5]. Such vibrations are propagated in rock mass, in the surrounding of a place 

where mining works are carried out. Such vibrations may affect the environment 

adversely. 

This article touches upon the issue of modelling of vibrations and dynamic loads of 

boom–type roadheaders. Such machines are a sub–group of mining roadheaders, used 

for excavation of dog headings, equipped with working units in the form of cutting heads 

with small dimensions, in relation to the cross section area of the headings excavated 

with them. The heads are mounted at the end of a boom which is inclined in two 

mutually perpendicular planes. Cuttings heads can be moved this way along the heading 

face surface along any track. Rock mining is carried out in this case by way of cutting – 

by means of picks mounted on a cutting head, where the rotary motion of a cutting head 

is caused by a drive system. 

The research works pursued until now have been related to the dynamics of selected 

subassemblies of a roadheader or its components – mainly the cutting system: cutting 

heads, their drive and a load–carrying structure (e.g. [2,3,6,9]). The reasons given above 

allow to conclude, however, that the entire object should be treated as a whole – as a 

complex dynamic system, taking into account the dynamic impact onto its substrate. The 

article presents a dynamic model of a boom–type roadheader body. For the purpose of 

numerical investigations of the roadheader’s dynamics, the mathematical model created 

was implemented in the MATLAB/Simulink environment, in which a simulation model 

was created. The article presents the examples of computer simulations accompanying 

the execution of a working process of cutting the heading face surface of the dog 

heading being drilled. 

2. Physical model 

The construction of a boom–type roadheader body supports the creation of discrete 

physical models. Four rigid bodies connected with each other with weightless 

viscoelastic elements are distinguished in a physical model of the studied object (Fig.1). 
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The bodies represent the key parts of a roadheader boom, i.e.: roadheader casing (1), 

movable part of the turntable (2) and a boom with cutting heads (3), and a seat together 

with an operator seating on it (4). A movable part of the turntable with a vertical axis of 

rotation is fitted rotationally to the roadheader casing (body). In case of the considered 

roadheader construction, the movable part of the turntable is provided with a bearing 

relative to the fixed part (of the roadheader casing) by means of two bearings – a axial 

and radial bearing. The rotary motion of a movable part of the turntable is carried out 

here with an actuating–rack–and–pinion mechanism. The activity of such a mechanism 

is modelled in the form of the concentrated force  
OZSO

fP   applied to point 13. The 

direction in which the force is acting is parallel to the axis XO of the system of 

coordinates XOYOZO. A roadheader boom is mounted to the movable part of the 

turntable by means of two slide bearings and is supported with two hydraulic lifting 

actuators – a right one (SPP) and left one (SPL). 

The roadheader components mentioned above are considered as rigid bodies with the 

mass of, respectively, mK, mO, mW and mFO, concentrated in their centres of gravity (in 

the points: SCK, SCO, SCW and SCFO) and with the moments of inertia of, respectively: IKX, 

IKY and IKZ, (roadheader casing) IOX, IOY and IOZ (movable part of the turntable) and IWX, 

IWY and IWZ (boom). The values of moments of inertia of the turntable and boom were 

determined in relation to the axis of the system of coordinates XOYOZO. 

The activity of the roadheader casing on the substrate was modelled as six 

viscoelastic constraints with the specific rigidity ki and the damping coefficient ci (for 

i=1,…,4) applied in the points marked with numbers from 1 to 4. Four of them 

(nominated with index Z) are transmitting loads perpendicular to the substrate. Two of 

them (nominated with index X and Y) – are transmitting loads in the plane parallel to the 

substrate, in the direction of the axis XK and YK of the system of coordinates XKYKZK 

connected with the roadheader body. 

The susceptible mounting of the movable part of the turntable in relation to its fixed 

part was modelled as six viscoelastic constraints applied in the points numbered 5 to 10. 

They represent the considered way of its bearing. Out of six viscoelastic elements, fours 

are situated in the vertical direction and arranged at the pitch diameter of the axial slide 

bearing raceway (located in the upper part of the turntable). The activity of a radial 

bearing situated in the lower part of the turntable is modelled by means of other two 

constraints (situated horizontally, perpendicular to each other). The bearing of the boom 

on the turntable is presented as five viscoelastic elements applied in points 11 and 12. 

The constraints are representing reactions acting in the place where a boom is fitted to a 

turntable in slide bearings. As already mentioned, the boom is supported with two 

hydraulic actuators. The actuators’ dynamics is shown as indicated in the work [8]. The 

mounting of the operator’s seat to the roadheader casing is modelled by means of a 

single viscoelastic element with the rigidity kFO and the damping factor cFO. It was 

assumed that the seat–operator system has only a single degree of freedom (this results 

from the mounting construction). 

The physical spatial model created has nineteen degrees of freedom. The temporary 

location of a roadheader casing modelling solid is described with the six coordinates:  
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three translation coordinates – xK, yK and zK, and three rotation coordinates – φKX, φKY, 

and φKZ (six degrees of freedom). The following designations for coordinates were used 

for the movable part of the turntable: xO, yO, zO (for translation movement) and φOX, φOY, 

φOZ (for rotational movement). The following translation coordinates are describing the 

situation of the boom: xW, yW, zW and the rotation coordinates: φWX, φWY, φWZ. The 

vibrating motion of the seat together with the operator is described by the translation 

coordinate zFO measured in the direction of the axis ZK of the system of coordinates 

connected with the roadheader body. 

Vibration excitations are acting on the masses distinguished in the physical model in 

the form of an external load, which are the result of carrying out the working process 

(cutting the heading face of the drilled dog heading). This load was reduced to the 

intersection point of the boom longitudinal axis with an axis of rotation of the cutting 

heads and was described with six components – three concentrated forces (PX, PY and 

PZ) and three moments of forces (MX, MY and MZ). The time curves of this excitation are 

generated in a separate computer programme for the set values of parameters for the 

execution of this cutting process. 

3. Mathematical model 

The motion equations in the developed physical model were entered using the Lagrange 

second degree equation: 

1,2,...,19jRQ
q

E

q

E

dt

d
jj

j

P

j

K 



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
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
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where: EK – kinetic energy of the system; EP – potential energy of the system; Qj – the 

external generalised force corresponding to the coordinate qj; Rj – the 

generalised resistance force corresponding to the coordinate qj; qj and 
j

q  – the 

generalised (translation or rotation) coordinate and its first derivative 

A mathematical model describing motion in the established physical model of the 

studied object consists of a system of 19 ordinary nonlinear second–order differential 

equations, which have the following form in the matrix–vector form: 

QqKqCqM    (2) 

where: M, C, K – mean, respectively, the matrix of: inertia, damping and rigidity; Q – 

vector of external forces; whereas qqq  ,,  – vectors of generalised coordinates 

and their subsequent derivatives. The vector of generalised coordinates q has 

the following form here: 

 TFOWZWYWXWWWOZOYOXOOOKZKYKXKKK z,,,,z,y,x,,,,z,y,x,,,,z,y,x q  (3) 

 

The motion equations were entered into MATLAB/Simulink software after executing 

relevant conversions. Three layers can be distinguished in a hierarchy structure of the so 

obtained simulation model. Functionally interrelated sub-systems are situated in the 

master layer (Fig.2), which are representing the vibrating elements distinguished in a 

physical model (roadheader casing, turntable, boom and seat with an operator), a block 
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responsible for recording calculations results (to workspace) and blocks responsible for 

calculating, in successive steps, numerical integration of motion equations of temporary 

values of dynamic parameters of actuators lifting the boom (Lsp, P_SP) and the force 

developed by a boom rotation mechanism actuator (Pso). The second layer of the 

simulation model consists of blocks in which motion equations are implemented for each 

of vibrating masses (Fig.3). Motion equations are integrated numerically in the lowest 

(third) layer by means of appropriate function blocks (integrators) (Fig.4). The values of 

coordinates of each of the masses are established in successive integration steps as a 

result of solving a motion equation iteratively. Motion equations are integrated 

numerically by means of a fourth order Runge–Kutta algorithm with a constant 

integration step. 

 

  
Figure 2. Master layer of simulation 

model in MATLAB/Simulink 

environment 

Figure 3. Second layer of simulation model 

4. The examples of simulation results 

Figures 5 and 6 show the selected results of computer simulations of roadheader body 

dynamics using the developed simulation model. The motion of the boom together with 

a movable part of the turntable was started in the right direction in the considered time 

interval, after the lapse of 0.5 s of the simulation. The cutting heads performed 3 

revolutions over the next 2.5 s of the simulation. During this motion, the roadheader 

body was loaded with forces exciting vibrations generated by a cutting process. The 

cutting of the rock with the compressive strength of RC=80 MPa with the web of 

z=0.13 m was simulated here. As seen, the working process carried out by the 

roadheader is a source of strong vibrations of its components, in particular – a boom. 

The angular speed of boom deflection was established at the average level of 0.033 rad/s, 

whereas the amplitude of such speed vibrations (understood as the variability range) was 

0.05 rad/s. During this time interval the boom turned about the axis of rotation of the 

turntable through an angle of ~5 deg. 
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Figure 4. Structure of the lowest (third) layer of simulation model with the example of 

equation describing the rotation motion of the boom along the axis Z 

 

 
Figure 5. Boom angular speed and its angular displacement curve relative to the axis Z 

Due to the dynamic properties of the studied object resulting from its construction 

(especially with the use of hydraulic actuators), the boom subjected to the activity of a 

variable external load is performing intensive lateral vibrations (Fig.6). This is important 

considering the dynamic state of the studied machine as well as the working process it 

performs. The roadheader body’s vibrations result in periodical changes in parameters 

for which this process is performed. Changes in cutting conditions have, on the other 

hand, influence of the character and magnitude of excitation of vibrations of the 

roadheader body. This is because strong feedback exists in the system of the roadheader 

and the working process carried out by it. 
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Figure 6. Curve of the coordinate of the boom axis intersection point with the axis of 

rotation of cutting heads in the direction of the axis Z 
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5. Conclusions 

The dynamic model created allows to perform simulation investigations in order to 

determine dynamic loads in the selected constructional nodes of a boom–type 

roadheader body and to analyse its vibrations generated in a working process. 

Experimental verification is necessary, however, to be able to use it practically for 

research purposes. The conformity of the results obtained by way of a computer 

simulation with the actual dynamic characteristics of the modelled object will be 

established based on the outcomes of experimental investigations. Dynamic 

characteristics will be measured with an experimental station developed for this aim by 

the Institute of Mining Mechanisation, Faculty of Mining and Geology, Silesian 

University of Technology. The R–130 roadheader (manufactured by FAMUR S.A.) will 

be the object of investigations. Vibrations will be excited in the body of the machine as a 

result of the cutting process of a block made of equivalent materials. 

Acknowledgments 

The work has been implemented under the research project titled “Control of roadheader 

cutting heads movement for reduction of energy consumption of mining and dynamic 

loads“ co–financed by the National Centre for Research and Development under the 

Applied Research Projects (agreement no. PBS3/B2/15/2015). 

References 

1. M. W. Dobry, T. Hermann, A comparison of human physical models used in  

the ISO 10068:2012 standard based on power distribution – PART 2, Vibrations in 

Physical Systems, 26 (2014) 57 – 64. 

2. M. Dolipski, P. Cheluszka, Dynamika układu urabiania kombajnu chodnikowego, 

Wydawnictwo Politechniki Śląskiej, Gliwice 2002. 

3. M. Dolipski, P. Cheluszka, P. Sobota, Numerical tests of roadheader’s boom 

vibrations, Vibrations in Physical Systems, 26 (2014) 65 – 72. 

4. J. Janusz, J. Kłosiński, Wpływ wybranych strategii sterowania ruchami roboczymi 

żurawia samojezdnego na jego stateczność, Acta Mechanica et Automatica,  

4(2) (2010) 74 – 80. 

5. J. Kogut, Analiza spektrum odpowiedzi drgań drogowych, Praca doktorska, 

Politechnika Krakowska, Kraków 1999. 

6. X. Li, B. Huang, C. Li, S. Jiang, Dynamics analysis on roadheader cutting head 

based on LS–DYNA, Journal of Convergence Information Technology, 7(23) (2012) 

333 – 340. 

7. I. Maciejewski, Active control of working machines seat suspension aimed at health 

protection against vibration, Proc. Appl. Math. Mech., 7 (2007) 4130017 – 

4130018, doi: 10.1002/pamm.200700345. 

8. B. Podsiadła (red.), Modelowanie i badania zjawisk dynamicznych wysięgników 

teleskopowych i żurawi samojezdnych, WNT, Warszawa 2000. 

9. X. H. Wei, M. Xie, Dynamic analysis on the longitudinal roadheader’s cutting 

system, Advanced Materials Research, 619 (2013) 160 – 163. 
 



Vibrations in Physical Systems Vol. 27 (2016) 

Influence of Torsional-Bending Coupling on Transverse Vibration of 

Piston Engine 

Zbigniew DĄBROWSKI 

Institute of Machinery Design Fundamentals 

Faculty of Automotive and Construction Machinery Design 

Warsaw University of Technology 

ul. Narbutta 84, Warsaw, zdabrow@simr.pw.edu.pl 

Bogumił CHILIŃSKI 

Institute of Machinery Design Fundamentals 

Faculty of Automotive and Construction Machinery Design 

Warsaw University of Technology 

ul. Narbutta 84, Warsaw, bogumil.chilinski@gmail.com 

Abstract 

The article presents the analysis of the influence of bending-torsional coupling of vibrations in the crankshaft 
on transverse vibrations of the engine body. In practice, there is used a simplified model, wherein transverse 

and torsional oscillations are analyzed independently. With the use of the model of deformable crankshaft, the 

authors show the influence of bending-torsional coupling on the frequency structure of transverse vibrations. 

The introduction presents the problem of vibrations in combustion engines and their modelling. Further, there 

is presented the elastic model of the crankshaft, together with the applied assumptions and equations of motion 

describing vibrations in one cylinder combustion engine . Next chapter shows numerical simulation results 
with their initial analysis. The whole paper is summarized with conclusions about calculations and the 

possibility to use the results in practice. 

 

Keywords: Bending-torsional vibrations of the crankshaft, modeling of crank system, analytical solutions, 

numerical simulations. 
 

1. Introduction 

Dynamics of crank system is a very important technical problem. Basic parameters of 

the engine and its work are directly related to this system. In the case of motion with a 

constant velocity of the crankshaft, it is easy to determine the forces and displacements 

which appear in the crankshaft. The dynamics of crank system in unsteady motion 

requires many studies [1-4]. 

Due to the complex geometry of the rotor and "complicated" construction of the 

crank mechanism there exists a coupling between vibrations occurring in the engine 

[5-8]. In practice this phenomenon considerably hinders the analysis, due to the coupling 

of individual degrees of freedom. Therefore, in order to make calculations there is used 

the most commonly applied simplification based on rejecting any dependencies 

connecting bending and torsional vibrations in engines. Such an approach is used in 

preliminary design calculations. However, in the case of problems connected with an 

operation it may be insufficient [9-13]. Moreover, in practice, measured vibrations are 

different from theoretical model results. 
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This issue is important because there may appear new critical areas due to the 

coupling of bending-torsional vibrations. What is more, torsional vibrations affect 

significantly transverse displacements. This motion influences the vibrations of the 

whole body. In practice there appear a shift and modulations of particular frequencies of 

eigen vibrations of uncoupled system. This shows the presence of nonlinear or 

parametric effects in the considered object [14-16]. 

The authors propose to apply this phenomenon to analyze torsional vibrations of the 

engine based on the spectra of transverse displacements of the body. This problem is 

important because the measurement of angular vibrations of the crankshaft of a 

combustion engine is more difficult than the measurements of transverse vibrations. 

2. The dynamic model of piston engine with an elastic crankshaft 

Due to the complex geometric and material structure it is convenient to replace the 

continuous mass system, which is the crankshaft, with a discrete model. In such cases, 

the masses are usually reduced to selected constructional nodes, whereas the remaining 

part of the object is treated as a massless deformable structure. 

Of course, the model of the system of point masses is a significant simplification of 

the continuous system, which is characterized by infinite (but countable)set of eigen 

values. The number of eigen frequencies in the case of discrete systems is the finite 

number . Therefore, it is not possible to replace "fully" the continuous system with a 

model of point masses. However, it is possible to make an equivalent reduction in a 

selected frequency band, for example, in the range of low frequencies. In practice, such a 

simplification does not lead to serious errors. At the same time, it must be emphasized 

that this method significantly simplifies the calculations. 

Single crank of the crankshaft of the piston engine is presented schematically in 

Figure 1. 

 

Figure 1. The model of the crankshaft of one piston. 1 - 2 flywheel - crankshaft, 

3 - pulley 

In constructions of real combustion engines, very rigid crankshafts are used. 

Basically due to the precision required from crank mechanisms. Even small changes in 

the angular position of the crank may affect the process of combustion in a given system, 
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which directly influences its dynamics. In addition, in vibrating systems there is a risk of 

resonance with a basic harmonic of extortion which comes from gas forces [17-19]. In 

this case, oversizing of the crankshaft allows to move the frequency of eigen vibrations 

into the area of higher components of drive moment. 

Due to high rigidity of crank system, it can be assumed that with a good 

approximation, deformations occurring in the crank systems are very small. This allows 

to use the model of linear-elastic system for calculations [20,21]. Figure 2 shows the 

displacement of the crank described in the moving coordinate system. 

 

 

Figure 2. Displacement of crank of the crankshaft 

In Figures 1 and 2 there are used the following generalized coordinates describing the 

dynamics of the analyzed model of the crank: 

 

ϕ – rotation angle of the flywheel of the engine, 
φ –rotation angle of the disc of torsional vibration damper, 
h – horizontal deformation of the crank, 
v – vertical deformation of the crank. 

 

Generalized forces in selected constructional bands may be determined on the basis of 

the equations: 
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uKF   (1) 

 

where: 

 

K – stiffness matrix, 
F – generalized force vector, 
u – displacement generalized vector. 

 

Due to the symmetry conditions and the load system, the stiffness matrix has a 

simplified form: 
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It is possible to find motion equations for the system presented in Figure 1with the 

use of any formalism of analytical mechanics. Due to the linearity of the model and 

holonomic constraints appearing in the system, there are used Lagrange equations of 

second kind. On this basis, the following dynamic model is determined: 

 

0τττ
2 )()( MkukuRmRmI wwkkl     (3) 
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  (4) 

 

  0)(ττ    kukIkP
  (5) 

 

rrrrwrw PukRmum  2  (6) 
 

3. Simulation analysis of transverse vibrations of the crankshaft 

The series of numerical simulations was carried out for a proposed system of equations. 

Transverse vibrations of the crankshaft without the coupling of bending and torsional 

vibrations presented in plot 3 are taken as a point of reference. 
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Figure 3. Bending vibrations of the crankshaft of the system without coupling 

In the case when the coupling is taken into account, the spectral structure of 

transverse vibrations is much more complex. The spectrum of displacement of transverse 

vibrations in a moving coordinate system is shown in plot 4. It is possible to observe 

additional frequencies connected with torsional vibrations. 

 

 

Figure 4. Bending vibrations of the crankshaft system with a coupling 
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4. Conclusion 

The phenomenon of coupling of bending and torsional vibrations in vibrating systems is 

usually omitted in model calculations. Such calculations are justified at the design stage, 

when it is necessary to pre-define the basic dimensions of the system for further 

designing process. However, the dynamics of motion of the real crankshaft system is 

much more complex. As a result, the authors proposed a model which takes into account 

more phenomena and allows for more detailed analysis of vibrations occurring in 

combustion engines. 

The proposed system of dynamics equations in moving coordinate system is possible 

to be solved analytically. Part of the equations is uncoupled and linear. 

The simulations clearly show the impact of taking into account the coupling on 

transverse displacements of the crankshaft. The frequencies of torsional vibrations are 

transferred to bending oscillations. This allows to draw conclusions about the 

frequencies occurring in the spectral structure of angular vibrations only on the basis of 

the measurements of body vibration [22-24]. The proposed model can be used 

successfully in the diagnostics of combustion engines [25-27]. 
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Abstract 

The study relates to the phenomenon of power distribution in mechanical systems equipped with a dynamic 

vibration absorber. It is one of the methods of eliminating vibrations in a mechanical system, which stabilises 
its operation. This solution helps to reduce dynamic stress in subsystems of a vehicle's suspension or stabilise 

the motion of flying machines, such as helicopters. The article describes the phenomenon of power distribution 

of structural forces, which has not been described so far. The phenomenon reveals the power distribution in a 
dynamic structure of a system of interest and can be used to determine the rate of energy flow as a function of 

the dynamic state resulting from the selection of dynamic parameters of the vibration absorber. The energy 

analysis applied in the study is based on an energy-based optimization method of adjusting the dynamic 
vibration absorber to the main mechanical system without changing its dynamic parameters, as is the case, for 

example, in turbine rotor balancing. 

 

Keywords: energy flow, dynamics of machines, elimination of energy flow 
 

1. Introduction 

The phenomenon of power distribution of structural forces in mechanical systems with a 

dynamic vibration absorber has not been recognised so far [5]. It is a holistic approach, 

which makes it possible to control and optimize energy flow in order to ensure effective 

stabilisation of the main mechanical system thanks to the influence of the dynamic 

vibration absorber. The analysis of power distribution can be used in mechanical and 

biomechanical systems to optimize the structural design, to evaluate the amount of 

energy absorbed by particular elements and, globally, by entire systems, and as a 

diagnostic tool at every life stage of these systems [2, 3, 4]. 

2. The physical model of the dynamics of the system of interest 

Dynamic analysis of a mechanical system with a dynamic vibration absorber requires a 

physical model with two degrees of freedom. The first point of reduction is mass M, 

which models the mass of the main mechanical system, which is to be stabilized, while 

the second point of reduction corresponds to mass “m” of the dynamic vibration 

absorber, connected with mass M through a damping-energy dissipating element. 

Vibrations are generated by the driving force F(t), which excites mass M. The physical 

model of such a mechanical system is shown in Figure 1. The purpose of the absorber is 

to minimize the vibration amplitude of the main subsystem. The tuning parameters of the 

absorber are determined by the dynamics of the system of interest. For this purpose a 

dynamic mathematical model of the system has been formulated.  
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3. The mathematical model of the dynamics of the system of interest 

The mathematical model was derived using Lagrange equations of the second kind given 

by [1]: 
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where: 

s – the number of degrees of freedom, Qj – generalised active forces, 

ɸ – the power of forces of energy dissipation, qj – generalised coordinates, 

E – kinetic energy of the mechanical system, jq – generalised velocities. 

V – potential energy of the mechanical system, 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M – reduced mass of the main system 

k1 – reduced coefficient of elasticity of the 

main system 

c1 – reduced damping coefficient of the main 

system 

F(t) – the driving force with a variable 

frequency  

m – reduced mass of the dynamic 

vibration absorber 

k2 – reduced coefficient of elasticity 

of the dynamic vibration absorber 

c2 – reduced damping coefficient of 

the dynamic vibration absorber 

Figure 1. The physical model of a mechanical system with a dynamic vibration absorber 

c2 

 

m x2(t) 

 

x1(t) 

 

M 

F(t) 

k1 

 

k2 

 

c1 

 



Vibrations in Physical Systems Vol. 27 (2016) 85 

As mentioned earlier, the mechanical system of interest has two degrees of freedom, 

hence s = 2. The following generalised coordinates have been assumed:  

q1 = x1(t) – the location coordinate of mass M of the stabilized mechanical system, 

q2= x2(t) – the location coordinate of mass m of the attached dynamic vibration absorber. 

The mathematical model of forces acting in the system consists of two differential 

equations of forces given by (2): 
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The first equation describes forces acting in a stabilized mechanical system, the second 

one describes forces acting in the additional system of the dynamic absorber attached to 

the main system. When dynamic forces acting in the mechanical system are known, it is 

possible to formulate an energy model. The model was formulated by applying the First 

Principle of Power Distribution in a Mechanical System (PPDiMS) [2, 3].  

4. The energy model of power distribution in a mechanical system with a dynamic 

vibration absorber 

The above-mentioned principle can be used to derive equations of power distribution in 

the mechanical system. The energy model of the system of interest consists of two 

equations of power given by: 
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(3) 

The first equation describes how the powers of all structural forces change over time, 

that is: the power of inertial forces, the power of dissipative forces, the power of elastic 

forces and the power of the driving force, which excites the motion of the mechanical 

system.The equation also accounts for the powers of the elastic and dissipative coupling 

with the vibration absorber.  

The second equation describes power distribution at the reduction point connected 

with the mass of the dynamic absorber and the power of forces involved in the elastic 

and dissipative coupling with the main system. 

The equation of energy flow can be derived from the First Principle of Energy Flow 

in a Mechanical System based on integral equations given by (3). 

Given the energy models of the system of interest, one can solve the energy model and 

determine power distribution and energy flow in its dynamic structure for specific data. 
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5. The solution of the energy model of power distribution in a mechanical system 

with a dynamic vibration absorber 

The above models were solved usingnumerical simulation implemented in the 

MATLAB/simulink environment. An original simulation programme called SPED was 

developed for this purpose. The programme makes use of the Elementary Processor of 

Energy Flow MWD, which implements two principles: the First Principle of Power 

Distribution in a Mechanical System (PPDiMS) and the First Principle of Energy Flow 

in a Mechanical System (FPEFiMS) [2, 3, 4].  

Example analytical calculations were done for the following data: 

M = 10 kg, k2 = 3948 N/m, c2 = 1.257 Ns/m, m = 1 kg, 

k1 = 3.948E+004 N/m, c1 = 252.6 Ns/m, F(t) = 100 sin [2πf(t)t] 

The SPED programme enables a synchronous solution of the mathematical model of 

the system's motion, power distribution and energy flow in the mechanical system.  

Figure 2 shows the results of the simulation of the dynamics of the system of interest, 

comparing values of acceleration, velocity and displacement of the reduction points of 

the dynamic vibration absorber and the main system. Response characteristics were 

obtained by inducing the motion of the main system through a sinusoidal driving force 

with amplitude of 100 N and with a frequency varying at the rate of 1 Hz/s.  

Analysis of all kinematic quantities indicates mutual interactions between the 

subsystems. The effect of the main subsystem on the dynamic vibration absorber is 

evident for all characteristics once the driving frequency reaches the resonant frequency 

of the main system and is manifested by extended characteristics of all kinematic 

quantities. The strong effect of the dynamic vibration absorber is especially evident in 

the characteristics of the main subsystem. One significant change is manifested by 

reduced values of all kinematic quantities for a frequency of 10 Hz, which the absorber 

was tuned to. It is precisely the purpose of the dynamic vibration absorber, which 

ensures stabilization of the main subsystem's motion by reducing its vibration 

amplitudes. 

To facilitate comparative analysis of the motion of the main(stabilized) subsystem, 

Figure 3 shows dimensionless dynamic characteristics of vibration amplitudes relative to 
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the static deflection of the main subsystem. The horizontal line at a height of 1 divides 

the chart into two sections: the area of amplified vibrations of the main subsystem for 

values greater than 1 and the area of vibration elimination for values less than 1. 

][
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where:  Fz0 – reduced amplitude of the driving force inducing the motion of the main 

subsystem, k1 – reduced coefficient of elasticity of the main system.  

Results of the dynamic analysis for the main mechanical system with a dynamic 

vibration absorber 
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Figure 2. Results of the dynamic analysis of a mechanical system (stabilized) with a 

dynamic vibration absorber during a harmonic test with a driving force 

F(t) = 100 sin [2πF(t)] with a constant rate of frequency switching f = 1 Hz/s in the 

range 0-20 Hz. 
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Figure 3. Dimensionless characteristics of amplitude and frequency of the 

mechanical system with a dynamic vibration absorber 
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Analysis of Figure 3 indicates that the frequency band where vibration elimination 

occurs in the main subsystem is very narrow and its middle lies at 10 Hz, which is the 

frequency the absorber was tuned to.The vibrations of the main subsystem were reduced 

by 89.3% relative to the static deflection that would be produced if a static force with an 

amplitude equal to that of the driving force was applied to it.This means that the 

dynamic coefficient for a frequency of 10 Hz amounts to 0.107. It is a well-known fact 

that an absorber eliminates the amplitude of vibrations at a specific frequency, which 

makes it a selective absorber. This limits the application of the absorber to machines and 

devices that operate at constant (stabilized) frequency. 

6. Amplitude and frequency characteristics of powers of structural forces in a 

mechanical system with a dynamic vibration absorber  

The above properties of a dynamic vibration absorber were also confirmed by a novel 

dynamic analysis in the domain of power distribution of structural forces acting at 

reduction points.Figure 4 shows instantaneous powers of inertial, dissipative and elastic 

forces as functions of frequency in the range 0-20 Hz. In other words, these are 

amplitude and frequency characteristics of powers for the above mentioned structural 

forces.  

 

The distribution of instantenous power at the reduction point of the main mechanical 
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Figure 4. The distribution of instantaneous power in the dynamic structure of 

the(stabilized)mechanical system with a dynamic vibration absorber during a harmonic 

test with a constant rate of switching frequency f = 1 Hz/s 

The figures indicate that the power of structural forces in the main subsystem for the 

frequency of 10 Hz (effective operation of the absorber) is close to 0 and amounts to: 

Nbg(10 Hz) = 0.2 [W], Nstg(10 Hz) = 0.125 [W] and Nspg(10 Hz) = 0.114 [W]. This 

means that the rate of energy flow is very low and suspension elements of the main 

The distribution of instantenous power at the reduction point of the dynamic vibration 

absorber in [W] 
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subsystem are exposed to little dynamic load.Fatigue depends on the amount of energy 

transferred through structural elements of the suspension of the main 

(stabilized)subsystem. 

7. The effectiveness of eliminating energy flow in a stabilized subsystem 

The effectiveness of eliminating energy flow in a stabilized subsystem by means of a 

dynamic vibration absorber can be expressed in the form of a dimensionless 

characteristic of elasticity, which relates the power of elasticity at both reduction points 

to the maximum power at the frequency for which the power of elasticity in the main 

subsystem is the smallest – Fig. 5.  

Figure 5 shows the factor by which the power of elasticity is reduced when the 

absorber reaches the point of its effective operation; the factor reduction is expressed as 

a ratio of maximum power of energy characteristics obtained in both systems to the 

maximum power of elasticity in the main subsystem observed at the driving frequency, 

i.e. at the point of elimination. The chart shows a high degree of power reduction, which 

confirms the specific effect in which the subsystem of the dynamic absorber affects the 

main subsystem (stabilized) in the domain of power.A properly tuned dynamic vibration 

absorber effectively eliminates energy flow in elastic elements of the suspension of the 

main subsystem. A comparison of both characteristics of instantaneous powers of 

elasticity clearly reveals that this kind of power is neutralized by the dynamic absorber. 

In the frequency band where elimination occurs, instantaneous elastic power reaches a 

maximum value, which is 872 times greater than the peak power obtained for 

instantaneous elastic power in the main subsystem (stabilized). 
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Figure 5. The reduction factor of the power of elastic forces in a mechanical system 

with a dynamic vibration absorber expressed as a function of the ratio of the driving 

frequency to the maximum instantaneous power obtained for optimal parameters of 

the absorber 

It can also be concluded that in the design of a dynamic vibration absorber one 

should ensure that its elastic element is not exposed to stress exceeding permissible 

values.  

872 

432 346 
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Elastic power can be regarded as a measure of fatigue load exerted on suspension 

(elastic) structures of the main subsystem. A dynamic absorber contributes to increasing 

the durability and reliability of the suspension of the main (stabilized)subsystem. 

8. Conclusions 

Based on the results of energy analysis of the mechanical system with a dynamic 

vibration absorber, one can formulate a few important conclusions. 

1. The dynamic analysis conducted in the study explains the phenomenon of power 

distribution and energy flow in a mechanical system with a vibration absorber. 

2. The energy analysis has demonstrated a considerable reduction in the flow of all 

kinds of energy in the stabilized subsystem for the selected frequency which the 

vibration absorber was tuned to.  

3. The optimal energy flow in the main (stabilized) subsystem depends on its damping 

ratio. 

4. The dynamic absorber absorbs energy introduced into the system by the driving force 

in the optimal range of vibration elimination and has a strong effect on the main 

(stabilized) subsystem by reducing the flow of energy transferred to it.  
5. The elimination of the flow of elastic energy in the main subsystem and in the 

absorber, which was computed in relation to the maximum instantaneous elastic 

power for the optimal frequency of vibration elimination, amounted to, respectively: 

in the main system – 432, and in the subsystem of the absorber – 872. 
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Abstract 

The article continues the analysis presented in the article „Power distribution in anti-vibration gloves” [6], 
which described the approach adopted to construct an energy model of the Human – Glove – Tool system 

(H – G – T). The outcome of the analysis was the power distribution calculated only for the anti-vibration 
glove. This article continues the energy analysis for another subsystem of the H – G – T system – the human 

physical model. The energy method was also used to calculate the power distribution in its dynamic structure 

in order to account for interactions between the elements of the H – G – T system. The results obtained in the 
study indicate that the power distribution in the human physical model and in the glove model is completely 

different. 

 

Keywords: biomechanical system, hand-arm vibrations, power distribution, energy method 

 

1. Introduction 

Every physical model corresponds to the real system in terms of key features selected by 

the researcher, which are relevant for a given research problem. At the beginning of the 

modelling process one always starts with a number of simplifying assumptions, which, 

however, should not lead to approximations that distort the modelling goal. Ideally, one 

should only introduce simplifications that result in a simple model and facilitate the 

process of drawing conclusions while providing an accurate representation of the real 

system [1]. 

In this case, the problem becomes particularly interesting when one studies the 

discrete models used for analysing the impact of vibrations on the human body [7, 8, 10, 

11]. The models differ from one another in terms of structure, because they are made up 

of a different number of mass, damping and elastic elements. This is a significant 

difference, because there is a relationship between an object's structure and its function. 

It should be emphasized that it is a cause and effect relationship. Hence, only models 

displaying structural similarity can guarantee the most reliable information about the real 

system [9]. It follows, then, that one should not create models with arbitrary structures 

that represent the real system's response only approximately. 

The problem in question is important when one wants to determine the strain exerted 

on the dynamic structure of the model. The reason why this is a significant consideration 

is because this value should properly reflect the strain exerted on the real system. In this 
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case, we use the response generated by the system, of course, but we also take into 

account the model's structure and the value of its dynamic parameters. 

In the case analysed in the study it is assumed that the model is an energy 

transformation system. A similar approach, though applied to machines, was adopted by 

Cempel [2, 5], who described it in his works. In this article the approach is combined 

with the energy method implemented according to the theory developed by Dobry [3, 4]. 

The aim of the analysis was to determine the degree of difference between the load 

exerted on the dynamic structures of the human physical model and glove model. This 

assessment was based on three kinds of powers identified theoretically and related to the 

forces of inertia, dissipation and elasticity. This made it possible to determine which of 

the two subsystems of the H – G – T system was exposed to a higher dynamic load. 

2. The human energy model 

The dynamic load of the human physical model, which is a component of the H – G – T 

system, was calculated using the energy method. The H – G – T system was composed 

of the human physical model and the glove model specified in the ISO 10068:2012 

standard [11]. 

Using the energy model of the H – G – T system, it is possible to identify the power 

distribution in the dynamic structure of the human physical model. A detailed 

description of the process of constructing the energy model and the application of the 

First Principle of Power Distribution in a Mechanical System [3, 4] is presented in 

another article [6]. The energy model of the H – G – T system (Fig. 1) represented by 

equations of power, is given by [6]: 

j = 1,     00110110010

2

010000  zzkzzczzkkzcczzm   

(1) 

j = 2,      10110111321
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The energy method makes it possible to determine the dynamic load for each of the 

subsystems of the H – G – T system, taking into account the influence of the other 

subsystems. This article focuses on only one subsystem, i.e. the human body, which was 

analysed by means of the energy method. 

For this purpose, one should isolate from the energy model for the whole dynamic 

structure of the H – G – T system the power introduced into the human physical model. 

Consequently, in the following calculations it is necessary to take into account only 
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those dynamic parameters that were used to model the behaviour of the human body (the 

part marked off in Figure 1). The dynamic parameters for the human physical model and 

the glove model, i.e. mi, ki, ci are specified in the ISO 10068:2012 standard [11]. 
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where:  

m0, m1, m2, m3, m4 

k0, k1, k2, k3, k4 

c0, c1, c2, c3, c4 

dynamic parametersof 

the human model 

m5, m6, m7, m8 

k5, k6, c5, c6 

dynamic parametersof 

the glove model 

mT – tool mass 

Reduction points: mRT= m5 + m6 + mT; 

m3R = m3 + m7; m4R = m4 + m8. 
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Figure 1. The physical model of the biomechanical H – G – T system, obtained by 

combining the physical models from the ISO 10068:2012 standard [11] 

with the tool model 
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RMS values of power, calculated as a sum of powers at all points of reduction for the 

human model are defined as follows: 

– the power of inertia expressed in [W]:  

        tzzm
t

tzzm
t

tzzm
t

P

ttt

d
1

d
1

d
1

0

2

222

0

2

111

0

2

000INEH
  

    tzzm
t

tzzm
t

tt

d
1

d
1

0

2

444

0

2

333     

(2) 

– the power of dissipation expressed in [W]:  
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– the power of elasticity expressed in [W]:  
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3. The results of the energy method 

In the case under consideration the energy model was solved for the same conditions as 

in the previous article [6]. The biodynamic model of the H – G – T system was exposed 

to a sinusoidally varying driving force F(t) with an amplitude of 115 N. The analysis was 

conducted assuming the value of frequency f = 20 Hz and tool mass mT = 6 kg. As a 

result, it was possible to compare power distributions for the human model and the glove 

model. 

The energy model was solved using numerical simulation for time t = 100 seconds. 

Integration was carried out using algorithm ode113 (Adams) with a tolerance of 0.0001. 

Simulations were implemented in the MATLAB/simulink environment with integration 

time steps ranging from a maximum value of 0.0001 to a minimum of 0.00001 second. 

Figure 2 shows the structural power distribution for the human physical model and 

the glove model. The results for the glove model come from the previous article [6]. In 

the case of the human physical model and the glove model the percentage share of each 
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type of power was calculated by relating the each type of power to the total power, equal 

to the sum of power generated in the two subsystems. The relationship can be expressed 

by the following formula: 

%100
ELAGDISGINEGELAHDISHINEH

Z
Z 




 PPPPPP

P
S i  (5) 

where: 

iPZ  – RMS value of the power of inertia, dissipation or elasticity determined at all 

points of reduction for the given model, 

iP ZG  – RMS value of the power of inertia, dissipation or elasticity determined at all 

points of reduction for the glove model [6], 

iP ZH  – RMS value of the power of inertia, dissipation or elasticity determined at all 

points of reduction for the human model (2) ÷ (4). 
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Figure 2. The structural power distribution of forces for the human model 

and the glove model [6] for the operating frequency of the tool f = 20 Hz 

The results shown in Figure 2 indicate that the total power determined for the human 

model and the glove model for the operating frequency of the tool f = 20 Hz is equal to 

13 W. The resulting value can be further decomposed into two total powers of forces 

introduced into both subsystems, i.e. for the human model and the glove model. The 

energy method demonstrated that the strain exerted on the dynamic structures in the 

analysis was different. It is worth noting that the total power for the human model is over 

3.81 times larger than that calculated for the glove model. 

More importantly, the results indicate that the power distribution computed for both 

models is completely different. This is reflected by the percentage share of each kind of 

power in each subsystem. For the glove model, the powers are ordered as follows: the 
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power of dissipative forces – 20.56%, the power of inertial forces – 0.15% and the power 

of elastic forces – 0.03%. In the case of the human physical model the order is 

completely different. The contributions of the three kinds of power are ordered as 

follows: the power of elastic forces – 60.90%, the power of dissipative forces – 15.84% 

and the power of inertial forces – 2.51%.  

It is worth noting that only one kind of force is comparable in quantitative terms. 

Quantitative comparison of powers between the models is presented in Figure 3. 
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Figure 3. Quantitative comparison of three kinds of powers between the human model 

and the glove model for the operating frequency of the tool f = 20 Hz 

The results shown in Figure 3 indicate that the only kind of power that is 

quantitatively comparable is the power of dissipation. More importantly, it is the only 

kind of power that is greater for the glove model than for the human model. The 

comparison results are quite different the powers of inertia and dissipation: in this case 

the factor change is equal to 16.61 for the power of inertia and 1928.15 for the power of 

elasticity. The values of the two kinds of forces computed for the dynamic structure of 

the tool are exactly as many times smaller than the results obtained for the structural 

human model. 

4. Summary 

The study has resulted in computing the power distribution for the human model, which 

is part of the biodynamic H – G – T system. More importantly, the results provide the 

basis for a comparative assessment of this subsystem with the values obtained for the 

anti-vibration glove. In this way it was possible to demonstrate that out of the two 

subsystems of the H – G – T system, it is the human operator who is exposed to more 

dynamic load. The results indicate the human dynamic structure receives 3.81 times 

more load than the glove. 
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Moreover, the analysis conducted in the study reveals that the disparate character of 

the load exerted on the two subsystems of the H – G – T system. The dynamic structure 

of the anti-vibration glove experiences a loss (dissipation) of energy, or its conversion 

into heat. In the human physical model, the dominant power component is related to the 

forces of elasticity. This is important because the computed power of forces can be 

related to specific changes in the human body [4]. The power of elastic forces should be 

linked to elastic elements in the human body. It should be emphasized that the elements 

of the human biological structure exposed to the greatest amount of dynamic stress are 

tendons, joints and muscles. When people are exposed to vibrations, it is these body 

parts that are adversely affected first and show pathological changes. 

In the following stages of research the analysis will be extended to include other 

selected operating frequencies of the tool. As a result, curves of factor changes will be 

computed to enable a quantitative comparison of the powers of inertia, dissipation and 

elasticity between the different models. On this basis it will be possible to assess changes 

in the structural power distribution of forces in the subsystems of the H – G – T system 

in terms of the operational frequencies used in power hand-held tools. 

Acknowledgments 

The study was partly financed by the Ministry of Science and Higher Education as a 

project entitled: Energy informational considerations of vibroacoustics, diagnostics 

and biomechanics of systems. 

Study code: 02/21/DSPB/3465 

References 

1. R. H. Cannon jr., Dynamika układów fizycznych, Wydawnictwa Naukowo-

Techniczne, Warszawa 1973. 

2. C. Cempel, Minimalizacja drgań maszyn i ich elementów, w: Współczesne 

zagadnienia dynamiki maszyn, Ossolineum, Wrocław 1976. 

3. M. W. Dobry, Optymalizacja przepływu energii w systemie Człowiek - Narzędzie - 

Podłoże, Ph.D. Thesis, Poznan University of Technology, Poznan 1998. 

4. M. W. Dobry, Podstawy diagnostyki energetycznej systemów mechanicznych 

i biomechanicznych, Wydawnictwo Naukowe Instytutu Technologii Eksploatacji – 

PIB, Radom 2012. 

5. Z. Engel, W. M. Zawieska, Hałas i drgania w procesach pracy: źródła, ocena, 

zagrożenia, CIOP – PIB, Warszawa 2010. 

6. T. Hermann, M. W. Dobry, Power distribution in anti-vibration gloves, Vibrations 

in Physical Systems, 27 (2016) 115 – 122. 

7. A. M. Książek, Analiza istniejących modeli biodynamicznych układu ręka – ramię 

pod kątem wibroizolacji człowieka – operatora od drgań emitowanych przez 

narzędzia ręczne, Czasopismo Techniczne, 2 (1996) 87 – 11. 

8. S. Rakheja, J. Z. Wu, R. G. Dong, A. W. Schopper, A comparison of biodynamic 

models of the Human hand-arm system for applications to hand-held power tools, 

Journal of Sound and Vibration, 249(1) (2002) 55 – 82. 



98 

9. B. Żółtowski, Badania dynamiki maszyn, MARKAR – B. Ż, Bydgoszcz 2002. 

10. ISO 10068:1998, Mechanical vibration and shock – free, mechanical impedance of 

the human hand-arm system at the driving point. 

11. ISO 10068:2012, Mechanical vibration and shock – mechanical impedance of 

the human hand-arm system at the driving point. 



Vibrations in Physical Systems Vol. 27 (2016) 

An Analytical-Numerical Approach to Analysis  

of Large Amplitude Vibrations of Slender Periodic Beams 

Łukasz DOMAGALSKI 

Department of Structural Mechanics, Łódź University of Technology  

al. Politechniki 6, 90-924 Łódź, Poland, lukasz.domagalski@p.lodz.pl 

Abstract 

The paper is devoted to analysis of geometrically nonlinear vibrations of beams with geometric and material 

properties periodically varying along the axis. The 1-D Euler-Bernoulli theory of beams with von Kármán 
nonlinearity is applied. An analytical-numerical model based on non-asymptotic tolerance modelling approach 

and Galerkin method is applied. The linear natural frequencies and mode shapes are determined and the results 

are confirmed by comparison with a finite element model. Forced damped vibrations analysis in the large 
deflection range is performed to illustrate complex behaviour of the system. 

 

Keywords: nonlinear vibrations, periodic beams, averaging, tolerance modelling  

 

1. Introduction 

Structures with physical properties arranged periodically or almost periodically in the 

body domain are often found in engineering and in the nature. Properly designed, they 

have many advantages, such as favourable mass to stiffness ratio. Furthermore, 

considering problems of dynamics, we can point out the frequency filtering properties of 

such structures, i.e. existence of frequency band gaps. 

In this paper, vibrations of beams with periodically varying geometric and material 

properties along the longitudinal axis are considered. Equations of motion of such 

structures have highly oscillating, periodic, often non-continuous coefficients. 

 

 

Figure 1. A fragment of a periodic beam 

There are numerous special techniques in analysis of periodic media, many of them 

based on strict mathematical asymptotic homogenization [1]. Extensive work has been 

done in homogenization of periodic beams, cf. [4]. The theoretical foundation of the 

analytical-numerical model used here is the non-asymptotic tolerance modelling 

approach to analysis of microstructured periodic or almost periodic media. It is based 

mainly on the concepts of slowly-varying and tolerance periodic functions, and the 
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indiscernibility relation, cf. [6]. The resulting partial differential equations with constant 

coefficients are then transformed into a set of ordinary differential equations using 

Galerkin method and then numerically integrated via the Runge-Kutta-Fehlberg method. 

The resulting model is an extension of a simplified one, presented in [3]. The new 

concept is the notion of a weakly slowly-varying function, cf. [5]. Some of the results of 

analysis geometrically nonlinear equilibrium problems of thin periodic plates via the 

tolerance modelling are confirmed in [2]. 

2. Equations of motion 

The object under consideration is a linearly elastic, piecewise-prismatic beam. Let Oxyz 

be an orthogonal Cartesian coordinate system, the Ox axis coincides with the axis 

of the beam, the cross section of the beam be symmetric with respect to the plane 

of the load Oxz, the load acts in the direction of the axis Oz. The beam is assumed 

to be made of small repetitive elements, called periodicity cells, each of which is defined 

as ≡[l/2,l/2], where l<<L is the length of the cell and named the microstructure 

parameter. 

The assumptions of the Euler-Bernoulli theory of beams with von Kármán terms 

serve as a basis. The effects of axial and rotational inertia are neglected, as we 

investigate slender elements and we are interested in analysis of transverse vibrations. 

Let k=k/xk be the k-th derivative of a function with respect to the x coordinate. Let the 

transverse deflection, the longitudinal displacement, tensile and flexural stiffness, the 

damping coefficient, mass of the beam per unit length, transverse load and dissipative 

force by w = w(x,t), u = u(x,t), EA = EA(x), EJ = EJ(x), c = c(x), μ = μ(x), q = q(x,t), 

p = p(x,t), the system of nonlinear coupled differential equations for the longitudinal 

displacements u0 and the transverse deflection w can be written as: 
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 (1) 

The coefficients EA, EJ, μ, c, and in some cases the load q, are highly oscillating, 

often non-continuous functions of the x coordinate. 

3. Introductory concepts and basic assumptions of the tolerance modelling 

To become acquainted with the basics of the method, the reader is referred 

to the book [6]. Here, only the fundamental concepts are presented. 

Let (x) = x + , })(:{  xx  be a cell with centre at x . 

The averaging operator for an arbitrary integrable function f is defined by: 
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It is assumed that each of the unknown displacements w and u can be decomposed 

into its averaged and fluctuating part, the latter of which is a finite sum of products 

of fluctuation shape functions (FS) and fluctuation amplitudes: 
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where the functions ),()(),( 2  d
A WSVVW , ),(),( 1  d

K SVTU  are new basic 

unknowns, being weakly slowly-varying or slowly-varying functions in x; the fluctuation 

shape functions ),()( 2  d
A FSh , ),()( 1  d

K FSg  are postulated a priori in every 

problem under consideration. The new basic kinematic unknowns W() and U() are 

called the macrodeflection and the in-plane macrodisplacements, respectively; VA() and 

TK() are additional kinematic unknowns, called the fluctuation amplitudes. 

4. The averaged equations 

4.1. The tolerance model 

After substitution the micro-macro decomposition (3) into equations (1), the next step 

of modelling is averaging these equations over an arbitrary periodicity cell with weights 

1, hA and gK. After some manipulations we arrive at the following system of equations:
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(5) 

where the averaged axial forces ˂NF(y)˃, F(y) = {1, ∂hA, ∂hA∂hB}, are independent of x: 
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(6) 

Equations (4-5) with denotations (6) stand for a system of 2+N differential equations 

for the macrodeflection W() and for its fluctuation amplitudes VA(). As the axial inertia 

terms are neglected, the axial displacement U() and its fluctuation TK() 

can be eliminated. The coefficients of these equations are constant, some and of them 

depend on the size l of the periodicity cell. Note that the elimination of axial 
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displacement dependent terms is possible only when end displacements are restrained, 

but not necessarily equal to zero. 

4.2. The tolerance-asymptotic model 

In cases when we restrict ourselves to investigate the low frequency vibrations, we can 

pass with the periodicity cell length to zero, l → 0. Then, some of the coefficients of 

equations (4)-(5) vanish. Introducing the following denotations: 
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equations of the tolerance-asymptotic model take the form: 
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The usefulness of the above formulation is restricted to analysis of long-wave modes, 

for which the length scale effect is not of high importance. Nevertheless, in many 

practically important issues such approximation is acceptable. 

5. Applications 

Let us investigate a piecewise-prismatic beam of length L, and periodically variable 

cross-section, as it is shown in Figure 2. The material of the beam is elastic 

and homogeneous. 

L

periodic boundary conditions

l l

αl

l

hM ×bM
hR ×bR hM ×bM

(a)

(b) (c)

 

Figure 2. Scheme of the analysed beam (a), a periodicity cell (b), 

and periodic boundary conditions (c) 

The fluctuation shape functions were obtained from a finite element analysis 

of a two-cell system. Each subsection of a periodicity cell was divided into two elements 

based on Hermite polynomials and the periodic boundary conditions were assumed, 

as indicated in Figure 2(c). The obtained mode shapes can be divided into two groups 

of even (ESF) and odd (OSF) shape functions, cf. Figure 3. 

The solutions to the tolerance model and the load were assumed as finite sums: 
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where the functions Xm and YA
n were chosen to satisfy the boundary conditions 

of a simply supported beam: 
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That leads to the following system ordinary differential equations of second order: 
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NL  (11) 

After dropping the nonlinear, damping and forcing terms the linear natural 

frequencies and mode shapes are determined from analysis of the generalized eigenvalue 

problem. The results of comparison with a full finite element model of a beam 

are presented in Section 5.1. 

Then, the nonlinear model based on the asymptotic approximations (8) is applied 

in analysis of damped forced vibrations. It is justified only when the forcing frequency 

is of the order of the few lowest natural frequencies of the beam. The analysed equations 

and used denotations are given by formulas (12) and (13), respectively.  
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The results of analysis are briefly described in Section 5.2.  
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Figure 3. The first four modes of a two-cell system used as fluctuation shape functions 
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5.1. Natural linear frequencies and mode shapes 

The object of this section is to perform a limited confidence check of the model 

accuracy. The analysed beam (cf. Figure 2) has length L = 1.0 m, the elastic modulus 

is E = 205 GPa, the mass density ρ = 7850 kg/m3. The cross section is rectangular: 

bM = bR = 10 mm, hM = 5 mm, hR = 10 mm, other geometric parameters of the cell 

are l = 1/10 m, α = 1/2. 
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Figure 4. Comparison of first 51 (left) and first 21 (right) natural frequencies obtained 

from tolerance (closed circles) and finite element model (open circles) 
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Figure 5. Comparison of chosen natural modes of considered beam obtained from 

tolerance (TA - dotted lines) and finite element (FE - solid lines) model. 

The first four of 23 modes of a two-cell assemblage used as fluctuation shape 

functions are shown in Figure 3. For comparison, a finite element model of the full beam 

has been formulated. The natural frequencies and mode shapes were determined 

from the equation det(K0 - ω2M)=0, cf. (11). Figure 4 presents the comparison between 

tolerance modelling (TA) and finite element (FE) results for first 51 frequencies and 
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its close-up in the range of first 21 frequencies, where the lower band-gaps 

are more visible. The 3rd, 6th, 9th, 10th, 20th and 21st natural modes obtained from both 

models are depicted in Figure 5. The results are in good agreement. It has 

to be mentioned that all the upper and lower boundaries of band gaps correspond 

to the first (n=1) modes of fluctuation amplitudes, cf. relationships (9) and (10). 

