VIBRATIONS
IN PHYSICAL SYSTEMS

Volume XXVII

Editors

Czestaw CEMPEL, Marian W. DOBRY,
Tomasz STREK

Poznan 2016



VIBRATIONS IN PHYSICAL SYSTEMS

VIBRATIONS Vol. 27, 2016
IN PHYSICAL ISSN 0860-6897
SYSTEMS EDITORIAL OFFICE

Poznan University of Technology
Institute of Applied Mechanics
ul. Jana Pawla Il 24, 61-139 Poznan, Poland
tel. +48 61 665 23 87, fax: +48 61 665 23 07
e-mail: office_am@put.poznan.pl
www.vibsys.put.poznan.pl

EDITORIAL BOARD

Editor: Czestaw CEMPEL
Co-editor: Marian W. DOBRY
Co-editor: Tomasz STREK
Secretary: Matgorzata WOJSZNIS

ADVISORY BOARD
Vladimir I. ALSHITS, Jan AWREJCEWICZ, Wojciech BATKO, Romuald BEDZINSKI,
Roman BOGACZ, Tadeusz BURCZYNSKI, Enzo CIANCIO, Evgen CZAPLA,
Zbigniew DABROWSKI, Antoni GAJEWSKI, Joseph GRIMA, Jan HOLNICKI-SZULC,
Stefan JONIAK, David JOU, Jerzy KALETA, Jan KOLODZIEJ, Tomasz LODYGOWSKI,
Krzysztof MAGNUCKI, Krzysztof MARCHELEK, Bogdan MARUSZEWSKI,
Stanistaw MATYSIAK, Gerard A. MAUGIN, Wolfgang MUSCHIK, Jozef NIZIOL,
Andrzej RADOWICZ, Stanistaw RADKOWSKI, Liliana RESTUCCIA, Tomasz SZOLC,
Franciszek TOMASZEWSKI, Andrzej TYLIKOWSKI, Tadeusz UHL, J6zef WOJNAROWSKI,
Czestaw WOZNIAK, Alexandr YAVLENSKY

Typeset: Tomasz HERMANN
Cover design: Piotr GOLEBNIAK

PUBLISHED AND PRINTED
Agencja Reklamowa COMPRINT
ul. Heleny Rzepeckiej 26A, 60-465 Poznan, Poland
Tel. +48 602 266 426, e-mail: comprint@comprint.com.pl, www.comprint.com.pl

© Copyright by Poznan University of Technology, Poznan, Poland 2016

Edition based on ready-to-publish materials submitted by authors.
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise,
without written permission from the copyright owner.

The volume was published in the cooperation of the Institute of Applied Mechanics at Poznan
University of Technology and Polish Society of Theoretical and Applied Mechanics.
This journal has been indexed in the list of Ministry of Science and Higher Education (5 points).




POZNAN UNIVERSITY OF TECHNOLOGY

MECHANICAL ENGINEERING
AND MANAGEMENT FACULTY

INSTITUTE OF APPLIED MECHANICS

POLISH SOCIETY OF THEORETICAL
AND APPLIED MECHANICS

XXVII SYMPOSIUM

VIBRATIONS
IN PHYSICAL SYSTEMS

2016



XXVII SYMPOSIUM VIBRATIONS IN PHYSICAL SYSTEMS
Bedlewo (near Poznan), May 9-13, 2016

Present edition of Symposium Vibrations in Physical Systems is under auspices of

President of Poznan University of Technology
Tomasz LODYGOWSKI

Dean of Mechanical Engineering and Management Faculty
Olaf CISZAK

SCIENTIFIC COMMITTEE
Czestaw CEMPEL - president, Andrzej TYLIKOWSKI — vice-president,
Vladimir 1. ALSHITS, Jan AWREJCEWICZ, Wojciech BATKO, Romuald BEDZINSKI,
Roman BOGACZ, Tadeusz BURCZYNSKI, Enzo CIANCIO, Evgen CZAPLA,
Zbigniew DABROWSKI, Marian W. DOBRY, Antoni GAJEWSKI, Joseph GRIMA,
Jan HOLNICKI-SZULC, Stefan JONIAK, David JOU, Jerzy KALETA, Jan KOLODZIEJ,
Tomasz LODYGOWSKI, Krzysztof MAGNUCKI, Krzysztof MARCHELEK,
Bogdan MARUSZEWSKI, Stanistaw MATYSIAK, Gerard A. MAUGIN, Wolfgang MUSCHIK,
Jozef NIZIOL, Andrzej RADOWICZ, Stanistaw RADKOWSKI, Liliana RESTUCCIA,
Tomasz SZOLC, Franciszek TOMASZEWSKI, Tadeusz UHL, J6zef WOINAROWSKI,
Czestaw WOZNIAK, Alexandr YAVLENSKY

REVIEWERS OF PAPERS
Jan AWREJCEWICZ, Roman BARCZEWSKI, Romuald BEDZINSKI, Roman BOGACZ,
Tadeusz BURCZYNSKI, Czestaw CEMPEL, Bartosz CZECHYRA, Marian W. DOBRY,
Wiestaw FIEBIG, Adam GLEMA, Jan HOLNICKI-SZULC, Matgorzata JANKOWSKA,
Hubert JOPEK, Henryk KAMINSKI, Jan KOLODZIEJ, Roman LEWANDOWSKI,
Wojciech LAPKA, Krzysztof MAGNUCKI, Krzysztof MARCHELEK, Marian OSTWALD,
Stanistaw RADKOWSKI, Roman STAROSTA, Tomasz STREK,
Grazyna SYPNIEWSKA-KAMINSKA, Tomasz SZOLC, Jacek SZULCZYK,
Maciej TABASZEWSKI, Jacek WDOWICKI, Matgorzata WOJSZNIS

ORGANIZING COMMITTEE
Marian W. DOBRY - chairman, Roman STAROSTA — co-chairman,
Matgorzata WOJSZNIS — secretary, Tomasz STREK, Maciej TABASZEWSKI,
Roman BARCZEWSKI, Tomasz WALCZAK, Hubert JOPEK, Paulina FOPP,
Tomasz HERMANN, Bartosz JAKUBEK

FINANCIAL SUPPORT
Ministry of Science and Higher Education
Mechanical Engineering and Management Faculty

SPONSORS
» EC Test Systems Sp. z 0.0. + COMSOL * Bruel & Kjaer Polska Sp. z 0.0.
* Gambit Centrum Oprogramowania i Szkolen Sp. z o.0. * ENVIBRA Sp. z o.0.




Introduction to the Volume XXVII Collection of Papers
of the Conference on Vibrations in Physical Systems — 2016

The phenomena of vibrations, oscillations and waves as physical phenomena are
omni-present around us. They are the sign of life, the sign of the operation of machines
and devices and they accompany any production processes. Their effects may be
harmful, useful and they may also be a source of information on the technical condition
of the supervised machines and devices. The successive Volume XXVII of Vibrations
in Physical Systems published every second year deals with these widespread
phenomena. It comprises the papers presented by specialists from our country but also
from abroad at many sessions of XXVII Symposium of Vibrations in Physical Systems
organized also every second year. The symposium has been organized since 1960
in Poznan by a local branch of the Polish Society of Theoretical and Applied Mechanics
and the Institute of Applied Mechanics at Poznan University of Technology.

This conference is unusual one; we are present in a scientific space 27" times
since 1960. This means the subjects we are dealing are still important and still brings
the attention of scientific community and co working practitioners. One can say that each
successive Volume is a special issue of some scientific Journal devoted mainly
to vibration research. Of course, year by year our outlook is evolving; and the scope of
current conference has been widened from the previous one, and is currently as follows:

Mathematical Modelling in Sound and Vibration Analysis

Experimental Techniques in Sound and Vibration Engineering

Wave Problems in Solid Mechanics

Analysis of the Non-Linear Deterministic / Stochastic Vibrations Phenomena
Computational Methods in Vibration Problems

Modelling and Identification of Dynamical Systems

Signal Processing and Analysis

Active Vibration Control

Energy Methods in Vibration Engineering

Vibration and Energy Problems Related to Biomechanics

Dynamics of Machinery and Rotating Systems

Vibroacoustics of Machinery, Diagnostics

Vibrations and Noise of Transport Systems, Vehicles, Roads

Structural Dynamics, Vibrations of Composite Materials Structures

Vibration Problems in Environmental Engineering, Vibration of Granular
Materials

Vibrations and Dynamic Stability of Structural Elements, Beams, Plates, Shells
e Flow-induced vibrations, Fluid-structure interaction, Aeroelasticity

e Dynamic behaviour of Vibration Isolation Elements and Systems.



As it is seen the topics of the publications relate to a wide range of issues connected
with modelling and identification of mechanical systems, their stability and dynamics of
mechanical systems as well as physical phenomena such as propagation of acoustic
waves and vibrations in all aspects of science and engineering, beginning from
the theory and modelling up to the application subjects in machines, environment
and the human body.

The monograph comprises also numerously presented publications relating to
the issues of dynamics in biological as well as biological and mechanical systems.
They mainly concern mechanical properties of a human body and its organs or parts.
Other publications describe the dynamic interaction of power between man and machine
(Hand-held Powered Tools) or distribution of power and the energy flow in
Human-Machine Systems.

Many of the publications present the results of research carried out through
simulation with the application of modern digital technologies worked out for the needs
of solving linear and nonlinear issues of the dynamics of solid bodies or physical
phenomena such as propagation of acoustic waves or dynamics and stability of
complicated structures. The publications comprise the results that are analysed from
the point of view of the applied methodology or the validity of the obtained data.

There are also some publications devoted to methods of passive, active and semi-
active reduction of vibrations and noise and to modelling of vibrations damping with
viscous damper. The publications concerning dynamic issues also analysed the stability
of the tested mechanical systems.

Other significant publications concern the monitoring of technical facilities with
the use of the propagation of elastic waves that allow us to detect cracks in the composite
structure under the test and to specify their location.

All the papers comprised in this volume have been reviewed by members of
the Scientific Committee, and in some cases by specialists outside the Committee,
should the issues concern problems outside the scope of knowledge of the Committee
members. We would like to thank all those persons who help us review papers in this
published monograph and improve their quality.

Co-editors of the 271" VVolume

Czestaw CEMPEL
Marian W. DOBRY
Tomasz STREK
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Structural Damage Detection Using Non-Classical Vibro-Acoustic
Approaches

Kajetan DZIEDZIECH, Lukasz PIECZONKA, Phong Ba DAO, Andrzej KLEPKA,
Tadeusz UHL, Wiestaw J. STASZEWSKI
Department of Robotics and Mechatronics, AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Krakow, w.j.staszewski@agh.edu.pl

Abstract

The paper demonstrates how non-classical approaches can be used for structural health monitoring. Wavelet-
based modal analysis, various non-classical nonlinear acoustic techniques and cointegration are used for
damage detection. These approaches are illustrated using various examples of damage detection in metallic and
composites structures.

Keywords: structural damage detection, fatigue cracks, delamination, time-variant modal analysis, nonlinear
acoustics, cointegration

1. Introduction

Modern engineering structures utilise new stiffer and stronger materials (e.g.
composites) and integrate various hybrid and complex elements (e.g. controllers,
electronics, sensors). Such structures often operate under undesirable and harsh
conditions. Therefore inspection and maintenance of such structures is a major challenge
to designers and end-users. Although many reliable damage detect methods in Structural
Health Monitoring have been developed over the last few decades challenges still remain
due to ageing (e.g. aircraft structures), limited access (e.g. offshore wind turbines),
environmental/operational conditions, intermittent nature of damage and data ambiguity.
For example, the main difficulty with the application of ultrasonic guided waves for
damage detection in composite materials is that signal changes - produced by defects -
tend to be small when compared with those obtained from other effects (e.g. structural
features, environmental conditions, variable load) and so are difficult to detect reliably.

Finding a non-classical or unconventional solution could help to overcome many
problems and challenges in Structural Health Monitoring. Taking advantage of undesired
phenomena (e.g. nonstationarity or nonlinearity) is one of the possible approaches.
Looking outside boundaries is the second possible approach used to overcome difficult
research problems. The ability to see the problem from a new research perspective is
often fundamental to creating breakthroughs in engineering. The paper illustrates how
these two non-classical approaches can be used for structural damage detection.

The paper consists of three major parts. Section 2 demonstrates how the time-variant
Frequency Response Function can be used to detect abrupt stiffness change in building
structures. Examples of damage detection - based on non-classical nonlinear acoustics -
are demonstrated in Section 3. The application of cointegration — originally developed in
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econometrics — for the removal of undesired operational trends from damage detection
data is presented in Section 4. Finally, the paper is concluded in Section 5.

2. Detection of Abrupt Changes to Natural Frequencies of Structures

Analysis of vibration and dynamic testing are two critical components of structural
design. Traditional vibration analysis relies either on time-domain or frequency-domain
approaches. Various methods have been developed for vibration analysis, e.g. [1-3].
Classical vibration analysis assumes that systems/structures are time-invariant, i.e. the
output for such systems does not change with a delay in the input. However, this
assumption is not valid for many engineering systems with time-variant (global or local)
coefficients in the corresponding governing equations. Traditional concepts, analytic
methods and experimental techniques of linear time-variant analysis cannot be applied to
such systems since modal analysis has been developed for linear time-invariant systems
and is not appropriate for time-variant systems. Conventional definitions of modal
parameters are not valid for time-variant systems. Varying mass and/or stiffness leads
inevitably to varying natural frequencies and mode shapes whereas system responses to
harmonic excitations are non-stationary. Such systems do not have even impulse
response functions in the classical sense.

A new, non-adaptive concept of the Frequency Response Function (FRF) - based on
wavelet analysis - for time variant systems was proposed in [4]. The classical input-
output relation was transformed to the wavelet domain to obtained the wavelet-based

FRF as
W, [y(®)]
H,(ab)= =

¥ W, [x(t)] 1)

where W, [y(t)] and W, [x(t)] are the wavelet transforms of the output y(t) and input

X(t), respectively. The interpretation of the method - based on the generalised wavelet
convolution [5] - was proposed in [4]. Although the wavelet-based extension of the FRF
is quite natural and relatively simple, the computation procedure is not as
straightforward as Equation (1) implies. Additional data post-processing (i.e. time-
frequency domain averaging, ridge extraction, crazy climbers optimisation algorithm)
needs to be used in practice in order to obtain the smooth estimate of H(a,b), as shown in
[6]. The amplitude and phase of the new FRF can be analysed to identify time-variant
systems [6] and/or detect abrupt changes to modal parameters [7]. The latter problem is
relevant to damage detection since damage often results in local stiffness reduction,
leading to the abrupt change of natural frequency. Detection of abrupt changes in natural
frequencies from vibration responses of time-variant systems is a challenging task due to
the complex nature of physics involved.

The application of the wavelet-based FRF for structural damage detection can be
illustrated using a simple example that involves vibration analysis of a three-floor
building model. The building model — shown in Figure 1 - consists of three plates
connected with four continuous vertical rods. The top plate is additionally connected to
the middle plate by a taut string (without any slack) that has been cut in the experiment
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to simulate an abrupt change of stiffness resulting from structural damage due to
earthquake or landslide.

Figure 1. Time-variant three-floor building model

Firstly, the classical experimental analysis was used to analyse vibration of the structure.
The random excitation and vibration response were Fourier-transformed to obtain the
classical FRF for the undamaged and damaged structure. The results -presented in Figure
2a- clearly show that the FRF changes once the structure is damaged. The snapped string
leads to local stiffness reduction that results in the shift of one natural frequency. An
additional mode can be also observed when the structure is damaged. Despite all these
changes to the classical FRF, structural damage can be identified reliably only when the
actual moment of abrupt change of stiffness can be detected. This is illustrated in Figure
2b, where the magnitude of the wavelet-based FRF is presented. The application of the
wavelet transform leads to the exact detection of time of the abrupt change of stiffness.
The string is snapped after approximately 20 seconds when the experimental modal test
is performed. This moment can be clearly identified in the magnitude and phase of the
wavelet-based FRF. The magnitude of the wavelet-based FRF also exhibit the change of
natural frequency and the extra vibration mode.
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Figure 2. Modal analysis for the three-floor building: (a) classical FRF magnitude for the
undamaged (blue line) and damaged (red line) three-floor building; (b) wavelet-based
FRF magnitude.

3. Structural Damage Detection Using Non-Classical Nonlinear Acoustics

Ultrasonic testing used for damage detection relies on linear phenomena of wave
propagation (e.g. reflection, scattering). Recent years have shown a considerable growth
of interest in nonlinear damage detection ultrasonic approaches. Damage-related
nonlinear ultrasonic phenomena are quite sensitive but not easy when used for damage
detection. This mainly due to the fact that nonlinearities may result not only from cracks
but also from other non-damage related effects such as: friction between elements at
structural joints or boundaries, overloads, material connections between transducers and
monitored surfaces, electronics and instrumentation measurement chain.

Nonlinear acoustics is particularly attractive to detect contact-type damage. This
includes fatigue cracks in metals or delamination/debonding in composites. Nonlinear
acoustics methods used for damage detection include classical and non-classical
approaches. The former methods utilise higher harmonics generation or frequency
shifting. These methods are well established and used for many years for material
testing. The latter approaches are based on various recently developed non-classical
nonlinear phenomena observed in materials. These methods use for example frequency
mixing and various approaches based on wave modulation. Non-classical nonlinear
phenomena are relatively weak in undamaged and remarkably strong in damage
material. Physical mechanisms behind these phenomena are often complex and not easy
to explain, as reviewed in [8].
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The method based on vibro-acoustic wave modulation [9-11] is one of the most
widely used non-classical techniques. When a monitored structure is excited modally
(f. - low-frequency excitation), an ultrasonic wave (fy - high-frequency excitation) is
introduced, as illustrated in Figure 3. Then ultrasonic responses are used for damage
detection. Intact (or undamaged) structures exhibit mainly two frequency components
associated with the high- and low-frequency excitations. In contrast damage (e.g. fatigue
crack in metals or delamination in composites) leads to additional vibro-acoustic wave
modulations that can be observed as a pattern of sidebands in ultrasonic response
spectra. The frequencies of these additional sideband components are equal to

fSn = fy £nf_ 2)

where n = 1,2,3, ... . The presence of sidebands and their amplitude indicate possible
damage and its severity, respectively. It is important to note that often modulation
sidebands can be observed in undamaged specimen due to intrinsic (e.g. material)
nonlinearities. However the amplitude of these sidebands increases significantly when
damage is present in the structure.
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|

Figure 3. Nonlinear vibro-acoustic wave modulations used for damage detection

The intensity of modulation R = (Al + A2)/A0, where Al, A2 are the amplitudes of the
first pair of sidebands and AO is the amplitude of the carrier ultrasonic spectral
component, can be used as a damage indicator.

Figure 4 demonstrates the application example. An a rectangular (400x150%2 mm)
aluminium plate was in the presented application, as shown in Figure 4a. Low-profile Pl
Ceramics PIC-155 piezoceramic transducers of diameter 10 mm and thickness 1 mm
were surface-bonded to the plate and used for ultrasonic excitation and response
measurement. A Pl Ceramics PL-055.31 piezoceramic stack actuator (5 x 5 x 2 mm)
was additionally bonded on the plate for low-frequency modal excitation. Once the plate
was modally excited with the frequency equal to 625 Hz (corresponding to one of the
strongest 10" vibration mode), an ultrasonic wave of 60 kHz frequency was introduced
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to the plate. Figure 4b shows the ultrasonic response spectra for the intact (upper part)
and cracked (lower part) plate. A clear pattern of modulation sidebands can be observed
when the plate is damaged (11 mm fatigue crack). The intensity of modulation R,
defined above, can be used to investigate the severity of damage, as illustrated in [9-11].
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Figure 4. Nonlinear acoustics used for fatigue crack detection: (a) aluminium specimen
instrumented with low-profile, surface-bonded piezoceramic transducers; (b) damage
detection results for the intact (upper part) and cracked (lower part) plate.

Damage location is one of the major problems when non-classical nonlinear acoustics is
used to monitor structures. However, recent studies in [12] demonstrated that modulation
sidebands can be used not only to reveal damage or assess its intensity but also to locate
damage. An example of damage location based on nonlinear acoustics is illustrated in
Figure 5. A rectangular (300x150x2 mm) composite plate (carbon/epoxy prepreg) was
impacted in the centre. The impact energy was equal to 3.9 J. The Monit SHM
vibrothermographic system with the 35 kHz ultrasonic excitation column — was used to
reveal butterfly-like delamination in the plate, after impact (Figure 5a). Following these
investigations, a non-classical nonlinear acoustic test was performed. Low-profile,
surface bonded transducers were used again for low- and high-frequency excitations.
Once the plate was excited, ultrasonic responses were gathered The plate was scanned
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using a 3-D laser vibrometer to analyse sideband amplitudes at various positions. The
intensity of modulation R was calculated to reveal the same delamination in Figure 5b.

A new damage detection method was proposed recently in [13] to combine damage
location capability offered by Lamb waves and damage sensitivity offered by nonlinear
acoustics. Lamb waves are guided plate waves that are widely used for inspecting large
areas of structure to reveal damage.
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Figure 5. Impact damage detection in composites using. Delamination after 3.9 J impact
revealed by: (a) vibrothermography; (b) nonlinear acoustics.

Fatigue testing was used to introduce a crack in the mid span of an 300x20x10 mm
aluminium beam (Figure 6). A guided ultrasonic wave (150 kHz) was introduced to the
beam when the structure was modally excited (harmonic sinusoidal 10 Hz excitation).
Then ultrasonic responses were gathered for two different scenarios of low-frequency
excitation, i.e. when the beam was not excited modally and when the beam was excited
with the maximum modal amplitude. This measurements were gathered for various
positions on the surface of the beam using a 3-D scanning laser vibrometer. Then
Ultrasonic responses were band-pass filtered, and their difference was calculated. The
RMS values for different measurements are shown in Figure 7, were B-scan
(measurements for various positions vs. time) are presented for the intact and cracked
beam. The crack is clearly revealed by the increased amplitude of the analysed image
(150 mm from the edge of the beam) in Figure 7b.
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Figure 7. B-scans for the difference signals gathered in the non-linear acoustic test:
(a) intact beam; (b) cracked beam

4. Structural Damage Detection Using Non-Classical Nonlinear Acoustics

It is well known that sensor data often needs to be processed and refined before any
analysis that can reveal structural damage. Various undesired features — such as noise -
are removed from the data. Data drifts, outliers and trends are common undesired non-
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stationarities. Low-frequency drifts can be removed relatively easy using statistical
regression. Unknown trends - caused for example by environmental and operational
conditions - are very difficult to remove. These trends often mask damage-related
features in analysed signals. For example., it is well known Lamb wave responses - used
monitored structures - can be severely affected by temperature changes. Since the
majority of Lamb wave based damage detection procedures rely on baseline
measurements it is very difficult to find whether signal changes are caused by damage or
by temperature. Therefore, compensation for trends - caused for example by temperature
or load variation is important to develop methods that are sensitive only to damage but
insensitive to other effects.

Various approaches can be used to compensate for undesired effects in the data. The
method of cointegration — developed originally from the field of econometrics [14] — has
been applied recently in structural damage detection for the removal of undesired
environmental and operational effects. temperature effect from bridge vibration data and
Lamb wave responses [15-16]. The major idea used in these investigations is based on
the concept of stationarity. Time series are considered to be co-integrated if they are
themselves non-stationary but their linear combinations are stationary. The method
assumes that it is possible for a linear combination of a set of (hon-stationary) variables
to be stationary if these (non-stationary) variables are integrated of the same order and
share common trends. In this context, these variables are said to be co-integrated.
Monitored variables are cointegrated to create a cointegrating residual whose stationarity
represents normal condition. Then any departure from stationarity can indicate that
monitored structures no longer operate under normal condition. More details about this
mathematical procedure can be found in [16].

Following the work presented in [16] this section shows an example demonstrating
how damage detection can be performed using Lamb wave data corrupted by trends due
to temperature. Lamb wave responses were gathered from an aluminium plate with a
seeded damage. The seeded damage was a 1 mm hole drilled in the middle of the plate.
The plate was exposed to various temperatures in the range between 35 and 70°C. This
was sufficient to corrupt the data, so the effects of damage and temperature on Lamb
wave responses were undistinguishable. The cointegration procedure was then applied to
the corrupted data to obtain the residual vectors. The residual vectors were wavelet-
transformed — using the orthogonal wavelet transformed — and the variance of wavelet
coefficients were calculated. Figure 8 shows result, where the logarithmic wavelet
variance for various wavelet levels is presented for the first three residual vectors of data
after cointegration. The results in Figure 8a — for the undamaged plate — exhibit self-
similarity through linear variance characteristics. This pattern is broken due to damage in
Figure 8b. The temperature trend was removed from the data leaving the nonstationarity
related to damage.
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Figure 8. Wavelet variance characteristics calculated from the first three cointegration
residuals from Lamb wave data for: () intact plate; (b) damaged plate

5. Conclusions

The paper has demonstrated how unconventional modal analysis (wavelet-based FRF),
undesired effects (nonlinear phenomena in ultrasonic data) and methods originally
developed in other research fields can be applied successfully for structural damage
detection. damage detection. Various examples related to structural stiffness reduction,
crack detection, impact damage detection have been presented to illustrate that non-
classical approaches can often solve damage detection problems for which classical
solutions are difficult or impossible. It is anticipated that the work presented will
stimulate more research in this area.
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Abstract

Owing to the specificity of the experimental tests conducted in impact biomechanics, whose subjects are
volunteers, cadavers or animals, ethical and legal aspects are just as formidable as the restrictions of 'technical
nature'. The first part of the paper presents fundamental ethical principles, universally accepted by the
international community, which must be followed in the course of conducting biomedical experimental tests
(including those that fall under the category of impact biomechanics). The second part is a presentation of the
preparation (e.g. to install a great number of measurement sensors, necessary for collection of as much data as
possible regarding the behaviour of individual body parts under impact load) and course of experimental tests
in which human cadavers were subjected to different loading scenarios of the thorax. The purpose of these tests
was to identify the parameters and to validate an advanced simulation model of the human thorax developed
within the THOMO project.

Keywords: impact biomechanics, ethical and legal aspects, human cadavers, experimental works

1. Introduction

Impact biomechanics is a field of research dedicated to the examination of phenomena
that occur in the bodies of humans (or animals), especially in their musculoskeletal and
circulatory systems, as well as in their internal organs, under conditions of loading
characterized by short time of duration (usually of few/few tens of milliseconds) and
very high amplitudes (such as acceleration reaching few tens/few hundred times the
gravitational acceleration).

Experimental tests constitute an important element of the cognitive process in
science. This applies also to biomechanics of the human body, including impact
biomechanics. However, the specificity of the issues that are investigated by impact
biomechanics places certain limitations on the options of experimental tests. This
especially concerns tests with the participation of volunteers. In this case, tests
conducted under conditions closely imitating real-life incidents could potentially lead to
severe injuries or even death.

For this reason, experimental tests in impact biomechanics resemble puzzle pieces —
tests avail themselves of both volunteers, animals and post-mortem human subjects
(PMHS) that complement each other.

Computer modelling methods, whose rapid advancement is observed in parallel with
the increasing computing power of computers and development of specialized software,
play an important role as regards correct interpretation and generalization of results
obtained from such experimental testing.



26

Owing to the specificity of these tests, whose subjects are volunteers, cadavers or
animals, ethical and legal aspects are just as formidable as the restrictions of ‘technical
nature'.

2. Ethical and legal aspects of conducting experimental research with the
participation of volunteers and with the use of cadavers/biological material

The use of human cadavers or segments/tissues extracted from them in experimental
tests raises particularly heated controversies. For moral, ethical and religious reasons,
some parts of the public opinion (these parts vary in size depending on the
country/cultural circle/religion/...) are convinced that the use of human cadavers (PMHS
— Post-mortem Human Subjects) in biomechanics research, including for the purpose of
enhancing traffic safety, should not be taking place.

This belief is often supported by the message sent out by the mass media, which tend
to purport that dummies and computer models are sufficient to conduct research on
systems designed to improve vehicle safety. This is not true — both dummies and
computer models (despite the very rapid advancements in the field of modelling over the
recent years) are still far from perfect.

Of pivotal significance is the improvement of biofidelity of dummies and computer
models. This requires tests with the use of PMHS in order to collect data regarding
properties of tissues, of the mechanisms of their injuries, as well as the global responses
of human bodies, indispensable for their validation.

The use of human cadavers is not only one of the methods of researching crash
impact on the injuries of accident victims, but also one of the most important ones. In
1995, King and Viano [1] estimated the number of survivors attributable to the
development of safety engineering and they compared this number with the number of
PMHS used in biomechanics testing. They have calculated that each PMHS employed in
research on the improvement of safety has saved the lives of over 60 people.

Two documents contain a collection of fundamental ethical principles, universally
accepted by the international community, which must be followed in the course of
conducting biomedical experimental tests (including those that fall under the category of
impact biomechanics): The Nuremberg Code (1946) [2]and the Declaration of Helsinki
(1946, as subsequently amended) [3].

The provisions laid down in these documents have been introduced, directly or
following relevant adaptations, to the national legislation all over the world.

The above-mentioned documents do not deal directly with the use of cadavers in
scientific research, but they do not contain prohibition of such research, either. Given the
absence of other legal regulations, it is assumed that they may be expanded to include
research with the use of human corps.

The first of the foregoing document, released in 1946 as a result of the Nuremberg
Trials in response to information about the criminal medical experiments conducted on
prisoners of Nazi concentration camps, sets out what may be referred to as the decalogue
(formulated in 10 points) establishing the fundamental principles of conducting
(generally speaking) medical experiments on human subjects.
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Particular focus, in the form of an extensive commentary, has been placed on its first
point: "The voluntary consent of the human subject is absolutely essential".

This provision — of pivotal significance in 1946, that is shortly following the plight of
prisoners of WWII concentration camps — still holds as the central tenet.

The second of these documents (Declaration of Helsinki), repeatedly amended by
experts connected to the Council for International Organizations of Medical Sciences
(CIOMS), in collaboration with the World Health Organization (WHO), upholds all the
vital principles set out in the Nuremberg Code, expanding its scope to cover purely
medical research associated with the introduction of new medications and medical
procedures. It also offers interpretations and clarifications of the Nuremberg principles.
An important new element, formulated in Guideline 2: Ethical Review Committees, is the
requirement to conduct all research whose subjects are human beings under the close
supervision of an appropriate ethical committee/commission.

Human cadavers are only used for biomechanics research in a small number of
countries. This is owing to a number of reasons. In some countries, such research is
prohibited by law or by religious principles; in others, they are not conducted due to the
pressure exerted by the public opinion.

Everywhere where such research is allowed, it is subject to tight supervision and
conducted with observance of established rules [4, 5].

In France, the Bioethics Law no. 94-654 of 29 July 1994 concerns the extraction of
organs for diagnostics, transplantation or other scientific purposes. It is presumed that,
unless otherwise stated, organs may be used for transplantation.

On the other hand, if a body or its individual organs are to be used for purposes other
than transplantation or establishment of the causes of death, a relevant consent must be
signed and pre-registered (body donation programme).

If the deceased had previously signed consent for the donation of his body for
research, his family may not object to this. If the will of the deceased is not known, the
decision is made by the family.

In Germany, use of bodies is subject to the law on organ transplantation, even though
this piece of legislation does not make any explicit stipulations about whole-body
donations.

A part of the PMHS comes from people who had signed a relevant agreement,
establishing the scope of purposes for which their bodies may be used after their death.
However, in the majority of cases, members of the closest family of the deceased are
asked for consent to donate bodies for biomechanics research (this consent must be
expressed in writing). Prior to signing, they are informed of the type of load that will
impact the body, the expected type and gravity of injury, the type of autopsy which will
be carried out, and of the collection and keeping of samples for further testing.

As for the United States, there exists the obstacle of mutually exclusive acts of law,
as well as of differences between states.

The violation of bodily integrity (profanation) is prohibited.

In some states, body donation for scientific purposes is allowed, yet under various
conditions. In some cases, consent to such donation must be registered prior to death,
while the family may still object to it.




28

In other states, such consent may not be expressed prior to death. It is only after a
person has passed away that their family may agree to the use of the body for scientific
purposes.

Scientific activities in the area of impact biomechanics is regulated by detailed
provisions of law (such as NHTSA Orders 700-3 and 700-4).

In the United States, there are a few places where PMHS research is conducted. Each
of these places has their own, strict protocol to be followed. Below are the basic
principles in place at one of the Laboratories in the USA.

This particular state has a body donation programme — interested parties sign consent
for their bodies to be used for scientific purposes following their death.

Additional consent is necessary for civil-purposes crash tests.

Another consent must be expressed for military-purposes crash tests.

After death, and upon verification of the scope of consent granted by the given
person, the coroner/another authorized institution, forwards the information to the
Laboratory, and enquires whether they are interested in such particular body.

If so, the Laboratory contacts the closest family members (if possible) and asks
whether they agree to the use of the body in the planned tests. The family receives
general information only, no specific descriptions of the tests are provided.

If the family's answer is NO (regardless of the consent given by the deceased), the
Laboratory withdraws from taking over the body.

If the answer is YES, the body undergoes medical tests (carriage of determined
viruses, CT scans, etc.) and, based on the results, it either qualifies to be used in given
tests (recorded in the database and placed in a freezer), or is returned.

Prior to the test, a protocol outlining in detail how the body is to be handled, as well
as a thorough description of tests to be conducted, is presented to a specially committee.

During these tests, each of the Laboratory employees must follow the internal
protocol regarding tests involving biological material (special outfits, covering the face
of the deceased, etc.).

In each test, great emphasis is placed on the proper collection, recording and storing
of the greatest amount of data possible, both for ongoing and future research, so as to
ensure that each test with the use of PMHS renders as much information as possible.

Following the tests, the whole body or its individual segments/tissues may be re-
used.

If the body/segments can no longer be used, they are returned to the family (if the
family wishes to have it returned), or cremated. Once a year, the Laboratory organizes a
scattering ashes ceremony, of which families are also notified.

To sum up:
e Tests with the use of PMHS are an important source of data indispensable for

getting to know the mechanisms of how human bodies are injured when subjected
to impact loads, which is the necessary condition for further progress in
preventing injuries that result from, among others, traffic accidents.
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e In order to minimize the critical attitude of some portions of the public opinion
toward such research, it must be conducted with observance of ethical principles
and in strict conformity with the provisions of law in the each country.

e Ethical Committees, responsible for adopting the test scopes and protocols, as
well as for the oversight of these tests, have an important role to fulfil in this
respect.

e Itis necessary to improve the collection of test results and make them available to
all interested science centers in order to avoid repetitions, and to ensure the
fulfilment of the principle that guides those willing to donate their body after
death to science: donation for science = donation for the humanity.

3. An example of experimental tests with the purpose of identification of
parameters and validation of an advanced model of human thorax

What follows is a presentation of the preparation and course of experimental tests in
which human cadavers were subjected to impact loads. The purpose of these tests was to
identify the parameters and to validate an advanced simulation model developed within
the THOMO project [7, 8].

THOMO project (Development of a Finite Element Model of the Human Thorax and
Upper Extremities), was carried out under FP7 of the European Community (contract
number: SCP7-GA-2008-218643), in the period from 2009.01.01 to 2012.10.30, by an
international consortium which included 4 research teams: CEESAR - Centre
Européend’Etudes de Sécurité et d’Analyse des Risques (Nanterre, France), UVHC —
Université de Valenciennes et du Hainaut Cambrésis (Valenciennes, France), UWB —
University of West Bohemia (Plzen, Czech Republic) and the Institute of Aeronautics
and Applied Mechanics of the Warsaw University of Technology— Virtual Safety
Engineering and Biomechanics Laboratory (VIiSEB). CEESAR was the project
coordinator.

THOMO aimed to develop new, greatly improved models of the human thorax with
upper extremities, both 'standard’ (5th, 50th and 95th percentile) and 'personalized’ (for
any type of body build).

The developed models should ensure appropriate (stable, resilient to changes of
parameters, natural for biological systems and with proper biofidelity properties)
behaviour of solutions during simulation tests with their use (the problem of 3-R: Rating,
Reliability, Robustness [6]).

The complicated structure of the thorax model was described with ca. 400 thousand
elements, which allowed for a detailed modelling of the thorax anatomy, accounting for
many different muscle groups, bones, main blood vessels, etc., as well as for the
interactions between them and the varied material properties.

The method used was the Finite Element Method (FEM), implemented in the
LS-DYNA package.

Already at the initial stage of drafting the project application, cooperation was
initiated with the Global Human Body Model Consortium (GHBMC). This was
facilitated by a research group from University of Virginia (USA), which acts as the
centre of expertise of GHBMC for the thorax and upper extremities. This cooperation
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made it possible to exchange data and information about test results and updates
introduced based on them, as well as about the research methods used/developed.
Results of the THOMO project were implemented in the final human body model
developed by GHBMC. The employment of such an advanced model by the automotive
industry and by research centres which work for it, including academic centres, should
facilitate the design of increasingly safe vehicles, thus reducing the number of traffic
accident injuries, especially serious ones, and deaths.

Two basic research directions were pursued under the THOMO project —
experimental tests and computer modelling works.

The experimental tests were carried out by French teams: CEESAR (primarily crash
tests with the use of whole-body cadavers) and UVHC (research over selected
anatomical structures).

This latter research direction focused on the development of simulation computer
models (reference 50th percentile model and scaled 5th and 95th percentile models, as
well as 'personalized' models). A research group from the VIiSEB Laboratory at the
Warsaw University of Technology participated in these works (among others, they have
developed an effective method of scaling and personalization), as well as groups from
UWB and CEESAR. Proper scaling is a particularly important issue in the case of
building models of children's bodies. Owing to the virtually complete absence of
experimental tests with the use of paediatric PMHS, such models are usually developed
based on scaling adult body models (usually of the 5th percentile).

The experimental stage comprised 18 crash tests conducted with the use of both male
and female bodies. The tests were designed specifically for the needs of this project.
Different loading scenarios of the thorax were tested.

Figure 1. Cadaver ready for the test — side impact onto thorax
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Particular attention has been paid to preparing the cadavers for the tests (Figure 1).
One important element was to install a great number of measurement
sensors/instruments, necessary for collection of as much data as possible regarding the
behaviour of individual body parts under impact load.

In order to obtain proper rib strain profiles, over 100 strain gauges (Figure 2) were
attached to the ribs and sternum. Accelerometers were also fixed onto the vertebrae T1,
T4, T12 and onto the sternum. Pressure transducers were installed in the aorta, pleurae,
inferior vena cava, trachea, and stomach in order to analyze the pressure wave
transmission through the different organs.

Figure 2. Visualization of the thorax bones, with location of the strain gauges to register
strain during crash

Besides the crash tests, also tests regarding ribcage shape and material properties
played an important role. In order to obtain correct geometrical data, important from the
point of view of durability of the ribcage which protects internal organs, a multistep
procedure of scanning thoracic skeleton (Figure 3) was used, with particular focus on the
ribs. This has allowed for identification of both differences between individual ribs, as
well as of the change of shape (including the change of the cortical bone cross-section
area, particularly significant for evaluating the durability) along individual ribs.

The first task was to image the entire thorax with the use of typical computer
tomography. Next, external surfaces of individual bones were scanned with the use of a
laser 3D scanner. The next step was to cut the examined ribs into segments with a length
of 3.5 cm and to scan each segment with the use of micro-CT scanning (uCT), which
provides much higher resolution of the obtained images. Based on the micro-CT
scanning data, detailed geometrical models were developed, which included both
internal and external surfaces and the boundary of the cortical bone, which allowed for,
among others, finding characteristics that describe the changing cortical bone cross-
section area along individual ribs.
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Figure 3. The three-step process of collecting geometrical data of the thorax bones

Information on the external geometry of individual ribs, previously collected with the
use of a laser scanner, as well as CT images of the whole thorax, rendered it possible to
put together accurate geometrical data for specific segments into a single model of the
thoracic skeleton.
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Figure 4. An example of a fifth rib strain profile for the reference model, developed as
a result of simulation with the use of the reference model, with side impact, at the
moment of maximum ribcage deflection
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In order to verify the correctness of computer modelling of the consequences of injuries
caused by impact with the amplitude and character typical of traffic accidents, it was
important to conduct comparative analyses of the strain profiles and fields in ribs. They
were identified in experimental tests with cadavers. Strain gauges had been fixed onto
their ribs (Figure 2) and individual experiments were simulated on the computer. The
conformity levels have been found satisfactory (Figure 4). The broken lines show the
corridor built on the basis of experimental tests conducted under the THOMO project.

4. Conclusions

Based on many years of experience, | can state that:

o The future of research on impact biomechanics and its practical applications rest
mainly on virtual methods (based on computer models of the human body).

e Owing to significant limitations, the role of experimental tests will increasingly
boil down to identification of parameters and validation of virtual models.
However, for many years to come, these tests will continue to serve as a very
important source of information.

e Owing to the number and complex nature of the problems (medical, ethical, legal,
biomechanical, numerical, equipment-related, etc.), which must be solved in
order to develop improved virtual models representing the behaviour of human
body under load impact, at a degree enabling reliable assessment of injury risk,
works conducted by large interdisciplinary teams are much more likely to
succeed, as they combine the necessary experience, computing, experimental,
human and financial resources. This is the case of the GHBMC project, for
example.
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Abstract

In this paper the numerical studies of parametric resonance phenomenon in vibrating screen are presented.
Numerical simulations are performed in Ansys Workbench software. Modal analysis is carried out to find the
natural frequencies and mode shapes of the sieve. The effect of the excitation frequency on the sieve vibrations
in parametric resonance conditions was investigated using the transient analysis. The comparison of numerical
and experimental results is presented. It is shown, that two mode shapes of sieve vibrations occur close to the
screen operation frequency. Linear dependence between excitation frequency and sieve vibration frequency is
obtained. The most stable transient response and the highest vibration amplitude of the sieve is obtained for
excitation frequency 47.07 Hz. The range of excitation of parametric resonance is nearly the same as for
experimental data.

Keywords: screen, parametric resonance, forced vibrations

1. Introduction

Screening operations are very important part of processing mineral materials. Screens
are fundamental instrumentation for minerals separation in order to produce final
mineral products for customers. Vibrating screens are one of the most extensively used
tools in screening processes. Rapid evolution of vibrating screens occurred in 19th and
20th centuries. Nowadays the level of screens development is stabilized and machine
building companies often produce similar screens, and their construction differs in
details [10].

The screening process of the naturally wet mineral materials is generally more
difficult in comparison to screening of the dry mineral materials. Here, particles of the
material combine to form aggregates, that significantly increase the time of the screening
process [11]. Therefore, the water supply need to be applied for material particles
disintegration. The other solution of this problem is to generate high impact energy by
increasing vibration amplitude, that can crush glutted grains of material and degrease
adhesion forces between the material and the sieve. The large mass of the conventional
screens connected with large amplitude vibration results in reduced life of a machine and
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increases the energy consumption [9]. Exciting of sieve parametric vibrations in the
screen results in the large amplitude vibrations with relatively low energy consumption
and can be suitable for screening wet materials.

The first screen with parametrically excited sieve was designed by Slepyan et al. [5].
They also found the mathematical model of the simplified vibrating screen system,
where the sieve is modelled as a string connected with two masses [6-7]. The dynamic
analysis of vibrating screen was presented in work [1]. The analytical and numerical
methods were used to find the sieve natural frequencies and mode shapes. In work [2]
the experimental analysis of vibrating screen operation in parametric resonance
conditions was presented. In this paper the full plate was used instead of the perforated
sieve. Complex dynamic analysis of the large vibrating screen was presented by Zhao et
al. [12]. They found optimal dynamic design of the screen by performing structural
optimization. Li and Song [4, 8] presented the dynamic analysis of chaotic vibrating
screen. Another dynamic analysis of vibrating screen with variable elliptical trace was
presented by He and Liu [3]. They analyzed characteristics of the screen by applying
multi-degree-of-freedom theory. The kinematic parameters for different motion traces
were also determined.

The present paper concerns the dynamic analysis of vibrating screen system with
parametrically excited sieve. Numerical simulations were performed to find the effect of
excitation frequency on sieve parametric oscillations.

2. Numerical modelling of parametric resonance screen system

As shown in Fig. 1 the model of parametric resonance screen system was prepared
according to laboratory parametric resonance screen in Ansys Workbench software [2].
It is simplified to two beams, that are connected with a sieve (plate with rectangular cut-
outs). The sieve is fixed inside the beams between the rubber pads. The whole system is
suspended by springs with stiffness k equal to 275 N/mm and preload equal to quarter of
sieve preload - Fi/4.

rubbber vibrator

pads mounting plate

Figure 1. The simplified screen system prepared in Ansys Workbench Design Modeler

The material models of all components was assumed as elastic. In the model, density
of external vibrators mounting plates was increased to compensate a mass of electrical
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vibrators. Contact in the whole model is defined as bonded, except the interactions
between the rounded part of the rubber pads and the sieve, where frictionless contact was
applied. The finite element model is composed of 131 990 elements. The sieve is
modeled by using 4-nodes shell elements. For the beams and the rubber pads meshing
the 3-dimentional 20-nodes hexahedron elements and 10-nodes tetrahedron elements
were used.

Three steps of numerical analysis were performed in Ansys Workbench software to
find the dynamic response of the screen system. In the first step the static structural
analysis was carried out in order to apply the sieve preload (F;) with value 1000 N. For
this tension value the natural frequency of the screen system is close to 25 Hz, what was
verified experimentally. Then the modal analysis was realized to obtain the natural
frequencies of the screen. Afterwards the transient analysis was performed. The time of
the analysis equal to 0.4 s was established. This is the minimal time, where the sieve
vibrations is being stabilized. Two sinusoidal phase shifted forces (F1 and F,) were
applied to the beams to simulate the excitation force, which in the real model is
generated by rotating eccentric masses (Fig. 1). Excitation frequencies, close to double
natural frequency of the screen system were applied with different excitation forces that
correspond to the parameters from laboratory parametric resonance screen (Table 1).

Table 1. Excitation parameters used in transient analysis

Excitation frequency, Hz | Magnitude of excitation force, N Sieve preload, N
41.23 833.6 1000
43.7 936.1 1000
47.07 1086.4 1000
51.13 1282.2 1000
55.82 1528.1 1000
58.74 1692 1000

3. Results and discussion

Two vibration mode shapes occurred close to the screen operation frequency equal to
25 Hz (Fig. 2). The first mode - one side sieve bending, is determined for the natural
frequency equal to 25.564 Hz, while the second mode - double side sieve bending is
observed for the frequency value of 25.607 Hz. These very close natural frequencies
may cause appearance of different mode shapes and lead to unstable vibration amplitude
level during the screen operation.

Screen system excitation with frequency close to double natural frequency of the
system results in fast vibration amplitude grow (Fig. 3). This phenomenon is observed
for all respected cases of excitation frequencies. The most stable transient response of
the sieve is obtained for excitation frequency 47.07 Hz. This value is lower than double
natural frequency of the screen system obtained in the modal analysis. This is the effect
of numerical dumping, which is applied in Ansys Workbench during the problem
solving. Numerical dumping eliminates the high frequency modes and stabilizes the
numerical integration schemes, but it also affects in lower modes. For all values of
excitation force, except 47.07 Hz and 58.74 Hz, the beat phenomenon is observed.
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Vibration excitation with a frequency of 58.74 Hz is characterized by unstable sieve
motion and the lowest amplitude. Therefore, to obtain stable sieve motion the excitation
frequency need to be very close to double natural frequency of the system. The first
vibration mode shape is observed for all cases, even when additional loads on the sieve
surface were applied to excite the second mode.

Figure 2. Free vibrations mode shapes of screen system: a) first mode; b) second mode

Figure 3. Transient response of the sieve for excitation frequency: 51.13 Hz

The effect of excitation frequency on sieve vibration frequency is presented in Fig. 4.
The value of vibration frequency increased with the excitation frequency level. This
dependence is nearly linear. The linear character of these relations is confirmed
experimentally.

The value of excitation frequency has a significant impact on sieve vibration
amplitude (Fig. 5). The vibration amplitude increases together with an increase of
excitation frequency level, until its maximal value is obtained. This takes place when the
excitation frequency is equal to 47.07 Hz. Further increasing of the excitation frequency
results in amplitude decrease. The range of the excitation frequency, where the
parametric resonance was observed, is nearly the same for both numerical and
experimental data. However, the maximum value of vibration amplitude obtained
numerically is almost two times larger than in the experiment. Moreover, the amplitude
value in a function of excitation force from experimental data exhibits two local
maximums, what cannot be observed in the numerical analysis. This could be the
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structural damping effect, which was not taken into consideration in the numerical

analysis.