The proposed model gives satisfactory results not only in the low frequency range. 

 

 

Figure 6. Backbone and amplitude-frequency curves 

 

Figure 7. Bifurcation diagram of central deflection w versus forcing amplitude f0 

5.2. Nonlinear vibrations analysis 

Let us consider a problem of forced damped vibrations of a beam introduced 

in the beginning of this section, governed by the equations (12). The material 

and geometric parameters remain the same, although three cases were considered here: 

a) α = 4/5, hR / hM = 13/8; b) α = 1/2, hR / hM = 2; c) α = 1/5, hR / hM = 3. That is, the total 
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mass of the beam is kept constant, but the effective bending and axial stiffness is: 

Deff = {55.259; 37.963; 26.538} Nm2, and Beff = {1.481; 1.367; 1.196}×107 N, 

and the first natural linear frequencies are ω1 = {95.617; 79.253; 66.263} rad/s. 

The coefficient of the external damping was assumed to be c = 2.5 Ns/m. 

First, the one-term approximation of to the equations (12) has been used to determine 

the backbone curves and amplitude-frequency response curves shown in Figure 6. Light 

forcing amplitude (f0 = 4.25) and forcing frequency near the fundamental frequency 

was assumed. Next, five-term approximation to these equations has been applied 

in analysis of long-term forced vibrations for case (b). The forcing frequency is equal 

to the first natural frequency of the beam. The bifurcation diagram with forcing 

amplitude f0 as a parameter is displayed in Figure 7. Complicated behaviour 

of the system is exposed, including periodic oscillations, symmetry breaking and saddle-

node bifurcations, as well as period-doubling routes to chaos. More detailed analysis 

of the results will be presented and discussed in forthcoming papers. 

6. Conclusions  

It can be concluded that the presented model properly describes the crucial dynamic 

characteristics of beams with periodic structure and it can be used as a reliable tool in 

parametric analysis of vibration problems. The advantage of proposed approach is that it 

allows for the construction of models of low degree of freedom number. 
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Abstract 

The paper is devoted to the dynamical modelling of the hexapod robot walking on a flat and hard ground. 

The main goal is to determine time series of reaction forces acting on individual legs of the robot during tripod 

gait often used both by the six-legged insects as well as mobile walking robots found in engineering 
applications. The movement of the considered robot is realized by the kinematic excitation of its legs using the 

so-called Central Pattern Generator (CPG) method. The paper demonstrates that there are different contact 

forces and overload acting on the robot, resulting from different models working as a CPG. The mentioned 
forces belong to the important issues that should be taken into account when the robot locomotion on the 

unknown terrain is planned. 

 

Keywords: Multi-legged robot, six-legged robot, hexapod, tripod gait, contact forces, reaction forces 

 

1. Introduction 

Legged locomotion is the most common locomotion form in nature and numerous 

animals species use this method for travelling on our planet. For many researchers, 

it became the inspiration for the construction of walking machines for engineering 

applications [1,2]. It should be noted that there are lots of biological inspirations and 

constructed robots in the scientific literature (including hexapod-type robots), and 

interesting state-of-the-art in this area can be found in recent paper [3]. Lately, also 

eight-legged robots have become popular, for instance a biomimetric robot called 

Scorpion [4], or searching and rescuing robot Halluc II [5]. The mentioned eight-legged 

robots are popular and usually studied based on the six-legged walking machines. 

Hexapod robots, due to their simplicity, statical and dynamical stability as well as due to 

large configuration of various possible gaits (described by the so-called MhGee formula 

[6]) have been studied by many researchers over the past decades. However, 

in comparison to the wheeled vehicles, legged locomotion is characterized by more non-
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uniform distribution of reaction forces acting between the mentioned mobile machines 

and the ground. Namely, in the case of wheeled motion, usually all the wheels touch the 

ground at the same time, and the appropriate contact pressure distribution is almost the 

same in each phase of the machine movement. In turn, in the case of the legged 

locomotion, reaction forces between the ground and legs forming the support polygon of 

the robot vary in a periodic manner. In addition, fluctuations of the robot gravity center 

have a significant impact on the reaction forces between the legs of the robot and the 

ground, due to present additional dynamic load resulting from the movement of the 

individual elements of the robot in the gravitational field of the Earth. In the case of 

relatively small contact surfaces of the robot leg tips with the ground and the 

simultaneous transport of an additional mass by the robot, the problem of the reaction 

forces acting on the ground may be significantly important for this system. 

In engineering calculations, the appropriate mathematical models are rarely used, since 

engineers usually employ commercial software, such as SimMechanics module of 

MATLAB [7,8]. This is why in this paper the mentioned problem has been considered in 

more detail by adopting the appropriate dynamic robot model, taking kinematic 

excitation of the robot legs, and focusing on the reaction forces acting along the direction 

of the gravity field. The problem of controlling individual robot legs has been presented 

in our previous paper [10] and in this work is not considered in detail. 

2. Model of the Hexapod Robot for the Tripod Gait 

Figure 1 shows a model of the considered hexapod robot embedded in the gravity field 

with coefficient g , supported by three legs forming the support polygon. The robot 

consists of a body with mass BM  and six identical legs denoted as L1, L2, L3 (on the 

left) and R1, R2, R3 (on the right). Each leg of the robot contains three links with masses 

1m , 2m  and 3m , respectively. In the case of the tripod gait, the robot legs are divided 

into two groups, i.e.: the group A (solid legs L1, L3 and R2) and group B (dashed legs 

R1, R3 and L2). The movements of all robot legs are controlled by the same CPG model, 

however, the signals applied to the group B of the legs (joint angles )(1 tB , )(2 tB , 

)(3 tB ) are out of phase with respect to signals applied to the group A (joint angles 

)(1 tA , )(2 tA , )(3 tA ), with shift phase equal to 180°, and vice versa. For this reason, 

in one phase the robot is supported by the legs from group A, and in another phase - by 

the legs from group B. As a result, ground reaction forces to respective foot robot appear 

on different legs. In addition, due to the symmetry of the considered system, we can 

assume that the reaction forces in legs L1 and L3 are the same, as well as are the reaction 

forces in legs R1 and R3. In the considered case we assume that the robot walks on a 

relatively hard ground. This is why it can be assumed that there is no rotation of the 

robot body, and therefore the corresponding rotational movements and moments of 

inertia of the robot body can be neglected. The presented robot consists of many 

connected parts (including six identical legs). Without loss of generality, and to increase 

transparency of illustration, only one leg has been precisely described in Fig 1. 
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Figure 1. Model of the considered hexapod robot 

 

Equations of motion of the hexapod robot considered in Fig. 1 in y  direction can be 

written as follows 
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Next, taking into account symmetrical distribution of the robot legs and partial 

compensation of their mutual movements, we assume that )(2)( tRtR LARA   and 
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)(2)( tRtR RBLB  . The exact solution to this problem requires consideration of 

additional equations for moments of the forces generated by the individual reaction 

forces, gravity forces acting on the mass centers and inertial forces resulting from 

movements of individual elements of the robot legs in the considered coordinate system. 

This problem requires more complicated numerical algorithm and will be the subject of 

our further research. 

3. Numerical Results 

This section presents numerical simulations obtained with the use of Mathematica 10 

software. Parameters of the considered robot gait are the same as in our previous paper 

[10], namely: the stride length of 60 mm, the stride height of 30 mm. However, 

the mentioned simulations have been obtained for two different periods of the single 

robot stride equal to 2 s and 1 s, respectively. In the first case the average velocity of the 

robot movement in the forward direction is 30 mm/s and in the second one is equal to 60 

mm/s. This approach allows for additional investigation of the influence of robot 

velocity on the estimated contact forces. The aforementioned kinematic excitation of the 

robot legs is realized using four different CPG models based on simple mechanical 

oscillators, namely: Hopf oscillator, van der Pol oscillator, Rayleigh oscillator as well as 

oscillator describing stick-slip vibrations (further referred to as a stick-slip oscillator) 

[10]. Other parameters required for numerical simulations are presented in Table 1. 

 

Table 1. Parameters of the considered hexapod robot 

Quantity Symbol Unit Value 

Mass of the robot body (without legs) BM  kg 2.00 

Masses of the robot leg parts 1m ; 2m ; 3m  kg 0.12; 0.05; 0.15 

Lengths of the robot leg links 1l ; 2l ; 3l  m 0.027; 0.07; 0.12 

Displacements of the mass centers 1a , 2a , 3a  m 0.0135; 0.035; 0.04 

Gravity coefficient g  m/s2 9.81 

 

Figure 2 depicts the trajectories plotted by the robot gravity center (fluctuations )(tyC  

of the robot gravity center in the vertical direction) and trajectories plotted by the tips of 

the robot legs (group A - solid line, group B - dashed line). As can be seen, in the case of 

first three oscillators controlling robot legs, considerable fluctuations of the robot gravity 

center can be observed. These fluctuations have a great impact on the contact forces 

acting on the individual legs of the robot due to its acceleration/deceleration in the 

vertical direction. 
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Figure 2. Fluctuations of the robot gravity center )(tyC  and trajectories plotted by the 

robot legs for the period of the single robot stride equal to 2 s: a) Hopf oscillator; b) van 

der Pol oscillator; c) Rayleigh oscillator; d) stick-slip oscillator. Solid line - group A of 

the robot legs; dashed line - group B of the robot legs 

Figure 3 shows time series of contact forces acting on the robot legs for the period of the 

single robot stride equal to 2 s. Due to the previously adopted assumptions, the largest 

contact reactions forces between the legs and the ground occur in the central legs (L2 

and R2), and this is why only these reactions are presented (reaction forces in the lateral 

robot legs are two times smaller). The presented curves show that the appropriate 

reaction forces oscillate (increase and decrease) around the reaction force resulting from 

the weight of the robot (when none of its components is moved). As can be seen, the 

most frequent oscillations (overloads) occur in the case of using van der Pol oscillator 

and the Rayleigh one as a CPG model. In turn, the lowest fluctuations exist when the 

stick-slip oscillator is applied. Similar conclusions can be achieved considering the 

reaction forces shown in Fig. 4, where the appropriate curves have been obtained for two 

times larger velocity of the robot movement. However, for larger velocities of the robot 

movement, there are larger dynamic overloads and the appropriate reaction forces. This 

occurs due to faster and more frequent oscillations of the robot gravity center and other 

elements of its legs. As can be seen, the stick-slip oscillator does not have this 

disadvantage (there is only slight dynamical overload in comparison to other CPG 

models). 
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Figure 3. Time series of the reaction forces for the period of the single robot stride equal 

to 2 s: a) Hopf oscillator; b) van der Pol oscillator; c) Rayleigh oscillator; d) stick-slip 

oscillator. Solid line denotes )(tRRA , whereas dashed line denotes )(tRLB  

 
Figure 4. Time series of the reaction forces for the period of the single robot stride equal 

to 1 s: a) Hopf oscillator; b) van der Pol oscillator; c) Rayleigh oscillator; d) stick-slip 

oscillator. Solid line denotes )(tRRA , whereas dashed line denotes )(tRLB  
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4. Conclusions 

In the paper, time series of the reaction forces acting on the individual robot legs and 

occurring undesirable dynamic overloads caused mainly by strong fluctuations of the 

center of gravity of the robot are obtained numerically. The robot movement has been 

kinematically excited by different well-known mechanical oscillators working as the 

CPG models, and to simulate the robot locomotion the tripod gait has been chosen. 

The choice of such a type of the robot gait has its justification. First, this type of gait is 

most commonly used by both the six-legged insects as well as six-legged walking 

machines in engineering applications. Second, in the case of the tripod gait, in general, 

at each moment of the robot movement the support polygon is formed only by three legs 

and the corresponding reaction forces are greater than in the case of other gaits (for 

instance, in case of tetrapod gait or wave gait). In addition, the choice of a relatively hard 

ground has also its justification, since this type of surface generates larger reaction force 

and correspondingly greater dynamic overload. In the considered type of gait and 

movement on the hard ground, the largest reaction forces and dynamic overload are 

expected, which justifies the choice to study this kind of the robot gait and this type of 

the ground. Different reaction forces and overload acting on the robot, being the result of 

using different CPG models to control its motion, have been illustrated and discussed. 

However, it should be noted that the obtained reaction forces have been obtained by 

double differentiation of displacements of the gravity centers of individual elements of 

the robot. The exact value of reaction forces at the moment of changing of supported 

legs depends strongly on the stiffness and damping of both the ground and construction 

of the robot. Nevertheless, the obtained simulations allow to compare the generated 

reaction forces for different CPG models which control the robot motion. The obtained 

information can be used in the future for analyzing the strength of the robot legs, being 

important for trouble-free uses and extension of life and operational time of the robot. 

Reaction forces occurring on the contact surfaces between the robot legs and the ground 

belong to one of the most important issues which should be taken into account. 
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Abstract 

The article analyses power distribution in an anti-vibration glove. The glove of interest was modelled in a 

biodynamic model of the Human – Glove – Tool system. The model was a combination of the human model 

and the glove model specified in the ISO 10068:2012 standard and the model of the vibration tool. To 
determine the power distribution in the glove, its energy model was developed. The power distribution in the 

model was determined using numerical simulation in order to show how power was distributed in the dynamic 
structure of the anti-vibration glove. Three kinds of powers were distinguished, which are related to forces of 

inertia, dissipation and elasticity. It turned out that out of the three kinds of powers identified in the anti-

vibration glove, only one is dominant: namely the power of dissipation. 

 

Keywords: biomechanical system, hand-arm vibrations, power distribution, energy method 

 

1. Introduction 

The first important stage of modelling consists in a systematic analysis of the real object. 

One should remember that the researcher's awareness, knowledge and needs affect the 

degree to which he or she simplifies the reality. This implies that the process of 

modelling depends, above all, on the degree of simplification which is applied to the real 

object. What is more, a model always replaces the object of study and only resembles it 

with respect to certain characteristics selected by the researcher [8]. 

A model can be similar to the real object in terms of structure. This means that the 

model represents features of the internal structure which it shares with the real object. 

Another kind of similarity is functional compatibility. Unfortunately, this kind of model 

does not lend itself to a precise assessment of its structure [8]. These facts are especially 

important when one wants to select a model to determine the impact of vibrations on the 

human body. 

Nowadays the human response to vibration can be analysed using of a range of 

discrete human models that are available in the literature [6, 7, 10, 11]. These models 

differ from one another with respect to the number of degrees of freedom, the number of 

components making up the dynamic structure and the way they are connected. In other 

words, all of these models have different structures and differ in the way they transmit, 

dissipate and store vibration energy. In this study the analysis of the impact of vibration 

on the human body is based on the human model from the ISO 10068:2012 
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standard [11], which was used as part of the bigger biodynamic model of the Human –

 Glove – Tool system (H – G – T). 

The approach presented in this article is completely different from those adopted to 

analyse anti-vibration gloves so far. Until recently studies of anti-vibration gloves were 

limited to computing coefficients to measure the effectiveness of vibroisolation [5]. This 

approach only involved comparing system responses and determining factor changes 

between them as a result of applying the anti-vibration glove. What is more, exact 

requirements for anti-vibration gloves are specified in the relevant standards [4, 9, 12]. 

This article, in contrast, describes an analysis of the flow of energy through the 

glove, which was treated as an energy transformation system. A similar approach, 

though applied to machines, was adopted by Cempel, who described it in his 

works [1, 4]. This article, however, describes the idea of analysing the flow of 

vibroacoustic energy related to dynamic properties of the system under consideration, 

which can be used to analyse mechanical and biomechanical systems. The theory 

developed by Dobry makes it possible to switch from the dynamic analysis implemented 

in the domain of amplitudes of kinematic quantities to the energy analysis implemented 

in the power domain [2, 3]. 

The power distribution in the anti-vibration glove was determined using the energy 

method. The aim of the analysis was to check whether the discrete model of the anti-

vibration glove adopted from the ISO 10068:2012 standard [11] has an appropriate 

structure. The energy method consists in identifying three kinds of powers related to 

forces of inertia, dissipation and elasticity. The theoretically determined power 

distribution in the dynamic structure of the glove will make it possible to identify what 

happens to the energy of vibration only in the glove as a subsystem of the entire 

biomechanical H – G – T system.

2. The structure of the energy model 

Figure 1 shows the combined H – G – T biodynamic model. The analysis is based on the 

human and glove models from the ISO 10068:2012 standard [11] The models selected 

are discrete models containing points of reduction connected through damping and 

elastic elements. The values of dynamic parameters for both models, that is mi, ki and ci 

(Fig. 1) specified in the ISO 10068:2012 standard [11]. 

The human model from the said standard was used to determine values of vibrations 

along three directions, i.e. along the „x”, „y” and „z” axes. This article describes a 

simplified case limited to one dominant direction of vibrations, i.e. along the „z” axis, 

which is the most significant one in tests of many tools. 

The H – G – T model must also include a model of the vibration tool. In this case, the 

tool was limited to one concentrated mass mT and a sinusoidally varying driving force 

F(t) acting on the H – G – T system. Hence, the model is assumed to represent a 

hypothetical situation of an operator using a grinder with an unevenly worn-out grinding 

disc. Additionally, the dashed line denotes the subsystem analysed by the energy method 

(Fig. 1), that is the anti-vibration glove. 
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Figure 1. The physical model of the biomechanical H – G – T system, obtained by 

combining the physical models from the ISO 10068:2012 standard [11] 

with the tool model 

In the first step, a mathematical model of the dynamic structure was derived, using 

Lagrange equations of the second kind given by: 
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where: E – kinetic energy of the system, 
jq – generalized coordinates, 

jq – generalized velocities, 
jQ – active external forces, 

jPQ – potential forces, 

jDQ – forces of dissipation, s – the number of degrees of freedom. 

The mathematical model was fed with generalized coordinates. For the model of the 

H – G – T system (Fig. 1), the generalized coordinates were as follows: 

j = 1,     q0 = z0(t)     – displacement of mass m0, 

j = 2,     q1 = z1(t)     – displacement of mass m1, 

j = 3,     q2 = z2(t)     – displacement of mass m2, 

j = 4,     q3 = z3(t)     – displacement of mass m3R, 

j = 5,     q4 = z4(t)     – displacement of mass m4R, 

j = 6,     q5 = z5(t)     – displacement of mass mRT. 

After adopting the generalized coordinates, it was possible to derive differential 

equations of motion for the H – G – T model. The mathematical model in matrix form is 

given by: 
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– matrix of stiffness: 
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The next step in modelling the H – G – T system involved creating the energy model. 

The model was formulated by applying the First Principle of Power Distribution in a 

Mechanical System [2, 3]. The principle enables the switch from the dynamic model to 

the energy model implemented in the power domain. The model was derived using 

differential equations of motions (2). The energy model of the H – G – T system (Fig. 1), 

consists of equations of power given by: 

j = 1,     00110110010

2

010000  zzkzzczzkkzcczzm   

(3) 

j = 2,      10110111321

2

1321111 zzkzzczzkkkzccczzm   

0133133122122  zzkzzczzkzzc   

j = 3,     02442442122122242

2

242222  zzkzzczzkzzczzkkzcczzm 
 

j = 4,     03553553133133353

2

353333R  zzkzzczzkzzczzkkzcczzm 
 

j = 5,     04564564244244464

2

464444R  zzkzzczzkzzczzkkzcczzm 
 

j = 6,      5355355565

2

56555RT zzkzzczzkkzcczzm   

5546546 )( ztFzzkzzc    

The energy model of the H – G – T system was derived using a program 

implemented in the MATLAB/simulink environment in order to compute curves of 

powers of inertia, dissipation and elasticity. The energy method makes it possible to 

analyse each subsystem separately, while taking into account the impact of the other 

subsystems. For this reason, when analysing the energy model for the whole dynamic 

structure of the H – G – T system, one should only consider the part of power which is 

transferred to the anti-vibration glove. In the computations it was necessary to include 

only those dynamic parameters, which were used to model the glove – the fragment of 

the model marked off in Fig. 1. RMS values of powers, calculated as sums of powers at 

all points of reduction in the glove model, were defined as follows: 

– the power of inertia expressed in [W]:  
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– the power of dissipation expressed in [W]:  
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– the power of elasticity expressed in [W]:  
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3. The results of the energy method 

In the study the biodynamic model of the H – G – T system was exposed to a 

sinusoidally varying driving force F(t) with an amplitude of 115 N. The analysis was 

conducted assuming the value of frequency f = 20 Hz, and tool mass mT = 6 kg. 

The energy model was solved using numerical simulation for time t = 100 seconds. 

Integration was carried out using algorithm ode113 (Adams) with a tolerance of 0.0001. 

Simulations were implemented in the MATLAB/simulink environment with integration 

time steps ranging from a maximum value of 0.0001 to a minimum of 0.00001 second. 

Figure 2 presents the resulting structural power distribution in the anti-vibration 

glove. The percentage share of each kind of power was determined by relating it to the 

total power in the glove. The relationship is expressed by the following formula: 

%100
ELAGDISGINEG

Z
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 PPP

P
S  (7) 

where: 

ZP  – RMS value of the power of inertia, dissipation or elasticity determined at all 

points of reduction in the anti-vibration glove. 
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Figure 2. Structural power distribution in the anti-vibration glove 

for frequency of the driving force f = 20 Hz  

The results reveal the power distribution in the dynamic structure of the subsystem 

under consideration. The results presented in Figure 2 indicate that the dominant role of 
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the power of dissipation forces. The percentage share of the power of dissipation for the 

frequency of the driving force f = 20 Hz exceeded 99% of total power. 

This means that the dynamic structure of the glove experiences energy loss 

(dissipation), with kinetic energy being converted to heat. This implies that the amount 

of energy transferred to the human body is limited. In other words, the energy 

method has successfully demonstrated a positive influence of the anti-vibration glove in 

the H – G – T system. Moreover, the dynamic structure of the glove was correctly 

modelled, which is confirmed by the results that are consistent with expectations. The 

study suggests that an anti-vibration glove should be made using materials characterized 

by high energy dissipation. This implies that the glove should be capable of dissipating 

large amounts of energy. 

4. Summary 

The study has resulted in determining the structural power distribution in the anti-

vibration glove for the operating frequency f = 20 Hz. The results indicate the dominant 

role of only one kind of power. It turns out that the power of dissipation accounts for 

over 99% of total power in the glove.  

More importantly, the analysis correctly confirmed the anti-vibration properties of 

the glove. The model structure ensures energy dissipation, which is responsible for 

decreasing the vibration energy transferred to the human body. This property should be 

taken into consideration in choosing materials for the manufacturing of anti-vibration 

gloves. 

Further studies will be devoted to specifying the power distribution in the human 

physical model. Knowing power distributions in these two subsystems will make it 

possible to assess the level of dynamic load they are exposed to. Another goal will be to 

calculate the ratio change in the distribution of the three kinds of powers in the dynamic 

structure of the human and glove model. 
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Abstract 

In this article dynamical properties of auxetic lattice structures will be analysed. Auxetic structures are 
materials, which have negative Poisson’s ratio and some of these have got specific dynamic properties. Their 

dynamic behaviour in the frequency domain will be also shown in this article. The possibility of isolation of 

auxetics will show the factor VTL – Vibration Transmission Loss. 

 

Keywords: auxetics, negative Poisson’s ratio, dynamic analysis, VTL factor 
 

1. Introduction 

Auxetic materials are materials characterized by negative Poisson’s ratio which means 

that they expand during stretching and shrinks during compressing in the transverse 

directions to direction of compressing or stretching force. The Poisson’s ratio (PR) of 

isotropic is between -1 and +0.5. Anisotropic materials have non-bounded range for 

Poisson’s ratio. 

Materials with negative Poisson’s ratio (NPR), at present often referred to as 

auxetics, have been known for over 100 years and the key to this auxetic behaviour is the 

negative Poissons ratio [1]. In early 1900s a German physicist Woldemar Voigt was the 

first to report this property [2] and his work suggested that the crystals somehow become 

thicker laterally when stretched longitudinally, nevertheless it was ignored for decades.  

Gibson [3] in 1982 realized the auxetic effect in the form of the two-dimensional 

silicone rubber or aluminum honeycombs is deformed by flexure of the ribs. The first 

mechanical [4] and thermodynamical [5] models were presented by Almgren in 1985 

and Wojciechowski in 1987. 

Evans et al. paper [6] introduces the term auxetic, from the root word for growth, to 

describe transverse expansion under uniaxial (longitudinal) tensile load. Re-entrant 

foams were reported for the first time by Lakes [7]. A negative Poisson ratio implies the 

substances with negative Poisson's ratio that can be readily compressed but are difficult 

to bend [8]. 
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Nowadays, it is known that negative Poisson’s ratio may also characterize many 

other structures with other shape and geometries [9]. In the literature are described also: 

fibre materials, centre-symmetric or gradient honeycombs, chiral structures, auxetic 

laminates, composites or lattice-like cell structures - sometimes are also designed the 

combinations of this arts of auxetics. All of them have negative Poisson’s ratio. Some of 

these because of their auxeticity exhibit extraordinary dynamic properties and have great 

attention by the scientists from many countries [10-19]. 

Ruzzene et al. [18] in their work have presented the structural and acoustic analysis 

of truss-core beams. They obtained the optimal geometry of truss-core with the best as 

possible acoustic behaviour. Their numerical model was created by employing dynamic 

shape functions derived exactly from the distributed parameter model of beam elements. 

 Joshi et al. [15] in their works has presented dynamic, acoustic analysis of auxetic 

composites and its dependency on geometry or number of single repeated cells of 

material. Structures with negative Poisson’s ratio may have unknown and unexpected 

dynamic behaviour e.g they can be a good isolator or protector from the resonance. The 

parameter which circumscribed isolation properties is Vibration Transmission Loss, 

which shows the range of frequency where the structure doesn’t transmit vibrations. In 

order to determine this factor it is useful to define Vibration Transmission Coefficient τυ. 

The Vibration Transmission Loss (VTL) is given by the formula: 




1
log10

10
VTL  (1) 

where τυ is Vibration Transmission Cofficient (VTC) given by: 
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where:   is frequency [Hz], ),( xu
y

- displacement in y-direction, indices t, b – top 

and bottom layer of auxetic structure. 
t

L  and 
b

L  are lengths of top and bottom boundary 

of structure. 

2. Numerical results 

Auxetic lattice-like structure is designed for the analysis of dynamical properties. The 

structure is built of a repeated unit cell which has geometry parameters as follows: height 

a, width b and parameter c – height of the notch in the bottom. The Poisson’s ratio of this 

cell is negative and equals -0.915. The single cell can be multiplicated and analysed as 

complex 3D structure (see Figure 2). This lattice-like structure was tested to find 

vibration transmission factors. For the simulations the following values were taken: a = 1 

m, b = 0.5 m, c = 0.3 m. 

In order to facilitate the analysis only one quarter of the 3D structure is considered 

The boundary conditions are: constant displacement 0.1 m on the top, on the one side of 
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x-axis, y-axis and bottom - roller boundary and on the rest boundaries - free boundary 

condition. 

 

 

Figure 1. Three-dimensional auxetic unit cell 

 

 

 

Figure 2. Three-dimensional auxetic structure 

 

The results of simulation by the frequency analysis of the auxetic structure are 

presented in Figures 3 and 4. These diagrams can be used to analyse the possibility of 

using the structure to reduce the level of vibrations. 



126 

 

 

Figure 3. Vibration Transmission Coefficient (VTC) of auxetic structure 

 

 

Figure 4. Vibration Transmission Loss (VTL) of analysed auxetic structure 



Vibrations in Physical Systems Vol. 27 (2016) 127 

3. Conclusions  

A finite element model was developed to evaluate the effective properties and dynamic 

response of the auxetic lattice structure. The influence of the parameter structure on 

effective properties and dynamic response (VTL) of structure was investigated. 

To cover a wide range of structural resonances, the excitation frequencies of 

sandwich panels varied from 0 to 1000 Hz. The range of frequency vibration which are 

most damped is around 200 Hz and 600 Hz. The values of Vibrations Transmission Loss 

for these frequencies are 90 and 130 decibels respectively. The numerical experiment 

confirms also the transmission loss of auxetics by some frequencies. 

If the geometry parameters are changing e.g. by increasing the value of c twice - to 

0.15 m – the auxetic effect is smaller: Poisson’s ratio is -0,2. The value of the VTL is 

greater in 0-1000 Hz and dampens vibration better as in the previous case. Minimal 

value of VTL in this situation is about -10 dB for frequency 500 Hz. In this case we 

observe strengthening of vibration. 
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Abstract 

In most cases, while the sound power level of machines and devices is determined, it is assumed that tested 

objects are sound sources which can fit in a so-called reference box. Such an approach takes into account the 
influence of local sources. Although it does not allow their localization, separate noise measurement and 

evaluation. There are devices which have two or more relevant sound sources. In this paper this type of devices 

has been defined as devices with extensive sound sources (DESS). The tested device is a functional unit but its 
local sound sources are distant from each other. The results showed that determining the sound power level 

only is not sufficient for proper parameterization of noise emitted by DESS. 

 

Keywords: devices with extensive sound sources (DESS), sound power level, biomedical devices 

 

1. Introduction  

The determination of acoustic parameters of devices with extensive sound sources 

(DESS), limited only to the sound power level (LWA), may be inadequate to this kind of 

devices. Under the term of DESS we mean the technical object that has the possibility of 

various spatial arrangement of its components. In addition, these components are 

together a functional unit and they can not work separately. In many cases, each of the 

device’s components could be treated as a separate sound source which usually emits 

sound of a different nature. 

Due to the specific design of this kind of devices it is worth mentioning that: 

▪ it is impossible to clearly define what type of measuring surface should be used in the 

procedure of determination of LWA (see Figure 1), 

▪ description of the acoustic features of a device basing only on one parameter, for 

example LWA, will not fully characterize the influence of the device on the 

environment and it will not provide sufficient information needed for creation 

of acoustic maps (by numerical simulations) e.g. in the planned installation place. 
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Figure 1. Examples of microphone positions and measurement surface, 

while determination of sound power level according to ISO 3746 : 2011; a) hemisphere, 

b) parallelepiped surface for a small machine, c) parallelepiped surface for a tall 

machine, d) parallelepiped surface for a long machine [1] 

2. Research methodology 

Vacuum cleaners, sets of pneumatic devices or biomedical devices such as smoke 

evacuators can be examples of DESS. A more accurate parameterization of noise emitted 

by the last mentioned is necessary because of high requirements concerning the acoustic 

climate in areas such as operating rooms. Such devices are used to remove smoke and 

particles carried by it (bacteria, viruses) created during operation or electrosurgical 

procedures. The system typically includes a suction pump unit with air filtration system, 

a working tool (electrocoagulator or electroscalpel) with an air sucking tip and a flexible 

hose connecting the components. The pump and the working tool are usually placed in 

different locations within the operating room, in addition each of the components emit 

sound of a different character (Figure 2). 

It is worth noting that due to the surgeon’s necessity to maintain long-term 

concentration during procedures or surgeries, it is important to limit noise in the 

operational environment. Following recommendations from PN-N-01307: 1994 [2], 

relating to the performance of precision work it can be assumed that the equivalent 

a) b) 

c) 

d) 
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sound pressure level (LAeq) in this case should not exceed 65 dB. It is also worth noting 

that the recommendations for noise in the operating room in the United States are more 

restrictive. According to ANSI / ASA S12.2-2008 [3] LAeq should not exceed 44 dB. 

It should be emphasized that this is only a recommendation not a requirement. The 

results of the research presented by Kaczmarska, Łuczak and Sobolewski [4] have 

shown that the presence of low-frequency noise (even LAeq = 52 dB and LGeq = 62 dB) 

while performing precision work can cause fatigue and somnolence. 

suction pump with  

air filtering system 

flexible plastic hose electroscalpel / electrocoagulator  

with suction tip 

 
 

 

 
 

 

 
 

  

surface sound source, local sources 

possible (low-frequency noise usually 
with poliharmonic character) 

linear sound source 

(broadband noise) 

point sound source  

(broadband noise) 

Figure 2. Components of smoke evacuator an example of DESS and specifics of noise 

emitted by them 

For the measurement an equipment set consisting of Roga R50 microphone (ICP), 

data acquisition module VibDAQ 4+ and DSP structure elaborated in DASYLab® was 

used. An influence of environmental conditions in laboratory was taken into account 

according to ISO 3746: 2011 (A = 54,56 m3/s, K1A = 0,03 dB, K2A = 2,13 dB). 

3. Research results 

The research included the determination and comparison of the LWA (Figure 3) of tested 

device treated as: 

▪ compact arrangement (all components were placed close to each other in a reference 

box in accordance to ISO 3746: 2011), 

▪ extensive sound source; testing was carried with various configurations of the spatial 

arrangement of device’s components, as it occurs in the real conditions in the 

operating room. 

Figure 4 contains sound pressure levels (Lp) in octave bands. The values correspond 

to the levels on the measurement surface of 1m2. The following conclusions has been 

drawn on the basis of comparison of the test results. 

▪ The noise emitted by the suction pump has a low-frequency character (polyharmonic) 

associated with rotational frequency (and its superharmonics) of the electric motor 

(Figure 6). The dominant amplitude components of the noise are included 

in frequency range that does not exceed 500 Hz. 

▪ The noise emitted by the suction tip is a broadband noise covering the frequency 

range from 4 kHz up to 16 kHz. 
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▪ An important data that should be taken into account in the parameterization of noise 

emitted by the device is the radial spectra of the sound emitted mainly by the suction 

pump unit (Figure 5). 

compact arrangement components considered separatelly (as DESS device) 
        

 

 

 
 

 

 
 

     suction pump                     suction tip 

 

Figure 3. Spatial arrangement of components during testing and theirs LWA  

Taking under consideration that components emit noise of different character, 

reduction of the level of emitted noise require an individual approach to each source. 

Another problem is the determination of LWA of device that is characterized by various 

regime of work. Testing should include all operating modes that can occur during 

surgery or chirurgical procedures. This is connected with the necessity of using 

a relatively long averaging time and/or determining the duration of each operating mode 

such as suction, choking airflow, idle. 

 

Figure 4. Noise emitted by tested device treated as compact arrangement and as DESS 

(average acoustic pressure level correspondent to measurement surface of 1m2) 

  noise        barrier 
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LA 

front of the device 
Lp octave 125Hz 
front of the device 
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Figure 5. Radial spectra of noise emitted by suction pump; without load (hose not 

connected), with load (hose and tool connected ) 

Sound power level of the tested device (compact arrangement case) determined 

in accordance to ISO 3746 : 2011 is equal to 68.4 dB. In the case of the machine’s 

components tested separately LWA of suction pump equals 64.3 dB and LWA of suction tip 

equals 63.5 dB. While the total sound power level of both components after recalculation 

would be 67 dB. The difference between the device’s LWA (compact arrangement case) 

and the recalculated total LWA (separated sound sources case) probably results from that 

a part of acoustic energy emitted by the hose is not included. In comparison to other 

potential sources of noise in the operating room [5-8] it can be stated that the noise 

emitted by the tested device can have a significant influence on the acoustic climate 

in the operating room. 

P
re

ss
u

re
 p

 [
P

a]
 

 

 

Frequency f [Hz] 

Figure 6. Narrowband spectrum of acoustic pressure measured 1m above the suction 

pump unit 
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4. Conclusions 

▪ Treating components as autonomous but simultaneously influencing sound sources 

allows obtaining data helpful at the prototype research stage and minimize the noise 

emitted by the each device’s component. Finally, this approach gives the possibility 

of noise reduction in the area of surgeon’s operation. As well as, it allows meeting 

the noise requirements in areas of such a kind. It can be done by e.g. the appropriate 

placement of the device’s components within the operating room. 

▪ An extended data set should include among others: 

­ LWA (total and individual for device’s components, which can be treated as local 

noise source), 

­ radial spectra of noise emitted by device’s components, 

­ typical arrangement of components and operator in installation place  

(e.g. operating room), 

­ duration of typical tasks performed using the device. 

That parameters may allow the creation of reliable acoustic maps of operating rooms 

at the design stage using simulation software. 

▪ The results of the carried out research may be helpful in developing the methodology 

of LWA determination for DESS. 
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Abstract 

Currently there is a wide range of different kinds of power tools on the market. In the case of impact drills the 

major threat to the user’s health are vibration and acoustic impacts. Knowing that the actual drilling conditions 
may vary significantly from standardized conditions. It is important to determine the actual maximum level of 

dangerous factors present during drilling. Furthermore, it is also very important to link that factors to the 

conditions in which they occur. Among many factors affecting the level of vibration of an impact drill, change 
of the working position, the length of the drill bit and the diameter of the drill bit were verified in this paper. 

Verification was based on a comparison of vector-weighted mean values of acceleration of vibrations 

RMSa registered on the handles of the impact drill, while drilling in concrete, under different working 

conditions. 

 
Keywords: impact drill, local vibrations, concrete drilling, drill bit, different working conditions 

 

1. Introduction  

Impact Drills are one of the most common power tools used both professionally and at 

home. The manufacturer's declaration of levels of vibration and noise are taken into 

account in industrial conditions for legal reasons [1]. However, in the case of private use, 

the lack of awareness of safe use can be observed or the threats are just ignored. 

Vibration levels declared by the manufacturers are determined in the specific 

standardized conditions. According to EN 60745 the procedure requires a drill bit 

diameter of 8 mm and a working length of 100 mm. While drilling vertically, downward 

the force acting on the device must be between 120 N and 180 N. [2]. However, the 

actual drilling conditions often significantly differs from the standardized conditions, 

which are the basis of manufacturers’ declarations of vibrations. Therefore, the value  

of acceleration of vibrations given by the manufacturer should be treated with caution.  

Due to the harmful impact of vibration on human health [3,4] the proper selection  

of personal protective equipment, determination of allowable time of exposure or even 

the decision to stop using the device is vital. 

There are a number of factors affecting the level of vibrations emitted by an impact 

drill. These factors can be divided into three groups associated with: 
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▪  machined material and the way of its foundation (concrete, brick, stone, etc.), 

▪  operator’s personal features (physique, experience), 

▪  device and tool (build and additional equipment). 

The factors affecting the level of vibration emitted during drilling were discussed  

in many publications [5-10]. But there is no information about the influence of different 

diameters and working lengths of the drill bit in terms of the measurement 

of acceleration of vibrations.  

2. Measurements 

A series of holes was drilled in reinforced concrete beams (vibration-compacted 

concrete) in the experiment. Drilling was done vertically, downwards and horizontally. 

The operator’s positions are shown on Figure 1. 

  

Figure 1. The stand and the operator while drilling vertically – on the left, while drilling 

horizontally – on the right 

Triaxial vibration transducer ICP 604B31 and SVAN 911A analyser were used  

to register the vibration signal. Spatial orientation of the measurement directions, related 

to a tool, is following: 

▪  the X direction (axis) corresponds to the longitudinal axis of the spindle of the 

drill, 

▪  the Y direction (axis) corresponds to the longitudinal axis of the rear handle  

of the drill (a handle rigidly connected with the tool’s body), 

▪ the Z direction (axis) is mutually perpendicular to the other two [11].  
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During the tests 620W impact drill HITACHI DH 22 PH was used. To determine the 

impact of the forced change of the operator’s position Ø12mm drill was used. In order  

to determine the effect of the diameter of the drill bit the following tools were used: 

Ø8mm, Ø12mm, Ø16mm and Ø20mm. Examination of the effect of drill bit’s diameter 

on the vibration was carried out in the vertical direction, downwards. To determine the 

effect of the length of the drill bit on the values of vibration a set of Ø12 mm drill bits 

was used. The set includes the following bits: 125/165mm, 250/315mm, 400/460mm, 

520/600mm and 900/1000 mm (working/total length). In this case drilling was done only 

in the horizontal direction. 

Each comparison required as constant conditions as possible. One experienced 

operator drilled in a single beam (one for each comparison). The operator was 27-year 

old, 175cm tall and 78kg weight male. The maximum power of the device was used.  

The drilling direction was controlled by laser. In order to eliminate the influence  

of temporary changes in the downforce, the average of multiple measurements was 

adopted as the result. The total measurement time was approximately 300s  

in the comparison of drilling directions, and 180s for the rest. Transient states were 

omitted in the measuring sequences. 

3. Research results 

The results of the measurements are presented below. The following charts show  

the impacts of: forced change of the operator’s position, the length of the drill bit  

and the diameter of the drill bit on the values of vibrations. 
 

  

Figure 2. Acceleration of vibrations of the front handle of the impact drill deepening 

on drilling direction 
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Figure 3. Acceleration of vibrations of the rear handle of the impact drill deepening 

on drilling direction 

As it can be seen in Figure 2. the change of operator’s position due to change  

of drilling direction has no impact on the value of acceleration of vibrations measured  

on the rear handle. The highest vibrations were measured along the x-axis.  

The repeatability of the results determined by the formula (1) equals 97.7%. 

 

    

Figure 4. Acceleration of vibrations of the front handle of the impact drill deepening 

on drill bit length 
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Where RMSa  is the arithmetic mean of RMS_Ha  and RMS_Va , 

RMS_Ha  is vector-weighted mean value of acceleration of vibrations measured 

while drilling horizontally,  

RMS_Va is vector-weighted mean value of acceleration of vibrations measured 

while drilling vertically. 

In the case of the front handle, an increase of acceleration of vibrations was 

observed, what confirms the conclusions of other work [10]. This is caused  

by the change of the angle between the arm and the forearm of the operator’s left hand. 

In the case of vertical drilling the arm is straight. During horizontal drilling, the left arm 

is bent at the elbow (see Figure 1.). The repeatability of results in the case  

of front handle equals 79.3%. 

With the increase of the length of the drill bit an increase of the acceleration  

of vibrations of the rear handle is observed. Maximum vibration values were measured  

along the x-axis. 

    

Figure 5. Acceleration of vibrations of the rear handle of the impact drill deepening 

on drill bit length 

It is impossible to describe the nature of the dependence between the length  

of the drill bit and the values of acceleration of vibrations of the front handle. Initially 

the values of acceleration of vibrations tend to decrease, followed by their increase.  

In the case of the longest drill bits, such high RMSa  values were caused by the buckling 

of the drill bit. The buckling was probably triggered by the action of the downforce, 
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which was misaligned with the drill bit’s axis [12,13]. Verification of exceeding  

the critical buckling force was not possible. 

    

Figure 6. Acceleration of vibrations of the front handle of the impact drill deepening 

on drill bit diameter 

With the increase of the drill bit diameter an increase of the acceleration of vibrations 

of the rear handle is observed. Maximum vibration values was measured in the X axis. 

In this case, the coefficient of determination R2 equals 0.91 which indicates a very strong 

dependence between the level of vibration of the rear handle and drill bit diameter. 

    
Figure 7. Acceleration of vibrations of the rear handle of the impact drill deepening 

on drill bit diameter 
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On the basis of Figure 7. it can be stated that the vibration level measured on the 

front handle does not change with increasing diameter of the drill bit. Vibration values 

are similar in different directions. The measurement results are consistent with previous 

work. [11]. 

In order to meet the paper fundaments the drill bit Ø12×125/165mm was used three 

times (three different beams). The convergence of the results were calculated with the 

use of additional data. Percent convergence of results determined on the basis of formula 

(1) equals 96.41% for the rear handle, and 94.02% for the front handle. The average 

absolute error of the vector-weighted mean value of acceleration of vibrations RMSa   

is 0.9 m/s2, and the average relative error is 7.88%. 

Table 1. The time limit for drilling in different working conditions 

Handle 
direction 

of drilling 

Drill bit description 

Ø8 mm 
Ø12× 
125 mm 

Ø12× 
250 mm 

Ø12× 
400 mm 

Ø12× 
520 mm 

Ø12× 
900 mm 

Ø16 mm Ø20 mm 

right vertical 65.0 min 40.6 min ----- ----- ----- ----- × × 

 
horizontal ----- 42.6 min × 39.7 min × × ----- ----- 

left  vertical × 31.3 min ----- ----- ----- ----- 38.5 min 33.5 min 

 
horizontal ----- × 37.2 min 42.9 min × × ----- ----- 

The table above shows the time limit for drilling in different working conditions in 

relation to Exposure Limit Value (ELV) [1]. The symbol × indicates conditions that do 

not allow the use of the drill without personal protective equipment. In two cases that are 

in bold, RMSa of drill’s handle exceeded the manufacturer's declaration (13.2 ± 1.5 m/s2) 

with maximum uncertainty included. 

4. Conclusions 

There were no changes in the acceleration of vibrations on the rear handle associated 

with the change of the operator’s position and direction of drilling observed. At the same 

time an 30% increase occurred for the front handle. This is connected with forced bend 

of elbow joints in left arm. 

Vibrations of the drill’s handle depend on the length of the drill bit but the nature  

of this dependence is not clear. Vibration levels dangerous for operator and exceeding 

the ELV were observed for the longest drills and it was caused by the buckling  

of the drill bit. 

The change of the drill bit diameter has no effect on the level of vibration of the front 

handle. Yet, the dependence between the change of the drill bit diameter and the level  

of vibration of the rear handle is increasing. 

The increase of the diameter of the drill bit, as well as the change of drilling direction 

and the change of operator’s position from vertical to horizontal extend the time  

of drilling and cause a loss of productivity of the process – both are connected with 

power demand. 
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In practice there may occur a combination of factors at the same time, which will 

result in vibration emitted by the device exceeding the ELV as well as the occurrence  

of health hazard to the operator, despite secure level of vibration declared. In one case 

the acceleration of vibrations of both handles significantly beyond the manufacturer’s 

declaration were measured. 
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Abstract  

A computer program for topological optimization of a rotor for vertical axis wind turbines of various type is 

presented. The tool is based mainly on two external modules: the GMSH mesh generator and the OpenFOAM 
CFD toolbox. Interpolation of rotor blades geometry and computational model of the airflow through a turbine 

are briefly discussed. Moreover, a simple optimization algorithm is described. Exemplary results for a H-type 

rotor are presented. Finally, potential directions for the software development are indicated. 

 

Keywords: vertical axis wind turbines; topological optimization; computational fluid dynamics  
 

1. Introduction 

Vertical axis wind turbines (VAWT) have great potential in the area of renewable energy 

generation, although they are relatively rarely used in industry. Modern manufacturing 

methods make production of complex geometric shapes increasingly cheaper. Thus, 

topological optimization of rotor blades can provide quite valuable results that are 

realizable in practice. 

Aerodynamics of turbines is complicated and sensitive to slight changes in shape. 

Therefore, the software for finding the best possible geometry of a rotor is of high 

importance for design engineers. There are many commercial systems (usually based on 

the finite element method) that allow one to solve a wide variety of problems in the field 

of computational fluid dynamics (CFD). However, the general purpose character of such 

programs makes particular tasks rather burdensome: computational model preparation, 

geometry parameterization, etc. In this light, developing a specialized optimization tool 

seems to be an attractive and challenging idea. 

From the programming and numerical viewpoint, CFD-related problems are very 

demanding. A common (but not always occurring) feature of vertical turbines, i.e. 

a uniform cross-section of a rotor along the axis of rotation (see Fig. 1), simplifies the 

problem considerably. In any case, it was decided to create the program with a use of 

commonly available components: free, open source packages which fulfill the crucial 

and hardest tasks. 
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      a) b) c) 

 
Figure 1. Basic types of rotors for VAWT [1, 4]: a) the Savonius rotor,  

b) the Darrieus rotor, c) the H-type rotor 

2. The OPTIMIZER software 

The computer program Optimizer developed by the first author has a graphical user 

interface and was written in the Python programming language. The application 

accomplishes the following tasks: drawing the initial geometric model of a rotor, 

generating and previewing a discrete numerical model, changing the simulation and 

solver settings, results archiving, conducting simulation related to the direct problem (air 

flow through a wind turbine), optimization of the rotor shape, and results visualization. 

Optimizer employs external modules: the GMSH mesh generator and the solvers of the 

OpenFOAM environment. The program window with sample data can be seen in Fig. 2. 

In order to reduce the number of parameters describing the rotor geometry, it was 

decided to use interpolation of curves that pass through some control points specified by 

user. More precisely, the method known as Piecewise Cubic Hermite Interpolation 

(PCHI) is used [3]. On each subinterval the given curve is interpolated by a third degree 

polynomial of Hermite type. To form a smooth contour of a blade, continuity of the first 

and second derivatives of neighbouring polynomials is ensured at the nodal points. 

Obviously, this constraint is cancelled in case of a corner vertex (see Fig. 3). All in all, 

user defines the shape of a single blade and the number of blades. 
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Figure 2. Graphical interface of Optimizer 

 

Figure 3. Shape of a blade of the H-type rotor generated via PCHIP 

3. Computational model and solver 

A schematic view of a virtual wind tunnel is presented in Fig. 4. The problem domain is 

divided into two parts. The central one includes the rotor and its close neighbourhood, 

thus, it rotates during simulation. The non-moving subdomain constitutes an outer, 

dominant part. The interface between the two regions forms a circle centered at the rotor 

axis. 
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Figure 4. The domain and boundary conditions for the problem 

Airflow through the wind turbine is described by the Navier-Stokes equations; the 

fluid is assumed to be incompressible [4]. On the left boundary, uniform inflow velocity 

of the air is defined. At the bottom and top walls the slip condition is specified, which 

prevents the fluid from leaving the domain. The outlet condition corresponds to zero 

relative pressure. AMI stands for Arbitrary Mesh Interface, and is used to model the 

mutually sliding subdomains.  

 

Figure 5. An exemplary finite volume mesh 
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In general the planar domain is discretized by triangular cells. Additionally, 

quadrilateral cells are used in the boundary layers on the blades. The solver employed to 

cope with the initial-boundary value problem is based on the finite volume method 

(FVM). Since a three-dimensional computational domain is required, the planar one is 

extruded by a unit distance. Therefore, the final discrete model consists of prismatic 

finite volumes (see Fig. 5). 

Within the OpenFOAM environment, the solver pimpleDyMFoam allows for 

dynamic meshes. It is an implementation of the so called PIMPLE algorithm: 

a combination of the standard PISO (Pressure Implicit Split Operator) and SIMPLE 

(Semi Implicit Method for Pressure Linked Equation) algorithms. To guarantee 

continuity of physical quantities on the interface between moving and stationary cells, an 

additional interpolation is used. 

4. Optimization algorithm 

The algorithm for topological optimization of rotor blades is made of two modules: 

a generator of new rotor geometries, and an analyzer and selector of the best solution. 

The former one requires the following user-defined input data: the start and end blade 

shapes as well as the number of intermediate profiles (resolution). The algorithm 

analyzes the given geometries and prepares a set of new shapes according to the simple 

principle illustrated in Fig. 6. The left and right triangles represent the start and end 

profiles, respectively. The middle triangle, in turn, illustrates the only intermediate shape 

(a special case is shown). Starting from the initial shape, translation vectors for all 

control nodes are determined, which leads to a new interpolated geometry. The number 

of translations is equal to the number of intermediate profiles. 

 

Figure 6. Illustration of the start, intermediate and end shapes 

As the comparison criterion (an objective function), the power coefficient is used: 

w

r
p

P

P
C  . (1) 

The power of the rotor and the wind flowing past the rotor are given by 
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TPr  ,     
3

2

1
xw AVP  , (2) 

where: ω – angular velocity of the turbine, T – torque generated by the rotor, ρ – air 

density, A – rotor area in the cross-section normal to the airflow direction, Vx – airflow 

velocity. If the defined start and end shapes ensure a constant rotor diameter during 

optimization, this criterion can be simplified and replaced with the torque at the rotor 

shaft. The torque value is specified on the basis of pressure field at the blades, and is 

saved to file in real time. As simulations related to all the prepared profiles are 

completed, the program analyzes the results and presents the best solution. 

5. Results 

The Optimizer software was tested by solving several direct and optimization problems 

related to the Savonius and H-type rotors. Results of these studies are thoroughly 

discussed in Ref. [2]. Here, only one example is presented. 

 
Figure 7. Initial geometry of the NS2L4 rotor 

Consider blade shape optimization for a H-type rotor denoted by the code NS2L4 

(see Fig. 7). Geometry of the start, end and intermediate profiles is illustrated in Fig. 8. 

The corresponding values of the rotor torque and power are shown in Fig. 9. As can be 

seen, the best solution (in terms of the torque criterion) is denoted by SERIES­4. A 

detailed analysis of the results has indicated that this blade variant generates the weakest 

vortices. Time history of the torque T for the initial and optimized shapes is presented in 

Fig. 10. The simulations were performed for R = 700 mm, Vx = 21.6 km/h. Fluid-

structure interaction was analyzed for time 0 ≤ t ≤ 2 s. The optimization lasted 17 690 s. 
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Figure 8. Blade profiles in consecutive iterations 

 

Figure 9. Maximal torque and power (steady-state) of the rotor in consecutive iterations 

6. Conclusions 

The presented software is a specialized tool that can be applied for topological 

optimization of various types of VAWTs. To create a true alternative to commercial 

systems, the program should be improved by increasing functionality of the preprocessor 

and postprocessor. Nevertheless, Optimizer is a solid basis for implementation of 

advanced optimization approaches, e.g. artificial neural networks (ANN) or genetic 

algorithms (GA). 
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     a) 

 

     b) 

 

Figure 10. Time history of the rotor torque for SERIES-0 and SERIES-4 
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Abstract 

Italian violins of the golden era and French violins are different. Measurements of bridge mobility show that 

the Italian violins have a local maximum (a hump) at approx. 2,5 kHz in the bridge mobility. The French 
violins do not show this maximum. The arching along the centre line is different. The Italian violins are flat 

between the f-holes while the French ones are arched. Does this difference in design explain the difference in 

bridge mobility and tone? Proposed FEM simulation and digital signal post-processing of the time series are 
promising methods of the virtual testing of various violin models. These techniques may give an answer for the 

question above and they should be helpful in achieving high tonal quality of violin. 

 

Keywords: Bridge mobility, top plate arching, experiments and FEM 

 

1. Introduction 

A large number of wooden blanks was free for further experiments. It was planned to use 

the blanks to investigate the influence of material properties on the top plate  

of the violin. In introductory pilot experiments it turned out that the geometry influenced 

more than the material properties. Therefore it was decided to cut a large number of 

rectangular plates to the same measures and to investigate the effects of f-holes in each 

plate. The f-hole shapes were simplified to three rectangular sections making various 

perturbations possible in simple ways. 

Thereby it was found that the longer parts along the wood fibres and the lower 

transversal parts of the f-holes gave small effects. The largest influence was given by  

the upper transversal parts. The influence of two f-holes was well given by f-holes  

in shape of two letters, uppercase L:s, one upside down and the other in mirror image 

(Fig. 1). The findings were in line with previous f-hole experiments on an assembled 

violin. Thus the influence of f-hole geometry had been mapped [1] as well as thickness 

previously. The violin top is not flat but arched. No way to explain the influence  

of differences in arching had been found. In this report we present experiments and FEM 

analysis of “arched” plates. The experiments indicate the effect of arching which can be 

mailto:erik.jansson2@ownit.nu
mailto:roman.barczewski@put.poznan.pl
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tested by FEM. The traditional way of violinmaking does not offer investigation of 

arching, only of thickness. 

The frequency range of the so called bridge hill is of special interest.  

The fundamental bridge resonance was presented by Reinicke [2 and 3]. The resonance 

was found at approximately 2,5 kHz. In this frequency range the ear can register small 

level changes of a played tone. The 2,5 kHz-range is most interesting. In experiments 

with violins it turned out that at least for this very violin the shape of the bridge was  

of minor influence. A plate bridge i.e. a bridge with only a plate and two feet gave  

the same hump at 2,5 kHz. The plate bridge resonance frequency was far above that  

of the normal bridge. Thereby it was asked whether does the 2,5 kHz hump would be 

described as a body-hill rather than bridge-hill (BH) [4]. This plate bridge thus makes it 

possible to measure body properties with no addition of complex violin bridge 

properties. In this paper we are mainly interested in body properties and we use the plate 

bridge in the experiments and the FEM. This makes experimental modelling and FEM  

of arching attractive. 

The bridge-body properties and their influence on the 2,5 kHz hump found in good 

violins have been modelled as coupled circuits [5]. The bridge is modelled as a mass-

spring resonator coupled to the violin body. The body properties are modelled by means 

of averages. So called skeleton technique is used and the influences of bridge and body 

properties are predicted. It is suggested to start measuring a violins input mobility using 

plate bridges [6]. This approach is the background of experimenting. Physical models 

can be more easily built for experiments as will be reported here. 

Measurements of Italian violins from the “golden era” show clear BH humps  

in the 2.5 kHz range [7]. Similar measurements of later French violins do not show  

the BH. Possibly it is the difference in lengthwise arching between the “golden” Italian 

(flat not arched) and the French (more arched) violins. Good old Polish violins also have  

a BH [8]. 

The BH also shows up in spectra of played test music, i.e. the common test music  

the prelude of the Bruch violin concerto. Such attest was made with the concert master 

Bernt Lysell of the Swedish radio and his Italian Guadagnini showing a BH but not  

a French violin by Leon Bernardel, see Figure 1 [9]. The test playings were preformed  

in the main concert studio of the orchestra. The two Stradivari violins and the J. 

Guarnerius del Gesu violin in the Strad3D playing tests also show a BH [10].  

This background makes the influence of arching the main question of the present project. 

What influence has the lengthwise arching on the BH? 

2. Experiments 

A half of wooden blank for a guitar top was selected and cut into two pieces. One piece 

was made with measures close to earlier experiments and a second smaller piece for pilot 

experiments. The smaller piece was soaked in water and its mass (weight) was noted as 

function of time. After twelve hours the amount of water absorbed was close to 

maximum. Drying the plate in hot air oven at 80oC for 2 hours dried the plate. Therefore 

it was decided to soak the test the plate in water for twelve hours, clamp it in a bent form 

and dry it for two hours to make the larger plate arched. 
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The test plate was first arched by soaking, placing a 5 mm diameter rod under  

the bridge line and clamped to a grid, 0 mm, at the shorter sides, and dried in the oven. 

After removing the clamps a 3 mm arch remained. The “rectangular” simplified f-holes 

were cut and a plate bridge glued to the centre of the plate see Figure 1. 

a)

 

 

 

Figure 1. Plate with “f-holes”; a) sketch of bridge and supports 

b) center line bending; c) bridge line bending 

Secondly the plate was flattened by doing the same procedure but slightly bent in the 

opposite direction. The plate was now flat after drying. Finally the rod was placed under 

the centre line, see figure 1b and a 3 mm arching along the centreline was obtained. 

In each case the plate was placed on soft supports at its corners. This was found close 

to free edges in measurements. In the acoustical measurements the bridge was impulse-

excited by a pendulum hitting the bridge in the y-direction. A small magnet, mass 

approximately 30 mg was waxed to the other, opposite bridge corner. The resulting 

velocity, time history, in the y-direction was recorded by an electrical coil over a small 

airgap; see recorded time histories in Figure 2. By means of FFT the frequency spectra 

of the time histories were obtained, see Figure 3. The Figure 3a thus represents  

the frequency response of the plate bent with maximum arch along the bridge line, 

Figure 3b the plate “flat” and Figure 3c the plate bent along its centre line. In Figure 3a 

compared to Figure 3b flat plate it can be seen that the response level in the 2,5 kHz 

range is the lowest, i.e. the lowest for the “French” arching. 

  

Figure 2. Time history (velocity) of plate flat a) initial 0,1 s and b) initial 0,015 s 
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Figure 3. Frequency response of bridge time histories (velocity) for: a) plate bent as in 

Figure 1c; b) plate flattened; c) plate bent as in Figure 1b 

3. FEM simulation  

The geometry and properties of the plate applied for the experiment described above are 

used to create a discrete model in the FEM study. The basic difference between FEM 

model and experiment is application of the springs and dashpots instead of the foam  

to model boundary condition of the plate. It is shown in Figure 1a and Figure 4b. 

Plate (spruce) Young’s modulus    EL= Ex= 9,7 GPa; ER= Ey= 0,55 GPa 

Density ρ = 460 kg/m3, Poisson’s r. νxy = 0,44; νxz = 0,33, νyz = 0,42 

Bridge (maple) Young’s modulus E= 10 GPa 

Density ρ = 600 kg/m3, Poisson’s ratio ν = 0,43 

Additional properties were given from [11] 

 

a)   b)    

c)   
d)    

 

Figure 4. FEM model of the plate; a) shell model of the plate, b) support of the corners – 

foam (experiment) and springs (FEM), c) discrete model of the plate – 4016 shell 

elements type 4SR, d) “f-holes” and bridge with numbers of the output nodes 
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FEM model of the plate and boundary conditions are shown in Figure 4. Loads – 

excitation: see Fig. 4a and Table 1. The procedure Dynamic, Explicit of 

ABAQUS/Explicit System was used to lead simulation of the plate vibration. Selected 

results of FEM simulations are shown in Figure 5. 

a) 

 

b)  

 

c)  

 

d) 

 

Figure 5. Time history (velocity) of the plate a) response of Vy in node N9 (see Fig. 4d) - 

initial 0,1s; b) response of Vy in node N9 initial 0,015 s; c) comparison of response Vx, 

Vy, Vz in node N9, d) comparison of response Vz in nodes N34, N43 (see Fig. 4d) 

4. Signal post-processing  

The FEM simulation gives results in the form of the time series (see Fig. 5).  

The mobility (admittance) can be obtained by digital signals processing (DSP)  

of excitation signal (force – see Fig. 4a) and the response signal of the tested model 

(velocity – e.g. Fig. 5a). A simplified algorithm of DSP procedures has been outlined  

in Figure 6. In the first step the output data from FEM simulation is windowed. Then, by 

FFT procedure the time signals are transformed into frequency domain.  

The transmittance (in this case module of the mobility in [ms-1/N]) is obtained by 

dividing the response spectrum by the excitation spectrum. In the last step, magnitude  

of mobility is converted from linear to logarithmic scale which is more useful for 

comparisons of results of experiments and numerical simulations. The reference value 

equal to 1 ms-1/N has been used. The sampling frequency used in the DSP system was 

equal to 20 kHz. It results from the time step of FEM analysis (Δt = 0,0005 s).  

The rectangle time window of the size of 2048 samples has been applied. Taking into 

account these parameters we can state that only a short signal sequences (of excitation 

and response about 0,1 s) has been used to determine the admittance (see Fig. 5a).  
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Figure 6. Simplifies scheme of digital signal post-processing used to the mobility 

determination of the violin bridge (based on FEM results) 

 

The first 10 milliseconds of analyzed signals (excitation and response) are shown  

in Figures 7a and 7c. The short triangle force impact equal to 1 N and duration of 0,2 ms 

is visible in Figure 7a. Spectra of the excitation and the response are presented in Figures 

7b and 7d respectively. 

a) 

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.000 0.005 0.010

time [s]

F
o

rc
e
 [

N
]

impact excitation 

 

b) 

0.0000

0.0005

0.0010

0.0015

0.0020

0 2000 4000 6000 8000 10000

frequency [Hz]

F
o

rc
e
 [

N
]

 
c) 

-0.02

-0.01

0

0.01

0.02

0.000 0.005 0.010

time [s]

v
e

lo
c

it
y

 [
m

/s
]

 

d) 

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0 2000 4000 6000 8000 10000

frequency [Hz]

v
e
lo

c
it

y
 [

m
/s

]

 

Figure 7. Example results of signals post-processing (flat plate; see Fig. 4) 

signals from FEM simulation : a) excitation signal c) response (Vy in node N9);  

spectra obtained by FFT: b) spectrum of excitation signal  d) spectrum of response 
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The frequency range of spectral analysis and spectral resolution results directly from 

settings of DSP parameters. A sampling frequency fs determines the frequency range.  

In this case it is limited to 10 kHz (½ fs – Nyquist frequency). However a usable 

frequency range of the admittance may be lower. The frequency range depends on  

the shape and the duration of the virtual impact excitation which will be used for 

dynamic testing of FEM model. In practice the duration can not be shorter than Δt.  

The frequency resolution Δf (of spectra as well as the admittance) is determined by the 

sampling frequency and the number of signal samples (N) in the time window  

(Δf = fs/N). Taking into account values of both these parameters the resolution Δf is 

approximately equal to about 10 Hz. It is worth mentioning that DSP software has been 

elaborated in the DASYLab® environment (Data Acquisition System Laboratory). 

The mobility (admittance) in linear and logarithmic scale of the magnitude has been 

shown in Figure 8. In Figures 8a and 8b the BH (“Bridge Hill”) frequency range has 

been marked. 
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Figure 8. The final result of DSP – mobility (admittance) of violin FEM model; 

a) linear scale b) logarithmic scale (flat plate see Fig. 4 – corresponding to response of 

Vy in node N9)  

 

The Short Time Fourier Transform (STFT) was applied as auxiliary analysis which 

shows well the nature of the response signal in the frequency and time domain. This type 

of analysis has been described in [12]. Some optimization techniques of STFT can be 

found in [13]. An interesting approach to the time-frequency analysis and obtaining  

of a time-variant frequency response function is proposed in [14]. The methods 

mentioned above can be useful in development of new testing methods as well as 

parameterization of the vibroacoustical properties of violins. 
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a) 

 
     0                               4                            8 kHz 

b) 

 
0                                     4                                   8 kHz 

Figure 9. Violin model testing. The results of STFT analysis of the response signal 

presented in Fig. 5a . (where: BH is a frequency band pass of the “Bridge Hill”; 

τ is the shift of the time window); a) waterfall spectrum b) sonogram 

5. Comparison of FEM – experiment 

The basic differences between FEM and experimental testing are shown in Table 1. 

Table 1. Comparison FEM - Experiment 

FEM Experiment  

Structure 

The structure is divided into finite elements. 

All elements have the same properties. 

The continuity of the structure. Local 

inhomogeneous density and other according 

to wooden properties. 

Basic material properties 

 
Young's modules (EL, ER) are constant. 

Young's modulus (EL, ER) are 

inhomogeneous according to local properties 

of the wooden plate. The average values of 

Young's modules are the same as in FEM 

Boundary conditions 

The plate is supported on the springs and 

dashpots in axis directions (kspring = 200 N/m) 

– linear – see Figure 4a,b,c 

The plate is based on the foam ankles.  

The foam stiffness is unknown (typical 

nonlinear) – see Figure 1a and Figure 4b 

Load – excitation 

Impact force F = -1N (triangle, time=0.0002s) 

– see Figure 4a,d 

 

Excited by a mechanical pendulum – see 

Figure 1a 

τ 
τ 

BH

τ 

BH

τ 
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6. Conclusions  

Experiments were made with a rectangular wood-plate with a simplified bridge  

and simplified f-holes. The bridge was impulse excited by a mechanical pendulum  

and the velocity response was measured. By FFT the velocity response was transformed 

into frequency response. The plate was bent in three steps, first across the fibres with 

maximum arch along the bridge line, secondly flattened and finally bent along the fibres 

with maximum arch height along the centre line. Minimum level in the 2,5 kHz, the BH 

range, was found for the plate with the arch along the bridge line, somewhat higher for 

the flattened plate and the highest level for the plate arched along the centre line.  

The experimental results were subjectively evaluated and need independent verification 

and an explanation. 

The comparison of the experiment results that are shown in Figure 3b  

and in [1, Figure 6c] to the transformed FEM results shown in Figure 8 confirms that 

typical BH exists near frequency of 2,8 kHz. Despite the differences shown in Table 1  

the results of the experimental investigation and FEM coincide for the flat plate. 

Preliminary FEM simulations of the bent plates that are shown in Figure 1b  

and Figure 1c do not confirm experiment results exactly that are shown in Figure 3a  

and Figure 3c. Further research are planned to clarify the reasons of the differences. 

Perhaps the methods of bending plates used in the experiment had introduced changes  

in the material properties of the plates. FEM models ought to be checked beside of this.  
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Abstract 

This paper presents the development of post-processing aeroacoustics utility for OpenFOAM, based on Ffowcs 
Williams-Hawkings aeroacoustic analogy. Although the FH-W analogy is well known for almost 50 years, 

there is a lack of open-source software which is using it, hence decision to perform this implementation. This is 

the veryfirst version of utility, so only one formulation of FH-W were implemented. Presented application 
allows to compute far-field acoustic pressure from near field CFD solution. Validation is based on NASA 

Tandem Cylinder Case. Comparison of the results from simulation show fairly good agreement with 

experimental data. 

 

Keywords: aeroacoustics, CFD, FH-W analogy, CAA, OpenFOAM, FVM 
 

1. Introduction 

Engineering problems like far-field noise prediction of aircraft landing gear or helicopter 

rotor it is still a challenge, despite there is a constant progress in computational 

aeroacoustics(CAA). Complexity of these cases and large distances to far-field, causes 

that accurate solution of acoustic fluctuations propagation inside computational domain 

would beineffective. 

There is a way to bypass this difficulty by introducing some integral methods. Those 

methods are using data obtained from time-dependent CFD(computational fluid 

dynamics) solution or PIV measurements. That data should be accurate enough to 

capture all potential noise sources. The next step is to use anaeroacoustic analogy to 
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propagate near-field results(sources)to the far-field observers. This paper is a try to 

extend the research conducted in [10]. 

It is worth mentioning that apart from the technical aspects of modeling of the sound 

distribution, more and more research uses the modeling of wave phenomena to the sound 

synthesis [11]. 

2. Lighthill equation 

The Lighthill analogy[1][2] is applicable to unbounded, incompressible, low Mach 

number flow. These equations are derived from Navier-Stokes[7] equations, which are 

reorganised into inhomogeneous wave equation, in form presented below: 
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The source term from equation (1) and described in equation (2) has been named  

a Lighthill stress tensor. It contains acoustical sources, which are represented as a flow 

parameters. Mathematically speaking, equation (1) is a hyperbolic differential equation, 

which describes acoustic wave propagation with speed of sound a0. Because of 

assumptions that were made, these analogy have some obvious limitations: 

 propagation of sound is through unbounded domain, 

 level of sound pressure is relatively small, 

 acoustic wave have no influence on the flow. 

So it is clear, that Lighthill analogy is applicable only on subsonic flows.  

3. Ffowcs-Williams Hawkings analogy 

FH-W analogy[3] is an extended version of Lighthill analogy. It introduces the so called 

source surfaces, which are taken into account when computing the sound pressure level 

at the observer. Those surfaces can be set as surfaces of solid body(impermeable) or as a 

any free surface located in domain(permeable). In contradiction to Lighthill analogy, 

FH-W analogy allows the motion of the bodies inside fluid domain, that fact extends its 

applicability to predict noise generated by rotors. Analogy is govern by equations below: 
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(3) 

Where Qn and Li are defined as: 
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The source surface mentioned before(also called integration surface) is described as 

f(x,t)=0 and fni ˆ is a unit normal vector pointed out from surface f. In equations (4) 
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and (5) videnotes the velocity of surface f, while ui is the velocity of the fluid at the 

integration surface. If the source surface is equal to the solid body surface then ui=vi. 

In equation (5) there is a compressible stress tensor: 

ijijij ppP   )( 0

 

(6) 

Because of the contribution of the last term of equation (6) to total acoustic power is 

relatively small, it can be neglected. Also we can assume that the disturbances of density 

outside the source surface are also small, so the term (ρ-ρ0) can be replaced by p’, which 

is considered to be acoustic pressure. 

4. Formulation 1A 

For a complex geometry it is hard to find the direct solution of equation (3). Therefore 

some numerical formulations of FH-W analogy were introduced.One of them is 

formulation 1A proposed by Farassant[5][6]. It is suitable for moving solid bodies in 

fluid at rest. That formulation was developed to improve prediction of noise generated 

by helicopter rotor. 

The acoustic pressure p’that is generated by solid body with subsonic velocity, 

measured by observer in position x and time t is given by: 
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Where M denotes Mach number of a source, with components Mi=vi/a0, the dot “∙” 

means time derivative with respect to emission time τ. Other components of equations 

(8) and (9) are following: 
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Subscript ret means that the integral is evaluated at the emission time. The retarded time 

equation has a form presented below: 
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Where r = |x – y(ret)|, and is a distance between observer and the source at the emission 

time. 

5. Formulation GT 

In case, that could be defined as flow inside wind tunnel, there is situation when both 

observer and source remain motionless. Only fluid has a velocity. Also there is a need to 

assume that mean flow velocity has a direction +x1, which leads to U0 = (U01, 0, 0). 

These situation is equivalent to situation when source and observer are in motion with 

velocity –U0 but the fluid is at rest. With those assumptions there is an ability to use 

special case of formulation A1. 

For source in subsonic, rectilinear and uniform motion equation (11) given by 

Garrick [4] simplifies to form: 
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And distance between source and observer is given by: 
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In this particular case R is an effective acoustic distance, rather than geometric. 

Components of unit distance vector are defined as: 
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(16) 

Variables Qn and Li are identical as in equations (4) and (5), but in this formulation 

velocity of integration surface vi is replaced by –U0i, because all of the velocity 

components has to expressed in stationary reference frame. So equations (4) and (5) 

could be rewrite as: 
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In contradiction to formulation 1A, distance between source and observer is not a 

function of time, so R=const also as other variables which depend on time.Those 

variables which are not function of time could be computed at initial step.Also 

derivatives of those variables could be neglected.That leads to simplification of 

computation. Simplified equations (8) and (9) could be written as: 
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6. Numerical implementation 

In the first version of the utility presented in this paper, the GT formulation were 

implemented. The decision were made to make this application working as a post-

processing utility of OpenFOAM(open source FVM software). Due to fact that acoustic 

pressure measured at the observer is a function of time, the CFD simulation,which will 

provide input data, needs to be time dependent. Each cell of finite volume mesh will be 

treated as a separate acoustic source region. 

The retarded time equation (12) could be resolved in 2 ways. In the first option, 

commonly called retarded time algorithm, receive time t is set, and then the emission 

time τret has to be found, and finally the integrals are evaluated. Considering a numerical 

calculations this could be confusing, because of the possibility of not having input data 

at computed emission time. 

The second approach is to set constant emission times, which in fact will be equal to 

CFD time steps, then appropriate receive times needs to be calculated. That algorithm 

was described in [6]. 

For purpose of these implementation, the second approach was chosen. In constant 

emission time algorithm, there is a need to interpolate calculated data of each source 

region at the same receive times. That is necessary to correctly sum noise deriving from 

all sources. 
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The last simplification in this version of utility, is to allow use only solid body 

surfaces(impermeable) as a source surfaces. It will reduce the computational complexity 

of utility. Equation (7) will be simplified to form: 

),('),(' txptxp L

 

(21) 

Computations made with usage of theaeroacuostical analogies have that advantage, 

that observer could be located outside of computational domain. That allows to reduce 

size of computational mesh, and simulate only area of interest. But there is also a 

disadvantage, those analogies does not take into account the reflections of the acoustic 

wave. They are also "blind" to solid reflecting surfaces. The final decision, if use or not 

to use, always depend on user.  

7. Validation of implementation 

To check if implemented analogy works properly, some validation was performed.It was 

a CFD simulation of tandem cylinder case, which is well described in [8], also a 

experimental data are available[8]. Geometry and flow parameters of the test case are 

presented below. All microphones are located at the center plane of the span. 

 

 

Figure 1. Configuration of test case 

 

 D = 0.05715 [m]  L=3.7 D  Re=166000  M=0.128 (44 m/s) 

 Span = 12 D 

 Mic. A(-8.33D, 27.815D)   Mic.B(9.11D, 32.49D)   Mic.C(26.55D, 27.815D) 

 

To obtain results, transient simulation with Spalart-Allmaras[7][9] turbulence model 

was performed. Due to fact that used solver demands Courant number lower than 1 and 

very fine quality of computational mesh (around 5 million of finite volume elements), 

time step value was Δt=10-5s. Because y+ parameter value were lower than 1, no wall 

functions were used. Simulation results served as input to implemented utility. 

Computation took almost 2 weeks on Zeus HPC cluster (24 cores). 
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Results from microphone B are shown on Figure 2. There is slight difference 

between simulation and experimental data, but the dominant frequency is almost the 

same(around 170 Hz), with similar levels. Better results could be obtained with more 

accurate computational grid. But that needs more hardware resources to use, and also 

drastically extends simulation time. 

 

Figure 2. PSD at microphone B 

8. Conclusions  

Benchmark test that was conducted, shows that presented implementation of FH-W 

analogy works more or less properly. It is a desirable tool for predicting acoustic 

pressure at far-field observer. Acoustic analogies allows to compute acoustic pressure 

outside of numerical domain, what causes in significant reduce in computation time. The 

next will be an implementation of 1A formulation, which extend utility potential to 

permeable surfaces and more general cases, for example helicopter rotor noise. 
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Abstract 

A problem of free vibrations of medium thickness microstructured plates, which can be treated as made of 
functionally graded material on the macrolevel is presented. The size of the microstructure of these plates is of 

an order of the plate thickness. Averaged governing equations of these plates can be obtained using the 

tolerance modelling technique, cf. [18, 19, 9]. Because, the derived tolerance model equations have the terms 
dependent of the microstructure size, this model describes the effect of the microstructure size. Results can be 

evaluated introducing the asymptotic model. Calculated results can be compared to those from the finite 

element method or a similar tolerance model of thin plates, cf. [9]. 

 

Keywords: medium thickness functionally graded plates, microstructure, tolerance modelling 
 

1. Introduction 

In this paper, medium thickness functionally graded plates with microstructure are 

investigated. Their microstructure is in planes parallel to the plate midplane along one, 

i.e. the x1-axis direction. It is assumed that plate properties along the perpendicular 

direction are constant. Moreover, the size of the microstructure is assumed to be of an 

order of the plate thickness. An example of these plates is shown in Figure 1, cf. [12]. 

x1

z=x3
d

x2

l

L1

L2

 

Figure 1. Fragment of a medium thickness functionally graded plate 

with the microstructure, cf. [12] 
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These plates consist of many small elements along the x1-axis with a span equal l, cf. 

Figure 2, (xx1). Such elements are called the cells. Their length l describes the size of 

the microstructure and is called the microstructure parameter. 

 

Figure 2. Element of the plate with a fluctuation shape function, cf. [12] 

Thermomechanical problems of functionally graded media are often described 

applying various averaging approaches, which are used for macroscopically 

homogeneous structures, cf. Jędrysiak [7, 8]. Models of periodic plates based on the 

asymptotic homogenization method play a role between them, cf. Kohn and Vogelius 

[14]. In a series of papers there are shown applications of other methods, which describe 

various problems of thermoelasticity of beams, plates and shells, e.g. frequencies of 

functionally graded plates using a meshless method by Ferreira et al. [5], vibrations of 

functionally graded shells by Tornabene and Viola [17], thermoelasticity of functionally 

graded plates by Akbarzadeha [1], dynamics of beams with functionally graded core by 

Bui et al. [3], buckling of sandwich beams with variable properties of a core by 

Grygorowicz et al. [6]. However, the effect of the microstructure size is neglected in 

governing equations of these models. 

In order to take into account this effect the tolerance averaging technique can be 

applied, cf. [18, 19, 7]. Various periodic structures are modelled by using this method in 

many papers, e.g. medium thickness periodic plates by Baron [2], higher order vibrations 

of thin periodic plates by Jędrysiak [7], nonlinear thin periodic plates by Domagalski and 

Jędrysiak [4], vibrations of periodic three-layered plates by Marczak and Jędrysiak [15]. 

The tolerance method is also adopted and successfully used to analyse different 

functionally graded structures, e.g. thermoelastic problems of laminates, plates and shells 

with functionally graded structure by Jędrysiak [8] or Michalak [16], stability of thin 

functionally graded plates by Jędrysiak and Michalak [11], vibrations of thin 

transversally graded plates by Kaźmierczak and Jędrysiak [13], vibrations of thin 

functionally graded plates with the size of the microstructure of an order of the plate 

thickness by Jędrysiak [9, 10], Jędrysiak and Pazera [12]. 
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2. Modelling foundations 

By Ox1x2x3 the orthogonal Cartesian coordinate system is denoted and t is the time 

coordinate. Let us introduce arguments: x≡(x1,x2), z≡x3; and p as a loading along z-axis. 

The region of the undeformed plate is described by Ω≡{(x,z):‒d/2≤z≤d/2,xΠ}, with the 

midplane Π and the plate thickness d. The “basic cell” ≡[‒l/2,l/2] is defined in the 

interval =(-L1/2,L1/2) on the x1-axis, with l as the span of cell , called the 

microstructure parameter. Parameter l is assumed to satisfy the conditions dl<<L1.  

Let properties of the plate: a mass density μ, a rotational inertia ϑ and bending 

stiffnesses dαβγδ, be tolerance-periodic functions in x defined as:  
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Under assumptions of the Hencky-Bolle-type plates theory equations for deflection 

u(x,t) and rotations (x,t), =1,2, of functionally graded plates under consideration can 

be written in the following form:  
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The above equations have highly oscillating, tolerance-periodic, non-continuous 

coefficients being functions in x. 

3. Tolerance modelling 

3.1. Modelling concepts 

In the tolerance averaging technique there are used some basic concepts, defined in 

books, cf. [18, 19, 8]. 

Denote (x)≡x+, ={x: (x)}, as a cell at x. The first concept is the 

averaging operator for an arbitrary integrable function f, defined by 
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For function f being tolerance-periodic in x, averaged value by (3) is a slowly-

varying function in x. 

Following the aforementioned books other introductory concepts are denoted as: a set 

of tolerance-periodic functions by TPδ
α(), a set of slowly-varying functions by 

SVδ
α(), a set of highly oscillating functions by HOδ

α(), where α≥0, δ is a tolerance 

parameter. Very important concept is the fluctuation shape function g(·), called of the 

1-st kind of that function, if it is: a continuous highly oscillating function, gFSδ
1(), 

with a piecewise continuous and bounded gradient ∂1g; and it depends on l as a 

parameter and satisfies conditions: ∂kgO(lα-k) for k=0,1,…,α, ∂kg≡g, and <μg>(x)≈0 for 

every x, μ>0, μTPδ
1().  

3.2. Fundamental assumptions of the tolerance modelling 

Two fundamental modelling assumptions stand a base of the tolerance modelling, cf. the 

books edited by Woźniak et al. [18, 19] and for thin functionally graded plates [8, 9, 13]. 
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The first assumption of them is the micro-macro decomposition, where the plate 

displacements are decomposed as: 
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with new basic kinematic unknowns: macrodeflection ),(),,( 1
2  SVtxw , 

macrorotations ),(),,( 1
2   SVtx , and the fluctuation amplitudes ),(),,( 1

2   SVtx ; 

g(·) as the known fluctuation shape function, having the form of a saw-type function of 

x, cf. Figure 2. 

The tolerance averaging approximation is the second assumption, in which it is 

assumed that terms of an order of O(δ) are treated as negligibly small, cf. [18, 19, 8], e.g. 

for ),,(1  TPf  ),,(1  FSg  ,2,1),,(   aSVF a  in: ),()()(  Oxfxf  
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3.3. The outline of the tolerance modelling procedure 

The tolerance modelling procedure is shown in the books: for composites in [18, 19], for 

plates in [8]. Here, an outline of this method is shown. 

In the tolerance modelling a few basic steps can be distinguished. In the first step 

micro-macro decomposition (4) is used. Than averaging operator (3) is applied to the 

resulting formula, and the tolerance averaged lagrangean  g  is derived: 
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In the next step using the principle of stationary to (5) the Euler-Lagrange equations 

for w(,x2,t), (,x2,t), (,x2,t) can be obtained: 
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4. Model governing equations  

Substitute the tolerance averaged lagrangean (5) to the Euler-Lagrange equations (6). 

Than, the system of equations for w(,x2,t), (,x2,t), (,x2,t) is derived in the following 

form: 
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Equations (7) together with micro-macro decomposition (4) determine the tolerance 

model of dynamics of medium thickness functionally graded plates with the 

microstructure size of an order of the plate thickness. The underlined terms depend on 
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the microstructure parameter l. Hence, the effect of the microstructure size on dynamic 

problems of these plates is taken into account. All coefficients of equations (7) are 

slowly-varying functions in xx1 in contrast to equations (2), which have non-

continuous, highly oscillating and tolerance-periodic coefficients. The basic unknowns 

w, ,, =1,2, are slowly-varying functions in x. It can be observed that boundary 

conditions have to be formulated for the macrodeflection w and the macrorotations  

on all edges, and for the fluctuation amplitudes  only for edges normal to the x2-axis. 

Using the asymptotic modelling procedure, shown in [19, 8, 13], or neglecting the 

underlined terms in equations (7), the following equations of the asymptotic model are 

derived: 
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These equations have smooth, slowly-varying coefficients in the contrast to equations 

(2). The asymptotic model equations describe vibrations of medium thickness plates 

under consideration on the macrolevel only.  

5. Final remarks  

In this contribution there are derived two systems of averaged equations of medium 

thickness plates with functionally graded macrostructure, which have the microstructure 

size of an order of the plate thickness. These equations are obtained using two modelling 

procedures – the tolerance modelling and the asymptotic modelling. These modelling 

approaches are based on the known Hencky-Bolle-type plates assumptions. Using these 

procedures the governing equations with non-continuous, tolerance-periodic functional 

coefficients of x1 can be replaced by the systems of differential equations with slowly-

varying, continuous coefficients of x1 for each model. 

The tolerance model, which governing equations take into account the effect of the 

microstructure size, makes it possible to analyse not only macrovibrations, but also 

microvibrations, related to the microstructure of the functionally graded plates. 

Equations of the tolerance model have a physical sense for unknowns w, , , 

being slowly-varying functions in x1. It can be treated as a certain a posteriori condition 

of physical reliability for the model. 

On the other side, the asymptotic model, because its governing equations neglect the 

aforementioned effect, describes only macrovibrations of these plates under 

consideration. 

Some applications to special dynamic problems of medium thickness functionally 

graded plates, which have the microstructure size of an order of the plate thickness will 

be presented in forthcoming papers. 
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Abstract 

Vibrations of non-periodic thermoelastic laminates, which can be treated as made of functionally graded 

material with macroscopic properties changing continuously along direction, x1, perpendicular to the laminas 

on the macrolevel are considered. Three models of these laminates are presented: the tolerance, the asymptotic-
tolerance and the asymptotic. Governing equations of two first of them involve terms dependent of the 

microstructure size. Hence, these models (the tolerance, the asymptotic-tolerance) describe the effect of the 
microstructure. Averaged governing equations of these laminates can be obtained using the tolerance 

modelling technique, cf. Jędrysiak [1]. Because the model equations have functional, but slowly-varying 

coefficients calculations for examples can be made numerically or by using approximated methods.  

 

Keywords: nonperiodic laminates, thermoelasticity, vibrations, microstructure, tolerance modelling 
 

1. Introduction 

The objects under consideration are non-periodic laminates, made of two components, 

which are non-periodically distributed along a direction normal to laminas. Cells of them 

are composed of two sublaminas of different materials. Macroscopic properties of these 

laminates are assumed to be continuously varied along this direction, cf. Figure 1. A 

microstructure can be realised as uniform, l=const, or non-uniform, l=l(x), distribution of 

laminas (Figures 1b, 1c), cf. Jędrysiak [2]. Hence, these laminates can be called 

transversally or functionally graded laminates, cf. Jędrysiak and Radzikowska [3]. 

Although a microstructure of these laminates is not periodic, thermomechanical 

problems of them can be investigated using micromechanical models proposed for 

composites with idealised geometries, e.g. periodic. Hence, the behaviour of these media 

can be analysed by certain modified methods, which are also applied to macroscopically 

homogeneous composites. Some of these methods are explained by Suresh and 

Mortensen [4] or Reiter et al. [5]. Between them techniques based on the asymptotic 

homogenization, [6], or on concepts of microlocal parameters, [7], can be mentioned. 

Various alternative approaches are proposed to describe the behaviour of functionally 

graded materials, such as the higher-order theory shown by Aboudi et al [8]. 

Unfortunately, governing equations of most of these approaches neglect the effect of the 

microstructure size on the overall behaviour of these laminates. 
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Figure 1. A part of the laminate: a) the macro-level, b) the micro-scale with uniform 

distribution of laminas, c) the micro-scale with non-uniform distribution of laminas; [2] 

Here, in order to describe this effect the tolerance modelling is applied, cf. the books 

by Woźniak and Wierzbicki [9], edited by Woźniak et al. [10, 11] and by Jędrysiak [1]. 

This method was proposed and used to investigate different thermomechanical 

problems of periodic media, e.g. for thermoelastic processes by Ignaczak [12] or 

Baczyński [13]. Examples of analysis various periodic structures can be found in [10]. 

Moreover, the tolerance modelling is successfully used to investigate thermomechanical 

problems of functionally graded media with a microstructure in a series of papers, e.g. 

for vibrations of thin microstructured plates by Jędrysiak [1]; for heat conduction 

problems by Ostrowski and Michalak [14], Jędrysiak and Radzikowska [3], Jędrysiak 

[2]; for thermoelasticity problems by Jędrysiak [1, 15], Pazera and Jędrysiak [16]. All 

these problems are described for FG-type structures by differential equations with highly 

oscillating, tolerance-periodic, non-continuous, functional coefficients. The tolerance 

modelling leads from these equations to the system of differential equations with 

slowly-varying coefficients. Some applications of this approach for transversally graded 

structures are also shown in books by Jędrysiak [1], Michalak [17]. 

The main aim is to present and apply the governing equations of the tolerance model, 

the asymptotic-tolerance model and the asymptotic model to the problem of vibrations of 

a functionally graded laminated layer. The equations of two the first aforementioned 

models (the tolerance and the asymptotic-tolerance) involve terms, which describe the 

effect of the microstructure size on the overall behaviour of these laminates. 

2. Modelling foundations 

Denote by Ox1x2x3 the orthogonal Cartesian coordinate system and by t the time 

coordinate. Let: x≡(x2,x3), x≡x1. The region of the undeformed laminate is described by 

Ω≡(-L/2,L/2)×(-L2/2,L2/2)×(-L3/2,L3/2), with the lengths L, L2, L3 along the x, x2-, x3-axis, 

repectively. The “basic cell” ≡[‒l/2,l/2] is defined in the interval =(-L/2,L/2) along the 

x-axis, with l as the length of cell , called the microstructure parameter. Parameter l is 

assumed to satisfy the condition l<<L. 

Denote by cijkl, ρ, bij, kij, c elasticity modulus, a mass density, thermoelasticity 

modulus, heat conduction coefficients, a specific heat, respectively, which can be 
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assumed to be highly-oscillating, non-continuous functional coefficients of x. Introduce 

displacements ui (i,j,k,l=1,2,3) and temperature θ. 

Thermoelasticity problems of composites can be describe by the following equations:  

,)(

,)(

0 ijijiijj

jijijiklijklj

ubTck

bbuuc






  (1) 

which have highly-oscillating, tolerance-periodic, non-continuous coefficients being 

functions in x. 

3. Modelling concepts 

Some basic concepts, defined in books [1, 10-11], are applied in the tolerance modelling. 

Denote (x)≡x+, ={x: (x)}, as a cell at x. The first concept is the 

averaging operator for an arbitrary integrable function f, defined by 

.,),(),(
)(

2
1

2 


  xdyxyfxxf
xl

 (2) 

Averaged value of function f being tolerance-periodic in x, calculated by (2) is a 

slowly-varying function in x. 

Following [1, 10, 11] more introductory concepts are introduced and applied: 

tolerance-periodic functions TPδ
1(), slowly-varying functions SVδ

1(), highly 

oscillating functions HOδ
1(), with δ as a tolerance parameter. The fluctuation shape 

function g(·)FSδ
1(), is a very important concept, which is a continuous highly 

oscillating function, dependent on l; has a piecewise continuous and bounded gradient 

∂1g; satisfies conditions: gO(l), ∂1gO(l0); <μg>(x)≈0 for x, μ>0, μTPδ
1().  

4. The outline of the modelling procedures  

The various modelling procedures based on the concepts of the tolerance modelling are 

shown in the books [1, 11]. Here, the outline of them is presented. 

 The outline of the tolerance modelling procedure 

Two fundamental assumptions are formulated in the tolerance modelling procedure. 

The first assumption of them is the micro-macro decomposition, where the 

displacements and the temperature are decomposed as: 

),,,()(+),,(=),,(),,,()(+),,(=),,( txxgtxtxtxvxhtxwtxu iii xxxxxx   (3) 

with new basic unknowns: the macrodisplacements wi, the macrotemperature ϑ, and the 

fluctuation amplitudes of displacements vi, and temperature ψ, which all of them are 

slowly-varying functions in x; h(x), g(x) are the known fluctuation shape functions, 

assumed here as saw-like functions. 

The tolerance averaging approximation is the second assumption, in which it is 

assumed that terms of an order of O(δ) are negligibly small, cf. [1, 10, 11], e.g. in: 

)()()()()( 11  OxFxgfxgFf , ),()()()(  OxFxfxfF  for fTPδ
1(), 

gFSδ
1(), FSVδ

1(). 

Substituting micro-macro decompositions (3) to governing equations (1), by doing 

averaging (2), after some manipulations the governing equations of the averaged models 

can be derived.  
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 The outline of the asymptotic-tolerance modelling procedure 

This modelling procedure, cf. [1, 11], can be divided into two steps. The first step is 

to apply the asymptotic modelling approach to obtain the asymptotic model solutions in 

the form: 

).,,()(+),,(=),,(),,,()(+),,(=),,( 00 txxgtxtxtxvxhtxwtxu iii xxxxxx   (4) 

It is derived the system of differential equations only for the macrodisplacements and 

the macrotemperature. In the second step there are introduced the additional micro-

macro decompositions to these equations,: 

),,,()(+),,(=),,(),,,()(+),,(=),,( 00 txxdtxtxtxrxftxutxu iii xxxxxx   (5) 

with functions: wi, vi, ϑ, ψ (known from the asymptotic model solution); new 

unknown slowly-varying functions: ri, χ; fluctuation shape functions f, d similar to h, g.  

Using these modelling procedures, shown explicitly in [1, 11], the equations of the 

tolerance model, the asymptotic model and the asymptotic-tolerance model for 

functionally graded laminates can be derived. These model equations are written in the 

next section. 

5. Model governing equations 

Hence, the tolerance modelling procedure, cf. [1, 11, 15], leads to the system of 

governing equations in the following form: 

,
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(6) 

with all coefficients being slowly-varying functions in x. These equations together with 

micro-macro decompositions (3) determine the tolerance model of thermomechanics of 

functionally graded laminates. The underlined terms depend on the microstructure 

parameter l. Hence, equations (6) describe the effect of the microstructure size of these 

laminates. The basic unknowns wi, vi, ,, i=1,2,3, are slowly-varying functions in x. It 

can be observed that boundary conditions have to be formulated for the 

macrodisplacements wi and the macrotemperature  on all edges, and for the fluctuation 

amplitudes vi,  only for edges normal to the x2- and the x3-axis. 

Using the asymptotic-tolerance modelling procedure, cf. [1, 11], governing equations 

take the form: 
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These equations have smooth, slowly-varying coefficients in the contrast to equations 

(1). Equations (7) together with micro-macro decompositions (4)-(5) stand the 

asymptotic-tolerance model of thermomechanics of functionally graded laminates. These 

equations take into account the effect of the microstructure size of these laminates, since 

the underlined terms depend on the microstructure parameter l. The basic unknowns wi, 

ri, ,, i=1,2,3, are slowly-varying functions in x. It can be observed that boundary 

conditions have to be formulated for the macrodisplacements wi and the 

macrotemperature  on all edges, and for the fluctuation amplitudes vi,  only for edges 

normal to the x2- and the x3-axis. 

Using the asymptotic modelling procedure, cf. [1, 11], the following governing 

equations can be derived: 
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(8) 

The above equations have smooth, slowly-varying coefficients and together with 

micro-macro decompositions (4) determine the asymptotic model of thermomechanics of 

functionally graded laminates. These equations neglect the effect of the microstructure 

size of these laminates. It can be observed that boundary conditions have to be 

formulated for the macrodisplacements wi and the macrotemperature  on all edges. The 

asymptotic model equations describe thermoelasticity of these laminates on the 

macrolevel only.  

6. Remarks  

In this note three systems of averaged governing equations of functionally graded 

laminates are shown. These equations are derived using different modelling procedures – 

the tolerance modelling, the asymptotic modelling and a combination of them – the 

asymptotic-tolerance modelling. These procedures lead from the governing equations of 

thermoelasticity in laminates, with coefficients being non-continuous, tolerance-periodic 

functions in x to the systems of differential equations having slowly-varying coefficients 

of x for each model. 

Two of presented models – the tolerance and the asymptotic-tolerance, make it 

possible to analyse the effect of the microstructure size in thermoelasticity problems of 

these laminates. Both of these models can describe not only macrovibrations, but also 

microvibrations, related to the microstructure of the functionally graded laminates. 

However, the asymptotic model, since its model equations neglect the above effect, 

describes only macrovibrations of these composites. 

Because the equations of all models have still functional coefficients, but slowly-

varying, solutions of them can be found analytical only for special cases of distribution 

of properties of laminates, or using approximate methods. It will be shown in 

forthcoming papers. 
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Abstract 

In this contribution there are considered thin periodic plates. The tolerance averaging method, cf. [12, 13, 4], is 

applied to model problems of vibrations of these plates. Hence, the effect of the microstructure size is taken 
into account in model equations of the tolerance model. Calculations are made for periodic plate bands using 

this model and the asymptotic model for various boundary conditions. 

 

Keywords: periodic plates, effect of microstructure size, higher order vibrations, tolerance modelling 

 

1. Introduction 

Thin periodic plate bands are main objects under consideration. These plate bands have a 

periodic microstructure along their spans on the microlevel, cf. Figure 1. 

 
Figure 1. Fragment of a thin periodic plate band 

Plate bands of this kind are consisted of many repeated small elements. Every 

element can be treated as a thin plate band with span l along the x1-axis. This span 

describes the size of the microstructure and is called the microstructure parameter l. It is 

necessary to distinguish that in various problems of such plate bands the effect of the 

microstructure size cannot be neglected. These plates are modelled using different 

averaging approaches, e.g. based on the asymptotic homogenization, cf. [7]. However, 

most averaged equations of these plates neglect the effect of the microstructure size. 

In order to take into account this effect the tolerance averaging technique, cf. [12] 

and [13], can be applied. Different applications of this method to analyse various 

periodic structures are shown in a series of papers, e.g. [1-3], [8-11]. This approach is 

also successfully adopted to functionally graded structures, e.g. [4-6]. 

x=x1 

z=x3 
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The main aim of this note is to present governing equations of the tolerance model 

and the asymptotic model of thin periodic plates. Equations of these models can be 

derived using the tolerance modelling procedure and the asymptotic modelling 

procedure, respectively. In an example there are analysed lower and higher free vibration 

frequencies of periodic plate bands with various boundary conditions. 

2. Modelling foundations 

Set x≡(x1,x2), x≡x1, z≡x3. Let us consider a periodic plate band with span L along  

the x-axis. Hence, all properties of the plate can be periodic functions of x, but are 

independent of x2. Denote a plate deflection by w(x,t), loads normal by p and a derivative 

with respect to x by (). The region },2/)(2/)(:),{(  xxdzxdzx  denotes the 

undeformed plate band, with an interval =[0,L] and the plate thickness d(·). The 

periodicity cell on  is denoted by }0{]2/,2/[  ll . 

Properties of the plate band are determined by periodic functions of x: a mass density 

per unit area μ, a rotational inertia and bending stiffnesses bαβγδ in the form: 

.),()(,),()(,),()(
2/

2/

2
2/

2/

2
2/

2/  





d

d

d

d

d

d
dzzzxcxbdzzzxxdzzxx  (1) 

Denoting b≡b1111 and using the Kirchhoff-type plates theory assumptions the known four 

order differential equation for deflection w(x,t) of periodic plate band can be derived: 
,)()( pwwwb    (2) 

with highly oscillating, periodic, non-continuous coefficients being functions of x. 

3. The outline of the tolerance modelling 

Averaged equations thin periodic plates can be obtained using the tolerance modelling 

procedure (or the asymptotic procedure), with the basic concepts, defined in books, 

cf. [12, 13, 4]. 

Let (x)≡x+, ={x: (x)}, be a cell at x. The averaging operator for an 

arbitrary integrable function f is defined by 

.,)()(
)(

1



  xdyyfxf

xl
 (3) 

If a function f is periodic in x, then averaged value by (3) is constant. 

Following the above books there can be introduced a set of tolerance-periodic 

functions TPδ
α(), a set of slowly-varying functions SVδ

α(), a set of highly 

oscillating functions HOδ
α(), (α≥0, δ is a tolerance parameter). Denote by h(·) a 

continuous highly oscillating function, hFSδ
2(). Function h(·) is called the 

fluctuation shape function of the 2-nd kind, if it depends on l as a parameter and satisfies 

conditions: ∂khO(lα-k) for k=0,1,…,α, ∂kh≡h, and <μh>(x)≈0 for every x,  

μ>0, μTPδ
1(). 

Using the above concepts, two fundamental assumptions of the tolerance modelling 

can be formulated, cf. Woźniak et al. [12, 13] and for thin periodic plates [3]. 

The first assumption is the micro-macro decomposition, in which it is assumed that 

the plate deflection can be decomposed as: 

.,,1),,()(),(),,( NAtxVxhtxWtzxw AA   (4) 
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Functions ),(),(),,( 2  SVtVtW A  are basic kinematic unknowns, called the 

macrodeflection and the fluctuation amplitudes, respectively; hA(·) are the known 

fluctuation shape functions, which can be assumed as trigonometric functions. 

The second assumption is the tolerance averaging approximation, i.e. terms of an 

order of O(δ) can be treated as negligibly small, cf. [12, 13, 3], e.g. for ),,(2  TPf  

),,(2  FSh  ),,(2  SVF  in: ),()()(  Oxfxf  ),()()()(  OxFxfxfF  

)()()()()(  OxFxhfxhFf . 

The tolerance modelling procedure can be found in the books [12, 13, 4]. Here, it is 

shown only an outline of this method. 

In the tolerance modelling two basic steps can be introduced. In the first step micro-

macro decomposition (4) is applied. In the second step averaging operator (3) is used to 

the resulting formula. Hence, the tolerance averaged lagrangean  h  is obtained: 
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 (5) 

with underlined terms, which depend on the microstructure parameter l. 

4. The outline of the asymptotic modelling 

In the asymptotic modelling, cf. [13], [4], the asymptotic procedure is applied. Using the 

asymptotic decomposition ),(),(
~

),(),,( 2 tyQyxhtyUtyxw AA
   in equation (2) and 

bearing in mind the limit passage ε→0 terms O(ε) are neglected in final equations. 

Using the above asymptotic decomposition and averaging operator (3) to the 

resulting formula, the asymptotic averaged lagrangean  0  is obtained: 
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This model does not describe effects of the microstructure size. 

5. Governing equations of presented models 

Equations of two models are presented here: the tolerance model, the asymptotic model. 

Substituting  h , (5), to the proper Euler-Lagrange equations, after some 

manipulations we arrive at the following system of equations for W(,t) and VA(,t): 

.)(
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  (7) 

Equations (7) together with micro-macro decomposition (4) stand the tolerance model of 

thin periodic plate bands. These equations describe free vibrations of these plates and 

take into account the effect of the microstructure size on them by the underlined terms 

dependent on the microstructure parameter l. In contrast to equation (2), which has non-

continuous, highly oscillating and periodic coefficients, equations (7) have constant 

coefficients. The basic unknowns W, VA, A=1,…,N, are slowly-varying functions in xx1. 

It can be observed that boundary conditions have to be formulated only for the 

macrodeflection W on all edges. 
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Using the asymptotic modelling procedure, shown in [13, 4], equations of an 

approximate model, without the effect of the microstructure size, can be obtained in the 

following form: 

.
,)(

BBAA

BB

VhhBWhb
pWWVhbWb
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Equations (8) stand the governing equations of the asymptotic model of periodic plate 

bands. It can be observed that these equations can be also derived by neglecting the 

underlined terms in equations (7). The asymptotic model equations have also constant 

coefficients, but they describe free vibrations of thin plates under consideration on the 

macrolevel only.  

6. Applications – free vibrations of periodic plate bands with various boundary 

conditions 

Let us consider a thin periodic plate band with span L along the x-axis, neglecting the 

loading p, p=0. The material properties of this plate are independent of the x2-coordinate. 

Let us assume the constant plate thickness d.  

  

Figure 2. A cell of the plate band 

It is assumed that the plate band is made of two different homogeneous isotropic 

materials, with properties described by Young’s moduli E″, E′ and mass densities ρ″, ρ′: 
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where γ is a distribution parameter of material properties, cf. Figure 2; the Poisson’s 

ratio ν≡ν″=ν′ is constant. 

Our considerations are restricted to only one fluctuation shape function, i.e. A=N=1. 

Denote hh1, VV1. Hence, micro-macro decomposition (4) has the form: 
),,()(),(),( txVxhtxWtxw   (10) 

where the fluctuation shape function h(x) assumed for the cell shown in Figure 2, takes 

the form: 

,),(],)/2[cos()( 2  xxyclylyh  (11) 

with parameter c is a constant determined by 0 h : 

.)]}1([){)(sin( 1c  (12) 
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Under denotations: 
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tolerance model equations (7) can be written as: 
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however, asymptotic model equations (8) take the form of one equation: 

.0])/[( 2  WWWBBB 

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 (15) 

Certain approximate formulas of free vibrations frequencies for periodic plate bands 

with various boundary conditions can be obtained applying the known Ritz method, cf. 

[4-6]. Using this method the maximal strain energy max and the maximal kinetic energy 

max are determined. For the plate band solutions to equations (14) and (15), which are 

applied in the Ritz method, can be assumed in the form: 

),cos()(),(),cos()(),( txAtxVtxAtxW VW   (16) 

where: α is a wave number; ω is a free vibration frequency; functions(·) and (·) are 

eigenvalue functions for the macrodeflection and the fluctuation amplitude, respectively, 

which have to satisfy the proper boundary conditions for x=0, L. Denote the first and 

second order derivatives of functions (·) and (·) by: 
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Moreover, let us introduce denotations: 
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Using the conditions of the Ritz method: 
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and make some manipulations we arrive at the following formulas: 

,
)()(2

))(()(4])()([

)()(2

)()(
)(

222

2222222422

222

2422
2

,








 

ll

llBBBll

ll

BBll











 
(20) 

of the lower frequency   of free macro-vibrations and the higher frequency   of free 

micro-vibrations, respectively, in the framework of the tolerance model. 

Calculations can be made for various cases of boundary conditions: 

- the simply supported plate band: 0)()()0()0(  LL ; 

- the plate band clamped on both edges: 0)()()0()0(  LL ; 
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- the clamped-hinged plate band: 0)()()0()0(  LL ; 

- the cantilever plate band:  0)()()0()0(  LL . 