Sieve vibration frequency, Hz

[95)

[§8)

30 —— Experimental O
J
— ~ — Numerical
- . /
- .~ n
~
26 Z
24
*
22 -z
a& 7
- »
20 +*# : ; ; ; ‘
40 45 50 55 60

Excitation frequency, Hz

65

Figure 4. Effect of excitation force on sieve vibration frequen

cy

Averagesieve vibration

amplitude, mm

45
40
35
30
25
20
15
10

5

0

n
N —— Experimental
! N — @ — Numerical
! \l.
l’ \
! \
! . 1
a2 WAV A
" \ [N B
- L L ~wer N
L
40 50 60

Excitation frequency, Hz

70

Figure 5. Effect of excitation force on sieve vibration amplitude for different excitation

4. Conclusions

frequencies

Two vibration mode shapes occurred close to the screen operation frequency - one side
bending and double side bending. This may cause appearance of different mode shapes

and lead to unstable vibration amplitude level during the screen operation.

The value of vibration frequency increased with the excitation frequency level. The
linear character of this dependence is observed in both numerical and experimental

results.

The most stable transient response and the highest vibration amplitude of the sieve is
obtained for the excitation frequency of 47.07 Hz. The range of excitation of parametric
resonance is nearly the same as for experimental data. Differences of the amplitude level
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between numerical and experimental results are observed. It is an effect of damping,
which is not considered in the numerical simulation.
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Abstract

The paper considers the effect of exciting force amplitude on occurrence of parametric resonance phenomenon
in vibrating screens by using experimental methods. The measuring test is performed for three cases of
excitation force levels. For each force level sieve parametric vibrations are excited by using proper excitation
frequency. It is shown that an increase of the excitation force results in an increase in the sieve vibration
amplitude. The dependence between excitation force and sieve parametric vibrations is nonlinear. The value of
excitation force has an effect on the sieve vibration mode shape. Two vibration mode shapes are detected. It is
found that the excitation frequency influenced the vibration amplitude. An increase of sieve preload has no
effect on the amplitude level, however it results in an increase of the sieve vibration frequency.

Keywords: vibrating screen, parametric resonance, natural frequencies

1. Introduction

In many physical, engineering, electrical and biological systems appearance of
parametric resonance in the system is of great interest. Parametric oscillations are the
case of system oscillatory motion caused due to time varying (periodic) parameters of
the system. These parameters can be stiffness or inertia. Parametric resonance appears
when the external excitation is equal to integral multiple of natural frequency of the
system. Parametric oscillations for the first time were described by Hill and Mathieu.
They elaborated the fundamental theory related to parametric resonance phenomenon (so
called Hill's and Mathieu equations). The problem of parametric oscillations was
investigated in numerous researches. Many of them are connected with simple structures
(e.g. beams or rods) [4, 5, 7, 12]. Bolotin [4] well documented the elementary problems
of parametric instability in elastic systems. He also described the damping influence on
the regions of stability. Parametric oscillations of preloaded Bernoulli beam with



42

constant transverse load was presented by Osinski [7]. In this research he also considered
the case of the beam with periodically changing length. For analysis of parametric
vibrations of the beam system, Hagedorn and Koval [5] considered Timoshenko theory.
In work of Yang and Chen [12] parametric stability is presented for the beam with
periodical axial load. They considered Newton’s second law and Boltzmann
superposition theorem. A lot of authors have studied the parametric resonance problems
for plates and cylindrical shapes by using both analytical and numerical methods.
Nguyen [6] presents the parametric resonance problem in simply-supported plate with
parametric excitation. In this paper Karman large deflection theory and governing
equation are considered. For computation of finite element discretization method is
proposed. Dynamic stability analysis of axially moving viscoelastic plates is presented
by Tang and Chen [11]. Here the time-dependent speed of plate moving on parametric
resonance is investigated.

Most investigations on parametric resonance are carried out to predict the response of
the system. Periodic changes of system parameters may result in rapid amplitude grow
and lead to fatigue and damage. The examples are gear wheels cooperation, axially
loaded slender structures or rolls of ships. However, in some cases the target excitation
of resonance brings measurable effects. This is especially in the case of vibrating screens
and conveyors, where operation in conditions of resonance can significantly increase the
process efficiency. The application of parametric resonance in the screen construction
was proposed by Slepyan et al. [8]. In works [9-10] they presented the simplify dynamic
screen system consisted of two masses connected by a string. The analytical and
numerical analysis of natural vibration of the screen is presented in work [2]. The
experimental analysis of the parametric resonance occurrence in screen operation is
carried out by Bak et al. [3]. In this paper the plate without cut-outs is used instead of the
sieve. In presented papers the screen system operating in parametric resonance
conditions is included.

The paper deals with experimental investigation of the vibrating screen operation in
parametric resonance conditions. The changes of the excitation force and the excitation
frequencies are executed to measure of their effect on the sieve vibration amplitude.

2. Laboratory parametric resonance screen

The laboratory parametric resonance screen construction (Fig. 1a) is based on the first
PR screen designed by Slepyan et al. [8]. The screen system consists of two beams
connected by a sieve. The sieve is a simple sheet metal plate with rectangular cut-outs
(Fig. 2) made from spring steel grade 1.8159. The rubber pads between the sieve and the
beam are applied to limit the bending stresses concentration. Screening surface
dimensions are 750 mm length and 500 mm width. This system is suspended on the base
frame by set of sixteen springs with stiffness equal to 275 N each one, and the whole
machine weight is equal to approx. 200 kg. Excitation force is generated by two
electrical vibrators screwed down to the beams. The nominal value of excitation force is
equal to 2972 N (for 2954 rpm vibrators rotational speed). This force can be adjusted
with 10 % step of its nominal value. Rotational speed of electrical vibrators was read by
using laser speedometer. Hence, the excitation frequency has been calculated. The
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suspension assembly (Fig. 1b) is supplied with strain gauges sleeves, that enable sieve
preload measurement. Two piezoelectric accelerometers with the range up to 1000 g
are used for measurement of sieve vibration amplitude and frequency. They are located
in two opposite sides of the sieve.

a)

Figure 1. Laboratory parametric resonance screen: a) general view;
b) suspension assembly
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Figure 2. Sieve geometry and cut-outs enlargement

3. Experimental methods

The first step of experimental investigation was carried out for value of sieve preload
equal to 1000 N. In this case three levels of excitation force were applied: 30%, 40% and
50% of nominal force. For each value of excitation force the excitation frequency was
adjusted until the parametric resonance occurrence.

The second part of the investigation was performed for sieve preload values: 1600 N,
2400 N and 3000 N. Here only 40 % level of excitation force was applied. Data from
accelerometers were collected as an acceleration in a function of time. Output signal was
processed during the measurement by using Chebyshev filter. Further signal processing
was performed in MATLAB software. Fast Fourier Transform was used to find the
resonant frequency of the system. Maximum sieve displacement was obtained by double
numerical integration of input signal.
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4. Results and discussion

The value of sieve vibration amplitude increased with the excitation force level (Fig. 3).
For each considered cases this dependence is nonlinear. For the first two values of the
excitation frequency (49.24 Hz and 50.21 Hz) there is no significant increase of
vibration amplitude. In this case an increase in excitation force of 10 % results in
amplitude increase of 33 %. For the two last cases (52.16 Hz and 57.02 Hz) this increase
is much greater and respectively is equal to 250% and 325%. Further increasing of
excitation force level (from 40% to 50%) has a small effect on the amplitude value. For
each considered cases the amplitude increase is less than 20 %.

Sievevibration
amplitude, min
M
[=]
=
=

800 1200 1600 2000
Excitation force, N

Figure 3. Effect of excitation force on sieve vibration amplitude for different excitation
frequencies
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Figure 4. Effect of excitation frequency on sieve vibration amplitude for different
excitation forces

The amplitude level increase is caused not only by growing excitation force but also
by changes of the excitation frequency (Fig. 4). For the excitation force adjustment on
30% level, parametric resonance is detected for excitation frequencies in a range from 49
Hz to 62 Hz. Here the second mode of natural vibrations was observed [2]. The
amplitude reaches the maximum value equal to 13 mm. Further increase of the excitation
frequency results in a decrease of the amplitude till 5 mm. The curves of the excitation
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force levels equal to 40% and 50% are similar. Two local maximum can be
distinguished. The first can be observed for the excitation frequency close to 50 Hz. For
both excitation force levels the local maximum of amplitude is equal to 19.5 mm. The
second one appeared for the frequency near to 59 Hz. Here the increasing of excitation
force resulted in 20% increase of the sieve vibration amplitude. For force levels 40% and
50% the first mode of parametric vibrations was observed.

The sieve preload value has no significant effect on the amplitude level (Fig. 5). For
each considered tension forces the maximum value of amplitude is within the range
between 22 mm and 24 mm, however it is obtained for different excitation frequencies.
This is caused by increasing natural frequency of the system due to sieve preload
increase [3]. The increase of sieve preload also results in fading of first local maximum
of amplitude. For tension forces 2400 N and 3000 N only one local maximum can be
visible (Fig. 5).
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Figure 5. Effect of excitation frequency on sieve vibration amplitude for different sieve
preloads

5. Conclusions

The dependence between excitation force and sieve vibration amplitude is nonlinear.
Initially the increase of excitation force results in large amplitude grow, further increase
has no significant effect on the amplitude value. The amplitude of vibrations excited
with 30 % force level is relatively small in comparison with 40 % and 50 % force levels.

Changes of excitation frequency result in sieve vibration amplitude value. It is found
that when the excitation force level is equal to 40% or more, two local maximums of
amplitude appears for excitation frequencies close to 50 Hz and 59 Hz.

The value of excitation force has an effect on the sieve vibration mode shape. Two
mode shapes of parametric vibrations were observed.

An increase of sieve preload results in higher natural frequency of the system,
therefore to obtain maximum amplitude higher excitation frequencies must be applied.
However, there is no significant effect of preload increase on the amplitude value.
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Abstract

This paper presents impact absorption system based on magnetorheological elastomer with Halbach magnetic
arrays used for tuning. Its design and results of experimental evaluation are presented together with proposition
of a non-linear model to describe the system. In the end validation of the model is presented based on energy
and power balance method for its parametrization. This paper presents both novel approach to impact
absorption and to modelling of a system based on smart material such as magnetorheological elastomer.

Keywords: Experimental mechanics, smart material, magnetorheological elastomer, magnetic field, modelling,
parametrization, simulation

1. Introduction

Magnetorheological elastomer (MRE) is smart material that allows innovative approach
to impact and vibration control in mechanical and civil structures. It is a composite
material made out of rubber matrix and soft magnetic particles mixture. Application of
magnetic field influences change of rheological and mechanical properties of the
material as the particles try to arrange themselves into chain like structures inside of the
material, along magnetic field vectors. Therefore material properties can be controlled
with use of external magnetic field, what can be used in controllable impact and
vibration control [1-4]. In the paper design and construction of the impact absorption
system based on MRE material and Halbach arrays have been presented. Double dipolar
circular Halbach array is an important element of this system as it is innovative method
for low power consuming magnetic generator that can be used for stimulation of MRE
absorbers and isolators [5, 6]. Testing of presented system have shown its potential for
change of resonance frequency and its damping properties. On base of the experimental
results a non-linear models of the system have been proposed. For its validation and
parametrization energy and power balance method have been used [7, 8]. Results of the
parametrization indicate need for search of another model as the results do not match
with experiment.

2. Absorption system design

Presented impact absorption system is designed to absorb impact energy and mitigate
vibrations occurring after impact. It was thought as single degree of freedom system,
however for testing purposes second degree was added. The idea of the system is
presented in Figure 1. a), where element between mass M; and M; is MRE material and
spring K correspond to suspension the system is hanging on. The system is based on
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a magnetorheological elastomer working as damping material. For magnetic stimulation
of the MRE material double dipolar circular Halbach arrays were designed and
manufactured. Due to need for use of strong magnetic fields all elements used in the test
rig are made out of non-magnetic materials, like marble, aluminium and brass. The test
system is presented in Figure 1. b).

Figure 1. Schematic idea of the absorption system a), picture of the absorption system,
where: 1 - upper mass (4.25 kg), 2 - bottom mass, 3 - Halbach magnetic arrays,
4 - acceleration sensor, 5 - impact head, 6 - force sensor, 7 - shaker

For measurement purposes system is equipped with two sensors: accelerometer
(353A33, PCB) located at the back of the upper mass and force sensor (208A02, PCB)
between impact head and shaker. Signals were collected with use of DAQ board
(U2355A, Keisight). It was also used to control shaker (2075E, The Modal Shop Inc.)
powered by amplifier (SmartAmp Power Amplifier 2100E21 series, The Modal Shop
Inc.). Modal shaker was used for controlled impact impulse generation. For programing
purposes computer software (VEE 9.32, Keisight) was used [6].

Upper mass was placed on four magnetorheological elastomer dampers surrounded by
double dipolar circular Halbach arrays. They were placed on CNC milled aluminium
plate with locking holes for Halbach arrays. The base of the system was marble block
with weight of almost 40 kg to provide low frequency swing of the system after each
excitation.

2.1. Magnetorheological elastomer

Magnetorheological elastomer is a smart material that changes its mechanical and
rheological properties under influence of external magnetic field. It is rubber material
filled with soft magnetic particles that tend to create chain like structures in the direction
of the magnetic field that stimulates the material. MRE material used in the test stand is
made out of three components: thermoplastic elastomer matrix Tefabloc TO..222
(Mitsubishi Chemical Performance Polymers), iron particles ASC 300 (Hoganés) and
paraffin oil Onida 934 (Shell) in weight ratio 83 : 14 : 3. This material was previously
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developed and described in papers [9, 10]. Material was prepared using in mixing
chamber of Plasti-Corder Lab-Station (Brabender). Samples were made by extrusion
pressing. Figure 2. presents picture of the samples and their cross-section showing its
uniform structure. Each sample was 15 mm high and had diameter of 25 mm.

Figure 2. Magnetorheological elastomer sample

2.2. Magnetic field generator

To stimulate magnetorheological elastomer enquired is magnetic field, the stronger it is
the bigger change of the materials properties. Therefore for the purpose of the test stand
double dipolar circular Halbach arrays were designed and fabricated. Figure 3. a)
presents picture of one of the arrays. The circular Halbach array is a set of magnets
oriented is a specific way that can generate dipolar magnetic field inside of its opening.
By setting two or more such arrays around one another it is possible to change generated
magnetic field by rotating them around one another.

1
. o
B =)
a8
shrax SRESR
Angle of vector deviation from y axis [7]

8

4
2

T T T T T 10
1] 30 60 80 120 150 180

Normal value of magnetic flux density B [mT,

Angle of Halbach rotation [7]
b)
Figure 3. a) Double dipolar circular Halbach array, where 1 - outer array frame,
2 - inner array frame, 3 - neodymium magnets, 4 - rotation arm with locking pin hole,
b) relation of normal value of magnetic flux density B generated by Halbach array and
its angle of deviation from y axis to the angle of rotation of outer array to inner one

Magnetic Halbach arrays used in the study was made out of 32 N48 grade neodymium
magnets 12 mm x 12 mm x 12 mm. It allowed to generate magnetic field in range from
190 mT to 70 mT. In Figure 3. b) is presented graph showing change normal value of
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magnetic flux density B generated versus rotation of the outer array around inner one
and change of deviation angle of the magnetic field vector from y axis.

3. Experimental evaluation

Experimental investigation of impact absorption and vibration damping with use of the
test stand was conducted for set of impact force and magnetic flux density values. Tests
were run in series for different values of magnetic field. After each test setup there was
a 20 minute brake that allowed mitigation of vibration caused by the suspension of the
system (refer to Figure 1. a)). In the paper are presented results of acceleration time
traces for two representative values of impact force and corresponding frequency
response functions.

204 404
100 N — 190 mT —— 186 mT 200 N —— 190 mT —— 186 mT
154 180 mT —— 170 mT 30 180 mT —— 170 mT
156 mT —— 137 mT 156 mT —— 137 mT
104 117 mT ——98mT M7 mT ——98mT

—8ImT ——70mT
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Acceleration [mmi/s?]
Acceleration [mm/s?)

T T
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Time [s]

a)
Figure 4. Time traces of acceleration of the upper mass for range of magnetic field
values for two representative values of impact force: a) 100 N and b) 200 N

Figure 4. presents time traces of acceleration collected with acceleration sensor mounted
on the upper mass of the test system. For both values of impact force presented it is
visible that the stimulation with stronger magnetic field caused faster damping of the
vibrations occurring after impact.
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Figure 5. Frequency response functions for range of magnetic field values for two
representative values of impact force: a) 100 N and b) 200 N
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Figure 5. show frequency response functions for range of magnetic fields and two
representative values of impact force. It was calculated on base of acceleration and force
signals with use of the double channel signal analysing method [6, 11]. On base of
presented results it is clearly visible that magnetic field can significantly influence
properties of the MRE material and therefore increase its damping properties what can
be used for better reduction of vibration in civil and mechanical structures.

4. Parameter estimation

To analyse obtained results a non-linear constitutive model have been proposed. It is
four parameter model with one elastic element (Co) connected with viscous element (Ko)
in series and they are connected in parallel with elastic non-linear element (C;) and
viscous element (Ki). For parametrization of this model energy and power balance
method is used [7, 12, 13]. Figure 6. presents schematic representation of the model.

| ot

Figure 6. Four parameter constitutive models chosen for analysis of the obtained results

[8,14]
To describe the model following equations are used:
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a’=C -oc.x3+ﬁ~oc.*+M~05.'X'+3K°—'Cl~oc.xz*—ﬁ-05i (5)
X 1 X X X X C p
0 0 0

Equations (1) and (2) describe dynamic equilibrium state of the model with non-linear
elastic element. On their base equation (3) is created to eradicate ¢ from those equations
and join them in one. On base of this uniform equation two formulas for the energy and
power balance are formulated and are presented in equation (4) and (5). In those
equations «; represent area of the hysteresis loop created from displacement x and

velocity x. With use of multiple linear regression parameters of the model are
determined and are presented in Table 1. Parameters are presented in form of function
where B is hormal value of magnetic field used for stimulation of the MRE material.

Table 1. Results from parametrization, where B is value of magnetic field

Ko K1 Co Ci Mean squared error
0.0108 B®- | -0.0108 B®
45659 B2+ | +4.5388B? | 4*10'B - -10*B
636.23 B —631.45B 3*101 +2*107 0.999969
+3.34*10* +3.29*10*

On base of those parameters simulation have been done with initial parameters matching
those from experiment. The unexpected result was that scatter instead of tending to zero
what means that the model does not match presented results and therefore presented
parameters are wrong. Nevertheless presented method gives a promising approach for
modelling and parametrization of the presented system, with use of different model.

5. Conclusions

This paper presents design, construction and an approach to modelling of the system.
The impact absorption system is based on magnetorheological elastomer is and active
smart magnetic material that presents controllable damping properties. To control its
properties double dipolar circular Halbach arrays have been designed and fabricated.
They allow to change generated magnetic field in a range from 70 mT to 190 mT.
Experimental testing of the system have proven its possibility to shift frequency
resonance by more than 10 Hz and to effectively reduce vibrations occurring in the
system after impact. An approach to modelling with use of the energy and power balance
method have been made, however obtained results do not match with experimental
results and indicate need for search of a different model.
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Abstract

This paper presents the results of numerical analysis and physical simulation of the vertical steel tank for usage
in the vibration condition monitoring system. For purposes of the numerical analysis the tank is considered as
the double steel cylinder consisting of the inner and outside shells. The discrete model of a tank is developed.
The estimations of stress and deformation are obtained when the following vertical loads are exerting: weight
of the fuel, weight of the tank roof and other structural elements or equipment. The physical model of a tank is
used for physical simulation. The impulse responses of this model are measured and analyzed for different
levels of tank filling. The methods of Prony and Steiglitz-McBride are used for estimation of the vibration
damping factor which depends on the level of tank filling.

Keywords: vertical steel tank, numerical analysis, stress, deformation, vibration analysis, damping factor

1. Introduction

Ensuring safe operation is a very important problem for many complex objects located in
hard-to-reach regions and influenced by the dynamic excitation.

As a complex object we will consider a vertical weld-fabricated steel tank with
environmentally hazardous substances, whose operation is associated with various
internal and external influences. For example, such tank was installed at the Ukrainian
Antarctic Station Vernadsky. Modal (natural modes and shapes) and dynamic (vibration)
characteristics of the tank are caused by the structural and technological conditions of its
assembling. In addition, these characteristics also depend on the external dynamic
excitations (wind load, earthquake load), temperature variations, and the changes of the
fuel level in the tank.

The following factors make such tanks extremely dangerous for people and the
environment: (a) defects caused by fabrication, transportation, or installation, (b)
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changes of mechanical characteristics of the used materials under the influence of
dynamic excitation, (c) damages in the tank structure, which can lead to the fuel leakage.

The condition monitoring system is developed for prevention of the tank failure and
environmental pollution [1]. The bases of such system are: vibration measuring
subsystem, control subsystem, signal processing and decision making subsystem,
subsystem for simulation, determination and prediction of parameters and characteristics
of the mode of deformation.

The purposes of this work are: a) numerical analysis of the vertical steel tank when
the vertical loads are exerting, b) physical simulation of the tank, analysis of the impulse
response and determination of features of changes in the tank model condition.

2. Development and analysis of tank model

We consider the testing object (tank) as the double steel cylinder which consists of the
inner shell and the outside shell. The shells consist of welded walls, besides there are
steel tubes for fuel dispensing and tank unloading.

We use Finite Element (FE) Analysis to design the discrete model of the tank, which
can be representative of an actual object. For this purpose we consider the walls of shells
made from steel with the following properties: density 7850 kg/m?; modulus of elasticity
2,05 10° N/m?; Poison’s ratio 0,3; shear modulus 0,79-10° N/m?. Each wall is modeled
by the set of the quadrilateral plane FE with six degrees of freedom. Mechanical data of
weld seams are accepted the same as of the material of walls. Therefore, additional finite
elements for simulation of weld seams are not used. The NASTRAN is used for design
of discrete model of the tank, the presence of weld seams is ensured by the simulation of
walls in the form of surfaces (bodies). Two mentioned tubes connect the inner and
outside shells are modeled by two rod FE “tube”, two quadrilateral FE are replaced by
eight triangle FE at the attaching point. Thus, the developed discrete model of tank
consists of 3548 FE and 3393 nodes. The discrete model of tank is presented in Figure 1.

Figure 1. Discrete model of vertical steel tank as a double cylinder
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The aim of analysis of the developed model is to estimate the mode of deformation
when the vertical loads are exerting. We consider the following loads: weight of the fuel,
weight of the tank roof and other structural elements or equipment.

Results of analysis of the stress and deformation of inner tank caused by weight of
the fuel are presented in Table 1, values of the stress and deformation do not exceed the
allowable values.

Table 1. Dependencies of stress and deformation on weight of the fuel

Characteristic of tank Cases of fuel filling as part of tank volume
condition 1/4 1/2 3/4 1
Stress, MPa 12 27 41 56
Deformation, mm 0,207 0,476 0,728 0,978

Maxima of stress and deformation of the inner tank are obtained at the bottom of
walls for the four cases of fuel filling. Fig 2 shows the result of estimation of the mode
of deformation for full filling.

a)

Figure 2. Mode of deformation of inner tank full filling: a) deformation; b) stress

The results of analysis of the stress and deformation of the tank as a double cylinder
caused by weight of the tank roof and other structural elements or equipments are
presented in Fig. 3. Maxima of stress (0,6MPa) and deformation (0,016 mm) are
observed in elements of the bottom of walls and in elements of the top of the tank ring
(in part in weld seams). The obtained value of load caused by weight of the tank roof and
other equipments is considerably less than the bound of calculated stress. Received
results show that the surface pressure caused by weight of the fuel on the tank's wall
stresses the model elements much more than the axial load weight of the tank roof and
other equipment.

Thus, for the purposes of further research, different levels of tank filling can be
considered as a cause of changes in the tank condition.
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Figure 3. Mode of deformation of tank as a double cylinder caused by weight of the tank
roof and equipments: a) deformation; b) stress

3. Physical simulation of tank and analysis of impulse responses

A small-size vertical steel container, with capacity of 0,04m3, is considered as a physical
model of a tank. We use the vibration method of free oscillations, which consists in the
impact excitation of the testing object and further analysis of object’s impulse response.
The unit of two MEMS MS8002.D accelerometers are used to measure the impulse
responses in two directions: in horizontal plane and vertical plane [2]. Figure 4a shows
the physical model of the tank with mounted unit of accelerometers, and Figure 4b
illustrates the object’s simulation model, on the surface of which the spots of impact
excitation are indicated as “x” and the spots of impulse responses measurement are
indicated as “0”.

a)

,f, —

Figure 4. Models of tank: a) physical model of tank with mounted unit of
accelerometers; b) three-dimensional simulation model

Measurements of the object’s impulse responses are carried out for the mentioned
above cases of liquid filling. The example of Welch periodogram of impulse response is
presented in Fig. 5 (impact is in the orthogonal direction to axes of sensitivity of both
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accelerometers, container is empty). Figure 5 shows the presence of two spectral
components in the frequency band (300 Hz, ..., 500 Hz), whose amplitudes exceed the
others.

100 200 300 100 500 600 700 800 900 1000

Frequency, Hz

Figure 5. Welch periodogram of impulse response under impact in the orthogonal
direction to axes of sensitivity of both accelerometers

The methods of Prony and Steiglitz-McBride are used for analysis of the impulse
responses and estimation of vibration damping factor depending on the level of liquid
filling. In conformity with Prony’s method, the impulse response, consisting of the N
samples, is approximated by the model of sum of g complex exponents [3]:

n]=>" A expller, + jost, Y-1)T + ] )

where T is a sampling period; n is a number of time step; A, ¢, fy, 6 indicate the
amplitude, damping factor, frequency, and phase angle of k component respectively.

The equation (1) can be presented in the form of z-transform:

R(z)- i—(?k_z 0 @)

k=1 Z,
where h, = A exp(j6, ); z, = ep[(e + j27 T )T Jand z = exp(j2AT).
Estimations of the unknown parameters A, e, T, 6 are obtained by using the

estimations of coefficients of the discrete transfer function of certain filter with the finite
pulse characteristic. The N-sampling impulse response of testing object is used as the
filter pulse characteristic h(k). It is necessary to assure the identical equality of the
discrete transfer function of the filter to transformation (2), if Prony’s method is used.

The method of Steiglitz-McBride [4] also allows synthesizing the filter if the pulse
characteristic is given. But this method does not demand the identical equality (2), in this
case the following condition is fulfilled:

kZ::|h(k)—h*(k)|2 —min 3)

where h«(k) is the pulse characteristic of recursive filter with given polynomials order of
numerator and denominator of the discrete transfer function.

The following data are used for estimation of vibration damping factor by the method
of Steiglitz-McBride: N=4096 and q=10. Results of estimation of frequency and



60

damping factor for two low-frequency components of impulse responses are presented in
Table 2 for different levels of liquid filling.

Table 2. Estimations of frequencies and damping factors (modulus) depending on the
level of liquid filling

Cases of liquid filling as part of tank 0 1/4 1/2 3/4 1

volume

Component 1 Frequgncy, Hz 340 354 327 367 337
Damping factor 20 36 39 54 102

Component 2 Frequency, Hz 445 476 444 465 449
Damping factor 2 11 14 34 45

It can be seen, the increase of liquid filling results in increase of damping of
components of the impulse response. This fact can be used as feature of changing of the
tank condition during the vibration condition monitoring of vertical steel tanks.

4. Conclusions

The numerical analysis of the vertical steel tank is carried out when vertical loads are
exerting. Received results show that surface pressure caused by weight of the fuel on
wall of tank stresses of elements of tank model much more than axial load weight of the
tank roof and other elements and equipment.

The physical simulation of tank is done. Impulse responses of tank’s physical model
are measured and analyzed for different levels of liquid filling. Estimations of vibration
damping factor are obtained by the method of Steiglitz-McBride for different levels of
liquid filling. Received results show that increase of liquid filling results in increase of
damping of components of the impulse response.

Results of the presented work can be used for vibration condition monitoring of
vertical steel tanks.
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Abstract

This work is devoted to further research and improvement of the vibration diagnostics of the initial crack-like
damage of rotation shaft in aviation gas-turbine engines (GTE). We propose to use fractal analysis of the
accelerating shaft response in order to increase the damage detection efficiency. Responses of the accelerating
shaft are derived by using simulation in absence and in presence of the initial traverse crack. The responses of
the cracked shaft have sub-critical peaks; the increase in size of a crack leads to the increase in peak values of
the vibration amplitude in the range of sub-harmonic resonances. The Hurst exponent is obtained for the time
series in the range of sub-harmonic resonances. The research shows that a small change in the crack size
results in considerable change of the Hurst exponent, which allows to detect the mentioned sub-harmonic
resonances of the measured signal in order to identify the initial crack-like damage of the rotation shaft.

Keywords: gas-turbine engine, cracked shaft, vibration diagnosis, fractal analysis, Hurst exponent

1. Introduction

This paper is a continuation of the previous researches [1,2] dedicated to development of
the multilevel vibration control system of aviation gas-turbine engines (GTE) and its
practical implementation. The system mentioned above comprises the following three
levels: (i) the first (main) level - for current control and awareness of the actual levels of
vibration at the harmonics of the rotor rotation, (ii) the second (auxiliary) level - for
diagnostics of the initial crack-like damages of the engine blades and (iii) the third
(auxiliary) level - for diagnostics of the initial crack-like damage of the rotor's shaft
during startup at the acceleration to operating speed. In order to diagnose the damage of
the rotor's shaft, the peak values of vibration amplitude in the range of sub-harmonic
resonances of accelerating cracked shaft response are used as fault features. Therefore,
the narrow-band digital tracking filter was developed in order to extract the main rotor
harmonic vibration at the non-steady-state mode, as presented in [2]. The peak values of
vibration amplitudes are determined after filtration in the field of sub-harmonic
resonances. The received values are compared with the threshold and the decision on the
presence or absence of a crack in the shaft is made.
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We propose to improve the diagnostics of the initial crack-like damage of the rotating
shaft by using fractal analysis of the accelerating shaft response in order to increase the
efficiency of the damage detection. It is very important for detection of the initial crack-
like damage and especially in case of the low signal-to-noise ratio.

Fractal analysis is a promising signal processing method used for the noise-like
signals [3]. The analysis of fractal and multifractal properties of time series allows
obtaining simple and suitable characteristics of the investigated signals, such as the
fractal dimension, Hurst exponent, and other characteristics (correlation dimension,
embedding dimension), if necessary. Changes of the mentioned characteristics can be
used to detect the local changes in the measured signal which are generated by the initial
crack-like damage of the rotation shaft.

2. Estimation the Hurst exponent

We propose to use the Hurst exponent of the accelerating shaft response as a faul feature.
The oldest and best-known method to estimate the Hurst exponent is R/S
analysis [4]. Ratio R/S indicates ratio of the range R to the standard deviation S of
the analyzed time series. The procedure of estimation of the Hurst exponent presented in
[4] is as follows:
1. It is necessary to find the mean E and the standard deviation S of the analyzed time
series Zi(i=1, ..,n).
2. The data of the series Z; has to be normalized by subtracting the sample mean

X;=2,-E
3. Create the cumulative time series fori=1, ..., n:

1

Y =D X;
j=1
4. Find the range
R=max(Yy,...Y, )—min(Yy,...Yy)
5. Calculate the mean value (R/S) of the series of length n.
6. Obtain the value of Hurst exponent H, taking into consideration that the R/S statistic
asymptotically follows the relation

R/S~z",
where 7 is a time interval of the analyzed time series Z;.

The value of Hurst exponent allows to recognize a persistent process (H > 0,5) and
anti-persistent process (H < 0,5), for a Gaussian noise H = 0,5.

3. Simulation and analysis of accelerating shaft response

The equations of motion for a Jeffcott rotor with a cracked shaft in presence of the
gravity forces and unbalance excitation, and subject to constant acceleration, were
presented and investigated in [5]. The following from among the equations of motion
mentioned above are used for simulating of the accelerating shaft response:
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e ininertial coordinate system (xyz):
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where M is the mass matrix; F is the damping matrix; K is the stiffness matrix; z and y
are the displacements; @ is the angle of orientation of unbalance mass ¢ relative to the

axes z;
e in body-fixed rotating coordinate frame (rg):

[M o]{gHF —2Ma)(t)j{cf}+ K= f(y)4K; -Mo?(t) —Fet) {é}:
0 MJlii] \2Ma(t) F 3] |Fa(t) K-Mo?(t) |1

, )
=Mg c0s® +Meo?(t) OB Mea sing
-sin@ sinfg —cos f

where w(t) is the instantaneous speed of rotation; a is the constant acceleration of
rotation; @ is the angle of position of the rotating coordinate frame (&r¢) relative to the
inertial coordinate frame (xyz); § is the angle of orientation of unbalance mass ¢ with
respect to crack; AK. is the shaft rigidity decrease at the crack presence; f(y) is the
function for crack accounting to the shaft stiffness according to the crack angular
position .

The transformation between the inertial and rotating coordinate frames is carried out
according to the following dependence:

z cos@ -—sind\ &
y) \sine cos® \n)’ )

The model of the transverse crack is a function of “breathing”, the relative rigidity
changing of the shaft AK = AKs/K depends on the cross location of crack section and
stress-strain area of the shaft.

The computer simulation of the accelerating shaft response in absence (AK = 0) and
in presence of a small crack (AK = 0,005,...,0,1) is carried out by using the transformed
equations (2) to non-dimensional form and dependence (3). The time plots of non-
steady-state vibration of the rotating shaft are shown in Figure 1 for the following data:
AK = (0; 0,01; 0,05; 0,1) and w = 8 = 0°. These plots are represented in the relative scale
on the ordinate axis (non-dimensional vibration amplitude z) and on the abscissa (non-
dimensional time 7). Value = 1000 corresponds to transition through critical frequency
of rotation. It can be seen that the initial transverse crack results in presence of 1/2 order
sub-critical peak, and the increase of the crack parameter AK leads to the increase in sub-
critical peak values of vibration amplitude.

Simulated signals were processed using the above presented procedure of estimation
of the Hurst exponent. We used two separate parts of each signal for the analysis:
a) a sample of 500 values of non-dimensional vibration amplitude z in the range of sub-
harmonic resonances and b) a sample of 500 values of non-dimensional vibration
amplitude z in the range of main resonance. Figure 2 represents the dependence of
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obtained values of Hurst exponent H on the relative rigidity changing AK of the shaft for
the mentioned samples.
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Figure 1. Non-dimensional vibration amplitude of accelerated rotor at the AK =0 (a),
AK =0,01 (b), AK =0,05 (c) and AK =0,1 (d)

In general, the Hurst exponent is decreasing at the increasing of a crack parameter
AK for both analyzed parts of simulated signal. It can be seen in Figure 2b that the initial
transverse crack results in small changing of Hurst exponent of signal in the range of
main resonance (decreasing is about 19%). In the range of sub-harmonic resonances
(Fig. 2a) the value of Hurst exponent is decreasing to a considerable extent, this
decreasing is more than 3 times at the interval of relative rigidity changing
AK =0,005, ..., 0,1. In the case of AK < 0,005, the Hurst exponent dependence on AK is
not informative for crack detection.
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Figure 2. The Hurst exponent dependencies on relative rigidity changing AK in the range
of sub-harmonic resonances (a) and in the range main resonance (b)

Another simulation and fractal analysis of signals are carried out taking into account
of additive Gaussian noise. The value of noise standard deviation is selected 10, in this
case the value of signal to noise ratio (SNR) is different for each simulated signal. The
noisy vibration amplitudes z, in the range of sub-harmonic resonances for AK =0 and
AK = 0,05 are illustrated in Fig. 3.
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Figure 3. Non-dimensional noisy vibration amplitude in the range of sub-harmonic
resonances at the AK' = 0 (a) and AK = 0,05 (b)

Fig. 4 shows dependence of values of Hurst exponent H on the relative rigidity
changing AK, which are obtained for the noisy vibration amplitudes z, in the range of
sub-harmonic resonances. The presented result show, that values of Hurst exponent is
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decreasing at the increasing crack parameter AK. The form of depengence is simiral to
the graph represented in Figure 2a, the changing of Hurst exponent is more than 3 times
in the presented interval of AK. Taking into account of additive Gaussian noise
eliminates method error of Hurst exponent estimation at the AK < 0,005.
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Figure 4. The Hurst exponent dependence on AK for the noisy vibration amplitudes
in the range of sub-harmonic resonances

4. Conclusions

Research presented in this paper shows that a small change in the relative rigidity
changing of shaft in presence of the initial crack-like damage results in considerable
change of the Hurst exponent. This fact allows to detect the small sub-harmonic
resonances of the noisy measured signal and to identify the initial crack-like damage of
the rotation shaft. The usage of proposed approach to improvement of diagnostics of the
crack-like damage will promote to ensure awareness of GTE.
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Abstract

Boom-type roadheaders represent heavy working machines used in underground mines for the drilling of dog
headings, for tunnelling and — to a certain extent — for surface mining. The key working process carried out by
such roadheaders is rock mining. This process, especially when cutting rocks with low workability, causes
strong vibration excitations and dynamic loads not only in a roadheader cutting system, but within its entire
construction. The article presents a dynamic model of a boom-type roadheader body. Four vibrating masses,
representing the key subassemblies of the studied object and a seat together with a roadheader operator, are
distinguished in a spatial physical model with a discrete structure. They are subject to the activity of an
excitation from the loads generated in the cutting process. A mathematical model is comprised of 19 non-linear
ordinary differential quotations of the second order. The model was implemented in the MATLAB/Simulink
environment, in which a simulation model was created. The article presents the examples of results of
numerical simulations using the established model.

Keywords: roadheader, dynamic model, dynamic loads, vibrations

1. Introduction

Roadheaders are working machines used in mechanised technologies for drilling dog
headings and chamber headings in underground mines and tunnels in civil engineering.
Roadheaders are multi—functional machines designed for the mechanisation of the basic
activities connected with the drilling of mine headings, namely tunnels. The activities
encompass, in particular, rock cutting, loading the mined rock into the means of
transport, transporting the mined rock from the heading face, as well as mechanised
erection of a dog heading support. For this reason, such machines are subject to the
activity of vibration excitations originating from different sources, with their varied
intensity. As the key process carried out by such type of machine is the mechanical
cutting of rock, the vibrations they are susceptible to and the dynamic loads of their
construction are basically caused by interactions taking place in the machine—mined rock
configuration. Such an activity is not limited here only to a drive of the working units
directly performing the cutting process, but is transmitted by such working units’ load-
carrying structure onto the roadheaders’ other subassemblies. The vibrations excited by
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and the dynamic loads generated by the cutting process of rocks with especially low
workability, are having the greatest effect on the durability and reliability of not only the
roadheader cutting system, but also its other subassemblies and systems.

The dynamic state of the group of heavy working machines discussed is analysed
here not only to draw conclusions concerning the improvement of their construction. The
investigations of roadheaders’ dynamics are of high significance also for ensuring the
operational safety and ergonomics of such type of mining machines. Such investigations
include, notably, those aimed at identifying the magnitude and character of the excited
vibrations transferred onto an operator’s station for evaluating the impact of mechanical
vibrations on a human organism and an operator’s vibration isolation [1,7], or examining
the stability of the discussed machines. A roadheader may lose its stability as a result of
the vibrations generated in a working process, and a serious hazard may be posed for
people working in the confined space of dog headings or tunnels (this concern also
applies to numerous mobile machinery, for instance cranes [4]). The vibrations excited
by roadheader operation, transferred through a substrate (the floor plane of a heading
being driven) to the environment may also be a source of paraseismic vibrations
(tremors) [5]. Such vibrations are propagated in rock mass, in the surrounding of a place
where mining works are carried out. Such vibrations may affect the environment
adversely.

This article touches upon the issue of modelling of vibrations and dynamic loads of
boom-type roadheaders. Such machines are a sub—group of mining roadheaders, used
for excavation of dog headings, equipped with working units in the form of cutting heads
with small dimensions, in relation to the cross section area of the headings excavated
with them. The heads are mounted at the end of a boom which is inclined in two
mutually perpendicular planes. Cuttings heads can be moved this way along the heading
face surface along any track. Rock mining is carried out in this case by way of cutting —
by means of picks mounted on a cutting head, where the rotary motion of a cutting head
is caused by a drive system.

The research works pursued until now have been related to the dynamics of selected
subassemblies of a roadheader or its components — mainly the cutting system: cutting
heads, their drive and a load—carrying structure (e.g. [2,3,6,9]). The reasons given above
allow to conclude, however, that the entire object should be treated as a whole — as a
complex dynamic system, taking into account the dynamic impact onto its substrate. The
article presents a dynamic model of a boom-type roadheader body. For the purpose of
numerical investigations of the roadheader’s dynamics, the mathematical model created
was implemented in the MATLAB/Simulink environment, in which a simulation model
was created. The article presents the examples of computer simulations accompanying
the execution of a working process of cutting the heading face surface of the dog
heading being drilled.

2. Physical model

The construction of a boom-type roadheader body supports the creation of discrete
physical models. Four rigid bodies connected with each other with weightless
viscoelastic elements are distinguished in a physical model of the studied object (Fig.1).
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The bodies represent the key parts of a roadheader boom, i.e.: roadheader casing (1),
movable part of the turntable (2) and a boom with cutting heads (3), and a seat together
with an operator seating on it (4). A movable part of the turntable with a vertical axis of
rotation is fitted rotationally to the roadheader casing (body). In case of the considered
roadheader construction, the movable part of the turntable is provided with a bearing
relative to the fixed part (of the roadheader casing) by means of two bearings — a axial
and radial bearing. The rotary motion of a movable part of the turntable is carried out
here with an actuating—rack—and—pinion mechanism. The activity of such a mechanism
is modelled in the form of the concentrated force P, = f(¢,,) applied to point 13. The

direction in which the force is acting is parallel to the axis Xo of the system of
coordinates XoYoZo. A roadheader boom is mounted to the movable part of the
turntable by means of two slide bearings and is supported with two hydraulic lifting
actuators — a right one (SPP) and left one (SPL).

The roadheader components mentioned above are considered as rigid bodies with the
mass of, respectively, mk, mo, mw and mgo, concentrated in their centres of gravity (in
the points: Sck, Sco, Scw and Scro) and with the moments of inertia of, respectively: lkx,
Iky and lkz, (roadheader casing) lox, loy and loz (movable part of the turntable) and Iwx,
Ilwy and lwz (boom). The values of moments of inertia of the turntable and boom were
determined in relation to the axis of the system of coordinates XoY oZo.

The activity of the roadheader casing on the substrate was modelled as six
viscoelastic constraints with the specific rigidity k; and the damping coefficient ¢; (for
i=1,...,4) applied in the points marked with numbers from 1 to 4. Four of them
(nominated with index Z) are transmitting loads perpendicular to the substrate. Two of
them (nominated with index X and Y) — are transmitting loads in the plane parallel to the
substrate, in the direction of the axis Xk and Yk of the system of coordinates XxYkZk
connected with the roadheader body.

The susceptible mounting of the movable part of the turntable in relation to its fixed
part was modelled as six viscoelastic constraints applied in the points numbered 5 to 10.
They represent the considered way of its bearing. Out of six viscoelastic elements, fours
are situated in the vertical direction and arranged at the pitch diameter of the axial slide
bearing raceway (located in the upper part of the turntable). The activity of a radial
bearing situated in the lower part of the turntable is modelled by means of other two
constraints (situated horizontally, perpendicular to each other). The bearing of the boom
on the turntable is presented as five viscoelastic elements applied in points 11 and 12.
The constraints are representing reactions acting in the place where a boom is fitted to a
turntable in slide bearings. As already mentioned, the boom is supported with two
hydraulic actuators. The actuators’ dynamics is shown as indicated in the work [8]. The
mounting of the operator’s seat to the roadheader casing is modelled by means of a
single viscoelastic element with the rigidity keo and the damping factor ceo. It was
assumed that the seat—operator system has only a single degree of freedom (this results
from the mounting construction).

The physical spatial model created has nineteen degrees of freedom. The temporary
location of a roadheader casing modelling solid is described with the six coordinates:
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three translation coordinates — Xk, Yk and zx, and three rotation coordinates — ¢kx, ¢«y,
and ¢xz (six degrees of freedom). The following designations for coordinates were used
for the movable part of the turntable: xo, Yo, zo (for translation movement) and gox, pov,
poz (for rotational movement). The following translation coordinates are describing the
situation of the boom: xw, yw, zw and the rotation coordinates: owx, gwy, pwz. The
vibrating motion of the seat together with the operator is described by the translation
coordinate zro measured in the direction of the axis Zk of the system of coordinates
connected with the roadheader body.

Vibration excitations are acting on the masses distinguished in the physical model in
the form of an external load, which are the result of carrying out the working process
(cutting the heading face of the drilled dog heading). This load was reduced to the
intersection point of the boom longitudinal axis with an axis of rotation of the cutting
heads and was described with six components — three concentrated forces (Px, Py and
Pz) and three moments of forces (Mx, My and Mz). The time curves of this excitation are
generated in a separate computer programme for the set values of parameters for the
execution of this cutting process.

3. Mathematical model

The motion equations in the developed physical model were entered using the Lagrange
second degree equation:

dt{ oq; aq;

where: Ek — kinetic energy of the system; Ep — potential energy of the system; Q; — the
external generalised force corresponding to the coordinate qj; R; — the
generalised resistance force corresponding to the coordinate g;; gj and ¢, — the

generalised (translation or rotation) coordinate and its first derivative

A mathematical model describing motion in the established physical model of the
studied object consists of a system of 19 ordinary nonlinear second—order differential
equations, which have the following form in the matrix—vector form:

M-§+C-q+K-q=Q )
where: M, C, K — mean, respectively, the matrix of: inertia, damping and rigidity; Q —
vector of external forces; whereas q,q,d — vectors of generalised coordinates

and their subsequent derivatives. The vector of generalised coordinates g has
the following form here:

gq= [XK YK Zk 1 Prx 1Py 1 Prz 1 %0 1Yo 1201 Pox 1Poy 1Poz +Xw + Yw 1 Zw 1 Pwx Py + Pz ’ZFO]T ®)

The motion equations were entered into MATLAB/Simulink software after executing
relevant conversions. Three layers can be distinguished in a hierarchy structure of the so
obtained simulation model. Functionally interrelated sub-systems are situated in the
master layer (Fig.2), which are representing the vibrating elements distinguished in a
physical model (roadheader casing, turntable, boom and seat with an operator), a block
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responsible for recording calculations results (to workspace) and blocks responsible for
calculating, in successive steps, numerical integration of motion equations of temporary
values of dynamic parameters of actuators lifting the boom (Lsp, P_SP) and the force
developed by a boom rotation mechanism actuator (Pso). The second layer of the
simulation model consists of blocks in which motion equations are implemented for each
of vibrating masses (Fig.3). Motion equations are integrated numerically in the lowest
(third) layer by means of appropriate function blocks (integrators) (Fig.4). The values of
coordinates of each of the masses are established in successive integration steps as a
result of solving a motion equation iteratively. Motion equations are integrated
numerically by means of a fourth order Runge—Kutta algorithm with a constant
integration step.
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Figure 2. Master layer of simulation Figure 3. Second layer of simulation model
model in MATLAB/Simulink
environment

4. The examples of simulation results

Figures 5 and 6 show the selected results of computer simulations of roadheader body
dynamics using the developed simulation model. The motion of the boom together with
a movable part of the turntable was started in the right direction in the considered time
interval, after the lapse of 0.5 s of the simulation. The cutting heads performed 3
revolutions over the next 2.5 s of the simulation. During this motion, the roadheader
body was loaded with forces exciting vibrations generated by a cutting process. The
cutting of the rock with the compressive strength of Rc=80 MPa with the web of
z=0.13 m was simulated here. As seen, the working process carried out by the
roadheader is a source of strong vibrations of its components, in particular — a boom.
The angular speed of boom deflection was established at the average level of 0.033 rad/s,
whereas the amplitude of such speed vibrations (understood as the variability range) was
0.05 rad/s. During this time interval the boom turned about the axis of rotation of the
turntable through an angle of ~5 deg.
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Figure 5. Boom angular speed and its angular displacement curve relative to the axis Z

Due to the dynamic properties of the studied object resulting from its construction
(especially with the use of hydraulic actuators), the boom subjected to the activity of a
variable external load is performing intensive lateral vibrations (Fig.6). This is important
considering the dynamic state of the studied machine as well as the working process it
performs. The roadheader body’s vibrations result in periodical changes in parameters
for which this process is performed. Changes in cutting conditions have, on the other
hand, influence of the character and magnitude of excitation of vibrations of the
roadheader body. This is because strong feedback exists in the system of the roadheader
and the working process carried out by it.
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Figure 6. Curve of the coordinate of the boom axis intersection point with the axis of
rotation of cutting heads in the direction of the axis Z
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5. Conclusions

The dynamic model created allows to perform simulation investigations in order to
determine dynamic loads in the selected constructional nodes of a boom-type
roadheader body and to analyse its vibrations generated in a working process.
Experimental verification is necessary, however, to be able to use it practically for
research purposes. The conformity of the results obtained by way of a computer
simulation with the actual dynamic characteristics of the modelled object will be
established based on the outcomes of experimental investigations. Dynamic
characteristics will be measured with an experimental station developed for this aim by
the Institute of Mining Mechanisation, Faculty of Mining and Geology, Silesian
University of Technology. The R—130 roadheader (manufactured by FAMUR S.A.) will
be the object of investigations. Vibrations will be excited in the body of the machine as a
result of the cutting process of a block made of equivalent materials.
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Abstract

The article presents the analysis of the influence of bending-torsional coupling of vibrations in the crankshaft
on transverse vibrations of the engine body. In practice, there is used a simplified model, wherein transverse
and torsional oscillations are analyzed independently. With the use of the model of deformable crankshaft, the
authors show the influence of bending-torsional coupling on the frequency structure of transverse vibrations.
The introduction presents the problem of vibrations in combustion engines and their modelling. Further, there
is presented the elastic model of the crankshaft, together with the applied assumptions and equations of motion
describing vibrations in one cylinder combustion engine . Next chapter shows numerical simulation results
with their initial analysis. The whole paper is summarized with conclusions about calculations and the
possibility to use the results in practice.