7. Remarks  

In this paper the tolerance model governing equations of thin periodic plate bands are 

presented and applied to analyse free vibrations of them. The tolerance modelling 

replaces the governing differential equation with non-continuous, periodic coefficients 

by the system of differential equations with constant coefficients, which involve terms 

with the microstructure parameter. The tolerance model describes the effect of the 

microstructure size on vibrations. Hence, there are calculated the lower free vibration 

frequency and the higher free vibration frequency, which is related to the microstructure, 

for plate bands with various boundary conditions. These calculations are made using the 

procedure of the Ritz method.  
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Abstract  

This paper presents a dynamic analysis of torsional vibrations of the railway drive system. A dynamic 
electromechanical drive model has been created and then integrated with the railway wheelset-rail system to 

simulate self-excited torsional vibrations of the considered system. Results of this analysis are used in order to 

investigate the drive system’s sensitivity to torsional oscillations. Here, the dynamic electromechanical 
interaction between the electric driving motor and the rotating wheelset is considered. This investigation has 

proved that the torsional stiffness and damping of drivetrain system strongly affect amplitudes of the self-

excited vibrations. A self-excited vibrations affecting on an energy consumption of the electric motor of the 
considered system are studied 

 

Keywords: torsional vibrations, electromechanical coupling, wheel-rail adhesion, wheelset drivetrain dynamic 

 

1. Introduction 

Mechanical vibrations and deformations are phenomena associated with an operation of 

majority of railway vehicle drivetrain structures. The knowledge about torsional 

vibrations in transmission systems of railway vehicles is of a great importance in the 

fields dynamics of mechanical systems [1]. Torsional vibrations in the railway vehicle 

drive train are generated by several phenomena. Generally, these phenomena are very 

complex and they can be divided into two main parts. To the first one belongs the 

electromechanical interaction between of the railway drive system including the: electric 

motor, gears, the driven part of disc clutch and driving parts of the gear clutch [2]. To the 

second one belong torsional vibrations of the flexible wheels [3, 4] and wheelsets caused 

by variation of adhesion forces in the wheel-rail contact zone [5]. An interaction of the 

adhesion forces has nonlinear features which are related to the creep value and strongly 

depends on the wheel-rail zone condition and track geometry (when driving on a curve 

section of the track). In many modern mechanical systems torsional structural 

deformability plays an important role. Often the study of railway vehicle dynamics using 

the rigid multibody methods without torsionally deformable elements are used [6]. This 

approach does not allow toanalyse self-excited vibrations which have an important 

influence on the wheel-rail longitudinal interaction [7]. 

A dynamic modelling of the electrical drive systems coupled with elements of a 

driven machine or vehicle is particularly important when the purpose of such modelling 

is to obtain an information about the transient phenomena of system operation, like a 

run-up, run-down and loss of adhesion in the wheel-rail zone. In this paper most 

attention is paid to the modelling of an electromechanical interaction between the 
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electric driving motor and the railway wheelset as well as to an influence of the self-

excited torsional vibrations in the considered drive system. 

2. Mathematical modeling of the wheelset and the electric motor 

In order to investigate a character of self-excited torsional vibrations in the electric 

railway vehicle powertrain and a dynamic mutual coupling between the wheelset and the 

electric motor, a possibly realistic and reliable electromechanical model of the railway 

drivetrain is applied. The mechanical drive system is representedby a torsionally 

vibrating system of four-DOFs. The scheme of the considered model is shown in Figure 

1. 

 

Figure 1. Scheme of the dynamic model of the railway wheelsetdrive system 

A mathematical model of the single torsionally deformable railway wheelset under 

torsional vibrations induced by the traction motor and various adhesion frictional effects 

occurring in wheel-rail contact zones has been derived by means of the second-

orderLagrange’s equations in the generalized coordinates φi(t). These coordinates 

describe angular displacements of the drivetrain components of the wheelset. Here, there 

will be presenteda torsional dynamic analysis of the single wheelset running on  

a geometrically perfect straight section under various operational conditions determined 

by longitudinal slip siof both wheels, vertical wheel forces Q+m·gand vehicle velocity v. 

The drive torque and the retarding one due to the creep forces in contact of the rails with 

with the wheels complements the conservative railway drive model on the right side (1) 

and it can be expressed as 

creepdrivegearwheelsetgearwheelset MMCCKKI  (t))((t))( (t)   , (1) 

where I denotes the mass matrix containing mass moments of inertia of rotating 

elements of the drive system, the matricesKwheel, Kgear, Cwheeland Cgear express the 

torsional stiffness and damping properties of the wheelset, disc-clutch and of the gearbox 

wheel, respectively.Vector Mdrivecontains the electromagnetic torque generated by an 

asynchronous motor described in the following part of the paper and vector 

Mcreepcontains the traction torque generated by longitudinal tangential loads in the 

wheel-rail zones.Their form can be expressed as 

2,1),()(_  igmQsT iiiicreep  , (2) 

where Q is the normal load imposed on the single wheel, r is the wheel radius and μ(si) is 

the traction coefficient expressed in Eq. (4). Its maximum value is called an adhesion 

coefficient. The longitudinal creepage of the wheels is defined in the following form 
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where s0 and si are the longitudinal creepage before and duringdisturbances, respectively.  

Symbol i is the angular speed of the i-th wheel,i-indexmeansthe left and therightwheel 

and vdenotes forward wheelset velocity in km/h obtained by the equivalent angular 

speed of wheelset axle 2 at the contact point. 

In equation (1) the traction torque including torques Mcreep_1,2 on left and right wheel 

of the wheelset have nonlinear properties. These propertiesare dependenton a profile of 

adhesion characteristic describing a contact in the wheel-rail zones. Depending on the 

adopted various maintenance, operation and weather conditions, this characteristic can 

take into considerationvarious forms of creepage curves, as shown in Fig. 2. The 

creepage curve applied for the carried out investigations has been plotted in Fig. 3 and it 

can be expressed by the following equation 

1,2.))],exp(f+))atan(e(d+)/2
c

b
tanh(+)exp(-+[(a*0.3=)(  isssssµ iiiii  (4) 

For dry and wet weather conditions in the wheel-rail zone parameters of Eq. 4 have 

numerical values contained in Table 1.  
 

Table 1. Parameters for traction coefficient in Eg. (4) 
Quantity a b/c d e f 

dry
 

-1 100 1.75 0.7 -7 

wet -2 25 1.25 1 -0.5 

 
Figure 2.Adhesion-creep characteristic  

ofthe railway conditions [8] 

 
Figure 3. Profile of adhesion curves 

using in investigations 

The adhesion curve can be divided into two regions, see Fig. 3. The first regionis 

characterized by a rapidly rising slope of the curve is the stable region. The second one, 

due to a negative damping results in visible decreasingslope,can lead to self-excited 

oscillations in the wheel-rail contact zone. This phenomenon makes the driven wheelset 

slipping on the rails of a railway track. Consequently, when a tangential force between 

the wheel and the rail exceedsan adhesion force in the wheel-rail contact zone, the self-

excited torsional vibrations of the wheelset occur. Such a phenomenon has a very large 

impact on the relative rotation between the wheel and the axle due to a lack of friction in 

press fitting [9] and it can make vehicle derailed. Additional dynamic torsional 

stable region unstable region 
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overloadsproduce disturbances in the wheelset drive system, which has a influence on 

the traction moment of a railway vehicle. This characteristic of the traction moment is 

also dependent on electrical parameters of the motor, power supply and its regulation.A 

modeling of the electrical part of a drivetrain is a very difficult and complex task. For a 

simple solution it is possible to use a linearization around of the working point static 

characteristic of thedriving motor. But, in the case of a more advanced analysis of 

transient phenomena in the drivetrainan accurate circuit model of the electric motor is 

needed [10,11].The asynchronous motors are very commonly applied as railway vehicles 

driving sources. From the viewpoint of electromechanical coupling investigation, for an 

introductory approach the properly advanced circuit model of the electric motor seems to 

be required, similarly as e.g. in [12]. In the case of the symmetrical three-phase 

asynchronous motor electric current oscillations in its windings are described by the six 

circuit voltage equations. In order to simplicity of their form they are transformed into 

the system of four Park’s equations in the so called‘β-dq’ reference system  
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(5) 

where U denotes the power supply voltage, e is the supply voltage circular frequency,  

Ls, Lr’ are the stator coil inductance and the equivalent rotor coil inductance, 

respectively, Lm denotes the relative rotor-to-stator coil inductance, Rs, Rr are the stator 

coil resistance and the equivalent rotor coil resistance, respectively, p is the number of 

pairs of the motor magnetic poles, 1 (t) is the current rotor angular speed including the 

average and vibratory component and is, iβ
s are the electric currents in the stator 

windings reduced to the electric field equivalent axes  and andid
r, iq

r are the electric 

currents in the rotor windings reduced to the electric field equivalent axes d and q, [12]. 

Then, the electromagnetic torque generated by such a motor can be expressed by the 

following formula 

.
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r
q

isir
d

isipL
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 (6) 

In our approach the interaction between the electromagnetic and mechanical systems of 

the considered powertrain coupled mutually through electromagnetic torque Ms and 
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angular rotor velocity 1 is shown in Eqs. (5) and (6).In order to control the electric 

motor assumed in the applied drive system model the field-oriented control methods has 

been used [13].According to the above, this set of coupled electromechanical Eqs. (1), 

(5) and (6) is going to be simultaneously solved by means of a selected direct integration 

method for electric parameters including: resistance of the stator and the rotor equal 

Rs=0.288Ω, Rr=0.158Ω. The relative inductance, inductance of the stator windings and 

inductance of the rotor windings are respectively equal to Lm = 0,0412 H, Ls = 0,0425 H 

and Lr = 0,0418 H.The asynchronous motor has 4 pole pairs and its supply voltage is 

equal to 3 kV with 60 Hz supply frequency. In the considered case, the Runge-

Kuttafourth-order method will be applied for motion equations of the electromechanical 

model assumed in this way.  

3. Numerical results 

In the computational example railway drivetrain system with the torsionally 

flexiblewheelset is used as an object of considerations. This wheelset of a total weight 

1500 kg and a load of the single wheel equal to Q=40kN is driven by the asynchronous 

motor by means of the disc-clutch with torsional stiffness and dampingcoefficient 

k1=3000 kNm, c1=100 Ns/m.The spur gear stage of the ratio i=1:6reduces a rotational 

speed of the wheelset into   2
*
2

 . There is assumed that the minimum radius of the 

wheelset axle and the half of length of the axle are respectively equal to 0.08 and 0.75 m. 

This axle is made of steelP35G. The torsional stiffness of this axis has been determined 

equal to k2=k3= 6.9e7 Nm/rad.More parameters applied in this investigations are also 

given in the Table 2. 

Table 2. Simulationbaseparameters 
  c2 c3 Is Iz Ig Ikl Ikr 

0.16 
50 

Ns/m 
50 Ns/m 2.1 kgm2 20.2 kgm2 43 kgm2 78 kgm2 78 kgm2 

The simulation model described above can be used to simulate several 

differentconditions of operation, i.e. motor acceleration, deceleration, load change, 

faultcondition, etc. However, due the limitedsize, only selected results arepresented here. 

An amplitude of self-excited vibrations is an important evaluating indicator to measure 

the vibration magnitude. Some drive system parameters influencing the amplitude of the 

self-excited torsional vibration are shown in Figs. 4 and 5. Figure 4a and 4c present the 

result of the self-excited vibration amplitudes and the spectrum of them at various 

damping between the drivetrain system and the wheelset wheels. As shown in this 

figure, the vibration amplitude decreases with an increaseof damping level where the 

dominant frequency of the vibration is kept constant. An increase ofthe damping can 

restrain this amplitude and shorten the convergence time of the torsional vibrations, but 

it is not affected whether the self-excited vibration occurs or not.The same effect can be 

observed on time-histories of the currents of the stator windings shown in Figs. 4b and 4 

d.Figure 5a shows a result of the self-excited vibration amplitudes at different equivalent 

stiffness betweenthe drivetrain and the wheelset wheels of wheelset. 
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Figure 4. Self-excited torsional vibration amplitudes of the mechanical and 

electricparameters at various torsional damping ofwheelset drivetrain. Time-history (a) 

and amplitude spectrum (c) of the difference between the angular displacements of the 

left and right wheelset wheel. Time-history (b) and amplitude spectrum (d) of the electric 

currents in the stator winding 

  

  
Figure 5. Self-excited torsional vibration amplitudes of the mechanical and 

electricparameters at various torsional stiffness ofwheelset drivetrain. Time-history (a) 

and amplitude spectrum (c) of the difference between the angular displacements of the 

left and right wheelset wheel. Time-history (b) and amplitude spectrum (d) of the electric 

currents in the stator winding 
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As shown in this figure(Fig 5.), the vibration amplitude decreases with an increase of 

k2and k3. It indicates that where increasing the torsional stiffness of drivetrain system, it 

is influences on the stability of the vibration and its shifting dominant frequency of the 

vibration in the higher range of the spectrum (Fig. 5c). 

Considering the electrical parameter values of motor obtained from the above 

investigations it is worth highlighting that the self-excitation torsional vibrations affected 

on the entire electromechamicaldrivtrain system and they have a significant influence on 

the amount of theoretically expected electric energy Pelconsumed by the driving 

motor.In the case of the investigated system, this energy can be determined by the 

electromotive forces induced in the asynchronous motor phases by voltages and currents 

in the stator windings. This energy can be defined [7]. 

,)]()()()([
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0
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dttitUtitU
t

P s
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ds

k
el   (7) 

where Uds(t)= )cos(
2
3 teU  , Uqs(t)= )sin(

2
3 teU  , and )(ti s

 , )(tis
 , denote the voltages 

and currents in the stator circuits of the electric motor phases transformed into the 

reference system of Park’s equations, tkis the total duration time of the each variant of  

an analysis and the remaining symbols have been already defined in Eqs. (5) and (6).  

Table 3illustrates the amounts of electric energy consumed by the drivetrain motor 

during the consideredtest scenariosat various of parametersthe drive system discussed 

above. 
 

Table 3. Amounts of electric energy consumed by the asynchronous motor during the 

assumed four scenarios of the investigation using the assumed drivetrain models 
stiffnes of drivtrain [Nm/rad] 1e7 2e7 3.5e7 6.9 e7 

stiffness-energy consumed [kWs] 62,35 70,44 76,65 78,93 

damping of drivtrain [Nms/rad] 50,00 100,00 150,00 200,00 

damping-energyconsumed [kWs] 78,93 88,37 88,59 93,02 

From a comparison of the results shown in Table 3it follows that, when the torsional 

stiffness increase, more electric energy have been consumed. This fact can be 

substantiated by change amplitude of the time-histories of the difference between the 

angular displacements of the left and right wheelset wheel characteristics of presented in 

Fig. 5. 

4. Final remarks and preview 

In this paper, an electromechanical model of the railway vehicle drive system has been 

performed. This model has been used to investigate self-excited torsional vibrations 

occurring in this system. In the investigations their influence of the torsional vibration on 

the electric parameters of the drive motor are also considered.From obtained results it 

follows that a reductionof the self-excited vibration amplitudes by means of increasing 

the damping and stiffness between the driving motor and the wheelset and torsion 

stiffness of wheelset occur.The results obtained using numerical simulations indicated 

that the self-excited torsional vibrations in the considered drive system are strongly 
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dependent on the characteristics of the adhesion coefficient in wheel-rail contact zone. A 

circuit model of the electric motor in the considered drive system enable us to obtain 

values of electrical parameter characterizing the driving motor.The information 

concerning a frequency variation of the current in the driving motor stator can be used 

for monitoring and identification of self-excited vibration in the wheelset drivetrain 

system. The further work will be denoted to an assumption of the vehicle model with the 

drivetrain system and it will be carried out experimentally verification on real railway 

vehicle. 
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Abstract 

In this paper the model of four degree-of-freedom mechanical sliding system with dry friction is considered. 

One of the components of the mentioned system rides on driving belt, which is driven at constant velocity. 

This model corresponds to a row of carriage laying on a guideway, which moves at constant velocity with 
respect to the guideway as a foundation. From a mathematical point of view the analyzed problem is governed 

by four second order differential equations of motion, and numerical analysis is performed in Mathematica 

software. Some interesting behaviors are detected and reported using Phase Portraits, Poincaré Maps and 
Lyapunov Exponents. Moreover, Power Spectral Densities obtained by the Fast Fourier Transform technique 

are reported. The presented results show different behaviors of the system, including periodic, quasi-periodic 

and chaotic orbits. 

 

Keywords: periodicity, quasi-periodicity, chaos, hyper-chaos, non-regular vibrations 
 

1. Introduction 

The comprehension and characterization of dynamical systems belong to a challenging 

subject in recent years [1], and also nowadays these investigations are still continued. In 

many real systems (for instance, sliding linear guide systems, brakes, clutches, piston 

rings in a cylinder, and many other) friction phenomenon and stick-slip effect as a result 

of relative sliding velocity between surfaces of bodies rubbing themselves have a great 

impact on the strength of mechanical elements of these systems as well as their 

dynamics. And although there are numerous papers related to the mentioned problems in 

the literature, not all effects, associated with the friction phenomenon, have been 

sufficiently understood so far. In many cases, the presence and the manifestation of some 

effects depends on the structure of the considered system. In general, friction belongs to 

the complex processes and depends on various parameters like relative sliding velocity, 
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normal load or surface properties. As an example, a review on different applied in the 

literature dry friction models can be found in [4], or in the recent paper [5]. 

The presented in this paper studies are a continuation and extension of research 

related to the mechanical model presented in [2,3]. In comparison to the mentioned 

papers, here other new numerical simulations obtained for other system parameters are 

presented and discussed. In addition, in contrary to the previous numerical 

investigations, beyond using Phase Portraits and Lyapunov Exponents, also other 

methods are used and applied like Poincaré Maps and Power Spectral Densities (PSDs). 

The rest of the paper is organized as follows. In section 2 mechanical model of the 

considered system and its equations of motion in the non-dimensional form are 

introduced. In section 3 assumptions of numerical computations, the applied 

approximations of non-smooth functions, as well as parameters of the considered system 

are introduced. Numerical results of our investigations are presented in section 4. 

Finally, conclusions of our investigations are presented in the last section 5. 

2. Mechanical Model and Non-Dimensional Form 

The analyzed in this paper four degrees-of-freedom model is shown in Fig. 1. 
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Figure 1. The considered 4-DOF model with dry friction 

The state of the considered dynamical system is described by the following variables: 

1x , 11 xv  , 1y , 11 yz  ,  ,   , 2x  and 22 xv  . The body of mass 1m  can rotate 

about the pivot axis S  (moment of inertia about the pivot axis S  of this mass is equal to 

I ). The whole system is characterized by lengths il  ( i = 1,2,...,6) and springs with 

stiffness coefficients ixk , jyk  ( i =1,2,4,5,6; j =3,4,5,6). Moreover, additional body of 
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mass 2m  is placed on the belt as a foundation, which moves with a constant velocity 0v . 

Between the mentioned mass 2m  and the belt dry friction force occurs, which is a 

function of the relative sliding velocity 20 xv  . Equations of motion of the system are 

obtained using the second kind of Lagrange equations (presented in detail in [2]) and 

have the following non-dimensional form 
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where 1x , 1x , 1y , 1y ,  ,  , 2x , 2x  denote now non-dimensional state variables. 

Other non-dimensional parameters and functions of Eqn. (1) are introduced in section 3. 

3. The Applied Approximations and Parameters 

Numerical simulations are obtained in Mathematica software via the fourth order Runge-

Kutta method, and the trajectories are started from zeros initial conditions. The values of 

non-dimensional system parameters are as follows: 

 

08.01 a , 03.02 a , 04.03 a , 09.01 b , 03.02 b , 03.01 c , 03.02 c , 

06.03 c , 03.04 c , 01.0gf , 38.11 e , 47.02 e , .var0 v , 

 

and their estimation is explained in [2]. Kinetic friction function )( 20 vvfk   in our 

model is described by the Stribeck function. Since the classical signum function is 

discontinuous, it has been approximated by the hyperbolic tangent function with control 

parameter   in the following way 
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with fixed parameters 8.00  , 59,15 , 12,4252  and 
410 . Because the unit 

step function ))(( 211 eyefg 1  is also discontinuous, the following approximation is 

also applied in our computations 
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4. Results 

Figs. 2-4 present numerical simulations for different parameter 0v . The presented results 

vary from each other, depending on the used value of 0v  parameter. 

 
(a) 
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Figure 2. Phase portraits (a,b,c,d), Poincaré sections (e,f,g,h) and PSDs (i,j,k,l) for 

005.00 v  in time interval )22000,20000(  

As can be seen, for 005.00 v  the character of motion is chaotic. Presented in Fig. 2 

phase portraits, Poincaré sections and PSDs confirm its irregular dynamics. The chaotic 

attractor has different forms on different Poincaré maps. Moreover, it should be 

emphasized that the characters of motion differ is very sensitive to the changes of the 

belt velocity 0v . In particular stick-slip chaotic dynamics is clearly exhibited by the 

phase portrait shown in Fig. 2c and the Poincaré map reported in Fig. 2g. 
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Figure 3. Phase portraits (a,b,c,d), Poincaré sections (e,f,g,h) and PSDs (i,j,k,l) for 

025.00 v  in time interval )22000,20000(  

When 0.0250 v , for variable 1x  there is a periodic-two cycle orbit, which is 

represented by two points in the Poincaré section (Fig. 3e) and is depicted as the 

trajectory crosses itself in phase portrait (Fig. 3a). The same situation occurs for state 

variable 2x . While for 1y  a period-one harmonic appears (Fig. 3f), it is worth noting 

that this is a closed curve in the phase plane (Fig. 3b). A three cycle period behavior is 

presented for   (Fig. 3d,h). 

Frequencies, at which the energies are strong and at which variations energies are weak, 

are shown in the Fig. 3 (i,j,k,l) for 025.00 v . For the following state variables: 1x , 1y , 

2x  and   the energy is the strongest at two, single, two and three frequencies, 

respectively. 
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Figure 4. Trajectories of the system for 05.00 v  in time interval )12000,10000(  

  

Figure 5. Poincaré sections for 05.00 v  in time interval )22000,20000(  

Another character of motion is detected for 05.00 v . Fig. 4 shows the transient states 

for chosen time interval, which indicate that the trajectories of the system go to the fixed 

points. After avoiding the mentioned transient states, the Poincaré sections are also 

obtained and presented in Fig. 5, and they prove that the system goes to steady state. 

Table 1. Lyapunov exponents for different parameter 0v  

0v  1  2  3  4  5  6  7  8  

0.005 0.0069 0.0027 0.0001 -0.0010 -0.0030 -0.0077 -0.0206 -33.00 

0.025 0.0000 -0.0026 -0.0027 -0.0095 -0.0358 -0.0384 -0.0960 -19.52 

0.032 0.0002 -0.0004 -0.0011 -0.0080 -0.0149 -0.0324 -0.1333 -15.81 

0.04 0.0000 -0.0022 -0.0026 -0.0160 -0.0198 -0.0421 -0.0850 -7.8248 

0.05 -0.0043 -0.0045 -0.0100 -0.0102 -0.1195 -0.1197 -0.1764 -2.2371 

 

Our numerical investigations are also conducted by calculations of the max. Lyapunov 

exponents, which are depicted in Tab. 1. Moreover, as an example, time histories of 

max. Lyapunov exponents for two different parameter 0v  are reported in Fig. 6. The 
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Lyapunov exponents for each values of 0v  has been obtained using the Gram-Schmidt 

reorthonormalization time 5.0T , after avoiding the transition state and starting 

numerical computations from zeros initial conditions. Chaotic characters of motions are 

detected for 0v  equal to 0.005 and 0.032, while the periodic behavior are detected for 

0v  equal to 0.025, 0.04 and 0.05. For 05.00 v  the trajectories goes to the fixed points. 

 

 
(a) 

 
(b) 

Figure 6. Time histories of max. Lyapunov exponents of the system for different values 

of velocity 0v  equal to: (a) 0.005 and (b) 0.05 

5. Conclusions 

Mathematical model of 4-DOF mechanical sliding systems with dry friction is 

considered. From a mathematical point of view the mentioned system is presented as a 

nonlinear system of equations of motion. Dynamics of the analyzed system is carried out 

for a set of system parameters and various non-dimensional control parameter. 

Interesting dynamics behaviors of the considered system are reported using standard 

tools dedicated to the both qualitative and quantitative theories of nonlinear differential 

equations. There are many technical devices in engineering applications, where we deal 

with stick-slip induced vibrations. The considered in this paper system can be treated as 

a model, which corresponds to a row of carriage laying on a guideway and moved at 

constant velocity with respect to the guideway as a foundation. As this paper shows, 

there are many possible behaviors of this system, and also it is very sensitive to the 

changes of the belt (foundation) velocity. It is therefore can be anticipated that also the 

movement of the real system of this type with various velocities of foundation, may vary 

considerably. In result, it can cause strongly nonlinear vibrations (regular or chaotic) that 

moving to the various components of the system may lead to its damage. Therefore the 

considered system can be used in engineering practice to predict its vibrations, and 

consequently to its protection. 
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Abstract  

In this paper the non-linear vibration behaviour and its modification due to the piezoelectric actuation of a 

beam with varying cross section and resting on an elastic foundation has been discussed. Due to assumed end 

conditions the stretching force emerges during the system vibrations. That force can be modified by an axial 
residual force to enhance or reduce the value of vibrations frequency of the beam. The system is divided onto 

three segments with the central segment consisted of the core beam and two colocally and perfectly bonded 

piezo patches. In order to obtain the approximate solutions of the non-linear frequency of the systems the 
Lindstedt-Poincare method has been utilized. Vast number of numerical results shows that not only the 

structural parameters of the system have significant effect on its non-linear vibration behaviour at a given 

amplitude but also the residual force and the elastic foundation modulus.  

 

Keywords: non-linear vibrations, piezoactuators, amplitude-frequency relation, Winkler foundation 
 

1. Introduction 

The non-linear lateral vibrations of beam structures have been the subject of interest of 

many researchers. From the engineering point of view the beam-type structures are very 

interesting due to their wide application in civil and mechanical engineering, automotive, 

aviation, aeronautics industry, medical systems and equipment and many more. It is well 

known that any mechanical structure or its part should be protected from exposure to 

long time periods of resonance. Piezoelectric materials which are also called “smart 

materials” allow to modify the vibration frequency and buckling load of a given 

structure due to the inverse piezoelectric effect. That effect result in dimension changes 

of piezoelement which depend on the applied electric field vector. It should be noted that 

direct piezoelectric effect is also widely utilized in many areas of life such as sound 

processing, pacemakers, airbags, lighters etc. 

As the research precursor of non-linear frequency studies shall be deemed to 

Wojnowsky-Krieger [1] whose thesis concerned the effect of the axial force on the non-

linear frequency of simply supported beams. In the subsequent years there were vast 

number of literature positions published and experimental studies performed concerning 

the problem of the non-linear vibrations. Azrar et al. [2] presented mathematical 

approach concerning the second order approximation to obtain the non-linear vibration 

frequency for pinned-pinned and clamped-clamped beams which are close to the exact 

solution in a large amplitude frequency range. Moreover authors presented a very 
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thorough discussion about increasing the accuracy of the obtained amplitude-frequency 

solutions. Benamar et al. [3] proposed a general model of the non-linear vibrations at 

large amplitudes for standardly supported beams to describe the influence of amplitude 

on both the mode shapes and the natural frequency. It was observed that near the clamps 

there were a great increase in beam curvatures which caused increased deflection 

resulting in highly non-linear increase of bending strain. A vast literature overview 

concerning the active, passive, semi-active and hybrid vibration control of the systems 

was presented by Song et al [4]. It was stated that piezoelectric materials despite some 

limitations have many advantages such as low-cost, low weight and ease of 

implementation. On the basis of Faria [5] as well as Zehetner and Irschik [6] 

considerations it can be stated that only for the beams which ends are mounted to 

prevent their axial displacement, both the stability and vibration frequency can be 

modified by piezoelectric actuation. Oguamanan et al. [7] investigated the influence of 

piezoelectric material in plane stress on beams mechanical performance. Authors 

showed that in systems where piezoelectric material was bonded both to the upper and 

bottom surface of the beam, especially the first frequency can be significantly modified. 

It was observed that depending on the applied electric field vector direction, vibration 

frequency can be enhanced or reduced. Moreover authors demonstrated that 

piezoactuators localized near the beam supports, give slightly more effective control of 

the system vibrations. The influence of piezoactuators length, its localization and the 

piezoelectric force on the amplitude-nonlinear frequency relationship in a slender 

pinned-pinned beam has been studied by Przybylski [8]. It was proved that stretching 

piezoelectric force result in an increase of the natural frequency and decrease of non-

linear frequency, whereas compressive piezo-force resulted in opposite system 

behaviour. A broader literature overview with wider area of study of slender systems 

with bonded piezoelectric materials can be found in [9]. 

In this paper the influence of vibrations amplitude, piezosegment length and Winkler 

elastic foundation modulus on the non-linear frequency for a pinned-pinned and 

clamped-clamped beams is investigated. Moreover the non-linear vibration adjustment 

due to piezoelectric actuation is examined. The object of study is a three segment system 

made of aluminium host beam with two symmetrically piezo patches bonded perfectly 

on the upper and bottom surface of the central segment. In order to obtain approximate 

solutions the Lindstedt-Poincare method has been utilized. 

2. Problem formulation 

The main objective of this work is to formulate and solve the problem of the non-linear 

vibrations of a stepped beam resting on the Winkler elastic foundation and to estimate 

the influence of both the structural parameters and the piezoelectric actuation on the non-

linear frequency-amplitude relationship. Due to the moderately large amplitude of 

vibrations, the von Karman theory has been applied according to which during 

transversal vibrations, the axial inertia effect can be treated as insignificant. 

The scheme of three-segmented system composed of a core beam with both ends 

clamped and two piezoelectric patches bonded along the central segment is shown in 

Fig. 1. 
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a) 

 

b) 

 

Figure 1. Scheme of clamped-clamped beam resting on elastic Winkler foundation with 

two piezoelectric patches colocally mounted along the central segment (a), piezosegment 

cross-section (b) 

The applied voltage, symbolized by the electric field vector E in Fig. 1, is exactly the 

same for the upper and bottom piezo actuator which results in the axial 

stretching/compressive force being generated dependently on the electric field vector 

sense. A derivation of the residual force equation appearing along the stepped beams 

with n-pairs of piezoelectric actuators has been presented in [9]. According to these 

considerations for the three segmented system the residual force can be described as 

follows 
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where:  denotes the relation of the piezosegment axial stiffness to that of the beam, 

F = -2be31V is the piezoelectric force induced by piezoceramic patches of width b, when 

piezo material is characterised by constant e31 and the applied voltage is equal to V, L is 

the length of the beam, L2 is the length of piezosegment. According to von Karman 
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Introducing both residual piezo-force Fr and dynamic force S(t) into the governing 

equation of motion for the i-th segment, that equation takes the following non-

dimensional form 
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where the dimensionless parameters are defined as  
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Following notation has been assumed: EpIp, EbIb - the bending stiffness of piezo patches 

and that of a beam, respectively, Ap, Ab - the cross section area of piezopatches and 

beam, respectively, p, b - the material densities of the actuators and beam, respectively, 

ω - the natural frequency of the system, t is time, k denotes the Winkler foundation 

modulus. 

The non-dimensional boundary conditions for a pinned-pinned beam are: 
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whereas for a clamped-clamped beam take the form: 
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where: I and II are the Roman numerals denoting the order of the derivative with respect 

to the space variable . 

The continuity conditions are independent from the type of supports and describe the 

equality of the transversal force, moments, slopes and displacements between segments: 
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3. Approximate solutions 

In order to obtain approximate solutions of the non-linear boundary problem the 

Lindstedt-Poincare method has been utilized, according to which relevant quantities are 

expanded into exponential series with respect to the small amplitude parameter  
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where separation of space and time variable are described as: 
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Introducing expansions from (8-10) into the equation of motion (3) and axial dynamic 

force  2s  expressed in (4) and then equating the terms of respective  exponents to 

zero, an infinite set of equations of motion and axial force is obtained. 

By solving the first pair of equations from the infinite set of equations with use of 

boundary conditions (5-6) an infinite number of solutions for the natural frequency is 

obtained, whereas from the third equation after applying the orthogonally condition the 

second term of frequency ω2 can be obtained. The relationship of non-linear frequency ω 

and amplitude  are determined on the basis of equation (10), with a customary limit up 

to the second order. 

4. Numerical results 

In this chapter the numerical results concerning the non-linear frequency-amplitude 

relationship for clamped-clamped and pinned-pinned beams with piezosegment centrally 

localised are presented. All analysis can be performed by using the non-dimensional 

quantities, but to show its usefulness for engineering applications it has been assumed 

that the host beam thickness tb = 3.0 [mm] and piezo patches tp = 0.5 [mm] each, 

whereas both the beam and piezo patches width b = 20 [mm]. The influence of adhesive 

layer thickness has been taken as negligibly small. The beam was made of a 

homogeneous elastic isotropic aluminium, while piezoceramic actuators were made of a 

homogeneous elastic transversely isotropic P41 material (Annon Piezo Technology Ltd. 

Co.). Electromechanical properties of the adopted materials for the numerical analysis 

are shown in Tab. 1. 

Table 1. Material properties of beam and piezo patches 

Property Unit Beam Piezoceramic 

E GPa 70.00 83.33 

 kg/m3 2720 7450 

d31 C/N - 1.0010-10 

Umax V/mm - 2000 

The first group of plots presented in Fig. 2 shows the influence of structural parameters 

of the beam and the elastic foundation stiffness modulus on the mentioned relationship, 
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whereas in Fig. 3 the role of piezoelectric actuation in modification the obtained curves 

for the system with piezosegment of length l2 = 0.80. 
 

a) 

 

b) 

 
c) 

 

d) 

 

Figure 2. The influence of piezosegment length on amplitude – non-linear frequency 

relationship in clamped-clamped (a, b) and pinned-pinned (c, d) beams; remaining 

parameters: Winkler elastic foundation modulus  = 0 (a, c),   = 100 (b, d)  

Comparing the curve courses for the clamped-clamped support (Fig. 2a, b) it can be 

stated than the longer the piezosegment length the smaller the amplitude influence on the  

non-linear frequency. For the pinned-pinned beam (Fig. 2c,d) at the whole range of the 

amplitude, the non-linear frequency is lower for the piezosegment of length l2 = 0.80 

than for the piezosegment mounted at the entire beam (l2 = 1.00), whereas for the lengths 

l2 = 0.0 and l2 = 0.20 the vibrations aims to be the same with increased elastic foundation 

modulus. In both clamped-clamped and pinned-pinned system together with an increase 
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of the elastic foundation modulus, the non-linear frequency decreases at the whole range 

of amplitudes and for any value of the piezo patches length. 

In order to examine the piezoelectric actuation influence on the non-linear frequency 

– amplitude relationship two values of piezoelectric force has been chosen f 2 = ±π2. It 

should be noted that the range of non-dimensional residual force resulting from the 

applied electric field is far below the depoling field for the piezoceramic material. 

 

a) 

 

b) 

 
c) 

 

d) 

 

Figure 3. The influence of piezoelectric actuation on the amplitude-non-linear frequency 

relationship for clamped-clamped (a, b) and pinned-pinned (c, d) beams; remaining 

parameters: Winkler elastic foundation modulus  = 0 (a, c),   = 100 (b, d) 

As it is presented in Fig. 3 in both cases (clamped-clamped and pinned-pinned beam) 

at any given amplitude and elastic foundation modulus the tensile piezoelectric force 

reduce the non-linear frequency, while the natural frequency is increased comparing to 

the beam without piezoactuation, whereas compressive piezo-force acts in an opposite 



210 

way. Moreover the higher stiffness of Winkler elastic foundation the lower value of non-

linear frequency at the whole range of amplitude. It should also be noted that more 

significant affection of Winkler elastic foundation on the non-linear frequency – 

amplitude relationship for systems with lower external support stiffness.  

5. Conclusions  

In this study the problem of non-linear vibrations for the non-uniform Euler-Bernoulli 

beams has been discussed. Moreover the enhancement and reduction of non-linear 

vibrations due to the piezoelectric actuation has been examined. It should be noted that 

performed studies can be useful in the manufacture of elements which are responsible of 

controlling static and dynamic response of structures. 

It was also shown in this paper that regardless of system external support, the higher 

value of Winkler foundation modulus parameter results in decreasing of the non-linear 

frequency. There was also proved that piezoelectric actuation can enhance the non-linear 

vibration frequency via compressive force induced, while the natural frequency is 

increased and the opposite system behaviour is obtained for the tensile piezo-force. 
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Abstract 

The approach to numerical modelling of sound transmission through window type partitions is investigated in 

the paper. The laboratory conditions of reverberation room are simulated. The numerical and experimental 
results are compared. The impact of different model parameters on the sound insulation levels are evaluated. 
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1. Introduction 

There are several basic approaches to sound insulating: increasing the distance between 

source and receiver, using noise barriers to reflect or absorb the energy of the sound 

waves, using damping structures such as sound baffles, or using active antinoise sound 

generators. Those approaches are implemented through a variety of techniques: vibration 

isolation, sound insulation, sound absorption and vibration damping. The window type 

partition is primarily a mass barrier with sound insulation properties. 

There were several attempts to simulate sound insulation properties of partitions 

numerically. In the literature, this type of problems are usually referred to as 

vibroacoustic or structural-acoustic effects with fluid interaction. Davidson [1] 

investigated structure-acoustic effect, which involved a flexible structure coupled to an 

enclosed acoustic fluid. Ruber et al. [2] have investigated of a tuned vibration absorber 

with high damping for increasing acoustic panels sound transmission loss in low 

frequency range. Sakuma et al. [3] performed a numerical investigation of the niche 

effect in sound insulation measurement. Their numerical results demonstrate that sound 

reduction index decreases below the critical coincidence frequency due to niches, while 

it increases above the frequency. It was also confirmed that the effect of the two sided 

niche with a centrally located specimen is largest at low frequencies.  

Dimino et al. [4] investigated a vibroacoustic design of an aircraft-type active 

window. An experimental modal analysis was carried out to determine both single 

partition and coupled fluid-structure modal frequencies used to validate the finite 

element model. The sound radiation characteristics of the window prototype via 



212 

numerical procedure of coupling boundary and finite element methods was proposed to 

solve the coupled acoustic structure problem in the exterior acoustic domain. The above 

publications did not considered the standardised sound insulation measurement 

procedure, therefore the obtained results were difficult to be compared comprehensively. 

Gimeno [5] studied the acoustic insulation of domestic windows, with the objective 

to compare the experimental and numerical methods. The calculations were made in 

COMSOL. Obtained results were not completely satisfactory, due to 2D numerical 

model restrictions and certain differences in boundary conditions between the numerical 

model and experimental measurements. 

In this paper, a 3D approach to numerical modelling of sound transmission through a 

domestic windows, based on laboratory measurement standardised procedure EN ISO 

20140-3, was investigated. 

2. Laboratory measurements 

The airborne sound insulation of domestic windows can be evaluated from laboratory 

measurements of the sound reduction index according to EN ISO 20140-3 norm [6]. The 

results acquired in laboratory can be used to compare the properties of sound insulation 

of building elements, to classify such items according to their capabilities of acoustic 

insulation, help design building products which require certain acoustic properties and 

estimate the in situ performance in complete buildings. The measurements are performed 

in laboratories in which sound transmission via flanking paths is suppressed. However, 

the results of measurements made in accordance with this standard cannot be applied 

directly to the field situation without accounting for other factors, such as flanking 

transmission, boundary conditions and total loss factor. The laboratory measurements are 

made using octave or one-third-octave bands. 

The airborne sound insulation measurement, known as the reverberation room 

method, takes into consideration two chambers: a source chamber and a receiving 

chamber separated by a test element. It is assumed that all sound is transmitted via the 

test element, and that the structure of the transmission suite itself plays no role other than 

defining the space for the source and receiving rooms.  

The transition coefficient τ, is defined as the ratio of the sound power transmitted by 

the test element 𝑊2, to the sound power of the source 𝑊1, expressed in Watts: 













1

2

W

W
  (1) 

The sound reduction index R expressed in decibels is the inverse of the wall’s 

transmission factor. In the laboratory measurements the index R is determined by 

measuring sound pressure level 𝐿1 and 𝐿2 in the two rooms. The following is obtained 

[6]: 

(dB)     log1021
A

S
LLR   (2) 

Where: 𝐿1 is the average sound pressure level in the source chamber (dB), 

𝐿2 is the average sound pressure level in the receive chamber (dB),  
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S is the test area (m2),  

A is the equivalent sound absorption area in the receiver chamber (m2). 

Dijckmans and Vermeir [7], carried out an extensive parametric study with a wave 

based model to numerically investigate the fundamental repeatability and reproducibility 

in such acoustical measurements through the different partitions. The effect on the 

uncertainty of single number quantities by including low frequencies (50-80 Hz) was 

discussed. Furthermore, their parametric study gave information to what extent it is 

possible to predict the sound insulation by laboratory results. In the low-frequency range, 

the sound transmission level as measured in the laboratory was not representative for 

results in situ. The same partition can give different sound transmission values, 

depending on the geometry and dimensions of the chambers or the partition. This source 

of uncertainty should be taken into further consideration. 

 

 

 

Figure 1. The CAD model of analysed window 

The window frame (Figure 1), analysed in Ship Design and Research Centre CTO, 

has overall dimensions of . The default frame thickness ‘G’ is 78 mm and default frame 

height ‘H’ is 98 mm. The width of the central pillar is 82 mm. The default frame 

material is Meranti wood with density of 800 kg/m3 and sound speed of 4500 m/s. The 

window glass material has density of 2500 kg/m3 and sound speed of 5580 m/s. Three 

types of glazing where installed and measured: 4/12/4/12/4, 8/12/4/12/6 and 4/16/4. 

Every odd number in the sequence defines the glass thickness in mm, while every even 

1
7

0
0

 m
m

 

1400 mm 
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number defines the distance in mm between subsequent glasses. The laboratory 

measurement results were discussed and compared further in section 4. 

3. Numeric model  

The window frame with three glazing types from laboratory measurements were 

modelled and enclosed in calculation space created in ANSYS Workbench environment, 

bisecting it into source and receiving domains. As the considered window has two planes 

of symmetry, the calculation space was restricted to 1/4 of the window (Figure 2). Using 

the symmetric boundary conditions significantly reduced the computational cost of the 

model, giving the results for whole window. 

The introduced calculation space boundary condition is the wall that is around the 

model. Perfectly Matched Layer (PML) is utilised to obtain an absorption condition. 

Acoustic Mass Source with amplitude of 0.01 kg/m2s is located at rear wall of source 

domain, ensuring a parallel wave excitation as required in [6]. 

 

Figure 2. The calculation space with sound pressure level results for 500 Hz excitation 

The frequencies of interest were those between 50Hz and 5000Hz, influence the 

mesh size (Figure 3): at least five elements should be used to model the shortest 

wavelength (0,06806 m at 5000 Hz), therefore size of the element is assumed to be 0,01 

m. The assumed FE size was next validated by comparing with higher density meshes. 

The ANSYS FLUID 220, a higher order 3-D 20-node solid element that exhibits 

quadratic pressure behaviour, was used in the analysis (for more details see ANSYS 

online help documentation). 
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Figure 3. Geometry of the model (half-bottom view) and finite element size 

In the numerical calculations, the sound reduction index R is defined as [6]:  

)dB(     log10=
2

1

W

W
R  (3) 

Where the W1 is sound power calculated in the source domain and the W2 is the 

sound power calculated in receiver domain. The sound power in the model was 

determined by setting up ANSYS acoustic power monitors in both domains. This 

approach, (acoustic power instead of acoustic pressure in the laboratory measurements 

[6]), allows to reduce dimensions of the source and receiver domains to minimum.  

4. Numerical results 

An Acoustic Harmonic Analysis in ANSYS Workbench environment was conducted. 

The experimental and numerical results were calculated in one-third-octave band (21 

frequencies in range between 50 and 5000 Hz), however the reference glazing 

manufacturer data results were given in octave bands in range 125 to 4000 Hz (6 

frequency values represented in the below diagrams in solid black). When comparing 

measured data, care must be taken to differentiate between measured data for glazing 

and measured data for windows. The reason is that the overall sound insulation 

performance of a window is affected by the window frame and the sealing of the glazing. 

The variety of measurement results acquired in CTO laboratories caused by sealing 

differentiation is represented on the diagrams below by group of the same-coloured 

lines. 

Figure 4 represents the comparison between the group of six experimental 

measurements for glazing 4/12/4/12/4 with different sealing configurations – “CTO 444” 

(grey) – and the numerical results “ANSYS 444”. The visible difference for the low 

frequencies between (50-80 Hz) may occur due to measurement uncertainties described 

in [7]. Even if it was possible to measure the source and transmitted intensity correctly, 

the problem of reproducibility at low frequencies remains. The theoretical sound 

reduction index R - defined as the ratio between source and transmitted sound power - is 

also influenced by all the parameters which determine the modal composition of the 
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sound fields and the modal coupling. One way to reduce the variations in low-frequency 

measurements is the use of more octave band values. As more modes are present in an 

octave band, variations in the sound transition values should be smaller [7]. The another 

significant difference was observed for 3200 and 5000 Hz frequencies probably due to 

the fact that measurements do not account for indirect transmissions and loss factor 

effects.  

 

Figure 4. The comparison of numerical ANSYS 444 and experimental CTO 444 results 

for 4/12/4/12/4 type of window glazing 

Figure 5. The comparison of numerical ANSYS 846 and experimental CTO 846 results 

for 8/12/4/12/6 type of window glazing 

Figure 5 represents the comparison between two experimental measurements for 

8/12/4/12/6 glazing with different sealing configurations – “CTO 846” (grey) – and the 

numerical results “ANSYS 846”. The same, low frequency differences can be observed. 

CTO 444 

ANSYS 444 

CTO 846 

ANSYS 846 

8/12/4/12/6 

4/12/4/12/4 
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The significant difference at 630 Hz most probably occur due to the coincidence effect. 

The discrepancies in the range between 200-400 Hz and 1250-3150 Hz were associated 

with seals. 

Figure 6. The comparison of numerical ANSYS 44 and experimental CTO 44 results for 

4/16/4 type of window glazing 

Figure 6 represents the comparison between two experimental measurements for 

different glazing sealing configuration – „CTO 44” (grey) – and the numerical results 

„ANSYS 44”. Once again, the low frequency differences can be observed. As the 

different window models were studied, we may conclude that although the experimental 

and numerical results follow similar pattern, there were not exactly the same. There are 

several possible reasons for that. 

The reverberation room method for measuring sound insulation performance of 

glazing and window type partitions involves the “niche effect” as a bias error factor [3]. 

It is known that the niche effect occurs when a specimen is mounted inside an aperture in 

the common wall between two chambers, and the dependence of the measured 

transmission loss on the specimen position in the aperture is not negligible. This effect is 

difficult to account for in experiment as well as in numerical calculations. A 

vibroacoustic coupling analysis should be employed in the future study to investigate 

this effect, where one or two-sided niches are modelled as thin boundaries around the 

specimen. The vibration damping mechanism of window seals and window frame-wall 

fixing was not accounted for in numerical model.  

The nonlinear sound absorption of the window frame material should be also 

modelled. Generally, at lower frequency (<500Hz), the sound absorption coefficient of 

dense wood material is low and at higher frequency (>500 Hz), the sound absorption 

coefficient is high. However, especially at higher frequencies, the sound absorption 

coefficient of lower density species may be greater [8]. This nonlinearity of sound 

absorption coefficient for wood should be incorporated in future studies. 

 

 

CTO 44 

ANSYS 44 

4/16/4 
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5. Conclusions  

The proposed numerical approach, although simplified (it does not contain damping 

effects of the window fixation, nonlinearities of material sound absorption coefficient 

and does not consider acoustic coupled effects) gave satisfactory results in the mapping 

of the experimental sound insulation curves of windows. 

The detailed comparison between numerical and experimental results exposed, that 

numerical results are not exactly the same as in the experimental method. There are still 

several modelling aspects to account for. 

The achieved numerical accuracy should be useful when examining trends in sound 

insulation as a function windows design parameters, such as different glazing types, 

frame dimensions, frame material type, etc. 

In the future numerical studies can be completed, however not without additional 

expense of computational cost, which may be disadvantageous in when rapid assessment 

of the given window configuration is needed. 
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Abstract 

An approximate method for determination of dynamic characteristics of structures with viscoelastic dampers is 

proposed in this paper. A fractional derivative is used to describe the dynamic behaviour of viscoelastic 
dampers. The method is based on a continuous dependency of the sensitivity of eigenvalue on a certain 

artificially introduced parameter which scaled up the influence of the damping term in the eigenvalue problem. 

Some results of a representative calculation are also presented and briefly discussed. 

 

Keywords: structures, viscoelastic dampers, generalized fractional model, dynamic characteristics 
 

1. Introduction 

Natural frequencies, non-dimensional damping ratios and modes of vibration are the 

fundamental dynamic characteristics of every structural system. These quantities are 

obtained after solving appropriately defined eigenvalue problems. It is a well known 

procedure when the damping of systems can be neglected or when the so-called 

proportional damping could be assumed. The problem is much more complex when 

damping takes place because the eigenvalue problem is often nonlinear and because 

complex calculations are involved. The procedure of determination of dynamic 

characteristics is even more complicated when the fractional derivative modes are used 

to describe viscoelastic (VE) dampers. In this case, usually, an advanced procedure, 

called the continuation method, is used to solve the nonlinear eigenvalue problem [1, 2]. 

Adhikari [3] used the Neumann expansion method to obtain first and second order 

approximations for complex eigenvectors. 

In this paper, the method of determination of an approximate solution to the 

nonlinear eigenvalue problem describing the dynamic properties of structures with 

fractional dampers is presented. The method used a solution to the classical eigenvalue 

problem without damping and a differential equation to calculate the natural frequencies 

and non-dimensional damping ratios sought. Only a partial solution to the classic 

eigenvalue problem is needed. The method presented is an extension of the method 

recently proposed by Lazaro [4] but, in contrast to that method, only a partial solution to 

the classic eigenvalue problem is necessary and the method is extended to the case of a 

system of which the viscoelastic properties of dampers or materials are described by 

fractional derivatives. A previous approach in a similar direction was presented, also by 

Lazaro, in [5]. 
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2. Equation of motion of structures with viscoelastic (VE) dampers 

The elastic, planar frame structures with VE dampers are considered. The fractional 

model, shown in Fig. 1, is used as a model of dampers. It consists of the fractional 

Kelvin element which is connected in parallel with the fractional Maxwell element. The 

rhombus shown in the figure denotes the viscoelastic or springpot element [6]. This 

model of damper can be regarded as a generalized one. A set of specific models arise 

from it: the simple fractional Maxwell (when 000  ck ), the fractional Kelvin model 

(when 011  ck ) and the fractional Zener model (when 00 c ). This means that 

almost all of the fractional models known in the literature up to now are taken into 

account by the above fractional model. Here 0k , 1k  and 0c , 1c  are the stiffness and 

damping factors of damper, respectively, and   is the order of the fractional derivative; 

( 10  ). Well known classic rheological models of damper are obtained for 1 . 

 

 

Figure 1. Mechanical diagram of the fractional model of damper 

The total force in this model, )()()( 10 tututu  , is the sum of forces that occur in 

the Kelvin element )(0 tu  and the force in the fractional Maxwell element )(1 tu , i.e.: 

))()(())()(()( 000 tqtqDctqtqktu jktjk   , 

))()(()( 11 tqtqktu jds  ,      ))(()( 11 tqqDctu dktd   , 

(1) 

(2) 

where the symbol )(
tD  denotes the Caputo or Riemann-Liouville fractional derivative 

of () of the order   with respect to time t . The symbol )(tqd  denotes the so-called 

“internal variable” (see also [6, 7]). It is easy to find that )()()( 111 tututu ds  .  

The equation of motion of structures with VE dampers could be written in the 

following form (see also [6, 7]): 

)()()()( tttDt t PKqqCqM    (3) 

Here, M , C , K  are the )( nn  global mass, damping and stiffness matrices, 

respectively. )(tP  is the vector of excitation forces and )(tq  is the )1( n  global vector 

of displacements, which contains also all internal variables )(tqd . For the sake of 

simplicity, the damping properties of structure are neglected. The mass and damping 

matrices are often singular and the stiffness matrix is positively defined. 

Assuming that 0P )(t  and applying the Laplace transform (with zero initial 

conditions), the following nonlinear eigenvalue problem is obtained from Eq (3): 
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0qKCM  )( 2 ss  (4) 

where s  is the Laplace variable and q  is the Laplace transform of )(tq . 

3. Approximate method of solution to the nonlinear eigenvalue problem 

First of all, the artificial parameter p  is introduced and Eq. (4) is rewritten as: 

0qKCMqD  )()()),(( 2 pssppps   (5) 

For 1p , the solution to the eigenvalue problem (4) is obtained whereas for 0p , 

Eq. 5 is reduced to the following linear eigenvalue problem  

0qKM  )( 2s  (6) 

which has a well known set of solutions of the type is , aq  , where   and a  are 

the natural frequency and mode of vibration, respectively, and 1i  . Let us note that 

the influence of the damper’s stiffness is still incorporated in the stiffness matrix K . It is 

assumed that the eigenvector q  fulfills the following normalization condition: 

1)(])(2)[( 1   ppspspT
qCMq

  (7) 

Now, the sensitivity of the solution to the eigenvalue problem with respect to 

changes of parameter p  will be analyzed. After differentiating Eqs (5) and (7) with 

respect to parameter p , the following set of equations are obtained (see also [7]): 

qCqCM
q
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    (9) 

from which the sensitivity of the eigenvector p /q  and the sensitivity of the 

eigenvalue ps  /  can be found.  

Equation (8) is multiplied by T
q and transformed to the following form: 

))(),((

))( (
)(  

ppsB

pA
ps

p

s

q

q



 (10) 

qCqq  ))( (  TpA   ,     qCMqq  ) 2())(),(( 1 pssppsB T    (11) 

The functions ))( (  pA q  and ))(),((  ppsB q  are expanded in the Taylor’s series in 

the vicinity of 0p , i.e.: 
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where 

aCa  )0 (  TA   ,        Maa
TB  i2)0(    (13) 
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Moreover, taking into account that both the eigenvalue s  and the eigenvector q  depend 

on p , we can write: 

  qCqqCMq
q

CMq
TTT s

p

s
ps

p
pss

B 121   1)-( 2 ) 2(2 
p
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The values of the above derivatives at 0p  are: 
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The sensitivities p /q  and  / ps  , calculated at 0p , can be determined from 

Eqs (8) and (9). In the vicinity of 0p , these equations take the following form: 
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from which the sought quantities could be determined. 

Finally, Eq (10) could be rewritten in the form of the following differential equation: 

pbb
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It should be noted that, for 0p , the normalization condition (7) is reduced to 

1 i2 Maa
T , which means that 1  0 b . Moreover, from Eq (19) 
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which means that 01 b . 

Finally, Eq (20) is reduced to 
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),()( 10 psfpaas
p

s




 
 (24) 

and only the constant 1a  depends on  . 

The solution to Eq (24) must fulfill the following initial condition: for 0p  

i)0( s  or i)0( s , depending on which complex conjugate solution is sought.  

Before describing the method for solving Eq (24), the special case 1  will be 

discussed. It means that dampers are described by classic rheological models and Eq (24) 

takes the following form: 

)( 10 paas
p

s





 (25) 

Solution to Eq (25) fulfilling the described above initial conditions is given by  

)( exp i)( 2
12

1
0 papaps    (26) 

It means that, for 1p , the following approximate solution to the eigenvalue of the 

nonlinear eigenvalue problem (4) is obtained: 

)( exp iˆ
12

1
0 aas    (27) 

The above result is identical with the one obtained in [4]. 

An implicit version of the Euler method is used to solve Eq (24) numerically. First of 

all, the increment of p  is chosen and denoted by h . Moreover, a set of points are 

chosen on the p  axis in such a way that hpp nn 1  and the notation nn sps )(  is 

used. According to the Euler method 

2/ ],(),([ )111 hpsfpsfss nnnnnn    (28) 

and for 0n , i)0( 0  ss . 

The simple iteration method is adopted for solving the nonlinear algebraic equation 

(28) with respect to 1ns . The initial approximation of 1ns  is calculated from the 

formula:  

),(
)0(
1 nnnn pshfss   (29) 

and the (i+1)-th approximation of 1ns  is given by 
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where the superscript denotes the number of iteration. 

The iteration is continued until the following inequality is fulfilled:  
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where   is the assumed accuracy of calculation.  

Having the eigenvalue  is , the natural frequency   and the non-dimensional 

damping ratio   is determined from 

222    ,         /  (32) 
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The approximation of eigenvector q  is given by 

0



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p
p

q
aq  (33) 

4. Representative results 

Results for a four-storey shear frame with two dampers located at the first and fourth 

storeys will be presented. The fractional Kelvin model is used for describing the 

dampers. The following data are used for describing the frame: (i) the storeys’ stiffness 

are: [N/m] 100.26 6
21  kk , [N/m] 100.20 6

43  kk ; (ii) the storeys’ masses are: 

[kg] 100.34 3
4321  mmmm . The first-floor damper's parameters are: 8.0 , 

[N/m] 100.10 6
1,0 k , /m][Ns 104.0 6

1,0
c  and the damper’s parameters for the 

fourth floor are: 8.0 , [N/m] 100.6 6
2,0 k , /m][Ns 102.0 6

2,0
c .  

The system matrices are:  4321   ,   ,  , mmmmdiagM ,  
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c

C  (35) 

The natural frequencies of frame without dampers are in the first column of Table 1, 

whereas in the next column, there are the natural frequencies resulting from Eq (6) when 

the stiffness matrix is the sum of the stiffness of frame and dampers. 

Table 1. Natural frequencies of frame 

Frame without dampers From Eq (6) Difference  

rad/s 9.273671   rad/s 9.901211   %77.6  

rad/s 25.355472   rad/s 27.95942 
 

%27.10  

rad/s 39.202043   rad/s 43.152063 
 

%07.10  

rad/s 48.98574   rad/s 50.519304   %13.3  

 

Results of calculation are presented in Table (2). The exact vales of eigenvalues are 

obtained by means of the continuation method described in [1]. The second column 
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collect results obtained by means of Eq (24). Very similar results are obtained and 

differences are not greater than 0.2 %. Moreover, in Table 3, the exact and approximate 

natural frequencies and non-dimensional damping ratios are compared. It is evident that 

the approximate results have an very good accuracy.  

Although in Table 4, the eigenvalues of frame with dampers are stated, now, the 

dampers are described with the help of a classic Kelvin model ( 0.1 , and other 

damping data are as stated previously). In the second column, the eigenvalues calculated 

from Eq (27) are presented. Moreover, the exact values of natural frequencies and non-

dimensional damping ratios are shown. Exact eigenvalues are obtained using the 

classical approach given in [6]. 

A comparison of the eigenvalues obtained from the formula derived by Lazaro in [4] 

with the ones resulting as the solution to the differential equation (24) is presented in 

Table 5.  

Table 2. Eigenvalues for a frame with the fractional Kelvin dampers ( 8.0 ) 

Eigenvalues (exact results) Eigenvalues – Euler Eq (24) Differences 

9.94280  i 0.1125015,1 s
 

9.94295 i 0.112625,1 s  % 0.00 i0.11%   

28.3731  i 1.112796,2 s  28.3720 i 1.112406,2 s  % 0.00 i% 0.03   

43.9430 i 2.611797,3 s  43.9405 i2.610427,3 s  % 0.00 i0.05%   

50.9182 i 1.580188,4 s   50.9174 i 1.578998,4 s  % 0.00 i0.08%   

 

Table 3. Natural frequencies and non-dimensional damping ratios – comparison of exact 

and approximate results for a frame with the fractional Kelvin dampers ( 8.0 ) 

Frequency 

(exact results) 

Damping ratio 

(exact results) 

Frequency 

(approximate results) 

Approximate 

damping ratio 

rad/s 9.943441 
 

0.011311   rad/s 9.94359 1   01133,01   

rad/s 28.39492   0.039192   rad/s 28.3938 2 
 

03918.02   

rad/s 44.02053   0.059333   rad/s 44.0118 3 
 

05930.03   

rad/s 50.94274   0.031024   rad/s 50.94184   1000.034   

 

Table 4. Eigenvalues for frame with classic Kelvin dampers ( 0.1 ) 

Eigenvalues (exact results) Eigenvalues - Eq (27) 
Frequency 

[rad/s] 
Damping ratio 

9.9133 i 0.191795,1 s
 

9.88545 i 0.19196 5,1 s  9.915161 
 

 0.0193431 
 

28.114 i 2.3712 6,2 s
 

27.6169 i 2.31103 6,2 s
 

 28.21382 
 

0.0840442 
 

42.729 i5.75097,3 s
 

42.8072 i 5.738437,3 s
 

43.11423 
 

0.1333873 
 

49.919 i 3.45088,4 s
 

49.9294 i 3.452548,4 s
 

50.03814 
 

0.0689634 
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5. Concluding remarks 

The proposed method enables determination of the dynamic properties of structures 

with VE dampers in a simple way. The dampers’ behavior is described with the help of 

fractional derivatives. A partial solution to the classic eigenvalue problem is necessary in 

the proposed method. Only one eigenvector and the corresponding eigenvalue of 

problem (6) are necessary to determine the conjugated eigenvalue and eigenvector for 

the structure with VE dampers. The results of an extensive calculation, which is not 

presented in this paper due to the limitation of space, indicate that the accuracy of the 

method is good for a range of damper’s parameters used in practice. 

Table 5. Eigenvalues for frame with classic Kelvin dampers ( 0.1 ) – comparison of 

the results obtained from Eq (24) (the Euler method) and Eq (27) 

Eigenvalues – Euler Eq ( 24) Eigenvalues - Eq (27) Differences 

9.91326 i 0.192505,1 s
 

9.88545 i 0.19196 5,1 s  0.28% i0.28%   

 28.1094 i 2.35233= 6,2 s  27.6169 i 2.31103 6,2 s  % i78.1 i% 1.79   

42.7318 i 5.728227,3 s  42.8072 i 5.738437,3 s  % 18.0 i0.18%  

50.1042 i 5.557768,4 s  50.3188 i 5.581688,4 s  0.43% i0.43%  
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Abstract 

This paper is devoted to human motion analysis and comparison of chosen kinematics parameters during 

normal gait with and without additional load in a form of backpack. A stability in both cases were compared in 

both frontal and sagittal planes, by applying a video tracking system. Experimental tests performed on 
treadmill, passive markers, placed on volunteers bare skin were used. Additionally, an infra-red camera was 

employed to evaluate muscle activity and its groups involved in the movement. The change of body 

temperature and distribution of the thermal maps were observed. Analysing these thermograms, loading of 
different muscle groups was evaluated. During the experiment, an attempt to correlate a results obtained from a 

thermal imaging camera and video tracking system were made. It is shown that thermal imaging can help to 

evaluate an asymmetry in muscle load and in some cases can help to detect pathological cases, what was 
confirmed with motion analysis. Advantages and disadvantages of this method were also described. 

 

Keywords: thermovision, motion capture, motion analysis, ergonomics, gait stability 

 

1. Introduction  

Motion analysis plays a key role in understanding of locomotion and some phenomena 

that occur during the movement. To obtain more information of musculo-skeletal system 

functionality than just motion trajectories, typically a force platform [9] and/or an 

electromyography (EMG) method is applied (e.g. [1]). However, to record the signal, a 

complicated and expensive measurement technique should be employed. Moreover in 

this method it is obligatory to use an electrodes placed on the skin in a specific muscle 
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area. EMG signal is vulnerable for noise (e.g. cross-talking phenomenon) [4]. For this 

reason, in this research, both a visual motion analysis and an infra-red imaging is used to 

evaluate the activity of the chosen muscle groups. This method is also widely used, see 

for example in papers [2, 5, 6, 8]. In contrary to EMG, there is no need for any 

electrodes, cables or special recording units, that would disturb the movement; moreover 

it is a non-contact method, and results can be obtained almost immediately. 

2. Methods 

2.1. Experiment description 

Volunteers were asked not to perform any intensive activities to avoid muscle fatigue. 

Normal gait on the treadmill without any load and with additional load in a form of a 

backpack were performed. Both experiments were done with the same velocity (chosen 

by volunteer) for ten minutes. Video in two planes of motion (sagittal and frontal) were 

recorded; also thermograms were taken before and after each test. 

2.1. Video analysis 

In order to analyze recorded videos an authorial software was used during the 

experiment. It allowed to detect and track position of both passive and active type 

markers. Examples of the marker placement and its representation after lightening and 

image filtering, are shown in Fig. 1a and 1b. 

 

 

Figure 1. Example of video frame and detected passive markers for front and side of the 

body: a) markers distribution on the body; b) markers after lightening, filtering and 

position identification 
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Light, flat, reflective, passive type markers were chosen, and placed on a volunteer bare 

skin. This, in authors opinion, helps to prevent movement of the markers, relative to the 

joint. Moreover, their masses not affect the dynamics of locomotion and no special 

costume were needed, which would constrain the movement. Example of the front and 

side body markers detection are presented in Fig. 1c. The following parameters were 

recorded during treadmill gait: 

 k1 – angle of torso longitudinal axis deviation, 

 k2 – angle of shoulder girdle tilt, 

 k3 – angle of pelvis tilt, 

 k4, k5 – angle of forearm and arm flexion/extension, 

 Rmax – wrist horizontal displacement, 

 Xmax – step length, 

 Ymax – shoulder vertical displacement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Measured parameters (see text for more details) 

 

After about a half of the exercise time, 1.5 minute was recorded and then 20 seconds 

were chosen for further analysis. Depending on the visibility of detected markers, 

approx. 20 to 260 steps were recognised. Even if the number of steps identified was 

small (in the worst case approx. 20), no additional recordings were performed to prevent 

any unnecessary fatigue affecting the volunteer. 

2.2. Video analysis results 

Results, obtained from video analysis are presented in Figures 3-5. It can be noticed that 

for each volunteer each of the examined parameters have changed, i.e. angles of limb 

flexion/extension decreased (see Fig. 5), but length of the step increased. Similarly, 

mean amplitude value of torso longitudinal axis and pelvis oscillation decreased, what 

was compensated with shoulder girdle movability (see Fig. 4). Reason of such 
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differences is an additional load and probably that volunteers were more accustomed to 

the treadmill gait after first try (without load). However, it is necessary to emphasise that 

each of the volunteer had an earlier experience with this type of exercise. 
 

 

Figure 3. Motion capture results (mean values): longitudinal axis deviation (k1), shoulder 

girdle (k2) and pelvis tilt (k3); during gait without and with load for each of six volunteers 

It can be seen (see Fig. 3) that most volunteers longitudinal axis deviation (k1) direction 

changes to the opposite one after adding a load. This alternation is also visible in mean 

values. Possible explanation is the change of mass distribution of the load. The 

volunteers tried to compensate this asymmetrycity by rising left or right shoulder. At the 

same time, shoulder girdle tilt (k2) and pelvis tilt (k3) did not changed significantly. The 

minimal decrease of both value due to the additional load and limit of the movement was 

expected. It was noticed in almost all volunteers except the first one. Fig. 4 presents 

mean amplitude values of axes (k1, k2, k3). Unlike the mean values from fig. 3, here it can 

be easily seen that movability of the longitudinal body axis after adding a load decreases 

significantly. 
 

  

Figure 4. Motion capture results (mean amplitude) in a front view: longitudinal axis 

deviation (dk1), shoulder girdle (dk2) and pelvis tilt (dk3); during gait without and with 

load for each of six volunteers 
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Figure 5. Motion capture results (mean values) in side view: angles of forearm and arm 

flexion/extension (k4, k5), hand horizontal displacement (Rmax), stride length (Xmax) and 

shoulder vertical displacement (Ymax); during gait without and with load for each of six 

volunteers 

In Fig. 5, it can be seen, that adding load after free gait causes that the angles of forearm 

and arm flexion/extension (k4, k5) and also hand horizontal displacement (Rmax) decreases 

significantly. The hypothesis is that decreasing the amplitude of the arms movement 

helps to compensate the shoulders load. Simultaneously, stride length increased to 

improve the stability of the gait. Shoulder vertical displacement (Ymax) did not changed 

significantly what is similar to the results published in reference [1]. 

2.3. Thermography 

In addition to the motion capture method an infra-red analysis was performed. Changes 

of the body temperature and skin were observed. Acclimatization time was set to about 

20 minutes. Volunteers were dressed in the same way as during the examination. Aim of 

this experiment was to point muscle groups involved in movement and symmetry of the 

muscular system activity. An example of thermogram before and after each type of 

experiment are presented in Figures 6-9, an example of muscle activity asymmetry is 

shown in Fig. 10. 

2.3. Thermography results 

For each of thermograms series for each volunteer a body surface temperature were 

measured (see Fig. 11), additionally an attempt was made to distinguish a muscle groups 

or muscles, which are especially active during gait with additional load, are mentioned 

below thermograms. Examples of the thermograms where these muscles are seen (more 

distinct temperature change was observed) are shown in Figures 6-9. 
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Figure 6. Example of muscle activity observed in infrared, temperature in [°C] – chest, 

muscles: serratus, obliquus external abdominis; a) before experiment, b) after gait 

without load, c) after gait with load 

 

 

Figure 7. Example of muscle activity observed in infrared, temperature in [°C] – back 

muscle: trapezius; a) before experiment, b) after gait without load, c) after gait with load 

 

 

Figure 8. Example of muscle activity observed in infrared, temperature in [°C] – front of 

the legs muscles: rectus femoris, pektineus, adductor longus, tibialis anterior, soleus; a) 

before experiment, b) after gait without load, c) after gait with load 

 

 

Figure 9. Example of muscle activity observed in infrared, temperature in [°C] – back of 

the legs muscles: biceps femoris, semimembranosus, gastrocnemius; a) before 

experiment, b) after gait without load, c) after gait with load 
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Moreover, when an asymmetry of gait was observed during video analysis, an 

asymmetry of the temperature distribution were observed. Thus implicates that both 

methods (video analysis and thermography) can help to detect asymmetry of the body 

movement and muscles load. Disadvantage of thermographic method is that it is 

sensitive to many factors. For example, sweat secretion results in an uneven cooling of 

the skin, as observed during experiment (also by other authors, see [8]); see Fig. 8c – 

some colder and warmer “dots” are seen. Also a backpack insulates the heat transfer 

from the back and it is necessary to stabilize temperature and humidity in the laboratory. 

Moreover, it is mandatory to “prepare” volunteer in a very specific way (requirements 

are described among others in works [5, 6]). Muscle asymmetry can be also observed in 

Figures 6-9 and in Fig. 10. In this case, it can be seen that left leg carried more load in 

both cases – gait without and with additional load. In all cases, where asymmetry were 

observed also a asymmetrical wear of shoe soles for left and right foot were noticed. In 

all cases asymmetry of gait parameters were confirmed by infra-red imaging. 

Remarkably, similar method was used in a paper [10] for evaluating compensation of 

asymmetrical load applied to the pectoral girdle. 

 

 

Figure 10. Examples of muscle activity asymmetry; a) before experiment, b) after gait 

without load, c) after gait with load for front and back of the body; in this example left 

leg was more loaded in both cases 
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Figure 11. Results of thermographic measurements, temperature in [°C]: front and back 

of the body shell just before experiment, after gait without and with load for each of 

volunteer and mean value 

3. Additional measurements  

During experiment some additional measurements were made: temperature of the body 

core, systolic and diastolic blood pressure, pulse and blood oxidation. Results are shown 

in Fig. 12. It can be observed that these parameters were almost constant. 

 

 

Figure 12. Results of additional measurements: core temperature, systolic and diastolic 

blood pressure, pulse and oxidation 
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4. Concluding remarks 

A method of complex movement analysis with evaluation of muscle activity has been 

employed and presented. Its advantages and disadvantages have been discussed. 

Additionally, a video analysis has been carried out and the obtained results have been 

validated via comparison with the results reported in other publications. The change in 

several gait parameters like maximal angle of deviation and the angle vs. time in case of 

the gait with and without load has been detected and monitored. For example, EX of 

angle of the main body axis changes from -0.32 deg in case of gait without load up to 

+0.29 deg with load. Exemplary results are presented in Fig. 3. Changes in muscle 

activity and overall body temperature have been also observed and reported. The infra-

red imaging can also give a qualitative information about symmetry of muscular system 

load. Moreover, other important detected issues follow: 

• Marker-based motion tracking methods are the most effective and precise ones, 

in comparison to e.g. special inertial sensors, which belong to relatively heavy 

and inconvenient [7]. 

• It was observed that many parameters have changed during gait with additional 

load: stability, pelvis and pectoral girdle tilt, step length (and frequency). 

• An activity of muscle groups can be observed in infra-red and groups of 

muscles involved in the movement can be indicated. 

• Asymmetry of the gait is correlated with temperature changes and revealed by 

infra-red measurements – thermography can be proposed as a method for 

evaluating various gait pathology. 

• In case of gait with an additional load in the form of backpack a lower pectoral 

girdle tilt and higher value of pelvis tilt was observed. 

• The sign of the longitudinal axis deviation (k1) in most volunteers changes after 

adding a load. Possible explanation is the change of mass distribution of the 

load or some asymmetric placement of backpack belts or load. 
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Abstract 

The paper presents a numerical analysis of pressure drop and acoustic attenuation performance (transmission 
loss) of two identical acoustic helicoidal resonators arranged in parallel ducts with different rotation angles. 

The air stream is divided from one cylindrical duct of a diameter D=140mm to a two parallel cylindrical ducts 

of diameter d=125mm with two helicoidal resonators inside – one per one duct. The ratio of helicoidal pitch s 
of helicoidal resonators to a cylindrical duct diameter d equals s/d=1,976. Other geometrical relationships of 

helicoidal resonators, as a mandrel diameter dm to duct diameter ratio dm/d=0.024, thickness g of helicoidal 

profile g/d=0.0024, and the number of helicoidal turn n=0,695 for both resonators. The investigated range of 
rotation angles covered the three characteristic positions of helicoidal resonators gaps, when considering the air 

stream distribution from central large duct with diameter D. The value of normal inflow velocity v[m/s] 

equaled 1 for all investigated cases. 
 

Keywords: helicoidal resonators, pressure drop, acoustic attenuation, parallel ducts, flow distribution, 

numerical analysis  

 

1. Introduction  

The newly patented solution of acoustical helicoidal resonator [1] has a specific feature 

of a narrowband sound attenuation and multi resonances. The acoustical properties of 

this solution and basic dimensions are quite well described in many publications [2-7, 9-

12, 14-17]. The flow properties of this solution were described mainly for one helicoidal 

resonator inside cylindrical duct [8, 9, 13, 14, 16]. In the paper [15] were mentioned the 

possibilities of inserting a few ducts with acoustically tuned helicoidal resonators for the 

same blade-passing frequency of fan in ducted system. From the acoustical point of view 

it is determined by the plane wave propagation condition, which must be satisfied for a 

proper work of helicoidal resonator (acoustical resonance). From the fluid dynamics 

point of view the pressure drop depends on many conditions of inserted helicoidal 

resonators, as example most important here relationship between helicoidal pitch sand 

numbers of helicoidal turns n. But the transition of air flow stream into few ducts 

induces more complications, as example distribution inside duct of helicoidal resonators 

and other obstacles. 

Also this work presents the numerical analysis of transmission loss (TL) 

characteristics and pressure drop for specific three cases of rotation angles of two 

identical helicoidal resonators with constant s/d ratio that equals 1,976 and numbers of 

helicoidal turns n=0,695 arranged in parallel cylindrical ducts. 
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2. Description of investigated models 

In this chapter are characterized investigated acoustical (2.1) and CFD turbulent flow 

(2.2) models of two identical helicoidal resonators placed inside a cylindrical ducts 

arranged in parallel just past the transition from one duct with larger diameter D=140mm 

to two parallel ducts with diameters d=125mm, as presented in Figure 1. In both 

subchapters the three dimensional (3D) models were analysed. 

 

 
 

 

 

 

Figure 1. Example view on numerically represented and considered ducted system with 

two identical helicoidal resonators with s/d=1,976 and n=0,695 arranged in parallel ducts 

past the transition from one larger duct 

 

The ducted system consists of a straight cylindrical ductsand the transition with 

lengthl2=200mm. The ratio of helicoidal pitch s of helicoidal resonators to cylindrical 

duct diameter d equals s/d=1,976, and the number of helicoidal turns n=0,695. The 

geometrical relationships of helicoidal resonator, as a mandrel diameter dm to duct 

diameter ratio dm/d=0.024 and thickness g of helicoidal profile g/d=0.0024, were 

constant as well. The length of the cylindrical duct with diameter D at the inlet 

sideequaled 500mm, and the outlet parallel ducts with diameter d=125mm equaled 

1000mm.As it is presented in figure 1 the helicoidal resonators were placed right past the 

transition, and the closest edges of helicoidal profiles were situated in the distance of 

10mm from the end of transition. 

Three cases of rotation of helicoidal resonators were analyzed in this paper, as it is 

presented in Figure 2. Case 1 represents the situation when helicoidal resonators are 

placed in the same way inside cylindrical ducts. Case 2 represents the situation when the 

characteristic gaps of the rest part 0,305 of helicoidal turns are placed externally, and 

Case 3 represents the situation when those gaps are placed internally. 

 

 

helicoidal resonators inside ducts d=125mm transition              duct D=140mm 

and lengths l1=1000mm   l2=200mm    l3=500m 



Vibrations in Physical Systems Vol. 27 (2016) 239 

Case 1: rotation angles  

- both resonators 70°, 

- gaps oriented on the 

same side, 

 
Case 2: rotation angles 

- left resonator 60°, 

- right resonator 240°. 

- gaps oriented 

externally, 

 
Case 3: rotation angles 

- left resonator 240°, 

- right resonator 60°, 

- gaps oriented 

internally. 

 
Figure 2. Investigated three cases of rotation angles of two identical helicoidal resonators 

arranged in parallel ducts 

2.1. Acoustical model 

Investigated in this paper acoustical models have the same parameters as in previous, 

well described studies under helicoidal resonators, as in example papers [2-7, 9-12, 14-

17]. It was used the finite element method in Comsol Multiphysics-Acoustic Module 

numerical environment [18]. The transmission loss (TL) [19] was computed as the 

acoustic attenuation performance parameter. It was considered the sound propagation in 

air with temperature 20ºC without flow. The boundary conditions were established, as 

follows: 

 hard walls of all elements of helicoidal resonators (perfect reflection) and 

cylindrical ducts,  

 plane waves radiation - inlet (incident pressure p=1Pa) of a duct with diameter 

D=140mm and outlet surfaces of two cylindrical ducts with diameters 

d=125mm - that satisfies the anechoic terminations to calculate TL. 

Free tetrahedral mesh [18] was created with satisfying the rule of minimum 5 finite 

elements per sound wave length [20] for maximum frequency- here it is fmax=2000Hz at 

gap gap 

gap gap 

gap gap 



240 

20 Celsius degrees. The considered speed of sound in air cs=343m/s. Maximum finite 

element size equalled he=0,2(cs/fmax). Example view on generated free tetrahedral mesh 

of investigated model is presented in Figure 3. 

 

 
Figure 3. Example view on free tetrahedral mesh of investigated ducted acoustical 

system with two identical helicoidal resonators arranged in parallel 

2.2. CFD turbulent flow model 

CFD Module of Comsol Multiphysics [18] was used to solve investigated CFD turbulent 

flow model of ducted system analyzed as a single-phase flow k-ω turbulence RANS 

model [18, 21, 22] with compressible flow (Mach number lower than 0,3), as it was 

similarly considered in papers [8, 14, 16]. The main feature is fluid properties, that adds 

the Navier-Stokes equations and the transport equations for the turbulent kinetic energy k 

and the specific dissipation ω, and provides interface for defining the fluid material and 

its properties [14]. The basic fluid properties are: temperature T=20ºC, reference 

atmospherical pressure pa=1atm, density and dynamic viscosity of air were calculated 

automatically from COMSOL material library [18]. The boundary conditions were 

described as follows: 

 wall slip - there are no viscous effects at the slip wall at all surfaces of cylindrical 

duct and helicoidal resonators, 

 normal inflow velocity at the inlet equaled 1m/s, 

 no viscous stress at the outlet, pressure there equaled 0 Pa. 

Finite element mesh was generated automatically as a free tetrahedral and controlled 

by physics-fluid dynamics. The stationary solver was used. 

3. Results 

This chapter contains the results of solved pressure acoustics in frequency domain 

(subchapter 3.1) and fluid dynamics problems (subchapter (3.2) for investigated 

models of two identical helicoidal resonators with constant ratio s/d=1,976 and 

numbers of helicoidal turns n=0,695 arranged in parallel ducts past the transition 

from one larger duct with diameter D. 
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3.1. Transmission Loss 

Figure 4 presents the three TL characteristics of two identical helicoidal resonators with 

ratio s/d=1,976 and numbers of helicoidal turns n=0,695for three cases of rotation the 

helicoidal resonators and localisation of gaps. 

The numerical calculation were made in the frequency range from 10Hz to 2000Hz with 

the calculation step of 10Hz. 

 

 
Figure 4.Transmission Loss of two identical helicoidal resonators with s/d=1,976 

and n=0,671 arranged in parallel ducts for three cases of rotation. 

 

As it can be observed from Figure 4 the specific narrow-band attenuation of sounds 

for investigated two identical helicoidal resonators arranged in parallel ducts is visible 

for all investigated cases. But only for case 3, when the gaps are oriented internally, 

there were obtained the highest TL levels (TL1≈35dB and TL2≈34dB) for characteristic 

resonance frequencies ( f1≈1200Hz and f2≈1350Hz) of this type of helicoidal resonators 

(see results of researches in several authors publications, as for example in [9,12,16]).  

For case 1 with gaps oriented on the same side it is observed, near the second 

resonance frequency of about 1350Hz,TL level of about 22dB. And for the case 2, when 

the gaps are oriented externally, there are visible only nearly symmetrical TL distribution 

for one characteristic frequency of about 1250Hz with TL level of about 17dB. 

3.2. CFD turbulent flow 

The numerically calculated pressure drop Δp [Pa],as a difference between surface 

average pressure in [Pa] at the inlet and outlet of the ducted system for three cases of 

investigated two identical helicoidal resonators with ratio s/d=1,976 and number of 

helicoidal turns n=0,695 arranged in parallel cylindrical ducts with diameter d past the 

transition from cylindrical duct with diameter D, are presented in Figure 5. 
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Figure 5. Pressure drop Δp [Pa] of investigated three cases of two identical helicoidal 

resonators with ratio s/d=1,976 and number of helicoidal turns n=0,695arranged in 

parallel ducts with different rotation angles 

 

On the basis of performed CFD numerical analysis, there were calculated a total 

pressure drop coefficients ζ for three investigated cases in the same way as in previous 

papers [13,16], presented in Table 1. 

Table 1. Total pressure drop coefficients ζ for three investigated cases 

Case No. ζ 

1 1,4993 

2 1,5832 

3 1,4904 

 

As it can be observed from Figure 5, the highest pressure drop Δp= 1,0609Pa 

(ζ=1,5832)occurs for case 2, when the gaps of two helicoidal resonators are oriented 

externally. The lowest pressure drop Δp= 1,005Pa (ζ=1,4904)occurs for case 3, when the 

gaps of two helicoidal resonators are oriented internally.  

4. Conclusions  

A numerical analysis of pressure drop and acoustic attenuation performance of two 

identical acoustic helicoidal resonators with s/d=1,976 and n=0,695 arranged in parallel 

cylindrical ducts with diameter d=125mm and different rotation angles past the transition 

from one cylindrical duct of a diameter D=140mm,was performed in this paper. Three 

cases of rotation angles and orientation of helicoidal resonators gaps were considered.  

On the base of acoustical analysis, it can be found, that the specific narrow-band 

attenuation of sounds for investigated two identical helicoidal resonators arranged in 

parallel ducts with different rotation angles is visible for all investigated cases. But only 
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for case 3, when the gaps are oriented internally, there were obtained the highest TL 

levels for (TL1≈35dB and TL2≈34dB) for characteristic resonance frequencies ( 

f1≈1200Hz and f2≈1350Hz) of this type of helicoidal resonators. 

On the base of fluid dynamics analysis, it can be found, that the lowest pressure drop 

Δp=1,005Pa(ζ=1,4904)occurs for case 3, when the gaps of two helicoidal resonators are 

oriented internally. 

Obtained results are surprising, due to a fact that the case 3, when the helicoidal 

resonators gaps are oriented internally, provides the best acoustical attenuation 

performance and the lowest pressure drop.  

Considered in this paper the three cases of rotation angles and orientation of gaps 

were selected intuitive in the manner of practical applications. There should be 

performed more acoustical and CFD analysis for ducted systems with helicoidal 

resonators placed past the transition to find the best solution.  
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Abstract 

The paper deals with the application of the continuous dynamic absorbers in vibration reduction problems in 
beams. The Euler-Bernoulli beam of variable cross-section is subjected to the concentrated and distributed 

harmonic excitation forces. The beam is equipped with a system of the continuous vibration absorbers. The 

problem of the forced vibration is solved employing the Galerkin’s method and Lagrange’s equations of the 
second kind. Performing time-Laplace transformation the amplitudes of displacement may be written in the 

frequency domain, similarly the time-averaged kinetic energy of any part of the beam. The results of some 

local and global vibration control optimization problems concerning the placement and parameters of the 
continuous vibration absorbers are presented. 

 

Keywords: tuned mass damper, dynamic vibration absorber, continuous absorber, beam vibration, vibration 

control 
 

1. Introduction 

The main aim of dynamic vibration absorbers (DVA) and tuned mass dampers (TMD), 

properly located and tuned to the excitation force frequency, is the reduction of structure 

vibrations in the point of attachment [1,2]. The problem of vibration analysis and the 

proper selection of absorbers parameters was investigated in several theoretical 

studies [3-10]. 

Certain general rules concerning the proper location of dynamic absorbers can be 

given [7,18]. In continuous systems, such as beams, in case of its loading by  

a concentrated force the best place for the dynamic absorber attachment is usually the 

point of the applied load. The discrete absorbers efficiency depends significantly on the 

accuracy of their placement since even a slight deviation from the optimal position 

significantly decreases their effectiveness. Finding the optimal positions of absorbers for 

a distributed force applied is more complicated, especially for global problems of 

vibration reductions. Systems of dynamic absorbers tuned – in dependence of the 

excitation force bandwidth – into one [11-14] or into a few frequencies [3-5] are applied 

in several cases.  

Continuous absorbers, in comparison with discrete absorbers, are efficient for various 

locations of excitation forces and at the appropriate tuning can be efficient within a wide 

frequency range. Continuous absorbers are especially suitable for damping the running 

structural waves in long one-dimensional continuous systems, such as beams [15]. This 

type dynamic absorbers are applied also for reducing vibrations of plates and shells at 

low frequencies [19] as well as for problems related to sound emission [20]. 
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The computational algorithm, allowing to determine the amplitude-frequency 

characteristics of displacement and energy for the Euler-Bernoulli beam of a variable 

cross-section subjected to harmonic excitations of concentrated and distributed forces, 

with the system of continuous dynamic absorbers attached, is presented in the hereby 

paper. The presented examples of numerical calculations concern the application of the 

continuous absorbers in global vibration reduction problems in beams. 

2. Theoretical model 

The system considered in the paper is shown in Fig. 1. The beam of length l and with 

any given boundary conditions is given, its physical and geometrical parameters are 

functions of the position: mass density ρ(x), cross-section area A(x), geometrical moment 

of inertia I(x), Young modulus E(x), viscous damping coefficient α(x) (the Voigt-Kelvin 

rheological model was assumed). The beam subjected to harmonic excitations (both 

concentrated and distributed) is equipped with the system of continuous dynamic 

vibration absorbers. 

x

w

Pp(t)P1(t)
g(x,t)

xp

O

(m (x), k1 1 1(x), c (x))

(m (x), kr r r(x), c (x))

 
Figure 1. Beam with the system of ϱ continuous dynamic vibration absorbers 

When the Euler-Bernoulli beam model is taken into account, the expressions for the 

kinetic and potential energy and for the dissipation potential take the following forms: 
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The beam deflection is described by the functional series 
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in which eigenfunctions of the beam of a constant cross-section (for boundary conditions 

of the given problem), without the attached dynamic absorbers, are assumed as basic 

functions φi(x). Time functions qi(t) tare generalized coordinates which should be 

determined. 

After the substitution of series (4) into equations (1)-(3) the expressions for the 

kinetic and potential energy and for the dissipation potential take the following forms: 
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Numerical factors mij, kij, bij occurring in the above shown expressions, are defined as 

follows: 
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For the arbitrary beam load applied H(x, t) the generalized force for the i-th 

generalized coordinate equals to: 

dxxt,xHtH i

l

i )( )()(

0

  (11) 

Using the Lagrange's equations of second kind the differential equations system for 

the generalized coordinates qi(t) is obtained: 
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Applying the time Laplace transform (with initial conditions being zero) to system 

(12) the linear system of algebraic equations is obtained, from which it is possible to 

obtain transforms Qi(s) of functions qi(t): 
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The transform of the beam deflection line is given by the series 
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The load of the considered beam (Fig. 1) consists of p concentrated forces Pk(t) 

applied in points of coordinates 0

k
x , of a distributed load g(x, t) and of r distributed loads 

fk(x, t) originated from continuous dynamic absorbers: 
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Thus, the generalized force Hi(t) for the generalized coordinate qi(t) equals to: 

ni

,dxxt,xfdxxt,xgxtPtH i

r

k

l

ki

lp

k

kiki

 ... 1

)( )()( )()( )()(
1 001

0



 



 (16) 

The Laplace transform of the generalized force is given by the expression: 
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where Pk(s), g(x, s), and fk(x, s) are the Laplace transforms of functions: Pk(t), g(x, t), 

fk(x, t). 

The Laplace transform of the continuous beam load originated from the k-th 

continuous dynamic absorber (with zero initial conditions) equals to: 
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where by: mk(x), kk(x), ck(x) the linear densities of the mass, stiffness and damping 

coefficients (describing the continuous dynamic absorber) are marked, respectively. 

When expression (18) is inserted into (17), after rearrangements the system of linear 

algebraic equations is obtained from system (13). The transforms Qi(s) can be 

determined from the system: 
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where the following notations are introduced: 
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The solution of equations system (19) provides in s-domain – after using equation 

(14) – the transform of the beam deflection line for arbitrary boundary conditions. When 

considering the steady state, substituting s = jω ( 1j )allows to determine the 

amplitude of the beam deflection line as the function of frequency. Analogous 

amplitude-frequency characteristics can be obtained for the bending moment, shear force 

and the time-averaged kinetic energy of the beam. 

The developed computational algorithm allows to determine the mentioned above 

amplitude-frequency characteristics for the beam described by arbitrary functions 

(within the geometrical model applicability): ρ(x), A(x), I(x), E(x), α(x). 

3. Numerical calculations – tunable continuous vibration absorber 

A cantilever steel beam, with rectangular cross-section, excited by uniform distributed 

harmonic force: g(x, t) = g0sinωt distributed along the segment ll 6.0 ,3.0  is considered, 

with the continuous absorber attached (Fig. 2). The parameters describing the system are 

collected in Table 1 (the internal damping in the beam is neglected). 

Table 1. Parameters of the beam and absorber 

Quantity Symbol Unit Value 

Mass density   kg/m3 7800 

Length l  m 1.0 

Young’s modulus E  N/m2 2.1e11 

Cross-section width b  m
 

0.05 

Cross section height h
 

m 0.005 

Total mass of the absorber - kg 0.098 
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The first four natural frequencies of the beam without the absorber attached are equal 

to: f1 = 4.19 Hz, f2 = 26.26 Hz, f3 = 73.54 Hz, f4 = 144.11 Hz. 

It is assumed that the linear densities of the absorber mass, stiffness and damping 

coefficients are constant along its segment: m(x) = const, k(x) = const, c(x) = const, the 

total mass of the continuous absorber is equal to 5% of the total beam mass, which 

means 0.098 kg. 

Depending on whether the local optimization problem is considered (e.g. 

minimization of the vibration amplitude of the selected point of the beam) or the global 

one (e.g. minimization of the time-averaged kinetic energy of the selected part of the 

beam), the optimal solutions (i.e. width, location and physical absorber parameters) may 

be completely different. The solutions also depend on whether the problem of tuning the 

absorber around a selected frequency is considered (passive method) or the problem of 

tuning in real-time to the excitation frequency in a wider frequency band (semi-active 

method). 

l

0.6l
0.3l

x1
x2

 

Figure 2. Beam with the attached dynamic continuous vibration absorber 

For example, for the problem of passive minimization of the vibration amplitude of 

the free end of the beam shown in Fig. 2, in the bandwidth around the first natural 

frequency f1 = 4.19 Hz, the best result is obtained for the discrete damper placed at the 

end of the beam. The calculated for this case the optimal stiffness and damping 

coefficients of the damper are: KOPT = 47.70 N/m , COPT = 1.08 Ns/m. 

Due to the first mode shape the problem of passive minimization of the time-

averaged kinetic energy of the beam around the first natural frequency has a similar 

solution: the discrete damper placed at the end of the beam with the optimal parameters 

almost the same like given earlier. 

The width and location of the optimal absorber in vibration reduction problems 

considered in a wider frequency band can be different depending on the criterion taken 

(local or global). In the case of the absorber tuned in real-time to the excitation 

frequency (semi-active method), the best solution for the problem of minimization the 

vibration amplitude of the beam free end may also occur the discrete absorber placed at 

the end of the beam. In this case, however, a new resonant frequency [18, 23-24] may 

appear with a node at the beam end, so such location of a discrete damper may be 
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inadequate in the energy minimization problems. The vibration suppression efficiency 

may be improved by using several discrete translational and rotational absorbers [22-24]. 

In further calculations the continuous absorber (Fig. 2) is assumed to be tuned so that 

it is resonant at each frequency, without energy dissipating appliances (c(x) = 0). 

The aim of calculations is to find the optimal width and placement of the continuous 

vibration absorber in a given frequency range, as a measure of vibration is used the time 

-averaged kinetic energy of the whole beam. 

The results of the numerical calculations are presented in Fig. 3 and Fig. 4. 

For comparison it is first shown in Fig. 3 the calculated time-averaged kinetic energy 

for the case with the single discrete absorber placed in different positions on the beam. 

The numbers in the figure represent the distance from the support (in meters). 
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Figure 3. Time-averaged kinetic energy of the beam with the one discrete absorber 

attached in different positions – the absorber is tuned to be resonant at each frequency 

It is visible that the vibration suppression efficiency of the discrete absorber (tuned to 

the excitation force frequency) depends largely upon the absorber position. Due to the 

appearing a new resonant frequency of the structure composed of the beam with 

absorber, there is no position of the absorber appropriate in the whole frequency band 

considered. Additionally the discrete absorber is very sensitive to inaccurate location and 

tuning. 

In Fig. 4 is shown the time-averaged kinetic energy for the case with the single 

continuous absorber of different width and placed in different positions on the beam. The 

numbers in the figure represent the values of x1 and x2 (Fig. 2). 
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Figure 4. Time-averaged kinetic energy of the beam with the one continuous absorber 

attached in different positions and with different segment widths – the absorber is tuned 

to be resonant at each frequency 

It results from the diagrams in Fig. 4 that the continuous absorbers may have the 

suppression efficiency many orders of magnitude higher than the discrete absorber. 

It is possible to find the width and position of the continuous absorber segment which 

are considered optimal in the entire given bandwidth, because there doesn’t appear any 

new resonant frequency in the system. 

The continuous absorber is also sensitive to inaccurate location and tuning, but even 

when placed not exactly at the optimal location it can posses the vibration suppression 

efficiency much more higher than the discrete absorber. 

For another type of loading optimization can give different results, as for the other 

frequency bands. A further improvement of the vibration reduction would be achievable, 

when the real time change not only of stiffness but also of damping was possible. De-

tuning the absorbers, both discrete and continuous, can also be beneficial [18]. 

4. Conclusions 

Continuous dynamic absorbers can be efficient in cases when the points of loading 

attachment is not accurately determined as well as in cases of distributed loads. They can 

be applied in places where placements of one or a few absorbers of significant masses is 

technically impossible. By the appropriate tuning they can be efficient within 

a broad frequency band. 

The computational model presented in the hereby paper can be used in local and 

global problems of the optimization the continuous dynamic absorbers locations and 
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parameters in beams. The numerical algorithm created for calculation of the continuous 

absorbers may also be applied to calculation of the discrete absorbers. It can be obtained 

by taking the very narrow segment over which the continuous absorber is distributed or 

by describing the densities of the mass, stiffness and damping coefficients using the 

-Dirac distribution. The advantage of this approach is that the number of unknowns in 

the solved systems of equations does not depend on the number of discrete dampers 

used. 

The computational model of the continuous dynamic absorber, presented in this 

study, can be adjusted to vibration reduction problems in more complex one-dimensional 

systems such as frames or curvilinear beams. It can be also expanded to problems of 

vibration reductions in plates or shells. 
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Abstract 

The proposed and verified the technique of finding a finite number of first natural frequencies for 
geometrically nonlinear vibrations of layered elongated cylindrical panels at discrete consideration of 

components. The influence of the radius of curvature on the natural frequencies of three- and five-layered 

panels is investigated. The dependence between the volume of filler three-layer panels and the lowest natural 
frequency has been established. 

 

Keywords: elongated layered panel, nonlinear vibrations, perturbations method, natural frequencies 
 

1. Introduction  

The flexible layered cylindrical panels constitute a significant part of various structures 

and hardware. The specificity of the functional purpose of components of layers causes a 

sharp difference in their physical and mechanical properties and thickness, causing the 

need for discrete consideration of the thickness of the structure, of the above mentioned 

objects, as the averaged approach can lead to significant errors when assessing the ability 

to support or determine their amplitude and frequency characteristics. 

Effects of intensive dynamic (including cyclic) loads are usually the cause of 

geometrically non-linear stress-strain state. Therefore, there is a need for the 

development and verification of the methods for determining the parameters of free 

vibrations of geometrically nonlinear deformation of layered cylindrical panels for 

consideration of discrete components. 
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Free vibrations of the shell structural elements are studied using numerical and 

experimental methods [1–3] or only pliability to transversal shear [4]. Some analytical 

results for pliability to transversal compression are given in [8]. 

In this paper proposed the technique and with its using the investigated the free 

geometrically nonlinear vibrations of layered cylindrical panels with into account all the 

physical and mechanical properties of components in the spatial statement of the 

problem. 

2. The problem statement for a particular component of a layered panel 

A curved anisotropic elastic layer with thickness h  we assume in a natural mixed 

system of coordinates 321 ,,   on the median surface. This surface is formed by the 

motion of the line 0;0 31    on the segment of arbitrary guiding. We consider that 

the layer is significantly larger along the axis 2  to the length of the section arc 02   

of the median surface 03  . So we have an elongated panel. If the conditions of fixing 

the ends of the panel 0
11    and the initial conditions are independent of the 

coordinate 2 , then through a little influence of conditions of fixing the edges 

0
22   , the functions, that determine the characteristics of geometrically nonlinear 

vibration processes in the plane of the median section, are dependent from 1 , 3 . To 

find these functions we have [9]: 

 motion equations 

2

2
ˆ

t

U
Sdiv




  ;  (1) 

 elasticity relations 

̂
~ˆ  A ; (2) 

 deformation relation between the strain tensor components ̂  and the 

components of the elastic displacement vector jii eeuU


  

)(
2

1
kj

k
iijjiij uuuu  ; (3) 

 relation between the components ijS of the nonsymmetrical Kirchhoff 

stress tensor Ŝ  and the components 
ik  of the symmetric Piola stress tensor ̂  

 

k

j
k

j
k

ikij uS )( . (4) 

In equations (1) and (2) A
~

 is the tensor of elastic properties of anisotropic layer, and 

  is its density. 

Boundary conditions on the front surface of the panel 2/3 h  in the case of its 

belonging to the layered structure are shown below, and initial conditions have the form 
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3. The layered panels 

Assume that a panel consists of N  layers (see Fig. 1). Each k-th layer is considered as a 

separate thin panel with its own mechanical and material characteristics. Hooke’s law is 

different for each layer: 

kkk Q  ][)(  ,    ,,...,1 Nk   (7) 

where ][ kQ  is tensor of elastic properties of anisotropic k-th layer. 

 

 
 

Figure 1. Layered cylindrical panel with hinges fixed on the elongated edges 

 

Assuming that the value of 3  coordinate at the top of k-th layer is kh , and 2/0 hh  , 

the equations (1) for a layered structure are written as 
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The contact conditions between the layers are 
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and on the lower and upper facial surfaces of the layered structure we have 
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At the elongated ends of the panel 0
11   under the conditions of the fixing the 

hinge on the lower surface of the front 2/2 h  the boundary conditions have the 

form 

0),,( 3
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4. Approximations 

Assuming that each k-th layer is thin, quadratic approximations along 3  coordinate are 

used for components of elastic displacement vector 1u  and 3u  [10]: 
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For finding the unknown coefficients )( 1

)( k
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in (14), approximation by the 

tangential coordinate 1  was used on one-dimensional isoperimetric linear finite 

elements [10]: 
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5. The discretized problem  

Considered above differential formulation of the problem of geometrically nonlinear free 

vibrations for single layer is equivalent to the problem of minimizing the functional L  

[10]: 
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Boundary conditions (11), (12) and contact conditions (9), (10) are a natural for the 

variation formulation of the problem (16) [10], but conditions (13) must be take into 

account during solving.  

In a case layered panel we obtain: 

.min

1
2

2



























  

  

K

k

T

k
j

i

i j

ij
k

k k

Ud
t

U
d

x

u
SL   (17) 

After substituting (14), (15), and using (4) into (8) in (17) and composing results 

together we obtain: 

min}{}{}){(}{}{}{  uMuuuKuuKuL T
NL

T
L

T  , (18) 

where )}({}{ tuu   – vector of values of the coefficients 
))(( ek

ijmu  at nodes on the finite-

element of k-th layer; LK  – linear, and NLK  – nonlinear components of stiffness 

matrix; M  – matrix of mass [5]. Stiffness and mass matrices composed from M matrices 

for each layer. 

For solving discretized problem (18) perturbation method is used, that is described 

in [5, 6]. 

6. Numerical results 

6.1. Verification of the proposed technique 

Consider a cylindrical five-layer panel, the edges of which are fixed by hinges at the bottom of 

the front plane (see Fig. 1.) with geometrical 1l m; 01,0h m and physical-mechanical 

characteristics: 

.25,0,5,0,6,0,40 12232131221  EGEGGEE  

 

For the analysis of reliability of the results we applied the proposed technique to the 

problem, the solutions of which are known [4]. Consider a cylindrical panel with radius 



260 

curvature 0K . For finding the values of natural frequencies apply partition at 50 finite 

elements by coordinate 1 . 

In Table 1 compared the values LNL  /  obtained at the amplitudes 
h

wmax  for free 

vibrations of five-layered panel with the results from the work [4]. 

Table 1. 

 
 

[4] Proposed technique 

0,2  1,0313 1,0401 

0,4  1,1198 1,1214 

0,6  1,2536 1,2695 

0,8 1,4199 1,4418 

1,0 1,6086 1,6588 

1,2 1,8127 1,8627 

 

 
 

Figure 2. Comparison of amplitude-frequency characteristics obtained using  

the method of perturbation and results of work [4] 

 

Fig. 2 shows the skeletal curves [11], constructed using the proposed technique ( ) and the 

results given in the work [4] (o). 
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Also, the influence of the radius of curvature K  on the free vibrations of the panel is 

investigation. Fig. 3 shows the dependence of the lowest natural frequency of the radius 

of curvature of five-layered panels from carbon fiber. 

 

 
 

Figure 3. Dependence of the lowest natural frequency of the radius of  

curvature of the cylindrical panels 

 

The maximum relative error in the Table 1 does not exceed 3%, which shows the 

effectiveness of the proposed technique. Comparative analysis of the graphs in Fig. 2 shows the 

reliability of the results obtained using proposed technique. Also established, that the main 

amplitude of natural vibrations increases with increasing radius curvature of the panel. 

6.2. Three-layered panel 

We considered a layered plate-strip with elongated edges that are fixed with stationary 

hinges on the lower plane (see Fig. 4). Geometrical characteristics of plane are ml 1 , 

mh 1,0 . It consists of three layers with following characteristics:  

1) Rubber – 29 /101.0 mNE  , ;49,0  

2) Steel – 29 /10210 mNE  , .3,0  



262 

 

Figure 4. Panel with three layers 

In Table 2 first five natural frequencies is shown for panel consisting of three layers 

where steel layers have thickness 0.01m and rubber has thickness 0.08m. 

[1] Table 2. 

n  
n  

1 283000 

2 1019000 

3 1457300 

4 1839600 

5 2615200 

 

In Table 3 dependency between first natural frequencies and thickness of middle 

layer (rubber layer) thickness is shown. 

[2] Table 3. 

h

hrubber  
1  

0.9 225650 

0.8 283000 

0.7 372770 

0.6 490850 

0.5 635100 
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a) 

 
b) 

 

Figure 5. View panels in different modes: a) – the first mode; b) – second 

 

In the Fig. 5 we show the vibrations of the structure for first and second modes of 

the panel consisting of three layers where the steel layers have the thickness 0.01m and 

the rubber has the thickness 0.08m. 

[3] Table 4. 

K  1  

0 283000 

0.5 254200 

1 232000 

2 218700 

 

In Table 4 dependency between the radius of curvature and first natural frequency of 

the panel that consists of three layers where the steel layers have thickness 0.01m and the 

rubber has thickness 0.08m is shown. 

For considered above panel we can make next conclusions:  

1. the more matrix (rubber) component are included in the panel, the less is the first 

natural frequency; 

2. the more radius curvature is the panel, the less is the first natural frequency of it. 

7. Conclusion 

We can make a conclusion that the method proposed in this paper is suitable for the 

layered panel because it provides logical results (Fig.5). Also this method can use at 

arbitrary amount of layers in the panel. 
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Abstract 

In this note a free vibration analysis of periodic three-layered sandwich structures is performed. The equations 

of motion of such structures, which are derived basing on Kirchhoff's thin plate theory, contain periodic, non-

continuous and highly oscillating coefficients, which makes them difficult to solve. In this work, the tolerance 
averaging technique is applied in order to transform the mentioned system of equations into a form with 

constant coefficients, which takes into account the effect of the microstructure size. The differences between 
two modelling procedures are shown and discussed. Eventually, formulas for free vibration frequencies of an 

exemplary 2D structure are derived and an analysis of influence of certain varying material properties is 

performed. 
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1. Introduction 

Composites are more and more widely used in modern engineering. The possibility of 

combining several different materials into one heterogeneous structure, which material 

properties are outstanding when compared to 'classic' homogeneous materials, is very 

tempting for many researchers. All that is needed, is a proper model of such structures, 

which can be used in design and optimization process. 