Keywords: Bending-torsional vibrations of the crankshaft, modeling of crank system, analytical solutions,
numerical simulations.

1. Introduction

Dynamics of crank system is a very important technical problem. Basic parameters of
the engine and its work are directly related to this system. In the case of motion with a
constant velocity of the crankshaft, it is easy to determine the forces and displacements
which appear in the crankshaft. The dynamics of crank system in unsteady motion
requires many studies [1-4].

Due to the complex geometry of the rotor and "complicated" construction of the
crank mechanism there exists a coupling between vibrations occurring in the engine
[5-8]. In practice this phenomenon considerably hinders the analysis, due to the coupling
of individual degrees of freedom. Therefore, in order to make calculations there is used
the most commonly applied simplification based on rejecting any dependencies
connecting bending and torsional vibrations in engines. Such an approach is used in
preliminary design calculations. However, in the case of problems connected with an
operation it may be insufficient [9-13]. Moreover, in practice, measured vibrations are
different from theoretical model results.
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This issue is important because there may appear new critical areas due to the
coupling of bending-torsional vibrations. What is more, torsional vibrations affect
significantly transverse displacements. This motion influences the vibrations of the
whole body. In practice there appear a shift and modulations of particular frequencies of
eigen vibrations of uncoupled system. This shows the presence of nonlinear or
parametric effects in the considered object [14-16].

The authors propose to apply this phenomenon to analyze torsional vibrations of the
engine based on the spectra of transverse displacements of the body. This problem is
important because the measurement of angular vibrations of the crankshaft of a
combustion engine is more difficult than the measurements of transverse vibrations.

2. The dynamic model of piston engine with an elastic crankshaft

Due to the complex geometric and material structure it is convenient to replace the
continuous mass system, which is the crankshaft, with a discrete model. In such cases,
the masses are usually reduced to selected constructional nodes, whereas the remaining
part of the object is treated as a massless deformable structure.

Of course, the model of the system of point masses is a significant simplification of
the continuous system, which is characterized by infinite (but countable)set of eigen
values. The number of eigen frequencies in the case of discrete systems is the finite
number . Therefore, it is not possible to replace "fully" the continuous system with a
model of point masses. However, it is possible to make an equivalent reduction in a
selected frequency band, for example, in the range of low frequencies. In practice, such a
simplification does not lead to serious errors. At the same time, it must be emphasized
that this method significantly simplifies the calculations.

Single crank of the crankshaft of the piston engine is presented schematically in
Figure 1.

Figure 1. The model of the crankshaft of one piston. 1 - 2 flywheel - crankshaft,
3 - pulley

In constructions of real combustion engines, very rigid crankshafts are used.
Basically due to the precision required from crank mechanisms. Even small changes in
the angular position of the crank may affect the process of combustion in a given system,
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which directly influences its dynamics. In addition, in vibrating systems there is a risk of
resonance with a basic harmonic of extortion which comes from gas forces [17-19]. In
this case, oversizing of the crankshaft allows to move the frequency of eigen vibrations
into the area of higher components of drive moment.

Due to high rigidity of crank system, it can be assumed that with a good
approximation, deformations occurring in the crank systems are very small. This allows
to use the model of linear-elastic system for calculations [20,21]. Figure 2 shows the
displacement of the crank described in the moving coordinate system.

y

Figure 2. Displacement of crank of the crankshaft

In Figures 1 and 2 there are used the following generalized coordinates describing the
dynamics of the analyzed model of the crank:

¢ — rotation angle of the flywheel of the engine,

@ —rotation angle of the disc of torsional vibration damper,
h — horizontal deformation of the crank,

v — vertical deformation of the crank.

Generalized forces in selected constructional bands may be determined on the basis of
the equations:
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F=K-u Q
where:
K — stiffness matrix,
F — generalized force vector,

u — displacement generalized vector.

Due to the symmetry conditions and the load system, the stiffness matrix has a
simplified form:

k, 0 0
K=| 0 k‘n: - ktG (2)
0 - k‘r@ kee

It is possible to find motion equations for the system presented in Figure 1with the
use of any formalism of analytical mechanics. Due to the linearity of the model and
holonomic constraints appearing in the system, there are used Lagrange equations of
second kind. On this basis, the following dynamic model is determined:

(I +MyR*)G+ MRl +K U, +Kgo(h— ) =My )
M, G, + My RP+K U, =Ky (p—§) =P, (4)
Lo + [ kel + Ko —#)]=0 %)

m,d, —m,Ré% +ku, =P (6)

3. Simulation analysis of transverse vibrations of the crankshaft

The series of humerical simulations was carried out for a proposed system of equations.
Transverse vibrations of the crankshaft without the coupling of bending and torsional
vibrations presented in plot 3 are taken as a point of reference.
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Bending vibrations
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Figure 3. Bending vibrations of the crankshaft of the system without coupling
In the case when the coupling is taken into account, the spectral structure of
transverse vibrations is much more complex. The spectrum of displacement of transverse

vibrations in a moving coordinate system is shown in plot 4. It is possible to observe
additional frequencies connected with torsional vibrations.

Coupled vibrations
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Figure 4. Bending vibrations of the crankshaft system with a coupling
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4. Conclusion

The phenomenon of coupling of bending and torsional vibrations in vibrating systems is
usually omitted in model calculations. Such calculations are justified at the design stage,
when it is necessary to pre-define the basic dimensions of the system for further
designing process. However, the dynamics of motion of the real crankshaft system is
much more complex. As a result, the authors proposed a model which takes into account
more phenomena and allows for more detailed analysis of vibrations occurring in
combustion engines.

The proposed system of dynamics equations in moving coordinate system is possible
to be solved analytically. Part of the equations is uncoupled and linear.

The simulations clearly show the impact of taking into account the coupling on
transverse displacements of the crankshaft. The frequencies of torsional vibrations are
transferred to bending oscillations. This allows to draw conclusions about the
frequencies occurring in the spectral structure of angular vibrations only on the basis of
the measurements of body vibration [22-24]. The proposed model can be used
successfully in the diagnostics of combustion engines [25-27].
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Abstract

The study relates to the phenomenon of power distribution in mechanical systems equipped with a dynamic
vibration absorber. It is one of the methods of eliminating vibrations in a mechanical system, which stabilises
its operation. This solution helps to reduce dynamic stress in subsystems of a vehicle's suspension or stabilise
the motion of flying machines, such as helicopters. The article describes the phenomenon of power distribution
of structural forces, which has not been described so far. The phenomenon reveals the power distribution in a
dynamic structure of a system of interest and can be used to determine the rate of energy flow as a function of
the dynamic state resulting from the selection of dynamic parameters of the vibration absorber. The energy
analysis applied in the study is based on an energy-based optimization method of adjusting the dynamic
vibration absorber to the main mechanical system without changing its dynamic parameters, as is the case, for
example, in turbine rotor balancing.

Keywords: energy flow, dynamics of machines, elimination of energy flow

1. Introduction

The phenomenon of power distribution of structural forces in mechanical systems with a
dynamic vibration absorber has not been recognised so far [5]. It is a holistic approach,
which makes it possible to control and optimize energy flow in order to ensure effective
stabilisation of the main mechanical system thanks to the influence of the dynamic
vibration absorber. The analysis of power distribution can be used in mechanical and
biomechanical systems to optimize the structural design, to evaluate the amount of
energy absorbed by particular elements and, globally, by entire systems, and as a
diagnostic tool at every life stage of these systems [2, 3, 4].

2. The physical model of the dynamics of the system of interest

Dynamic analysis of a mechanical system with a dynamic vibration absorber requires a
physical model with two degrees of freedom. The first point of reduction is mass M,
which models the mass of the main mechanical system, which is to be stabilized, while
the second point of reduction corresponds to mass “m” of the dynamic vibration
absorber, connected with mass M through a damping-energy dissipating element.
Vibrations are generated by the driving force F(t), which excites mass M. The physical
model of such a mechanical system is shown in Figure 1. The purpose of the absorber is
to minimize the vibration amplitude of the main subsystem. The tuning parameters of the
absorber are determined by the dynamics of the system of interest. For this purpose a
dynamic mathematical model of the system has been formulated.
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3. The mathematical model of the dynamics of the system of interest

The mathematical model was derived using Lagrange equations of the second kind given
by [1]:

E{EJ_EZQj_ﬂ_@; j=12,..5; (1)
dt{ oq; ) oq; aq;  0d;

where:

s — the number of degrees of freedom, Qj— generalised active forces,

¢ — the power of forces of energy dissipation, 0 — generalised coordinates,

E — Kinetic energy of the mechanical system, d; — generalised velocities.

V — potential energy of the mechanical system,

m Xo(t)

ko C2

F®

X1(t)

k1 I C1

7

M — reduced mass of the main system m — reduced mass of the dynamic
ki — reduced coefficient of elasticity of the vibration absorber
main system ko — reduced coefficient of elasticity
¢1 — reduced damping coefficient of the main of the dynamic vibration absorber
system ¢, — reduced damping coefficient of
F(t) — the driving force with a variable the dynamic vibration absorber
frequency

Figure 1. The physical model of a mechanical system with a dynamic vibration absorber
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As mentioned earlier, the mechanical system of interest has two degrees of freedom,
hence s = 2. The following generalised coordinates have been assumed:
g1 = Xi1(t) — the location coordinate of mass M of the stabilized mechanical system,
2= Xo(t) — the location coordinate of mass m of the attached dynamic vibration absorber.
The mathematical model of forces acting in the system consists of two differential
equations of forces given by (2):

MX; (£) + (Cq +Co )X() + (ky + K5 )X(t) =Ky X, (t) —CoX(t) = Ry sin [22 f (t)t];

My (£) + C X (1) + Ky X () — o % (6) — KXy (1) = O @

The first equation describes forces acting in a stabilized mechanical system, the second
one describes forces acting in the additional system of the dynamic absorber attached to
the main system. When dynamic forces acting in the mechanical system are known, it is
possible to formulate an energy model. The model was formulated by applying the First
Principle of Power Distribution in a Mechanical System (PPDiIMS) [2, 3].

4. The energy model of power distribution in a mechanical system with a dynamic
vibration absorber

The above-mentioned principle can be used to derive equations of power distribution in
the mechanical system. The energy model of the system of interest consists of two
equations of power given by:

My ()% (£) + (€3 + Co) X5 (1) + (Ky + Ko)X(2) % () — ko Xo ()% — Coy (1) %y () =
= Fo% (t) sin [27f (OL]; @
My (£) Xy + Co X5 (t) + KyXo (1) X, (1) — Coy (1) X (1) — ko Xy ()%, (£) = O

The first equation describes how the powers of all structural forces change over time,
that is: the power of inertial forces, the power of dissipative forces, the power of elastic
forces and the power of the driving force, which excites the motion of the mechanical
system.The equation also accounts for the powers of the elastic and dissipative coupling
with the vibration absorber.

The second equation describes power distribution at the reduction point connected
with the mass of the dynamic absorber and the power of forces involved in the elastic
and dissipative coupling with the main system.

The equation of energy flow can be derived from the First Principle of Energy Flow
in a Mechanical System based on integral equations given by (3).

Given the energy models of the system of interest, one can solve the energy model and
determine power distribution and energy flow in its dynamic structure for specific data.
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5. The solution of the energy model of power distribution in a mechanical system
with a dynamic vibration absorber

The above models were solved usingnumerical simulation implemented in the
MATLAB/simulink environment. An original simulation programme called SPED was
developed for this purpose. The programme makes use of the Elementary Processor of
Energy Flow MWD, which implements two principles: the First Principle of Power
Distribution in a Mechanical System (PPDiMS) and the First Principle of Energy Flow
in a Mechanical System (FPEFIMS) [2, 3, 4].

Example analytical calculations were done for the following data:
M =10 kg, kz = 3948 N/m, ¢, = 1.257 Ns/m, m = 1 kg,
ki = 3.948E+004 N/m, ¢1 = 252.6 Ns/m, F(t) = 100 sin [2x=f(t)t]

The SPED programme enables a synchronous solution of the mathematical model of
the system's motion, power distribution and energy flow in the mechanical system.

Figure 2 shows the results of the simulation of the dynamics of the system of interest,
comparing values of acceleration, velocity and displacement of the reduction points of
the dynamic vibration absorber and the main system. Response characteristics were
obtained by inducing the motion of the main system through a sinusoidal driving force
with amplitude of 100 N and with a frequency varying at the rate of 1 Hz/s.

Analysis of all kinematic quantities indicates mutual interactions between the
subsystems. The effect of the main subsystem on the dynamic vibration absorber is
evident for all characteristics once the driving frequency reaches the resonant frequency
of the main system and is manifested by extended characteristics of all kinematic
quantities. The strong effect of the dynamic vibration absorber is especially evident in
the characteristics of the main subsystem. One significant change is manifested by
reduced values of all kinematic quantities for a frequency of 10 Hz, which the absorber
was tuned to. It is precisely the purpose of the dynamic vibration absorber, which
ensures stabilization of the main subsystem's motion by reducing its vibration
amplitudes.

To facilitate comparative analysis of the motion of the main(stabilized) subsystem,
Figure 3 shows dimensionless dynamic characteristics of vibration amplitudes relative to
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the static deflection of the main subsystem. The horizontal line at a height of 1 divides
the chart into two sections: the area of amplified vibrations of the main subsystem for
values greater than 1 and the area of vibration elimination for values less than 1.

F 0
Xstat = k_zl [m] 4

where: Fz — reduced amplitude of the driving force inducing the motion of the main
subsystem, ki — reduced coefficient of elasticity of the main system.

Results of the dynamic analysis for the dynamic vibration absorber
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Results of the dynamic analysis for the main mechanical system with a dynamic
vibration absorber
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Figure 2. Results of the dynamic analysis of a mechanical system (stabilized) with a
dynamic vibration absorber during a harmonic test with a driving force
F(t) = 100 sin [2xF(t)] with a constant rate of frequency switching f = 1 Hz/s in the
range 0-20 Hz.
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Figure 3. Dimensionless characteristics of amplitude and frequency of the
mechanical system with a dynamic vibration absorber
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Analysis of Figure 3 indicates that the frequency band where vibration elimination
occurs in the main subsystem is very narrow and its middle lies at 10 Hz, which is the
frequency the absorber was tuned to.The vibrations of the main subsystem were reduced
by 89.3% relative to the static deflection that would be produced if a static force with an
amplitude equal to that of the driving force was applied to it.This means that the
dynamic coefficient for a frequency of 10 Hz amounts to 0.107. It is a well-known fact
that an absorber eliminates the amplitude of vibrations at a specific frequency, which
makes it a selective absorber. This limits the application of the absorber to machines and
devices that operate at constant (stabilized) frequency.

6. Amplitude and frequency characteristics of powers of structural forces in a
mechanical system with a dynamic vibration absorber

The above properties of a dynamic vibration absorber were also confirmed by a novel
dynamic analysis in the domain of power distribution of structural forces acting at
reduction points.Figure 4 shows instantaneous powers of inertial, dissipative and elastic
forces as functions of frequency in the range 0-20 Hz. In other words, these are
amplitude and frequency characteristics of powers for the above mentioned structural
forces.

The distribution of instantenous power at the reduction point of the dynamic vibration
absorber in [W]
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Figure 4. The distribution of instantaneous power in the dynamic structure of
the(stabilized)mechanical system with a dynamic vibration absorber during a harmonic
test with a constant rate of switching frequency f = 1 Hz/s

The figures indicate that the power of structural forces in the main subsystem for the
frequency of 10 Hz (effective operation of the absorber) is close to 0 and amounts to:
Nbg(10 Hz) = 0.2 [W], Nstg(10 Hz) =0.125 [W] and Nspg(10 Hz) =0.114 [W]. This
means that the rate of energy flow is very low and suspension elements of the main
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subsystem are exposed to little dynamic load.Fatigue depends on the amount of energy
transferred through structural elements of the suspension of the main
(stabilized)subsystem.

7. The effectiveness of eliminating energy flow in a stabilized subsystem

The effectiveness of eliminating energy flow in a stabilized subsystem by means of a
dynamic vibration absorber can be expressed in the form of a dimensionless
characteristic of elasticity, which relates the power of elasticity at both reduction points
to the maximum power at the frequency for which the power of elasticity in the main
subsystem is the smallest — Fig. 5.

Figure 5 shows the factor by which the power of elasticity is reduced when the
absorber reaches the point of its effective operation; the factor reduction is expressed as
a ratio of maximum power of energy characteristics obtained in both systems to the
maximum power of elasticity in the main subsystem observed at the driving frequency,
i.e. at the point of elimination. The chart shows a high degree of power reduction, which
confirms the specific effect in which the subsystem of the dynamic absorber affects the
main subsystem (stabilized) in the domain of power.A properly tuned dynamic vibration
absorber effectively eliminates energy flow in elastic elements of the suspension of the
main subsystem. A comparison of both characteristics of instantaneous powers of
elasticity clearly reveals that this kind of power is neutralized by the dynamic absorber.
In the frequency band where elimination occurs, instantaneous elastic power reaches a
maximum value, which is 872 times greater than the peak power obtained for
instantaneous elastic power in the main subsystem (stabilized).
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Figure 5. The reduction factor of the power of elastic forces in a mechanical system

with a dynamic vibration absorber expressed as a function of the ratio of the driving

frequency to the maximum instantaneous power obtained for optimal parameters of
the absorber

It can also be concluded that in the design of a dynamic vibration absorber one
should ensure that its elastic element is not exposed to stress exceeding permissible
values.
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Elastic power can be regarded as a measure of fatigue load exerted on suspension
(elastic) structures of the main subsystem. A dynamic absorber contributes to increasing
the durability and reliability of the suspension of the main (stabilized)subsystem.

8. Conclusions

Based on the results of energy analysis of the mechanical system with a dynamic
vibration absorber, one can formulate a few important conclusions.

1. The dynamic analysis conducted in the study explains the phenomenon of power
distribution and energy flow in a mechanical system with a vibration absorber.

2. The energy analysis has demonstrated a considerable reduction in the flow of all
kinds of energy in the stabilized subsystem for the selected frequency which the
vibration absorber was tuned to.

3. The optimal energy flow in the main (stabilized) subsystem depends on its damping
ratio.

4. The dynamic absorber absorbs energy introduced into the system by the driving force
in the optimal range of vibration elimination and has a strong effect on the main
(stabilized) subsystem by reducing the flow of energy transferred to it.

5. The elimination of the flow of elastic energy in the main subsystem and in the
absorber, which was computed in relation to the maximum instantaneous elastic
power for the optimal frequency of vibration elimination, amounted to, respectively:
in the main system — 432, and in the subsystem of the absorber — 872.
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Abstract

The article continues the analysis presented in the article ,,Power distribution in anti-vibration gloves” [6],
which described the approach adopted to construct an energy model of the Human — Glove — Tool system
(H-G-T). The outcome of the analysis was the power distribution calculated only for the anti-vibration
glove. This article continues the energy analysis for another subsystem of the H — G — T system — the human
physical model. The energy method was also used to calculate the power distribution in its dynamic structure
in order to account for interactions between the elements of the H — G — T system. The results obtained in the
study indicate that the power distribution in the human physical model and in the glove model is completely
different.

Keywords: biomechanical system, hand-arm vibrations, power distribution, energy method

1. Introduction

Every physical model corresponds to the real system in terms of key features selected by
the researcher, which are relevant for a given research problem. At the beginning of the
modelling process one always starts with a number of simplifying assumptions, which,
however, should not lead to approximations that distort the modelling goal. Ideally, one
should only introduce simplifications that result in a simple model and facilitate the
process of drawing conclusions while providing an accurate representation of the real
system [1].

In this case, the problem becomes particularly interesting when one studies the
discrete models used for analysing the impact of vibrations on the human body [7, 8, 10,
11]. The models differ from one another in terms of structure, because they are made up
of a different number of mass, damping and elastic elements. This is a significant
difference, because there is a relationship between an object's structure and its function.
It should be emphasized that it is a cause and effect relationship. Hence, only models
displaying structural similarity can guarantee the most reliable information about the real
system [9]. It follows, then, that one should not create models with arbitrary structures
that represent the real system's response only approximately.

The problem in question is important when one wants to determine the strain exerted
on the dynamic structure of the model. The reason why this is a significant consideration
is because this value should properly reflect the strain exerted on the real system. In this
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case, we use the response generated by the system, of course, but we also take into
account the model's structure and the value of its dynamic parameters.

In the case analysed in the study it is assumed that the model is an energy
transformation system. A similar approach, though applied to machines, was adopted by
Cempel [2, 5], who described it in his works. In this article the approach is combined
with the energy method implemented according to the theory developed by Dobry [3, 4].

The aim of the analysis was to determine the degree of difference between the load
exerted on the dynamic structures of the human physical model and glove model. This
assessment was based on three kinds of powers identified theoretically and related to the
forces of inertia, dissipation and elasticity. This made it possible to determine which of
the two subsystems of the H — G — T system was exposed to a higher dynamic load.

2. The human energy model

The dynamic load of the human physical model, which is a component of the H -G - T
system, was calculated using the energy method. The H — G — T system was composed
of the human physical model and the glove model specified in the 1ISO 10068:2012
standard [11].

Using the energy model of the H— G — T system, it is possible to identify the power
distribution in the dynamic structure of the human physical model. A detailed
description of the process of constructing the energy model and the application of the
First Principle of Power Distribution in a Mechanical System [3, 4] is presented in
another article [6]. The energy model of the H—- G — T system (Fig. 1) represented by
equations of power, is given by [6]:

j =1, mo'zoz.o +(Co +Cl)zg +(ko + kl)zozo _012120 - klzlzo =0

j=2, mz,z, + (Cl +C, + C3)Zl + (kl + kz + k3)lel —C 4z, — kleZl -
—C,2,2, —K,2,2, —C32,2, —K;232, =0

i=3, Mz, +(c, +c, )22 +(k, +k,)z,2, —Co1i7, —Ky2,2, — 42,2, —K,2,2, =0 "

1=4, Mgz, +(C3 + Cs)za + (ks + ks)zszs —C32y 25 —Kg2y 2y — CsZ52, — K252, =0
§=5, Mz, +(c, +C5)22 + (K, +K 242, —Co2p2, —K,2,2, —Cots, —KoZs2, =0

J= 6, Mgy 2525 +(Cs +Cg )25 +(k5 + ks)zszs — 52375 —k52325 -
—CoZ,2s —Kg2,25 = F(t)Zg

The energy method makes it possible to determine the dynamic load for each of the
subsystems of the H— G — T system, taking into account the influence of the other
subsystems. This article focuses on only one subsystem, i.e. the human body, which was
analysed by means of the energy method.

For this purpose, one should isolate from the energy model for the whole dynamic
structure of the H — G — T system the power introduced into the human physical model.
Consequently, in the following calculations it is necessary to take into account only
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those dynamic parameters that were used to model the behaviour of the human body (the
part marked off in Figure 1). The dynamic parameters for the human physical model and
the glove model, i.e. m;, ki, ci are specified in the ISO 10068:2012 standard [11].
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Mo, My, My, M3, M i
0 T 2 TS 4} dynamic parametersof

Ko, K1, Kz, Ks, kg the human model
Co, C1, C2, C3, Cy -

ms, Mg, M7, Mg } dynamic parametersof

ks, kg, Cs, Cq the glove model
my — tool mass
Reduction points: MrT= M5 + Mg + My;
Mzr = M3 + My, Mur =My + Mg.

Figure 1. The physical model of the biomechanical H — G — T system, obtained by
combining the physical models from the 1SO 10068:2012 standard [11]
with the tool model
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RMS values of power, calculated as a sum of powers at all points of reduction for the
human model are defined as follows:
— the power of inertia expressed in [W]:

t t t
Py e :\/%I[mozozo dt+\/ Iml'z'lz'l]zdt+\/%I[m2'z'zz'2]zdt+
0 0

0

t
+\/—J.[m323z3 dt+\/fj- m42424
0

— the power of dissipation expressed in [W]:

)

t

Pios = \/}j co+cl)z'§]2dt+\/%j;[(cl+cz+c3)z'f]zdt+\/%.![(cz+c4)z'22]zdt+
\/lj c323]2dt+\/tjc4 ]Zdt

0 0

@)

—

— the power of elasticity expressed in [W]:

t t
PHELA=\/%I[(|< +k, )22, [t + \/%J'[k +k, +K, )z,2,[Fdt +
0 0

(4)

t

+\/—I[k +K,) zzzz]zdt+\/ ![k NEN dt+\/i_:[[k4z4z'4]2dt

3. The results of the energy method

In the case under consideration the energy model was solved for the same conditions as
in the previous article [6]. The biodynamic model of the H — G — T system was exposed
to a sinusoidally varying driving force F(t) with an amplitude of 115 N. The analysis was
conducted assuming the value of frequency f = 20 Hz and tool mass mr = 6 kg. As a
result, it was possible to compare power distributions for the human model and the glove
model.

The energy model was solved using numerical simulation for time t = 100 seconds.
Integration was carried out using algorithm ode113 (Adams) with a tolerance of 0.0001.
Simulations were implemented in the MATLAB/simulink environment with integration
time steps ranging from a maximum value of 0.0001 to a minimum of 0.00001 second.

Figure 2 shows the structural power distribution for the human physical model and
the glove model. The results for the glove model come from the previous article [6]. In
the case of the human physical model and the glove model the percentage share of each
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type of power was calculated by relating the each type of power to the total power, equal
to the sum of power generated in the two subsystems. The relationship can be expressed
by the following formula:

P,
S, = Z -100% 5)
I:)H—INE + I:)H—DIS + I:)H—ELA_'_ I:)G—INE + l:)G—DIS + I:)G—ELA
where:
P, — RMS value of the power of inertia, dissipation or elasticity determined at all

points of reduction for the given model,

P;_, — RMS value of the power of inertia, dissipation or elasticity determined at all
points of reduction for the glove model [6],

P, —RMS value of the power of inertia, dissipation or elasticity determined at all
points of reduction for the human model (2) + (4).

Total power of forces |:> [ Power OBIT;I,Z ia forces ]

for the model of
anti-vibration glove :> | Power of dissipative forces I
27 W 20.56%
Power of elastic forces
Total power (20.77%) I:> [ 0.03% ]
of forces
13w
(100%) :> | Power of inertia forces I
Total power of forces 2.51%

for the human model
Power of dissipative forces
% 103W — [ 15.84% ]

(79.23%) Power of elastic forces
= [ 60.90%

Figure 2. The structural power distribution of forces for the human model
and the glove model [6] for the operating frequency of the tool f = 20 Hz

The results shown in Figure 2 indicate that the total power determined for the human
model and the glove model for the operating frequency of the tool f = 20 Hz is equal to
13 W. The resulting value can be further decomposed into two total powers of forces
introduced into both subsystems, i.e. for the human model and the glove model. The
energy method demonstrated that the strain exerted on the dynamic structures in the
analysis was different. It is worth noting that the total power for the human model is over
3.81 times larger than that calculated for the glove model.

More importantly, the results indicate that the power distribution computed for both
models is completely different. This is reflected by the percentage share of each kind of
power in each subsystem. For the glove model, the powers are ordered as follows: the
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power of dissipative forces — 20.56%, the power of inertial forces — 0.15% and the power
of elastic forces — 0.03%. In the case of the human physical model the order is
completely different. The contributions of the three kinds of power are ordered as
follows: the power of elastic forces — 60.90%, the power of dissipative forces — 15.84%
and the power of inertial forces — 2.51%.

It is worth noting that only one kind of force is comparable in quantitative terms.
Quantitative comparison of powers between the models is presented in Figure 3.
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r 200 |
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Type of power

[ - the power of inertia [l — the power of dissipation [ — the power of elasticity

Figure 3. Quantitative comparison of three kinds of powers between the human model
and the glove model for the operating frequency of the tool f = 20 Hz

The results shown in Figure 3 indicate that the only kind of power that is
quantitatively comparable is the power of dissipation. More importantly, it is the only
kind of power that is greater for the glove model than for the human model. The
comparison results are quite different the powers of inertia and dissipation: in this case
the factor change is equal to 16.61 for the power of inertia and 1928.15 for the power of
elasticity. The values of the two kinds of forces computed for the dynamic structure of
the tool are exactly as many times smaller than the results obtained for the structural
human model.

4. Summary

The study has resulted in computing the power distribution for the human model, which
is part of the biodynamic H — G — T system. More importantly, the results provide the
basis for a comparative assessment of this subsystem with the values obtained for the
anti-vibration glove. In this way it was possible to demonstrate that out of the two
subsystems of the H— G — T system, it is the human operator who is exposed to more
dynamic load. The results indicate the human dynamic structure receives 3.81 times
more load than the glove.
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Moreover, the analysis conducted in the study reveals that the disparate character of
the load exerted on the two subsystems of the H — G — T system. The dynamic structure
of the anti-vibration glove experiences a loss (dissipation) of energy, or its conversion
into heat. In the human physical model, the dominant power component is related to the
forces of elasticity. This is important because the computed power of forces can be
related to specific changes in the human body [4]. The power of elastic forces should be
linked to elastic elements in the human body. It should be emphasized that the elements
of the human biological structure exposed to the greatest amount of dynamic stress are
tendons, joints and muscles. When people are exposed to vibrations, it is these body
parts that are adversely affected first and show pathological changes.

In the following stages of research the analysis will be extended to include other
selected operating frequencies of the tool. As a result, curves of factor changes will be
computed to enable a quantitative comparison of the powers of inertia, dissipation and
elasticity between the different models. On this basis it will be possible to assess changes
in the structural power distribution of forces in the subsystems of the H— G — T system
in terms of the operational frequencies used in power hand-held tools.
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Abstract

The paper is devoted to analysis of geometrically nonlinear vibrations of beams with geometric and material
properties periodically varying along the axis. The 1-D Euler-Bernoulli theory of beams with von Karméan
nonlinearity is applied. An analytical-numerical model based on non-asymptotic tolerance modelling approach
and Galerkin method is applied. The linear natural frequencies and mode shapes are determined and the results
are confirmed by comparison with a finite element model. Forced damped vibrations analysis in the large
deflection range is performed to illustrate complex behaviour of the system.

Keywords: nonlinear vibrations, periodic beams, averaging, tolerance modelling

1. Introduction

Structures with physical properties arranged periodically or almost periodically in the
body domain are often found in engineering and in the nature. Properly designed, they
have many advantages, such as favourable mass to stiffness ratio. Furthermore,
considering problems of dynamics, we can point out the frequency filtering properties of
such structures, i.e. existence of frequency band gaps.

In this paper, vibrations of beams with periodically varying geometric and material
properties along the longitudinal axis are considered. Equations of motion of such
structures have highly oscillating, periodic, often non-continuous coefficients.

Figure 1. A fragment of a periodic beam

There are numerous special techniques in analysis of periodic media, many of them
based on strict mathematical asymptotic homogenization [1]. Extensive work has been
done in homogenization of periodic beams, cf. [4]. The theoretical foundation of the
analytical-numerical model used here is the non-asymptotic tolerance modelling
approach to analysis of microstructured periodic or almost periodic media. It is based
mainly on the concepts of slowly-varying and tolerance periodic functions, and the
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indiscernibility relation, cf. [6]. The resulting partial differential equations with constant
coefficients are then transformed into a set of ordinary differential equations using
Galerkin method and then numerically integrated via the Runge-Kutta-Fehlberg method.
The resulting model is an extension of a simplified one, presented in [3]. The new
concept is the notion of a weakly slowly-varying function, cf. [5]. Some of the results of
analysis geometrically nonlinear equilibrium problems of thin periodic plates via the
tolerance modelling are confirmed in [2].

2. Equations of motion

The object under consideration is a linearly elastic, piecewise-prismatic beam. Let Oxyz
be an orthogonal Cartesian coordinate system, the Ox axis coincides with the axis
of the beam, the cross section of the beam be symmetric with respect to the plane
of the load Oxz, the load acts in the direction of the axis Oz. The beam is assumed
to be made of small repetitive elements, called periodicity cells, each of which is defined
as A=[-1/2,1/2], where I<<L is the length of the cell and named the microstructure
parameter.

The assumptions of the Euler-Bernoulli theory of beams with von Karman terms
serve as a basis. The effects of axial and rotational inertia are neglected, as we
investigate slender elements and we are interested in analysis of transverse vibrations.
Let o*=0k/oxk be the k-th derivative of a function with respect to the x coordinate. Let the
transverse deflection, the longitudinal displacement, tensile and flexural stiffness, the
damping coefficient, mass of the beam per unit length, transverse load and dissipative
force by w=w(x,t), uo=uo(xt), EA=EA(X), EJ=EJ(X), c=c(x), n=wX), q=q(x!t),
p = p(x,t), the system of nonlinear coupled differential equations for the longitudinal
displacements ug and the transverse deflection w can be written as:

0?(E30°w)— EAloug + 3 (0w} pPw -+ v+ i = g
a[EA(auo +1(ow)? )]: 0,

The coefficients EA, EJ, u, ¢, and in some cases the load g, are highly oscillating,
often non-continuous functions of the x coordinate.

€]

3. Introductory concepts and basic assumptions of the tolerance modelling

To become acquainted with the basics of the method, the reader is referred
to the book [6]. Here, only the fundamental concepts are presented.
Let AX)=x+A, Q),={xeQ:AX)cQ} be a cell with centre at xeQ,.

The averaging operator for an arbitrary integrable function f is defined by:

1
o7 [Ty, xeQy year), @)
| |A(x)

It is assumed that each of the unknown displacements w and uo can be decomposed
into its averaged and fluctuating part, the latter of which is a finite sum of products
of fluctuation shape functions (FS) and fluctuation amplitudes:

<f>X)=
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w(x,t) =W (x,t) +h* (VA (x,t), A=1...N,

Up(x, ) =U () +g )TN (x1), K=1..,M,
where the functions W(),V*() eWSVZ(Q,A), U(),TKeSV (IT,A) are new basic
unknowns, being weakly slowly-varying or slowly-varying functions in x; the fluctuation
shape functions h”() e FS2(Q,A), g" () e FS}(Q,A) are postulated a priori in every
problem under consideration. The new basic kinematic unknowns W(:) and U(-) are

called the macrodeflection and the in-plane macrodisplacements, respectively; VA(-) and
TK(-) are additional kinematic unknowns, called the fluctuation amplitudes.

®)

4. The averaged equations

4.1. The tolerance model

After substitution the micro-macro decomposition (3) into equations (1), the next step
of modelling is averaging these equations over an arbitrary periodicity cell with weights
1, h* and gX. After some manipulations we arrive at the following system of equations:

(E3)0'W +(EJ0*h")o?v A + 2(EJoh ™ )o™v A + (B3 )a'v *

2 A A Y Y A\ A A\7A (4)
~(N)OAW —(Neh™)ov & + ()W + (i +(ch IV A + (1 N A ~(a) = 0,
<EJhA>a4W—2<EJ(9hA>63\N+<EJ62hA>62W +<NahA>aW+<mA>W—<th>+
+<chA>W+<EJhAhB>a4vB+2[<EJhAahB>—<EJhBahA>]a3vB+<chAhB>v'B
(5)

+2[<EJahBaZhA>—<EJahA62hB>]avB +(E30°h%0?h® v ® +(Noh"on® v ®
+[<EJ82hBhA>+<EJ82hAhB>—4<EJahA8hB>]82V ® 4 (s n®)VB =0,
where the averaged axial forces <NF(y)>, F(y) = {1, 6h”, 6hAohB}, are independent of x:

<NF(Y)> = JI:V By Cdx x
" %[<EA6hC6h °F(y)) - (EAdg - )(EAcg*ag) " (EAdg* oh°en® F(y)>]

+ (<EA6hC F(y))- (EAdg")(EAGg ag L>71<EA69 Kahe F(y)>)TV06de

+ ((EAF(y)) - <EAag L><EAag Kog ">_1<EA69 K F(y)>)[AO + ;Tawade}

Equations (4-5) with denotations (6) stand for a system of 2+N differential equations
for the macrodeflection W(-) and for its fluctuation amplitudes VA(-). As the axial inertia
terms are neglected, the axial displacement U(-) and its fluctuation TX(-)
can be eliminated. The coefficients of these equations are constant, some and of them
depend on the size | of the periodicity cell. Note that the elimination of axial
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displacement dependent terms is possible only when end displacements are restrained,
but not necessarily equal to zero.

4.2. The tolerance-asymptotic model

In cases when we restrict ourselves to investigate the low frequency vibrations, we can
pass with the periodicity cell length to zero, | — 0. Then, some of the coefficients of
equations (4)-(5) vanish. Introducing the following denotations:

-1

D =(E3)- (B30’ )(E36*h*o°h®) " (Ea0*h®),

(7
-1
gef E<EA>—<EAagK><EAagKagL> <EAagL>,
equations of the tolerance-asymptotic model take the form:
D¥"o*W — N6W +CW + MW —Q =0,
_ eff L eff L 8
N = EL 6W8de+BTA0, A, =[oUdx=U(L)-U(0) ®)
0 0

The usefulness of the above formulation is restricted to analysis of long-wave modes,
for which the length scale effect is not of high importance. Nevertheless, in many
practically important issues such approximation is acceptable.

5. Applications

Let us investigate a piecewise-prismatic beam of length L, and periodically variable
cross-section, as it is shown in Figure 2. The material of the beam is elastic
and homogeneous.

@

!: ] J
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Ny xby he xbe hy xby

r—— periodic boundary conditions -——
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Figure 2. Scheme of the analysed beam (a), a periodicity cell (b),
and periodic boundary conditions (c)

The fluctuation shape functions were obtained from a finite element analysis
of a two-cell system. Each subsection of a periodicity cell was divided into two elements
based on Hermite polynomials and the periodic boundary conditions were assumed,
as indicated in Figure 2(c). The obtained mode shapes can be divided into two groups
of even (ESF) and odd (OSF) shape functions, cf. Figure 3.

The solutions to the tolerance model and the load were assumed as finite sums:
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W )] _ X (Wi (t) vA(x,t)} ¥ {Vn“(t)} A
[0Sl = oS0 Aton o
where the functions X, and YA, were chosen to satisfy the boundary conditions
of a simply supported beam:
sin(nzx/L) for Ae ESF,

X (x)=sin(max/L), YnA(X):{cos[(n—l)ﬂX/L] for Ac OSF.

That leads to the following system ordinary differential equations of second order:
[Ko +Kn ()l +Cy+My =f. (11)

After dropping the nonlinear, damping and forcing terms the linear natural
frequencies and mode shapes are determined from analysis of the generalized eigenvalue
problem. The results of comparison with a full finite element model of a beam
are presented in Section 5.1.

Then, the nonlinear model based on the asymptotic approximations (8) is applied
in analysis of damped forced vibrations. It is justified only when the forcing frequency
is of the order of the few lowest natural frequencies of the beam. The analysed equations
and used denotations are given by formulas (12) and (13), respectively.

a)mzwm (t)+ Wi, (t)+ 2/\W,, (t)+

(10)

+ ¥ O 2W, (Wi (£)+ Pywi (t) = ppy fo COS QL =0, (12)
n
mz ) | DS m? (z\* B
o =| — : =—|=
"ClC VM T (L) ™
2 e (13)
— m BE ﬂ ﬂ—i p —q_m
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Figure 3. The first four modes of a two-cell system used as fluctuation shape functions
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5.1. Natural linear frequencies and mode shapes

The object of this section is to perform a limited confidence check of the model
accuracy. The analysed beam (cf. Figure 2) has length L = 1.0 m, the elastic modulus
is E =205 GPa, the mass density p =7850 kg/m3. The cross section is rectangular:
bm =br =10 mm, hy =5mm, hg=10mm, other geometric parameters of the cell
are 1 =1/10 m, o = 1/2.
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]
] o FE °
35000 i g 6000 |
L]
30000 1 s = s
z o8 £ 5000 A .
> 25000 N > o
g K g 4000 A °FE o
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Figure 4. Comparison of first 51 (left) and first 21 (right) natural frequencies obtained
from tolerance (closed circles) and finite element model (open circles)
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Figure 5. Comparison of chosen natural modes of considered beam obtained from
tolerance (TA - dotted lines) and finite element (FE - solid lines) model.

The first four of 23 modes of a two-cell assemblage used as fluctuation shape
functions are shown in Figure 3. For comparison, a finite element model of the full beam
has been formulated. The natural frequencies and mode shapes were determined
from the equation det(Ko - ®®M)=0, cf. (11). Figure 4 presents the comparison between
tolerance modelling (TA) and finite element (FE) results for first 51 frequencies and
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its close-up in the range of first 21 frequencies, where the lower band-gaps
are more visible. The 3", 6%, 9™ 10™, 20" and 21% natural modes obtained from both
models are depicted in Figure 5. The results are in good agreement. It has
to be mentioned that all the upper and lower boundaries of band gaps correspond
to the first (n=1) modes of fluctuation amplitudes, cf. relationships (9) and (10).
The proposed model gives satisfactory results not only in the low frequency range.

T T T T T T T T T T T
1} 100 200 300 400 500
A

Figure 7. Bifurcation diagram of central deflection w versus forcing amplitude fo

5.2. Nonlinear vibrations analysis

Let us consider a problem of forced damped vibrations of a beam introduced
in the beginning of this section, governed by the equations (12). The material
and geometric parameters remain the same, although three cases were considered here:
a) a=4/5 hg/hv=13/8; b) o = 1/2, hg / hm = 2; ¢) a = 1/5, hg / hy = 3. That is, the total
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mass of the beam is kept constant, but the effective bending and axial stiffness is:
Deff = {55.259; 37.963; 26.538} Nm?, and B°f={1.481; 1.367; 1.196}x10" N,
and the first natural linear frequencies are ;={95.617; 79.253; 66.263} rad/s.
The coefficient of the external damping was assumed to be ¢ = 2.5 Ns/m.

First, the one-term approximation of to the equations (12) has been used to determine
the backbone curves and amplitude-frequency response curves shown in Figure 6. Light
forcing amplitude (fo = 4.25) and forcing frequency near the fundamental frequency
was assumed. Next, five-term approximation to these equations has been applied
in analysis of long-term forced vibrations for case (b). The forcing frequency is equal
to the first natural frequency of the beam. The bifurcation diagram with forcing
amplitude fo as a parameter is displayed in Figure 7. Complicated behaviour
of the system is exposed, including periodic oscillations, symmetry breaking and saddle-
node bifurcations, as well as period-doubling routes to chaos. More detailed analysis
of the results will be presented and discussed in forthcoming papers.

6. Conclusions

It can be concluded that the presented model properly describes the crucial dynamic
characteristics of beams with periodic structure and it can be used as a reliable tool in
parametric analysis of vibration problems. The advantage of proposed approach is that it
allows for the construction of models of low degree of freedom number.
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Abstract

The paper is devoted to the dynamical modelling of the hexapod robot walking on a flat and hard ground.
The main goal is to determine time series of reaction forces acting on individual legs of the robot during tripod
gait often used both by the six-legged insects as well as mobile walking robots found in engineering
applications. The movement of the considered robot is realized by the kinematic excitation of its legs using the
so-called Central Pattern Generator (CPG) method. The paper demonstrates that there are different contact
forces and overload acting on the robot, resulting from different models working as a CPG. The mentioned
forces belong to the important issues that should be taken into account when the robot locomotion on the
unknown terrain is planned.

Keywords: Multi-legged robot, six-legged robot, hexapod, tripod gait, contact forces, reaction forces

1. Introduction

Legged locomotion is the most common locomotion form in nature and numerous
animals species use this method for travelling on our planet. For many researchers,
it became the inspiration for the construction of walking machines for engineering
applications [1,2]. It should be noted that there are lots of biological inspirations and
constructed robots in the scientific literature (including hexapod-type robots), and
interesting state-of-the-art in this area can be found in recent paper [3]. Lately, also
eight-legged robots have become popular, for instance a biomimetric robot called
Scorpion [4], or searching and rescuing robot Halluc 11 [5]. The mentioned eight-legged
robots are popular and usually studied based on the six-legged walking machines.
Hexapod robots, due to their simplicity, statical and dynamical stability as well as due to
large configuration of various possible gaits (described by the so-called MhGee formula
[6]) have been studied by many researchers over the past decades. However,
in comparison to the wheeled vehicles, legged locomotion is characterized by more non-
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uniform distribution of reaction forces acting between the mentioned mobile machines
and the ground. Namely, in the case of wheeled motion, usually all the wheels touch the
ground at the same time, and the appropriate contact pressure distribution is almost the
same in each phase of the machine movement. In turn, in the case of the legged
locomotion, reaction forces between the ground and legs forming the support polygon of
the robot vary in a periodic manner. In addition, fluctuations of the robot gravity center
have a significant impact on the reaction forces between the legs of the robot and the
ground, due to present additional dynamic load resulting from the movement of the
individual elements of the robot in the gravitational field of the Earth. In the case of
relatively small contact surfaces of the robot leg tips with the ground and the
simultaneous transport of an additional mass by the robot, the problem of the reaction
forces acting on the ground may be significantly important for this system.
In engineering calculations, the appropriate mathematical models are rarely used, since
engineers usually employ commercial software, such as SimMechanics module of
MATLAB [7,8]. This is why in this paper the mentioned problem has been considered in
more detail by adopting the appropriate dynamic robot model, taking kinematic
excitation of the robot legs, and focusing on the reaction forces acting along the direction
of the gravity field. The problem of controlling individual robot legs has been presented
in our previous paper [10] and in this work is not considered in detail.

2. Model of the Hexapod Robot for the Tripod Gait

Figure 1 shows a model of the considered hexapod robot embedded in the gravity field
with coefficient g, supported by three legs forming the support polygon. The robot

consists of a body with mass My and six identical legs denoted as L1, L2, L3 (on the

left) and R1, R2, R3 (on the right). Each leg of the robot contains three links with masses
my, m, and mg, respectively. In the case of the tripod gait, the robot legs are divided

into two groups, i.e.: the group A (solid legs L1, L3 and R2) and group B (dashed legs
R1, R3 and L2). The movements of all robot legs are controlled by the same CPG model,
however, the signals applied to the group B of the legs (joint angles @g(t), @,5(t),

@3 (t)) are out of phase with respect to signals applied to the group A (joint angles
oiat), @a (M), @34(t)), with shift phase equal to 180°, and vice versa. For this reason,

in one phase the robot is supported by the legs from group A, and in another phase - by
the legs from group B. As a result, ground reaction forces to respective foot robot appear
on different legs. In addition, due to the symmetry of the considered system, we can
assume that the reaction forces in legs L1 and L3 are the same, as well as are the reaction
forces in legs R1 and R3. In the considered case we assume that the robot walks on a
relatively hard ground. This is why it can be assumed that there is no rotation of the
robot body, and therefore the corresponding rotational movements and moments of
inertia of the robot body can be neglected. The presented robot consists of many
connected parts (including six identical legs). Without loss of generality, and to increase
transparency of illustration, only one leg has been precisely described in Fig 1.
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Figure 1. Model of the considered hexapod robot

Equations of motion of the hexapod robot considered in Fig. 1 in y direction can be

written as follows

3
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Next, taking into account symmetrical distribution of the robot legs and partial
compensation of their mutual movements, we assume that Rga(t) = 2R A(t) and
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R g(t) = 2Rz (t). The exact solution to this problem requires consideration of

additional equations for moments of the forces generated by the individual reaction
forces, gravity forces acting on the mass centers and inertial forces resulting from
movements of individual elements of the robot legs in the considered coordinate system.
This problem requires more complicated numerical algorithm and will be the subject of
our further research.

3. Numerical Results

This section presents numerical simulations obtained with the use of Mathematica 10
software. Parameters of the considered robot gait are the same as in our previous paper
[10], namely: the stride length of 60 mm, the stride height of 30 mm. However,
the mentioned simulations have been obtained for two different periods of the single
robot stride equal to 2 s and 1 s, respectively. In the first case the average velocity of the
robot movement in the forward direction is 30 mm/s and in the second one is equal to 60
mm/s. This approach allows for additional investigation of the influence of robot
velocity on the estimated contact forces. The aforementioned kinematic excitation of the
robot legs is realized using four different CPG models based on simple mechanical
oscillators, namely: Hopf oscillator, van der Pol oscillator, Rayleigh oscillator as well as
oscillator describing stick-slip vibrations (further referred to as a stick-slip oscillator)
[10]. Other parameters required for numerical simulations are presented in Table 1.

Table 1. Parameters of the considered hexapod robot

Quantity Symbol Unit | Value

Mass of the robot body (without legs) | Mg kg |2.00

Masses of the robot leg parts m;;m,;ms | kg |0.12;0.05;0.15
Lengths of the robot leg links I PR m | 0.027; 0.07; 0.12
Displacements of the mass centers a;,a,,a3 m 0.0135; 0.035; 0.04
Gravity coefficient g m/s? | 9.81

Figure 2 depicts the trajectories plotted by the robot gravity center (fluctuations yc (t)

of the robot gravity center in the vertical direction) and trajectories plotted by the tips of
the robot legs (group A - solid line, group B - dashed line). As can be seen, in the case of
first three oscillators controlling robot legs, considerable fluctuations of the robot gravity
center can be observed. These fluctuations have a great impact on the contact forces
acting on the individual legs of the robot due to its acceleration/deceleration in the
vertical direction.
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Figure 2. Fluctuations of the robot gravity center y (t) and trajectories plotted by the

robot legs for the period of the single robot stride equal to 2 s: a) Hopf oscillator; b) van
der Pol oscillator; ¢) Rayleigh oscillator; d) stick-slip oscillator. Solid line - group A of
the robot legs; dashed line - group B of the robot legs

Figure 3 shows time series of contact forces acting on the robot legs for the period of the
single robot stride equal to 2 s. Due to the previously adopted assumptions, the largest
contact reactions forces between the legs and the ground occur in the central legs (L2
and R2), and this is why only these reactions are presented (reaction forces in the lateral
robot legs are two times smaller). The presented curves show that the appropriate
reaction forces oscillate (increase and decrease) around the reaction force resulting from
the weight of the robot (when none of its components is moved). As can be seen, the
most frequent oscillations (overloads) occur in the case of using van der Pol oscillator
and the Rayleigh one as a CPG model. In turn, the lowest fluctuations exist when the
stick-slip oscillator is applied. Similar conclusions can be achieved considering the
reaction forces shown in Fig. 4, where the appropriate curves have been obtained for two
times larger velocity of the robot movement. However, for larger velocities of the robot
movement, there are larger dynamic overloads and the appropriate reaction forces. This
occurs due to faster and more frequent oscillations of the robot gravity center and other
elements of its legs. As can be seen, the stick-slip oscillator does not have this
disadvantage (there is only slight dynamical overload in comparison to other CPG
models).
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Figure 3. Time series of the reaction forces for the period of the single robot stride equal
to 2 s: a) Hopf oscillator; b) van der Pol oscillator; c) Rayleigh oscillator; d) stick-slip
oscillator. Solid line denotes Rga (t) , whereas dashed line denotes R (t)
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Figure 4. Time series of the reaction forces for the period of the single robot stride equal
to 1 s: a) Hopf oscillator; b) van der Pol oscillator; c) Rayleigh oscillator; d) stick-slip

oscillator. Solid line denotes Rga (t) , whereas dashed line denotes R g (t)
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4. Conclusions

In the paper, time series of the reaction forces acting on the individual robot legs and
occurring undesirable dynamic overloads caused mainly by strong fluctuations of the
center of gravity of the robot are obtained numerically. The robot movement has been
kinematically excited by different well-known mechanical oscillators working as the
CPG models, and to simulate the robot locomotion the tripod gait has been chosen.
The choice of such a type of the robot gait has its justification. First, this type of gait is
most commonly used by both the six-legged insects as well as six-legged walking
machines in engineering applications. Second, in the case of the tripod gait, in general,
at each moment of the robot movement the support polygon is formed only by three legs
and the corresponding reaction forces are greater than in the case of other gaits (for
instance, in case of tetrapod gait or wave gait). In addition, the choice of a relatively hard
ground has also its justification, since this type of surface generates larger reaction force
and correspondingly greater dynamic overload. In the considered type of gait and
movement on the hard ground, the largest reaction forces and dynamic overload are
expected, which justifies the choice to study this kind of the robot gait and this type of
the ground. Different reaction forces and overload acting on the robot, being the result of
using different CPG models to control its motion, have been illustrated and discussed.
However, it should be noted that the obtained reaction forces have been obtained by
double differentiation of displacements of the gravity centers of individual elements of
the robot. The exact value of reaction forces at the moment of changing of supported
legs depends strongly on the stiffness and damping of both the ground and construction
of the robot. Nevertheless, the obtained simulations allow to compare the generated
reaction forces for different CPG models which control the robot motion. The obtained
information can be used in the future for analyzing the strength of the robot legs, being
important for trouble-free uses and extension of life and operational time of the robot.
Reaction forces occurring on the contact surfaces between the robot legs and the ground
belong to one of the most important issues which should be taken into account.
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Abstract

The article analyses power distribution in an anti-vibration glove. The glove of interest was modelled in a
biodynamic model of the Human — Glove — Tool system. The model was a combination of the human model
and the glove model specified in the ISO 10068:2012 standard and the model of the vibration tool. To
determine the power distribution in the glove, its energy model was developed. The power distribution in the
model was determined using numerical simulation in order to show how power was distributed in the dynamic
structure of the anti-vibration glove. Three kinds of powers were distinguished, which are related to forces of
inertia, dissipation and elasticity. It turned out that out of the three kinds of powers identified in the anti-
vibration glove, only one is dominant: namely the power of dissipation.

Keywords: biomechanical system, hand-arm vibrations, power distribution, energy method

1. Introduction

The first important stage of modelling consists in a systematic analysis of the real object.
One should remember that the researcher's awareness, knowledge and needs affect the
degree to which he or she simplifies the reality. This implies that the process of
modelling depends, above all, on the degree of simplification which is applied to the real
object. What is more, a model always replaces the object of study and only resembles it
with respect to certain characteristics selected by the researcher [8].

A model can be similar to the real object in terms of structure. This means that the
model represents features of the internal structure which it shares with the real object.
Another kind of similarity is functional compatibility. Unfortunately, this kind of model
does not lend itself to a precise assessment of its structure [8]. These facts are especially
important when one wants to select a model to determine the impact of vibrations on the
human body.

Nowadays the human response to vibration can be analysed using of a range of
discrete human models that are available in the literature [6, 7, 10, 11]. These models
differ from one another with respect to the number of degrees of freedom, the number of
components making up the dynamic structure and the way they are connected. In other
words, all of these models have different structures and differ in the way they transmit,
dissipate and store vibration energy. In this study the analysis of the impact of vibration
on the human body is based on the human model from the 1SO 10068:2012
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standard [11], which was used as part of the bigger biodynamic model of the Human —
Glove — Tool system (H-G —T).

The approach presented in this article is completely different from those adopted to
analyse anti-vibration gloves so far. Until recently studies of anti-vibration gloves were
limited to computing coefficients to measure the effectiveness of vibroisolation [5]. This
approach only involved comparing system responses and determining factor changes
between them as a result of applying the anti-vibration glove. What is more, exact
requirements for anti-vibration gloves are specified in the relevant standards [4, 9, 12].

This article, in contrast, describes an analysis of the flow of energy through the
glove, which was treated as an energy transformation system. A similar approach,
though applied to machines, was adopted by Cempel, who described it in his
works [1, 4]. This article, however, describes the idea of analysing the flow of
vibroacoustic energy related to dynamic properties of the system under consideration,
which can be used to analyse mechanical and biomechanical systems. The theory
developed by Dobry makes it possible to switch from the dynamic analysis implemented
in the domain of amplitudes of kinematic quantities to the energy analysis implemented
in the power domain [2, 3].

The power distribution in the anti-vibration glove was determined using the energy
method. The aim of the analysis was to check whether the discrete model of the anti-
vibration glove adopted from the ISO 10068:2012 standard [11] has an appropriate
structure. The energy method consists in identifying three kinds of powers related to
forces of inertia, dissipation and elasticity. The theoretically determined power
distribution in the dynamic structure of the glove will make it possible to identify what
happens to the energy of vibration only in the glove as a subsystem of the entire
biomechanical H — G — T system.

2. The structure of the energy model

Figure 1 shows the combined H — G — T biodynamic model. The analysis is based on the
human and glove models from the 1SO 10068:2012 standard [11] The models selected
are discrete models containing points of reduction connected through damping and
elastic elements. The values of dynamic parameters for both models, that is m;, ki and c;
(Fig. 1) specified in the 1SO 10068:2012 standard [11].

The human model from the said standard was used to determine values of vibrations
along three directions, i.e. along the ,X”, ,y” and ,,z” axes. This article describes a
simplified case limited to one dominant direction of vibrations, i.e. along the ,,z” axis,
which is the most significant one in tests of many tools.

The H— G — T model must also include a model of the vibration tool. In this case, the
tool was limited to one concentrated mass my and a sinusoidally varying driving force
F(t) acting on the H- G- T system. Hence, the model is assumed to represent a
hypothetical situation of an operator using a grinder with an unevenly worn-out grinding
disc. Additionally, the dashed line denotes the subsystem analysed by the energy method
(Fig. 1), that is the anti-vibration glove.
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2,(1)

i e

where:

Mo, M1, My, M3, My dynamic parameters in
Ko, K1, Ko, k3, kg the human physical

Co, C1, Cp, C3, Cy model
ms, Mg, M7, Mg dynamic parameters in
Ks, Ke, Cs, Cs the glove model
my — tool mass
Points of reduction: MrT= M5 + Mg + My;
M3r = M3 + My; Mur = My + Mg.

Figure 1. The physical model of the biomechanical H — G — T system, obtained by
combining the physical models from the 1SO 10068:2012 standard [11]
with the tool model

In the first step, a mathematical model of the dynamic structure was derived, using
Lagrange equations of the second kind given by:
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where:  E — kinetic energy of the system, q;— generalized coordinates,

d;— generalized velocities, Q;— active external forces, Q,,— potential forces,
Q| — forces of dissipation, s — the number of degrees of freedom.

The mathematical model was fed with generalized coordinates. For the model of the
H — G — T system (Fig. 1), the generalized coordinates were as follows:
j=1, Qo=1z(t) - displacement of mass mo,
j=2, qi=2z(t) - displacement of mass mj,
j=3, Q2=12(t) - displacement of mass my,
j=4, Q3=1z3(t) - displacement of mass msg,
j=5, Qa=1z(t) - displacement of mass mg,
j=6, Qgs=1zs(t) - displacement of mass mgr.
After adopting the generalized coordinates, it was possible to derive differential
equations of motion for the H — G — T model. The mathematical model in matrix form is
given by:

Md(t) +Cq(t) + Ka(t) = F(t) )
where:
— matrix of displacements: — matrix of masses: — matrix of forces:
7,(t) m O 0 0 0 O [0 ]
Z,(t) 0O0m 0 O 0 0 0
| z,(1) |0 0 m O 0 0 10
ab=l 2w M=o 0 0 my 0 0 FO= o
z,(t) 6 0o 0 0 mg O 0
z.(t) 0 0 0 O 0 mg |F(t) ]
— matrix of damping:
[(c, +c,) - 0 0 0 0 ]
-¢ (g +c,+¢) -—c, —c, 0 0
co| O —c, (c,+c,) O —c, 0
0 —c, 0 (c,+c) O -,
0 0 —c, 0 (c,+¢) -¢
. 0 0 0 -G —Cg (Cs +C6)_
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— matrix of stiffness:

(ko +k,) -k, 0 0 0 0
-k (kg +k,+ky) -k, —k, 0 0
k| O -k, (k,+k,) 0 -k, 0
0 —k, 0 (k+k) O —kq
0 0 -k, 0 (k,+ky) —kg
0 0 0 —k, —ks (ks +ks)]

The next step in modelling the H — G — T system involved creating the energy model.
The model was formulated by applying the First Principle of Power Distribution in a
Mechanical System [2, 3]. The principle enables the switch from the dynamic model to
the energy model implemented in the power domain. The model was derived using
differential equations of motions (2). The energy model of the H — G — T system (Fig. 1),
consists of equations of power given by:

j=1, MoZoZo +(Co +€, )22 + (ko +k, )202, — 247, — k42,2, =0
1=2, mz,2, + (Cl +C, + C3)Zl + (kl +k, + k3)zlzl —C 20 —kzy2,
02,2, —Ky2y2, —Cyty2, —KyZy2, =0
i=3,  MZ,z,+(c, +¢, )22 + (K, +K, )22, —Coti2, — K212, —Cu2,2, —K,2,2, =0 .
=4 Mar 2324 +(Cs + 05)23 + (ks + k5)Z3Z3 —C32y25 —K32,25 — C52525 —Ks2525, =0
j=5,  MgZ,z,+(c, +Co )22 + (K, +K )22, —Cy2y2, —Ku2,2, —Cols2, —KoZs2, =0
)= 6, mRTzszS (cs +Ce) (k +k )2525 —C52325 - k52325 -

—CoZ4Zs —KsZ425 = F(1) 2

The energy model of the H-G-T system was derived using a program
implemented in the MATLAB/simulink environment in order to compute curves of
powers of inertia, dissipation and elasticity. The energy method makes it possible to
analyse each subsystem separately, while taking into account the impact of the other
subsystems. For this reason, when analysing the energy model for the whole dynamic
structure of the H— G — T system, one should only consider the part of power which is
transferred to the anti-vibration glove. In the computations it was necessary to include
only those dynamic parameters, which were used to model the glove — the fragment of
the model marked off in Fig. 1. RMS values of powers, calculated as sums of powers at
all points of reduction in the glove model, were defined as follows:
— the power of inertia expressed in [W]:

t t t
1
Pe e :\/—j M, + M )Zs 2 dt+\/tj m7z3z3]2dt+\/zj. myZ,2, [d
0 0

0

[y

(4)

—
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— the power of dissipation expressed in [W]:

t

L O [ E O ©

0

— the power of elasticity expressed in [W]:

1n 1y, 1
PG_ELA=\/;J.[kszazs]zdt+\/Ej.[k62424]2dt+\/fj[k Ky )25, et ()
0

0 0

3. The results of the energy method

In the study the biodynamic model of the H—-G-T system was exposed to a
sinusoidally varying driving force F(t) with an amplitude of 115 N. The analysis was
conducted assuming the value of frequency f = 20 Hz, and tool mass mt = 6 kg.

The energy model was solved using numerical simulation for time t = 100 seconds.
Integration was carried out using algorithm ode113 (Adams) with a tolerance of 0.0001.
Simulations were implemented in the MATLAB/simulink environment with integration
time steps ranging from a maximum value of 0.0001 to a minimum of 0.00001 second.

Figure 2 presents the resulting structural power distribution in the anti-vibration
glove. The percentage share of each kind of power was determined by relating it to the
total power in the glove. The relationship is expressed by the following formula:

PZ
S, = -100% (7)

Po-ine + Po_ois + Po_era

where:
P, — RMS value of the power of inertia, dissipation or elasticity determined at all

points of reduction in the anti-vibration glove.

The power of inertia :> / \

0.73% Total power of
forces
The power of dissipation
270w
99.12% — 210 W
The power of elasticity :> (for f =20 Hz)

0.15%

./

Figure 2. Structural power distribution in the anti-vibration glove
for frequency of the driving force f = 20 Hz

The results reveal the power distribution in the dynamic structure of the subsystem
under consideration. The results presented in Figure 2 indicate that the dominant role of
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the power of dissipation forces. The percentage share of the power of dissipation for the
frequency of the driving force f = 20 Hz exceeded 99% of total power.

This means that the dynamic structure of the glove experiences energy loss
(dissipation), with Kkinetic energy being converted to heat. This implies that the amount
of energy transferred to the human body is limited. In other words, the energy
method has successfully demonstrated a positive influence of the anti-vibration glove in
the H- G- T system. Moreover, the dynamic structure of the glove was correctly
modelled, which is confirmed by the results that are consistent with expectations. The
study suggests that an anti-vibration glove should be made using materials characterized
by high energy dissipation. This implies that the glove should be capable of dissipating
large amounts of energy.

4. Summary

The study has resulted in determining the structural power distribution in the anti-
vibration glove for the operating frequency f = 20 Hz. The results indicate the dominant
role of only one kind of power. It turns out that the power of dissipation accounts for
over 99% of total power in the glove.

More importantly, the analysis correctly confirmed the anti-vibration properties of
the glove. The model structure ensures energy dissipation, which is responsible for
decreasing the vibration energy transferred to the human body. This property should be
taken into consideration in choosing materials for the manufacturing of anti-vibration
gloves.

Further studies will be devoted to specifying the power distribution in the human
physical model. Knowing power distributions in these two subsystems will make it
possible to assess the level of dynamic load they are exposed to. Another goal will be to
calculate the ratio change in the distribution of the three kinds of powers in the dynamic
structure of the human and glove model.

Acknowledgments

The study was partly financed by the Ministry of Science and Higher Education as a
project entitled: Energy informational considerations of vibroacoustics, diagnostics
and biomechanics of systems.

Study code: 02/21/DSPB/3478

References

1. C. Cempel, Minimalizacja drgan maszyn i ich elementow, w: Wspolczesne
zagadnienia dynamiki maszyn, Ossolineum, Wroctaw 1976.

2. M. W. Dobry, Optymalizacja przeptywu energii w systemie Czlowiek — Narzedzie —
Podloze, Ph.D. Thesis, Poznan University of Technology, Poznan, 1998.

3. M. W. Dobry, Podstawy diagnostyki energetycznej systeméw mechanicznych
i biomechanicznych, Wydawnictwo Naukowe Instytutu Technologii Eksploatacji —
PIB, Radom 2012.



122

10.

11.

12.

Z. Engel, W. M. Zawieska, Hafas i drgania w procesach pracy — Zrddia, ocena,
zagrozenia, CIOP — PIB, Warszawa 2010.

J. Koton, J. Szopa, Rekawice antywibracyjne — ocean skutecznosci i zasady doboru
do stanowisk pracy, Bezpieczenstwo Pracy: nauka i praktyka, 11 (1999) 2 — 5.

A. M. Ksiazek, Analiza istniejgcych modeli biodynamicznych uktadu reka — ramie
pod kgtem wibroizolacji czlowieka — operatora od drgan emitowanych przez
narzedzia reczne, Czasopismo Techniczne, 2 (1996) 87 — 114.

S. Rakheja, J. Z. Wu, R. G. Dong, A. W. Schopper, A comparison of biodynamic
models of the Human hand-arm system for applications to hand-held power tools,
Journal of Sound and Vibration, 249(1) (2002) 55 — 82.

B. Zéttowski, Badania dynamiki maszyn, MARKAR — B. Z, Bydgoszcz 2002.

EN 1SO 10819:1996, Mechanical vibration and shock. Hand-arm vibration. Method
for the measurement and evaluation of the vibration transmissibility of gloves at
the palm of the hand.

1ISO 10068:1998, Mechanical vibration and shock — free, mechanical impedance of
the human hand-arm system at the driving point.

ISO 10068:2012, Mechanical vibration and shock — mechanical impedance of
the human hand-arm system at the driving point.

PN-EN 1SO 10819:2000, Drgania i wstrzqsy mechaniczne. Drgania oddziatujgce
na organizm czlowieka przez konczyny gorne. Metoda pomiaru i oceny
wspotczynnika przenoszenia drgan przez rekawice na dion operatora.



Vibrations in Physical Systems Vol. 27 (2016)

Computational Modelling of Vibrations Transmission Loss of
Auxetic Lattice Structure

Eligiusz IDCZAK
Institute of Applied Mechanics, Poznan University of Technology
ul Jana Pawla Il 24, 60-965 Poznan, Poland
eligiusz.j.idczak@doctorate.put.poznan.pl

Tomasz STREK
Institute of Applied Mechanics, Poznan University of Technology
ul Jana Pawla Il 24, 60-965 Poznan, Poland
tomasz.strek@put.poznan.pl

Abstract

In this article dynamical properties of auxetic lattice structures will be analysed. Auxetic structures are
materials, which have negative Poisson’s ratio and some of these have got specific dynamic properties. Their
dynamic behaviour in the frequency domain will be also shown in this article. The possibility of isolation of
auxetics will show the factor VTL — Vibration Transmission Loss.

Keywords: auxetics, negative Poisson’s ratio, dynamic analysis, VTL factor

1. Introduction

Auxetic materials are materials characterized by negative Poisson’s ratio which means
that they expand during stretching and shrinks during compressing in the transverse
directions to direction of compressing or stretching force. The Poisson’s ratio (PR) of
isotropic is between -1 and +0.5. Anisotropic materials have non-bounded range for
Poisson’s ratio.

Materials with negative Poisson’s ratio (NPR), at present often referred to as
auxetics, have been known for over 100 years and the key to this auxetic behaviour is the
negative Poissons ratio [1]. In early 1900s a German physicist Woldemar Voigt was the
first to report this property [2] and his work suggested that the crystals somehow become
thicker laterally when stretched longitudinally, nevertheless it was ignored for decades.

Gibson [3] in 1982 realized the auxetic effect in the form of the two-dimensional
silicone rubber or aluminum honeycombs is deformed by flexure of the ribs. The first
mechanical [4] and thermodynamical [5] models were presented by Almgren in 1985
and Wojciechowski in 1987.

Evans et al. paper [6] introduces the term auxetic, from the root word for growth, to
describe transverse expansion under uniaxial (longitudinal) tensile load. Re-entrant
foams were reported for the first time by Lakes [7]. A negative Poisson ratio implies the
substances with negative Poisson's ratio that can be readily compressed but are difficult
to bend [8].
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Nowadays, it is known that negative Poisson’s ratio may also characterize many
other structures with other shape and geometries [9]. In the literature are described also:
fibre materials, centre-symmetric or gradient honeycombs, chiral structures, auxetic
laminates, composites or lattice-like cell structures - sometimes are also designed the
combinations of this arts of auxetics. All of them have negative Poisson’s ratio. Some of
these because of their auxeticity exhibit extraordinary dynamic properties and have great
attention by the scientists from many countries [10-19].

Ruzzene et al. [18] in their work have presented the structural and acoustic analysis
of truss-core beams. They obtained the optimal geometry of truss-core with the best as
possible acoustic behaviour. Their numerical model was created by employing dynamic
shape functions derived exactly from the distributed parameter model of beam elements.

Joshi et al. [15] in their works has presented dynamic, acoustic analysis of auxetic
composites and its dependency on geometry or number of single repeated cells of
material. Structures with negative Poisson’s ratio may have unknown and unexpected
dynamic behaviour e.g they can be a good isolator or protector from the resonance. The
parameter which circumscribed isolation properties is Vibration Transmission LoSsS,
which shows the range of frequency where the structure doesn’t transmit vibrations. In
order to determine this factor it is useful to define Vibration Transmission Coefficient 1,.
The Vibration Transmission Loss (VTL) is given by the formula:

VTL =1Olongi (1)

9

where 1, is Vibration Transmission Cofficient (VTC) given by:

Twz[”y(x’w)]‘[uy(X,a))]tdx

4 )

9

_ Twz[uv(xla’)]b[uy(X,a))]bdx

where: @ is frequency [Hz], u,(X,) - displacement in y-direction, indices t, b — top
and bottom layer of auxetic structure. L, and L, are lengths of top and bottom boundary
of structure.

2. Numerical results

Auxetic lattice-like structure is designed for the analysis of dynamical properties. The
structure is built of a repeated unit cell which has geometry parameters as follows: height
a, width b and parameter ¢ — height of the notch in the bottom. The Poisson’s ratio of this
cell is negative and equals -0.915. The single cell can be multiplicated and analysed as
complex 3D structure (see Figure 2). This lattice-like structure was tested to find
vibration transmission factors. For the simulations the following values were taken: a = 1
m,b=05m,c=0.3m.

In order to facilitate the analysis only one quarter of the 3D structure is considered
The boundary conditions are: constant displacement 0.1 m on the top, on the one side of
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x-axis, y-axis and bottom - roller boundary and on the rest boundaries - free boundary
condition.

Figure 2. Three-dimensional auxetic structure

The results of simulation by the frequency analysis of the auxetic structure are
presented in Figures 3 and 4. These diagrams can be used to analyse the possibility of
using the structure to reduce the level of vibrations.
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3. Conclusions

A finite element model was developed to evaluate the effective properties and dynamic
response of the auxetic lattice structure. The influence of the parameter structure on
effective properties and dynamic response (VTL) of structure was investigated.

To cover a wide range of structural resonances, the excitation frequencies of
sandwich panels varied from 0 to 1000 Hz. The range of frequency vibration which are
most damped is around 200 Hz and 600 Hz. The values of Vibrations Transmission Loss
for these frequencies are 90 and 130 decibels respectively. The numerical experiment
confirms also the transmission loss of auxetics by some frequencies.

If the geometry parameters are changing e.g. by increasing the value of ¢ twice - to
0.15 m — the auxetic effect is smaller: Poisson’s ratio is -0,2. The value of the VTL is
greater in 0-1000 Hz and dampens vibration better as in the previous case. Minimal
value of VTL in this situation is about -10 dB for frequency 500 Hz. In this case we
observe strengthening of vibration.
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Abstract

In most cases, while the sound power level of machines and devices is determined, it is assumed that tested
objects are sound sources which can fit in a so-called reference box. Such an approach takes into account the
influence of local sources. Although it does not allow their localization, separate noise measurement and
evaluation. There are devices which have two or more relevant sound sources. In this paper this type of devices
has been defined as devices with extensive sound sources (DESS). The tested device is a functional unit but its
local sound sources are distant from each other. The results showed that determining the sound power level
only is not sufficient for proper parameterization of noise emitted by DESS.

Keywords: devices with extensive sound sources (DESS), sound power level, biomedical devices

1. Introduction

The determination of acoustic parameters of devices with extensive sound sources
(DESS), limited only to the sound power level (Lwa), may be inadequate to this kind of
devices. Under the term of DESS we mean the technical object that has the possibility of
various spatial arrangement of its components. In addition, these components are
together a functional unit and they can not work separately. In many cases, each of the
device’s components could be treated as a separate sound source which usually emits
sound of a different nature.
Due to the specific design of this kind of devices it is worth mentioning that:
= itisimpossible to clearly define what type of measuring surface should be used in the
procedure of determination of Lwa (see Figure 1),
= description of the acoustic features of a device basing only on one parameter, for
example Lwa, will not fully characterize the influence of the device on the
environment and it will not provide sufficient information needed for creation
of acoustic maps (by numerical simulations) e.g. in the planned installation place.
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a) ) Reference box b)

Measurement
surface

Reference box

® - Key microphone positions \\\\\\:\ Reflsstliig plaiie
Figure 1. Examples of microphone positions and measurement surface,
while determination of sound power level according to 1ISO 3746 : 2011; a) hemisphere,
b) parallelepiped surface for a small machine, c) parallelepiped surface for a tall
machine, d) parallelepiped surface for a long machine [1]

2. Research methodology

Vacuum cleaners, sets of pneumatic devices or biomedical devices such as smoke
evacuators can be examples of DESS. A more accurate parameterization of noise emitted
by the last mentioned is necessary because of high requirements concerning the acoustic
climate in areas such as operating rooms. Such devices are used to remove smoke and
particles carried by it (bacteria, viruses) created during operation or electrosurgical
procedures. The system typically includes a suction pump unit with air filtration system,
a working tool (electrocoagulator or electroscalpel) with an air sucking tip and a flexible
hose connecting the components. The pump and the working tool are usually placed in
different locations within the operating room, in addition each of the components emit
sound of a different character (Figure 2).

It is worth noting that due to the surgeon’s necessity to maintain long-term
concentration during procedures or surgeries, it is important to limit noise in the
operational environment. Following recommendations from PN-N-01307: 1994 [2],
relating to the performance of precision work it can be assumed that the equivalent
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sound pressure level (Laeg) in this case should not exceed 65 dB. It is also worth noting
that the recommendations for noise in the operating room in the United States are more
restrictive. According to ANSI/ASA S12.2-2008 [3] Laeq should not exceed 44 dB.
It should be emphasized that this is only a recommendation not a requirement. The
results of the research presented by Kaczmarska, Luczak and Sobolewski [4] have
shown that the presence of low-frequency noise (even Laeq = 52 dB and Lgeq = 62 dB)
while performing precision work can cause fatigue and somnolence.

suction pump with flexible plastic hose electroscalpel / electrocoagulator
air filtering system with suction tip

N

surface sound source, local sources linear sound source point sound source
possible (low-frequency noise usually (broadband noise) (broadband noise)
with poliharmonic character)

Figure 2. Components of smoke evacuator an example of DESS and specifics of noise
emitted by them

For the measurement an equipment set consisting of Roga R50 microphone (ICP),
data acquisition module VibDAQ 4+ and DSP structure elaborated in DASYLab® was
used. An influence of environmental conditions in laboratory was taken into account
according to 1SO 3746: 2011 (A = 54,56 m%/s, Kia = 0,03 dB, Kza = 2,13 dB).

3. Research results

The research included the determination and comparison of the Lwa (Figure 3) of tested
device treated as:
= compact arrangement (all components were placed close to each other in a reference

box in accordance to ISO 3746: 2011),
= extensive sound source; testing was carried with various configurations of the spatial

arrangement of device’s components, as it occurs in the real conditions in the

operating room.

Figure 4 contains sound pressure levels (L) in octave bands. The values correspond
to the levels on the measurement surface of 1m?2. The following conclusions has been
drawn on the basis of comparison of the test results.
= The noise emitted by the suction pump has a low-frequency character (polyharmonic)

associated with rotational frequency (and its superharmonics) of the electric motor

(Figure 6). The dominant amplitude components of the noise are included

in frequency range that does not exceed 500 Hz.
= The noise emitted by the suction tip is a broadband noise covering the frequency

range from 4 kHz up to 16 kHz.
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= An important data that should be taken into account in the parameterization of noise
emitted by the device is the radial spectra of the sound emitted mainly by the suction
pump unit (Figure 5).

<€—— compact arrangement —> | <——— components considered separatelly (as DESS device) —>
i suction pump suction tip

70 \ 68,4

noise barrier

A

S~
/ \//\J/
| 4 67 .'[

64,3

Ly [dB]
2

63,5

60 T
compact arrangement | DESS; suction pump recalculated total sound DESS; suction tip
! power level

Figure 3. Spatial arrangement of components during testing and theirs Lwa

Taking under consideration that components emit noise of different character,
reduction of the level of emitted noise require an individual approach to each source.
Another problem is the determination of Lwa of device that is characterized by various
regime of work. Testing should include all operating modes that can occur during
surgery or chirurgical procedures. This is connected with the necessity of using
a relatively long averaging time and/or determining the duration of each operating mode
such as suction, choking airflow, idle.

80
e} =)
70 — — — — —
e Ty i o O L e P wld €13 2, °
e o | — e s vy
60 U 5 -] :— el 51 i [rel Yol L I I o= i |
S8 |del = |2+ g |l = fte! O compact
A0 el 0] o] i o IVl & e] ¢
—_ g o= e (o] & b arrangemen
/m (] o
S 40 " % BDESS -
£ 30 suction pump
20 EDESS -
- suction tip
10
0

315 63 125 250 500 1k 2k 4k 8k 16k
Center frequency of a band £, [Hz]

Figure 4. Noise emitted by tested device treated as compact arrangement and as DESS
(average acoustic pressure level correspondent to measurement surface of 1m?)
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La L, octave 125Hz

front of the device front of the device

rear of the device rear of the device

Figure 5. Radial spectra of noise emitted by suction pump; without load (hose not
connected), with load (hose and tool connected )

Sound power level of the tested device (compact arrangement case) determined
in accordance to 1SO 3746 : 2011 is equal to 68.4 dB. In the case of the machine’s
components tested separately Lwa of suction pump equals 64.3 dB and Lwa of suction tip
equals 63.5 dB. While the total sound power level of both components after recalculation
would be 67 dB. The difference between the device’s Lwa (Compact arrangement case)
and the recalculated total Lwa (separated sound sources case) probably results from that
a part of acoustic energy emitted by the hose is not included. In comparison to other
potential sources of noise in the operating room [5-8] it can be stated that the noise
emitted by the tested device can have a significant influence on the acoustic climate
in the operating room.
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Figure 6. Narrowband spectrum of acoustic pressure measured 1m above the suction
pump unit
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4. Conclusions

Treating components as autonomous but simultaneously influencing sound sources
allows obtaining data helpful at the prototype research stage and minimize the noise
emitted by the each device’s component. Finally, this approach gives the possibility
of noise reduction in the area of surgeon’s operation. As well as, it allows meeting
the noise requirements in areas of such a kind. It can be done by e.g. the appropriate
placement of the device’s components within the operating room.
An extended data set should include among others:
- Lwa (total and individual for device’s components, which can be treated as local
noise source),
- radial spectra of noise emitted by device’s components,
- typical arrangement of components and operator in installation place
(e.g. operating room),
- duration of typical tasks performed using the device.
That parameters may allow the creation of reliable acoustic maps of operating rooms
at the design stage using simulation software.
The results of the carried out research may be helpful in developing the methodology
of Lwa determination for DESS.
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Abstract

Currently there is a wide range of different kinds of power tools on the market. In the case of impact drills the
major threat to the user’s health are vibration and acoustic impacts. Knowing that the actual drilling conditions
may vary significantly from standardized conditions. It is important to determine the actual maximum level of
dangerous factors present during drilling. Furthermore, it is also very important to link that factors to the
conditions in which they occur. Among many factors affecting the level of vibration of an impact drill, change
of the working position, the length of the drill bit and the diameter of the drill bit were verified in this paper.
Verification was based on a comparison of vector-weighted mean values of acceleration of vibrations

aRws registered on the handles of the impact drill, while drilling in concrete, under different working
conditions.

Keywords: impact drill, local vibrations, concrete drilling, drill bit, different working conditions

1. Introduction

Impact Drills are one of the most common power tools used both professionally and at
home. The manufacturer's declaration of levels of vibration and noise are taken into
account in industrial conditions for legal reasons [1]. However, in the case of private use,
the lack of awareness of safe use can be observed or the threats are just ignored.

Vibration levels declared by the manufacturers are determined in the specific
standardized conditions. According to EN 60745 the procedure requires a drill bit
diameter of 8 mm and a working length of 100 mm. While drilling vertically, downward
the force acting on the device must be between 120 N and 180 N. [2]. However, the
actual drilling conditions often significantly differs from the standardized conditions,
which are the basis of manufacturers’ declarations of vibrations. Therefore, the value
of acceleration of vibrations given by the manufacturer should be treated with caution.
Due to the harmful impact of vibration on human health [3,4] the proper selection
of personal protective equipment, determination of allowable time of exposure or even
the decision to stop using the device is vital.

There are a number of factors affecting the level of vibrations emitted by an impact
drill. These factors can be divided into three groups associated with:
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= machined material and the way of its foundation (concrete, brick, stone, etc.),

= operator’s personal features (physique, experience),

= device and tool (build and additional equipment).
The factors affecting the level of vibration emitted during drilling were discussed
in many publications [5-10]. But there is no information about the influence of different
diameters and working lengths of the drill bit in terms of the measurement
of acceleration of vibrations.

2. Measurements

A series of holes was drilled in reinforced concrete beams (vibration-compacted
concrete) in the experiment. Drilling was done vertically, downwards and horizontally.
The operator’s positions are shown on Figure 1.

Figure 1. The stand and the operator while drilling vertically — on the left, while drilling
horizontally — on the right

Triaxial vibration transducer ICP 604B31 and SVAN 911A analyser were used
to register the vibration signal. Spatial orientation of the measurement directions, related
to a tool, is following:

= the X direction (axis) corresponds to the longitudinal axis of the spindle of the

drill,

= the Y direction (axis) corresponds to the longitudinal axis of the rear handle

of the drill (a handle rigidly connected with the tool’s body),

= the Z direction (axis) is mutually perpendicular to the other two [11].
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During the tests 620W impact drill HITACHI DH 22 PH was used. To determine the
impact of the forced change of the operator’s position @12mm drill was used. In order
to determine the effect of the diameter of the drill bit the following tools were used:
O8mm, P12mm, @16mm and @20mm. Examination of the effect of drill bit’s diameter
on the vibration was carried out in the vertical direction, downwards. To determine the
effect of the length of the drill bit on the values of vibration a set of @12 mm drill bits
was used. The set includes the following bits: 125/165mm, 250/315mm, 400/460mm,
520/600mm and 900/1000 mm (working/total length). In this case drilling was done only
in the horizontal direction.

Each comparison required as constant conditions as possible. One experienced
operator drilled in a single beam (one for each comparison). The operator was 27-year
old, 175cm tall and 78kg weight male. The maximum power of the device was used.
The drilling direction was controlled by laser. In order to eliminate the influence
of temporary changes in the downforce, the average of multiple measurements was
adopted as the result. The total measurement time was approximately 300s
in the comparison of drilling directions, and 180s for the rest. Transient states were
omitted in the measuring sequences.

3. Research results

The results of the measurements are presented below. The following charts show
the impacts of: forced change of the operator’s position, the length of the drill bit
and the diameter of the drill bit on the values of vibrations.
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Figure 2. Acceleration of vibrations of the front handle of the impact drill deepening
on drilling direction
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Figure 3. Acceleration of vibrations of the rear handle of the impact drill deepening
on drilling direction

As it can be seen in Figure 2. the change of operator’s position due to change
of drilling direction has no impact on the value of acceleration of vibrations measured
on the rear handle. The highest vibrations were measured along the x-axis.
The repeatability of the results determined by the formula (1) equals 97.7%.
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Figure 4. Acceleration of vibrations of the front handle of the impact drill deepening
on drill bit length
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Apms — aRMS_H - aRMS_V

i -100%, 1
a'RMS
Where agys is the arithmetic mean of agys y and agus v
arms n 1S vector-weighted mean value of acceleration of vibrations measured

while drilling horizontally,
agms v IS vector-weighted mean value of acceleration of vibrations measured

while drilling vertically.

In the case of the front handle, an increase of acceleration of vibrations was
observed, what confirms the conclusions of other work [10]. This is caused
by the change of the angle between the arm and the forearm of the operator’s left hand.
In the case of vertical drilling the arm is straight. During horizontal drilling, the left arm
is bent at the elbow (see Figure 1.). The repeatability of results in the case
of front handle equals 79.3%.

With the increase of the length of the drill bit an increase of the acceleration
of vibrations of the rear handle is observed. Maximum vibration values were measured
along the x-axis.
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Figure 5. Acceleration of vibrations of the rear handle of the impact drill deepening
on drill bit length

It is impossible to describe the nature of the dependence between the length
of the drill bit and the values of acceleration of vibrations of the front handle. Initially
the values of acceleration of vibrations tend to decrease, followed by their increase.
In the case of the longest drill bits, such high agys values were caused by the buckling

of the drill bit. The buckling was probably triggered by the action of the downforce,



140

which was misaligned with the drill bit’s
the critical buckling force was not possible.

axis [12,13]. Verification of exceeding
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Figure 6. Acceleration of vibrations of the front handle of the impact drill deepening
on drill bit diameter

With the increase of the drill bit diameter an increase of the acceleration of vibrations
of the rear handle is observed. Maximum vibration values was measured in the X axis.
In this case, the coefficient of determination R? equals 0.91 which indicates a very strong
dependence between the level of vibration of the rear handle and drill bit diameter.
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Figure 7. Acceleration of vibrations of the rear handle of the impact drill deepening
on drill bit diameter
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On the basis of Figure 7. it can be stated that the vibration level measured on the
front handle does not change with increasing diameter of the drill bit. Vibration values
are similar in different directions. The measurement results are consistent with previous
work. [11].

In order to meet the paper fundaments the drill bit @12x125/165mm was used three
times (three different beams). The convergence of the results were calculated with the
use of additional data. Percent convergence of results determined on the basis of formula
(1) equals 96.41% for the rear handle, and 94.02% for the front handle. The average
absolute error of the vector-weighted mean value of acceleration of vibrations agpys

is 0.9 m/s?, and the average relative error is 7.88%.

Table 1. The time limit for drilling in different working conditions

o direction Drill bit description
A X X X X X
"1 o iling |08 mm |7 1550 mm [400 mm [520 mm 500 m 216 020 mm
right |vertical |65.0 min|{40.6 min|-----  |---—=  [---m [emee- X X
horizontal |----- 42.6 min |x 39.7 min |x T
left vertical X 31.3min|--—--—- |- | [ 38.5 min|33.5 min
horizontal |----- X 37.2 min|42.9 min |x b e P

The table above shows the time limit for drilling in different working conditions in
relation to Exposure Limit Value (ELV) [1]. The symbol x indicates conditions that do
not allow the use of the drill without personal protective equipment. In two cases that are
in bold, agpg of drill’s handle exceeded the manufacturer's declaration (13.2 + 1.5 m/s?)

with maximum uncertainty included.

4. Conclusions

There were no changes in the acceleration of vibrations on the rear handle associated
with the change of the operator’s position and direction of drilling observed. At the same
time an 30% increase occurred for the front handle. This is connected with forced bend
of elbow joints in left arm.

Vibrations of the drill’s handle depend on the length of the drill bit but the nature
of this dependence is not clear. Vibration levels dangerous for operator and exceeding
the ELV were observed for the longest drills and it was caused by the buckling
of the drill bit.

The change of the drill bit diameter has no effect on the level of vibration of the front
handle. Yet, the dependence between the change of the drill bit diameter and the level
of vibration of the rear handle is increasing.

The increase of the diameter of the drill bit, as well as the change of drilling direction
and the change of operator’s position from vertical to horizontal extend the time
of drilling and cause a loss of productivity of the process — both are connected with
power demand.
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In practice there may occur a combination of factors at the same time, which will
result in vibration emitted by the device exceeding the ELV as well as the occurrence
of health hazard to the operator, despite secure level of vibration declared. In one case
the acceleration of vibrations of both handles significantly beyond the manufacturer’s
declaration were measured.
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Abstract

A computer program for topological optimization of a rotor for vertical axis wind turbines of various type is
presented. The tool is based mainly on two external modules: the GMSH mesh generator and the OpenFOAM
CFD toolbox. Interpolation of rotor blades geometry and computational model of the airflow through a turbine
are briefly discussed. Moreover, a simple optimization algorithm is described. Exemplary results for a H-type
rotor are presented. Finally, potential directions for the software development are indicated.

Keywords: vertical axis wind turbines; topological optimization; computational fluid dynamics

1. Introduction

Vertical axis wind turbines (VAWT) have great potential in the area of renewable energy
generation, although they are relatively rarely used in industry. Modern manufacturing
methods make production of complex geometric shapes increasingly cheaper. Thus,
topological optimization of rotor blades can provide quite valuable results that are
realizable in practice.

Aerodynamics of turbines is complicated and sensitive to slight changes in shape.
Therefore, the software for finding the best possible geometry of a rotor is of high
importance for design engineers. There are many commercial systems (usually based on
the finite element method) that allow one to solve a wide variety of problems in the field
of computational fluid dynamics (CFD). However, the general purpose character of such
programs makes particular tasks rather burdensome: computational model preparation,
geometry parameterization, etc. In this light, developing a specialized optimization tool
seems to be an attractive and challenging idea.

From the programming and numerical viewpoint, CFD-related problems are very
demanding. A common (but not always occurring) feature of vertical turbines, i.e.
a uniform cross-section of a rotor along the axis of rotation (see Fig. 1), simplifies the
problem considerably. In any case, it was decided to create the program with a use of
commonly available components: free, open source packages which fulfill the crucial
and hardest tasks.



144

a) b) c)

Figure 1. Basic types of rotors for VAWT [1, 4]: a) the Savonius rotor,
b) the Darrieus rotor, ¢) the H-type rotor

2. The OPTIMIZER software

The computer program Optimizer developed by the first author has a graphical user
interface and was written in the Python programming language. The application
accomplishes the following tasks: drawing the initial geometric model of a rotor,
generating and previewing a discrete numerical model, changing the simulation and
solver settings, results archiving, conducting simulation related to the direct problem (air
flow through a wind turbine), optimization of the rotor shape, and results visualization.
Optimizer employs external modules: the GMSH mesh generator and the solvers of the
OpenFOAM environment. The program window with sample data can be seen in Fig. 2.

In order to reduce the number of parameters describing the rotor geometry, it was
decided to use interpolation of curves that pass through some control points specified by
user. More precisely, the method known as Piecewise Cubic Hermite Interpolation
(PCHI) is used [3]. On each subinterval the given curve is interpolated by a third degree
polynomial of Hermite type. To form a smooth contour of a blade, continuity of the first
and second derivatives of neighbouring polynomials is ensured at the nodal points.
Obviously, this constraint is cancelled in case of a corner vertex (see Fig. 3). All in all,
user defines the shape of a single blade and the number of blades.
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3. Computational model and solver

A schematic view of a virtual wind tunnel is presented in Fig. 4. The problem domain is
divided into two parts. The central one includes the rotor and its close neighbourhood,
thus, it rotates during simulation. The non-moving subdomain constitutes an outer,
dominant part. The interface between the two regions forms a circle centered at the rotor

axis.
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Figure 4. The domain and boundary conditions for the problem

Airflow through the wind turbine is described by the Navier-Stokes equations; the
fluid is assumed to be incompressible [4]. On the left boundary, uniform inflow velocity
of the air is defined. At the bottom and top walls the slip condition is specified, which
prevents the fluid from leaving the domain. The outlet condition corresponds to zero
relative pressure. AMI stands for Arbitrary Mesh Interface, and is used to model the
mutually sliding subdomains.

Figure 5. An exemplary finite volume mesh
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In general the planar domain is discretized by triangular cells. Additionally,
quadrilateral cells are used in the boundary layers on the blades. The solver employed to
cope with the initial-boundary value problem is based on the finite volume method
(FVM). Since a three-dimensional computational domain is required, the planar one is
extruded by a unit distance. Therefore, the final discrete model consists of prismatic
finite volumes (see Fig. 5).

Within the OpenFOAM environment, the solver pimpleDyMFoam allows for
dynamic meshes. It is an implementation of the so called PIMPLE algorithm:
a combination of the standard PISO (Pressure Implicit Split Operator) and SIMPLE
(Semi Implicit Method for Pressure Linked Equation) algorithms. To guarantee
continuity of physical quantities on the interface between moving and stationary cells, an
additional interpolation is used.

4. Optimization algorithm

The algorithm for topological optimization of rotor blades is made of two modules:
a generator of new rotor geometries, and an analyzer and selector of the best solution.
The former one requires the following user-defined input data: the start and end blade
shapes as well as the number of intermediate profiles (resolution). The algorithm
analyzes the given geometries and prepares a set of new shapes according to the simple
principle illustrated in Fig. 6. The left and right triangles represent the start and end
profiles, respectively. The middle triangle, in turn, illustrates the only intermediate shape
(a special case is shown). Starting from the initial shape, translation vectors for all
control nodes are determined, which leads to a new interpolated geometry. The number
of translations is equal to the number of intermediate profiles.

B

G Bo
Figure 6. lllustration of the start, intermediate and end shapes

As the comparison criterion (an objective function), the power coefficient is used:
Cp=p- (1)

The power of the rotor and the wind flowing past the rotor are given by



148

Pr =l , PWZ%IOAVS’ (2)

where: o — angular velocity of the turbine, T — torque generated by the rotor, p — air
density, A — rotor area in the cross-section normal to the airflow direction, Vy — airflow
velocity. If the defined start and end shapes ensure a constant rotor diameter during
optimization, this criterion can be simplified and replaced with the torque at the rotor
shaft. The torque value is specified on the basis of pressure field at the blades, and is
saved to file in real time. As simulations related to all the prepared profiles are
completed, the program analyzes the results and presents the best solution.

5. Results

The Optimizer software was tested by solving several direct and optimization problems
related to the Savonius and H-type rotors. Results of these studies are thoroughly
discussed in Ref. [2]. Here, only one example is presented.

=

=
[ =N

(a4

Figure 7. Initial geometry of the NS2L4 rotor

Consider blade shape optimization for a H-type rotor denoted by the code NS2L4
(see Fig. 7). Geometry of the start, end and intermediate profiles is illustrated in Fig. 8.
The corresponding values of the rotor torque and power are shown in Fig. 9. As can be
seen, the best solution (in terms of the torque criterion) is denoted by SERIES-4. A
detailed analysis of the results has indicated that this blade variant generates the weakest
vortices. Time history of the torque T for the initial and optimized shapes is presented in
Fig. 10. The simulations were performed for R = 700 mm, Vy = 21.6 km/h. Fluid-
structure interaction was analyzed for time 0 <t <2 s. The optimization lasted 17 690 s.
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Figure 8. Blade profiles in consecutive iterations
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Figure 9. Maximal torque and power (steady-state) of the rotor in consecutive iterations

6. Conclusions

The presented software is a specialized tool that can be applied for topological
optimization of various types of VAWTSs. To create a true alternative to commercial
systems, the program should be improved by increasing functionality of the preprocessor
and postprocessor. Nevertheless, Optimizer is a solid basis for implementation of
advanced optimization approaches, e.g. artificial neural networks (ANN) or genetic

algorithms (GA).
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Abstract

Italian violins of the golden era and French violins are different. Measurements of bridge mobility show that
the Italian violins have a local maximum (a hump) at approx. 2,5 kHz in the bridge mobility. The French
violins do not show this maximum. The arching along the centre line is different. The Italian violins are flat
between the f-holes while the French ones are arched. Does this difference in design explain the difference in
bridge mobility and tone? Proposed FEM simulation and digital signal post-processing of the time series are
promising methods of the virtual testing of various violin models. These techniques may give an answer for the
question above and they should be helpful in achieving high tonal quality of violin.