In this article three-layered sandwich structures are considered. A typical sandwich 

structure consists of external layers, which are made of materials characterised by high 

mechanical properties, hence, they are main bearing parts of the whole structure,  

and an inner layer, so called core, which is usually a light-weight, porous material, 

standing for thermal- and acoustic isolation. As a result, we obtain a highly durable 

structure, which, properly designed, can be used in many branches of engineering, such 

as aviation or even space ship construction.  

On the other hand, sandwich structures also have disadvantages, such as vulnerability 

to local buckling, initial imperfections or concentrated loadings. Moreover, the 

mathematical models of such structures are complicated, with unclear and 

experimentally not proved assumptions connected with distribution of stresses and 

deflections. That is why, many different approaches towards the analysis of dynamic 

behaviour of such structures can be found in literature. Let us mention classic Euler-

Bernoulli deflection hypothesis, Reissner-Mindlin's first order deformation theory, 

together with its extension to nth-order deformation, or Zig-Zag hypothesis. For the exact 
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description of above mentioned approaches, one should refer to Magnucki [1], Carrera 

[2] or Carrera and Brischetto [3], among others. In this work, let us concentrate on one 

of the most simple approach, which can be found in the works of Chonan [4], Oniszczuk 

[5] or Szcześniak [6], just to name few. In this approach, a three-layered sandwich 

structure is considered as a system of two Kirchhoff's type thin plates (outer layers), 

connected with each other by elastic Winkler's type material. Such assumption is well-

fitted to our expectations, in which light-weight elastic core increase the stiffness of the 

structure by increasing its thickness, rather than being its bearing part. 

In all above mentioned approaches, considered structures are characterised by 

constant geometry and are made of homogeneous or quasi-homogeneous materials. 

However, most recent sandwich structures contain certain varying geometry and/or 

material properties (especially the core can take very complicated shapes). As a result, 

governing equations of such structures have non-continuous and highly-oscillating 

coefficients, which make them difficult to solve. An answer to this problem can be the 

application of finite element method analysis. However, the optimization process with 

the use of such approach can be much time-consuming and ineffective. That is why, in 

this work one can find a mathematical model describing the vibrations of sandwich 

structure, which every layer can be characterised by periodic microstructure.  

Solution to such problem was investigated by many researchers, for example by 

Brillouin [7], Mead [8] or Kohn and Vogelius [9], who created the basis of the 

asymptotic homogenisation method for plates. However, these models neglect the 

influence of microstructure on the behaviour of considered structures. The main aim of 

this paper is to derive a simple and useful model, which allows us to take into account 

this effect, with the use of the tolerance averaging technique, presented by Woźniak and 

Wierzbicki [10] or Woźniak et al. (eds.) [11], [12]. Eventually, as a result of two 

modelling procedures (tolerance modelling and asymptotic-tolerance modelling), free 

vibration frequencies of an exemplary rectangular sandwich plate are calculated. 

2. Modelling foundations 

Let Ox1x2x3 be an orthogonal Cartesian coordinate system, where x≡(x1,x2), x3≡z,  

and let us denote t as a time coordinate. The three-layered plate under consideration is 

assumed to have spans L1 and L2 in x1 and x2-axis directions, respectively, and total 

thickness H(x). Hence, it can be stated, that undeformed structure occupies the region 
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Let us assume, that both outer layers are Kirchhoff's type thin plates. Moreover they 

are made of the same set of materials and they have the same geometry, hence, all 

material and mechanical properties of these layers are the same, cf. Figure 1. Let us 

introduce their bending stiffness Bαβγδ(x,t) and mass density per unit area μ(x,t) as: 
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where h(x) is the thickness of the outer layers, Cαβγδ(x,z) is their elastic modulus tensor 

and ρ(x,z) is their mass density. Both outer layers are connected by an elastic Winkler's 

type material, so called core, characterized by elasticity modulus k(x), mass density 

ρc(x,z) and thickness hc(x). 
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Figure 1. A part of periodic sandwich plate 

The whole structure is build of small, repeatable elements, called periodicity cells. 

Every cell has dimensions l1 and l2 in x1- and x2-axis direction, respectively, while its 

diameter is referred to as to the microstructure parameter l. It is assumed, that 

dimensions of the plate and the microstructure parameter must satisfy following 

normalizing conditions: ),min()( 21 LLlh x , hence, the outer layers of the structure 

can be treated as thin plates not only in a macro-scale, but also when a single periodicity 

cell is considered. 

Let us follow the simplified approach presented by Szcześniak [6]. According to the 

Kirchhoff's type thin plate theory, governing equations of this structure takes the form: 
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where u1(x,t), u2(x,t) are deflections of upper and lower outer layers along z-axis 

direction, respectively, and f1(x,t), f2(x,t) are their loadings, defined as: 
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where p1(x,t), p2(x,t) are external loadings applied to outer layers of the structure. It 

should be emphasized, that coefficients in system of equations (2) are periodic, non-

continuous and highly oscillating. In order to derive a system of governing equations 

with constant coefficients, the tolerance averaging technique will be used. 

3. Basic modelling assumptions of the tolerance averaging technique 

The whole modelling procedure with the use of the tolerance averaging technique uses 

several introductory concepts, such as: an averaging operator, a slowly varying function, 

a tolerance-periodic function or a highly oscillating function. The idea standing behind 

those concepts, as well as a detailed description of the tolerance averaging technique, 

can be found in a various literature, for example by Woźniak and Wierzbicki [10] or by 

Woźniak et al. (eds.) [11], [12]. 

Let us introduce the definition of the averaging operator, which for an arbitrarily 

chosen basic periodicity cell Δ(x) can be formulated as follows: 
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x  is periodic approximation of kth gradient of certain function f(x). 

There are two main assumptions of the tolerance averaging technique. The first of 
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them is the micro-macro decomposition, which stands, that  the deflections of outer 

plates u1, u2 can be formulated as sums of macrodeflections w1(x,t), w2(x,t) and products 

of mode shape functions g1
A(x), g2

B(x) and fluctuation amplitudes v1
A(x,t), v2

B(x,t): 
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Both macrodeflections w1(x,t), w2(x,t) and fluctuation amplitudes v1
A(x,t), v2

B(x,t) are 

basic unknowns, additionally assumed to be slowly varying functions for every t. 

The second assumption contain the tolerance averaging approximations. By 

introducing certain given ‘a priori’ tolerance parameter δ and keeping in mind 

properties of functions mentioned as introductory concepts, it is possible to prove the 

following equations: 
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where  is tolerance-periodic function,   is periodic approximation of , F is slowly 

varying function, g is highly oscillating function and O(δ) is negligibly small term, 

0<δ<<1. 

4. Tolerance modelling procedure and model equations 

The starting point of the tolerance modelling procedure is the system of equations (2) 

together with denotations (3). By applying the averaging operator to (2) and 

transforming it with the use of both the micro-macro decompositions and the tolerance 

averaging approximations, the averaged form of system of equations (2) can be obtained 

in the form: 
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The above system of equations constitute the tolerance model of the periodic 

sandwich structures under consideration. It is the system of 2N+2 partial differential 

equations with constant coefficients, where the exact number of equations depends on 

the amount of assumed mode shape functions g1
A, g2

B, A,B = 1,...,N. System of equation 

(7) should be followed by four boundary conditions for every macrodeflection and a two 

initial conditions for every unknown function. It can be also observed, that only the 

underlined terms in (7) are dependent on the microstructure parameter l. 
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5. Asymptotic-tolerance modelling procedure and model equations 

The asymptotic-tolerance model can be obtained in two steps, which are described for 

example by Woźniak et al. [12] or for plates by Kaźmierczak and Jędrysiak [13]. In the 

first step, the asymptotic solution to the problem is derived. In our considerations it can 

be obtained by omitting the underlined terms in equations (7). As a result, we arrive at: 
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By analyzing the above system of equations, one can observe, that it can be easily 

transformed into a system of two equations with unknowns macrodeflections. Hence, 

macro-scale vibrations can be estimated regardless of the micro-scale fluctuations. 

In the second step, an additional micro-macro decomposition, with the use of already 

known macrodeflections w1
0, w2

0, is applied to system of equations (2): 
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Following the tolerance modelling procedure, after several manipulations, we arrive at 

the system of differential equations for fluctuation amplitudes V1
A(x,t), V2

B(x,t): 
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Systems of equations (8) and (10) together constitute the asymptotic-tolerance model 

of the periodic sandwich structure under consideration. As a result, using this modelling 

procedure allows to perform a simplified analysis of vibrations in only macro- or micro-

scale without the necessity of evaluating both. The amount of boundary and initial 

conditions is the same as in the tolerance model. 

6. Calculation example - the analysis of free vibrations 

Let us consider a rectangular three-layered plate, which is simply supported on all four 

edges. It is assumed, that the relations between characteristic dimensions of the structure 

can be formulated as follows: L2/L1=2, l2/l1=2. The outer layers of the plate are assumed 

to be made of periodically varying isotropic materials, having different Young's modulus 

E1, E2 and densities ρ1, ρ2, but constant Poisson's ratio ν=0.2 and thickness h=0.1l1, cf. 

Figure 2. 

Let us introduce only one mode-shape function, the same for both upper and lower 

outer layer. Moreover, in order to obtain comparable results, let it be the same function 

for both tolerance and asymptotic-tolerance models: 
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Figure 2. A periodicity cell of plate in the calculation example 

By defining 
iii Vvw AAA ,,  as amplitudes of unknowns, i = 1,2, λ1, λ2 as wave numbers 

and ω as a frequency, solutions to all governing equations can be assumed in the 

following forms, which satisfy boundary conditions: 
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Let us neglect all external loadings. Free vibration frequencies are calculated by 

solving characteristic equations of homogeneous systems of equations (7) and (8), (10) 

and presented in dimensionless form, derived with the transformation below: 
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Moreover, all calculations are performed for constant wave numbers: λ1=0.1/l1,  

λ2=0.1/l2. On charts in Figure 3 and 4 lower order frequencies are denoted as "a" and 

"b", while higher order frequencies as "c" and "d". Moreover, the tolerance model results 

are distinguished by subscript "1" and the asymptotic-tolerance model - by subscript "2". 

 

 

Figure 3. Dimensionless free vibrations frequencies' parameters   versus parameter X: 

A) E2=XE1, ρ2=2ρ1, k=0.03E1/l1, ρc=0.03ρ1,  

B) E2=2E1, ρ2=Xρ1, k=0.03E1/l1, ρc=0.03ρ1 
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Figure 4. Dimensionless free vibrations frequencies' parameters   versus parameter X: 

C) E2=2E1, ρ2=2ρ1, k=XE1/l1, ρc=0.03ρ1, 

D) E2=2E1, ρ2=2ρ1, k=0.03E1/l1, ρc=Xρ1 

7. Remarks 

In this article, two averaged models describing vibrations of periodic three-layered plates 

are presented. The simple model of sandwich plate, described by Szcześniak [6], 

is extended and modified with the use of two modelling procedures of the tolerance 

averaging technique, so as structures with periodic microstructure can also be analyzed. 

As a result of these modifications, systems of governing equations with constant 

coefficients are obtained and solved. 

Basing on the considered calculation examples, it can be observed that results of both 

models are comparable even for structures with much varying material properties. 

Hence, presented solutions can be used in the process of optimization of mechanical 

properties of considered sandwich structures, as a simple and convenient way of 

estimating the frequency of vibrations. 

In the future investigations, the consistency of the proposed averaged models with 

finite element method will be presented. Moreover, a physical correctness of derived 

models will be described and justified. 
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Abstract 

In the paper there is proposed an algorithm of an efficient semi-active control of steady-state periodic lateral 
vibrations of the overhung rotor-shaft system. This algorithm has been developed using fundamentals of the 

Optimal Control Theory. In the considered system the control is realized by means of the linear dampers with 

the magneto-rheological fluid built in the bearing housing. The computational example demonstrates 
possibilities of the applied approach resulting in an additional reduction of out-of-resonance and near-

resonance harmonic oscillation amplitudes in comparison with an analogous passive control. 

 

Keywords: overhung rotor-shaft, lateral vibrations, semi-active control, Optimal Control Theory 

 

1. Introduction  

Heavy rotors suspended in bearings in an overhung way constitute a wide class of 

rotating machinery. Typical examples of this group are pumps, compressors, blowers, 

gas turbines, crushers, beater mills, drums of washing machines and many others. As it 

follows e.g. from [1,2], at high rotational speeds they are sensitive to gyroscopic effects 

associated by their lateral vibrations excited mainly by residual unbalances as well as by 

assembly misalignments, rubbing effects in bearings, sealings or blade rims and by other 

sources. Such oscillations are usually very detrimental and a suppression of their 

amplitudes is an important challenge in order to assure precise motions of such rotor-

shaft systems, possibly small bearing reactions, minimized danger of material fatigue 

and low level of generated noise. This target can be effectively achieved by means of a 

semi-active control of lateral vibrations affecting the rotor-shaft systems with overhung 

rotors. For this purpose, similarly as e.g. in [3], actuators with the magneto-rheological 

fluid (MRF) are going to be applied. Such an approach seems to be very convenient for 

rotor machines like vacuum pumps, turbo-chargers, washing machines, precise spindles 

and others rotating with high speeds in steady-steady state operating conditions under 

harmonic external excitations due to residual unbalances and the mentioned above 

dynamic effects. It is to emphasize that, contrary to a control of transient or resonant 

vibrations, for which many algorithms turned out to be effective, a suppression of forced, 

steady-state oscillations with frequencies far away from resonance zones is an extremely 

difficult task. Here, in cases of the abovementioned rotor machines even a few-percent 

minimization of fluctuation amplitudes can be very fruitful from the viewpoint of 

material fatigue, precision of motion, dynamic interaction with an environment, 

detrimental noise generation and many other factors. Thus, in order to achieve this 

target, in the paper for the actuators with the MRF a control strategy based on the 
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Optimal Control Theory (OCT) will be applied for the high-speed overhung rotor-shaft 

under steady-state harmonic lateral vibrations. The obtained results of simulations are 

going to be compared with the analogous ones determined for additional passive 

damping applied into the considered system as well as using the numerical optimization 

control algorithm. 

2. Modelling of the rotor-shaft and mathematical formulation of the problem 

In many cases the high-speed rotating machines are characterized by heavy, lumped 

overhung rotors attached on short, dumpy shafts suspended on relatively flexible bearing 

supports. Thus, deformations of such rotor-shafts can be neglected and then only rotor-

shaft inertial parameters and bearing support visco-elastic properties play a predominant 

role in lateral vibrations of these objects. According to [1], if a maximal static deflection 

of such rotor-shaft is of the same order as the bearing clearances, its dynamic behaviour 

can be investigated by means of a rigid body model of four degrees of freedom. Then, 

the generalized coordinates corresponding to them describe two translational 

displacements of the rigid body mass center in the two mutually perpendicular directions 

with respect of the rotor-shaft rotation axis as well as two angular displacements with 

respect of mutually perpendicular axes passing the mass center of this rigid body. In 

order to take into consideration a rotor-shaft support in a possibly general way, the 

anisotropic and non-symmetrical visco-elastic properties of bearings have been assumed 

in the form of stiffness and damping coefficients containing also the proper cross-

coupling terms. The proposed rigid body model of the overhung rotor shaft supported on 

two bearings is presented in Fig. 1.  

 
Figure 1. The rigid-body model of the double-bearing overhung rotor 

Motion of the rotor-shaft has been described in the inertial orthogonal coordinate 

system Oxyz with the origin placed in the rigid body model center of gravity O. Axis Ox 

coincides with the bearing axis and axes Oy, Oz respectively determine the vertical and 

horizontal direction. The plains of bearing interaction cross Ox axis in points A and B 

distant of l1 in the case of bearing #1 and of l2 in the case of bearing #2, as shown in Fig. 
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1. The motion equation of the assumed rotor-shaft rigid body model have the following 

form: 
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where r(t)= col [y(t), z(t), (t), (t)] is the generalized coordinate vector with 

components corresponding respectively to the translational displacements along Oy and 

Oz axes and to the angular displacements around Oz and Oy axes. Symbol M denotes the 

diagonal inertial matrix, C and K are respectively the symmetrical bearing damping and 

stiffness matrices and G is the skew-symmetrical matrix of gyroscopic effects. The 

external excitation vector F has the following components:  
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where  is the eccentricity of the rotor-shaft residual static unbalance, M denotes the 

entire mass of the rigid rotor and U(t), V(t) are the control forces acting in the vertical 

and horizontal direction, respectively. Such equations are very convenient here for 

 a demonstration of relatively easy implementation of the proposed algorithm of semi-

active control of the steady state forced lateral vibrations of the considered object.  

The rotating machines usually operate in steady-state conditions at constant 

rotational speeds, more or less far away from the critical ones associated with the 

corresponding lateral eigenvibration modes. Thus, the goal of this paper is to propose a 

computationally effective numerical method for determination of the optimal control 

function applied here for the mechanical system under periodical vibrations due to the 

residual unbalance. In order to distinguish such successive mutually uncoupled 

eigenmodes of the considered gyroscopic, nonconservative rotor-shaft system, it is 

necessary to perform a complex modal analysis of Eqs. (1) according e.g. to the 

approach presented in [2,4]. Then, the investigations reduce to control of steady-state 

harmonic oscillations of simple single degree-of-freedom oscillators shown in Fig. 2 (a).  

 

 
a) 

 
b) 

Figure 2. Single DOF dynamic oscillator (a), controllable damper force function (b) 

An equation of motion of such oscillator has the following form: 

 ))(()cos()()()( txutftxktxctxm     (3) 
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where according to [4], the modal damping coefficient mc 2 , the modal stiffness 

mk 





  22  ,  sr   , m is the modal mass, ,  denote respectively the 

real and imaginary part of the complex eigenvalue corresponding to the considered 

eigenmode, r, s are respectively the real and imaginary part of the complex left 

eigenvector component, x(t) denotes the modal displacement of the controlled 

eigenmode and φ is phase shift angle.  

As shown in Fig. 2b, for the assumed linear relationship between the shaft/bearing 

vibratory velocity and the control force Fc generated by the MRF damper built in the 

bearing housing, one can express in (3):  )(txuFc
 , where u denotes the control 

variable. The slope of the damping force curve depends on the instant value of the 

control current I. Control current cannot exceed the boundary limits maxI,I 0 . Also, 

it is assumed that the control current can change its value instantly. Because the 

controllable damper characteristic is linear, it may be assumed that: 
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For the simplification of further considerations it is convenient to transform Equation (3) 

into the state-space representation:  
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where state variables are defined in the following form: 
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In order to define the optimal control problem it is necessary to introduce  

a performance index which will represent a measure of vibration level. One of possible 

choices is to select the performance index as a single scalar value that will represent the 

average motion mean energy of the considered system: 
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In the above equation, apart from the motion energy component1/2(kq1
2
+mq2

2 ), the other 

component has been added, namely ru2. This expression refers to the amount of energy 

consumed by the controlled damping element. This component has been added into Eq. 

(7) in order to simplify further transformations. The term ru2 should be treated as 

negligible, since a minimization of the control energy has not been considered as a 

primary goal for mechanical systems under periodical excitation. Therefore, it is 

assumed that scalar r nearly equals zero. Variable E denotes the integrand function. 

Using the Optimal Control Theory (OCT) it is possible to derive the set of equations 

specifying the optimal control function profile u*, providing a minimization of 
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functional J. For this purpose, it is necessary to apply the common OCT control function 

derivation procedure given in [5,6]. It starts with a definition of the Hamiltonian 

function: 

qλ  EH  (8) 

Next, using the necessary condition for minimization of functional J, namely: 𝛿𝐽=0, the 

following set of equations can be derived:  
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where λ denotes the costate vector. Upon an expansion of the third inequality standing in 

(9) and an application of the Pontryagin principle, finally the following set of equations 

defining the optimal control can be derived:  
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(10) 

 

In order to find exact function values, all equations of the above system have to be 

solved simultaneously. It requires a specification of boundary values of the state and 

costate vectors. For the considered vibrating system one can assume that under optimal 

control function this system will eventually fall into steady-state vibrations, starting from 

an arbitrary initial state condition. Different initial state conditions will only affect a 

duration time of the transient phase of motion up to the instant, when the steady-state 

vibration phase shall be established. Concluding, the initial condition for the state vector 

can be arbitrarily chosen as: 0(0) q . 

The second condition follows directly from the fundamentals of the OCT. Provided 

that the considered system of Eqs. (10) has to be integrated in the finite time range 

fT,t 0 , the optimal problem in the OCT nomenclature can be classified as free-end, 

fixed-time problem, [5]. The phrase “free-end” refers to a lack of constraints specified 

for the state vector at the end of the simulation time window. The phrase “fixed-time” 
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refers to the finite value of the simulation time range Tf. For such kind of the optimal 

control problem the OCT provides the additional boundary condition, i.e.: λ(Tf)=0.  

Concluding, because the known boundary conditions are specified partially at the 

beginning and partially at the end of the simulation time window, this problem can be 

classified as the Two-Point Boundary Value Problem (TPBVP). The TPBVPs are 

generally considered as difficult numerical problems. In order to solve the TPBVP for 

the considered system, the following algorithm has been developed: 

1. initialize the λ(0) vector with random values, 

2. integrate the coupled state-costate equations on the time interval fT,0 assuming 

0(0) q  and taking (0) from point 1, 

3. after an integration check, whether terminal condition has been satisfied λ(Tf)=0, 

4. conditional step: 

a. if the terminal condition from step 3 has been satisfied, terminate the algorithm, 

b. if the terminal condition from step 3 has not been satisfied, find the new 

estimation of the (0) condition by means of the external, numerical optimization 

algorithm; then, repeat the steps 1-4 as long as terminal condition is not being 

satisfied. 

 
Figure 3. Optimal control problem computational algorithm 

The algorithm described above can be illustrated by means of the following diagram 

presented in Fig. 3. It is important to choose the sufficiently large Tf value, so the steady-

state phase of motion could be significantly longer than either transient phase at the 

beginning or at the end of the simulation time window.  

3. Computational example  

In the computational example the rigid overhung rotor-shaft of the industrial blower 

supported on two identical rolling bearings is used as an object of considerations. This 

rotor-shaft of a total weight ca. 60.13 kg and of the bearing span 0.275 m is 

characterized by a relatively heavy impeller and light shaft, as shown in Fig. 1. Its total 

polar and diametral mass moments of inertia are respectively equal to 7.02 and 12.75 

kgm2. It is assumed that bushings of the isotropic and radially stiff rolling bearings are 

embedded in the bearing housings by means of layers made of relatively soft and viscous 

vulcanized rubber. The bearing suspension stiffness coefficients are assumed constant 

within the entire shaft rotational speed range 0-7200 rpm.  
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In Fig. 4a there are presented the imaginary parts and in Fig. 4b the real parts of four 

eigenvalues of the considered rotor-shaft, where the grey lines correspond to the original 

system and the black ones to the system equipped with the MRF damper built in the 

bearing support #1 and operating passively. From the obtained  plots  it  follows  that  

  

Figure 4. Imaginary (a) and real (b) parts of the rotor-shaft eigenvalues 

 
Figure 5. Entire vibratory mechanical energy profiles for the passive and semi-actively 

damped system for the 1st eigenmode backward precession of 6.1 Hz at 3000 rpm 

the optimal passive control effectively stabilizes the backward and forward branches of 

the second eigenmode and the forward branch of the first eigenmode. But it has almost 

no influence on a stabilization of its backward branch characterized by the close to zero 

natural frequency and modal damping coefficient at greater rotational speeds, Fig. 4. 

However, the semi-active control realized using the MRF damper and the proposed 

control algorithm can result in an effective stabilization of this almost no damped 

backward precession of the 1st eigenmode excited here e.g. by means of periodic 

retarding frictional loads in the bearings. As shown in Fig. 5, the semi-active control 

minimizes fluctuation amplitudes of this backward mode by ca. 8%. Moreover, the semi-

active control suppresses lateral vibration amplitudes even by 10% for the first 

eigenmode forward precession induced by unbalances at the overcritical rotational speed 

110 rev/s, i.e. 6600 rev/min, as it follows from the time-history plots depicted in Fig. 6.  
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Figure 6. Entire vibratory mechanical energy profiles for the passive and semi-actively 

damped system for the 1st eigenmode forward precession of 13.67 Hz at 6600 rpm. 

4. Conclusions  

In the paper there were considered passively and semi-actively controlled periodic lateral 

vibrations of the rigid overhung rotor suspended on flexible bearings equipped with the 

MRF dampers. From the results of an eigenvalue analysis it follows that additional 

passive damping introduced into this system can effectively suppress its oscillation 

amplitudes and increase stability regions only for sufficiently stable eigenmodes. But it 

is not the case for unstable or almost stable eigenmodes, e.g. due to gyroscopic effects or 

skew-symmetrical bearing properties. Here, the semi-active control realized according to 

the proposed algorithm based on the Optimal Control Theory seems to be a very 

advantageous and universal tool for engineering applications tool for stabilization of 

vibrating mechanical systems and for an attenuation of their oscillation amplitudes. 
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Abstract  

In the paper a numerical analysis of an autoparametric system is presented. The two main elements of a tested 
system are the pendulum (tuned mass absorber) and an energy harvester. The electromechanical model takes 

into account these both effects. Numerical simulations are made in a MATLAB software environment. The 
obtained results allowed estimation of influence of the system parameters on efficiency of energy harvesting. 
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1. Introduction 

Application of the pendulum to the vibration reduction is described in the literature as a 

tuned mass absorber. A gigantic pendulum (about 700 tons) is applied in skyscraper 

Taipei 101 building [1]. It is used to reduction of building's movement occurring during 

earthquakes and high winds. The similar problem was studied intensively at the Lublin 

University of Technology [2, 3]. The pendulum spring mass system shows regular or 

irregular (chaotic) responses. The irregular vibrations are very dangerous, especially for 

dynamic absorber devices. 

In the last years the pendulum systems are intensively studied [2-4]. In application 

where the primary task of the pendulum is vibration reduction (buildings, ship, etc. ) a 

special devices can be added to energy harvesting. An additional harvester can increase 

functionality of the original system. The new models take into account the possibility of 

recovery energy from the motion of the pendulum. Generally, in literature exists two 

different solutions: (I) the rotary harvester [4] and (II) the linear harvester [5]. The word 

linear describes the movement path of the magnet in relative to the pendulum. In this 

paper the second solution (linear) is proposed. 

A strongly non-linear model of electromechanical system and results of simple 

numerical analysis are shown in paper [5]. In this paper more complex considerations are 

presented. Influence of the system parameters on induced current level is investigated in 

detail. 
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2. Electromechanical model of system 

The total system consists of two main subsystems: mechanical and electrical parts. The 

parts are presented in Fig. 1(a) and (b), respectively. The mechanical subsystem has 

three basic elements: 

 simple oscillator – mass M suspended on linear spring k1 and damper c. It is excited 

kinematically by linear spring k2. 

 non-linear vibration absorber (tuned mass absorber)– pendulum mounted on the 

oscillator and applied to vibration reduction of mass M. 

 energy harvester – generally, it is movable magnet located between two fixed 

magnets (polarity configurations: SN-NS-SN). In presented model this magnetic 

suspension of movable magnet is modelled as linear spring k3, for small vibrations 

[6]. 

 

       a) 

 

      b) 

 
Figure 1. Model of a mechanical (a) and electrical (b) parts of the system 

 

The movable magnet is moving inside the coil. This motion can generate current i in 

electrical circuit (Fig. 1(b)). Both parts, the electrical and the mechanical are coupled by 

equivalent forces FEM and FME, which have the same values but opposite directions. 

These forces depend on the current and velocity of the moving magnet relative to the 

coil [7]. Differential equations of motion were derived using second kind of Lagrange’s 

equations [5]. The final form of equation of motion has a form: 
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and for the electrical part: 

Coil TotalL i R i r  . (4) 
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2. Numerical results 

Numerical simulations of the equations (1-4) were made in MATLAB 2015 software 

using ode15i method. The mechanical and electrical parameters are shown in Tab. 1. 

Table 1. Parameters of mechanical and electromechanical models 

Description of parameter Symbol Unit Value 

The mass of the object main M  kg 0.65 

The mass of the pendulum m  kg 0.265 

The mass of the magnet mm  kg
 

0.02 

The mass moment of inertia of the pendulum 

relative to the rotation axis 0I  kgm2 4.96e–4 

Distance from the gravity center of the 

pendulum to the rotation axis 
s  m 4.25e–2 

Sum of stiffness coefficients of coil springs 21 += kkk  N/m 2700 

The substitute stiffness of magnetic 

suspension of moving magnet 3k  N/m 2000 

Damping coefficient of linear damper c  Ns/m 10 

Damping coefficient of air resistance 1c  Nms/rad 0.01 

Distance from the gravity center of moving 

magnet to the rotation axis 
R  m 3.75e-3 

The coil inductance CoilL  H 1e-3 

Sum of resistance of coil and external 

receiver LoadCoilTotal RRR +=  Ω 1200 

Electromechanical coupling coefficient α  
N/A or 

Vs/m 
3.5 

Amplitude of periodic excitation 02= xkQ  N 110 

 

All numerical simulations always start from the same initial 

conditions [ , , , , , , ] [0, 0, / 2, 0, 0, 0, 0]
initial

x x r r i   . Non zero initial value of the 

pendulum steady variable or  causes that semi-trivial solution becomes unstable 

(pendulum executes motion). This chapter presents influence of the electrical parameters 

on efficiency of energy harvesting. The following parameters were changed: LCoil from 0 

to 0.005 H (first analysis), RTotal from 500 to 2000 Ω (second analysis) and α from 0.5 to 

5 N/A (third analysis) versus frequency of excitation ω from 20 to 50 rad/s. The 

efficiency of energy harvesting is described by the quality index. In this paper a simple 

form of index is proposed (root mean square of current iRMS). RMS values were 

calculated in a time window 0, 10 .t sÎ  
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a) 

 

b) 

 
Figure 2. 3D characteristics iRMS versus LCoil and ω (a), and top view (b) 

Figure 3. 3D characteristics iRMS versus RTotall and ω (a), and top view (b) 

Figure 4. 3D characteristics iRMS versus α and ω (a) and top view (b) 

 

a) 

 

b) 

 

a) 

 

b) 
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Figure 5. Time series of angle φ (a) and recovered current i (b), for ω=40rad/s 

Figure 6. Time series of angle φ (a) and current i (b), for ω=45rad/s 

Figure 7. Time series of angle φ (a) and current i (b), for ω=55rad/s 
 

Figures 2-4 present obtained 3D characteristics of recovered current. These results 

show trend of change the current flowing in the electrical circuit. We observe a 

significant change of the values iRMS occurring with increasing the resistance RTotal and 

the coupling coefficient α. Increase in the resistance values causes that iRMS decreased 

slowly (see at a frequency about 45 rad/s). Another trend is observed with an increase of 

a) 

 

b) 

 

a) 

 

b) 

 

a) 

 

b) 
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the coefficient α, then the iRMS increases. On the basis on Fig. 2 the definitive 

conclusions cannot be made. The inductance of electrical coil practically not influences 

on the energy recovery. 

For selected values of the excitation frequency ω, the time series are presented (Figs. 

5-7). These times series of the system responses show that pendulum can perform 

different kind of motion. Namely, pendulum swings (Fig. 5(a)), executes chaotic motion 

(Fig. 6(a)) and rotates (Fig. 7(a)). The maximal current recovered when the pendulum 

performs no regular motion (Fig. 6(b)).  

3. Conclusions 

In this paper numerical analysis of a pendulum vibration absorber with device to energy 

recovery is presented. The influences of the harvester parameters (LCoil, RTotal, α) on 

value of the recovered current is presented. Energy harvester based on a movable magnet 

inside the coil, allows recover energy from different kind of the pendulum motion. The 

3D characteristics give some information about proper tuning of the electrical 

parameters. The highest level of energy recovered for the small load resistance and high 

value of the coupling coefficient. Generally, efficiency of analyzed energy harvester 

system is low, the obtained current is in mA. However, it can be used to power of small 

electronic devices consume a little energy, for example sensor in monitoring system. 
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Abstract  

In the paper an experimental analysis of an autoparametric system dedicated to vibration suppression and 

energy recovery is presented. The main part is an electromagnetic energy harvester. Its properties were defined 
by quasi static and dynamic tests. The obtained results show influence of selected parameters on energy 

recovery level. The experimentally identification of electromechanical coupling coefficient which couples 

mechanical and electrical systems is done. 

 

Keywords: Non-linear autoparametric system, Energy harvester, Experimental research, Magnetic levitation 
 

1. Introduction  

In practice application of magnet and coil systems are often used in harvester 

construction. For example, Malaji and Ali [1] propose a concept in which the magnet is 

attached to the pendulum end. Both elements move together relative to the coil, which is 

mounted as the separated part. The similar concept is presented in the paper [2], where 

author presents a solution of the coil mounted on the pendulum tube. A movable magnet 

moves inside the tube and the coil and induced energy. This efficiency of the harvester 

device was studies numerically and experimentally in papers [2, 3]. The harvester 

application has fewer restrictions and can be used in the real object, for example 

mounted on existing nonlinear vibration absorbers in high buildings.  

The paper presents preliminary experimental results of the magnetic levitation 

(maglev) harvester. The work is divided into two parts: the static (quasi-static) and the 

dynamic tests. The obtained results show, that coupling coefficient strongly depends on 

the magnet’s position in the coil. In literature this coefficient usually assumed as a 

constant [2, 4]. 

2. Experimental setup 

The experimental study has been made on a laboratory rig at the Lublin University of 

Technology (LUT) in the Department of Applied Mechanics. A scheme and general 

view of the real apparatuses in Fig. 1(a) and 1(b) is shown. This laboratory system 

consists of three main subsystems: 
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 the nonlinear oscillator (damped mass), 

 the pendulum (vibration absorber), 

 the energy harvester (maglev system) with the electrical circuit. 

The system has three mechanical degree (x,  and r) and one electrical (i) degrees of 

freedom. In this section more information about construction of energy harvester is 

presented (Fig. 1(c)). 

 

  a) 

 

  b) 

 
                              c) 

 

Figure 1. An autoparametric vibration absorber: scheme (a),  a photo of the laboratory 

rig (b), and maglev harvester (c). The elements of harvester are: 1- lower fixed magnet, 

2- coil, 3- movable magnet, 4- neutral magnetic tube, 5- top fixed magnet 

The energy maglev harvester consists of the movable levitating magnet (3), which 

moves inside the coil (2). The motion of this magnet generate current flow i in the coil 

electrical circuit with the resistor (RTotal). The initial position of the movable magnet is 

determined by magnetic levitation suspension. It levitates between two fixed magnets 

(no. 1 and no. 5). The electrical circuit is provided with a receiver (resistor) and 

measurement system to recorder current, voltage and power of generated electrical 

signal. The tube of the pendulum (4) is made of non-magnetic material. The all 

parameters of electromagnetic harvester are listened in Table 1. 
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Table 1. Parameters of energy harvester.   

Description of parameter  Unit Value 

Height of movable magnet mm 35 

Diameter of movable magnet mm 20 

Mass of movable magnet g 98 

Length of coil mm
 

50 

Coil resistance Ω 1150 

Coil inductance H 1460e-3 

Wire diameter mm 0.14 

Turn of winding - 12740 

Total length of tube mm 340 

Mass of tube with two fixed magnets g 350 

2. Experimental results. Static test 

The first stage of experimental analysis was the quasi-static test. During this analysis, the 

tube, the coil with electrical equipment and the movable magnet mounted in the machine 

SHIMADZU (Fig. 2(a)) were used. The magnet was connected by a wooden rod with the 

upper handle, which is moved to a triangular signal (Fig. 2(b)). The handle moves with 

constant velocity ±500mm/min. The resistance of the receiver can be changed, set on a 

desired level. 
 

    a) 

 

b) 

 
 

 

Figure 2. The system view for static tests (a), a displacement of an upper handle (b) 

Tests were made for the three different values of receiver resistance (R=1.15k, 

R=4k and R=6k). The obtained in Fig. 3 are shown. The coordinate r describes the 

distance from the coil center to center of the movable magnet. We can see, that the 

maximum current is generated when a center of the magnet is located on the end of the 

coil (r=±25mm). Generally, with increased resistance the values of the current flowing in 

the electrical circuit decreases. 
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Figure 3. Experimental results: current versus magnet position from the static tests 

3. Experimental results. Dynamic test 

The second stage of experimental study was the dynamic tests. Research was made on 

the complete experimental rig. The relative motion of movable magnet was measured by 

the high speed camera MIRO 120 (Fig. 4(a)). The mechanical responses r and r  were 

determined from the video information using TEMA software (Fig. 4(b)). The 

exemplary results are shown in Fig. 5. These signals were compared with the measured 

current i (Fig. 6).       

Figure 4. Photo during experiment test (a) and single picture with traced points from 

TEMA software (b) 

Generally in literature [2, 4], the electromechanical coupling coefficient α can be 

assumed as the constant parameter. Their value depends on the construction of energy 

harvester. The electrical properties of the tested system can be written in the standard 

simple Kirchhoff law 

 rr,raiRiL TotalCoil
 )(  (1) 

 

   a) 

 

    b) 
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Based on the obtained results it is possible to determine values of the coupling 

coefficient α. Equation (1) was transformed to following form 

 r/iRiLr,ra TotalCoil
 )()(   (2) 

After a simple numerical calculations, the curve α=f(r) was prepared (Fig. 7). 

Figure 5. Experimental time series of the relative displacement r (a) and velocity r  (b) 

Figure 6. Time series of current i (a) and the phase portrait current - relative velocity (b) 

 

The obtained experimental coupling coefficient results show that  value is not constant. 

The value depends on the distance from the coil center to center of the movable magnet, 

it is function of the coordinate r. 

 

a) 

 

b) 

 

a) 

 

b) 
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Figure 7. The experimental coupling coefficient characteristics 

3. Conclusions  

The paper presents experimental analysis of the selected electrical parameters in 

recovered current. The most important observation from the static and the dynamic tests 

is to detect a relationship between the electromechanical coupling 

iRiL TotalCoil 
 coefficients α and the coordinate r. In future research will be planned to 

determine an empirical form of a new model of the coupling coefficient. 
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Abstract 

The problem of motion of a unicycle – unicyclist system in 3D is studied. The equations of motion of system 

have been derived using the Boltzmann-Hamel equations. A description of the unicycle – unicyclist system 
dynamical model, simulation results and experimental validation of the system are presented in the paper.  

 

Keywords: unicycle, 3D dynamic model, Boltzmann-Hamel equations 

 

1. Introduction 

1.1. Unicycle – one-wheel vehicle 

Unicycle, one-wheel vehicle, is a specific type of single track, which is a bicycle. It has 

only one road wheel. Unicycle is shown in the figure below [1]. 

 

Figure 1. Typical unicycle [2] 

The main feature of unicycle is fixed gear. Therefore, the rotation of the cranks 

directly controls the rotation of the wheel, and positions of unicyclist’s legs. Riding 

without pedalling is impossible. Riding a unicycle is more difficult than on regular 
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bicycle, due to the fact that there is only one point of support. For this reason, a balance 

must be simultaneously maintained in two planes, transverse and parallel to the direction 

of moving, so that the centre of gravity oscillates above the fulcrum of the wheel. 

In technical aspect unicycle-unicyclist system, can be considered as a moving double 

inverted spherical pendulum with follow-up control system. 

1.2. Boltzmann-Hamel equations 

The Boltzmann-Hamel equations are rarely used because of complicated formulae 

containing Hamel coefficients and complex relationships for the determination of these 

coefficients [3, 4, 5, 6, 7]. The classic form of the Boltzmann-Hamel equations for 

a system with the number of coordinates equal to k is as follows [3, 4] 
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allows to automate generation of Hamel coefficients and eliminates all difficulties 

associated with a determination of these quantities [8].  

2. Description of the analysed model  

For the unicycle-unicyclist model description we use fixed inertial frame Oxyz (Fig. 2). 

We also use no inertial frames xiyizi, inertial frames ξiηiζi and parallel frames xi
’yi

’zi
’ or 

ξi
’ηi

’ζi
’ related to each link (i=1,…,7), attached at the end of it. 

Table 1. Model of the unicycle-unicyclist system 

i 1 2 3 4 5 6 7 

mark w f b tir thr til thl 

link wheel frame body tibia right thigh right tibia left thigh left 

To consider motion of the system, we introduce the following generalized 

coordinates 

[ , , , , , , , , ]T

w w w w w w f b bx y z      q , (3) 

where xw, yw, zw are the coordinates of the wheel contact point, and the remaining ones are 

the Euler angles describing spatial orientation with respect to the particular frame, Fig. 2.  



Vibrations in Physical Systems Vol. 27 (2016) 295 

 
 

Figure 2. Model of the system (some axes are omitted for reasons of clarity) 
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A unicyclist leg which is used in this model consists of thigh and tibia. Foot 

is omitted due to the specific and complex motion in one rotational cycle, which does not 

aspect significantly in a ride. Thereby, pedal axes are covered up with ankle. Therefore, 

the leg can be treated as a crank mechanism and the leg position is clearly defined by γw 

and αf [9]. 

 

Figure 3. Leg positions and coordinates, on an example of the right leg 

Quasi-velocities (Fig. 2) defining the model velocities are assumed in the form: 
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(4) 

where r is the radius of the wheel. Equations (4) are valid under assumption that the 

wheel is a rigid hoop making point contact with the road and it rolls without longitudinal 

slip on a flat surface. It means that the constraint equations for the wheel are: w1=0, 

w2=0 and w3=0. Kinetic energy, with respect to mass canters of the system is obtained 

using the formula 

 
1 1

1 1
, 1, ,7 .

2 2

n n
T T

i i i i i i

i i

T n
 

   v M v ω I ω  (5) 
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where vi is the vector of linear velocities, Mi is the mass matrix, ωi is the vector of 

angular velocities and Ii are the moments of inertia standing in the mass matrix. 

The equations of model dynamics based on Boltzmann-Hamel equation (2) were 

generated automatically and solved using Wolfram Mathematica. 

3. Simulation results  

Results of numerical simulation for the unicycle-unicyclist model motion are shown in 

Figs. 4–6. The most important initial conditions for simulations are the vertical position 

and the constants of wheel velocity. It is a wire model; which means that every link is a 

rigid rod, except the wheel regarded here as a rigid circular hoop. Appropriate damping 

in the nodes provides that the system does not immediately collapse and small values of 

masses of legs epitomize control of the unicycle by a unicyclist. 

 

 

 

 

Figure 4. Time histories of legs coordinates. Right leg (blue) and left leg (red) 
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Figure 5. Wheel 2D trajectory and time histories of the system Euler angels 
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Figure 6. 3D trajectories of the system 

4. Experimental validation 

To capture motion of the real object, a high speed camera was used. A duration of single 

attempt is about two seconds. The quadrant symmetry markers were used. To process the 

movies, the TEMA software was used. An experiment in 2D was made in order to check, 

if the way of modelling is correct. Below there are shown the parametric plots 

of positions of the characteristics point of the model. 

 

Figure 7. 2D trajectories of the motion capture of the real object 

By comparing Fig. 6. with Fig. 7. it can be seen, that trajectories of characteristic points 

have very similar courses. Dissimilarities may be due to the fact that the experiment was 

made in 2D, while the real object moves in 3D. 
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5. Conclusions 

The matrix notation of Boltzmann-Hamel equations eliminates drawbacks occurring 

with the classical formulation of these equations. Its application allows an automation of 

generation process of motion equations. 

It is clearly shown that the model during movements swings around an unstable 

equilibrium. Because of unbalance caused by legs and cranks with pedals, the wheel 

moves in a “snake style”. To sum up, our model behaves like a real object. It is 

confirmed by a comparison of the trajectory of characteristic points, by 2D motion 

capture of the real object. 

In the future, in this model also a tire will be taken into consideration as well as and a 

system control method are going to be introduced. Upon those steps, the 3D motion 

capture will be made to validate the final model. 
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Abstract  

The main concern of this paper are thin rectangular plates with dense system of the ribs in two directions. The 
aim of the analysis is the examination of the impact of different shape functions in tolerance modeling on 

natural vibrations of the plates. 

The plate is made of two different materials, both for matrix and ribs. The thickness of the plate is comparable 
to the width of the ribs. This provides a powerful tool for getting a desirable frequency of natural vibrations of 

the plate. The tolerance averaging approach is the base for the formulation of averaged model equations. The 

most accurate readings presenting this method are described in Wozniak et al. [1]. 
By application of the tolerance averaging technique to the known differential equations of considered plates, 

the averaged equations of the tolerance model have been derived. The general results of the contribution are 

illustrated using the analysis of natural vibrations. The effect of different shape functions on free vibration 
frequencies is examined. 

 

Keywords: dynamic, tolerance average technique, thin plates, natural vibrations 

 

1. Introduction 

The object of the contribution is thin composite plate with dense system of the ribs. The 

aim of the analysis is the diagnosis of the impact of different shape functions in tolerance 

modeling on natural vibrations of the plates.  

 

Figure 1. Composite plate at microscopic level and at macroscopic level 

The space between the ribs is filled with a homogeneous matrix material (Figure 1). 

The analogous plate was examined in the paper [2]. The period 21lll   of 

heterogeneity is presumed to be sufficiently small versus the measure of the midplane of 

the plate. Simultaneously, it is assumed that the microstructure length parameter l  is 

appropriately small in contrast with the minimum characteristic length dimension of the 
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plate. The size of the microstructure l  is comparable with the thickness of the plate h  

( lh  ) (Figure 2). The differential equations of this kind of the plates have 

discontinuous and rapidly oscillating coefficients. The applications of those equations to 

engineering problems is not the most efficient tool. Thus, an averaged model has been 

proposed in which material properties are represented by functional but smooth effective 

stiffnesses. 

 

Figure 2. Detailed geometry of the plate 

Analogous plate has been described in the paper [3] where it has been considered the 

influence of initial stress forces on the free vibrations of the plate. In this work the 

calculations were shown for different geometric and material properties.  

The formulation of the averaged mathematical model for the analysis of dynamic 

behaviour of these plates is based on the tolerance averaging approach. This approach 

can be find in book Woźniak et al. [1]. This technique was applied in many papers. 

Some of the following papers can be mentioned here as examples: Baron [4] has 

analyzed the plates in which the period length is comparable with the thickness of the 

plate. In the work [5] propagation of harmonic wave in periodically laminated 

composites was analyzed. Furthermore, in the paper [6] the rectangular composite plate 

under the plane stress was analyzed. The elastic plate is reinforced by system of 

periodically distributed parallel ribs. Michalak [7] examined vibrations of thin plates 

with initial geometrical imperfections as a model of elastic wavy plates. In the 

contribution [8] the vibrations of periodic three-layered plates with inert core has been 

analysed. 

In contrast to the previous works [9-10], where the gradation only in one direction is 

described, in the present paper it is analyzed in two directions. What is more, in the 

majority of above mentioned notes, in which the plates are considered, the thickness h  

of the plate is essentially smaller compared to the microstructure length parameter 

21lll   ( 21, ll - dimensions of the cell). Baron [4] considered the thickness of the plate 

similar to the period length which is analogous to the current contribution. The 

difference is in the geometry of the plate which is reinforced in two directions not just in 

one (paper [4]). On a microscopic level we deal with the microheterogeneous plate 

while, after averaging, we deal with a special case of a functionally graded material on 

the macroscopic level (Figure 1).  
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2. Direct description and modelling technique 

In this contribution the rectangular plates shown in Figure 2 are considered. The 

orthogonal Cartesian coordinate system is introduced 321 xxOx  and the time coordinate 

t . In all respects in the note, indices lki ,, … run over 3,2,1 , indices ,...,,   and 

indices ,...,, CBA  run over 2,1 . The summation convention holds all aforementioned 

sub-and superscripts. Adopting ),( 21 xxx   and 3xz   the undeformed plate occupies 

the region },2/2/:),{(  xhzhzx , where   is the rectangular plate 

midplane and h  is the plate thickness. 

In the framework of a well known theory of thin plates the averaged model equations 

of the dynamic behavior of microheterogeneous plate are obtained. The displacement 

field of the arbitrary point of the plate is given in form 

zxwxwzxwxwzxw )()(),()(),( 3
0

33    (1) 

Denoting by ),( txp  the external forces,   the mass density, g  the metric tensor,   a 

Ricci tensor. Setting k
k x /  we also introduce gradient operators ),( 21  . 

After application of the linear approximated theory for thin plates we obtain the 

following system of equations: 

(i) strain-displacement relations 
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(ii) strain energy 
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The coefficients in the above equations are discontinuous and highly oscillating. The 

above equations will be used as a starting point of the modeling procedure. 

Consequently, going to the modeling technique let us introduce the orthogonal 

coordinates system 21O  in the undeformed midplane. The midplane of the plate 

occupies the region ],0[],0[ 21 LL   (Figure 2). Assuming that the number of ribs in 

1  and 
2  directions is respectively n  and m   1/1,/1 mn . Hence nLl /11   and 

mLl /22   are the dimensions of the cell )2/,2/()2/,2/( 2211 llll  . We 

introduce, for the arbitrary cell    )(  with center situated at point ),( 21  , 
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the orthogonal local coordinate system 21yOy  which is local with its origin at 

),( 21   where  )2/,2/()2/,2/( 222111 lLllLl . 

In order to derive averaged model equations for skeletonal plate under consideration 

we applied tolerance averaging approach [1]. There will be introduced some basic 

concepts of this technique: an averaging operator, a tolerance parameter, a tolerance 

periodic function, a slowly varying function and a highly oscillating function.  

The starting point of the modeling procedure is a decomposition of displacement fields. 
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The governing equations derived from stationary action principle of the averaged 
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After simple manipulations we obtain finally the following equation for the averaged 

displacements ),(3 tV  ,  
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where h ~  is mass density related to plate midplane. In contrast to equations in 

direct description with the discontinuous and highly oscillating coefficients, the 

coefficients in the above equation are smooth and functional.  

3. Applications - fluctuation shape functions 

The key point of the tolerance modeling technique is to determine of fluctuation shape 

function (FSF). In dynamic problems, the system of fluctuation shape function can be 

taken to represent the principal modes of free vibrations of the cell )( x  or a 

physically reasonable approximation of these modes. Our analysis is to investigate the 

impact of different shape functions on free vibrations of the plate. We are restricted to 

the case where we have two fluctuation shape functions, ),(  yxhI
 and ),(  yxhII
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Figure 3. Fluctuation shape functions in the considered cell 

 

 








































2
,

22

2
,

2

2
,

22

11
1

1
1

11
11

1

11
1

1
1

11

lb
y

l
y

bb
yy

dxl

dx

bl
y

l
y

yS

x

x

x







 

2
,

2

2
,

2

2
,

2

2

2

22
2

22
2

22
2

2
2

2
2

2
2

22

lb
y

bb
y

bl
y

l
y

y
dyl

dy

l
y

yS

y

y

y




















































 

(10) 

where  111 xdxlb       222 xdylb  . 

We have considered for four different amplitudes of functions  11 yS  and  22 yS  as 
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have analyzed free vibrations of a simple supported square plate with the constant width 

of the ribs. Taking into the consideration tolerance model, we obtain from (8) 

differential equation describing dynamic behavior of the considered plate 
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In the above formulae we have assume: Poisson's ratio rm   , rm BB ,  stiffness of 

the matrix and rib respectively, rm  ~,~
- mass density of the matrix and rib related to the 

plate midplane. 

The equation (11) is in the form analogous to equation of motion of homogeneous 

orthotropic plate. This equation will be solved similar to known method for simply 

supported rectangular plates. Restricting our considerations to harmonic vibrations 
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The results obtained above were compared to finite element method calculated by 

Abaqus program [11]. It was considered two-dimensional shell element with a thickness 

equal to 0,10m. The way of modeling of the plate in Abaqus program was described in 

the paper [2]. Ribs are represented by the slave and matrix by master surface. The 

boundary conditions were established as simply supported along the circumference of 

the plate. Calculations were provided for the linear perturbation (frequency). As mesh 

element we assume S4R element as a 4-node doubly curved thin (or thick) shell which 
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provides reduced integration, hourglass control and finite membrane strains. The mesh 

was added to the matrix and ribs separately bearing in mind that for the slave surface the 

mesh needs to be denser. To verify model equations and Abaqus program there will be 

compared values of the first four vibration frequencies. 

4. Results 

Free vibrations frequencies for the plate with constant width of the ribs and geometric 

and material parameters shown below for different shape functions are in Table 1. 

Geometric data: mh 1,0 , size of the plate: mLL 0,421  , width of the ribs: 

md 05,0 ,size of the cell: mll 20,021  . Material data: 

3/7800,3,0,210 mkgGPaE rmrr   , 3/2400,20 mkgGPaE mm    

Table 1. First four free vibrations frequencies for different shape functions 

  
1st mode 2nd mode 3rd mode 4th mode 

Versions 1-4/ 

Abaqus 

[Hz] [Hz] [Hz] [Hz]   

Version 1 141,783 361,147 361,147 567,133 1,62% 

Version 2 161,497 405,614 405,614 645,987 13,63% 

Version 3 170,305 426,001 426,001 681,22 18,09% 

Version 4 182,561 455,748 455,748 730,245 23,59% 

Abaqus 139,490 357,32 357,32 555,060   

 

Figure 4. First four free vibrations frequencies depending on parameter   
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In the Figure 4 there are shown free frequencies of the first four modes. On the 

horizontal axis is presented parameter rm EE / . The calculations are made for the 

constant density equal to 3/2400 mkg and respectively for different amplitudes (10b). 