Keywords: Bridge mobility, top plate arching, experiments and FEM

1. Introduction

A large number of wooden blanks was free for further experiments. It was planned to use
the blanks to investigate the influence of material properties on the top plate
of the violin. In introductory pilot experiments it turned out that the geometry influenced
more than the material properties. Therefore it was decided to cut a large humber of
rectangular plates to the same measures and to investigate the effects of f-holes in each
plate. The f-hole shapes were simplified to three rectangular sections making various
perturbations possible in simple ways.

Thereby it was found that the longer parts along the wood fibres and the lower
transversal parts of the f-holes gave small effects. The largest influence was given by
the upper transversal parts. The influence of two f-holes was well given by f-holes
in shape of two letters, uppercase L:s, one upside down and the other in mirror image
(Fig. 1). The findings were in line with previous f-hole experiments on an assembled
violin. Thus the influence of f-hole geometry had been mapped [1] as well as thickness
previously. The violin top is not flat but arched. No way to explain the influence
of differences in arching had been found. In this report we present experiments and FEM
analysis of “arched” plates. The experiments indicate the effect of arching which can be
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tested by FEM. The traditional way of violinmaking does not offer investigation of
arching, only of thickness.

The frequency range of the so called bridge hill is of special interest.
The fundamental bridge resonance was presented by Reinicke [2 and 3]. The resonance
was found at approximately 2,5 kHz. In this frequency range the ear can register small
level changes of a played tone. The 2,5 kHz-range is most interesting. In experiments
with violins it turned out that at least for this very violin the shape of the bridge was
of minor influence. A plate bridge i.e. a bridge with only a plate and two feet gave
the same hump at 2,5 kHz. The plate bridge resonance frequency was far above that
of the normal bridge. Thereby it was asked whether does the 2,5 kHz hump would be
described as a body-hill rather than bridge-hill (BH) [4]. This plate bridge thus makes it
possible to measure body properties with no addition of complex violin bridge
properties. In this paper we are mainly interested in body properties and we use the plate
bridge in the experiments and the FEM. This makes experimental modelling and FEM
of arching attractive.

The bridge-body properties and their influence on the 2,5 kHz hump found in good
violins have been modelled as coupled circuits [5]. The bridge is modelled as a mass-
spring resonator coupled to the violin body. The body properties are modelled by means
of averages. So called skeleton technique is used and the influences of bridge and body
properties are predicted. It is suggested to start measuring a violins input mobility using
plate bridges [6]. This approach is the background of experimenting. Physical models
can be more easily built for experiments as will be reported here.

Measurements of Italian violins from the “golden era” show clear BH humps
in the 2.5 kHz range [7]. Similar measurements of later French violins do not show
the BH. Possibly it is the difference in lengthwise arching between the “golden” Italian
(flat not arched) and the French (more arched) violins. Good old Polish violins also have
a BH [8].

The BH also shows up in spectra of played test music, i.e. the common test music
the prelude of the Bruch violin concerto. Such attest was made with the concert master
Bernt Lysell of the Swedish radio and his Italian Guadagnini showing a BH but not
a French violin by Leon Bernardel, see Figure 1 [9]. The test playings were preformed
in the main concert studio of the orchestra. The two Stradivari violins and the J.
Guarnerius del Gesu violin in the Strad3D playing tests also show a BH [10].
This background makes the influence of arching the main question of the present project.
What influence has the lengthwise arching on the BH?

2. Experiments

A half of wooden blank for a guitar top was selected and cut into two pieces. One piece
was made with measures close to earlier experiments and a second smaller piece for pilot
experiments. The smaller piece was soaked in water and its mass (weight) was noted as
function of time. After twelve hours the amount of water absorbed was close to
maximum. Drying the plate in hot air oven at 80°C for 2 hours dried the plate. Therefore
it was decided to soak the test the plate in water for twelve hours, clamp it in a bent form
and dry it for two hours to make the larger plate arched.
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The test plate was first arched by soaking, placing a 5 mm diameter rod under
the bridge line and clamped to a grid, 0 mm, at the shorter sides, and dried in the oven.
After removing the clamps a 3 mm arch remained. The “rectangular” simplified f-holes
were cut and a plate bridge glued to the centre of the plate see Figure 1.
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Figure 1. Plate with “f-holes”; a) sketch of bridge and supports
b) center line bending; ¢) bridge line bending

Secondly the plate was flattened by doing the same procedure but slightly bent in the
opposite direction. The plate was now flat after drying. Finally the rod was placed under
the centre line, see figure 1b and a 3 mm arching along the centreline was obtained.

In each case the plate was placed on soft supports at its corners. This was found close
to free edges in measurements. In the acoustical measurements the bridge was impulse-
excited by a pendulum hitting the bridge in the y-direction. A small magnet, mass
approximately 30 mg was waxed to the other, opposite bridge corner. The resulting
velocity, time history, in the y-direction was recorded by an electrical coil over a small
airgap; see recorded time histories in Figure 2. By means of FFT the frequency spectra
of the time histories were obtained, see Figure 3. The Figure 3a thus represents
the frequency response of the plate bent with maximum arch along the bridge line,
Figure 3b the plate “flat” and Figure 3c the plate bent along its centre line. In Figure 3a
compared to Figure 3b flat plate it can be seen that the response level in the 2,5 kHz
range is the lowest, i.e. the lowest for the “French” arching.
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Figure 2. Time history (velocity) of plate flat a) initial 0,1 s and b) initial 0,015 s
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Figure 3. Frequency response of bridge time histories (velocity) for: a) plate bent as in
Figure 1c; b) plate flattened; c) plate bent as in Figure 1b

3. FEM simulation

The geometry and properties of the plate applied for the experiment described above are
used to create a discrete model in the FEM study. The basic difference between FEM
model and experiment is application of the springs and dashpots instead of the foam
to model boundary condition of the plate. It is shown in Figure 1a and Figure 4b.

Plate (spruce)  Young’s modulus E = Ex= 9,7 GPa; Er= Ey= 0,55 GPa
Density p = 460 kg/m?, Poisson’s 1. vxy = 0,44; vx; = 0,33, vy; = 0,42
Bridge (maple) Young’s modulus E=10 GPa

Density p = 600 kg/m®, Poisson’s ratio v = 0,43
Additional properties were given from [11]

N
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/_

- ’/\\Y\ excitation V\
\\ //>
o

z
v
%’ springs and dashpots
AR — ge and dash b)

foam springs and dashpots

@ o d
c) k& = )
Figure 4. FEM model of the plate; a) shell model of the plate, b) support of the corners —
foam (experiment) and springs (FEM), c) discrete model of the plate — 4016 shell
elements type 4SR, d) “f-holes” and bridge with numbers of the output nodes
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FEM model of the plate and boundary conditions are shown in Figure 4. Loads —
excitation: see Fig. 4a and Table 1. The procedure Dynamic, Explicit of
ABAQUS/Explicit System was used to lead simulation of the plate vibration. Selected
results of FEM simulations are shown in Figure 5.
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Figure 5. Time history (velocity) of the plate a) response of Vy in node N9 (see Fig. 4d) -
initial 0,1s; b) response of Vy in node N9 initial 0,015 s; ¢) comparison of response Vy,
Vy, Vz in node N9, d) comparison of response V. in nodes N34, N43 (see Fig. 4d)

4. Signal post-processing

The FEM simulation gives results in the form of the time series (see Fig. 5).
The mobility (admittance) can be obtained by digital signals processing (DSP)
of excitation signal (force — see Fig. 4a) and the response signal of the tested model
(velocity — e.g. Fig. 5a). A simplified algorithm of DSP procedures has been outlined
in Figure 6. In the first step the output data from FEM simulation is windowed. Then, by
FFT procedure the time signals are transformed into frequency domain.
The transmittance (in this case module of the mobility in [ms?/N]) is obtained by
dividing the response spectrum by the excitation spectrum. In the last step, magnitude
of mobility is converted from linear to logarithmic scale which is more useful for
comparisons of results of experiments and numerical simulations. The reference value
equal to 1 ms/N has been used. The sampling frequency used in the DSP system was
equal to 20 kHz. It results from the time step of FEM analysis (At = 0,0005 s).
The rectangle time window of the size of 2048 samples has been applied. Taking into
account these parameters we can state that only a short signal sequences (of excitation
and response about 0,1 s) has been used to determine the admittance (see Fig. 5a).
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Figure 6. Simplifies scheme of digital signal post-processing used to the mobility
determination of the violin bridge (based on FEM results)

The first 10 milliseconds of analyzed signals (excitation and response) are shown
in Figures 7a and 7c. The short triangle force impact equal to 1 N and duration of 0,2 ms
is visible in Figure 7a. Spectra of the excitation and the response are presented in Figures
7b and 7d respectively.

0.2 b) 0.0020 p—
0.0
0.0015
-0.2 =
% -0.4 [impact excitation ‘I FFT 8 0.0010
S .06 @
is 1 0.0005
0.8
-1.0 0.0000
12 0 2000 4000 6000 8000 10000
0.000 0.005 0.010 frequency [Hz]
time [s]
0.02 d) 0.00040
| 0.00035
| = 0.00030 |
0.01 7 O
g M | FFT £, 0.00025 )
= 0 I o0 it st 2 0000201 M
2 7 V AL A A A A S 000015 |
g 2 I Al
2 > 0.00010
Soo1 1 | fred VAW AN (.
’ N
0.00000
0.02 0 2000 4000 6000 8000 10000
0.000 0.005 0.010 P
. requency [Hz]
time [s]

Figure 7. Example results of signals post-processing (flat plate; see Fig. 4)
signals from FEM simulation : a) excitation signal ¢) response (Vy in node N9);
spectra obtained by FFT: b) spectrum of excitation signal d) spectrum of response
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The frequency range of spectral analysis and spectral resolution results directly from
settings of DSP parameters. A sampling frequency fs determines the frequency range.
In this case it is limited to 10 kHz (% fs — Nyquist frequency). However a usable
frequency range of the admittance may be lower. The frequency range depends on
the shape and the duration of the virtual impact excitation which will be used for
dynamic testing of FEM model. In practice the duration can not be shorter than At.
The frequency resolution Af (of spectra as well as the admittance) is determined by the
sampling frequency and the number of signal samples (N) in the time window
(Af = fg/N). Taking into account values of both these parameters the resolution Af is
approximately equal to about 10 Hz. It is worth mentioning that DSP software has been
elaborated in the DASYLab® environment (Data Acquisition System Laboratory).

The mobility (admittance) in linear and logarithmic scale of the magnitude has been
shown in Figure 8. In Figures 8a and 8b the BH (“Bridge Hill”) frequency range has
been marked.
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Figure 8. The final result of DSP — mobility (admittance) of violin FEM model;
a) linear scale b) logarithmic scale (flat plate see Fig. 4 — corresponding to response of
Vy in node N9)

The Short Time Fourier Transform (STFT) was applied as auxiliary analysis which
shows well the nature of the response signal in the frequency and time domain. This type
of analysis has been described in [12]. Some optimization techniques of STFT can be
found in [13]. An interesting approach to the time-frequency analysis and obtaining
of a time-variant frequency response function is proposed in [14]. The methods
mentioned above can be useful in development of new testing methods as well as
parameterization of the vibroacoustical properties of violins.
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5. Comparison of FEM — experiment

The basic differences between FEM and experimental testing are shown in Table 1.

Table 1. Comparison

FEM - Experiment

FEM

Experiment

The structure is divided into finite elements.
All elements have the same properties.

Structure

The continuity of the structure. Local
inhomogeneous density and other according
to wooden properties.

Basic materi

Young's modules (EL, Er) are constant.

al properties

Young's modulus (Ev, Er) are
inhomogeneous according to local properties
of the wooden plate. The average values of
Young's modules are the same as in FEM

Boundary

The plate is supported on the springs and
dashpots in axis directions (Kspring = 200 N/m)
— linear — see Figure 4a,b,c

§*

(

conditions

The plate is based on the foam ankles.
The foam stiffness is unknown (typical
nonlinear) — see Figure 1a and Figure 4b

Load —e

Impact force F = -1N (triangle, time=0.0002s)
— see Figure 4a,d

Xcitation

Excited by a mechanical pendulum — see
Figure 1a
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6. Conclusions

Experiments were made with a rectangular wood-plate with a simplified bridge
and simplified f-holes. The bridge was impulse excited by a mechanical pendulum
and the velocity response was measured. By FFT the velocity response was transformed
into frequency response. The plate was bent in three steps, first across the fibres with
maximum arch along the bridge line, secondly flattened and finally bent along the fibres
with maximum arch height along the centre line. Minimum level in the 2,5 kHz, the BH
range, was found for the plate with the arch along the bridge line, somewhat higher for
the flattened plate and the highest level for the plate arched along the centre line.
The experimental results were subjectively evaluated and need independent verification
and an explanation.

The comparison of the experiment results that are shown in Figure 3b
and in [1, Figure 6c] to the transformed FEM results shown in Figure 8 confirms that
typical BH exists near frequency of 2,8 kHz. Despite the differences shown in Table 1
the results of the experimental investigation and FEM coincide for the flat plate.

Preliminary FEM simulations of the bent plates that are shown in Figure 1b
and Figure 1c do not confirm experiment results exactly that are shown in Figure 3a
and Figure 3c. Further research are planned to clarify the reasons of the differences.
Perhaps the methods of bending plates used in the experiment had introduced changes
in the material properties of the plates. FEM models ought to be checked beside of this.
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Abstract

This paper presents the development of post-processing aeroacoustics utility for OpenFOAM, based on Ffowcs
Williams-Hawkings aeroacoustic analogy. Although the FH-W analogy is well known for almost 50 years,
there is a lack of open-source software which is using it, hence decision to perform this implementation. This is
the veryfirst version of utility, so only one formulation of FH-W were implemented. Presented application
allows to compute far-field acoustic pressure from near field CFD solution. Validation is based on NASA
Tandem Cylinder Case. Comparison of the results from simulation show fairly good agreement with
experimental data.

Keywords: aeroacoustics, CFD, FH-W analogy, CAA, OpenFOAM, FVM

1. Introduction

Engineering problems like far-field noise prediction of aircraft landing gear or helicopter
rotor it is still a challenge, despite there is a constant progress in computational
aeroacoustics(CAA). Complexity of these cases and large distances to far-field, causes
that accurate solution of acoustic fluctuations propagation inside computational domain
would beineffective.

There is a way to bypass this difficulty by introducing some integral methods. Those
methods are using data obtained from time-dependent CFD(computational fluid
dynamics) solution or PIV measurements. That data should be accurate enough to
capture all potential noise sources. The next step is to use anaeroacoustic analogy to
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propagate near-field results(sources)to the far-field observers. This paper is a try to
extend the research conducted in [10].

It is worth mentioning that apart from the technical aspects of modeling of the sound
distribution, more and more research uses the modeling of wave phenomena to the sound
synthesis [11].

2. Lighthill equation

The Lighthill analogy[1][2] is applicable to unbounded, incompressible, low Mach
number flow. These equations are derived from Navier-Stokes[7] equations, which are
reorganised into inhomogeneous wave equation, in form presented below:

52,0 22 i

2L _aivip= T, 1
a2 o r oxoxj @)
Tij = puiuj + py —a§P5ij (2)

The source term from equation (1) and described in equation (2) has been named
a Lighthill stress tensor. It contains acoustical sources, which are represented as a flow
parameters. Mathematically speaking, equation (1) is a hyperbolic differential equation,
which describes acoustic wave propagation with speed of sound ao. Because of
assumptions that were made, these analogy have some obvious limitations:

e propagation of sound is through unbounded domain,

o level of sound pressure is relatively small,

e acoustic wave have no influence on the flow.
So it is clear, that Lighthill analogy is applicable only on subsonic flows.

3. Ffowcs-Williams Hawkings analogy

FH-W analogy[3] is an extended version of Lighthill analogy. It introduces the so called
source surfaces, which are taken into account when computing the sound pressure level
at the observer. Those surfaces can be set as surfaces of solid body(impermeable) or as a
any free surface located in domain(permeable). In contradiction to Lighthill analogy,
FH-W analogy allows the motion of the bodies inside fluid domain, that fact extends its
applicability to predict noise generated by rotors. Analogy is govern by equations below:

2
a—t%—vz(p—m=§[Qn5(f)]—a—i[u5(f)]+
2 €))
+W[Tij"|(f)]
Where Qn and L; are defined as:
Qn =Qifi =[povi + p(U; —V; I, (4)
L =Ln =[Py + pu; (uj —vj)IN (5)

The source surface mentioned before(also called integration surface) is described as
f(x,t)=0 and A; = Vf is a unit normal vector pointed out from surface f. In equations (4)
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and (5) videnotes the velocity of surface f, while u; is the velocity of the fluid at the
integration surface. If the source surface is equal to the solid body surface then ui=vi.
In equation (5) there is a compressible stress tensor:

Rj = (P— Po)dy —7jj (6)
Because of the contribution of the last term of equation (6) to total acoustic power is
relatively small, it can be neglected. Also we can assume that the disturbances of density

outside the source surface are also small, so the term (p-po) can be replaced by p’, which
is considered to be acoustic pressure.

4. Formulation 1A

For a complex geometry it is hard to find the direct solution of equation (3). Therefore
some numerical formulations of FH-W analogy were introduced.One of them is
formulation 1A proposed by Farassant[5][6]. It is suitable for moving solid bodies in
fluid at rest. That formulation was developed to improve prediction of noise generated
by helicopter rotor.

The acoustic pressure p’that is generated by solid body with subsonic velocity,
measured by observer in position x and time t is given by:

p'(xt)=pr (x,1)+p'L (1) )
4mp'; (x,1) :Lo{m} ds +
. r ret (8)
Qn(er+aO(Mr_M2))
+J.fo{ M ) } tdS
. L,
4ﬂp L (X,t) = J‘f_0|:mj| dS +
L-L,
+L=o[—r2(1r—|v|r)3} tdS+ o)
Lr(er +aO(Mr -M 2))
+L=O[ A-M ) } tdS

Where M denotes Mach number of a source, with components Mi=vi/ag, the dot “-”
means time derivative with respect to emission time 1. Other components of equations
(8) and (9) are following:
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Subscript ret means that the integral is evaluated at the emission time. The retarded time
equation has a form presented below:

r
=7, —t+—=0 11)
a9
Where r = |x — y(ret)|, and is a distance between observer and the source at the emission
time.

5. Formulation GT

In case, that could be defined as flow inside wind tunnel, there is situation when both
observer and source remain motionless. Only fluid has a velocity. Also there is a need to
assume that mean flow velocity has a direction +xi1, which leads to Uo = (Uoz, 0, 0).
These situation is equivalent to situation when source and observer are in motion with
velocity —Uop but the fluid is at rest. With those assumptions there is an ability to use
special case of formulation Al.
For source in subsonic, rectilinear and uniform motion equation (11) given by
Garrick [4] simplifies to form:
R
Trg =t=— 12
m=t=g (12)
And distance between source and observer is given by:
_ ~Mo(% —y1) +R”

R 7

(13)

Where:

R* =04 —y1)2 + (% — ¥2) + (X5 — ¥3)°) (14)

B=1-M¢ (15)

In this particular case R is an effective acoustic distance, rather than geometric.
Components of unit distance vector are defined as:

s —MyR" + (X — A Xy — A (Xg — A

— 2(1 Y1) R2:(2 Y2) R3:(3 Ys) Mg = MR, (16)

SR R R

Variables Q, and L; are identical as in equations (4) and (5), but in this formulation
velocity of integration surface v; is replaced by —Ug, because all of the velocity
components has to expressed in stationary reference frame. So equations (4) and (5)
could be rewrite as:
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Qn =[poUoi + p(U;j +Ug)I; (7)

Li :[Pij +PUi(Uj +U0j)]ﬁi (18)

In contradiction to formulation 1A, distance between source and observer is not a

function of time, so R=const also as other variables which depend on time.Those

variables which are not function of time could be computed at initial step.Also

derivatives of those variables could be neglected.That leads to simplification of
computation. Simplified equations (8) and (9) could be written as:

47zp'T(x,t)=L{ < }d8+

RA-M,)?
, (19)
+I Qn+aO(MR_M ) ds
o RA1-Mg)® |
4mp', (x,t) = e ds
G I e T e
LR_LM
+f _0|:R2 A-M.)° Lds + (20)

+I Le(Mg—M?) ds
=0 R*1-Mp)? i,

6. Numerical implementation

In the first version of the utility presented in this paper, the GT formulation were
implemented. The decision were made to make this application working as a post-
processing utility of OpenFOAM(open source FVM software). Due to fact that acoustic
pressure measured at the observer is a function of time, the CFD simulation,which will
provide input data, needs to be time dependent. Each cell of finite volume mesh will be
treated as a separate acoustic source region.

The retarded time equation (12) could be resolved in 2 ways. In the first option,
commonly called retarded time algorithm, receive time t is set, and then the emission
time zret has to be found, and finally the integrals are evaluated. Considering a numerical
calculations this could be confusing, because of the possibility of not having input data
at computed emission time.

The second approach is to set constant emission times, which in fact will be equal to
CFD time steps, then appropriate receive times needs to be calculated. That algorithm
was described in [6].

For purpose of these implementation, the second approach was chosen. In constant
emission time algorithm, there is a need to interpolate calculated data of each source
region at the same receive times. That is necessary to correctly sum noise deriving from
all sources.
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The last simplification in this version of utility, is to allow use only solid body
surfaces(impermeable) as a source surfaces. It will reduce the computational complexity
of utility. Equation (7) will be simplified to form;

p'(x,t) = p'L(x1) (21)

Computations made with usage of theaeroacuostical analogies have that advantage,
that observer could be located outside of computational domain. That allows to reduce
size of computational mesh, and simulate only area of interest. But there is also a
disadvantage, those analogies does not take into account the reflections of the acoustic
wave. They are also "blind" to solid reflecting surfaces. The final decision, if use or not
to use, always depend on user.

7. Validation of implementation

To check if implemented analogy works properly, some validation was performed.It was
a CFD simulation of tandem cylinder case, which is well described in [8], also a
experimental data are available[8]. Geometry and flow parameters of the test case are
presented below. All microphones are located at the center plane of the span.

Y D j

N
0 Jmo /

ﬁ f— —_—
Flow L
Figure 1. Configuration of test case
e D=0.05715[m] L=3.7D Re=166000 M=0.128 (44 m/s)
e Span=12D

e Mic. A(-8.33D, 27.815D) Mic.B(9.11D, 32.49D) Mic.C(26.55D, 27.815D)

To obtain results, transient simulation with Spalart-Allmaras[7][9] turbulence model
was performed. Due to fact that used solver demands Courant number lower than 1 and
very fine quality of computational mesh (around 5 million of finite volume elements),
time step value was A¢=105s. Because y+ parameter value were lower than 1, no wall
functions were used. Simulation results served as input to implemented utility.
Computation took almost 2 weeks on Zeus HPC cluster (24 cores).
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Results from microphone B are shown on Figure 2. There is slight difference
between simulation and experimental data, but the dominant frequency is almost the
same(around 170 Hz), with similar levels. Better results could be obtained with more
accurate computational grid. But that needs more hardware resources to use, and also
drastically extends simulation time.

00 PSD at microphone B

90

80 Simulation Data

Experimental Data

PSD [db/Hz]
=) ~

o
S

30

20

Frequency [Hz]

Figure 2. PSD at microphone B

8. Conclusions

Benchmark test that was conducted, shows that presented implementation of FH-W
analogy works more or less properly. It is a desirable tool for predicting acoustic
pressure at far-field observer. Acoustic analogies allows to compute acoustic pressure
outside of numerical domain, what causes in significant reduce in computation time. The
next will be an implementation of 1A formulation, which extend utility potential to
permeable surfaces and more general cases, for example helicopter rotor noise.
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Abstract

A problem of free vibrations of medium thickness microstructured plates, which can be treated as made of
functionally graded material on the macrolevel is presented. The size of the microstructure of these plates is of
an order of the plate thickness. Averaged governing equations of these plates can be obtained using the
tolerance modelling technique, cf. [18, 19, 9]. Because, the derived tolerance model equations have the terms
dependent of the microstructure size, this model describes the effect of the microstructure size. Results can be
evaluated introducing the asymptotic model. Calculated results can be compared to those from the finite
element method or a similar tolerance model of thin plates, cf. [9].

Keywords: medium thickness functionally graded plates, microstructure, tolerance modelling

1. Introduction

In this paper, medium thickness functionally graded plates with microstructure are
investigated. Their microstructure is in planes parallel to the plate midplane along one,
i.e. the xi-axis direction. It is assumed that plate properties along the perpendicular
direction are constant. Moreover, the size of the microstructure is assumed to be of an
order of the plate thickness. An example of these plates is shown in Figure 1, cf. [12].

Figure 1. Fragment of a medium thickness functionally graded plate
with the microstructure, cf. [12]
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These plates consist of many small elements along the xi:-axis with a span equal I, cf.
Figure 2, (x=x1). Such elements are called the cells. Their length I describes the size of
the microstructure and is called the microstructure parameter.

h(x)*

d

A2 yx)! (1-y(x))l2
!

Figure 2. Element of the plate with a fluctuation shape function, cf. [12]

Thermomechanical problems of functionally graded media are often described
applying various averaging approaches, which are wused for macroscopically
homogeneous structures, cf. Jedrysiak [7, 8]. Models of periodic plates based on the
asymptotic homogenization method play a role between them, cf. Kohn and Vogelius
[14]. In a series of papers there are shown applications of other methods, which describe
various problems of thermoelasticity of beams, plates and shells, e.g. frequencies of
functionally graded plates using a meshless method by Ferreira et al. [5], vibrations of
functionally graded shells by Tornabene and Viola [17], thermoelasticity of functionally
graded plates by Akbarzadeha [1], dynamics of beams with functionally graded core by
Bui et al. [3], buckling of sandwich beams with variable properties of a core by
Grygorowicz et al. [6]. However, the effect of the microstructure size is neglected in
governing equations of these models.

In order to take into account this effect the tolerance averaging technique can be
applied, cf. [18, 19, 7]. Various periodic structures are modelled by using this method in
many papers, e.g. medium thickness periodic plates by Baron [2], higher order vibrations
of thin periodic plates by Jedrysiak [7], nonlinear thin periodic plates by Domagalski and
Jedrysiak [4], vibrations of periodic three-layered plates by Marczak and Jedrysiak [15].
The tolerance method is also adopted and successfully used to analyse different
functionally graded structures, e.g. thermoelastic problems of laminates, plates and shells
with functionally graded structure by Jedrysiak [8] or Michalak [16], stability of thin
functionally graded plates by Jedrysiak and Michalak [11], vibrations of thin
transversally graded plates by Kazmierczak and Jedrysiak [13], vibrations of thin
functionally graded plates with the size of the microstructure of an order of the plate
thickness by Jedrysiak [9, 10], Jedrysiak and Pazera [12].
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2. Modelling foundations

By OxiXxoxs the orthogonal Cartesian coordinate system is denoted and t is the time
coordinate. Let us introduce arguments: X=(x1,X2), Z=x3; and p as a loading along z-axis.
The region of the undeformed plate is described by Q={(X,2):—d/2<z<d/2,xeIl}, with the
midplane IT and the plate thickness d. The “basic cell” A=[-1/2,1/2] is defined in the
interval A=(-L1/2,L1/2) on the xj-axis, with | as the span of cell A, called the
microstructure parameter. Parameter | is assumed to satisfy the conditions d~I<<L.

Let properties of the plate: a mass density i, a rotational inertia 9 and bending
stiffnesses daugys, be tolerance-periodic functions in x defined as:

d/2 d/2
n =l p(x2)dz 8 =], p(x2)z2dz @
d /2 d /2
bus() = [ Capa2)2202,  dop() =2, Coppa(x,2)dz

Under assumptions of the Hencky-Bolle-type plates theory equations for deflection
u(x,t) and rotations ¢«(X,t), a=1,2, of functionally graded plates under consideration can
be written in the following form:

O (Bupye050;) — dop(Opu + dp) — 96, =0, @)
Ouldy5(OgU +dg)]— s =—p.

The above equations have highly oscillating, tolerance-periodic, non-continuous

coefficients being functions in x.

3. Tolerance modelling
3.1. Modelling concepts

In the tolerance averaging technique there are used some basic concepts, defined in
books, cf. [18, 19, 8].

Denote A(X)=x+A, Aa={xeA: A(X)cA}, as a cell at xeAa. The first concept is the
averaging operator for an arbitrary integrable function f, defined by

< f >(x,x2):|lL(x) f(y,%)dy, XeA,. 3)

For function f being tolerance-periodic in x, averaged value by (3) is a slowly-
varying function in x.

Following the aforementioned books other introductory concepts are denoted as: a set
of tolerance-periodic functions by TPs*(A,A), a set of slowly-varying functions by
SVs*(A,A), a set of highly oscillating functions by HOs%(A,A), where 00, 8 is a tolerance
parameter. Very important concept is the fluctuation shape function g(-), called of the
1-st kind of that function, if it is: a continuous highly oscillating function, geFSs}(A,A),
with a piecewise continuous and bounded gradient 0'g; and it depends on | as a
parameter and satisfies conditions: &*geO(1*¥) for k=0,1,...,a, d*g=g, and <pg>(x)=0 for
every xe Aa, >0, neTPsY(A,A).

3.2. Fundamental assumptions of the tolerance modelling

Two fundamental modelling assumptions stand a base of the tolerance modelling, cf. the
books edited by Wozniak et al. [18, 19] and for thin functionally graded plates [8, 9, 13].
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The first assumption of them is the micro-macro decomposition, where the plate
displacements are decomposed as:

Ug(X, Z,t) =u(x,t) = w(xt), 4

0,020 = 2o, 0+ 900, D], =12 @
with new basic kinematic unknowns: macrodeflection — w(,x,t) e SVi(A,A),
macrorotations ¢, (,x,,t) e SVA(A,A), and the fluctuation amplitudes 0, (,x,,t) e SVi(A,A);
g(-) as the known fluctuation shape function, having the form of a saw-type function of
X, cf. Figure 2.

The tolerance averaging approximation is the second assumption, in which it is
assumed that terms of an order of O(3) are treated as negligibly small, cf. [18, 19, 8], e.g.
for feTPYA,A), geFSLA,A), FeSVa(AA),a=12 in: <f>(x)=<f>(x)+0(d),
< fF>(x)=<f >(X)F(x%)+0(3), < fo,(gF)>(xX)=< 0,9 >X)F(x)+0O() -

3.3. The outline of the tolerance modelling procedure

The tolerance modelling procedure is shown in the books: for composites in [18, 19], for
plates in [8]. Here, an outline of this method is shown.

In the tolerance modelling a few basic steps can be distinguished. In the first step
micro-macro decomposition (4) is used. Than averaging operator (3) is applied to the
resulting formula, and the tolerance averaged lagrangean <A > is derived:
<Ay >=1(<p>WWH < 3> ¢, Ppdp+< 999> 0,058,5) —

=3 (< bypys > 0o @0, @5 + 2 <5019 > 0 P05+ < Dipi5019019 > 005 + <599 > 0,030,05) — (5)

—3(<dyp> O WOWH < dy > O Wp+ < o > PP + <, 500 > 0,6p)+ < p>W

In the next step using the principle of stationary to (5) the Euler-Lagrange equations
for w(-,x2,t), @a(-,X2,1), Ba(,X2,t) can be obtained:

0 6<A9>—606<A9>+6<A9>=0
ot ow 00 W ow

G 6<Ag>_a 6<Ag>+a<Ag>:
ot o q)on ¢ 0 aon(p[i 0 [
0 0<Ag> 5 0<Ay >+6</\g >
ot 06, 2oo@, 00,

1

0 (6)

0.

4. Model governing equations

Substitute the tolerance averaged lagrangean (5) to the Euler-Lagrange equations (6).
Than, the system of equations for w(-,x2,t), @a(-,X2,t), 0a(-,X2,t) is derived in the following
form:

Op(<bypy5 > 050,) + 0p(< byp019 > 0,)— < dyp > (OpW+ )~ < 8>, =0,

Ou(<dyp > (OpW+@p))—<pu>W=—p, ) 7)

— <Dy1y5619 > 05y — (< Dy 019619 > +< d,599 >)0p + < b,2,,99 >0,,0, —< 8gg >0, =0.

Equations (7) together with micro-macro decomposition (4) determine the tolerance
model of dynamics of medium thickness functionally graded plates with the
microstructure size of an order of the plate thickness. The underlined terms depend on
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the microstructure parameter I. Hence, the effect of the microstructure size on dynamic
problems of these plates is taken into account. All coefficients of equations (7) are
slowly-varying functions in x=x; in contrast to equations (2), which have non-
continuous, highly oscillating and tolerance-periodic coefficients. The basic unknowns
W, Qo Ba, 0=1,2, are slowly-varying functions in x. It can be observed that boundary
conditions have to be formulated for the macrodeflection w and the macrorotations ¢«
on all edges, and for the fluctuation amplitudes 6. only for edges normal to the xz-axis.
Using the asymptotic modelling procedure, shown in [19, 8, 13], or neglecting the
underlined terms in equations (7), the following equations of the asymptotic model are
derived:
Op(<bypy5 > 059,) + 0p(< bypn019 > 0,)— < dyp > (OpW+ @g)—< 8>, =0,
Og(<dyp > (OpW+@p))-<p>W=—p, 8)
—<Dy1y5619 > 050y — < Do 0:196:9 > 65 =0.
These equations have smooth, slowly-varying coefficients in the contrast to equations
(2). The asymptotic model equations describe vibrations of medium thickness plates
under consideration on the macrolevel only.

5. Final remarks

In this contribution there are derived two systems of averaged equations of medium
thickness plates with functionally graded macrostructure, which have the microstructure
size of an order of the plate thickness. These equations are obtained using two modelling
procedures — the tolerance modelling and the asymptotic modelling. These modelling
approaches are based on the known Hencky-Bolle-type plates assumptions. Using these
procedures the governing equations with non-continuous, tolerance-periodic functional
coefficients of x; can be replaced by the systems of differential equations with slowly-
varying, continuous coefficients of x; for each model.

The tolerance model, which governing equations take into account the effect of the
microstructure size, makes it possible to analyse not only macrovibrations, but also
microvibrations, related to the microstructure of the functionally graded plates.

Equations of the tolerance model have a physical sense for unknowns w, @q, 0,
being slowly-varying functions in xi1. It can be treated as a certain a posteriori condition
of physical reliability for the model.

On the other side, the asymptotic model, because its governing equations neglect the
aforementioned effect, describes only macrovibrations of these plates under
consideration.

Some applications to special dynamic problems of medium thickness functionally
graded plates, which have the microstructure size of an order of the plate thickness will
be presented in forthcoming papers.
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Abstract

Vibrations of non-periodic thermoelastic laminates, which can be treated as made of functionally graded
material with macroscopic properties changing continuously along direction, x;, perpendicular to the laminas
on the macrolevel are considered. Three models of these laminates are presented: the tolerance, the asymptotic-
tolerance and the asymptotic. Governing equations of two first of them involve terms dependent of the
microstructure size. Hence, these models (the tolerance, the asymptotic-tolerance) describe the effect of the
microstructure. Averaged governing equations of these laminates can be obtained using the tolerance
modelling technique, cf. Jedrysiak [1]. Because the model equations have functional, but slowly-varying
coefficients calculations for examples can be made numerically or by using approximated methods.

Keywords: nonperiodic laminates, thermoelasticity, vibrations, microstructure, tolerance modelling

1. Introduction

The objects under consideration are non-periodic laminates, made of two components,
which are non-periodically distributed along a direction normal to laminas. Cells of them
are composed of two sublaminas of different materials. Macroscopic properties of these
laminates are assumed to be continuously varied along this direction, cf. Figure 1. A
microstructure can be realised as uniform, I=const, or non-uniform, 1=I(x), distribution of
laminas (Figures 1b, 1c), cf. Jedrysiak [2]. Hence, these laminates can be called
transversally or functionally graded laminates, cf. Jedrysiak and Radzikowska [3].

Although a microstructure of these laminates is not periodic, thermomechanical
problems of them can be investigated using micromechanical models proposed for
composites with idealised geometries, e.g. periodic. Hence, the behaviour of these media
can be analysed by certain modified methods, which are also applied to macroscopically
homogeneous composites. Some of these methods are explained by Suresh and
Mortensen [4] or Reiter et al. [5]. Between them techniques based on the asymptotic
homogenization, [6], or on concepts of microlocal parameters, [7], can be mentioned.
Various alternative approaches are proposed to describe the behaviour of functionally
graded materials, such as the higher-order theory shown by Aboudi et al [8].
Unfortunately, governing equations of most of these approaches neglect the effect of the
microstructure size on the overall behaviour of these laminates.
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Figure 1. A part of the laminate: a) the macro-level, b) the micro-scale with uniform
distribution of laminas, c) the micro-scale with non-uniform distribution of laminas; [2]

Here, in order to describe this effect the tolerance modelling is applied, cf. the books
by Wozniak and Wierzbicki [9], edited by Wozniak et al. [10, 11] and by Jedrysiak [1].

This method was proposed and used to investigate different thermomechanical
problems of periodic media, e.g. for thermoelastic processes by Ignaczak [12] or
Baczynski [13]. Examples of analysis various periodic structures can be found in [10].
Moreover, the tolerance modelling is successfully used to investigate thermomechanical
problems of functionally graded media with a microstructure in a series of papers, e.g.
for vibrations of thin microstructured plates by Jedrysiak [1]; for heat conduction
problems by Ostrowski and Michalak [14], Jedrysiak and Radzikowska [3], Jedrysiak
[2]; for thermoelasticity problems by Jedrysiak [1, 15], Pazera and Jedrysiak [16]. All
these problems are described for FG-type structures by differential equations with highly
oscillating, tolerance-periodic, non-continuous, functional coefficients. The tolerance
modelling leads from these equations to the system of differential equations with
slowly-varying coefficients. Some applications of this approach for transversally graded
structures are also shown in books by Jedrysiak [1], Michalak [17].

The main aim is to present and apply the governing equations of the tolerance model,
the asymptotic-tolerance model and the asymptotic model to the problem of vibrations of
a functionally graded laminated layer. The equations of two the first aforementioned
models (the tolerance and the asymptotic-tolerance) involve terms, which describe the
effect of the microstructure size on the overall behaviour of these laminates.

2. Modelling foundations

Denote by Oxixoxs the orthogonal Cartesian coordinate system and by t the time
coordinate. Let: X=(x2,X3), x=x1. The region of the undeformed laminate is described by
Q=(-L/2,L/2)x(-L2/2,L2/2)%(-L3/2,L3/2), with the lengths L, L, L3 along the X, x2-, X3-axis,
repectively. The “basic cell” A=[-1/2,1/2] is defined in the interval A=(-L/2,L/2) along the
x-axis, with | as the length of cell A, called the microstructure parameter. Parameter | is
assumed to satisfy the condition I<<L.

Denote by ciju, p, bij, kij, ¢ elasticity modulus, a mass density, thermoelasticity
modulus, heat conduction coefficients, a specific heat, respectively, which can be
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assumed to be highly-oscillating, non-continuous functional coefficients of x. Introduce
displacements u; (i,j,k,1=1,2,3) and temperature 6.
Thermoelasticity problems of composites can be describe by the following equations:
0;(Cij0 Uy ) — pU; = 00 +1;0,;0, 1
8,(k;0,0) = cO+Tob; 2,0, (1)
which have highly-oscillating, tolerance-periodic, non-continuous coefficients being
functions in x.

3. Modelling concepts

Some basic concepts, defined in books [1, 10-11], are applied in the tolerance modelling.
Denote A(X)=x+A, Aa={xeA: A(X)cA}, as a cell at xeAa. The first concept is the
averaging operator for an arbitrary integrable function f, defined by

<f>(x xz)z%L(x)f(y, X)dy, XeA,. (2)

Averaged value of function f being tolerance-periodic in x, calculated by (2) is a
slowly-varying function in x.

Following [1, 10, 11] more introductory concepts are introduced and applied:
tolerance-periodic functions TPs!(A,A), slowly-varying functions SVs'(A,A), highly
oscillating functions HO5!(A,A), with & as a tolerance parameter. The fluctuation shape
function g(-)eFSs!(A,A), is a very important concept, which is a continuous highly
oscillating function, dependent on I; has a piecewise continuous and bounded gradient
0'g; satisfies conditions: geO(l), &'geO(I%); <ug>(X)=0 for xe Aa, 1>0, pe TP (A,A).

4. The outline of the modelling procedures

The various modelling procedures based on the concepts of the tolerance modelling are
shown in the books [1, 11]. Here, the outline of them is presented.

e The outline of the tolerance modelling procedure

Two fundamental assumptions are formulated in the tolerance modelling procedure.
The first assumption of them is the micro-macro decomposition, where the
displacements and the temperature are decomposed as:

Ui (%%, 1) =w; (X, %, 1) + h(X)v; (x, %, ), 0(x,x,t) = 9(x,x,t) + g(X)w(x,x,1), 3
with new basic unknowns: the macrodisplacements w;, the macrotemperature 9, and the
fluctuation amplitudes of displacements v;, and temperature v, which all of them are
slowly-varying functions in x; h(x), g(x) are the known fluctuation shape functions,
assumed here as saw-like functions.

The tolerance averaging approximation is the second assumption, in which it is
assumed that terms of an order of O(8) are negligibly small, cf. [1, 10, 11], e.g. in:
< fo,(gF) > (X) =< fo,9 > (F(X)+0@), < fF>(X)=<f >(X)F(x)+0(@©), for feTP:(A,A),
geF851(A,A), FESV51(/\,A).

Substituting micro-macro decompositions (3) to governing equations (1), by doing
averaging (2), after some manipulations the governing equations of the averaged models
can be derived.
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e The outline of the asymptotic-tolerance modelling procedure
This modelling procedure, cf. [1, 11], can be divided into two steps. The first step is
to apply the asymptotic modelling approach to obtain the asymptotic model solutions in
the form:
Ugi (%, X,t) =w; (X, X, 1) + h(X)v; (X, X, 1), 00(X,X,1) = 9(x, X,t) + g(X)w (X, X, 1). (@)
It is derived the system of differential equations only for the macrodisplacements and
the macrotemperature. In the second step there are introduced the additional micro-
macro decompositions to these equations,:
U (X, X, 1) =Ugi (%, %, 1) + () (X,X%,t), 0(x,X,t) = 0p(X, %, t) + d (X)x (X, X,1), (5)
with functions: wi, vi, 8, v (known from the asymptotic model solution); new
unknown slowly-varying functions: ri, ; fluctuation shape functions f, d similar to h, g.
Using these modelling procedures, shown explicitly in [1, 11], the equations of the
tolerance model, the asymptotic model and the asymptotic-tolerance model for
functionally graded laminates can be derived. These model equations are written in the
next section.

5. Model governing equations

Hence, the tolerance modelling procedure, cf. [1, 11, 15], leads to the system of
governing equations in the following form:
0 (< Ciju > O Wi+ < CijiaON > Vi )= < p>W; =0 <l > S+ <ly; > 0;9,

— Ciakghh > 0, 0pVi + < CigggONON > Vi + < Cigy O > O\ Wi + < phh >V, =
=—<byog > 8+ <bgh> oy, (6)
0j(<kj; >0;9+ < k09 > y) =<c >9+<T0b,j >0Wi+ <Tobyoh > v,
<K,399 > 0,0py— < Kydg > 0;9— < ky,0909 >y =< cgg > +< Tohighg > Vi,
with all coefficients being slowly-varying functions in x. These equations together with
micro-macro decompositions (3) determine the tolerance model of thermomechanics of
functionally graded laminates. The underlined terms depend on the microstructure
parameter I. Hence, equations (6) describe the effect of the microstructure size of these
laminates. The basic unknowns w;, vi, 8, vy, i=1,2,3, are slowly-varying functions in x. It
can be observed that boundary conditions have to be formulated for the
macrodisplacements w; and the macrotemperature 3 on all edges, and for the fluctuation
amplitudes v;, y only for edges normal to the x.- and the xs-axis.
Using the asymptotic-tolerance modelling procedure, cf. [1, 11], governing equations
take the form:
0 (< Ciju > O Wi+ < CijaON > Vi )= < p>W, =0 <l > 8+ <ly; > 0;9,

< Cigup > 0,0t —< pff > — < COfSf > K =< CiggqONOF > Vi + < gy OF > O\ Wi+ <byyof > 9,

0(<kij > 09+ <ky;09 > y) =< ¢ > 9+ <Tohy > 0w+ < Tobyoh > v; , @)
<K,pdd >0, 05— < k;0d0d > =<k 0d > 0;9+ < ky,000d >y + < cdd > 5 +<Tobys fd > 541,
< Cilklahah > Vk =—< Cilk|ah > 8|Wk— < b,lag > 9, < kllagag > Y =— < kilag > a|8
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These equations have smooth, slowly-varying coefficients in the contrast to equations
(1). Equations (7) together with micro-macro decompositions (4)-(5) stand the
asymptotic-tolerance model of thermomechanics of functionally graded laminates. These
equations take into account the effect of the microstructure size of these laminates, since
the underlined terms depend on the microstructure parameter I. The basic unknowns wi,
ri, 9, %, i=1,2,3, are slowly-varying functions in x. It can be observed that boundary
conditions have to be formulated for the macrodisplacements w; and the
macrotemperature 3 on all edges, and for the fluctuation amplitudes vi, y only for edges
normal to the Xx,- and the xs-axis.

Using the asymptotic modelling procedure, cf. [1, 11], the following governing
equations can be derived:

0 (< Ciju > O Wi+ < CijaOh > Vi )= < p > W, =0 <by > 8+ <ly; > 9,8,

0(<kyj > 0,9+ <ky;09 > y) =< >+ <Tohy > 0w+ < Tobyoh > v, o
< Cigaohoh > v, = — < cyeh > O w—<bydg > 9, ®)
< k10909 >y =—<ky09 > 6;9.

The above equations have smooth, slowly-varying coefficients and together with
micro-macro decompositions (4) determine the asymptotic model of thermomechanics of
functionally graded laminates. These equations neglect the effect of the microstructure
size of these laminates. It can be observed that boundary conditions have to be
formulated for the macrodisplacements w; and the macrotemperature 3 on all edges. The
asymptotic model equations describe thermoelasticity of these laminates on the
macrolevel only.

6. Remarks

In this note three systems of averaged governing equations of functionally graded
laminates are shown. These equations are derived using different modelling procedures —
the tolerance modelling, the asymptotic modelling and a combination of them — the
asymptotic-tolerance modelling. These procedures lead from the governing equations of
thermoelasticity in laminates, with coefficients being non-continuous, tolerance-periodic
functions in x to the systems of differential equations having slowly-varying coefficients
of x for each model.

Two of presented models — the tolerance and the asymptotic-tolerance, make it
possible to analyse the effect of the microstructure size in thermoelasticity problems of
these laminates. Both of these models can describe not only macrovibrations, but also
microvibrations, related to the microstructure of the functionally graded laminates.

However, the asymptotic model, since its model equations neglect the above effect,
describes only macrovibrations of these composites.

Because the equations of all models have still functional coefficients, but slowly-
varying, solutions of them can be found analytical only for special cases of distribution
of properties of laminates, or using approximate methods. It will be shown in
forthcoming papers.
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Abstract

In this contribution there are considered thin periodic plates. The tolerance averaging method, cf. [12, 13, 4], is
applied to model problems of vibrations of these plates. Hence, the effect of the microstructure size is taken
into account in model equations of the tolerance model. Calculations are made for periodic plate bands using
this model and the asymptotic model for various boundary conditions.

Keywords: periodic plates, effect of microstructure size, higher order vibrations, tolerance modelling

1. Introduction

Thin periodic plate bands are main objects under consideration. These plate bands have a
periodic microstructure along their spans on the microlevel, cf. Figure 1.

ST R
Ay a5 &5 M
X=X1 ¥
|

B —

L yioxs

L
+

Figure 1. Fragment of a thin periodic plate band

Plate bands of this kind are consisted of many repeated small elements. Every
element can be treated as a thin plate band with span | along the x;-axis. This span
describes the size of the microstructure and is called the microstructure parameter I. It is
necessary to distinguish that in various problems of such plate bands the effect of the
microstructure size cannot be neglected. These plates are modelled using different
averaging approaches, e.g. based on the asymptotic homogenization, cf. [7]. However,
most averaged equations of these plates neglect the effect of the microstructure size.

In order to take into account this effect the tolerance averaging technique, cf. [12]
and [13], can be applied. Different applications of this method to analyse various
periodic structures are shown in a series of papers, e.g. [1-3], [8-11]. This approach is
also successfully adopted to functionally graded structures, e.g. [4-6].
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The main aim of this note is to present governing equations of the tolerance model
and the asymptotic model of thin periodic plates. Equations of these models can be
derived using the tolerance modelling procedure and the asymptotic modelling
procedure, respectively. In an example there are analysed lower and higher free vibration
frequencies of periodic plate bands with various boundary conditions.

2. Modelling foundations

Set X=(X1,X2), X=X1, z=X3. Let us consider a periodic plate band with span L along
the x-axis. Hence, all properties of the plate can be periodic functions of x, but are
independent of x,. Denote a plate deflection by w(x,t), loads normal by p and a derivative
with respect to x by &(-). The region Q={(x,z):-d(x)/2<z<d(x)/2,xe A} denotes the
undeformed plate band, with an interval A=[0,L] and the plate thickness d(-). The
periodicity cell on A is denoted by A=[-1/2,1/2]x{0}.

Properties of the plate band are determined by periodic functions of x: a mass density
per unit area p, a rotational inertia 3 and bending stiffnesses b, in the form:

w0 =" px2dz,  8()=["" p(x 222z bsX)=[" cupe( 222z 1)
Denoting b=b1111 and using the Kirchhoff-type plates theory assumptions the known four
order differential equation for deflection w(x,t) of periodic plate band can be derived:

80(baow) + pw— o(30W) = p, )
with highly oscillating, periodic, non-continuous coefficients being functions of x.

3. The outline of the tolerance modelling

Averaged equations thin periodic plates can be obtained using the tolerance modelling
procedure (or the asymptotic procedure), with the basic concepts, defined in books,
cf. [12, 13, 4].

Let A(X)=x+A, Aa={xeA: A(X)cA}, be a cell at xe Aa. The averaging operator for an
arbitrary integrable function f is defined by

<f>(x)=% IA(X)f(y)dy, xeA,. 3)

If a function f is periodic in X, then averaged value by (3) is constant.

Following the above books there can be introduced a set of tolerance-periodic
functions TPs*(A,A), a set of slowly-varying functions SVs*(A,A), a set of highly
oscillating functions HOs*(A,A), (020, & is a tolerance parameter). Denote by h(-) a
continuous highly oscillating function, heFS:%(A,A). Function h(-) is called the
fluctuation shape function of the 2-nd kind, if it depends on | as a parameter and satisfies
conditions: *heO(I**) for k=0,1,...,a, &h=h, and <ph>(x)=0 for every XeAa,
>0, neTPsH(ALA).

Using the above concepts, two fundamental assumptions of the tolerance modelling
can be formulated, cf. Wozniak et al. [12, 13] and for thin periodic plates [3].

The first assumption is the micro-macro decomposition, in which it is assumed that
the plate deflection can be decomposed as:

W(X, Z,t) =W (X,t) + hAX)V A(x,1), A=1..,N. 4
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Functions  W(,t),VA(,t)eSV2(A,A) are basic kinematic unknowns, called the
macrodeflection and the fluctuation amplitudes, respectively; hA(-) are the known
fluctuation shape functions, which can be assumed as trigonometric functions.

The second assumption is the tolerance averaging approximation, i.e. terms of an
order of O(3) can be treated as negligibly small, cf. [12, 13, 3], e.g. for f eTP2(A,A),
heFS2(A,A), FeSV2(AA), N <f>x)=<f>X)+0(@), <fF>x)=<f>XFX+0@),
< fo(hF) > (x) =< foh > (X)F(X) +O(®) -

The tolerance modelling procedure can be found in the books [12, 13, 4]. Here, it is
shown only an outline of this method.

In the tolerance modelling two basic steps can be introduced. In the first step micro-
macro decomposition (4) is applied. In the second step averaging operator (3) is used to
the resulting formula. Hence, the tolerance averaged lagrangean < A, > is obtained:

<Ap>=—3{(<b>060W +2<bdohe >V B)ooW + < 3 > WW +
+< BaohAGohE >V AV B— < >WW + (5)
+(<96hAchB >—< uhAhB W AV B < p>W,
with underlined terms, which depend on the microstructure parameter I.

4. The outline of the asymptotic modelling

In the asymptotic modelling, cf. [13], [4], the asymptotic procedure is applied. Using the
asymptotic decomposition w,(x,y,t) =U(y,t) +&2hA(x y)QA(y,t) in equation (2) and
bearing in mind the limit passage e—0 terms O(g) are neglected in final equations.

Using the above asymptotic decomposition and averaging operator (3) to the
resulting formula, the asymptotic averaged lagrangean < A, > is obtained:

<Ay >=—3{(<b>30W +2<bdohB >V B)GoW+ < 3> WoW + (6)
+< Booh”oohB >V AV B— < n >WWH-< p>W.
This model does not describe effects of the microstructure size.

5. Governing equations of presented models

Equations of two models are presented here: the tolerance model, the asymptotic model.
Substituting <A,>, (5), to the proper Euler-Lagrange equations, after some

manipulations we arrive at the following system of equations for W(-,t) and VA(-t):

00(<b>00W+<boohB >V B)+<pu>W-<3>00W =< p >,

<badh” > 50W = — < BaohAGOhE >V B — (< uhAh® >+ < §ohAShB S)VE. ™)
Equations (7) together with micro-macro decomposition (4) stand the tolerance model of
thin periodic plate bands. These equations describe free vibrations of these plates and
take into account the effect of the microstructure size on them by the underlined terms
dependent on the microstructure parameter I. In contrast to equation (2), which has non-
continuous, highly oscillating and periodic coefficients, equations (7) have constant
coefficients. The basic unknowns W, VA, A=1,...,N, are slowly-varying functions in x=xi.
It can be observed that boundary conditions have to be formulated only for the
macrodeflection W on all edges.
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Using the asymptotic modelling procedure, shown in [13, 4], equations of an
approximate model, without the effect of the microstructure size, can be obtained in the
following form:

00(<b>060W+<boohB >VB)y+<u>W-<9>00W =< p>, ®)
<boohA > 00W =—< BaohAoochB >V B,

Equations (8) stand the governing equations of the asymptotic model of periodic plate
bands. It can be observed that these equations can be also derived by neglecting the
underlined terms in equations (7). The asymptotic model equations have also constant
coefficients, but they describe free vibrations of thin plates under consideration on the
macrolevel only.

6. Applications — free vibrations of periodic plate bands with various boundary
conditions

Let us consider a thin periodic plate band with span L along the x-axis, neglecting the
loading p, p=0. The material properties of this plate are independent of the x.-coordinate.
Let us assume the constant plate thickness d.

d ‘ E'.p

T (SAN T X
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P the symmetry!
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/

Figure 2. A cell of the plate band

It is assumed that the plate band is made of two different homogeneous isotropic
materials, with properties described by Young’s moduli E”, E’ and mass densities p”, p:

(B for ye(@-pl/2a+yI/2),

E(y)_{E", for ze[O,(lzy)l/2]:—;{(1+y)|/2,|], (8)
(o for  ye(@-yli2,a+I/2),

p(y)= {S for  yel.@opiiAulas 2. ©)

where v is a distribution parameter of material properties, cf. Figure 2; the Poisson’s
ratio v=v"=v' is constant.

Our considerations are restricted to only one fluctuation shape function, i.e. A=N=1.
Denote h=h?, V=V, Hence, micro-macro decomposition (4) has the form:

w(x,t) =W (x,t) + h(x)V (x,1), (10)
where the fluctuation shape function h(x) assumed for the cell shown in Figure 2, takes
the form:

h(y) =12[cos@2ry/l) +c], yeA(X), XeA, (12)
with parameter c is a constant determined by <ph>=0:

c=sin(ry) (' —p"H{rlp'y +p" Q-7 1} (12)
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Under denotations:
B=<b>  B=<baoh>, B =<béohooh >,

f=<p> @=Il“*<phh>  J3=<9>  J=1"2<96hsh>, (13)
tolerance model equations (7) can be written as:
20(BoOW +BV) +aW — 3aoW =0, (19)

BooW + BV +12(12m+ 9V =0,

however, asymptotic model equations (8) take the form of one equation:
oo[(B—B2/B)aoW]+aW — 360w =0. (15)
Certain approximate formulas of free vibrations frequencies for periodic plate bands
with various boundary conditions can be obtained applying the known Ritz method, cf.
[4-6]. Using this method the maximal strain energy Ymax and the maximal kinetic energy
Kmax are determined. For the plate band solutions to equations (14) and (15), which are

applied in the Ritz method, can be assumed in the form:

W (x,t) = AyE(ax) cos(mt), V (x,1) = A, O(ox) cos(mt), (16)
where: o is a wave number; o is a free vibration frequency; functions Z(-) and () are
eigenvalue functions for the macrodeflection and the fluctuation amplitude, respectively,
which have to satisfy the proper boundary conditions for x=0, L. Denote the first and
second order derivatives of functions Z(-) and O(-) by:

E(ax)=aZ(ax), O(ax)=a®(ax), 60=2(oxX)=a?E(ax), 0O(0xX)=a2O(axX). an
Moreover, let us introduce denotations:

B = s (B0 1) +Ef [E@)Fdx, B =% (E'~Ensin(my) [ Z(ox)@(ax)dx,
= 3§f"3§){(5' E")[2my +sin(2my) ]+ 2nE"}j [O(ax)]2dx,
=d[@-7)p"+ 101, [E(ex)Fax = S1a-v)p" +1p][ Ex)Fx a8
p= %{(p’ —p")[2ny +sin(2my)]+ 27rp"}f0 [O(ax)JPdx+
+2(p/~pr)efmey — 2sin(e)]|; [O(ex)Fdx+ dpre? [ [O(ox)Pdx,
=32{(p' - p") 2y —sin(2my)] + 2np”}f [O(ax)Pdx,
Usmg the conditions of the Ritz method:
Wl Knm) —(, g Kned (19)
and make some manipulations we arrive at the following formulas:
(©..)2= I2(l 22T+ 8)(::18; (zpl + of\f))B* T
n+a2d)2(12p+ 9) 20)

\/[IZ(IZH +3)aB — (i + a28) B2 + 4(a2B)212 (i + 0.29) (121 + S)
2>+ a29)12(12m + 9)
of the lower frequency _ of free macro-vibrations and the higher frequency w, of free

micro-vibrations, respectively, in the framework of the tolerance model.
Calculations can be made for various cases of boundary conditions:
- the simply supported plate band: E(0) =00=(0) =E(L) =60=(L) =0;
- the plate band clamped on both edges: =(0)=8=(0) ==(L) =6=(L)=0;




186

- the clamped-hinged plate band: E(0)=06=(0) ==(L) =0=(L) =0;
- the cantilever plate band: E(0) =0=(0) =60=(L) = d00=(L) =0 -
7. Remarks

In this paper the tolerance model governing equations of thin periodic plate bands are
presented and applied to analyse free vibrations of them. The tolerance modelling
replaces the governing differential equation with non-continuous, periodic coefficients
by the system of differential equations with constant coefficients, which involve terms
with the microstructure parameter. The tolerance model describes the effect of the
microstructure size on vibrations. Hence, there are calculated the lower free vibration
frequency and the higher free vibration frequency, which is related to the microstructure,
for plate bands with various boundary conditions. These calculations are made using the
procedure of the Ritz method.
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Abstract

This paper presents a dynamic analysis of torsional vibrations of the railway drive system. A dynamic
electromechanical drive model has been created and then integrated with the railway wheelset-rail system to
simulate self-excited torsional vibrations of the considered system. Results of this analysis are used in order to
investigate the drive system’s sensitivity to torsional oscillations. Here, the dynamic electromechanical
interaction between the electric driving motor and the rotating wheelset is considered. This investigation has
proved that the torsional stiffness and damping of drivetrain system strongly affect amplitudes of the self-
excited vibrations. A self-excited vibrations affecting on an energy consumption of the electric motor of the
considered system are studied

Keywords: torsional vibrations, electromechanical coupling, wheel-rail adhesion, wheelset drivetrain dynamic

1. Introduction

Mechanical vibrations and deformations are phenomena associated with an operation of
majority of railway vehicle drivetrain structures. The knowledge about torsional
vibrations in transmission systems of railway vehicles is of a great importance in the
fields dynamics of mechanical systems [1]. Torsional vibrations in the railway vehicle
drive train are generated by several phenomena. Generally, these phenomena are very
complex and they can be divided into two main parts. To the first one belongs the
electromechanical interaction between of the railway drive system including the: electric
motor, gears, the driven part of disc clutch and driving parts of the gear clutch [2]. To the
second one belong torsional vibrations of the flexible wheels [3, 4] and wheelsets caused
by variation of adhesion forces in the wheel-rail contact zone [5]. An interaction of the
adhesion forces has nonlinear features which are related to the creep value and strongly
depends on the wheel-rail zone condition and track geometry (when driving on a curve
section of the track). In many modern mechanical systems torsional structural
deformability plays an important role. Often the study of railway vehicle dynamics using
the rigid multibody methods without torsionally deformable elements are used [6]. This
approach does not allow toanalyse self-excited vibrations which have an important
influence on the wheel-rail longitudinal interaction [7].

A dynamic modelling of the electrical drive systems coupled with elements of a
driven machine or vehicle is particularly important when the purpose of such modelling
is to obtain an information about the transient phenomena of system operation, like a
run-up, run-down and loss of adhesion in the wheel-rail zone. In this paper most
attention is paid to the modelling of an electromechanical interaction between the
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electric driving motor and the railway wheelset as well as to an influence of the self-
excited torsional vibrations in the considered drive system.

2. Mathematical modeling of the wheelset and the electric motor

In order to investigate a character of self-excited torsional vibrations in the electric
railway vehicle powertrain and a dynamic mutual coupling between the wheelset and the
electric motor, a possibly realistic and reliable electromechanical model of the railway
drivetrain is applied. The mechanical drive system is representedby a torsionally
vibrating system of four-DOFs. The scheme of the considered model is shown in Figure
1.

Figure 1. Scheme of the dynamic model of the railway wheelsetdrive system

A mathematical model of the single torsionally deformable railway wheelset under
torsional vibrations induced by the traction motor and various adhesion frictional effects
occurring in wheel-rail contact zones has been derived by means of the second-
orderLagrange’s equations in the generalized coordinates gi(t). These coordinates
describe angular displacements of the drivetrain components of the wheelset. Here, there
will be presenteda torsional dynamic analysis of the single wheelset running on
a geometrically perfect straight section under various operational conditions determined
by longitudinal slip siof both wheels, vertical wheel forces O+m-gand vehicle velocity v.
The drive torque and the retarding one due to the creep forces in contact of the rails with
with the wheels complements the conservative railway drive model on the right side (1)
and it can be expressed as

I¢(t) = (Kwheelset + ngar)w(t) + (theelset +Cgear)¢(t) = Ivldrive - Ivlcreep ’ (1)
where | denotes the mass matrix containing mass moments of inertia of rotating
elements of the drive system, the matricesKwneel, Kgear, Cuneerand Cgear €Xpress the
torsional stiffness and damping properties of the wheelset, disc-clutch and of the gearbox
wheel, respectively.Vector Mgrivecontains the electromagnetic torque generated by an
asynchronous motor described in the following part of the paper and vector
Mcreepcontains the traction torque generated by longitudinal tangential loads in the
wheel-rail zones. Their form can be expressed as

Tcreep_i =4i(s)-(Q+mg), =12, )
where Q is the normal load imposed on the single wheel, r is the wheel radius and u(s;) is

the traction coefficient expressed in Eq. (4). Its maximum value is called an adhesion
coefficient. The longitudinal creepage of the wheels is defined in the following form



Vibrations in Physical Systems Vol. 27 (2016) 189

5= ( 3.6¢1
v

where spand s; are the longitudinal creepage before and duringdisturbances, respectively.

Symbol w; is the angular speed of the i-th wheel,i-indexmeansthe left and therightwheel

and vdenotes forward wheelset velocity in km/h obtained by the equivalent angular
speed of wheelset axle ¢, at the contact point.

In equation (1) the traction torque including torques Mcreep_1,2 ON left and right wheel
of the wheelset have nonlinear properties. These propertiesare dependenton a profile of
adhesion characteristic describing a contact in the wheel-rail zones. Depending on the
adopted various maintenance, operation and weather conditions, this characteristic can
take into considerationvarious forms of creepage curves, as shown in Fig. 2. The
creepage curve applied for the carried out investigations has been plotted in Fig. 3 and it
can be expressed by the following equation

M(s;) = 0.3*[(a +exp(-s;) + tanh(% -§;))2+(d-atan(e -s;)) +exp(f -s;)l, i=12. (4)

'1)1 5i :sO+(

360),[’ _1)’ | :1,21 (3)
\"

For dry and wet weather conditions in the wheel-rail zone parameters of Eqg. 4 have
numerical values contained in Table 1.

Table 1. Parameters for traction coefficient in Eg. (4)

Quantity a b/c d e f
dry -1 100 1.75 0.7 -7
wet -2 25 1.25 1 -0.5

Adhesion curves

Wet sand

traction coefficient [-]

i ¥ T > 0 0.1 0.2 0.3 0.4
0 3 .
o 02 03 5[] stable region o8 gl unstable region
Figure 2.Adhesion-creep characteristic Figure 3. Profile of adhesion curves
ofthe railway conditions [8] using in investigations

The adhesion curve can be divided into two regions, see Fig. 3. The first regionis
characterized by a rapidly rising slope of the curve is the stable region. The second one,
due to a negative damping results in visible decreasingslope,can lead to self-excited
oscillations in the wheel-rail contact zone. This phenomenon makes the driven wheelset
slipping on the rails of a railway track. Consequently, when a tangential force between
the wheel and the rail exceedsan adhesion force in the wheel-rail contact zone, the self-
excited torsional vibrations of the wheelset occur. Such a phenomenon has a very large
impact on the relative rotation between the wheel and the axle due to a lack of friction in
press fitting [9] and it can make vehicle derailed. Additional dynamic torsional
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overloadsproduce disturbances in the wheelset drive system, which has a influence on
the traction moment of a railway vehicle. This characteristic of the traction moment is
also dependent on electrical parameters of the motor, power supply and its regulation. A
modeling of the electrical part of a drivetrain is a very difficult and complex task. For a
simple solution it is possible to use a linearization around of the working point static
characteristic of thedriving motor. But, in the case of a more advanced analysis of
transient phenomena in the drivetrainan accurate circuit model of the electric motor is
needed [10,11].The asynchronous motors are very commonly applied as railway vehicles
driving sources. From the viewpoint of electromechanical coupling investigation, for an
introductory approach the properly advanced circuit model of the electric motor seems to
be required, similarly as e.g. in [12]. In the case of the symmetrical three-phase
asynchronous motor electric current oscillations in its windings are described by the six
circuit voltage equations. In order to simplicity of their form they are transformed into
the system of four Park’s equations in the so called af-dq’ reference system

[ 1 3 .
\/%U cos(wet) Ls+5Lm 0 otm 0 i (1)
0 Le+LL, 0 ETS iS,(t
EUsin(wet) - st2mm ) 2m f() N
0 Stm 0 Li+3Lm 0 il ()
3 (.1 ;r
0 0 Llm 0 Lr+5Lm | | ig(t)
L 2 2
®)
Rs 0 0 0 i (t)
0 Rs 0 0 ‘2(0
0 Zplnao Ry pirOt i) o |
34 N
_—Emefﬁl(t) 0 —P(Pl(t)(Lr+§Lm) Ry 10

where U denotes the power supply voltage, ax is the supply voltage circular frequency,
Ls, L are the stator coil inductance and the equivalent rotor coil inductance,
respectively, Ln denotes the relative rotor-to-stator coil inductance, Rs, R, are the stator
coil resistance and the equivalent rotor coil resistance, respectively, p is the number of
pairs of the motor magnetic poles, ¢, (t) is the current rotor angular speed including the

average and vibratory component and i, is° are the electric currents in the stator
windings reduced to the electric field equivalent axes « and Fandid", i are the electric
currents in the rotor windings reduced to the electric field equivalent axes d and g, [12].
Then, the electromagnetic torque generated by such a motor can be expressed by the
following formula

:3me(iz-ig —iz-iaj. ©)
2

Ms

In our approach the interaction between the electromagnetic and mechanical systems of
the considered powertrain coupled mutually through electromagnetic torque Ms and
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angular rotor velocity ¢, is shown in Egs. (5) and (6).In order to control the electric

motor assumed in the applied drive system model the field-oriented control methods has
been used [13].According to the above, this set of coupled electromechanical Egs. (1),
(5) and (6) is going to be simultaneously solved by means of a selected direct integration
method for electric parameters including: resistance of the stator and the rotor equal
Rs=0.288Q, R=0.158Q. The relative inductance, inductance of the stator windings and
inductance of the rotor windings are respectively equal to L, = 0,0412 H, Ls = 0,0425 H
and L, = 0,0418 H.The asynchronous motor has 4 pole pairs and its supply voltage is
equal to 3 kV with 60 Hz supply frequency. In the considered case, the Runge-
Kuttafourth-order method will be applied for motion equations of the electromechanical
model assumed in this way.

3. Numerical results

In the computational example railway drivetrain system with the torsionally
flexiblewheelset is used as an object of considerations. This wheelset of a total weight
1500 kg and a load of the single wheel equal to Q=40kN is driven by the asynchronous
motor by means of the disc-clutch with torsional stiffness and dampingcoefficient
k1=3000 kNm, ¢;=100 Ns/m.The spur gear stage of the ratio i=1:6reduces a rotational

speed of the wheelset into (/’7; =@, - . There is assumed that the minimum radius of the

wheelset axle and the half of length of the axle are respectively equal to 0.08 and 0.75 m.
This axle is made of steelP35G. The torsional stiffness of this axis has been determined
equal to ko=ks= 6.9e7 Nm/rad.More parameters applied in this investigations are also
given in the Table 2.

Table 2. Simulationbaseparameters

X C2 C3 I I, |g I Ikr
0.16 Nss?m 50 Ns/m | 2.1 kgm? | 20.2 kgm? | 43 kgm? | 78 kgm? | 78 kgm?

The simulation model described above can be used to simulate several
differentconditions of operation, i.e. motor acceleration, deceleration, load change,
faultcondition, etc. However, due the limitedsize, only selected results arepresented here.
An amplitude of self-excited vibrations is an important evaluating indicator to measure
the vibration magnitude. Some drive system parameters influencing the amplitude of the
self-excited torsional vibration are shown in Figs. 4 and 5. Figure 4a and 4c present the
result of the self-excited vibration amplitudes and the spectrum of them at various
damping between the drivetrain system and the wheelset wheels. As shown in this
figure, the vibration amplitude decreases with an increaseof damping level where the
dominant frequency of the vibration is kept constant. An increase ofthe damping can
restrain this amplitude and shorten the convergence time of the torsional vibrations, but
it is not affected whether the self-excited vibration occurs or not.The same effect can be
observed on time-histories of the currents of the stator windings shown in Figs. 4b and 4
d.Figure 5a shows a result of the self-excited vibration amplitudes at different equivalent
stiffness betweenthe drivetrain and the wheelset wheels of wheelset.
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As shown in this figure(Fig 5.), the vibration amplitude decreases with an increase of
kzand ks. It indicates that where increasing the torsional stiffness of drivetrain system, it
is influences on the stability of the vibration and its shifting dominant frequency of the
vibration in the higher range of the spectrum (Fig. 5c).

Considering the electrical parameter values of motor obtained from the above
investigations it is worth highlighting that the self-excitation torsional vibrations affected
on the entire electromechamicaldrivtrain system and they have a significant influence on
the amount of theoretically expected electric energy Peconsumed by the driving
motor.In the case of the investigated system, this energy can be determined by the
electromotive forces induced in the asynchronous motor phases by voltages and currents
in the stator windings. This energy can be defined [7].

ty
Pa = [Ua®i20+Ug®- 5016t | ™
kK9

where Ugs(t)= \/%U cos(@gt) , Ugs(t)= \EU sin(@,t), and i (t) ,i;(t), denote the voltages

and currents in the stator circuits of the electric motor phases transformed into the
reference system of Park’s equations, tis the total duration time of the each variant of
an analysis and the remaining symbols have been already defined in Egs. (5) and (6).
Table 3illustrates the amounts of electric energy consumed by the drivetrain motor
during the consideredtest scenariosat various of parametersthe drive system discussed
above.

Table 3. Amounts of electric energy consumed by the asynchronous motor during the
assumed four scenarios of the investigation using the assumed drivetrain models

stiffnes of drivtrain [Nm/rad] le7 2e7 3.5e7 6.9 e7
stiffness-energy consumed [KWs] 62,35 70,44 76,65 78,93
damping of drivtrain [Nms/rad] 50,00 100,00 150,00 200,00
damping-energyconsumed [KWs] 78,93 88,37 88,59 93,02

From a comparison of the results shown in Table 3it follows that, when the torsional
stiffness increase, more electric energy have been consumed. This fact can be
substantiated by change amplitude of the time-histories of the difference between the
angular displacements of the left and right wheelset wheel characteristics of presented in
Fig. 5.

4. Final remarks and preview

In this paper, an electromechanical model of the railway vehicle drive system has been
performed. This model has been used to investigate self-excited torsional vibrations
occurring in this system. In the investigations their influence of the torsional vibration on
the electric parameters of the drive motor are also considered.From obtained results it
follows that a reductionof the self-excited vibration amplitudes by means of increasing
the damping and stiffness between the driving motor and the wheelset and torsion
stiffness of wheelset occur.The results obtained using numerical simulations indicated
that the self-excited torsional vibrations in the considered drive system are strongly



194

dependent on the characteristics of the adhesion coefficient in wheel-rail contact zone. A
circuit model of the electric motor in the considered drive system enable us to obtain
values of electrical parameter characterizing the driving motor.The information
concerning a frequency variation of the current in the driving motor stator can be used
for monitoring and identification of self-excited vibration in the wheelset drivetrain
system. The further work will be denoted to an assumption of the vehicle model with the
drivetrain system and it will be carried out experimentally verification on real railway
vehicle.
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Abstract

In this paper the model of four degree-of-freedom mechanical sliding system with dry friction is considered.
One of the components of the mentioned system rides on driving belt, which is driven at constant velocity.
This model corresponds to a row of carriage laying on a guideway, which moves at constant velocity with
respect to the guideway as a foundation. From a mathematical point of view the analyzed problem is governed
by four second order differential equations of motion, and numerical analysis is performed in Mathematica
software. Some interesting behaviors are detected and reported using Phase Portraits, Poincaré Maps and
Lyapunov Exponents. Moreover, Power Spectral Densities obtained by the Fast Fourier Transform technique
are reported. The presented results show different behaviors of the system, including periodic, quasi-periodic
and chaotic orbits.

Keywords: periodicity, quasi-periodicity, chaos, hyper-chaos, non-regular vibrations

1. Introduction

The comprehension and characterization of dynamical systems belong to a challenging
subject in recent years [1], and also nowadays these investigations are still continued. In
many real systems (for instance, sliding linear guide systems, brakes, clutches, piston
rings in a cylinder, and many other) friction phenomenon and stick-slip effect as a result
of relative sliding velocity between surfaces of bodies rubbing themselves have a great
impact on the strength of mechanical elements of these systems as well as their
dynamics. And although there are numerous papers related to the mentioned problems in
the literature, not all effects, associated with the friction phenomenon, have been
sufficiently understood so far. In many cases, the presence and the manifestation of some
effects depends on the structure of the considered system. In general, friction belongs to
the complex processes and depends on various parameters like relative sliding velocity,
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normal load or surface properties. As an example, a review on different applied in the
literature dry friction models can be found in [4], or in the recent paper [5].

The presented in this paper studies are a continuation and extension of research
related to the mechanical model presented in [2,3]. In comparison to the mentioned
papers, here other new numerical simulations obtained for other system parameters are
presented and discussed. In addition, in contrary to the previous numerical
investigations, beyond using Phase Portraits and Lyapunov Exponents, also other
methods are used and applied like Poincaré Maps and Power Spectral Densities (PSDs).

The rest of the paper is organized as follows. In section 2 mechanical model of the
considered system and its equations of motion in the non-dimensional form are
introduced. In section 3 assumptions of numerical computations, the applied
approximations of non-smooth functions, as well as parameters of the considered system
are introduced. Numerical results of our investigations are presented in section 4.
Finally, conclusions of our investigations are presented in the last section 5.

2. Mechanical Model and Non-Dimensional Form

The analyzed in this paper four degrees-of-freedom model is shown in Fig. 1.
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Figure 1. The considered 4-DOF model with dry friction
The state of the considered dynamical system is described by the following variables:
X\, i=X, Vi, 1=Y, ¢, @=¢, X, and Vv, = X,. The body of mass m, can rotate
about the pivot axis S (moment of inertia about the pivot axis S of this mass is equal to
I'). The whole system is characterized by lengths I; (i= 1,2,...,6) and springs with
stiffness coefficients ki, , kj, (i=1,2,4,5,6; j=3,4,5,6). Moreover, additional body of
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mass m, is placed on the belt as a foundation, which moves with a constant velocity v, .
Between the mentioned mass m, and the belt dry friction force occurs, which is a
function of the relative sliding velocity v, —X, . Equations of motion of the system are

obtained using the second kind of Lagrange equations (presented in detail in [2]) and
have the following non-dimensional form

X +ay X + a0 —agX, =0,

Y1+by, —bp+ fy =0,

P+CiX —Co¥y +Cap—CyXy =0,

Xo =X —p+ Xy = i (Vo = %) [Ty —(eryr —€,00)] - 1(fy — (€11 —€,90)),

@

where X;, X, Y1, Y1, @, @, X,, X, denote now non-dimensional state variables.
Other non-dimensional parameters and functions of Egn. (1) are introduced in section 3.

3. The Applied Approximations and Parameters

Numerical simulations are obtained in Mathematica software via the fourth order Runge-
Kutta method, and the trajectories are started from zeros initial conditions. The values of
non-dimensional system parameters are as follows:

a, =0.08, a, =0.03, a3 =0.04, b, =0.09, b, =0.03, ¢, =0.03, ¢, =0.03,
¢3=0.06, ¢, =0.03, f, =001, ¢, =1.38, e, =0.47, v, = var.,

and their estimation is explained in [2]. Kinetic friction function f,(vy—v,) in our
model is described by the Stribeck function. Since the classical signum function is
discontinuous, it has been approximated by the hyperbolic tangent function with control
parameter ¢ in the following way

i —vo) =t 0 |- )+ Ay, @

with fixed parameters 1, =0.8, a=1559, f=425212 and ¢ =10"*. Because the unit
step function 1(fy —(e,y; —€,¢)) is also discontinuous, the following approximation is
also applied in our computations

3
fo_ _
fo(fg —(e1y1 —€y9)) = {tmh(Mﬂ 1(fg —(erY1 —€200))- 3
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4, Results

Figs. 2-4 present numerical simulations for different parameter v, . The presented results

vary from each other, depending on the used value of v, parameter.
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Figure 2. Phase portraits (a,b,c,d), Poincaré sections (e,f,g,h) and PSDs (i,j,k,I) for
vy, =0.005 in time interval 7 € (20000,22000)

As can be seen, for v, =0.005 the character of motion is chaotic. Presented in Fig. 2

phase portraits, Poincaré sections and PSDs confirm its irregular dynamics. The chaotic
attractor has different forms on different Poincaré maps. Moreover, it should be
emphasized that the characters of motion differ is very sensitive to the changes of the
belt velocity v, . In particular stick-slip chaotic dynamics is clearly exhibited by the

phase portrait shown in Fig. 2c and the Poincaré map reported in Fig. 2g.
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Figure 3. Phase portraits (a,b,c,d), Poincaré sections (e,f,g,h) and PSDs (i,j,k,I) for
vy =0.025 in time interval z € (20000,22000)

When v, =0.025, for variable x; there is a periodic-two cycle orbit, which is

represented by two points in the Poincaré section (Fig. 3e) and is depicted as the
trajectory crosses itself in phase portrait (Fig. 3a). The same situation occurs for state
variable X, . While for y; a period-one harmonic appears (Fig. 3f), it is worth noting

that this is a closed curve in the phase plane (Fig. 3b). A three cycle period behavior is

presented for o (Fig. 3d,h).

Frequencies, at which the energies are strong and at which variations energies are weak,
are shown in the Fig. 3 (i,j,k,I) for v, =0.025. For the following state variables: x;, y;,

X, and @ the energy is the strongest at two, single, two and three frequencies,

respectively.
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Another character of motion is detected for v, =0.05. Fig. 4 shows the transient states

for chosen time interval, which indicate that the trajectories of the system go to the fixed
points. After avoiding the mentioned transient states, the Poincaré sections are also
obtained and presented in Fig. 5, and they prove that the system goes to steady state.

Table 1. Lyapunov exponents for different parameter v,

Vo Z A2 A3 Ay As Ao A7 g
0.005 | 0.0069 | 0.0027 | 0.0001 | -0.0010 | -0.0030 | -0.0077 | -0.0206 | -33.00
0.025 | 0.0000 | -0.0026 | -0.0027 | -0.0095 | -0.0358 | -0.0384 | -0.0960 | -19.52
0.032 | 0.0002 | -0.0004 | -0.0011 | -0.0080 | -0.0149 | -0.0324 | -0.1333 | -15.81
0.04 0.0000 | -0.0022 | -0.0026 | -0.0160 | -0.0198 | -0.0421 | -0.0850 | -7.8248
0.05 -0.0043 | -0.0045 | -0.0100 | -0.0102 | -0.1195 | -0.1197 | -0.1764 | -2.2371

Our numerical investigations are also conducted by calculations of the max. Lyapunov
exponents, which are depicted in Tab. 1. Moreover, as an example, time histories of
max. Lyapunov exponents for two different parameter v, are reported in Fig. 6. The
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Lyapunov exponents for each values of v, has been obtained using the Gram-Schmidt

reorthonormalization time AT =0.5, after avoiding the transition state and starting
numerical computations from zeros initial conditions. Chaotic characters of motions are
detected for v, equal to 0.005 and 0.032, while the periodic behavior are detected for

v, equal to 0.025, 0.04 and 0.05. For v, =0.05 the trajectories goes to the fixed points.

03

04

0.2 0.3

0.2 1
01 1
0

0.1
0

01

0
01 ]

-02
0

Maximum Lyapunov exponent

Maximurm Lyapunov exponent

100 200 300 400 500 100 200 300 400 500
Time Time

@ (b)

Figure 6. Time histories of max. Lyapunov exponents of the system for different values
of velocity v, equal to: (a) 0.005 and (b) 0.05

5. Conclusions

Mathematical model of 4-DOF mechanical sliding systems with dry friction is
considered. From a mathematical point of view the mentioned system is presented as a
nonlinear system of equations of motion. Dynamics of the analyzed system is carried out
for a set of system parameters and various non-dimensional control parameter.
Interesting dynamics behaviors of the considered system are reported using standard
tools dedicated to the both qualitative and quantitative theories of nonlinear differential
equations. There are many technical devices in engineering applications, where we deal
with stick-slip induced vibrations. The considered in this paper system can be treated as
a model, which corresponds to a row of carriage laying on a guideway and moved at
constant velocity with respect to the guideway as a foundation. As this paper shows,
there are many possible behaviors of this system, and also it is very sensitive to the
changes of the belt (foundation) velocity. It is therefore can be anticipated that also the
movement of the real system of this type with various velocities of foundation, may vary
considerably. In result, it can cause strongly nonlinear vibrations (regular or chaotic) that
moving to the various components of the system may lead to its damage. Therefore the
considered system can be used in engineering practice to predict its vibrations, and
consequently to its protection.
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Abstract

In this paper the non-linear vibration behaviour and its modification due to the piezoelectric actuation of a
beam with varying cross section and resting on an elastic foundation has been discussed. Due to assumed end
conditions the stretching force emerges during the system vibrations. That force can be modified by an axial
residual force to enhance or reduce the value of vibrations frequency of the beam. The system is divided onto
three segments with the central segment consisted of the core beam and two colocally and perfectly bonded
piezo patches. In order to obtain the approximate solutions of the non-linear frequency of the systems the
Lindstedt-Poincare method has been utilized. Vast number of numerical results shows that not only the
structural parameters of the system have significant effect on its non-linear vibration behaviour at a given
amplitude but also the residual force and the elastic foundation modulus.

Keywords: non-linear vibrations, piezoactuators, amplitude-frequency relation, Winkler foundation

1. Introduction

The non-linear lateral vibrations of beam structures have been the subject of interest of
many researchers. From the engineering point of view the beam-type structures are very
interesting due to their wide application in civil and mechanical engineering, automotive,
aviation, aeronautics industry, medical systems and equipment and many more. It is well
known that any mechanical structure or its part should be protected from exposure to
long time periods of resonance. Piezoelectric materials which are also called “smart
materials” allow to modify the vibration frequency and buckling load of a given
structure due to the inverse piezoelectric effect. That effect result in dimension changes
of piezoelement which depend on the applied electric field vector. It should be noted that
direct piezoelectric effect is also widely utilized in many areas of life such as sound
processing, pacemakers, airbags, lighters etc.

As the research precursor of non-linear frequency studies shall be deemed to
Wojnowsky-Krieger [1] whose thesis concerned the effect of the axial force on the non-
linear frequency of simply supported beams. In the subsequent years there were vast
number of literature positions published and experimental studies performed concerning
the problem of the non-linear vibrations. Azrar et al. [2] presented mathematical
approach concerning the second order approximation to obtain the non-linear vibration
frequency for pinned-pinned and clamped-clamped beams which are close to the exact
solution in a large amplitude frequency range. Moreover authors presented a very
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thorough discussion about increasing the accuracy of the obtained amplitude-frequency
solutions. Benamar et al. [3] proposed a general model of the non-linear vibrations at
large amplitudes for standardly supported beams to describe the influence of amplitude
on both the mode shapes and the natural frequency. It was observed that near the clamps
there were a great increase in beam curvatures which caused increased deflection
resulting in highly non-linear increase of bending strain. A vast literature overview
concerning the active, passive, semi-active and hybrid vibration control of the systems
was presented by Song et al [4]. It was stated that piezoelectric materials despite some
limitations have many advantages such as low-cost, low weight and ease of
implementation. On the basis of Faria [5] as well as Zehetner and Irschik [6]
considerations it can be stated that only for the beams which ends are mounted to
prevent their axial displacement, both the stability and vibration frequency can be
modified by piezoelectric actuation. Oguamanan et al. [7] investigated the influence of
piezoelectric material in plane stress on beams mechanical performance. Authors
showed that in systems where piezoelectric material was bonded both to the upper and
bottom surface of the beam, especially the first frequency can be significantly modified.
It was observed that depending on the applied electric field vector direction, vibration
frequency can be enhanced or reduced. Moreover authors demonstrated that
piezoactuators localized near the beam supports, give slightly more effective control of
the system vibrations. The influence of piezoactuators length, its localization and the
piezoelectric force on the amplitude-nonlinear frequency relationship in a slender
pinned-pinned beam has been studied by Przybylski [8]. It was proved that stretching
piezoelectric force result in an increase of the natural frequency and decrease of non-
linear frequency, whereas compressive piezo-force resulted in opposite system
behaviour. A broader literature overview with wider area of study of slender systems
with bonded piezoelectric materials can be found in [9].

In this paper the influence of vibrations amplitude, piezosegment length and Winkler
elastic foundation modulus on the non-linear frequency for a pinned-pinned and
clamped-clamped beams is investigated. Moreover the non-linear vibration adjustment
due to piezoelectric actuation is examined. The object of study is a three segment system
made of aluminium host beam with two symmetrically piezo patches bonded perfectly
on the upper and bottom surface of the central segment. In order to obtain approximate
solutions the Lindstedt-Poincare method has been utilized.

2. Problem formulation

The main objective of this work is to formulate and solve the problem of the non-linear
vibrations of a stepped beam resting on the Winkler elastic foundation and to estimate
the influence of both the structural parameters and the piezoelectric actuation on the non-
linear frequency-amplitude relationship. Due to the moderately large amplitude of
vibrations, the von Karman theory has been applied according to which during
transversal vibrations, the axial inertia effect can be treated as insignificant.

The scheme of three-segmented system composed of a core beam with both ends
clamped and two piezoelectric patches bonded along the central segment is shown in
Fig. 1.
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Figure 1. Scheme of clamped-clamped beam resting on elastic Winkler foundation with
two piezoelectric patches colocally mounted along the central segment (a), piezosegment
cross-section (b)

The applied voltage, symbolized by the electric field vector E in Fig. 1, is exactly the
same for the upper and bottom piezo actuator which results in the axial
stretching/compressive force being generated dependently on the electric field vector
sense. A derivation of the residual force equation appearing along the stepped beams
with n-pairs of piezoelectric actuators has been presented in [9]. According to these
considerations for the three segmented system the residual force can be described as

follows
-1
F, = F{l+ 77["—1}} (D)
L,

where: 7 denotes the relation of the piezosegment axial stiffness to that of the beam,
F = -2bes1V is the piezoelectric force induced by piezoceramic patches of width b, when
piezo material is characterised by constant es; and the applied voltage is equal to V, L is
the length of the beam, L. is the length of piezosegment. According to von Karman
theory and the actuality that algebraic sum of the axial displacement of three segments is
equal to zero, the force which stretches the beam during its transverse vibration can be

expressed as
1 ) oW (x; t
St 2
( ) lil =1 E AI :l ;E‘;[ | j ( )

Introducing both residual piezo-force F, and dynamic force S(t) into the governing
equation of motion for the i-th segment, that equation takes the following non-
dimensional form

o'wi(&, o*wi (&, i
M) (124 G T )0
for i=1,2,3

where the dimensionless parameters are defined as
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Following notation has been assumed: E,l,, Eply - the bending stiffness of piezo patches
and that of a beam, respectively, A,, A, - the cross section area of piezopatches and
beam, respectively, op, oo - the material densities of the actuators and beam, respectively,
w - the natural frequency of the system, t is time, k denotes the Winkler foundation
modulus.

The non-dimensional boundary conditions for a pinned-pinned beam are:

v 1’T)‘51=0 = l’r)‘flzo B W3(§3’r)‘§3:|3 =g (‘53'T)‘§3:|3 =0 ®)
whereas for a clamped-clamped beam take the form:
Wl(él', z-)‘ézo - W]! (51! T)‘ézo - W3(§3’T)‘§3=|3 - W3I( 3'7)‘§3=|3 =0 (6)

where: | and Il are the Roman numerals denoting the order of the derivative with respect
to the space variable &

The continuity conditions are independent from the type of supports and describe the
equality of the transversal force, moments, slopes and displacements between segments:

Wi(fiyf)‘gi:h :Wi+l( i+llT)‘§i+1:07 Wil (gilr)‘%ti:i ,+l(§|+1' )§

i11=0

L+r,)2 i W& r)  =(L+r,)2 2 W (E,7) o
G

=12, Rn=111I
§1=0

3. Approximate solutions

In order to obtain approximate solutions of the non-linear boundary problem the
Lindstedt-Poincare method has been utilized, according to which relevant quantities are
expanded into exponential series with respect to the small amplitude parameter &

wi(&.,7)= Ze Wiz (5, 7)+ 0" ®)

( ) ZEZnsgn ( 2(N+1)) ©)
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o’ =t + iezna)zzn + O(ez(N +1)) (10)
where separation of space and timen\jzlalriable are described as:
w;(&,7)= Zb:(\zl\:;?fi )os(2k ~1)r , for b= ]T_l +1and j=135,... (12)
) -
s2(r)= > s? cos2(k-1)r, for c= %+1 and j=2,4,6,... (12)

Introducing expansions from (8-10) into the equation of motion (3) and axial dynamic
force sz(r) expressed in (4) and then equating the terms of respective ¢ exponents to

zero, an infinite set of equations of motion and axial force is obtained.

By solving the first pair of equations from the infinite set of equations with use of
boundary conditions (5-6) an infinite number of solutions for the natural frequency is
obtained, whereas from the third equation after applying the orthogonally condition the
second term of frequency w2 can be obtained. The relationship of non-linear frequency w
and amplitude & are determined on the basis of equation (10), with a customary limit up
to the second order.

4. Numerical results

In this chapter the numerical results concerning the non-linear frequency-amplitude
relationship for clamped-clamped and pinned-pinned beams with piezosegment centrally
localised are presented. All analysis can be performed by using the non-dimensional
quantities, but to show its usefulness for engineering applications it has been assumed
that the host beam thickness t, =3.0 [mm] and piezo patches t, = 0.5 [mm] each,
whereas both the beam and piezo patches width b = 20 [mm]. The influence of adhesive
layer thickness has been taken as negligibly small. The beam was made of a
homogeneous elastic isotropic aluminium, while piezoceramic actuators were made of a
homogeneous elastic transversely isotropic P41 material (Annon Piezo Technology Ltd.
Co.). Electromechanical properties of the adopted materials for the numerical analysis
are shown in Tab. 1.

Table 1. Material properties of beam and piezo patches

Property Unit Beam Piezoceramic
E GPa 70.00 83.33
P kg/m?® | 2720 7450
ds1 C/N - 1.00-10°%°
Unmax V/mm - 2000

The first group of plots presented in Fig. 2 shows the influence of structural parameters
of the beam and the elastic foundation stiffness modulus on the mentioned relationship,
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whereas in Fig. 3 the role of piezoelectric actuation in modification the obtained curves

for the system with piezosegment of length I, = 0.80.
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Figure 2. The influence of piezosegment length on amplitude — non-linear frequency

relationship in clamped-clamped (a, b) and pinned-pinned (c, d) beams; remaining
parameters: Winkler elastic foundation modulus =0 (a, ¢), =100 (b, d)

a

Comparing the curve courses for the clamped-clamped support (Fig. 2a, b) it can be

stated than the longer the piezosegment length the smaller the amplitude influence on the
non-linear frequency. For the pinned-pinned beam (Fig. 2c,d) at the whole range of the
amplitude, the non-linear frequency is lower for the piezosegment of length I, = 0.80
than for the piezosegment mounted at the entire beam (I, = 1.00), whereas for the lengths
I =0.0 and I, = 0.20 the vibrations aims to be the same with increased elastic foundation
modulus. In both clamped-clamped and pinned-pinned system together with an increase
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of the elastic foundation modulus, the non-linear frequency decreases at the whole range
of amplitudes and for any value of the piezo patches length.

In order to examine the piezoelectric actuation influence on the non-linear frequency
— amplitude relationship two values of piezoelectric force has been chosen f 2 = £22. It
should be noted that the range of non-dimensional residual force resulting from the
applied electric field is far below the depoling field for the piezoceramic material.
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Figure 3. The influence of piezoelectric actuation on the amplitude-non-linear frequency
relationship for clamped-clamped (a, b) and pinned-pinned (c, d) beams; remaining
parameters: Winkler elastic foundation modulus =0 (a, ¢), =100 (b, d)

As it is presented in Fig. 3 in both cases (clamped-clamped and pinned-pinned beam)
at any given amplitude and elastic foundation modulus the tensile piezoelectric force
reduce the non-linear frequency, while the natural frequency is increased comparing to
the beam without piezoactuation, whereas compressive piezo-force acts in an opposite
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way. Moreover the higher stiffness of Winkler elastic foundation the lower value of non-
linear frequency at the whole range of amplitude. It should also be noted that more
significant affection of Winkler elastic foundation on the non-linear frequency —
amplitude relationship for systems with lower external support stiffness.

5. Conclusions

In this study the problem of non-linear vibrations for the non-uniform Euler-Bernoulli
beams has been discussed. Moreover the enhancement and reduction of non-linear
vibrations due to the piezoelectric actuation has been examined. It should be noted that
performed studies can be useful in the manufacture of elements which are responsible of
controlling static and dynamic response of structures.

It was also shown in this paper that regardless of system external support, the higher
value of Winkler foundation modulus parameter results in decreasing of the non-linear
frequency. There was also proved that piezoelectric actuation can enhance the non-linear
vibration frequency via compressive force induced, while the natural frequency is
increased and the opposite system behaviour is obtained for the tensile piezo-force.
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Abstract

The approach to numerical modelling of sound transmission through window type partitions is investigated in
the paper. The laboratory conditions of reverberation room are simulated. The numerical and experimental
results are compared. The impact of different model parameters on the sound insulation levels are evaluated.

Keywords: sound transmission, acoustic insulation, window, numerical simulation

1. Introduction

There are several basic approaches to sound insulating: increasing the distance between
source and receiver, using noise barriers to reflect or absorb the energy of the sound
waves, using damping structures such as sound baffles, or using active antinoise sound
generators. Those approaches are implemented through a variety of techniques: vibration
isolation, sound insulation, sound absorption and vibration damping. The window type
partition is primarily a mass barrier with sound insulation properties.

There were several attempts to simulate sound insulation properties of partitions
numerically. In the literature, this type of problems are usually referred to as
vibroacoustic or structural-acoustic effects with fluid interaction. Davidson [1]
investigated structure-acoustic effect, which involved a flexible structure coupled to an
enclosed acoustic fluid. Ruber et al. [2] have investigated of a tuned vibration absorber
with high damping for increasing acoustic panels sound transmission loss in low
frequency range. Sakuma et al. [3] performed a numerical investigation of the niche
effect in sound insulation measurement. Their numerical results demonstrate that sound
reduction index decreases below the critical coincidence frequency due to niches, while
it increases above the frequency. It was also confirmed that the effect of the two sided
niche with a centrally located specimen is largest at low frequencies.