5. Conclusion 

It can be observed that free vibrations for different versions vary from 2% till 24%. Only 

the 2nd and 4th versions depend on Young’s modulus, We can recognize that the results 

shown in the Figure 4 are convergent for homogenous plate  1 . The higher the   

parameter is, the higher is the difference between parameters. The most consistent with 

Abaqus' outcome is the 1st version. Further research, in which influence of different 

Young’s modulus on the free vibrations will be investigated. 
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Abstract 

The nonlinear response of a three degree of freedom vibratory system with spherical pendulum in the 
neighbourhood internal and external resonance is investigated. It was assumed that spherical pendulum is 

suspended to the main body which is suspended by the element characterized by elasticity and damping and is 

excited harmonically in the vertical direction. The equation of motion have bean solved numerically. In this 

type system one mode of vibration may excite or damp another one, and for except different kinds of periodic 

vibrations there may also appear chaotic vibration. 

 

Keywords: Spherical pendulum, energy transfer, coupled oscillators, chaos 

 

1. Introduction  

The subject of this work is investigation of initial conditions effect on dynamics of a 

three degree of freedom system with spherical pendulum. Dynamical systems with 

element of the mathematical or physical pendulum type have important applications. 

Different kind of coupled autoparametric oscillators with simply pendulums is presented 

in book [1]. The real pendulum is a spherical character. Spherical pendulum was 

investigated by a lot of researches. Spherical pendulum subject to parametric excitation 

was studied by Miles and Zou [2], and with kinematic external excitation by Naprstek 

and Fischer [3]. The bifurcation behaviour of a spherical pendulum where the suspension 

point is harmonically excited in both vertical and horizontal directions was presented by 

Leung and Kung [4], spherical pendulum with moving pivot by Mitrev and Grigorov [5], 

stochastic analysis of a spring spherical pendulum was done by Viet [6], the dynamics 

coupled spherical pendulums was studied by Witkowski at all [7]. 

In the present paper is assumed that the spherical pendulum is suspended to the 

flexible element, so in this system may occur the autoparametric excitation as a result of 

inertial coupling. 
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2. System description and equation of motion 

The investigated system is shown in Figure 1. 

 

 

Figure 1. Schematic diagram of system 

The system consists of a body of mass m1 suspended on the flexible element of 

rigidity k and damping c and a spherical pendulum of length l and mass m2 suspended on 

the body of mass m1.The body of mass m1 subjected to harmonic vertical excitation and 

the spherical pendulum subjected to harmonic horizontal excitation. 

The spherical pendulum is similar to the simple pendulum, but moves in 3-

dimensional space, so we need to introduce the new variable φ in order to describe the 

rotation of the pendulum in space xy. The position of the body of mass m1 is described  

by coordinate z and position of the pendulum is describe by coordinate z and two angles: 

Θ and φ. Angle Θ is the deflections of pendulum measured from the vertical line. This 
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system has three degrees of freedom . The equations of motion are derived as Lagrange’s 

equations. 

The kinetic energy Ek is the sum of the energy two bodies 
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The kinetic energy Ek are given by the expression 
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Assuming that the exciting forces are in form: tPtFtPtF 22211 cos)(cos)(   , the 

equations of motion of the system are in form 
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We can transform (5) into dimensionless form 
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(where the overbars denoting nondimensionalisation are omitted for convenience). 

After transformations equations of motion can be written in form easier to calculations 
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3. Numerical results 

Equations (8) are solved numerically by using R-K method with step length variable. 

The calculations are carried out for different values of parameters of the system and for 

different initial conditions. Exemplary time histories of displacements z and θ obtained 

for the initial conditions for the body of mass m1 are presented in Figure 2, where we can 

observe the energy transfer between the modes of vibration in a closed cycle. In this case 

spherical pendulum behaviour is the some than simple pendulum and the motion of 

pendulum is in vertical plane (angle φ is constant). The diagram of internal resonance for 

initial conditions put on the displacements is presented in Figure 4 and it is similar to 

simple pendulum presented in work [1]. We observe resonance excitation for frequency 

ratio β=0.5. In this case assuming the simple pendulum results are good. 

When the initial conditions are put on the displacements and on the velocities 

( 96.0)0(;0)0(;04.0)0(,5)0(.;0)0(;0)0(    zz ) we observe influence of 

angle φ. (Figures 3). Exemplary internal resonance in this case we observe for frequency 

ratio β=0.51 (Figure 5). 



Vibrations in Physical Systems Vol. 27 (2016) 313 

 

 

Figure 2. Time history for: a=0.8; β=0.5;γ=0; A1=A2=0; 

z(0)=0.1;Θ(0)=0.005˚; φ(0)=0 
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Figure 3. Time history for: a=0.5; β=0.51;γ=0; A1=A2=0; 

96.0)0(;0)0(;04.0)0(,5)0(;0)0(;0)0(    zz  
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Figure 4. Internal resonance for: a=0.8;γ=0; A1=A2=0;  

z(0)=0.1; Θ(0)=0.005˚; φ(0)=0 

 

Figure 5. Internal resonance for: a=0.5;γ=0; A1=A2=0; 

96.0)0(;0)0(;04.0)0(,5)0(;0)0(;0)0(    zz  

 

Figure 6. Internal resonance for: a=0.2;γ=0; A1=A2=0; 

296.0)0(;0)0(;04.0)0(,50)0(;65.0)0(;0)0(    zz  
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But when the initial conditions are put on the displacements and on the velocities 

( 296.0)0(;0)0(;04.0)0(,50)0(;65.0)0(;0)0(    zz ) we observe influence 

of angle φ and internal resonance area in this case we observe for frequency ratio near 

β=0.75 (Figure 6). In this case φ described the rotation of the pendulum around axis z, so 

assuming the spherical pendulum we have the results more similar to the real system. 

3. Conclusions  

The influence of initial conditions on the behaviour of an autoparametric system with 

spherical pendulum is very interesting, because sometimes when initial conditions are 

put on the displacements spherical pendulum is similar to simple pendulum (angle φ is 

const.), but when the initial conditions are put on the velocities we observe influence of 

angle φ. It is important, because near internal and external resonance area can existence 

the different motion - regular or chaotic. The autoparametric systems are very sensitive 

on nonlinearities. The spherical pendulum is more similar to the real systems then the 

simply pendulum. 
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Abstract 

This study presents the influence of different kinds of damping on transverse and longitudinal vibrations of 

hydraulic cylinder in a mining prop. The dissipation of vibration energy in the model is caused by 
simultaneous internal damping of viscoelastic material of beams that model the system, external viscous 

damping and constructional damping. Constructional damping (modelled by the rotational viscous dampers) 

occurs as a result of movement resistance in the cylinder supports. The eigenvalues of the system with respect 
to changes in system geometry with two values of load and for a selected and variable damping coefficient 

values were calculated. 

 

Keywords: damped vibration, hydraulic cylinder, transverse vibration, longitudinal vibration 

 

1. Introduction 

A hydraulic cylinder as an object of research studies on dynamics of mechanical systems 

has been extensively investigated in the number of studies. Most of the published studies 

focused on the interactions between the cylinder tube and piston rod. Results of the 

investigations of the dynamic response of the model of a cylinder to axial impulse were 

presented in paper [1]. The work [2] presents an analysis of the effect of initial 

inaccuracy of connection between the piston and cylinder tube on critical loading force 

in the cylinder. Many authors analysed the effect of sealing or the medium on the 

cylinder's dynamics and dynamic stability of cylinder. In study [3] calculations of free 

vibration frequencies were extended with the investigations of the dynamic stability of 

the cylinder by means of determination of geometrical parameters and load at the time of 

losing the stability were presented. In paper [4] the problem of the stability and free 

vibrations of a slender system in the form of a hydraulic cylinder subjected to Euler's 

load was carried out. The studies [5] and [6] present the effect of internal damping on 

vibrations of a support beam with a mass attached to a free end of the beam and on 

stability of a support column loaded with a follower force, respectively. The influence of 

small internal and external damping on stability of non-conservative beam systems is 

described in paper [7]. Equally interesting publication concerning the effect of external 

damping on vibration of beams with stepped cross-section is the study [8]. The effect of 

structural damping of fixations on free vibration of the linear Bernoulli-Euler beam was 

presented in the study [9]. 
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In study [10] dissipation of vibration energy in the model of hydraulic cylinder – 

boom crane system occurs as a result of simultaneous internal damping of the 

viscoelastic material of the beam used in the model and the constructional damping in 

the supports of the cylinder and crane boom. The constructional damping of supports 

was modelled using rotational viscous dampers. The problem to be considered in the 

study [11] is the natural vibration of the system consisting of two clamped-free rods 

carrying tip masses to which several double spring-mass systems are attached across the 

span. The study is concerned with longitudinal vibrations of this mechanical system and 

the major contribution of this study is to derive a general formulation for the exact 

solution of the system described by using the Green's function method. 

This study analyses the simultaneous effect of the constructional damping, internal 

damping, external damping and the influence of changes in system geometry on the 

transverse and longitudinal vibrations of hydraulic cylinder in a mining prop. The results 

obtained in the study were presented in 2D figures and spatial presentations. 

2. Mathematical Model 

A scheme of the considered system is presented in Fig. 1. The model of a hydraulic 

cylinder is composed of four beams. Two of them model a cylinder tube (l11, l12) and two 

- piston rod (l21, l22) in the cylinder. The liquid in the cylinder was adopted as the 

medium of load transfer between the piston and the cylinder along the length filled with 

liquid. The liquid rigidity in the cylinder was modelled by the translational spring. 

Stiffness coefficient of spring was denoted by kS. 

In adopted model dissipation of vibration energy was caused by simultaneous 

internal damping, external damping and constructional damping. Internal damping of the 

viscoelastic material for individual parts of hydraulic cylinder was characterized by 

Young's modulus Emn and viscosity coefficients E*mn. External damping of medium 

surrounding the system were denoted by coefficient ce. Constructional damping occurs 

as a result of movement resistance in the piston and the cylinder supports and it was 

modelled by the rotational viscous dampers. Damping coefficients of rotational viscous 

dampers were denoted by cR. 

The boundary problem connected to the free vibrations of the considered non-

conservative (due to damping) system was formulated on the basis of Hamilton’s 

principle in the following form: 

0)(
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2

1

 
t

t
N

t

t

dtWdtVT   (1) 

where: T – kinetic energy, V – potential energy, δWN – virtual work of non-

conservative forces originating from damping. 
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Figure 1. Diagram and beam model of a hydraulic cylinder with damping 

The vibration equations for individual beams are known and have the following form: 
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where: m,n = 1,2 (ce = 0 for m = 2 and n = 1) 

Wmn (xmn, t) – transverse displacement of beams that model cylinder and piston rod 

Umn (xmn, t) – longitudinal displacement of beams that model cylinder and piston rod 

Emn – Young's modulus for individual beams, 

E*
mn – material viscosity coefficient, 

Jmn – moment of inertia in beam cross-sections, 

Amn – cross-sectional areas of the beams, 



320 

mn – beam material density, 

ce – viscous damping coefficient, 

P – cylinder loading force (at the length l12 of the cylinder tube coverage with the piston 

rod in the cylinder P=0) 

xmn – spatial coordinates, t – time 

Solutions of equations (2) and (3) are in the form: 
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where: ω* – the complex eigenvalue of the system, 1i  

Substitution of (4) and (5) into (2) and (3) leads to, respectively: 
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The solution of equations (6) and (7) are expressed in the form of functions: 
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The boundary problem is solved numerically for the eigenvalues ω*. Depending on the 

solution adopted, the roots ω* are complex numbers (that represent the damped vibration 

frequencies Re(ω*) and damping Im(ω*) in the considered system) and they may accept 

positive or negative value. In this paper, presentation of the results was based on positive 

values of the real and imaginary parts of solutions. 

3. Numerical Calculation Results 

Calculations were carried out for a cylinder used in a mining prop. Computations were 

carried out for the data contained in Table 1. Dimensionless damping parameters: η for 

internal damping, µ for constructional damping, and ν for external damping were placed 

below the table. 

Table 1. Geometrical and material data adopted in the study 

Quantity Symbol Unit Value 

Cylinder tube - external diameter  1211 DD   mm 290 

Cylinder tube - internal diameter 1211 dd   mm 250 

Piston rod - external diameter 2221 DD   mm 160 

Piston rod - internal diameter 2221 dd   mm
 

120 

Cylinder tube and piston rod density mn  kg/m3 7.86e3 

Young's modulus mnE  Pa 21e11 
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where: PC – the critical load of the cylinder extended to LC =4m and 221211 lllLC  . 
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The results of the calculations are presented in Figures 2 to 5. The system was loaded 

with the longitudinal force P (p=0 and p=0.3). The dependency of the eigenvalues (real 

parts Re(ω1
*) and imaginary parts Im(ω1

*)) on coefficients of constructional damping µ, 

external damping ν, internal damping η and total length of cylinder that ranged from 

LC=2.6m to LC=4m was also determined. The relationships between the first eigenvalue 

of cylinder and changes its total length LC and coefficient of constructional damping µ at 

p=0.3 without internal and external damping in the system are presented in the form of 

spatial diagrams in Figure 2. 

 

   

Figure 2. The dependency of the first eigenvalue (Re(ω*) and Im(ω*)) for the cylinder on 

total length LC and constructional damping µ at η=0, ν =0 and p=0.3 

As can be seen in the figure above, the higher value of Im(ωn
*) then the more the 

amplitudes of a particular (n) mode of vibration are damped. Figure 3 presents the 

maximum values of Im(ω*
max) for the first mode of vibration in the examined system 

depending on the hydraulic cylinder length LC for two values of loading. 

 

Figure 3. The relationships between the maximum values of Im(ω*
max) for the first mode 

of vibration in the cylinder and the extension total length LC (for η=0 and ν=0) 

Next investigations focused on consideration of effect of different kind of damping on 

cylinder vibration. The dependency of real and imaginary parts of the first eigenvalue of 

the hydraulic cylinder on extension total length LC for selected values of damping 

(η=0.02, ν=0.5, µ=0.5) and for two values of loading are presented in Figure 4. 
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Figure 4. The dependency of the first eigenvalue (Re(ω*) and Im(ω*)) for the cylinder on 

extension total length LC 

The next figure (Figure 5) presents the change in the first eigenvalue of the hydraulic 

cylinder depending on the external damping ν and internal damping η without loading 

and loaded with the force p=0.3 for selected length of cylinder LC=3m. The 

investigations were carried out for optimal constructional damping value µ=0.5. 

     

Figure 5. The dependency of the first eigenvalue (Re(ω*) and Im(ω*)) for the cylinder on 

internal damping η and external damping ν at µ=0.5 and LC =3 

4. Conclusions 

This study presents a beam model of a hydraulic cylinder based on the system used in 

mining props. The computations for the model of transverse and longitudinal vibrations 

in a hydraulic cylinder with damping were carried out. The model of damping took into 

consideration the internal damping of the beams that modelled a cylinder tube and a 

piston rod, external damping and constructional damping that modelled motion 

resistance in the supports. Substantial changes can be observed in the damped 

frequencies Re(ω1
*) and in degree of amplitude decay Im(ω1

*) in the case of changes the 

length of hydraulic cylinder LC and coefficient of constructional damping µ (Figure 2). 

An increase in constructional damping causes the increase in the values of degree of 

amplitude decay Im(ω1
*) to maximum values, followed by Im(ω1

*)→0 where μ→∞. 

These substantial changes in both Re(ω*) and Im(ω*) are caused by considerable 

intervention in the conditions of system fixation (in extreme cases, the fixation points are 

changed from joint mountings into rigid mountings). The length of hydraulic cylinder 
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extension for which the degree of vibration amplitude decay is the highest allows for 

determination of optimum lengths of the hydraulic cylinder with respect to minimum 

vibration amplitudes in the system (Figure 3). It can be concluded based on the 

calculations that introduction of the internal and external damping causes only 

insignificant changes in the first eigenvalue (Figure 5). The results presented in the study 

help determine the geometric parameters and values of the coefficients that characterize 

damping of the system for which the maximum degree of amplitude decay is maintained. 
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Abstract 

In this paper the results of numerical studies on natural vibration frequency and stability of a slender 
supporting system loaded by external force directed towards a positive pole are presented. In the investigated 

structure the failure in the form of crack is present. The boundary problem is formulated on the basis of the 
principle of minimum action – Hamilton’s principle. The results in the non-dimensional form are plotted as the 

characteristic curves in the external load – natural vibration frequency plane as well as the maximum loading 

capacity is discussed. 

 

Keywords: column, crack, natural vibration, instability, characteristic curves 

 

1. Introduction 

The studies on cracks which can appear in the supporting systems are very important. 

The columns are classified as slender structures due to much greater length than cross 

section area. In slender systems the unwanted phenomena like flutter instability, 

buckling or non-axially applied load should be avoided. The presence of cracks reduces 

loading capacity and has an influence on dynamic behavior of the structure that is why 

an engineers must take care of this very dangerous problem before it is too late. 

The investigations on cracks have been performed in recent years by inter alia Arif 

Gurel M. [1], Bergman [2], Binici [3], Chondros [4], Dimarogonas [5], Sokół [6] and 

Sokół and Uzny [7]. In the literature cracks are divided into always open and breathing 

cracks. In the first type is a linear problems - static deflection of the structure is much 

greater than an amplitude of vibrations while breathing cracks are the non-linear problem 

- crack opens and closes in time as vibration amplitude dependent. The simulation of 

cracks are mostly done as reduced cross section area or rotational springs. The studies 

presented in [4] and [1] show that the use of rotational spring leads to the good results 

accuracy (numerical simulation and experiment) despite their simplicity. 

The presented in this paper slender supporting system is loaded by a force directed 

towards a positive pole (comp [8, 9 , 10]). This load is induced by a force with the line of 

action described by two points. The points are: loaded end of the column and a pole – 

point on the undeformed axis of the column. It is assumed that the positive pole is place 

below the loaded end. If the point is localized above the loaded end the pole is negative. 

The same nomenclature about the poles is used when the specific load introduced by 

mailto:sokol@imipkm.pcz.pl
mailto:uzny@imipkm.pcz.pl
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Tomski [11 – 14] is taken into account. Depending on the location of the pole (positive 

or negative) the different deflection angles of the loaded end can be obtained. 

In this paper the results of numerical studies on a column subjected to external 

compressive load taking into account a defect in the form of a crack are presented. The 

discussed simulation data are concerned on external load – vibration frequency 

relationship, loading capacity, transom length and crack size. 

2. Boundary problem formulation 

The investigated slender system is shown in the figure 1. Structure is loaded by external 

force P which is placed on the free end of the column. The presented type of load is 

called the load with a force directed towards a positive pole. The column is composed of 

one element in which the crack is present. It is assumed that crack is open and the 

rotational spring C is used as a discreet element in the simulations. The presence of crack 

divides a structure into two elements as shown in the figure 1. In the common point the 

continuity of transversal as well as bending moments and shear forces are met by means 

of natural boundary conditions. The free end of a column is reinforced by a transom of 

length lc. The donations shown in the figure 1 are as follows: Ei – Young’s modulus, Ji – 

moment of inertia, Ai – cross section area, ρi – material density, C – rotational spring 

stiffness (crack size), P – external load, lc  – transom length, m – loading head mass. The 

total length of a column is l = l1+l2. 

x2 

Rod (2) 

E2, J2, A2, ρ2 
 

 

P  
C 

l2 

l1 

Rod(1) 

E1, J1, A1,ρ1 

 

 

W2(x2,t) 

W1(x1t) 

lc m 

x1 

 

 

Figure 1. Investigated system 
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The boundary problem has been formulated on the basis of the Hamilton’s principle  
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On (1) the integration and variation operations are performed and finally inter alia the 

differential equations of motion in transversal direction (4) are found: 

2,10),(),(),(
''''''

 itxWAtxPWtxWEJ iiiiiiii
  (4) 

As well as the natural boundary conditions. The complete set of natural and geometrical 

boundary conditions is presented by 4(a-h): 
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On the basis of solution of formulated boundary problem connected with free vibrations 

characteristic curves on the plane: external load – natural vibration frequency for given 

parameters such as crack size/location or position of pole can be calculated. 

3. Results of numerical simulations 

The results of numerical simulations are shown in the non-dimensional form: 
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The use of non-dimensional parameters does not require to specify the material 

properties or cross section area. 

 
 

Figure 2. Characteristic curves of reference 

structure at different transom length; d = 

0.5, µ = 1, mb = 0.15, c = ∞ 

Figure 3. An influence of transom length 

on loading capacity at different crack 

size; d = 0.5, µ = 1, mb = 0.15 

 

  
Figure 5. Characteristic curves of at 

different crack size; d = 0.5, µ = 1,  

mb = 0.15, lCB = 0.1 

Figure 6. Characteristic curves of at 

different crack size; d = 0.5, µ = 1,  

mb = 0.15, lCB = 0.25 
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Figure 6. Characteristic curves of at 

different crack size; d = 0.5, µ = 1,  

mb = 0.15, lCB = 0.5 

Figure 7. Characteristic curves of at 

different crack size; d = 0.5, µ = 1,  

mb = 0.15, lCB = 0.99 

 

In the figures 2, 3 an influence of the transom length on the natural vibrations and 

loading capacity are presented. An analysis of the figure 2 allows one to conclude that if 

no transom is used the column behaves like a fixed - pinned system. The use of short 

transom results in change of the dynamic behaviour in relation to the reference (lCB = 0) 

column. Furthermore the characteristic curve of the column with short transom has 

initially positive slope what results in increase of the natural vibration frequency along 

with increase of the external load magnitude. After reaching the highest natural vibration 

frequency magnitude point the frequency decreases while the external load is getting 

greater. This type of characteristic curve relates to the structures with divergence – 

pseudo flutter instability type. The vibration modes are being changed along the 

characteristic curves – see table 1 at c = ∞ a) p = 0.97, b) p = 14.6. As shown in the 

figure 2 an installation of the transom leads to the reduction of vibration frequency by 

reduction of transversal displacements of the free end of the column. An increase of its 

length finally leads to the very rapid decrease of the loading capacity in the structure 

without any defects and causes the change of instability into divergence one (refer to 

figure 2 and 3). There exists such transom length above which the change of instability 

can be observed. If in the column the crack appears its loading capacity is reduced. The 

size and nature of this reduction highly depends on transom length. The greater the crack 

and the longer transom the more smooth loading capacity reduction can be observed (see 

figure 3). When the characteristic curves of the cracked system are taken into account 

(figures 5 – 8) it allows one to state that at short transom (figure 5) an appearance of the 

crack does not affect the initial shape of the investigated curves – the curves are 

overlapping each other. Along with external load increase the curves are being shifted in 

relation to the reference curve (continues one) and the loading capacity drop is observed. 

The size of this reduction highly depends on crack size and transom length. At longer 
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transom (figures 6, 7) the smaller crack causes the shift of the characteristic curve in 

relation to the reference one. When the transom length is equal to the one of the 

column’s (figure 8) the system has divergence instability type. The crack appearance 

shifts the characteristic curves even at small size of the defect. It can be stated that the 

crack does not affect the type of instability. The first and second vibration modes are 

plotted in the table 1. The plots are done at different crack sizes of the divergence – 

pseudo flutter system. Due to large number of the results the table 1 corresponds only to 

one configuration of the investigated system. An analysis of the vibration modes can 

easily lead to detection of the structure defect but it must cover at least first and second 

modes. 

Table 1. Vibration modes of the divergence – pseudo flutter system: 

 d = 0.5, µ = 1, mb = 0.15, lCB = 0.1 

c = ∞ a) p = 0.97, b) p = 14.6 c = 5 a) p = 0.97, b) p = 14.6 

a)         a)         

b)         b)         

c = 1 a) p = 0.97, b) p = 8.75 c = 0.1 a) p = 0.97, b) p = 4.85 

a)         a)         

b)         b)         

Taking into account the results from table 1 it can be concluded that the loading structure 

by means of which the load by a force directed towards a positive pole is created has an 

influence on the vibration modes. The size of an influence depends on crack size as well 
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as on the parameters of the loading structure which are present in the boundary condition 

(4h). 

4. Conclusions  

In this paper the studies on natural vibration frequency and loading capacity of a column 

subjected to a force directed towards a positive pole are done. Additionally an influence 

of the defect in the form of crack is taken into account. On the basis of the results of 

numerical simulations it can be concluded that: 

- in the reference structure an installation of transom of greater length causes a 

decrease of maximum loading capacity in relation to the shorter elements, 

- in relation to transom length the divergence or divergence – pseudo flutter 

characteristic curves can be obtained, 

- presence of a crack causes a reduction of maximum loading capacity. This 

change highly depends on transom length – the shorter transom the more rapid 

loading capacity decrease can be observed, 

- the crack affects the shape of characteristic curves but doesn’t change the type 

of instability (divergence or divergence – pseudo flutter), 

- at short transom the appearance of the crack doesn’t change the initial shape of 

characteristic curve of divergence – pseudo flutter system, 

- the crack presence and location can be found on the basis of the analysis of the 

vibration modes. An analysis of the higher modes allows on to indicate the 

crack even if it is unseen the lower modes. 

The obtained results can be used in the structure health monitoring in order to find a 

defect which can lead to the destruction of the column. The presented studies should be 

expanded by an analysis of the crack location on the instability and natural vibrations of 

the slender system as well as by the experimental verification of the proposed 

mathematical model. Additionally the investigations of the parameters of the loading 

structure at which the column is the least sensitive to the crack presence can be 

performed. 
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Abstract 

Vibration of two simple open systems (namely the linear mass-sprins oscillator and the mathematical 

pendulum) are investigated. During the motion, the body absorbs matter through its boundary. In both cases, 
mechanism of mass absorption is modeled as a perfectly 'inelastic' collision and constant rate of mass change is 

assumed. The paper is focused on the influence of mass change on the kinematic aspects of oscillations. 

 

Keywords: vibration of open systems, mass variable, reactive force 

 

1. Introduction 

Mass is generally not conserved when a supply of mass is present, or when open systems 

with a flow of mass through their surface are to be considered. Mass of the mechanical 

system then is said to be variable. In such a situation, the general methodological 

approaches of mechanics have to be properly modified. In solid mechanics, the systems 

with a variable mass appear as the result of a problem-oriented modelling, e.g., when 

mass is expelled or captured by a structure or machine. The finite discontinual mass 

variation in a very short time was not of special interest for a long time and was not 

intensively discussed. Meshchersky was the first who considered the velocity change of 

a translatory moving body during step-like mass variation [1]. The motion of the 

continuously mass variable systems is much more investigated due to its application in 

rocket theory [2] and astronomy [3]. The motion is described with differential equations 

with variable parameters. For the case when the mass is varies continuously in time, the 

influence of the reactive force on the motion is investigated by Cvecitanin and 

Kovacic[4]. 

Mathematically the reactive force is the product of the mass variation function and 

the relative velocity of mass separated from or added to the particle. Usually, two special 

cases were considered: the first one for zero relative velocity and the second for zero 

absolute velocity of separated or added mass. In case of zero relative velocity, i.e. when 

mailto:roman.starosta@put.poznan.pl
mailto:grazyna.sypniewska-kaminska@put.poznan.pl
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the absolute velocity of the separated or added particle is equal to the velocity of the 

basic particle, the reactive force is also zero. 

Based on the dynamics of the particle with time-varying variable mass and the basic 

laws of dynamics, the theoretical consideration of the dynamics of the body with time 

variable mass is presented in this paper. Two mechanical systems are considered: one 

dimensional oscillator and a mathematical pendulum. 

The process of the mass increase is considered as the perfectly inelastic impact of a 

small mass on the main body. Based on the general equations of motion, the 

mathematical model for the oscillatory motion is formed. 

2. Linear oscillator 

In this section the open mechanical system is considered which absorbs matter from the 

surroundings. Its physical model is presented in Fig.1. 

 

 

Figure 1. One-dimensional linear oscillator exchanging mass with the surrounding 

Let us assume that the mass m(t) of the body changes with time proportionally to the 

area of its surface with a constant rate – Γ. Mass change is described by the evolution 

equation 

)(tm  (1) 

and at the beginning 0)0( mm  . 

In this way the mass of the body changes in time linearly 

tmtm  0)( , 0t . (2) 

The added mass dm drops at the body with the absolute velocity u (see Fig.1). 

The momentum principle in the case of mass exchanging body is 

  vuFv  tmtm )( , (3) 

where F is the resultant force, v velocity of the body and u velocity of the added 

particles of mass dm. In the case of free vibration, the mathematical model of the one-

degree-of-freedom oscillator with time variable mass is 

        txutxktxtm x
 0 , (4) 

Where x(t) is the coordinate describing the position of the body, )sin(|| uxu is the x – 

component of the velocity u, m0 is the initial mass of the body and k denotes the stiffness 

coefficient. 

After rearranging, the equation of motion (4) takes the form 

        xutxktxtxtm  
0 , (5) 
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The second term on the left hand side of (6) can be recognized as a damping of viscous 

type, and a constant force occurs on the right side. 

The equation of motion (5) is supplemented by the initial conditions 

    00 0,0 vxxx   . (6) 

The analytical solution of the problem (5) – (6) is as follows 
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where (.)0J  and (.)0Y  are the Bessel functions of the first and second kind, respectively, 

A and B are the unknown constants which fulfil the following equations resulting from 

initial conditions (6) 
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Some results of calculations are presented for the chosen values of parameters m0=1 

kg,𝛤=0.01kg/s,𝑘=10N/m, ux=2m/s, and initial values: x0=0.1 m,v0=0m/s. 

The solution (7) is presented in Fig.2. 

 

Figure 2. Time history of the body motion 

 

 

Figure 3. Amplitude vs. time for constant and varying mass oscillator 
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The system oscillates around the equilibrium state given by the particular solution 

kux / . The shift, in the time history in Fig. 2, appears due to the spring extension 

caused by the constant momentum supply of the added mass. The amplitude decreases in 

time while the mass of the oscillator grows, which is illustrated in Fig. 3. 

The amplitude – frequency spectra, obtained using the discrete Fourier transform for 

the system with constant and varying mass are shown in Fig. 4. 

 

 

Figure 4. The amplitude spectra of the oscillations with constant and variable mass 

The amplitude spectra in the case of mass exchange and those with constant mass are 

quite different. This effect is connected with variation of the self-frequency of the system 

in time. 

3. Pendulum exchanging mass with surroundings 

The problem of motion of the pendulum which exchanges mass with surroundings is 

investigated in this section. The process of mass exchanging is the same as described 

above. In this case, the governing equation of pendulum motion is 

 

      0)(sin)(sin)()( 00  tLtmgtLutttm    (10) 

 

with the initial conditions 

    00 0,0    , (11) 

where L and m0 are length of the pendulum and its initial mass respectively. 

The problem (10) – (11) is solved only numerically due to geometric nonlinearities in 

considered problem described by Eq. (10). 

Results of two simulations concerning small and large oscillations are presented 

hereafter. Calculations have been made for the following values of 

parameters:m0=1kg,𝛤=0.01kg/s,𝑢=2m/s,𝐿=0.7m and𝛼=π/3. 

In Fig. 5 time histories of two regimes of motion are presented. One of them, caused 

by the initial values φ0=0.1, ω0=0,is related to the small oscillations and the second one, 

caused byφ0=1.3, ω0=0, concerns the large oscillations. 
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Figure 5. Time histories of small (left) and large (right) oscillations 

The character of vanishing amplitude of the pendulum which absorbs mass in 

comparison to constant amplitude in the case of pendulum with constant mass is 

presented in Fig. 6. 

 

Figure 6. Amplitude vs. time for constant and varying mass pendulum 

In Fig. 7 the amplitude-frequency spectra for the case of small and large oscillations are 

presented. 

 

Figure 7. Amplitude spectra for the case of small and large oscillations 

Similarly as for the linear oscillator the amplitude spectrum is strongly affected by the 

effect of mass variation. 
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4. Conclusions  

Two open systems with one degree of freedom have been investigated. One of them 

described by the linear differential equation and the second one described by the 

nonlinear equation. Nonlinearities in the pendulum equation are of geometrical type. In 

the governing equations some time depending coefficients appear due to changing mass 

of the system. One additional term has the same form as viscous damping, and appears 

in the both discussed structures. Other additional term can be recognized in the linear 

oscillator as a constant force, whereas in the pendulum its counterpart term is time 

dependent and nonlinear. 

The analytical solution of the initial value problem describing motion of the linear 

oscillator of variable mass has been achieved. The pendulum oscillation might have been 

analyzed only numerically due to nonlinearities. 

The mass increase causes decreasing amplitude of oscillation in both tested 

structures. The mass exchange with surroundings affects the amplitude-frequency 

spectra both for the linear oscillator and pendulum.  
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Abstract 

Multilobe journal bearings with the sleeve of the 2-, 3 or 4- sliding lobes of cylindrical profile are applied in 
different types of rotating machinery. The design of such journal bearings, the number of lobes and oil grooves 

improves thermal state of bearing at higher speeds and the stability of operation.  

The paper describes the results of the calculations of dynamic characteristics and determination of stability 
ranges of simple symmetric rotor operating in the offset types of multilobe journal bearings. The dynamic 

characteristics of supporting bearings are defined by four stiffness and damping coefficients of oil film. The 
iterative solution of Reynolds, energy and viscosity equations allows the obtaining of the load capacity of 

bearings and the required dynamic coefficients of oil film. Adiabatic, laminar oil film and the static 

equilibrium position of journal were assumed. The oil film pressure, temperature, viscosity fields and the oil 
film forces were the basis of the bearing dynamic characteristics and stability determination. 

 

Keywords: multilobe, offset journal bearings, stability of rotor 
 

1. Introduction 

The stability of rotor operating in journal bearings can be determined on the basis of 

supporting bearings dynamic characteristics expressed by the stiffness and damping 

coefficients of oil film [1-6]. The multilobe bearings, mostly used in slightly loaded, 

high speed rotating machines are characterised by good damping of vibrations and good 

stability of operation [1-3]. Exemplary types of such bearings are the 2- (offset-halves) 

[6], 3-and 4-lobe offset bearings [7-11] that are applied in the turbine gearboxes [6]. 

The design of 2-, 3- or 4-lobe journal bearings, the number of lobes and oil grooves 

improves the thermal state of bearing and stability of operation [1-3]. These multilobe 

journal bearings can be manufactured as the bearings with cylindrical sliding surfaces 

[5], with pericycloid profile of bearing bore [7,8] or as the offset ones [6,9].  

Typical multilobe (classic) journal bearing is composed of single circular sections whose 

centres of curvature are not in the geometric centre of the bearing. The geometric 

configuration of the bearing as a whole is discontinuous and not circular. The multilobe 

pericycloid journal bearings (“wave bearings” [7,8] ) is characterised by continuous 

profile and multihydrodynamic oil films on the journal perimeter.  
The characteristic feature of multilobe, offset journal bearings are that the circle 
inscribed in the bearing profile touches the end of the convex gap of the bearing [5,6] in 
the direction of journal rotation (Fig. 1).  
The paper presents the effect of sleeve profile on the stability of simple symmetric, 

elastic rotor operating in 2-, 3- and 4-lobe offset journal bearings The oil film pressure, 
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temperature and viscosity fields that are required for the calculations of the bearing static 

and dynamic characteristics, have been obtained by iterative solution of the Reynolds', 

energy and viscosity equations. Adiabatic, laminar oil film and the static equilibrium 

position of journal were assumed. The dynamic characteristics of journal bearing are the 

basis of stability ranges determination [1-3]. All the stiffness and damping coefficients 

were calculated by means of perturbation method [1,6]. 

2. Stability of elastic rotor 

Considered multilobe, offset type journal bearings are presented in Fig. 1. Their 

geometry can be found in [5,6]. 

 

             
 

Figure 1. Lay-out of the 2-, 3-, and 4-lobe offset journal bearings; Ob, Oj, O1, O2 – centres of 

bearing, journal, upper and bottom lobe (2-lobe offset bearing), 1  4 number of lobes  

 

The journal bearing static and dynamic characteristics for adiabatic or diathermal 

model of oil film can be determined by the numerical solution of the oil film geometry, 

Reynolds, energy, viscosity [2,6] equations. The stiffness gik and damping bik 

coefficients allow the determination of stability ranges [1-8]. 

The equations of motion for the journal and the centre of elastic shaft are given in 

matrix form by Eqn. (1) [4]. 

tbtaxCxBxM  sinˆcosˆ      (1) 

where: M, B, C –matrices of mass, damping and stiffness, ba ˆ,ˆ  - coefficients of dynamic 

constraints, - angular velocity, (s-1). 
After transformations of Eqn. (1) the real and imaginary part was obtained [1,4]. The 

stability of elastic rotor-bearing system is analysed based on the following characteristic 

frequency equation of 6-th order with regard to (/) [1-6]. 

 

c6 6 + c5 5+c4 4 c3 3 + c2 2 +c1 +c0 = 0     (2) 
1.  

2. Solution assumption for Eqn. (2) is j = - uj + ivj (1j6), with u as damping and v 

representing the self-vibrations. Stability of the linear vibrations of system occurs only 

when all real parts of eigenvalues j are negative. The coefficients c0 through c6 in Eqn. 

(2) are the functions of a0 , b0 , gik, bik. 
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c0  ÷ c6 = f(a0, b0, gik, bik)    (3) 

 

where: a0 - ratio of angular velocity  to the angular self-frequency of stiff shaft, 

a0=
2)/( c ,  c - angular self frequency of stiff rotor,  c = mc /* , b0 - ratio of 

Sommerfeld number to the relative elasticity of shaft, b0 =So/cs , c* - shaft stiffness, (N 

m-1), cs - relative elasticity of shaft, cs= f/R = )/( Rg c 2 , f- static deflection of shaft, 

(m), F.- resultant force of oil film (N), Fstat  - static load of bearing, (N), g - acceleration 

of gravity, (m s-2), gik - dimensionless stiffness coefficients, gik = So(R/Fstat), g’ik , - 

stiffness coefficients, (N/m), bik- dimensionless damping coefficients, bik =So(R/Fstat) 

b’ik , b’ik - damping coefficients, (N s/ m),m - mass of the rotor, (kg), So - Sommerfeld 

number, )/(   DLFSo 2 , Sok -critical Sommerfeld number, Sok = So /c  

 

Coefficients of characteristic Eqn. (2) depend on the stiffness and damping coefficients, 

Sommerfeld number So, relative elasticity of shaft cs and the ratio of angular velocity to 

the critical angular velocity of stiff rotor. The expression determining the ratio of 

boundary angular speed b to the critical c one, and the stability of rotor [1-4], is: 
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where: A0, A1, A2, A3, A4, consist the stiffness gik (i=1,2 and k=1,2) and damping bik 

(i=1,2 and k=1,2) coefficients [1-6], b  - boundary angular velocity (s-1) 

3. Results of calculations 

The stability of simple elastic, symmetric rotor (Jeffcott rotor) was determined with the 

use of the calculated dynamic characteristics The calculations included the non-

dimensional load capacity S0 and journal displacement  as well as the static equilibrium 

position angles eq, too. The offset journal bearings under consideration have the length 

to diameter ratio L/D=0.6, L/D=0.75 and L/D=0.8. Different lobe relative clearances s 

(for the 3-lobe pericycloid bearing its relative eccentricity was * = 0.25 [6,7] ) and 

rotational speeds were assumed. The bearing relative clearances were = 0,9‰,  = 

1.5‰ and = 2.7‰. The feeding oil temperature was T0=400C and the corresponding 

thermal coefficients KT [2,8] were 0.139, 0.215 and 0.315; KT = 

)/( 2
00   Tgct  where: ct - specific heat of oil, (J/kgK), g - acceleration of 

gravity (m/s2), 0 - dynamic viscosity of supplied oil (Ns/m2),  - oil density, (kg/m3),  

- bearing relative clearance, (‰). 
Exemplary results of the calculations of dynamic characteristics and stability are shown 
in Fig. 2 through Fig. 15. The stiffness gik and damping bik coefficients are given in Fig.2 
through Fig.7. The stability ranges can be observed in Fig. 8 through Fig. 15. 
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Fig. 2 and Fig. 3 show the stiffness and damping coefficients of the offset-halves bearing 

with the lobe relative clearance s =2. The largest values have the coefficient g22 for the 

Sommerfeld numbers over 0.44. The values of the coupled damping coefficients b12 and 

b21 are very close (e.g. Fig. 3). The damping coefficient b11 is larger than the ones b12 

and b21 in the range of Sommerfeld numbers S0 from 0 to about 0,6. At increasing values 

of Sommerfeld numbers, the coefficient b11 is smaller than the coupled terms b12 and b21 

(Fig. 3). 
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Figure 2. Stiffness coefficients of 

offset-halves offset- journal bearing 
Figure 3. Damping coefficients of 

halves journal bearing 
 

The stiffness and damping coefficients of the 3-lobe offset journal bearing are presented 

in Fig. 4 and Fig. 5. The bearing length to diameter ratio L/D=0.8, clearance ratio  = 

1.5 ‰ and lobe relative clearance s=2 were assumed. Heat number KT was KT=0.315.  

The largest values have the coefficients g22 and b22 but the smallest g12 and b21 (Fig. 4 

and Fig.5). The values of the coupled damping coefficients b12 and b21 are very close and 

b11 is larger than the coupled coefficients (Fig. 5). 

The stiffness and damping coefficients of 4-lobe offset bearing are given in Fig. 6 and 

Fig. 7. The largest values has the stiffness coefficient g21 and the smallest value the 

coefficient g11 (Fig. 6); In the range of Sommerfeld number from nil to about 0.12 the 

coefficient g22 is larger than g12 but at higher Sommerfeld numbers there is reverse 

dependence. The damping coefficient b22 is the largest and the coupled coefficients have 

the smallest, equal values, i.e. b12=b21 (Fig. 7). 

The stability ranges of symmetric rotor operating in 2-lobe offset bearings with the lobe 

relative clearance s =1 (Fig. 8 - cylindrical sliding surfaces) and s =2 (Fig. 9 - lemon 

shaped sliding surfaces) show the difference. The rotor running in the bearings 

characterized by the value of lobe relative clearance s =2 shows larger range of stability 

(e.g. Fig. 8 and Fig. 9). 

Exemplary results of stability ranges that were obtained for 3-lobe offset journal bearing 

at different values of lobe relative clearance s and at different relative elasticity of shaft 
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cs are shown in Fig. 10 and Fig. 11. At the values of the relative elasticity of shaft under 

consideration there is an increase in the stability at the increase in the lobe relative 

clearance s (e.g. the curves for cs=0.1 in Fig. 10 and Fig. 11). The coefficient tg  in the 

range of larger critical Sommerfeld numbers Sok is the measure of stability properties of 

bearing [2,3]. Larger values of angle  mean the larger range of stability, i.e. at assumed 

load of bearing there is higher boundary of stability b/ c [2,3]. 

For the comparison task, the stability ranges of rotor operating in 3-lobe pericycloid 

journal bearing and in classic 3-lobe bearing are shown in Fig.12 and Fig. 13. It results 

from the comparison that the 3-lobe offset bearing has better stability properties than the 

3-lobe pericycloid and 3-lobe classic bearings. 
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Figure 4. Stiffness coefficients of 3-lobe 

offset journal bearing 

Figure 5. Damping coefficients of 3-lobe 

offset journal bearing 
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Figure 6. Stiffness coefficients of 4-lobe 

offset journal bearing 

Figure 7. Damping coefficients of 4-lobe 

offset journal bearing 
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Figure 8. Stability chart of rotor operating 

offset-halves journal bearings (s =1) 

Figure 9. Stability chart of rotor operating 

in offset-halves journal bearings (s =2) 
 

  
Figure 10. Stability chart of rotor 

operating 3-lobe offset journal bearing 

Figure 11. Stability chart of rotor 

operating in in 3-lobe offset journal 

bearing 
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Figure 12. Stability chart of rotor operating 

in 3-lobe pericycloid journal bearing 

Figure 13. Stability chart of rotor 

operating in 3-lobe journal bearing 
 

  
Figure 14. Stability of elastic rotor 

operating in 4- lobe offset journal bearing 

at the lobe relative clearances =3 

Figure 15. Stability of elastic rotor 

operating in 4-lobe offset journal bearing 

at the lobe relative clearance s =5 

 



346 

4. Conclusions 

Dynamic characteristics including the stability ranges of the chosen types of offset 

bearing with different sleeve profiles and on the assumption of adiabatic model of oil 

film, were obtained by means of perturbation method. Investigation that were carried out 

at assumed geometric and operating parameters, various relative shaft elasticity values, 

allows to draw the following conclusions: 

1. Static and dynamic characteristics of the considered journal bearings of different 

sleeves profiles can be obtained from developed program of numerical calculations. 

2. The offset type multilobe journal bearings show better stability than the classic 

multilobe bearings. 

3. An increase in the relative elasticity of shaft increases the range of rotor stability. 

4. The results of developed program form the input data for the investigation and 

analysis into the stability of different types of multilobe journal bearings.  
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Abstract 

The present study shows the experimentally and numerically determined response of a single timber-frame 

house wall panel filled with polyurethane (PU) foam under dynamic loads. The harmonic tests were conducted 
for the following frequencies: 0.5 Hz, 1.0 Hz, 2.0 Hz and 5.0 Hz for various values of the specified 

displacement. Based on the results of the comparison between the experimental tests and the numerical 

analyses, the numerical model has been verified to be correct. The model can be used in further analyses so as 
to investigate the behaviour of the whole building under dynamic loads, including seismic and paraseismic 

excitations. Using such a numerical model, it will be possible to evaluate the improvement in resistance against 

dynamic loads for the case when PU foam is used instead of mineral wool. 
 

Keywords: timber-frame house, earthquake resistance, dynamic loads, numerical model 

 

1. Introduction  

The use of timber-frame houses is very popular in many places around the world. The 

resistance of small building, including wooden houses, under seismic and paraseismic 

excitations (see, for example, [12, 11]), in terms of cost effectiveness is one of the most 

attractive aspects. The possibility of improving the dynamic resistance in existing houses 

is another positive and desired issue (see [5, 2]). 

Correctly designed structures are marked by good resistance against dynamic loads, 

for example extreme earthquakes [9]. OSB/3 and MFP waterproof boards are used as 

slab, wall and roof sheathing. Those boards increase the structural stiffness of the 

building due to their relative high strength and because of their good resistance against 

shear forces and they reduce the forces transmitted to the structure during dynamic loads 

[9, 10, 11]. 

With the experience gained in North America and Japan, it can be stated that wooden 

houses are able to survive the catastrophic earthquake with little damage. In many cases, 

extremely effective design solution is to use a plywood wall panels. This material has a 

beneficial effect on the level of shear forces due to stiffening effect [5, 6]. Structures 
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with such walls panels are relatively rigid and therefore resistant to dynamic actions, 

such as earthquakes, paraseismic excitations or impact loads [7, 1]. 

The use of thermal insulation in form of wool in sheathed timber-frame elements 

shows almost none influence on the timber-frame in terms of dynamic resistance [8].  

The purpose of this article is to present the results of experimental studies of the wall 

panel of a skeletal wooden building of traditional technology filled with polyurethane 

(PU) foam, that have been adopted to create a whole building numerical model. This 

model was subjected to horizontal forces so as to verify the behaviour of a PU foam 

filled building in comparison to a mineral wool filled structure. 

2. Experiment setup 

The experimental setup consisted of especially designed steel frame, in which the tested 

specimen were mounted - see Fig 2 and Fig. 3. A PARKER dynamic actuator was used 

to generate harmonic excitation. For the purpose of this study, a typical timber frame 

house wall panel was built with dimension as shown in Fig. 1. The frame was covered 

with OSB3 sheaths and then the space inside was filled with PU foam. This frame was 

then mounted into the previously fabricated steel frame and connected with the actuator. 

 
Figure 1. Example of real size wooden house with basic element (shown in red) 

 

Figure 2. Steel frame used in the experiment 
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3. Analysis Description 

During the test, the specimen has been exposed to harmonic loads with the following 

frequencies: f = 0.5 Hz; f = 1.0 Hz; f = 2.0 Hz; f = 5.0 Hz and different displacements. 

During the tests, force has been recorded with a force meter KMM40 with a range up to 

50 kN as well as the resulting displacement (for the induced dynamic displacement) was 

recorded by a laser meter optoNCDT1302 with a range of +-100 mm (see Fig 3). 

 

Figure 3. Experiment setup details (see [12]) 

The test was conducted with traditionally constructed wall panels, as described 

before. The panels have been fixed at one end, while the other end was subjected to 

displacement from 8 mm to 75 mm. The examples of the results, for the frequency of  

2 Hz, are shown in Fig. 4 and Fig. 5.  

 

Figure 4. Hysteresis loop at 2 Hz (PU foam filling) 
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Figure 5. Hysteresis loop at 2 Hz (mineral wool filling) 

The tested specimen filled with PU was able to withstand higher frequencies as well 

as a larger force in comparison to a wool filled wall panel, where a frequency of 2 Hz 

and a displacement of 28 mm caused the OSB3 sheathing to break from the wood frame 

as well as cracking in the connection in the wood frame itself (see [12]). 

4. Numerical Model of the Polyurethane Foam Filled Panel 

The program RFEM was used to create a numerical model of the tested panel (see Fig. 

6). The geometry as well as the material characteristics and support conditions have been 

considered to be identical as in the experimental specimen. Shell elements have been 

used with material properties as for C30 wood. The thickness of the shell elements was 

45 mm for the frame parts and 18 mm for the OSB3 sheaths and one shell with a 

thickness of 145 mm for the mineral wool filling. Polyurethane foam material 

parameters (see Fig. 7) have been established through the experimental tests. The 

support conditions have been modelled as shown in Fig. 6 – all translations were fixed 

but all rotations were free. Those support conditions have been considered as best 

approximation of the conditions of the experimental setup. The numerical model was 

calibrated by changing only the stiffness of the OSB3 sheathing in order to reflect the 

character of the connection between the frame and sheathing. In order to use damping, 

the following formulas were used in order to obtain the damping coefficents: 

a0 = 212/(1 + 2) 

a1 = 2/(1 + 2) 

(1) 

(2) 

where: 

a0 – Rayleigh’s damping factor, 

a1 – Rayleigh’s damping factor, 

– damping coefficient obtained by experimental investigations [%], 

– angular frequency [rad/s]. 
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Figure 6. Numerical wall panel model 

 

Figure 7. Polyurethane foam parameters 

5. Numerical Analysis 

The created numerical model was tested in order to verify its accuracy by subjecting it to 

the same loads as applied in the experiment and by comparing the resulting 

displacements. For example, for the hysteresis loop received at the frequency of 2 Hz, 

the resulting force was 3.30 kN and the displacement was U = 6.4 mm (see Fig. 8). 

Exactly the same results were obtained from the numerical analysis (see Fig. 9 and Fig. 

10). 
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Figure 8. Hysteresis loop – maximum displacement and corresponding force 

 
Figure 9. Deformation of the numerical model 

3.3kN – 6.4mm 

555556,4mm6,4

mm 
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Figure 10. Results of the numerical analysis indicating the same displacement value as 

during experimental test 

6. Conclusions 

Based on the results of the comparison between the experimental tests and the numerical 

analyses, the numerical model has been verified to be correct. On this basis, it can be 

concluded that not only the material properties and characteristics but also the support 

conditions have been properly modelled. Therefore, the numerical model can be used in 

further analyses so as to investigate the behaviour of the whole building (see Fig. 11) 

under dynamic loads, including seismic and paraseismic excitations. Using such a 

numerical model, it will be possible to evaluate the improvement in resistance against 

dynamic loads for the case when PU foam is used instead of mineral wool. 

 

Figure 11. Numerical model of the whole wood-frame house 
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Abstract 

The results of theoretical and numerical studies concerning continuous system subjected to the follower force 
directed towards the positive pole, locally resting on Winkler elastic foundation are presented in this paper. 

The load by follower force directed towards the positive pole is guaranteed by loading structure built of 
loading and receiving heads made of elements of circular outlines. Abovementioned heads are real 

constructions, used in experimental research of continuous systems. 

Taking into account total mechanical energy of the system, the Hamilton’s principle and the small parameter 

method, the differential equations of motion and boundary conditions of the considered column were 

determined. On the basis of a solution of the issue of dynamics of the system, an appropriate formulas were 

formulated and then the trajectory of curves on the plane frequency of free vibrations – the value of external 

load were calculated taking into considerations physical and geometrical parameters of the structure, including 

parameter of loading head and parameters describing Winkler elastic foundation. 

 
Keywords: frequency of free vibrations, Winkler elastic foundation, slender systems 
 

1. Introduction 

The issue of stability and free vibrations of slender geometrically nonlinear bar 

systems [1] lying on the Winkler elastic foundation is the subject of many scientific 

publications, where an influence of elastic base parameters on the value of bifurcation 

load and the scope of changes in the frequency of free vibrations was analysed. 

Taking into account the physical models, the following types of arrangement of 

elastic foundation are defined: 

– along the full length of each rod of the system (total foundation – linear systems [2]), 

– along the full length of selected rod of the system (partial foundation – geometrically 

nonlinear systems [3]), 

– at a certain distance along the axis of the system (local foundation for the rod- linear 

structures [4] or for the selected rods - geometrically nonlinear structures [5]). 