Dimino et al. [4] investigated a vibroacoustic design of an aircraft-type active
window. An experimental modal analysis was carried out to determine both single
partition and coupled fluid-structure modal frequencies used to validate the finite
element model. The sound radiation characteristics of the window prototype via
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numerical procedure of coupling boundary and finite element methods was proposed to
solve the coupled acoustic structure problem in the exterior acoustic domain. The above
publications did not considered the standardised sound insulation measurement
procedure, therefore the obtained results were difficult to be compared comprehensively.

Gimeno [5] studied the acoustic insulation of domestic windows, with the objective
to compare the experimental and numerical methods. The calculations were made in
COMSOL. Obtained results were not completely satisfactory, due to 2D numerical
model restrictions and certain differences in boundary conditions between the numerical
model and experimental measurements.

In this paper, a 3D approach to numerical modelling of sound transmission through a
domestic windows, based on laboratory measurement standardised procedure EN 1SO
20140-3, was investigated.

2. Laboratory measurements

The airborne sound insulation of domestic windows can be evaluated from laboratory
measurements of the sound reduction index according to EN I1SO 20140-3 norm [6]. The
results acquired in laboratory can be used to compare the properties of sound insulation
of building elements, to classify such items according to their capabilities of acoustic
insulation, help design building products which require certain acoustic properties and
estimate the in situ performance in complete buildings. The measurements are performed
in laboratories in which sound transmission via flanking paths is suppressed. However,
the results of measurements made in accordance with this standard cannot be applied
directly to the field situation without accounting for other factors, such as flanking
transmission, boundary conditions and total loss factor. The laboratory measurements are
made using octave or one-third-octave bands.

The airborne sound insulation measurement, known as the reverberation room
method, takes into consideration two chambers: a source chamber and a receiving
chamber separated by a test element. It is assumed that all sound is transmitted via the
test element, and that the structure of the transmission suite itself plays no role other than
defining the space for the source and receiving rooms.

The transition coefficient t, is defined as the ratio of the sound power transmitted by
the test element W», to the sound power of the source W1, expressed in Watts:

_| Wa
T—(le Q)

The sound reduction index R expressed in decibels is the inverse of the wall’s
transmission factor. In the laboratory measurements the index R is determined by
measuring sound pressure level L; and L in the two rooms. The following is obtained

[6]:
R=L,-L, +lolog% (dB) )

Where: L is the average sound pressure level in the source chamber (dB),
L, is the average sound pressure level in the receive chamber (dB),



Vibrations in Physical Systems Vol. 27 (2016) 213

S is the test area (m?),
A is the equivalent sound absorption area in the receiver chamber (m?).
Dijckmans and Vermeir [7], carried out an extensive parametric study with a wave
based model to numerically investigate the fundamental repeatability and reproducibility
in such acoustical measurements through the different partitions. The effect on the
uncertainty of single number quantities by including low frequencies (50-80 Hz) was
discussed. Furthermore, their parametric study gave information to what extent it is
possible to predict the sound insulation by laboratory results. In the low-frequency range,
the sound transmission level as measured in the laboratory was not representative for
results in situ. The same partition can give different sound transmission values,
depending on the geometry and dimensions of the chambers or the partition. This source
of uncertainty should be taken into further consideration.

1400 mm

P
<«

A

1700 mm

Figure 1. The CAD model of analysed window

The window frame (Figure 1), analysed in Ship Design and Research Centre CTO,
has overall dimensions of . The default frame thickness ‘G’ is 78 mm and default frame
height ‘H’ is 98 mm. The width of the central pillar is 82 mm. The default frame
material is Meranti wood with density of 800 kg/m® and sound speed of 4500 m/s. The
window glass material has density of 2500 kg/m?® and sound speed of 5580 m/s. Three
types of glazing where installed and measured: 4/12/4/12/4, 8/12/4/12/6 and 4/16/4.
Every odd number in the sequence defines the glass thickness in mm, while every even
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number defines the distance in mm between subsequent glasses. The laboratory
measurement results were discussed and compared further in section 4.

3. Numeric model

The window frame with three glazing types from laboratory measurements were
modelled and enclosed in calculation space created in ANSYS Workbench environment,
bisecting it into source and receiving domains. As the considered window has two planes
of symmetry, the calculation space was restricted to 1/4 of the window (Figure 2). Using
the symmetric boundary conditions significantly reduced the computational cost of the
model, giving the results for whole window.

The introduced calculation space boundary condition is the wall that is around the
model. Perfectly Matched Layer (PML) is utilised to obtain an absorption condition.
Acoustic Mass Source with amplitude of 0.01 kg/m?s is located at rear wall of source
domain, ensuring a parallel wave excitation as required in [6].

0,000 0,500 1,000 (m)
LI S

0,250 0,750

Figure 2. The calculation space with sound pressure level results for 500 Hz excitation

The frequencies of interest were those between 50Hz and 5000Hz, influence the
mesh size (Figure 3): at least five elements should be used to model the shortest
wavelength (0,06806 m at 5000 Hz), therefore size of the element is assumed to be 0,01
m. The assumed FE size was next validated by comparing with higher density meshes.
The ANSYS FLUID 220, a higher order 3-D 20-node solid element that exhibits
quadratic pressure behaviour, was used in the analysis (for more details see ANSYS
online help documentation).
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0,000 0450 0,900(m)
)

Figure 3. Geometry of the model (half-bottom view) and finite element size

In the numerical calculations, the sound reduction index R is defined as [6]:
W,
R=10log—= (dB) 3)
W2

Where the W; is sound power calculated in the source domain and the W, is the
sound power calculated in receiver domain. The sound power in the model was
determined by setting up ANSYS acoustic power monitors in both domains. This
approach, (acoustic power instead of acoustic pressure in the laboratory measurements
[6]), allows to reduce dimensions of the source and receiver domains to minimum.

4. Numerical results

An Acoustic Harmonic Analysis in ANSYS Workbench environment was conducted.
The experimental and numerical results were calculated in one-third-octave band (21
frequencies in range between 50 and 5000 Hz), however the reference glazing
manufacturer data results were given in octave bands in range 125 to 4000 Hz (6
frequency values represented in the below diagrams in solid black). When comparing
measured data, care must be taken to differentiate between measured data for glazing
and measured data for windows. The reason is that the owverall sound insulation
performance of a window is affected by the window frame and the sealing of the glazing.
The variety of measurement results acquired in CTO laboratories caused by sealing
differentiation is represented on the diagrams below by group of the same-coloured
lines.

Figure 4 represents the comparison between the group of six experimental
measurements for glazing 4/12/4/12/4 with different sealing configurations — “CTO 444~
(grey) — and the numerical results “ANSYS 444”. The visible difference for the low
frequencies between (50-80 Hz) may occur due to measurement uncertainties described
in [7]. Even if it was possible to measure the source and transmitted intensity correctly,
the problem of reproducibility at low frequencies remains. The theoretical sound
reduction index R - defined as the ratio between source and transmitted sound power - is
also influenced by all the parameters which determine the modal composition of the
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sound fields and the modal coupling. One way to reduce the variations in low-frequency
measurements is the use of more octave band values. As more modes are present in an
octave band, variations in the sound transition values should be smaller [7]. The another
significant difference was observed for 3200 and 5000 Hz frequencies probably due to
the fact that measurements do not account for indirect transmissions and loss factor
effects.

60

50 = CTO 444
40
o
B30
&« & ANSYS 444
20
10
- 4/12/4]12/4
0
50 200 800 3200

Frequency [Hz]

Figure 4. The comparison of numerical ANSYS 444 and experimental CTO 444 results
for 4/12/4/12/4 type of window glazing

70

= CTO 846

—40

®30 = ANSYS 846

20

10
* 8/12/4/12/6
0

50 200 800 3200
Frequency [Hz]

Figure 5. The comparison of numerical ANSYS 846 and experimental CTO 846 results
for 8/12/4/12/6 type of window glazing

Figure 5 represents the comparison between two experimental measurements for
8/12/4/12/6 glazing with different sealing configurations — “CTO 846 (grey) — and the
numerical results “ANSYS 846”. The same, low frequency differences can be observed.
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The significant difference at 630 Hz most probably occur due to the coincidence effect.
The discrepancies in the range between 200-400 Hz and 1250-3150 Hz were associated
with seals.

60

50
CTO 44

40

R [dB]
3

- 4/16/4

20

10
= ANSYS 44

0

50 200 800 3200
Frequency [Hz]

Figure 6. The comparison of numerical ANSYS 44 and experimental CTO 44 results for
4/16/4 type of window glazing

Figure 6 represents the comparison between two experimental measurements for
different glazing sealing configuration — ,,CTO 44” (grey) — and the numerical results
»ANSYS 44”. Once again, the low frequency differences can be observed. As the
different window models were studied, we may conclude that although the experimental
and numerical results follow similar pattern, there were not exactly the same. There are
several possible reasons for that.

The reverberation room method for measuring sound insulation performance of
glazing and window type partitions involves the “niche effect” as a bias error factor [3].
It is known that the niche effect occurs when a specimen is mounted inside an aperture in
the common wall between two chambers, and the dependence of the measured
transmission loss on the specimen position in the aperture is not negligible. This effect is
difficult to account for in experiment as well as in numerical calculations. A
vibroacoustic coupling analysis should be employed in the future study to investigate
this effect, where one or two-sided niches are modelled as thin boundaries around the
specimen. The vibration damping mechanism of window seals and window frame-wall
fixing was not accounted for in numerical model.

The nonlinear sound absorption of the window frame material should be also
modelled. Generally, at lower frequency (<500Hz), the sound absorption coefficient of
dense wood material is low and at higher frequency (>500 Hz), the sound absorption
coefficient is high. However, especially at higher frequencies, the sound absorption
coefficient of lower density species may be greater [8]. This nonlinearity of sound
absorption coefficient for wood should be incorporated in future studies.
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5. Conclusions

The proposed numerical approach, although simplified (it does not contain damping
effects of the window fixation, nonlinearities of material sound absorption coefficient
and does not consider acoustic coupled effects) gave satisfactory results in the mapping
of the experimental sound insulation curves of windows.

The detailed comparison between numerical and experimental results exposed, that
numerical results are not exactly the same as in the experimental method. There are still
several modelling aspects to account for.

The achieved numerical accuracy should be useful when examining trends in sound
insulation as a function windows design parameters, such as different glazing types,
frame dimensions, frame material type, etc.

In the future numerical studies can be completed, however not without additional
expense of computational cost, which may be disadvantageous in when rapid assessment
of the given window configuration is needed.
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Abstract

An approximate method for determination of dynamic characteristics of structures with viscoelastic dampers is
proposed in this paper. A fractional derivative is used to describe the dynamic behaviour of viscoelastic
dampers. The method is based on a continuous dependency of the sensitivity of eigenvalue on a certain
artificially introduced parameter which scaled up the influence of the damping term in the eigenvalue problem.
Some results of a representative calculation are also presented and briefly discussed.

Keywords: structures, viscoelastic dampers, generalized fractional model, dynamic characteristics

1. Introduction

Natural frequencies, non-dimensional damping ratios and modes of vibration are the
fundamental dynamic characteristics of every structural system. These quantities are
obtained after solving appropriately defined eigenvalue problems. It is a well known
procedure when the damping of systems can be neglected or when the so-called
proportional damping could be assumed. The problem is much more complex when
damping takes place because the eigenvalue problem is often nonlinear and because
complex calculations are involved. The procedure of determination of dynamic
characteristics is even more complicated when the fractional derivative modes are used
to describe viscoelastic (VE) dampers. In this case, usually, an advanced procedure,
called the continuation method, is used to solve the nonlinear eigenvalue problem [1, 2].
Adhikari [3] used the Neumann expansion method to obtain first and second order
approximations for complex eigenvectors.

In this paper, the method of determination of an approximate solution to the
nonlinear eigenvalue problem describing the dynamic properties of structures with
fractional dampers is presented. The method used a solution to the classical eigenvalue
problem without damping and a differential equation to calculate the natural frequencies
and non-dimensional damping ratios sought. Only a partial solution to the classic
eigenvalue problem is needed. The method presented is an extension of the method
recently proposed by Lazaro [4] but, in contrast to that method, only a partial solution to
the classic eigenvalue problem is necessary and the method is extended to the case of a
system of which the viscoelastic properties of dampers or materials are described by
fractional derivatives. A previous approach in a similar direction was presented, also by
Lazaro, in [5].
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2. Equation of motion of structures with viscoelastic (VE) dampers

The elastic, planar frame structures with VE dampers are considered. The fractional
model, shown in Fig. 1, is used as a model of dampers. It consists of the fractional
Kelvin element which is connected in parallel with the fractional Maxwell element. The
rhombus shown in the figure denotes the viscoelastic or springpot element [6]. This
model of damper can be regarded as a generalized one. A set of specific models arise
from it: the simple fractional Maxwell (when k, =c, =0), the fractional Kelvin model

(when k; =c; =0) and the fractional Zener model (when ¢y, =0). This means that
almost all of the fractional models known in the literature up to now are taken into
account by the above fractional model. Here k,, k; and c,, c, are the stiffness and
damping factors of damper, respectively, and « is the order of the fractional derivative;
(0<a <1). Well known classic rheological models of damper are obtained for « =1.

q,
L ‘ Cy
u .:,-Wa u
AVAVAV
ky

Figure 1. Mechanical diagram of the fractional model of damper

The total force in this model, u(t) =ug(t)+u,(t), is the sum of forces that occur in
the Kelvin element u, (t) and the force in the fractional Maxwell element u, (t), i.e.:

U (t) =Ko (ax (1) —a; (1)) +co D (A (1) —a; ) 1)

U (O =k (@g®—a;®),  ugt) =cDf (9 —q (1), @)

where the symbol D () denotes the Caputo or Riemann-Liouville fractional derivative
of (e) of the order o with respect to time t. The symbol g, (t) denotes the so-called

“internal variable” (see also [6, 7]). It is easy to find that Uy (t) = uyg (t) = uy (1) .

The equation of motion of structures with VE dampers could be written in the
following form (see also [6, 7]):

Mg(t) + CD{"q(t) + Kq(t) = P(t) @)
Here, M, C, K are the (nxn) global mass, damping and stiffness matrices,
respectively. P(t) is the vector of excitation forces and q(t) is the (nx1) global vector
of displacements, which contains also all internal variables g (t) . For the sake of

simplicity, the damping properties of structure are neglected. The mass and damping
matrices are often singular and the stiffness matrix is positively defined.
Assuming that P(t)=0 and applying the Laplace transform (with zero initial

conditions), the following nonlinear eigenvalue problem is obtained from Eq (3):
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(s°M+5°C+K)q=0 4)
where s is the Laplace variable and q is the Laplace transform of q(t).

3. Approximate method of solution to the nonlinear eigenvalue problem

First of all, the artificial parameter p is introduced and Eq. (4) is rewritten as:

D(s(p), P)A(p) = (s*M+s” pC+K)g =0 (5)

For p =1, the solution to the eigenvalue problem (4) is obtained whereas for p=0,
Eq. 5 is reduced to the following linear eigenvalue problem

(s’M+K)g=0 (6)

which has a well known set of solutions of the type s=iw, q=a, where @ and a are

the natural frequency and mode of vibration, respectively, and i= J-1. Let us note that

the influence of the damper’s stiffness is still incorporated in the stiffness matrix K. Itis
assumed that the eigenvector q fulfills the following normalization condition:

a’ (PI2s(pP)M +as”~ pCIq(p) =1 (7)
Now, the sensitivity of the solution to the eigenvalue problem with respect to
changes of parameter p will be analyzed. After differentiating Eqgs (5) and (7) with

respect to parameter p, the following set of equations are obtained (see also [7]):
(s’M + 5% pC + K)Z—q+(ZSM+aS“_lpC)ﬁS—S=—S“Cﬁ (8)
P p

q' (2sM + 5“1 pC) a, qu [2M + a(a —1)s% 2 pc]aé _1 as®'g'Cq  (9)
op 2 op 2

from which the sensitivity of the eigenvector &q/oJp and the sensitivity of the
eigenvalue os/0op can be found.

Equation (8) is multiplied by g and transformed to the following form:

B _ A(G(p))
o Pairnam) (10)
A(G(P)=G'Cq ., B(s(p).G(p) =0 (2sM+as**pC)q (11)

The functions  A(G(p)) and B(s(p), q(p)) are expanded in the Taylor’s series in
the vicinity of p=0,i.e.

oA(a(p)
ap

. B(s(p). d(p), P)=B(0) + 6B(S(p>éﬁ(p), p)|

p=0 p=0

A(G(p)) = A0) + (12)

where
A(0)=a'Ca, B(0) =2iwa' Ma (13)
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Moreover, taking into account that both the eigenvalue s and the eigenvector q depend
on p, we can write:

B 2" (2sM + as*1pC) Z—q +G M+ a (@ -1)s72 pC]ﬁg—s LasigTcE (14)
P P
OA T ~0q
—=2q C— 1
s q S (15)
The values of the above derivativesat p=0 are:
Bl _hiwa™ MY 2aTMa B 4g (iw)**a'Ca (16)
6p p=0 p p=0 p=0
oA 0
= =2a'c a_q (A7)
Plpoo Pl oo

The sensitivities oq/op and os/dp , calculated at p=0, can be determined from
Eqgs (8) and (9). In the vicinity of p =0, these equations take the following form:

(K—a)zM)a—q +2ioMa S =—(iw)“Ca (18)
a p=0 p=0

diwa™M  iaTmal| -1 a(imw)®ta’Cca (19)
onl v, 2

from which the sought quantities could be determined.
Finally, Eq (10) could be rewritten in the form of the following differential equation:

0s _ e drap

— 20
ap by +byp 20)
where
T ST T~09
a;=a Ca, by =2iwa Ma , a;=2a C— (21)
op 0=0

b, =4iwa’ Mg—q oA Ma|  ia (iw)*ta’'Ca (22)

p=0 p=0

It should be noted that, for p =0, the normalization condition (7) is reduced to
2iwa’ Ma =1, which means that by, =1. Moreover, from Eq (19)
+2a"Ma +1a(ia))“‘1aTCa:0 (23)
p=0

siwa'm

Plo-o

which means that b, =0.
Finally, Eq (20) is reduced to
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s o
a—p=—s (8 +a,p) = f(s,p) (24)
and only the constant a; depends on « .
The solution to Eq (24) must fulfill the following initial condition: for p=0
s(0) =iw or s(0) =—iw, depending on which complex conjugate solution is sought.
Before describing the method for solving Eq (24), the special case a=1 will be
discussed. It means that dampers are described by classic rheological models and Eq (24)
takes the following form:

0S

—=-S(ay+a
2 (ag +ap) (25)
Solution to Eq (25) fulfilling the described above initial conditions is given by
s(p) =+iwexp (3o p+3a,p?) (26)

It means that, for p =1, the following approximate solution to the eigenvalue of the
nonlinear eigenvalue problem (4) is obtained:

§=iwexp (ag +3a) (27)

The above result is identical with the one obtained in [4].

An implicit version of the Euler method is used to solve Eq (24) numerically. First of
all, the increment of p is chosen and denoted by h. Moreover, a set of points are
chosen on the p axis in such a way that p,,; = p, +h and the notation s(p,)=s, is
used. According to the Euler method

Snst =Sn +LF(Sps Pr) + F(Spaas pn+1)] h/2 (28)
and for n=0, s(0)=s;, =tiw.

The simple iteration method is adopted for solving the nonlinear algebraic equation
(28) with respect to s,.;. The initial approximation of s.,; is calculated from the
formula:

53 =Sy +hf (s, py) (29)
and the (i+1)-th approximation of s,,; is given by
s =50 +f (50, Pa)+ T (s, Py I/ 2 (30)

where the superscript denotes the number of iteration.

The iteration is continued until the following inequality is fulfilled:
Re(s{Y - s(”l))‘ < g‘Re(s(”l))‘ , ‘Im(s(”l) - s(”l))‘ < g‘ Im(s(”l))‘ (31)

n+1 n+1 n+1 n+1 n+1 n+1

where ¢ is the assumed accuracy of calculation.
Having the eigenvalue s= u+i7, the natural frequency @ and the non-dimensional
damping ratio y is determined from

o =ptin’, y=-ulo (32)
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The approximation of eigenvector q is given by
g=a+—_ (33)

4. Representative results

Results for a four-storey shear frame with two dampers located at the first and fourth
storeys will be presented. The fractional Kelvin model is used for describing the
dampers. The following data are used for describing the frame: (i) the storeys’ stiffness

are: k; =k, =26.0-10° [N/m], ks =k, =20.0 -10° [N/m]; (ii) the storeys’ masses are:
m, =m, =m =m, =34.0-10° [kg]. The first-floor damper's parameters are: «=0.8,
Ko1 =10.0-10° [N/m], Co1 =0.4-10° [Ns“/m] and the damper’s parameters for the
fourth floor are: @ =0.8, Ko, =6.0-10° [N/m], ¢y, =0.2-10° [Ns®/m].

The system matrices are: M =diag[m,, m,, mg, m,],

ki +ky +koy —kp 0 0
-k k, +k -k 0
K = 2 2 +K3 3 (34)
0 Ky kg+Ke, —kg—Kos
0 0 -—ky—koo kytkgo
Gi 0 0 0
Ce 0 0 0 0
10 0 oz —Cop (35)
0 0 —Cop Cpo

The natural frequencies of frame without dampers are in the first column of Table 1,
whereas in the next column, there are the natural frequencies resulting from Eq (6) when
the stiffness matrix is the sum of the stiffness of frame and dampers.

Table 1. Natural frequencies of frame

Frame without dampers | From Eq (6) Difference
@, =9.27367rad/s | @, =9.90121rad/s | 6.77%

@, =25.35547radls | w, =27.9594rad/s | 10.27%
@; =39.20204rad/s | w; =43.15206rad/s | 10.07%
w, =48.9857rad/s | w, =50.51930rad/s | 3.13%

Results of calculation are presented in Table (2). The exact vales of eigenvalues are
obtained by means of the continuation method described in [1]. The second column
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collect results obtained by means of Eq (24). Very similar results are obtained and
differences are not greater than 0.2 %. Moreover, in Table 3, the exact and approximate
natural frequencies and non-dimensional damping ratios are compared. It is evident that
the approximate results have an very good accuracy.

Although in Table 4, the eigenvalues of frame with dampers are stated, now, the
dampers are described with the help of a classic Kelvin model («=1.0, and other
damping data are as stated previously). In the second column, the eigenvalues calculated
from Eq (27) are presented. Moreover, the exact values of natural frequencies and non-
dimensional damping ratios are shown. Exact eigenvalues are obtained using the
classical approach given in [6].

A comparison of the eigenvalues obtained from the formula derived by Lazaro in [4]
with the ones resulting as the solution to the differential equation (24) is presented in
Table 5.

Table 2. Eigenvalues for a frame with the fractional Kelvin dampers («=0.8)

Eigenvalues (exact results)

Eigenvalues — Euler Eq (24)

Differences

;5 =—0.112501+i 9.94280

5,5 =—0.11262+19.94295

0.11%+i0.00%

S, =—1.11279+i 28.3731

5,6 ——1.11240+28.3720

0.03%+1i0.00%

Sq7 =—2.61179+i43.9430

Sq7 =—2.61042+i43.9405

0.05%+10.00%

545 =—1.58018+i50.9182

545 =—1.57899+i50.9174

0.08%+i0.00%

Table 3. Natural frequencies and non-dimensional damping ratios — comparison of exact
and approximate results for a frame with the fractional Kelvin dampers (¢ =0.8)

Frequency Damping ratio Frequency Approximate
(exact results) (exact results) (approximate results) damping ratio
@, =9.94344rad/s 7, =0.01131 @y =9.94359rad/s v, =0,01133
@, =28.3949rad/s ¥, =0.03919 w, =28.3938rad/s v, =0.03918
w5 =44.0205rad/s 73 =0.05933 w5 =44.0118rad/s ¥3 =0.05930
@, =50.9427 rad/s v4 =0.03102 w, =50.9418rad/s v, =0.03100

Table 4. Eigenvalues for frame with classic Kelvin dampers (a¢=1.0)

Eigenvalues (exact results) Eigenvalues - Eq (27) Fr[er(j;éelzg]cy Damping ratio

S15 =—0.19179+19.9133| 5, 5 =—0.19196+19.88545 | w; =9.91516 | y; =0.019343
Sy6 =—2.3712+128.114| 5, g =—2.31103+1i 27.6169| w, =28.2138| 5, =0.084044
S37 =-5.7509+142.729 | 53, =—5.73843+142.8072 | w3 = 43.1142| 5, =0.133387
Sy =—3.4508+149.919 | 5,4 =—3.45254+149.9294 | w, =50.0381| y, =0.068963




226

5. Concluding remarks

The proposed method enables determination of the dynamic properties of structures
with VE dampers in a simple way. The dampers’ behavior is described with the help of
fractional derivatives. A partial solution to the classic eigenvalue problem is necessary in
the proposed method. Only one eigenvector and the corresponding eigenvalue of
problem (6) are necessary to determine the conjugated eigenvalue and eigenvector for
the structure with VE dampers. The results of an extensive calculation, which is not
presented in this paper due to the limitation of space, indicate that the accuracy of the
method is good for a range of damper’s parameters used in practice.

Table 5. Eigenvalues for frame with classic Kelvin dampers ( ¢ =1.0) — comparison of
the results obtained from Eq (24) (the Euler method) and Eq (27)

Eigenvalues — Euler Eq (24) Eigenvalues - Eq (27) Differences
$15 =—0.19250+19.91326 ;5 =—0.19196+19.88545 | 0.28%+i0.28%

Sy ==-2.35233£i128.1094 | s, =—2.31103+1i27.6169 1.79%+i1.781 %
S37 =—5.72822+142.7318 S37 =—5.73843£i42.8072 | 0.18%+ 10.18%
S48 =—5.55776+150.1042 S48 =—5.58168+150.3188 | 0.43%+ 10.43%
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Abstract

This paper is devoted to human motion analysis and comparison of chosen kinematics parameters during
normal gait with and without additional load in a form of backpack. A stability in both cases were compared in
both frontal and sagittal planes, by applying a video tracking system. Experimental tests performed on
treadmill, passive markers, placed on volunteers bare skin were used. Additionally, an infra-red camera was
employed to evaluate muscle activity and its groups involved in the movement. The change of body
temperature and distribution of the thermal maps were observed. Analysing these thermograms, loading of
different muscle groups was evaluated. During the experiment, an attempt to correlate a results obtained from a
thermal imaging camera and video tracking system were made. It is shown that thermal imaging can help to
evaluate an asymmetry in muscle load and in some cases can help to detect pathological cases, what was
confirmed with motion analysis. Advantages and disadvantages of this method were also described.

Keywords: thermovision, motion capture, motion analysis, ergonomics, gait stability

1. Introduction

Motion analysis plays a key role in understanding of locomotion and some phenomena
that occur during the movement. To obtain more information of musculo-skeletal system
functionality than just motion trajectories, typically a force platform [9] and/or an
electromyography (EMG) method is applied (e.g. [1]). However, to record the signal, a
complicated and expensive measurement technique should be employed. Moreover in
this method it is obligatory to use an electrodes placed on the skin in a specific muscle
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area. EMG signal is vulnerable for noise (e.g. cross-talking phenomenon) [4]. For this
reason, in this research, both a visual motion analysis and an infra-red imaging is used to
evaluate the activity of the chosen muscle groups. This method is also widely used, see
for example in papers [2, 5, 6, 8]. In contrary to EMG, there is no need for any
electrodes, cables or special recording units, that would disturb the movement; moreover
it is a non-contact method, and results can be obtained almost immediately.

2. Methods

2.1. Experiment description

Volunteers were asked not to perform any intensive activities to avoid muscle fatigue.
Normal gait on the treadmill without any load and with additional load in a form of a
backpack were performed. Both experiments were done with the same velocity (chosen
by volunteer) for ten minutes. Video in two planes of motion (sagittal and frontal) were
recorded; also thermograms were taken before and after each test.

2.1. Video analysis

In order to analyze recorded videos an authorial software was used during the
experiment. It allowed to detect and track position of both passive and active type
markers. Examples of the marker placement and its representation after lightening and
image filtering, are shown in Fig. 1a and 1b.

a) b)

Figure 1. Example of video frame and detected passive markers for front and side of the
body: a) markers distribution on the body; b) markers after lightening, filtering and
position identification
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Light, flat, reflective, passive type markers were chosen, and placed on a volunteer bare
skin. This, in authors opinion, helps to prevent movement of the markers, relative to the
joint. Moreover, their masses not affect the dynamics of locomotion and no special
costume were needed, which would constrain the movement. Example of the front and
side body markers detection are presented in Fig. 1c. The following parameters were
recorded during treadmill gait:

e ki —angle of torso longitudinal axis deviation,
ko — angle of shoulder girdle tilt,
ks — angle of pelvis tilt,
ks, ks — angle of forearm and arm flexion/extension,
Rmax — wrist horizontal displacement,
Xmax — step length,
Ymax — shoulder vertical displacement.

/:—\I(W

Ymax

max 1

Figure 2. Measured parameters (see text for more details)

After about a half of the exercise time, 1.5 minute was recorded and then 20 seconds
were chosen for further analysis. Depending on the visibility of detected markers,
approx. 20 to 260 steps were recognised. Even if the number of steps identified was
small (in the worst case approx. 20), no additional recordings were performed to prevent
any unnecessary fatigue affecting the volunteer.

2.2. Video analysis results

Results, obtained from video analysis are presented in Figures 3-5. It can be noticed that
for each volunteer each of the examined parameters have changed, i.e. angles of limb
flexion/extension decreased (see Fig. 5), but length of the step increased. Similarly,
mean amplitude value of torso longitudinal axis and pelvis oscillation decreased, what
was compensated with shoulder girdle movability (see Fig. 4). Reason of such
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differences is an additional load and probably that volunteers were more accustomed to
the treadmill gait after first try (without load). However, it is necessary to emphasise that
each of the volunteer had an earlier experience with this type of exercise.

4,00
WEX K1 [deg] mWEXK2[deg] EX k3 [deg]
3,00 . kq
k

2,00 - - 3 -
¥ 1,00 l I I
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W -2,00 \

-3,00
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Figure 3. Motion capture results (mean values): longitudinal axis deviation (ki), shoulder
girdle (ko) and pelvis tilt (ks); during gait without and with load for each of six volunteers

It can be seen (see Fig. 3) that most volunteers longitudinal axis deviation (ki) direction
changes to the opposite one after adding a load. This alternation is also visible in mean
values. Possible explanation is the change of mass distribution of the load. The
volunteers tried to compensate this asymmetrycity by rising left or right shoulder. At the
same time, shoulder girdle tilt (k2) and pelvis tilt (ks) did not changed significantly. The
minimal decrease of both value due to the additional load and limit of the movement was
expected. It was noticed in almost all volunteers except the first one. Fig. 4 presents
mean amplitude values of axes (ki, k2, ks). Unlike the mean values from fig. 3, here it can
be easily seen that movability of the longitudinal body axis after adding a load decreases
significantly.
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Figure 4. Motion capture results (mean amplitude) in a front view: longitudinal axis
deviation (dki), shoulder girdle (dkz) and pelvis tilt (dks); during gait without and with
load for each of six volunteers
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Figure 5. Motion capture results (mean values) in side view: angles of forearm and arm

flexion/extension (ka, ks), hand horizontal displacement (Rmax), stride length (Xmax) and

shoulder vertical displacement (Ymax); during gait without and with load for each of six
volunteers

In Fig. 5, it can be seen, that adding load after free gait causes that the angles of forearm
and arm flexion/extension (ka, ks) and also hand horizontal displacement (Rmax) decreases
significantly. The hypothesis is that decreasing the amplitude of the arms movement
helps to compensate the shoulders load. Simultaneously, stride length increased to
improve the stability of the gait. Shoulder vertical displacement (Ymax) did not changed
significantly what is similar to the results published in reference [1].

2.3. Thermography

In addition to the motion capture method an infra-red analysis was performed. Changes
of the body temperature and skin were observed. Acclimatization time was set to about
20 minutes. Volunteers were dressed in the same way as during the examination. Aim of
this experiment was to point muscle groups involved in movement and symmetry of the
muscular system activity. An example of thermogram before and after each type of
experiment are presented in Figures 6-9, an example of muscle activity asymmetry is
shown in Fig. 10.

2.3. Thermography results

For each of thermograms series for each volunteer a body surface temperature were
measured (see Fig. 11), additionally an attempt was made to distinguish a muscle groups
or muscles, which are especially active during gait with additional load, are mentioned
below thermograms. Examples of the thermograms where these muscles are seen (more
distinct temperature change was observed) are shown in Figures 6-9.



Figure 6. Example of muscle activity observed in infrared, temperature in [°C] — chest,
muscles: serratus, obliquus external abdominis; a) before experiment, b) after gait
without load, c) after gait with load

30,5

Figure 7. Example of muscle activity observed in infrared, temperature in [°C] — back
muscle: trapezius; a) before experiment, b) after gait without load, c) after gait with load

30,5

Figure 8. Example of muscle activity observed in infrared, temperature in [°C] — front of
the legs muscles: rectus femoris, pektineus, adductor longus, tibialis anterior, soleus; a)
before experiment, b) after gait without load, c) after gait with load

30,5

Figure 9. Example of muscle activity observed in infrared, temperature in [°C] — back of
the legs muscles: biceps femoris, semimembranosus, gastrocnemius; a) before
experiment, b) after gait without load, c) after gait with load
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Moreover, when an asymmetry of gait was observed during video analysis, an
asymmetry of the temperature distribution were observed. Thus implicates that both
methods (video analysis and thermography) can help to detect asymmetry of the body
movement and muscles load. Disadvantage of thermographic method is that it is
sensitive to many factors. For example, sweat secretion results in an uneven cooling of
the skin, as observed during experiment (also by other authors, see [8]); see Fig. 8¢ —
some colder and warmer “dots” are seen. Also a backpack insulates the heat transfer
from the back and it is necessary to stabilize temperature and humidity in the laboratory.
Moreover, it is mandatory to “prepare” volunteer in a very specific way (requirements
are described among others in works [5, 6]). Muscle asymmetry can be also observed in
Figures 6-9 and in Fig. 10. In this case, it can be seen that left leg carried more load in
both cases — gait without and with additional load. In all cases, where asymmetry were
observed also a asymmetrical wear of shoe soles for left and right foot were noticed. In
all cases asymmetry of gait parameters were confirmed by infra-red imaging.
Remarkably, similar method was used in a paper [10] for evaluating compensation of
asymmetrical load applied to the pectoral girdle.

Front

Back

Figure 10. Examples of muscle activity asymmetry; a) before experiment, b) after gait
without load, c) after gait with load for front and back of the body; in this example left
leg was more loaded in both cases
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Figure 11. Results of thermographic measurements, temperature in [°C]: front and back
of the body shell just before experiment, after gait without and with load for each of
volunteer and mean value

3. Additional measurements

During experiment some additional measurements were made: temperature of the body
core, systolic and diastolic blood pressure, pulse and blood oxidation. Results are shown
in Fig. 12. It can be observed that these parameters were almost constant.

160,00

I E1E2E3N4W5 N6 MEX
140,00

120,00

100,00

40,00

20,00

Before Without With Before Without With Before Without With Before Without With Before Without With
load | load load load load load load load load = load

Temperature [C] Systolic blood pressure  diastolic blood pressure Pulse Oxidation

Figure 12. Results of additional measurements: core temperature, systolic and diastolic
blood pressure, pulse and oxidation
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4. Concluding remarks

A method of complex movement analysis with evaluation of muscle activity has been
employed and presented. Its advantages and disadvantages have been discussed.
Additionally, a video analysis has been carried out and the obtained results have been
validated via comparison with the results reported in other publications. The change in
several gait parameters like maximal angle of deviation and the angle vs. time in case of
the gait with and without load has been detected and monitored. For example, EX of
angle of the main body axis changes from -0.32 deg in case of gait without load up to
+0.29 deg with load. Exemplary results are presented in Fig. 3. Changes in muscle
activity and overall body temperature have been also observed and reported. The infra-
red imaging can also give a qualitative information about symmetry of muscular system
load. Moreover, other important detected issues follow:

*  Marker-based motion tracking methods are the most effective and precise ones,
in comparison to e.g. special inertial sensors, which belong to relatively heavy
and inconvenient [7].

* It was observed that many parameters have changed during gait with additional
load: stability, pelvis and pectoral girdle tilt, step length (and frequency).

* An activity of muscle groups can be observed in infra-red and groups of
muscles involved in the movement can be indicated.

*  Asymmetry of the gait is correlated with temperature changes and revealed by
infra-red measurements — thermography can be proposed as a method for
evaluating various gait pathology.

* In case of gait with an additional load in the form of backpack a lower pectoral
girdle tilt and higher value of pelvis tilt was observed.

* The sign of the longitudinal axis deviation (ki) in most volunteers changes after
adding a load. Possible explanation is the change of mass distribution of the
load or some asymmetric placement of backpack belts or load.
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Abstract

The paper presents a numerical analysis of pressure drop and acoustic attenuation performance (transmission
loss) of two identical acoustic helicoidal resonators arranged in parallel ducts with different rotation angles.
The air stream is divided from one cylindrical duct of a diameter D=140mm to a two parallel cylindrical ducts
of diameter d=125mm with two helicoidal resonators inside — one per one duct. The ratio of helicoidal pitch s
of helicoidal resonators to a cylindrical duct diameter d equals s/d=1,976. Other geometrical relationships of
helicoidal resonators, as a mandrel diameter dp, to duct diameter ratio d,/d=0.024, thickness g of helicoidal
profile g/d=0.0024, and the number of helicoidal turn n=0,695 for both resonators. The investigated range of
rotation angles covered the three characteristic positions of helicoidal resonators gaps, when considering the air
stream distribution from central large duct with diameter D. The value of normal inflow velocity v[m/s]
equaled 1 for all investigated cases.

Keywords: helicoidal resonators, pressure drop, acoustic attenuation, parallel ducts, flow distribution,
numerical analysis

1. Introduction

The newly patented solution of acoustical helicoidal resonator [1] has a specific feature
of a narrowband sound attenuation and multi resonances. The acoustical properties of
this solution and basic dimensions are quite well described in many publications [2-7, 9-
12, 14-17]. The flow properties of this solution were described mainly for one helicoidal
resonator inside cylindrical duct [8, 9, 13, 14, 16]. In the paper [15] were mentioned the
possibilities of inserting a few ducts with acoustically tuned helicoidal resonators for the
same blade-passing frequency of fan in ducted system. From the acoustical point of view
it is determined by the plane wave propagation condition, which must be satisfied for a
proper work of helicoidal resonator (acoustical resonance). From the fluid dynamics
point of view the pressure drop depends on many conditions of inserted helicoidal
resonators, as example most important here relationship between helicoidal pitch sand
numbers of helicoidal turns n. But the transition of air flow stream into few ducts
induces more complications, as example distribution inside duct of helicoidal resonators
and other obstacles.

Also this work presents the numerical analysis of transmission loss (TL)
characteristics and pressure drop for specific three cases of rotation angles of two
identical helicoidal resonators with constant s/d ratio that equals 1,976 and numbers of
helicoidal turns n=0,695 arranged in parallel cylindrical ducts.
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2. Description of investigated models

In this chapter are characterized investigated acoustical (2.1) and CFD turbulent flow
(2.2) models of two identical helicoidal resonators placed inside a cylindrical ducts
arranged in parallel just past the transition from one duct with larger diameter D=140mm
to two parallel ducts with diameters d=125mm, as presented in Figure 1. In both
subchapters the three dimensional (3D) models were analysed.

helicoidal resonators inside ducts d=125mm transition duct D=140mm
and lengths 1;=1000mm 1,)=200mm 15=500m

Figure 1. Example view on numerically represented and considered ducted system with
two identical helicoidal resonators with s/d=1,976 and n=0,695 arranged in parallel ducts
past the transition from one larger duct

The ducted system consists of a straight cylindrical ductsand the transition with
lengthl,=200mm. The ratio of helicoidal pitch s of helicoidal resonators to cylindrical
duct diameter d equals s/d=1,976, and the number of helicoidal turns n=0,695. The
geometrical relationships of helicoidal resonator, as a mandrel diameter dn to duct
diameter ratio dn/d=0.024 and thickness g of helicoidal profile g/d=0.0024, were
constant as well. The length of the cylindrical duct with diameter D at the inlet
sideequaled 500mm, and the outlet parallel ducts with diameter d=125mm equaled
1000mm.As it is presented in figure 1 the helicoidal resonators were placed right past the
transition, and the closest edges of helicoidal profiles were situated in the distance of
10mm from the end of transition.

Three cases of rotation of helicoidal resonators were analyzed in this paper, as it is
presented in Figure 2. Case 1 represents the situation when helicoidal resonators are
placed in the same way inside cylindrical ducts. Case 2 represents the situation when the
characteristic gaps of the rest part 0,305 of helicoidal turns are placed externally, and
Case 3 represents the situation when those gaps are placed internally.
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Case 1: rotation angles
- both resonators 70°,
- gaps oriented on the
same side,

~7

gap gap

Case 2: rotation angles
- left resonator 60°,
- right resonator 240°.
- gaps oriented
externally,

=

/JLQ
[<%)
©

Case 3: rotation angles
- left resonator 240°,
- right resonator 60°, /
- gaps oriented v
internally. (1

Figure 2. Investigated three cases of rotation angles of two identical helicoidal resonators
arranged in parallel ducts

2.1. Acoustical model

Investigated in this paper acoustical models have the same parameters as in previous,
well described studies under helicoidal resonators, as in example papers [2-7, 9-12, 14-
17]. It was used the finite element method in Comsol Multiphysics-Acoustic Module
numerical environment [18]. The transmission loss (TL) [19] was computed as the
acoustic attenuation performance parameter. It was considered the sound propagation in
air with temperature 20°C without flow. The boundary conditions were established, as
follows:

e hard walls of all elements of helicoidal resonators (perfect reflection) and
cylindrical ducts,

e plane waves radiation - inlet (incident pressure p=1Pa) of a duct with diameter
D=140mm and outlet surfaces of two cylindrical ducts with diameters
d=125mm - that satisfies the anechoic terminations to calculate TL.

Free tetrahedral mesh [18] was created with satisfying the rule of minimum 5 finite
elements per sound wave length [20] for maximum frequency- here it is fn=2000Hz at
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20 Celsius degrees. The considered speed of sound in air cs=343m/s. Maximum finite
element size equalled he=0,2(cs/fnax). Example view on generated free tetrahedral mesh
of investigated model is presented in Figure 3.

0.2

0.1

00%g 5
Figure 3. Example view on free tetrahedral mesh of investigated ducted acoustical
system with two identical helicoidal resonators arranged in parallel

2.2. CFD turbulent flow model

CFD Module of Comsol Multiphysics [18] was used to solve investigated CFD turbulent
flow model of ducted system analyzed as a single-phase flow k-w turbulence RANS
model [18, 21, 22] with compressible flow (Mach number lower than 0,3), as it was
similarly considered in papers [8, 14, 16]. The main feature is fluid properties, that adds
the Navier-Stokes equations and the transport equations for the turbulent Kinetic energy k
and the specific dissipation w, and provides interface for defining the fluid material and
its properties [14]. The basic fluid properties are: temperature T=20°C, reference
atmospherical pressure pa=latm, density and dynamic viscosity of air were calculated
automatically from COMSOL material library [18]. The boundary conditions were
described as follows:
— wall slip - there are no viscous effects at the slip wall at all surfaces of cylindrical
duct and helicoidal resonators,
— normal inflow velocity at the inlet equaled 1m/s,
— no viscous stress at the outlet, pressure there equaled 0 Pa.
Finite element mesh was generated automatically as a free tetrahedral and controlled
by physics-fluid dynamics. The stationary solver was used.

3. Results

This chapter contains the results of solved pressure acoustics in frequency domain
(subchapter 3.1) and fluid dynamics problems (subchapter (3.2) for investigated
models of two identical helicoidal resonators with constant ratio s/d=1,976 and
numbers of helicoidal turns n=0,695 arranged in parallel ducts past the transition
from one larger duct with diameter D.
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3.1. Transmission Loss

Figure 4 presents the three TL characteristics of two identical helicoidal resonators with
ratio s/d=1,976 and numbers of helicoidal turns n=0,695for three cases of rotation the
helicoidal resonators and localisation of gaps.

The numerical calculation were made in the frequency range from 10Hz to 2000Hz with
the calculation step of 10Hz.

40
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Figure 4. Transmission Loss of two identical helicoidal resonators with s/d=1,976
and n=0,671 arranged in parallel ducts for three cases of rotation.

As it can be observed from Figure 4 the specific narrow-band attenuation of sounds
for investigated two identical helicoidal resonators arranged in parallel ducts is visible
for all investigated cases. But only for case 3, when the gaps are oriented internally,
there were obtained the highest TL levels (TL1=35dB and TL,=~34dB) for characteristic
resonance frequencies ( f1=1200Hz and f,=1350Hz) of this type of helicoidal resonators
(see results of researches in several authors publications, as for example in [9,12,16]).

For case 1 with gaps oriented on the same side it is observed, near the second
resonance frequency of about 1350Hz, TL level of about 22dB. And for the case 2, when
the gaps are oriented externally, there are visible only nearly symmetrical TL distribution
for one characteristic frequency of about 1250Hz with TL level of about 17dB.

3.2. CFD turbulent flow

The numerically calculated pressure drop Ap [Pa],as a difference between surface
average pressure in [Pa] at the inlet and outlet of the ducted system for three cases of
investigated two identical helicoidal resonators with ratio s/d=1,976 and number of
helicoidal turns n=0,695 arranged in parallel cylindrical ducts with diameter d past the
transition from cylindrical duct with diameter D, are presented in Figure 5.
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Figure 5. Pressure drop 4p [Pa] of investigated three cases of two identical helicoidal
resonators with ratio s/d=1,976 and number of helicoidal turns n=0,695arranged in
parallel ducts with different rotation angles

On the basis of performed CFD numerical analysis, there were calculated a total
pressure drop coefficients  for three investigated cases in the same way as in previous
papers [13,16], presented in Table 1.

Table 1. Total pressure drop coefficients  for three investigated cases

Case No. g
1 1,4993
2 1,5832
3 1,4904

As it can be observed from Figure 5, the highest pressure drop 4p= 1,0609Pa
(£=1,5832)occurs for case 2, when the gaps of two helicoidal resonators are oriented
externally. The lowest pressure drop 4p= 1,005Pa ((=1,4904)occurs for case 3, when the
gaps of two helicoidal resonators are oriented internally.

4, Conclusions

A numerical analysis of pressure drop and acoustic attenuation performance of two
identical acoustic helicoidal resonators with s/d=1,976 and n=0,695 arranged in parallel
cylindrical ducts with diameter d=125mm and different rotation angles past the transition
from one cylindrical duct of a diameter D=140mm,was performed in this paper. Three
cases of rotation angles and orientation of helicoidal resonators gaps were considered.
On the base of acoustical analysis, it can be found, that the specific narrow-band
attenuation of sounds for investigated two identical helicoidal resonators arranged in
parallel ducts with different rotation angles is visible for all investigated cases. But only
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for case 3, when the gaps are oriented internally, there were obtained the highest TL
levels for (TL;=35dB and TL,=34dB) for characteristic resonance frequencies (
f1=1200Hz and f,=1350Hz) of this type of helicoidal resonators.

On the base of fluid dynamics analysis, it can be found, that the lowest pressure drop
Ap=1,005Pa({=1,4904)occurs for case 3, when the gaps of two helicoidal resonators are
oriented internally.

Obtained results are surprising, due to a fact that the case 3, when the helicoidal
resonators gaps are oriented internally, provides the best acoustical attenuation
performance and the lowest pressure drop.

Considered in this paper the three cases of rotation angles and orientation of gaps
were selected intuitive in the manner of practical applications. There should be
performed more acoustical and CFD analysis for ducted systems with helicoidal
resonators placed past the transition to find the best solution.
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Abstract

The paper deals with the application of the continuous dynamic absorbers in vibration reduction problems in
beams. The Euler-Bernoulli beam of variable cross-section is subjected to the concentrated and distributed
harmonic excitation forces. The beam is equipped with a system of the continuous vibration absorbers. The
problem of the forced vibration is solved employing the Galerkin’s method and Lagrange’s equations of the
second kind. Performing time-Laplace transformation the amplitudes of displacement may be written in the
frequency domain, similarly the time-averaged kinetic energy of any part of the beam. The results of some
local and global vibration control optimization problems concerning the placement and parameters of the
continuous vibration absorbers are presented.

Keywords: tuned mass damper, dynamic vibration absorber, continuous absorber, beam vibration, vibration
control

1. Introduction

The main aim of dynamic vibration absorbers (DVA) and tuned mass dampers (TMD),
properly located and tuned to the excitation force frequency, is the reduction of structure
vibrations in the point of attachment [1,2]. The problem of vibration analysis and the
proper selection of absorbers parameters was investigated in several theoretical
studies [3-10].

Certain general rules concerning the proper location of dynamic absorbers can be
given [7,18]. In continuous systems, such as beams, in case of its loading by
a concentrated force the best place for the dynamic absorber attachment is usually the
point of the applied load. The discrete absorbers efficiency depends significantly on the
accuracy of their placement since even a slight deviation from the optimal position
significantly decreases their effectiveness. Finding the optimal positions of absorbers for
a distributed force applied is more complicated, especially for global problems of
vibration reductions. Systems of dynamic absorbers tuned — in dependence of the
excitation force bandwidth — into one [11-14] or into a few frequencies [3-5] are applied
in several cases.