2. The Physical Model of the System 

The physical model of geometrically nonlinear column (NW) subjected to the follower 

force directed towards the positive pole locally resting on the Winkler elastic foundation 

is presented in Figure 1. 
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The column (Figure 1a) is built of two external prismatic rods , of length l1 and 

l2 and one prismatic internal rod mounted symmetrically in relation to the external rods. 

In order to model the local elastic foundation of stiffness K, the internal rod was divided 

into three segments ,, of constant flexural stiffness and lengths l3,  l4,  l5 

respectively. 

Taking into consideration presented description, the following relations relating to 

the lengths li (i = 1…5), distribution of the flexural stiffness (EJ)i, compressive stiffness 

(EA)i, and mass per unit length (A)i are assumed: 

– in the case of external rods of the system: 

ll 21 =  (1) 

)(=)(
21

EJEJ  (2) 

)(=)(
21

EAEA  (3) 

)(=)(
21

AρAρ  (4) 

– in the case of the internal rod: 

54321 lllll   (5) 

)()()( EJEJEJ 543
  (6) 

)()()( EAEAEA 543
  (7) 

)()()( AAA  543
  (8) 

The internal rod, which is supported on the elastic foundation (member ) is 

characterised by lower flexural stiffness (EJ)3 as compared to the flexural stiffness of 

external rods of the column, that is: 

     213 EJEJEJ   (9) 

Rods ,, are mounted rigidly (cantilevered) (x1 = x2 = x3 = 0). The free ends of 

the rods ,, (x1 = l1, x2 = l2, x5 = l5) of the system are connected by the element of 

concentrated mass m that ensures the equality of longitudinal and transverse 

displacements as well as the equality of angles of deflection of these rods. The follower 

force directed towards the positive pole (see Figure 1a) is realised by loading  and 

receiving heads , of circular outlines (constant curvature) [6]. The direction of 

external load P  passes through a stationary point O lying on the non-deformed axis of 

the column and is tangential to the line of deflection of free end of the system. It is 

assumed in this paper that the elastic foundation does not effect the symmetry of the 

structure. The free end of the column is connected with the receiving head by the 

infinitely rigid element  of length l0 that is a part of loading structure. Consideration of 

this element jest necessary due to real constructional solution of head realising the load 

[7]. The flexural stiffness of abovementioned element is many times higher than the 

flexural stiffness of the essential system. The pole O is located at a distance of (R-l0) 

from the free end of the column. 
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Figure 1. a) The physical model of geometrically nonlinear column (NW) locally 

resting on Winkler elastic foundation, 

b, c) The physical model of rods of the geometrically nonlinear column 

Taking into account the elastic foundation, the following parameters describing a 

location and a size of the elastic base relative to the total length of the analysed structure 

were determined: 
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Assuming that the sum of the total flexural stiffness of the geometrically nonlinear 

system (NW) is constant:  
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the asymmetry of flexural stiffness coefficient  was defined in the form: 
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Taking into consideration the physical model of the column, a components of kinetic 

energy and potential energy were specified. The kinetic energy T is a sum of the kinetic 

energy of particular rods and the kinetic energy of concentrated mass m : 
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The components of the potential energy V refer to the energy of bending elasticity, the 

potential energy resulting from external load and the energy of elastic foundation:  

 

3. Problem Formulation, Differential Equations of Motion, Boundary Conditions  

The issue of the stability and free vibrations of the geometrically nonlinear column was 

formulated using the Hamilton’s principle [6]: 
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where: δ – variation operator. 

Using the formulas (13) and (14), after computation of the variation of the kinetic 

and potential energies, the following equations were obtained: 

– the differential equations of transverse displacements 
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where longitudinal forces in external rods and particular members of the internal rod are 

defined as: 
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– the equations on motion in the longitudinal direction: 

Double integration of the formulas (19) over an adequate ranges and taking account 

of the relationships (18) allowed the determination of the formulas describing the 

longitudinal displacements of the each rod of the system: 
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Known geometrical boundary conditions of the considered structure are written as 

follows: 
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(21-35) 

Substituting of conditions (21-35) into the equation (15) allowed to determine remaining 

natural boundary conditions that are expressed by the following formulas: 
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4. Results of Numerical Computations 

Taking into account the solution of the boundary problem, the numerical calculations 

were carried out relating to the free vibrations of the considered system. 

An exemplary scope of change in the value of the first frequency of vibrations 

(parameter *) as a function of external load (parameter λc
*) for given parameters of 

Winkler elastic foundation (K*,lc
*,ld

*) and parameter of the loading head R* was 

presented in Figure 2. 
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Depending on the external load, the curve representing eigenvalues may be positively 

or negatively inclined to the axis of ordinates. In order to compare the results, besides 

the trajectories of curves relating to the frequencies of vibrations of NW system, the 

scope of changes in frequencies for L and N columns were presented too. The 

geometrically nonlinear column N is built of three rods (two external and one internal 

rods). The physical model of geometrically nonlinear column is identical as the physical 

model of NW column (without considering the Winkler elastic foundation). The linear 

column L consists of two external rods , of the column N- the flexural stiffness of 

these elements is the same as the flexural stiffness of external rods of the nonlinear 

column N for given value of the asymmetry of flexural stiffness coefficient . The linear 

system is treated in this paper as a comparative system. 

 

Figure 2. The curves representing the first frequency of free vibrations of the NW, N 

and L columns - the changes in frequencies of nonlinear and linear systems 
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The value of the bifurcational load parameter c
* for each of the courses of curves of 

the free vibrations occurs while * = 0. On the basis of the obtained results it has been 

proved that there are such a parameters of Winkler elastic foundation, for which the 

system can “exit” from the range of local loss of stability (c
*>L

*, compare curves 3, 4 

in Figure 2.). The detailed results of studies were presented during the 27th Symposium 

on vibrations in physical systems. 

5. Conclusions 

The analysis of the free vibrations of the geometrically nonlinear column NW locally 

resting on the Winkler elastic foundation subjected to the follower force directed towards 

the positive pole was the subject of this paper. The Winkler elastic foundation, its length 

and location effect on the value of frequency of free vibrations of the examined system. 

Consideration of the Winkler elastic foundation in the physical model of the column 

causes an increase in the value of frequency of vibrations of the system. The value of 

bifurcational load is rising with the increase in elastic base stiffness. The elastic 

foundation of sufficiently large stiffness causes an “exit” from the range of the local loss 

of stability  
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Abstract  

The paper contains the results of theoretical and numerical studies within the scope of kinetic criterion 
of stability loss of slender non-prismatic column subjected to the follower force directed towards the positive 

pole (the case of specific load). Shape of the system approximation by a linear function and polynomial of 
degree 2 was considered. On the basis of the Bernoulli – Euler’s theory, the mechanical energy was defined. 

The differential equations of motion and natural boundary conditions were determined according to the 

Hamilton’s principle. The issue of free vibrations was solved using the small parameter method. Within the 
range of numerical calculations, the changes in the eigenvalues were presented as a function of external load 

with variable geometrical parameters of the system, including parameters resulting from the shape 

approximation and parameters of loading structure. 

 

Keywords: slender systems, non-prismatic systems, free vibrations, specific load 
 

1. Introduction 

Non-prismatic systems are commonly used in mechanics and mechanical constructions. 

Due to increasing technical requirements for the designers, an optimal shapes of 

structures, that will ensure an increase in transferred load or mass reduction are looked 

for. The issue of dynamics of slender non-prismatic systems is the subject of many 

scientific publications. 

The dynamic analysis of Bernoulli – Euler’s beam with stepped variable flexural 

stiffness with discrete elements was presented in work [1]. The problem was solved on 

the basis of the mode summation method. The results regarding to the issue of stability 

and free vibrations of non-prismatic column under Euler’s load were shown in 

publication [2]. The solution of vibration problem of beam with stepped variable cross-

section was presented in [3]. 

In scientific papers, the shape optimization was based on different methods, such as 

the Lagrange multiplier formalism [4], modified simulated annealing algorithm [5], 

finite element method [6], cellular automata method [7] or using Green’s function 

properties [8]. 
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2. The physical model of the system 

A slender non-prismatic column of rectangular cross-section subjected to the chosen 

case of specific load is considered in this paper. The physical model of analysed system 

is presented in Figure 1. To model cross-section variable along the axis, the structure 

was divided into n segments of constant length l and thickness h and variable width b. It 

is assumed that total volume of each segments Vobj, total length of the column 

.constnlL  and the values of material density as well as Young’s modulus E of 

each parts are constant. In addition, the value of width b of segments must satisfy the 

condition that hb  . The column’s shape was described by linear 

function     dxZaxb  2 and by polynomial of degree 2       qpxqpaxb 
2

,2 , 

where Lx 0 . 

 

 

Figure 1. The scheme of physical model of considered column 

The load by follower force directed towards the positive pole (the case of specific 

load, see [9]) is achieved by loading and receiving heads of circular outlines. 

The direction of the force P is tangential to the line of deflection of end of system 

( Lx  ) and additionally passes through stationary point O located on the non-deformed 

axis of the column at the distance of R from its free end (positive pole). The system is 

connected with receiving head through infinitely rigid element l0, which consideration is 

necessary for reasons relating to the construction. 
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3. The mathematical model 

On the basis of the physical model of non-prismatic column (comp. Figure 1), the total 

mechanical energy of the system was defined. The potential energy V consists of: 

 energy of bending elasticity: 
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 potential energy V2 resulting from the external load: 
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The kinetic energy T of the system is formulated in the following form:  
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The solution of the problem of free vibrations of column was obtained on the basis of 

Hamilton’s principle (see [2,9]), using the properties of the calculus of variation: 

  0
2

1

 dtVT

t

t

  (5) 

where t1, t2 – coordinates of time,  – variation operator. 

Known a priori geometrical boundary conditions and continuity conditions were written 

as follows: 
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where the condition (10) results from the geometry of loading head. 

Taking into account the variation of mechanical energy (1-4) and conditions (6-10) in 

the equation (5), the following relations were obtained: 

– differential equations of motion: 
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– missing natural boundary condition and continuity conditions: 
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The solution of the differential equations of motion was obtained on the basis of small 

parameter method, which consists of expanding of nonlinear members of differential 

equations into the power series with respect to the amplitude parameter ( 1 ). 

4. The Results of Numerical Calculations 

To compare the results, the following dimensionless parameters were determined: 

– external load parameter 

 prEJ

PL2

  (15) 

– parameter of frequency of natural vibrations 

 

 pr

pr

EJ

LA 42 
  (16) 

– parameters describing cross-section variable along the axis of the column 

,     ,     %,100 **1*

L

q
q

L

p
p

L

bb
Z n 


  (17-20) 

– radius of loading head parameter 

L

lR
R 0* 

 , (21) 

where the subscript „pr” refers to the geometrical parameters of prismatic column 

(a comparative system). 

The results of numerical computations in the scope of kinetic criterion of stability 

loss were shown in Figures 2 and 3.The considerations are limited to presentation of 

changes in two first frequencies of natural vibrations of column (1, 2) as a function of 

the parameter of external load. In Figure 2., the changes in first frequency of natural 

vibration of non-prismatic system for different values of taper parameter Z (shape 

approximation by linear function) was illustrated. The results regarding to the 

approximation by quadratic function were presented in Figure 3., taking into account 

variable location of a vertex of parabola (p*, q* parameters). 
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Figure 2.The first frequency of vibration of non-prismatic column approximated by 

linear function (R*=1.3) for selected values of taper parameter Z 

 

 

Figure 3. The characteristic curves of column approximated by quadratic function 

(R*=0.3) for chosen values of parameters p* and q* 

The value of critical load for presented curves on the plane dimension less parameter 

of external load – dimensionless parameter of frequency of free vibrations is determined 

for  = 0. The results regarding to the values of critical load parameter, obtained on the 

basis of the kinetic criterion of stability loss, show compliance with the results from the 

energetic method (the static criterion of loss of stability).Presented courses of changes in 

eigenvalues have the positive, zero or negative slope, depending on the value of external 

load and radius of loading head. Therefore, considered structures may be classified as a 

divergent or divergent pseudo fluttering type of system. 
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5. Conclusions 

The analysis of free vibrations of non-prismatic column subjected to the follower force 

directed towards the positive pole was presented in this paper. On the basis of conducted 

numerical calculations, the following conclusions were formulated: 

– shape of system approximation effects the value of frequency of vibration. The value 

of critical load of the system depends on the parameters describing shape of the column 

and geometrical parameters of loading structure, 

– depending on the value of radius of the loading head parameter, the system under 

consideration may be classified as the divergent or divergent pseudo fluttering type 

of system, 

– approximation of the shape of the considered column is restricted by the condition 

which states that the value of width b of each segments of system must be greater than or 

equal to the thickness h of segments. 
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Abstract 

Vibrations of Timoshenko beams with properties periodically varying along the axis are under consideration. 
The tolerance method of averaging differential operators with highly oscillating coefficients is applied to 

obtain the governing equations with constant coefficients. The dynamics of Timoshenko beam with the effect 

of the cell length is described. A asymptotic model is then constructed, which is further studied in analysis of 
the low order natural frequencies. The proposed model is able to describe dynamics of beams made of non-

slender cells. 

 

Keywords: beam vibrations, periodic beams, tolerance modelling 
 

1. Introduction 

The analysis will be restricted to the linear free vibrations of elastic shear-deformable 

beam with rotational inertia. Considered structure consists of many small, identical and 

ordered pieces of length l, called periodicity cells. The geometric and material properties 

are varying periodically along longitudinal axis of the beam. A fragment of such beam is 

shown in Figure 1. 

 

Figure 1. A fragment of periodically inhomogeneous Timoshenko beam 

The direct analytical formulation of considered Timoshenko beam model leads to 

equations of motion which usually do have non-continuous, highly oscillating, periodic 

coefficients. Many methods have been developed in analysis of periodically 

inhomogeneous solids and structures. The most advanced are the analytical methods 

based on asymptotic homogenization of differential operators [1-2]. 

Here, the tolerance averaging technique [9-10] is applied in order to replace the 

differential equations with highly oscillating coefficients by equations with constant 

coefficients. The presented method enables continuous analysis of an equivalent 
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homogeneous medium with effective properties. The model reduces the computational 

cost and disposes of numerical difficulties. The approach used here has been applied in 

analysis of many thermo-mechanical problems of periodic and almost-periodic solids 

and structures. To name only few, tolerance models of beams with periodically variable 

parameters are considered in [3, 8]. In [6] some aspects of modelling of dynamic 

problems of thin functionally graded plates with a special tolerance–periodic 

microstructure in planes parallel to the plate midplane are considered. 

Detailed analytical solution of homogeneous Timoshenko beam is considered in [6]. 

A numerical example is shown for a non-slender beam to signify the differences among 

the Timoshenko, Bernoulli, shear and Rayleigh beam models.  

2. Formulation of the problem 

The strain-displacement relations in Timoshenko beam theory are assumed as 

θ,wγθ,κ   (1) 

where w, θ, κ and γ represent the deflection, the cross-section rotation, the bending 

curvature, and the shear strain, respectively. The strain energy U and the kinetic energy 

K for a Timoshenko beam can be written as 

  ,dxθρJdxwρAK,dxkGAγEJκU

L LL

  

0 0

22

0

22

2

1

2

1

2

1   (2) 

where , A, J, E, G and k are the mass density per unit volume, cross-section area of the 

beam, the area moment of the inertia, Young’s modulus and shear modification 

coefficient, respectively. The equations of motion may be derived from Hamiltons 

principle (3). 

  .dtKUδ

t

t

 
1

0

0  (3) 

3. Introductory concepts, fundamental assumptions 

The domain occupied by the beam is given by one-dimensional Λ = (0,L), where L is the 

beam length. It is assumed that the cell length is much smaller than the beam length, 

l<<L. Following the book edited by Woźniak cf. [9], some introductory concepts of the 

tolerance modelling are used, i.e. the averaging operator, tolerance system, slowly-

varying function SVα
ξ (Λ,Δ), tolerance-periodic function TPα

ξ (Λ,Δ), highly oscillating 

function HOα
ξ (Λ,Δ), fluctuation shape function FSα

ξ (Λ,Δ), where ξ is the tolerance 

parameter and α is a positive constant determining kind of the function. The basic 

concept of the modelling technique is the averaging operator, for an integrable function f 

defined by: 

   
 

.
1

Δ

dxxf
l

xf

x

  (4) 

The unknown deflection w, and rotation θ are decomposed into their averaged and 

fluctuating part: 
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 (5) 

The new basic kinematic unknowns W(x,t) and Θ(x,t) are called the transverse 

macro-displacement and the macro-rotation; VA(x,t), ZR(x,t) are additional kinematic 

unknowns, called the fluctuation amplitudes. The unknown functions are assumed to be 

slowly-varying (SV) together with their first derivatives. The highly oscillating 

fluctuation shape functions (FSFs) hA and pR are assumed a priori in every problem 

under consideration in order to describe the unknown fields oscillations caused by the 

structure inhomogeneity. Apart from the restriction of l-periodicity, the FSFs have to 

satisfy the following conditions: 

.00  KA ρJp,ρAh  (6) 

4. The tolerance model of a Timoshenko beam 

The Lagrange function for considered problem is given as follows: 

  .θθρJwwρAθθwθwwkGAθθEJKUL   2
2

1  (7) 

As the basic modelling assumption micro-macro decompositions (5) of the unknown 

deflection w, longitudinal displacement u0 and shear angle θ are introduced into 

Lagrangian. Applying averaging operator (4) and the tolerance averaging 

approximations, the tolerance averaged form L  of Lagrangian (7) is obtained in the 

form: 


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 (8) 

Subsequently, variation of above Lagrangian leads to four equations of motion with 

constant coefficients. 
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The underlined terms depend on the microstructure size. 

5. Asymptotic model equations 

Neglecting the terms dependent on the cell length l, we obtain the system of equations of 

the asymptotic model. It describes the behaviour of Timoshenko beam only in the 

macroscale: 
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Equations (10) 2 and (10) 4  can be rewritten as 
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We can further define the effective shear stiffness Heff and effective bending stiffness Deff 

which are constant: 
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Combining equations (10-12), we obtain the following system of differential 

equations which represents the asymptotic model of considered Timoshenko beam: 
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It can be noted that the above equations have the same form as the equations for a 

homogeneous beam, cf. [4]. 

6. Asymptotic model solution 

We assume that functions W, Θ share the same time solution T(t): 
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After substitution of (14), equations (13) can be rewritten in matrix form: 
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These equations can be decoupled to yield 
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The differential equations for W(x) and Θ(x) have the same form, so that it is 

assumed that he solutions also have the same form and differ by a constant as 
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The characteristic equation is given by 
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therefore the eigenfrequencies can be expressed as: 
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i = 1, 2, 3, 4, and from the following equation: 

,0
ωρ

ωρ
22

22

















u

JrHrDrH

rHArH
effeffeff

effeff

 (20) 

the corresponding eigenvectors u are obtained: 
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The spatial solutions are given by 
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Spatial solution (22) can be also written in terms of the sinusoidal and hyperbolic 

functions with real arguments: 
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and only four from the constants C1-C4 and D1-D4 are independent, cf. [4]. 

Substituting (24) into the boundary conditions for W and Θ, we obtain a system of 

linear homogeneous equations for the suitable constants C and D. Then, the frequency 

equation is derived from the condition that the determinant of coefficients matrix has 

to vanish. 

7. Application 

In this section, analysis of influence of geometrical parameters in a cell on the first 

natural frequency of hinged-hinged beam with periodically varying cross-section, cf. 

Figure 1, is performed. The boundary conditions for considered beam are: 

.0for0a0Θ L,xWnd   (25) 

The frequencies were obtained in the framework of the proposed model and 

compared with the results from a finite element model (30 elements, 60 degrees of 

freedom) with Hermite polynomials as shape functions.  

The fluctuation shape functions defining the fluctuating parts of unknown 

displacements were assumed in the form of trigonometric series: 
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  (26) 

to ensure non-zero correctors in calculating the effective shear and bending 

stiffness (12). The conditions (6) are satisfied for considered symmetric unit cell. The 

number of functions (26) has been selected by the analysis of the effective stiffness 

convergence, and the satisfactory results were obtained for N = M =10. 

The beam length is L = 1 m, shear factor k = 5/6, the mass density of the material 

ρ = 7860 kg/m3, Young modulus E = 210 GPa. The cross-section is rectangular, 

piecewise constant. The saturation parameter α changes in range 0.1-0.9, section width is 

b1 = b2 = 20 mm, section height is h1 = 20 mm, h2 = a h1 = {0.95,0.9,0.85,0.8,0.75} h1. 

The number of the cells is 10, h1 / l =1/5, hence the cell can be considered as moderately 

thick. Dependence of the first natural frequency ω for asymptotic model (lines) and finite 

element model (dots) is depicted in Figure 2, and the relative difference between these 

models, versus parameter α is shown in Figure 3. As it can be seen from the Figure 3, the 

results differ no more than 0.5% in the considered cases. 
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Figure 2. First natural frequency for various values of cross section height, dots - finite 

element model, lines – asymptotic model; a=h2/h1 

 

Figure 3. Relative difference between asymptotic and fem results 
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8. Conclusions 

The natural vibration analysis of a periodic beam has been performed in the framework 

of tolerance modelling technique. The Timoshenko beam theory, including first order 

kinematic correction for shear strain, have been applied in order to analyse beams 

consisting of non-slender repetitive cells. The obtained system of differential equations 

with constant coefficients and additional degrees of freedom makes it possible to 

describe the dynamics of the beam in the macro-scale. The coefficients of these 

equations depend on so-called fluctuation shape functions which describe the vibrations 

of a periodicity cell. 

A simplified version of the proposed model has been applied in analysis of first 

natural frequency of a variable cross-section beam. From the obtained results it can be 

concluded that application of approximate fluctuation shape functions leads to 

satisfactory results. 
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Abstract 

In this paper there are considered vibrations of Euler-Bernoulli beams with geometrical and material properties 
periodically varying along the axis. The basic exact equations with highly oscillating periodic coefficients are 

replaced by the system of averaged equations with constant coefficients. The new model is based on the 

tolerance modelling technique, which describes macro-dynamics of the beam including the effect of the 

microstructure size. The purpose of this paper is to present an approximately equivalent model, which describe 

vibrations of periodic beams taking into account length of the periodicity cell. 
 

Keywords: periodic beams, Euler-Bernoulli beams 
 

1. Introduction 

This paper is related to certain problems, which are met in the analysis of periodic 

beams. Dynamics of such beams is described by differential equations with non-

continuous highly oscillating periodic coefficients. Therefore, various approximate 

models, introducing effective beam properties are proposed. Amongst them, can be 

mentioned those, based on the asymptotic homogenization, cf. [1, 2, 7]. However, in 

many technical problems, number of cells is finite. Thus, neglecting the microstructure 

size may lead to erroneous results, especially in the range of high frequencies. 

In order to include the effect of microstructure size, the tolerance modelling 

technique is introduced (cf. the book edited by Cz. Woźniak, Michalak and Jędrysiak 

[10]). The preceding method is very general and convenient for modelling problems, 

described by differential equations with highly oscillating coefficients, e.g. modelling of 

dynamic behaviour of microstructured thin functionally graded plates [6] and dynamic 

problems for plates with a periodic structure [8]. In contrary to the exact solutions, the 

obtained relations have constant coefficients, some of which explicitly depend on the 

microstructure size. 

Wave propagation and linear vibrations in periodic beams are revised in many 

research papers. For a periodic Euler-Bernoulli beam it is considered in [3] and [9]. 
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Frequency band gaps were analyzed by the differential quadrature method in [11]. The 

transfer matrix method was applied in [12] in analysis of flexural wave propagation in 

the beam on elastic foundation. In [4] a wide literature study on composite beam 

vibration can be found. In order to determine a homogenized model of a composite beam 

with small periodicity the two-scale asymptotic expansion method is used in [5]. 

In this paper the tolerance model of Euler-Bernoulli beam with geometrical and 

material properties periodically varying along the axis is presented and discussed. The 

tolerance averaging model is applied to investigate free vibration frequencies for an 

Euler-Bernoulli beam. Obtained results are compared with finite element method. 

2. Formulation of the problem 

Let Oxyz be an orthogonal Cartesian coordinate system, the Ox axis coincides with the 

axis of the beam. It is assumed that considered elastic periodically inhomogeneous 

Euler-Bernoulli beam consists of many small repetitive elements called periodicity cells. 

It is also assumed that every such element can be treated as an Euler-Bernoulli beam. 

Hence, it is defined the region Ω ≡ [0, L], where L is the beam length. The considered 

cells are defined as Δ ≡ [–l / 2, l / 2], where l<<L is the dimension of the cell, called 

microstructure parameter. It is assumed that the beam possesses principal planes and that 

the vibration takes place in one of the principal planes. Let w = w(x,t) denote the small 

deflection of the neutral axis of the beam from its initial, straight configuration. The 

following notation is introduced: ∂k=∂k/∂xk is the k-th derivative with respect to the x 

coordinate and overdot stands for the derivative with respect to time. For small 

deflections of the beam strain and kinetic energy are: 

 

LL

dxwwKwdxwEJU

0

2
1

0

22

2
1 ,,   (1) 

where E = E(x), J = J(x), µ = µ(x) are the Young’s modulus of the beam material, the 

cross-sectional moment of inertia, the mass per unit length of the beam, respectively. 

Since only free vibrations are considered, the potential energy of the external load is 

assumed to be zero. 

The equation of motion is derived from Hamilton’s principle: 

.0)(

00

 
11 tt

L
tt

dtKUδdtδ  (2) 

The Lagrange function for the problem can be written as: 

.
2
122

2
1 wwwwEJ L  (3) 

Following the usual procedure of the calculus of variations, the Euler equation of motion 

is obtained: 

  .022  wwEJ   (4) 

The coefficients E, J, µ, are in considered cases highly oscillating, non-continuous 

functions of the x-coordinate. 
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3. The tolerance averaging approach – introductory concepts and basic assumptions 

The main concept of tolerance averaging approach is the tolerance reflexive relation. 

Amongst the fundamental ideas of the technique the most remarkable are certain classes 

of functions such as the tolerance-periodic (TP), slowly-varying (SV), highly oscillating 

(HO) and fluctuation shape (FS) function. 

A cell at x  is denoted by })(:{,)(   xxxx . The averaging 

operator for an arbitrary integrable function f is defined by 

).(,,)(
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)(
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xyxdyyf
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xf
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

  (5) 

The basic assumption of micro-macro decomposition plays imperative role in tolerance 

modelling technique. The unknown transverse deflection can be decomposed into their 

averaged and fluctuating part: 
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where W(·) (macrodeflection) and VA(·) (fluctuation amplitudes of the deflection) 

functions are the basic unknowns; hA is the known fluctuation shape function. The 

tolerance parameter, associated with the tolerance relation, is denoted by d, 0<d<<1. It is 

assumed that the unknown functions are slowly-varying (SV) up to the second derivative, 

which is denoted by the top index. 

The highly oscillating fluctuation shape functions (FSFs) hA, proposed a priori for 

every considered problem, are assumed to describe the unknown fields oscillations 

caused by the structure inhomogeneity. What is more, FSFs have to ensure the l-

periodicity constraint and provide the conditions below: 

  .,,1,,B;Afor   0,0 2 NBAlOhhhh mAmBAA    (7) 

4. Governing equations of the model 

4.1. Tolerance model equations 

In the first place, the micro-macro decomposition (6) of Lagrangian (3) is performed. 

Next, averaging over an arbitrary periodicity cell is performed (5), applying the 

aforementioned approximations (7). 

The variation of averaged functional has the specified form: 
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Therefore, after expanding we obtain: 
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From the principle of stationary action, applied to the averaged Lagrangian, the averaged 

Euler-Lagrange equations are obtained: 
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In contrast to the exact formulation (4), obtained system of 1+N differential equations 

for the macrodisplacement W(·) and fluctuation amplitudes of deflection VA(·) has 

constant coefficients. Underlined coefficients depend on the microstructure parameter l. 

In order to present (10) in more convenient form, let us denote coefficients by: 
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After taking into account (11) we get: 
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where MAB depends on microstructure size. 

4.2. Asymptotic model equations 

The asymptotic tolerance model is obtained by neglecting coefficients dependent on 

microstructure size l. If matrix DAB is nonsingular, then there exists an inverse matrix 

(DAB)-1.Thus, let us denote the effective stiffness of the beam by: 
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Therefore the asymptotic model equations become 
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5. Natural frequencies 

We can transform system of PDEs (12) into system of ODEs using separation of 

variables. Let us expand macrodeflection and fluctuation amplitudes of the deflection 

into series of eigenfunctions of a simply supported beam: 
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Substituting (16) into (13) and limiting the analysis for one FSF we obtain: 
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There can be assumed the following solutions: 
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In order to find free vibrations frequencies, we introduce subsequent symbols: 
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System of equations (17) is in fact, an eigenvalue problem: 
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We can obtain expressions for high and low natural frequencies by finding the roots of 

characteristic polynomial: 
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6. Examples of applications 

6.1. Introduction 

The object under consideration is a hinged-hinged beam, which fragment is shown in 

Fig. 1. The beam’s cross section, moment of inertia, Young’s modulus and mass per unit 

length are periodically varying along the axis. It is assumed that cross section of the 

beam is rectangular. Considered periodicity cell, presented in Fig. 2, has symmetrical 

shape. Length of its segments depends on an α parameter. 

 

Figure 1. Fragment of considered periodic Euler-Bernoulli beam 

The fluctuation shape functions represent the oscillations of displacements within the 

periodicity cell. For a purposes of this paper there were used approximate l-periodic 

trigonometric functions: h1(y) = l2[cos(2πy/l)+c]. 

 

Figure 2. Periodicity cell 
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6.2. Results and discussion 

The free vibrations of a slender periodic beam depending on the α parameter are 

considered. The calculations are carried out for two cases: 

1. Constant geometrical properties and periodically varying values of mass density and 

Young’s modulus. 

2. Constant material properties and periodically varying height of beam’s cross 

section. 

In both cases it is assumed that considered beam has following properties: length 

L = 1.0 m; periodicity cell’s length l = 1/10L = 10 cm. 

For the first problem it is assumed that Young’s modulus E1 = E = 210 GPa; 

E2  = [0.25, 0.50, 0.75]E; mass density ρ1 = ρ= 7860 kg/m3; ρ2 = [0.25, 0.50, 0.75]ρ; 

cross section width and height: b = 2 cm, h = 2 cm. The results are shown in Fig. 3 and 

Fig. 4. It is evident that TAT has the best agreement with FEM for less disproportion of 

material parameters. For E2 = 0.75E and E2 = 0.50E the solutions are almost equal. 

In the second case we declare following properties: E = 210 GPa, ρ= 7860 kg/m3; 

b = 2 cm; h1 = h = 2 cm, h2 = [0.50, 0.70, 0.90]h. Figure 4(a) shows the results for this 

particular case. It is evident that difference in stiffness of the beam’s segments is 

noticeably high. Similarly, as it was earlier, the proposed method delivered the best 

results for less disproportion of given properties. It is evident that tolerance model in 

cases with high disproportion is stiffer that FEM. The maximum value of obtained 

frequencies from both tolerance averaging method and FEM is denoted by ωmax. What is 

more, TAT gives the opportunity to analyse higher natural frequencies, as it is shown in 

Fig. 4(b). Study based on the finite element method does not provide such a possibility. 

The assumed tolerance averaging model has 2 degrees of freedom and approximate 

fluctuation shape functions. It is worth noting, that comparative finite element model has 

30 elements and 60 degrees of freedom.  

  

Figure 3. First natural frequencies for various values of mass density  

and Young’s modulus 

ρ2 = 0.25ρ 

ρ2 = 0.50ρ 

ρ2 = 0.75ρ 

E2 = 0.75E 

E2 = 0.25E 

E2 = 0.50E 



Vibrations in Physical Systems Vol. 27 (2016) 383 

  

Figure 4. First lower (a) and higher (b) natural frequencies for various values of cross 

section height 

7. Conclusions 

The free vibrations of Euler-Bernoulli beams, with geometrical and material properties 

periodically varying along the axis have been considered. The model equations are 

obtained by implementing the tolerance averaging technique. Derived differential 

equations have constant coefficients. The main advantage of this approach is that 

it includes the effect of the period lengths on the overall behaviour of these beams. 

Despite the use of the approximate fluctuation shape functions the results are consistent 

with finite element method. 
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Abstract 

The paper presents an analysis of vibrations of a ram, body and handle of a heavy, air-operated demolition 
hammer. The research was conducted in order to determine the character of dynamic inputs and resulting 

vibrations at the tool handle which were necessary to build a structural model of local influences on an 
operator taking the hammer design into account. The experiment was carried out on a test stand without 

participation of an operator, which guaranteed repeatability of measurements and elimination of ontogenetic 

characteristics. The displacements of selected structural elements of the tool were recorded by means of a 
camera and the accelerations at the handle were recorded by means of a standard measuring apparatus. The 

recorded signals were subjected to the spectral analysis and the short-time Fourier transform (STFT) using 

dedicated software in MATLAB environment. 

 

Keywords: vibrations, dynamic inputs, short-time Fourier transform (STFT) 

 

1. Introduction 

As part of the conducted research an analysis of vibrations of a ram, body and handle of 

a heavy air-operated demolition hammer was performed. Such type of tools are 

commonly used e.g. in building industry, and their negative influence on an operator is 

well known [1, 4, 5]. The source of the harmful interaction are vibrations originating 

both in the driving unit and in the working process itself [2, 3]. 

The research was conducted in order to recognize vibration transmission in the 

hammer structure, to determine the main direction of their propagation, and to determine 

the character of dynamic inputs and resulting vibrations at the tool handle. The analysis 

of motion of individual parts of the tool is necessary for proper modeling and enables to 

interfere in the tool structure selectively. The recognition of the main direction of 

propagation enables to eliminate small influences and to limit the investigations to 

significant directional interactions. As a result of the performed analyses of vibrations at 

the tool handle it will be possible to create a structural model of a human being – tool 

object (with consideration and modeling of the hammer structure), which, in turn, will 

enable to model the influence of local vibrations on the tool operator. It should be 

remembered that the correct model of the system should include both the operator and 

the tool, because there exist mutual interactions between these elements [3, 6, 7]. 
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2. Research object – test stand 

Measurements were performed on a dedicated stand equipped with a holder to fix heavy 

hand-held tools (Fig. 1). The holder had been designed and made specially for the 

performed investigations in order to eliminate the participation of an operator, and hence 

to be independent of operator’s ontogenetic characteristics (body mass, pressure force on 

the hammer, clamping force on the handle etc.). Foundation and positioning of the 

hammer in the test stand reflected its position during work in real environment. For the 

investigations a standard foundation in the form of an impact energy absorber was used – 

see Fig. 1. 

 

Figure 1. Research object in the test stand 

As the research object a demolition hammer TEX 140 (Fig.1) was used, which is 

usually used in building industry for crushing asphalt, concrete, frozen soil etc. 

3. Methodology of research 

The research being the subject of this work was based on the analysis of the recordings 

of motions of the ram and casing of the investigated hammer and its handle, an operator 

is in contact with. For measurements of motion of the ram (and additionally the tool 

casing) a high-speed camera 1024 PCI [8] was used, which enabled to record 

displacements of vibrations. For this purpose several markers were placed on the tool, 

which motion was analyzed with the dedicated software. Additionally, three markers 

were placed on the ram to average its motion in time synchronously – Fig.1. 

The recordings enabled to identify the motion in the plane of the filmed picture. 
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During the test vibration accelerations of the handle in three perpendicular directions 

X-Y-Z were recorded as well. To do this, a measuring head with three piezoelectric 

absolute vibration accelerometers was used (Fig.1). 

The results obtained from both methods enabled to determine vibrations at the handle 

and transmission of vibrations from the ram to the handle. As the measurements with the 

camera enabled to record the displacements, and with the accelerometers – vibration 

accelerations, the obtained results had to be subjected to an appropriate transformation 

and brought to one physical quantity. Integration of the acceleration signal was 

performed numerically after initial high-pass filtration. 

4. Results 

Figure 2 shows the comparison of displacements and spectra in Z-axis direction (the 

direction of work of the tool): for the hammer casing (point 1 – Fig.1) and the ram, 

computed by synchronous averaging of displacements of three points on the ram, 

marked as 2, 3 and 4 (Fig.1). 

 

 

Figure 2. Displacements of the casing and the ram of the investigated air-operated 

hammer in time and frequency domains (enlarged sections) 

In the range below 20 Hz and for the frequency of work of the tool (about 22 Hz) the 

tool casing vibrates generally with lower amplitudes than the ram. The differences are, 

however, not so big as one could have expected. One can say, that the amplitudes of 

displacements are comparable even for higher frequency ranges than those shown in the 

picture, which means that the casing of this hammer is not separated from the source. 

Moreover, as one can see, the vibrations of both elements are cophasic. A question may 

arise here, whether when building a dynamic model it is worthwhile to take both 

elements into consideration. This seems purposeless. Hence, in the case of the 

investigated tool, the model being created may be limited to a model with fewer degrees 

of freedom, taking the tool casing and the ram together into account. 

Analyzing the motion of the casing at a measuring point placed near the ram (Fig. 3a) 

and the motion of the ram itself (Fig. 3b) in the Y-Z plane one can see, that these 

motions in the axis perpendicular to the impact direction are significant and cannot be 

omitted in the modeling of interactions of vibrations on the operator. 
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a)      b) 

 

Figure 3. Movements of a selected point on the casing near the ram (Fig. a) 

and the ram itself in its middle point (Fig. b) 

What is the most important this indicates the character of fixing the hammer in the 

test stand. At points placed at longer distance from the ram their lateral movements are 

not so important. This results from the fact, that the hammer is fixed well in its upper 

part, and that the collisions between the ram and the absorber are not central. To a degree 

this simulates real working conditions of the tool held by an operator. Hence, it seems to 

be important that forces perpendicular to the hammer axis are also taken into account in 

the model. 

The performed analysis of vibrations of the hammer handle shows a reduction in 

vibration amplitudes (Fig. 4). 

 

Figure 4. A section of an amplitude spectrum of vibration displacements of the handle. 

The result has been obtained by double integration of the recorded signals of vibration 

accelerations 

In comparison to the amplitudes of the ram movements at the frequency of work of 

the tool (about 22 Hz) this drop equals almost 50%. Unfortunately it is not a lot when 

protection of the operator against excessive vibrations is considered. 
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To work out guidelines for building a proper model of the investigated air-operated 

hammer a time and frequency analysis of the signals was performed as well. The work of 

the hammer is non-stationary. This results at least from the fact that the collision process 

and possible fluctuations of working frequency of the tool are unrepeatable. That is why 

the short-time Fourier transform (STFT) was applied, which is defined as [9]: 






 ,)()(),( 2 dtetxtwfX fti     (1) 

where: t is time, x(t) is the analyzed signal, w(t, τ) is a moving window function, τ is the 

shift of the window in time domain, f is frequency, and i is the imaginary unit.  

Examples of results of such a time and frequency analysis are shown in Fig. 5. 

 

Figure 5. STFT analysis for two points. On the left: motion of a point on the casing near 

the ram; on the right: motion of a point on the ram near the casing  

As it can be seen from the figures the input itself is non-stationary regarding 

amplitudes, the spectral composition of the signals, however, remains invariable. 

Moreover, it seems that only two or three components of the signal frequency should be 

essential in the analysis (see vibrations of the casing in Fig. 5), especially if the ram itself 

will be omitted in the model. This enables to define well the input in the dynamic model 

as regards both its average amplitude and its frequency composition. To assume, 

however, the input as a harmonic function with the working frequency of the ram, which 

sometimes is done, would be a too big simplification. 

5. Conclusions 

As a result of the conducted experimental research information enabling to build a 

dynamic model of the considered air-operated hammer was obtained. The results show 

that the modeling can be done by taking only the hammer casing and handle into account 

and omitting the ram. Additionally, it is essential to limit the complex frequency 

composition of the input to two or three harmonic frequencies. It also seems important to 

assume such a model, which takes also lateral input forces into account. This also 

determines the choice of the model of the operator of the hammer. Non-stationarity of 
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the work of the hammer and, what follows, of the inputs may be taken into consideration 

by using the average amplitude of each component of the input or by modeling the 

system using stochastic differential equations. 
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Abstract 

A dynamics analysis of a selected truck-mounted crane is presented in this article. A mathematical model of 

the crane, considered in a form of an open-loop kinematic chain, allows to take into account flexibility of its 

support system, hoist rope and drives of particular links, and also friction in the joints. The geometry of the 
crane model is described using the Denavit-Hartenberg notation based on joint coordinates and homogeneous 

transformation matrices. Its equations of motion were derived on basis of the Lagrange formalism. The LuGre 

model was used to describe friction in the joints. 

1. Introduction  

In the today’s era of computer systems a development of virtual complex models of 

mechanical systems is achieved using commercial or proprietary calculation programs. 

Computerization of a designing process of these systems shortens time significantly 

from determining design assumptions to making a final product. 

In the literature there are lots of publications devoted to the dynamics analysis of 

different types of cranes. Unfortunately, there are hardly any publications devoted 

strictly to issues of the dynamics analysis of the truck-mounted cranes. This scope of 

investigations can be deemed – according to the authors of this publication – as poorly 

advanced. While making an overview of the literature the authors want to draw attention 

to a few selected works devoted to the dynamics analysis of cranes taking into account 

flexibility of their support systems (e.g. [1, 2, 3, 4]), flexibility of a hoist rope (e.g. [2, 

3]), and also occurring of friction in joints (e.g. [5, 6]). All the issues mentioned are also 

a subject of the analysis presented in this work. 

In the work it is assumed that the links of the modeled crane are driven directly by 

torques, whereas the retractable link by a force. It is a simplification, because in the real 

system the links are driven by three hydraulic cylinders (two of them are jib cylinders, 
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and the third one is a telescopic cylinder). The assumed crane model is an open-loop 

kinematic chain, like models of robot manipulators. For this reason the Denavit-

Hartenberg notation [7], taken from robotics, based on use of joint coordinates and 

homogeneous transformation matrices was applied to describe its geometry. Equations 

of the model motion were assumed using the Lagrange formalism [8]. Transported load 

was modeled in a form of a material point. In all the revolute joints, and also in the 

prismatic joint of the crane between the links moving on each other friction is taken into 

account. The friction phenomenon is described by the advanced LuGre model [9] based 

on bristle interpretation of friction [10]. This model allows to take into account the both 

phases of friction in the joints, that is the static and kinetic friction, and more precisely 

such phenomena as: a preliminary displacement, the Stribeck effect and a frictional lag. 

2. Mathematical model of the crane 

The model of the crane in question is presented in Fig. 1. This model consists of five 

links  5ln  . First of them constitutes a truck chassis on which the crane is mounted. 

This chassis is settled flexibly by six supports  6sn  , out of which four are the wheels 

of the truck. 

 

Figure 1. Model of the truck-mounted crane 
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A vector of the generalised (joint) coordinates of the developed model was 

determined in a form: 

( ) ( ) (1) (2) (3) (4) (5) ( ) ,q q q q q q q q q
T T T T T T T TT T

c l l    
   

 (1) 

where: (1) (1) (1) (1) (1) (1) (1) ,q
T

x y z      
(2) (2) ,q    

(3) (3) ,q      

(4) (4) ,q    
(5) (5) ,z    q

( ) ( ) ( ) ( ) .q
T

l l l lx y z     

The matrices of the homogeneous transformations from the local coordinate systems 

of particular links of the model to the assumed reference system can be presented as: 
( ) ( 1) ( )

1, ,
,

l

p p p

p n




T T T  (2) 

where:
(0) ,T I

 

(1) (1) (1) (2) (2)

(1) (1) (1) (2) (2)

(1) (2)
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0 1 0 0
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 
 
 
 
 
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 
 
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Models of a revolute joint and a prismatic joint with friction were developed for the 

needs of the analysis and they are presented in Figs. 2a and 2b, respectively. 

 

Figure 2a. Model of a revolute joint 
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Figure 2b. Model of a prismatic joint 

Values of friction torques 
( )p

ft  in the revolute joints and friction force 
( )p

ff  in the 

prismatic joint are calculated on basis of knowledge about joint forces and torques 

( ) ( )

( ) ( ),p p

p p

O O
f n in those joints determined by the Newton-Euler recursive algorithm [7]. 

The equations of the crane model motion can be presented as: 

Aq e f t ss dr f    , (3) 
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( )lm  – mass of the load, g  – acceleration of gravity, 
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The LuGre friction model adopted by the authors of this work, describing friction 

coefficients 
 

( )

, ,
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p



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

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

in a form of two differential equations of a first order, has 

already been presented in details in other works by them, namely in the publication 

devoted to dynamics of spatial linkages [11], and also in the article dealing with the grab 

crane [6]. 

The formulated equations of motion were solved by the Runge-Kutta method of the 

fourth order with a fixed-step. 
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3. Results of numerical calculations 

Some results of the numerical calculations presenting a trajectory of the load moved, 

determined in plane (0) (0)ˆ ˆx y of the reference system in the case of taking into account or 

omitting friction in the crane joints, are presented in Fig. 3.  

 

Figure 3. Trajectory of the load 

An influence of friction on time courses of the values of the drive torques in the 

revolute joints and the drive force in the prismatic joint is presented in Fig. 4. 

 

 

Figure 4. Courses of the values of the drive torques and the drive force 
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The performed calculations showed that friction in the joints of the modeled crane 

and also – as it was to be expected – flexibility of its support system and hoist rope had a 

significant influence on the crane dynamics, changing significantly courses of the 

determined parameters. 

4. Conclusions 

A dynamics analysis of the selected truck-mounted crane is presented in the work. The 

developed mathematical model can be treated as a virtual prototype of a real crane 

helpful while performing a process of its designing, and also while developing control 

algorithms. High degree of advancement of the prepared model provides – according to 

the authors – a possibility of a precise reflection of real system behavior in the dynamics 

conditions, what should make correctness of the calculation results reliable. However, 

the final verification of correctness of the prepared model can be made by experimental 

tests of a real system. 
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Abstract 

In this study the fixed-fixed column subjected to axial Euler’s load has been investigated. The load 

is placed between the fixed ends of the structure and its location can be changed along column’s 

length. The boundary problem of free vibrations of the mentioned system has been formulated on 

the basis of Bernoulli – Euler theory and taking into account non-linear axial deformation 

relationship. Due to non-linear expressions the solution of the problem was done with small 

parameter method. In the paper the change of the first vibration frequency in relation to location 

and magnitude of the loading force was obtained. The relationship between natural vibration 

frequency and the amplitude is also discussed. 

 

Keywords: column, Bernoulli-Euler’s theory, free vibrations frequency, nonlinear system, characteristic 
curves, amplitude of vibrations, nonlinear component of free vibrations frequency 

 

1. Introduction  

In the literature the papers in which the vibrations of beams [1, 3, 4, 5, 11], columns [6, 

12, 7, 8, 9, 15-21] and frame [10, 13, 14] are investigated can be found. In the boundary 

problem formulation process of these systems the theory of Bernoulli – Euler is mostly 

used. (see [2, 8-22]). This theory is sufficient when slender systems are taken into 

account (structures in which the total length is much greater than transverse dimensions) 

and when the system is not connected to mass elements with translational and rotational 

inertia. In the other cases (especially then higher order vibration frequencies are 

considered) the theory of beams proposed by Timoshenko should be used in which the 

shear energy and the rotational inertia energy of cross section are considered [1, 3-7]. 

The second problem which is present in the boundary problems are the linear and non-
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linear theories. When the non-linear one is taken into account the deformation of the 

elastic element at moderately large deflections is written in the form: 
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where: Ui(xi,t), Wi(xi,t) longitudinal and transversal displacements respectively. 

In non-linear systems in which the boundary problem is described by non-linear 

differential equations [2, 8, 15, 16, 19-22 ] the components of vibration frequency can be 

computed as dependent on amplitude of vibration (non-linear components of vibration 

frequency). The non-linear components may have great influence on vibration frequency 

and can’t be omitted. In relation to the method of solution of the boundary problem the 

estimation of the non-linear component may be hard and time consuming. Nonlinear 

components of vibration frequencies of complex non-linear systems were investigated by 

Tomski and Przybylski [16], Przybylski [9] and Sokół [12] in relation to the conservative 

and non-conservative loads. The estimated components of vibration frequency were 

computed at rectilinear components of static equilibrium. The non-linear component of 

vibration frequency at rectilinear as well as at curvilinear form of static equilibrium of 

the column loaded by Euler’s force were discussed in [21, 22]. At specific load studies 

on an influence of an amplitude on natural vibration frequency can be found in the 

following publications [19, 20]. The results were discussed at rectilinear and curvilinear 

form of static equilibrium. It has been shown that an influence of an amplitude on 

vibration frequency highly depends on the magnitude of external load. The use of 

specific load allows one to choose such load magnitude along with the parameters of the 

loading structure that an influence of an amplitude is negligible.  

The main purpose of this paper is to present the results of the studies on the 

magnitude and location of the external force on natural vibration frequency (both linear 

and non-linear components) of the partially tensioned geometrically non-linear column. 

2. Boundary problem  

The considered column is presented in the figure 1. The column is fixed on both ends 

and loaded by a force P with constant line of action regardless to the deflection of the 

host element. The line of action of the force is compatible to the undeformed axis of the 

column. The point of location of the force is described by  parameter which is 

calculated as a relationship between length l1 to total length l: 

 
l

l1  (2) 

The bending stiffness and compression stiffness and mass of the tensioned part (above 

the point of external force location) and compressed one are as follows: ((EA)1 = (EA)2 = 

(EA); (EJ)1 = (EJ)2 = (EJ); (A)1 = (A)2 = (A)). 
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Figure 1. Considered column 

The boundary problem is formulated on the basis of relation (1) and Bernoulli – 

Euler theory. The differential equations (in transversal and longitudinal direction) of 

vibration of the column are as follows: 
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where: Si(t) – force in i – th element, Ui(xi,t), Wi(xi,t) – longitudinal and transversal 

displacements of the cross section of the i – th element described by coordinate xi. 

The boundary conditions of the considered system are presented below (5a-l): 
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The further consideration are performed in non-dimensional form with the following 

relations: 
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where  is the natural vibration frequency. 

The parameters presented in (6) are substituted into differential equations and boundary 

conditions what leads to their non-dimensional forms. The non-linear elements of the 

differential equations and boundary conditions are written into power series of the small 

parameter of an amplitude. In this study only the rectilinear form of static equilibrium is 

investigated at which the series are as follows: 
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On the basis of the obtained equations and boundary conditions the distribution of the 

external load on the elements of the structure can be found as well as magnitudes of the 

axial forces during vibrations and basic (0) and nonlinear (2) components of natural 

vibrations. 
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3. Results of numerical simulations  

The results of numerical simulations are presented with the use of the following 

parameters: 
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The parameters expressed by the formulas (9a-e) are the non-dimensional ones. 

Wherefore no information about material properties and cross-section area of the column 

can be found in this paper.  

In the numerical calculations of an influence of a non-linear component 2 on natural 

vibration frequency  the magnitude of the small parameter of an amplitude was defined 

as  = 0.008. 

 

 

Figure 2. Magnitude of vibration frequency  parameter in relation to the point of 

location of external load   

In the figure 2 the change of vibration frequency parameter  (taking into account the 

non-linear component) in relation to the point of location of external load  has been 

presented. The calculations were performed at different magnitudes of external load 

parameter - . The vibration frequency highly depends on the magnitude and point of 

location of the external load. An increase of the magnitude of the external load causes an 

increase of the difference between the highest and the lowest magnitudes of vibrations in 



404 

the investigated range of . In this range the three points along the length of the column 

can be found in which the natural vibration frequency is not highly dependent on 

external load. 

 

 

Figure 3. Magnitude of an influence on an amplitude on vibration frequency  

parameter in relation to the point of location of external load   

In the figure 3 the change of  parameter along length of the column at different 

magnitudes of external load has been plotted. It has been shown that an influence of an 

amplitude on natural vibrations depends on both external load magnitude and point of 

location of the external force. The highest magnitude of  has been found at   0.34. In 

the unloaded system an influence of the second component of vibrations on vibration 

frequency is about 31.97 % at given amplitude corresponding to small parameter  = 

0.008. 

4. Conclusions  

In this paper the non-linear column fixed on both ends subjected to Euler’s load (the load 

with constant line of action) has been investigated. The loading force was placed 

between the fixed ends of the structure. The boundary problem has been formulated on 

the basis of the Bernoulli – Euler theory and with taking into account the non-linear 

relationship of the axial deformation. In the final step of formulation of the boundary 

problem the small parameter method was used on the basis of which the computations of 

natural vibration frequency with consideration of linear and non-linear components 

(which depends on amplitude) were done. It has been shown that the natural vibration 

frequency of the investigated structure depends on both point of location and magnitude 



Vibrations in Physical Systems Vol. 27 (2016) 405 

of the external force. The similar relationship can be observed at component which 

depends on amplitude of vibrations. It has been stated that the non-linear component of 

vibration can’t be omitted especially at higher magnitudes of external load as well as at 

some point of location of external load. It’s influence on final magnitude of vibration 

frequency can be significant but on the other hand it depends on amplitude.  

In the future it is planned to develop of the studies started in this paper by addition of 

the elements which can have an influence on the behavior of the column during 

vibrations. The presented in this study results of numerical simulations may have 

engineering importance in investigation on the systems in which the point of location of 

the external load changes along their length (for example the screw along which the nut 

transferring loads changes position). 
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