Continuous absorbers, in comparison with discrete absorbers, are efficient for various
locations of excitation forces and at the appropriate tuning can be efficient within a wide
frequency range. Continuous absorbers are especially suitable for damping the running
structural waves in long one-dimensional continuous systems, such as beams [15]. This
type dynamic absorbers are applied also for reducing vibrations of plates and shells at
low frequencies [19] as well as for problems related to sound emission [20].
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The computational algorithm, allowing to determine the amplitude-frequency
characteristics of displacement and energy for the Euler-Bernoulli beam of a variable
cross-section subjected to harmonic excitations of concentrated and distributed forces,
with the system of continuous dynamic absorbers attached, is presented in the hereby
paper. The presented examples of numerical calculations concern the application of the
continuous absorbers in global vibration reduction problems in beams.

2. Theoretical model

The system considered in the paper is shown in Fig. 1. The beam of length | and with
any given boundary conditions is given, its physical and geometrical parameters are
functions of the position: mass density p(x), cross-section area A(x), geometrical moment
of inertia I(x), Young modulus E(x), viscous damping coefficient a(x) (the Voigt-Kelvin
rheological model was assumed). The beam subjected to harmonic excitations (both
concentrated and distributed) is equipped with the system of continuous dynamic
vibration absorbers.

(m.(x), k(x), ¢.(x))

———
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Figure 1. Beam with the system of ¢ continuous dynamic vibration absorbers

When the Euler-Bernoulli beam model is taken into account, the expressions for the
kinetic and potential energy and for the dissipation potential take the following forms:

1] ow)
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v ZE}[E(X)I (x) (WJ dx )
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The beam deflection is described by the functional series

wiet) =3 g (1 () (@

i=1

in which eigenfunctions of the beam of a constant cross-section (for boundary conditions
of the given problem), without the attached dynamic absorbers, are assumed as basic
functions ¢i(x). Time functions qi(t) tare generalized coordinates which should be
determined.

After the substitution of series (4) into equations (1)-(3) the expressions for the
kinetic and potential energy and for the dissipation potential take the following forms:

T =%iimijqiqj (%)

i1 j4

v =%anzn:kijqiqj (6)
i1 4

R=%anzn:bijqiqi (7)
i j1

Numerical factors mj, kij, bjj occurring in the above shown expressions, are defined as
follows:

|
my; = [ POOAX) 9, (X)5(x)dx (®)
0
|
ks = [ ECO1 0 (00](x)0x ©)
|
b = [ EC1 00a000{(0 (¢ (10)

For the arbitrary beam load applied H(x,t) the generalized force for the i-th
generalized coordinate equals to:

Ho(® = [ H D ¢, (0x (11)

Using the Lagrange's equations of second kind the differential equations system for
the generalized coordinates gi(t) is obtained:
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Doyt + > byd; + Y kg =H (1), i=1..n (12)
e i1 =

Applying the time Laplace transform (with initial conditions being zero) to system
(12) the linear system of algebraic equations is obtained, from which it is possible to
obtain transforms Qj(s) of functions q;(t):

Zn:mijssz(s)+Zn:bistj(s)+ikiij(s):Hi(s), i=1..n (13)
= i j=L
The transform of the beam deflection line is given by the series
W9 =3 Q0 (14)
The load of the considered beam (Fig. 1) consists of p concentrated forces Pi(t)

applied in points of coordinates x;, of a distributed load g(x, t) and of r distributed loads
fi(x, t) originated from continuous dynamic absorbers:

p r
H(x) =D RO 5(x—x) + g0t + D fi (x.t) (15)
k=1 k=1
Thus, the generalized force Hi(t) for the generalized coordinate gi(t) equals to:
Ho(0) = Z R0 0 () + j 9(t) ¢ () + Z j fl () @, (x)dx, (16
i=1...n

The Laplace transform of the generalized force is given by the expression:

Hi(s) = ZP () () + j g(x8) 9 (x)dx+;jf (x.9) @, ()0, an
i=1..n

where Py(s), g(x, s), and fi(x, s) are the Laplace transforms of functions: Py(t), g(x, 1),
fi(X, 1).

The Laplace transform of the continuous beam load originated from the k-th
continuous dynamic absorber (with zero initial conditions) equals to:

(C, (95 +k, () m, (x)s?
mk(x)s +C (X)s +Kk, (x )

f (X,8)=— ZQ (8)9; (%) (18)
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where by: m(x), kk(x), ck(X) the linear densities of the mass, stiffness and damping
coefficients (describing the continuous dynamic absorber) are marked, respectively.
When expression (18) is inserted into (17), after rearrangements the system of linear
algebraic equations is obtained from system (13). The transforms Qi(s) can be
determined from the system:

n

z(mij s + bijS + ku + 2 Fijk (S)] Qj (S) = i Pk (S)(Di (XE) +Gi (S)

= (19)
i=1...n
where the following notations are introduced:
[ 2
C (X)s+ky (x))m, (x)s
Fijk(s):J.(k( )2 k( )) k( ) (A(X)(/)J(X)dx
0 M (X)s” + ¢ (X)s+ky (x)
(20)

G,(s) = g(x,8)p, (x)dlx

The solution of equations system (19) provides in s-domain — after using equation
(14) — the transform of the beam deflection line for arbitrary boundary conditions. When
considering the steady state, substituting s = jo (j=+/—1)allows to determine the

amplitude of the beam deflection line as the function of frequency. Analogous
amplitude-frequency characteristics can be obtained for the bending moment, shear force
and the time-averaged kinetic energy of the beam.

The developed computational algorithm allows to determine the mentioned above
amplitude-frequency characteristics for the beam described by arbitrary functions
(within the geometrical model applicability): p(x), A(x), 1(x), E(X), a(x).

3. Numerical calculations — tunable continuous vibration absorber

A cantilever steel beam, with rectangular cross-section, excited by uniform distributed
harmonic force: g(x, t) = gosinwt distributed along the segment <O.3I, 0.6I> is considered,
with the continuous absorber attached (Fig. 2). The parameters describing the system are
collected in Table 1 (the internal damping in the beam is neglected).

Table 1. Parameters of the beam and absorber

Quantity Symbol | Unit | Value
Mass density P kg/m® | 7800
Length | m 1.0
Young’s modulus E N/m? | 2.1e1l
Cross-section width b m 0.05
Cross section height h m 0.005

Total mass of the absorber - kg 0.098
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The first four natural frequencies of the beam without the absorber attached are equal
to: f1 =4.19 Hz, f, = 26.26 Hz, f; = 73.54 Hz, f, = 144.11 Hz.

It is assumed that the linear densities of the absorber mass, stiffness and damping
coefficients are constant along its segment: m(x) = const, k(x) = const, ¢(x) = const, the
total mass of the continuous absorber is equal to 5% of the total beam mass, which
means 0.098 kg.

Depending on whether the local optimization problem is considered (e.g.
minimization of the vibration amplitude of the selected point of the beam) or the global
one (e.g. minimization of the time-averaged kinetic energy of the selected part of the
beam), the optimal solutions (i.e. width, location and physical absorber parameters) may
be completely different. The solutions also depend on whether the problem of tuning the
absorber around a selected frequency is considered (passive method) or the problem of
tuning in real-time to the excitation frequency in a wider frequency band (semi-active
method).

|
N
|

X,

s PEREREEEh

Figure 2. Beam with the attached dynamic continuous vibration absorber

For example, for the problem of passive minimization of the vibration amplitude of
the free end of the beam shown in Fig. 2, in the bandwidth around the first natural
frequency f; = 4.19 Hz, the best result is obtained for the discrete damper placed at the
end of the beam. The calculated for this case the optimal stiffness and damping
coefficients of the damper are: Kopr = 47.70 N/m, Copr = 1.08 Ns/m.

Due to the first mode shape the problem of passive minimization of the time-
averaged kinetic energy of the beam around the first natural frequency has a similar
solution: the discrete damper placed at the end of the beam with the optimal parameters
almost the same like given earlier.

The width and location of the optimal absorber in vibration reduction problems
considered in a wider frequency band can be different depending on the criterion taken
(local or global). In the case of the absorber tuned in real-time to the excitation
frequency (semi-active method), the best solution for the problem of minimization the
vibration amplitude of the beam free end may also occur the discrete absorber placed at
the end of the beam. In this case, however, a new resonant frequency [18, 23-24] may
appear with a node at the beam end, so such location of a discrete damper may be
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inadequate in the energy minimization problems. The vibration suppression efficiency
may be improved by using several discrete translational and rotational absorbers [22-24].

In further calculations the continuous absorber (Fig. 2) is assumed to be tuned so that
it is resonant at each frequency, without energy dissipating appliances (c(x) = 0).

The aim of calculations is to find the optimal width and placement of the continuous
vibration absorber in a given frequency range, as a measure of vibration is used the time
-averaged kinetic energy of the whole beam.

The results of the numerical calculations are presented in Fig. 3 and Fig. 4.

For comparison it is first shown in Fig. 3 the calculated time-averaged Kinetic energy
for the case with the single discrete absorber placed in different positions on the beam.
The numbers in the figure represent the distance from the support (in meters).

Without absorber

Energy [logarithmic scale]

Frequency [Hz]

Figure 3. Time-averaged kinetic energy of the beam with the one discrete absorber
attached in different positions — the absorber is tuned to be resonant at each frequency

It is visible that the vibration suppression efficiency of the discrete absorber (tuned to
the excitation force frequency) depends largely upon the absorber position. Due to the
appearing a new resonant frequency of the structure composed of the beam with
absorber, there is no position of the absorber appropriate in the whole frequency band
considered. Additionally the discrete absorber is very sensitive to inaccurate location and
tuning.

In Fig. 4 is shown the time-averaged kinetic energy for the case with the single
continuous absorber of different width and placed in different positions on the beam. The
numbers in the figure represent the values of x1 and x» (Fig. 2).
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Without absorber

Discrete absorber (at 0.5)

Energy [logarithmic scale]

60 ! ! ! ! ! ! ! ! ! )
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Frequency [Hz]

Figure 4. Time-averaged kinetic energy of the beam with the one continuous absorber
attached in different positions and with different segment widths — the absorber is tuned
to be resonant at each frequency

It results from the diagrams in Fig. 4 that the continuous absorbers may have the
suppression efficiency many orders of magnitude higher than the discrete absorber.

It is possible to find the width and position of the continuous absorber segment which
are considered optimal in the entire given bandwidth, because there doesn’t appear any
new resonant frequency in the system.

The continuous absorber is also sensitive to inaccurate location and tuning, but even
when placed not exactly at the optimal location it can posses the vibration suppression
efficiency much more higher than the discrete absorber.

For another type of loading optimization can give different results, as for the other
frequency bands. A further improvement of the vibration reduction would be achievable,
when the real time change not only of stiffness but also of damping was possible. De-
tuning the absorbers, both discrete and continuous, can also be beneficial [18].

4. Conclusions

Continuous dynamic absorbers can be efficient in cases when the points of loading
attachment is not accurately determined as well as in cases of distributed loads. They can
be applied in places where placements of one or a few absorbers of significant masses is
technically impossible. By the appropriate tuning they can be efficient within
a broad frequency band.

The computational model presented in the hereby paper can be used in local and
global problems of the optimization the continuous dynamic absorbers locations and
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parameters in beams. The numerical algorithm created for calculation of the continuous
absorbers may also be applied to calculation of the discrete absorbers. It can be obtained
by taking the very narrow segment over which the continuous absorber is distributed or
by describing the densities of the mass, stiffness and damping coefficients using the
&-Dirac distribution. The advantage of this approach is that the number of unknowns in
the solved systems of equations does not depend on the number of discrete dampers
used.

The computational model of the continuous dynamic absorber, presented in this
study, can be adjusted to vibration reduction problems in more complex one-dimensional
systems such as frames or curvilinear beams. It can be also expanded to problems of
vibration reductions in plates or shells.
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Abstract

The proposed and verified the technique of finding a finite number of first natural frequencies for
geometrically nonlinear vibrations of layered elongated cylindrical panels at discrete consideration of
components. The influence of the radius of curvature on the natural frequencies of three- and five-layered
panels is investigated. The dependence between the volume of filler three-layer panels and the lowest natural
frequency has been established.

Keywords: elongated layered panel, nonlinear vibrations, perturbations method, natural frequencies

1. Introduction

The flexible layered cylindrical panels constitute a significant part of various structures
and hardware. The specificity of the functional purpose of components of layers causes a
sharp difference in their physical and mechanical properties and thickness, causing the
need for discrete consideration of the thickness of the structure, of the above mentioned
objects, as the averaged approach can lead to significant errors when assessing the ability
to support or determine their amplitude and frequency characteristics.

Effects of intensive dynamic (including cyclic) loads are usually the cause of
geometrically non-linear stress-strain state. Therefore, there is a need for the
development and verification of the methods for determining the parameters of free
vibrations of geometrically nonlinear deformation of layered cylindrical panels for
consideration of discrete components.
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Free vibrations of the shell structural elements are studied using numerical and
experimental methods [1-3] or only pliability to transversal shear [4]. Some analytical
results for pliability to transversal compression are given in [8].

In this paper proposed the technique and with its using the investigated the free
geometrically nonlinear vibrations of layered cylindrical panels with into account all the
physical and mechanical properties of components in the spatial statement of the
problem.

2. The problem statement for a particular component of a layered panel

A curved anisotropic elastic layer with thickness h we assume in a natural mixed
system of coordinates ¢4, a,, 3 on the median surface. This surface is formed by the

motion of the line oy =0; a3 =0 on the segment of arbitrary guiding. We consider that
the layer is significantly larger along the axis «, to the length of the section arc a, =0
of the median surface a3 =0. So we have an elongated panel. If the conditions of fixing

the ends of the panel alzJ_ralo and the initial conditions are independent of the
coordinate a,, then through a little influence of conditions of fixing the edges

oy = iag, the functions, that determine the characteristics of geometrically nonlinear
vibration processes in the plane of the median section, are dependent from ¢, a3. To
find these functions we have [9]:
— motion equations
2
divS = p% ; ()
ot
— elasticity relations
T=A®%; )
— deformation relation between the strain tensor components ¢ and the
components of the elastic displacement vector U = U;i€i€;

1 k
gij =E(Vin +VJ‘Ui+ViU Vjuk); (3)

— relation between the components s of the nonsymmetrical Kirchhoff

stress tensor S and the components o' of the symmetric Piola stress tensor )

sU =Yk (5] +viuly. 4)
k
In equations (1) and (2) A is the tensor of elastic properties of anisotropic layer, and
p is its density.
Boundary conditions on the front surface of the panel a3 =+h/2 in the case of its
belonging to the layered structure are shown below, and initial conditions have the form
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ou; (aq, ag, t .
Ui(0!1,0!3,t)|t=t0 =v{ (1, a3), % =Vi(a, @3), i=13, (5
t=to
e ag)|>> (@, a3, (@ a) eQ=l-af, afIx[-h/2h/2.  ©)

3. The layered panels

Assume that a panel consists of N layers (see Fig. 1). Each k-th layer is considered as a
separate thin panel with its own mechanical and material characteristics. Hooke’s law is
different for each layer:

a® =101k, k=1,...N, 7)

where [Q¥] is tensor of elastic properties of anisotropic k-th layer.

Figure 1. Layered cylindrical panel with hinges fixed on the elongated edges

Assuming that the value of a3 coordinate at the top of k-th layer ishy, and hy =-h/2,
the equations (1) for a layered structure are written as

3 . a2ulk)
g _ J
2. VistW =p—i—, (8)
i=1
(g, 3) e Q=[-a?, &PIx[Ne 1. 1], k=1...N.
The contact conditions between the layers are

WD oy, e, =uM ey, e 1), i=123, ©)
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S®*D3 (e, b1, =5 3 (g, e ), |on| <, k=20, (10)
and on the lower and upper facial surfaces of the layered structure we have

Sy, hy ) =8 (ay, 1, ) =0, Jar|<af, m-on. an

At the elongated ends of the panel o :ialo under the conditions of the fixing the
hinge on the lower surface of the front o, =—h/2 the boundary conditions have the
form

s (@, aq,t)=0, k=1N, (12)
u™M (@ £h/2,t)=0, |ag|<h/2, =13, a=za. (13)

4. Approximations

Assuming that each k-th layer is thin, quadratic approximations along a3 coordinate are
used for components of elastic displacement vector u; and ug [10]:

2
ui(k)(al, az) = Zuﬁk)(al)pj(ag) , i=13, (14)
0

where

1 2a7-h,_4-h
po(as):__w7
2 2(hy —hygq)

2
1 2a,-h ,—h _ [2a3_hk—l_hk]
e kL= Sk S Y (729 P e L SEL S B LU 1) |
pl(a3) 2 2(hk_hk—l) 2 hk—hk—l

For finding the unknown coefficients ui(jk)(al) in (14), approximation by the

tangential coordinate «; was used on one-dimensional isoperimetric linear finite
elements [10]:

2
2a
Ui(jk)(e) - Zui(jlr(n)(e) (@)@ &), &= @—1(9) -1 (15)
Jm A2~
where e is the number of finite elements of k-th layer; uiglg(e) =ui§k) (0‘1(6))’ m=12

m

are the values on nodes al(r?])(al) of finite element; ¢)1(e)(§)=%(1—§);

O =208
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5. The discretized problem

Considered above differential formulation of the problem of geometrically nonlinear free
vibrations for single layer is equivalent to the problem of minimizing the functional L
[10]:

IZZi dQ J
:1{??8"

Boundary conditions (11), (12) and contact condltlons (9), (10) are a natural for the
variation formulation of the problem (16) [10], but conditions (13) must be take into
account during solving.

In a case layered panel we obtain:

L= z jzzsua“'dg j

6U

(16)

6xJ

—> min. 17)

After substituting (14), (15), and using (4) into (8) in (17) and composing results
together we obtain:

={u} K {ud+{u}" Ky (upu}+{u}’ M{} — min, (18)

where {u}={u}(t) — vector of values of the coefficients u(k)(e) at nodes on the finite-

element of k-th layer; K, — linear, and Ky — nonlinear components of stiffness

matrix; M — matrix of mass [5]. Stiffness and mass matrices composed from M matrices
for each layer.

For solving discretized problem (18) perturbation method is used, that is described
in [5, 6].

6. Numerical results

6.1. Verification of the proposed technique

Consider a cylindrical five-layer panel, the edges of which are fixed by hinges at the bottom of
the front plane (see Fig. 1.) with geometrical 1 =1 m; h=0, 01 m and physical-mechanical
characteristics:

E; =40E,, Gyp=Gy3=06E,, Gy3=05E,, v;=0,25.

For the analysis of reliability of the results we applied the proposed technique to the
problem, the solutions of which are known [4]. Consider a cylindrical panel with radius
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curvature K =0. For finding the values of natural frequencies apply partition at 50 finite
elements by coordinate ¢ .

. . w,
In Table 1 compared the values wy /@, obtained at the amplitudes % for free

vibrations of five-layered panel with the results from the work [4].

Table 1.

H“max (DM /(DL

h [4] Proposed technique
0,2 1,0313 1,0401
0,4 1,1198 11214
0,6 1,2536 1,2695
0,8 1,4199 1,4418
1,0 1,6086 1,6588
1,2 1,8127 1,8627

Moy 1.4

i

12

1 F

08t

06 |

04t

027

0 : ' '
0 05 1 .15 2 25
Wy Oy

Figure 2. Comparison of amplitude-frequency characteristics obtained using
the method of perturbation and results of work [4]

Fig. 2 shows the skeletal curves [11], constructed using the proposed technique (m) and the
results given in the work [4] (0).
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Also, the influence of the radius of curvature K on the free vibrations of the panel is
investigation. Fig. 3 shows the dependence of the lowest natural frequency of the radius
of curvature of five-layered panels from carbon fiber.

L]
1

027 1

Figure 3. Dependence of the lowest natural frequency of the radius of
curvature of the cylindrical panels

The maximum relative error in the Table1 does not exceed 3%, which shows the
effectiveness of the proposed technique. Comparative analysis of the graphs in Fig. 2 shows the
reliability of the results obtained using proposed technique. Also established, that the main
amplitude of natural vibrations increases with increasing radius curvature of the panel.

6.2. Three-layered panel

We considered a layered plate-strip with elongated edges that are fixed with stationary
hinges on the lower plane (see Fig. 4). Geometrical characteristics of plane arel =1m,
h=01m. It consists of three layers with following characteristics:

1) Rubber — E=0.1-10° N/m?, v=0,49;

2) Steel - E=210-10° N/m?, v =0,3.
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Figure 4. Panel with three layers

In Table 2 first five natural frequencies is shown for panel consisting of three layers
where steel layers have thickness 0.01m and rubber has thickness 0.08m.

[1]

Table 2.

@,

283000

1019000

1457300

1839600

a|br|lw | N

2615200

In Table 3 dependency between first natural frequencies and thickness of middle

layer (rubber layer) thickness is shown.

[2] Table 3.
hru':ber a)l
0.9 225650
0.8 283000
0.7 372770
0.6 490850
0.5 635100
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Figure 5. View panels in different modes: a) — the first mode; b) — second

In the Fig. 5 we show the vibrations of the structure for first and second modes of
the panel consisting of three layers where the steel layers have the thickness 0.01m and
the rubber has the thickness 0.08m.

[3] Table4.
K o)
283000
0.5 254200
1 232000
2 218700

In Table 4 dependency between the radius of curvature and first natural frequency of
the panel that consists of three layers where the steel layers have thickness 0.01m and the
rubber has thickness 0.08m is shown.

For considered above panel we can make next conclusions:

1. the more matrix (rubber) component are included in the panel, the less is the first
natural frequency;

2. the more radius curvature is the panel, the less is the first natural frequency of it.

7. Conclusion

We can make a conclusion that the method proposed in this paper is suitable for the
layered panel because it provides logical results (Fig.5). Also this method can use at
arbitrary amount of layers in the panel.
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Abstract

In this note a free vibration analysis of periodic three-layered sandwich structures is performed. The equations
of motion of such structures, which are derived basing on Kirchhoff's thin plate theory, contain periodic, non-
continuous and highly oscillating coefficients, which makes them difficult to solve. In this work, the tolerance
averaging technique is applied in order to transform the mentioned system of equations into a form with
constant coefficients, which takes into account the effect of the microstructure size. The differences between
two modelling procedures are shown and discussed. Eventually, formulas for free vibration frequencies of an
exemplary 2D structure are derived and an analysis of influence of certain varying material properties is
performed.

Keywords: periodic sandwich plates, inert core, tolerance averaging, free vibrations, microstructure effect

1. Introduction

Composites are more and more widely used in modern engineering. The possibility of
combining several different materials into one heterogeneous structure, which material
properties are outstanding when compared to ‘classic' homogeneous materials, is very
tempting for many researchers. All that is needed, is a proper model of such structures,
which can be used in design and optimization process.

In this article three-layered sandwich structures are considered. A typical sandwich
structure consists of external layers, which are made of materials characterised by high
mechanical properties, hence, they are main bearing parts of the whole structure,
and an inner layer, so called core, which is usually a light-weight, porous material,
standing for thermal- and acoustic isolation. As a result, we obtain a highly durable
structure, which, properly designed, can be used in many branches of engineering, such
as aviation or even space ship construction.

On the other hand, sandwich structures also have disadvantages, such as vulnerability
to local buckling, initial imperfections or concentrated loadings. Moreover, the
mathematical models of such structures are complicated, with unclear and
experimentally not proved assumptions connected with distribution of stresses and
deflections. That is why, many different approaches towards the analysis of dynamic
behaviour of such structures can be found in literature. Let us mention classic Euler-
Bernoulli deflection hypothesis, Reissner-Mindlin's first order deformation theory,
together with its extension to n'-order deformation, or Zig-Zag hypothesis. For the exact
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description of above mentioned approaches, one should refer to Magnucki [1], Carrera
[2] or Carrera and Brischetto [3], among others. In this work, let us concentrate on one
of the most simple approach, which can be found in the works of Chonan [4], Oniszczuk
[5] or Szcze$niak [6], just to name few. In this approach, a three-layered sandwich
structure is considered as a system of two Kirchhoff's type thin plates (outer layers),
connected with each other by elastic Winkler's type material. Such assumption is well-
fitted to our expectations, in which light-weight elastic core increase the stiffness of the
structure by increasing its thickness, rather than being its bearing part.

In all above mentioned approaches, considered structures are characterised by
constant geometry and are made of homogeneous or quasi-homogeneous materials.
However, most recent sandwich structures contain certain varying geometry and/or
material properties (especially the core can take very complicated shapes). As a result,
governing equations of such structures have non-continuous and highly-oscillating
coefficients, which make them difficult to solve. An answer to this problem can be the
application of finite element method analysis. However, the optimization process with
the use of such approach can be much time-consuming and ineffective. That is why, in
this work one can find a mathematical model describing the vibrations of sandwich
structure, which every layer can be characterised by periodic microstructure.

Solution to such problem was investigated by many researchers, for example by
Brillouin [7], Mead [8] or Kohn and Vogelius [9], who created the basis of the
asymptotic homogenisation method for plates. However, these models neglect the
influence of microstructure on the behaviour of considered structures. The main aim of
this paper is to derive a simple and useful model, which allows us to take into account
this effect, with the use of the tolerance averaging technique, presented by Wozniak and
Wierzbicki [10] or Wozniak et al. (eds.) [11], [12]. Eventually, as a result of two
modelling procedures (tolerance modelling and asymptotic-tolerance modelling), free
vibration frequencies of an exemplary rectangular sandwich plate are calculated.

2. Modelling foundations

Let Oxixoxs be an orthogonal Cartesian coordinate system, where X=(X1,X2), X3=Z,
and let us denote t as a time coordinate. The three-layered plate under consideration is
assumed to have spans L; and Ly in x; and Xo-axis directions, respectively, and total
thickness H(x). Hence, it can be stated, that undeformed structure occupies the region
Q=[0,Ly]x[0, L]1x[-3 H(x), 3 H(X)] -

Let us assume, that both outer layers are Kirchhoff's type thin plates. Moreover they
are made of the same set of materials and they have the same geometry, hence, all
material and mechanical properties of these layers are the same, cf. Figure 1. Let us
introduce their bending stiffness Bggys(X,t) and mass density per unit area p(X,t) as:

h(x)/2 P h(x)/2
Bupys(X2) = .[_h(x)/zC“BYB(X’ z)zdz, w(x,z) = .[-h(x)/zp(x‘ z)dz, (D)

where h(x) is the thickness of the outer layers, Capys(x,z) is their elastic modulus tensor
and p(x,z) is their mass density. Both outer layers are connected by an elastic Winkler's
type material, so called core, characterized by elasticity modulus k(x), mass density
pe(X,2) and thickness he(x).
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Figure 1. A part of periodic sandwich plate

The whole structure is build of small, repeatable elements, called periodicity cells.
Every cell has dimensions I; and I, in x;- and xp-axis direction, respectively, while its
diameter is referred to as to the microstructure parameter I. It is assumed, that
dimensions of the plate and the microstructure parameter must satisfy following
normalizing conditions: h(x) <<l <<min(lL,L,) , hence, the outer layers of the structure

can be treated as thin plates not only in a macro-scale, but also when a single periodicity
cell is considered.
Let us follow the simplified approach presented by Szczesniak [6]. According to the
Kirchhoff's type thin plate theory, governing equations of this structure takes the form:
0 (Bapys0ysU1) + ul',l:.l +k(u; —uy) = 1y, )
Oap(BypysOysUz) + 1ty +K(Upy —Uy) = fy,
where ui(x,t), ux(x,t) are deflections of upper and lower outer layers along z-axis
direction, respectively, and fi(x,t), f2(x,t) are their loadings, defined as:
fi=p—3pcth, = P — Sy, He :J‘i((x:)//zzpc(x: z2)dz, 3)
where pi(x,t), p2(x,t) are external loadings applied to outer layers of the structure. It
should be emphasized, that coefficients in system of equations (2) are periodic, non-
continuous and highly oscillating. In order to derive a system of governing equations
with constant coefficients, the tolerance averaging technique will be used.

3. Basic modelling assumptions of the tolerance averaging technique

The whole modelling procedure with the use of the tolerance averaging technique uses
several introductory concepts, such as: an averaging operator, a slowly varying function,
a tolerance-periodic function or a highly oscillating function. The idea standing behind
those concepts, as well as a detailed description of the tolerance averaging technique,
can be found in a various literature, for example by Wozniak and Wierzbicki [10] or by
Wozniak et al. (eds.) [11], [12].

Let us introduce the definition of the averaging operator, which for an arbitrarily
chosen basic periodicity cell A(x) can be formulated as follows:

<o¥f >() = [ F9(x, y)dy, 4
A(X)

where f® (x,y) is periodic approximation of k' gradient of certain function f(x).

There are two main assumptions of the tolerance averaging technique. The first of
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them is the micro-macro decomposition, which stands, that the deflections of outer
plates ui, Uz can be formulated as sums of macrodeflections wi(x,t), w2(X,t) and products
of mode shape functions g:*(x), g28(x) and fluctuation amplitudes viA(x,t), v2B(x,1):

Ul(X,t) = V\&(X,t) + glA(X)VlA(Xlt)r (5)
Uy (X, 1) =Wy (X, 1) + 95,2 (), (X, 1), AB=1...N.

Both macrodeflections wi(x,t), wa(x,t) and fluctuation amplitudes viA(x,t), v2B(x,t) are
basic unknowns, additionally assumed to be slowly varying functions for every t.

The second assumption contain the tolerance averaging approximations. By
introducing certain given ‘a priori’ tolerance parameter & and keeping in mind
properties of functions mentioned as introductory concepts, it is possible to prove the
following equations:

<O >(X)=<D >(x)+0(5), <OF > (X) =< D > (X)F(x) +O(5), (6)
<®d,(gF) > (X) =< ®3d,g > (X)F(x) +O(5),

where @ is tolerance-periodic function, @ is periodic approximation of @, F is slowly
varying function, g is highly oscillating function and O(8) is negligibly small term,
0<d<<I.

4. Tolerance modelling procedure and model equations

The starting point of the tolerance modelling procedure is the system of equations (2)
together with denotations (3). By applying the averaging operator to (2) and
transforming it with the use of both the micro-macro decompositions and the tolerance
averaging approximations, the averaged form of system of equations (2) can be obtained
in the form:

A A .
0up(<Bypys >0,sWi+<Bps0,501 > Vi )+ < p+%pc > W, +
+<k>(w—w,)+<kg vt —<kgB >vB =< p, >,
A A B A AgB A
<Byps@apdi > 0ysWit<Byps04p01 04501 > Vi +<(H+%Hc)91 g1 >V +

+<kgs >(w—w,)+<kgf'gr V' -<kgy'gr >v3' =< pgr >, 7
04p(< Bypys >0,5Wa+ < Byps0,507 >V )+<p+ip. >w,+
+<k>(wW,—w)+<kgy >va —<kg? >vB =< p, >,

B RA By A ALB _iA
<Bypys@apdz > 0ysWot <Byps04p920,592 > Vs +<(H+%Mc)gz gy >y +

+<kgy >(W, —wy)+<kgygs >v5 —<kgi'gy >vi =< p,g; >.

The above system of equations constitute the tolerance model of the periodic
sandwich structures under consideration. It is the system of 2N+2 partial differential
equations with constant coefficients, where the exact number of equations depends on
the amount of assumed mode shape functions g:#, g8, A,B = 1,...,N. System of equation
(7) should be followed by four boundary conditions for every macrodeflection and a two
initial conditions for every unknown function. It can be also observed, that only the
underlined terms in (7) are dependent on the microstructure parameter .
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5. Asymptotic-tolerance modelling procedure and model equations

The asymptotic-tolerance model can be obtained in two steps, which are described for
example by Wozniak et al. [12] or for plates by Kazmierczak and J¢drysiak [13]. In the
first step, the asymptotic solution to the problem is derived. In our considerations it can
be obtained by omitting the underlined terms in equations (7). As a result, we arrive at:
Oup(< Bupys >0paWot < By s0ys0f > VI <pt e > Wit <K > (Wy —Wo) =< py >,
< By pys0updf* > 0,6Wit < By pys00pdf*0,s9F > Vi =0, (8)
Oup(< Bupys >0,sWat < By 50,5928 > VA)+ <+ e > Wot <K > (W, —Wp) =< p, >,
< Bypy0updf > 0,sWot < Bypys00p920,595 > V5t =0.

By analyzing the above system of equations, one can observe, that it can be easily
transformed into a system of two equations with unknowns macrodeflections. Hence,
macro-scale vibrations can be estimated regardless of the micro-scale fluctuations.

In the second step, an additional micro-macro decomposition, with the use of already
known macrodeflections w:°, w-?, is applied to system of equations (2):

U(%,8) = WP(X,8) + GOV (X, 1) Up (X, 8) = Wa(X, 1) + 8 ° (})V* (%, 1). ©
Following the tolerance modelling procedure, after several manipulations, we arrive at
the system of differential equations for fluctuation amplitudes ViA(x,t), V2B(x,1):
< Bopys0up00,60F >ViA +< (U +31.) 0108 A+ < kgPgP VA +
—<kg2gf VA =< pi9P >~ < Bypys0ap01* > 6«/.5.\’\110 —<kgf >(wf -wg9), (10)
< Bupys00p020,598 >V + < (u+F1c) 9498 VA +<kgfaf VA +
—<kgPgs SViA =< P08 >~ < By 50005 > 0,508 —<kgZ >(W8 —wp).

Systems of equations (8) and (10) together constitute the asymptotic-tolerance model
of the periodic sandwich structure under consideration. As a result, using this modelling
procedure allows to perform a simplified analysis of vibrations in only macro- or micro-
scale without the necessity of evaluating both. The amount of boundary and initial
conditions is the same as in the tolerance model.

6. Calculation example - the analysis of free vibrations

Let us consider a rectangular three-layered plate, which is simply supported on all four
edges. It is assumed, that the relations between characteristic dimensions of the structure
can be formulated as follows: Lo/L1=2, I2/11=2. The outer layers of the plate are assumed
to be made of periodically varying isotropic materials, having different Young's modulus
Ei1, E2 and densities p1, p2, but constant Poisson's ratio v=0.2 and thickness h=0.1l;, cf.
Figure 2.

Let us introduce only one mode-shape function, the same for both upper and lower
outer layer. Moreover, in order to obtain comparable results, let it be the same function
for both tolerance and asymptotic-tolerance models:

G=0'=0, =0, =9, =1’ cos(2nx /1,)cos@mx, /1) +c, (11)
¢ =17 <cos2mx /1) cos@ax, /1) >/ < i >, A=p+ip
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Figure 2. A periodicity cell of plate in the calculation example

By defining A, A, A, as amplitudes of unknowns, i = 1,2, A1, A2 as wave numbers

and o as a frequency, solutions to all governing equations can be assumed in the
following forms, which satisfy boundary conditions:
W (X,t) = A, sin(Ax)sin(A,x,)eiet, (12)
Vi(X,t) = A, sin(A;x)sin(A,x;)eiet, Vi(x,t) = A, sin(Ly %) sin(A,xp)eie.

Let us neglect all external loadings. Free vibration frequencies are calculated by
solving characteristic equations of homogeneous systems of equations (7) and (8), (10)
and presented in dimensionless form, derived with the transformation below:

@ =afph’(E)s. (13)
Moreover, all calculations are performed for constant wave numbers: A1=0.1/l1,
12=0.1/l,. On charts in Figure 3 and 4 lower order frequencies are denoted as "a" and
"b", while higher order frequencies as "c" and "d". Moreover, the tolerance model results
are distinguished by subscript "1" and the asymptotic-tolerance model - by subscript "2".

A) B)

2.2] did, = A 10.00050
2ol L 10.00045 \Y
sl €1¢ 25] [0.00045
: ol [0.00040 N ¢ e,
1.6 - X
- . 2] -
~ 14 SN 2 T dyd, [0.00040
. o F0.00035 < R S
b‘ 1.24~ e S o 157 a,a, -~ T 10.00035
< 1.0 e . T
: Ve F0.00030 1 b b ..
0.8 - b. b . 192 .
y 192 T D ~._  [0.00030
e Jooomes 05 T TTmoe 0o
0 1 2 3 4 5 0 1 2 3 4 5
X X
— ™ ATM — ™ ATM

Figure 3. Dimensionless free vibrations frequencies' parameters o versus parameter X:
A) E>=XE4, p2=2p1, |(=0.03E1/|1, pc=0.03p1,
B) E2=2E1, p2=Xp1, k=0.03E1/|1, pc=0.03p1
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Figure 4. Dimensionless free vibrations frequencies' parameters @ versus parameter X:
C) E2:2E1, p2=2p1, k:XEl/ll, pc=0.03p1,
D) E2:2E1, pz=2p1, k:0.03E1/|1, pC:Xpl

7. Remarks

In this article, two averaged models describing vibrations of periodic three-layered plates
are presented. The simple model of sandwich plate, described by Szcze$niak [6],
is extended and modified with the use of two modelling procedures of the tolerance
averaging technique, so as structures with periodic microstructure can also be analyzed.
As a result of these modifications, systems of governing equations with constant
coefficients are obtained and solved.

Basing on the considered calculation examples, it can be observed that results of both
models are comparable even for structures with much varying material properties.
Hence, presented solutions can be used in the process of optimization of mechanical
properties of considered sandwich structures, as a simple and convenient way of
estimating the frequency of vibrations.

In the future investigations, the consistency of the proposed averaged models with
finite element method will be presented. Moreover, a physical correctness of derived
models will be described and justified.
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Abstract

In the paper there is proposed an algorithm of an efficient semi-active control of steady-state periodic lateral
vibrations of the overhung rotor-shaft system. This algorithm has been developed using fundamentals of the
Optimal Control Theory. In the considered system the control is realized by means of the linear dampers with
the magneto-rheological fluid built in the bearing housing. The computational example demonstrates
possibilities of the applied approach resulting in an additional reduction of out-of-resonance and near-
resonance harmonic oscillation amplitudes in comparison with an analogous passive control.

Keywords: overhung rotor-shaft, lateral vibrations, semi-active control, Optimal Control Theory

1. Introduction

Heavy rotors suspended in bearings in an overhung way constitute a wide class of
rotating machinery. Typical examples of this group are pumps, compressors, blowers,
gas turbines, crushers, beater mills, drums of washing machines and many others. As it
follows e.g. from [1,2], at high rotational speeds they are sensitive to gyroscopic effects
associated by their lateral vibrations excited mainly by residual unbalances as well as by
assembly misalignments, rubbing effects in bearings, sealings or blade rims and by other
sources. Such oscillations are usually very detrimental and a suppression of their
amplitudes is an important challenge in order to assure precise motions of such rotor-
shaft systems, possibly small bearing reactions, minimized danger of material fatigue
and low level of generated noise. This target can be effectively achieved by means of a
semi-active control of lateral vibrations affecting the rotor-shaft systems with overhung
rotors. For this purpose, similarly as e.g. in [3], actuators with the magneto-rheological
fluid (MRF) are going to be applied. Such an approach seems to be very convenient for
rotor machines like vacuum pumps, turbo-chargers, washing machines, precise spindles
and others rotating with high speeds in steady-steady state operating conditions under
harmonic external excitations due to residual unbalances and the mentioned above
dynamic effects. It is to emphasize that, contrary to a control of transient or resonant
vibrations, for which many algorithms turned out to be effective, a suppression of forced,
steady-state oscillations with frequencies far away from resonance zones is an extremely
difficult task. Here, in cases of the abovementioned rotor machines even a few-percent
minimization of fluctuation amplitudes can be very fruitful from the viewpoint of
material fatigue, precision of motion, dynamic interaction with an environment,
detrimental noise generation and many other factors. Thus, in order to achieve this
target, in the paper for the actuators with the MRF a control strategy based on the
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Optimal Control Theory (OCT) will be applied for the high-speed overhung rotor-shaft
under steady-state harmonic lateral vibrations. The obtained results of simulations are
going to be compared with the analogous ones determined for additional passive
damping applied into the considered system as well as using the numerical optimization
control algorithm.

2. Modelling of the rotor-shaft and mathematical formulation of the problem

In many cases the high-speed rotating machines are characterized by heavy, lumped
overhung rotors attached on short, dumpy shafts suspended on relatively flexible bearing
supports. Thus, deformations of such rotor-shafts can be neglected and then only rotor-
shaft inertial parameters and bearing support visco-elastic properties play a predominant
role in lateral vibrations of these objects. According to [1], if a maximal static deflection
of such rotor-shaft is of the same order as the bearing clearances, its dynamic behaviour
can be investigated by means of a rigid body model of four degrees of freedom. Then,
the generalized coordinates corresponding to them describe two translational
displacements of the rigid body mass center in the two mutually perpendicular directions
with respect of the rotor-shaft rotation axis as well as two angular displacements with
respect of mutually perpendicular axes passing the mass center of this rigid body. In
order to take into consideration a rotor-shaft support in a possibly general way, the
anisotropic and non-symmetrical visco-elastic properties of bearings have been assumed
in the form of stiffness and damping coefficients containing also the proper cross-
coupling terms. The proposed rigid body model of the overhung rotor shaft supported on
two bearings is presented in Fig. 1.

Ycls@

iz B ,,,,,,,,,,,,,,

Figure 1. The rigid-body model of the double-bearing overhung rotor

Motion of the rotor-shaft has been described in the inertial orthogonal coordinate
system Oxyz with the origin placed in the rigid body model center of gravity O. Axis Ox
coincides with the bearing axis and axes Oy, Oz respectively determine the vertical and
horizontal direction. The plains of bearing interaction cross Ox axis in points A and B
distant of 1, in the case of bearing #1 and of I, in the case of bearing #2, as shown in Fig.
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1. The motion equation of the assumed rotor-shaft rigid body model have the following
form:

M.'r'(t)+(C+Q'G)'f(t)+K‘r(t)=F(t’92) @)

where r(t)= col [y(t), z(t), w(t), @(t)] is the generalized coordinate vector with
components corresponding respectively to the translational displacements along Oy and
Oz axes and to the angular displacements around Oz and Oy axes. Symbol M denotes the
diagonal inertial matrix, C and K are respectively the symmetrical bearing damping and
stiffness matrices and G is the skew-symmetrical matrix of gyroscopic effects. The
external excitation vector F has the following components:

Mg + Me - Q2sin(Qt) +U (t)
F(mz): Mg-choso(Qt)+V(t)
0

where ¢ is the eccentricity of the rotor-shaft residual static unbalance, M denotes the
entire mass of the rigid rotor and U(t), V(t) are the control forces acting in the vertical
and horizontal direction, respectively. Such equations are very convenient here for
a demonstration of relatively easy implementation of the proposed algorithm of semi-
active control of the steady state forced lateral vibrations of the considered object.

The rotating machines usually operate in steady-state conditions at constant
rotational speeds, more or less far away from the critical ones associated with the
corresponding lateral eigenvibration modes. Thus, the goal of this paper is to propose a
computationally effective numerical method for determination of the optimal control
function applied here for the mechanical system under periodical vibrations due to the
residual unbalance. In order to distinguish such successive mutually uncoupled
eigenmodes of the considered gyroscopic, nonconservative rotor-shaft system, it is
necessary to perform a complex modal analysis of Egs. (1) according e.g. to the
approach presented in [2,4]. Then, the investigations reduce to control of steady-state
harmonic oscillations of simple single degree-of-freedom oscillators shown in Fig. 2 (a).

i" m 1 fcos(wt) ]\ 7
—1=0

k c Fc ‘ x

)

a) b)
Figure 2. Single DOF dynamic oscillator (a), controllable damper force function (b)

An equation of motion of such oscillator has the following form:
m-X(t)+c-x(t) +k-x({t) =« (f -cos(Qt — ) — u(X(t))) (3)
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where according to [4], the modal damping coefficient ¢ = 26m, the modal stiffness

k= (52 +a)2)m K= (5r - a)s), m is the modal mass, 6, @ denote respectively the

real and imaginary part of the complex eigenvalue corresponding to the considered
eigenmode, r, s are respectively the real and imaginary part of the complex left
eigenvector component, x(t) denotes the modal displacement of the controlled
eigenmode and ¢ is phase shift angle.

As shown in Fig. 2b, for the assumed linear relationship between the shaft/bearing
vibratory velocity and the control force F. generated by the MRF damper built in the
bearing housing, one can express in (3): Fczu(x(t)), where u denotes the control

variable. The slope of the damping force curve depends on the instant value of the
control current 1. Control current cannot exceed the boundary limits | €<0!Imax>' Also,

it is assumed that the control current can change its value instantly. Because the
controllable damper characteristic is linear, it may be assumed that:
u=I
Upin = Imin =0 (4)
Umax = lmin
For the simplification of further considerations it is convenient to transform Equation (3)
into the state-space representation:

0y =0

. k c K (5)
= - Zay— X (f cos(t) -
o) m 0y m o) m (f cos(Qt) —ug,)

where state variables are defined in the following form:

0[] ]

In order to define the optimal control problem it is necessary to introduce
a performance index which will represent a measure of vibration level. One of possible
choices is to select the performance index as a single scalar value that will represent the
average motion mean energy of the considered system:
ty ty
J= jB(kqf + mq§)+ ruz}dt = J'Edt )
0 0
In the above equation, apart from the motion energy component1/2(kg:2.mqz? ), the other
component has been added, namely ru2. This expression refers to the amount of energy
consumed by the controlled damping element. This component has been added into Eqg.
(7) in order to simplify further transformations. The term ru? should be treated as
negligible, since a minimization of the control energy has not been considered as a
primary goal for mechanical systems under periodical excitation. Therefore, it is
assumed that scalar r nearly equals zero. Variable E denotes the integrand function.
Using the Optimal Control Theory (OCT) it is possible to derive the set of equations
specifying the optimal control function profile u*, providing a minimization of
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functional J. For this purpose, it is necessary to apply the common OCT control function
derivation procedure given in [5,6]. It starts with a definition of the Hamiltonian
function:

H=E+q 8)
Next, using the necessary condition for minimization of functional J, namely: J4/=0, the
following set of equations can be derived:

. OH
=

_oH

T ©)
H(@@ 2 ,u)<H(" 4 u)
U € (0,Upay)

where 4 denotes the costate vector. Upon an expansion of the third inequality standing in
(9) and an application of the Pontryagin principle, finally the following set of equations
defining the optimal control can be derived:

q _H =0
i o 2
oH k c K
)= = ——(y — — —(fcos(Qt)—u
op) EY8 m% sz"'m( (Qt) —uqy)
. oH k (10)
=——=—kg, + —
A o0, 0y mﬂz
. oH c
=———=—Mm — + — + u
A 2, A, — 4 mﬂz A
u = sat(sign(/i*zq*z))

In order to find exact function values, all equations of the above system have to be
solved simultaneously. It requires a specification of boundary values of the state and
costate vectors. For the considered vibrating system one can assume that under optimal
control function this system will eventually fall into steady-state vibrations, starting from
an arbitrary initial state condition. Different initial state conditions will only affect a
duration time of the transient phase of motion up to the instant, when the steady-state
vibration phase shall be established. Concluding, the initial condition for the state vector
can be arbitrarily chosen as: q(0)=0.

The second condition follows directly from the fundamentals of the OCT. Provided
that the considered system of Eqgs. (10) has to be integrated in the finite time range

te <0,Tf > , the optimal problem in the OCT nomenclature can be classified as free-end,

fixed-time problem, [5]. The phrase “free-end” refers to a lack of constraints specified
for the state vector at the end of the simulation time window. The phrase “fixed-time”
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refers to the finite value of the simulation time range Tr. For such kind of the optimal
control problem the OCT provides the additional boundary condition, i.e.: A(Tr)=0.
Concluding, because the known boundary conditions are specified partially at the
beginning and partially at the end of the simulation time window, this problem can be
classified as the Two-Point Boundary Value Problem (TPBVP). The TPBVPs are
generally considered as difficult numerical problems. In order to solve the TPBVP for
the considered system, the following algorithm has been developed:
1. initialize the A(0) vector with random values,

2. integrate the coupled state-costate equations on the time interval <O,Tf>assuming

g(0) =0 and taking (0) from point 1,
3. after an integration check, whether terminal condition has been satisfied A(Tr)=0,
4.  conditional step:
a.  if the terminal condition from step 3 has been satisfied, terminate the algorithm,
b. if the terminal condition from step 3 has not been satisfied, find the new
estimation of the (0) condition by means of the external, numerical optimization
algorithm; then, repeat the steps 1-4 as long as terminal condition is not being

satisfied.
1. Initial shot 3. Condition checking
e, =0

q ¢
q=fx31 [xe/]
A=g(x,x,1) [’."f;]

u = h(1) _ [OII

I
L

4a. Terminate (if
condition 3 has
been satisfied)

4b. Initial shot correcti

Figure 3. Optimal control problem computational algorithm

The algorithm described above can be illustrated by means of the following diagram
presented in Fig. 3. It is important to choose the sufficiently large Ts value, so the steady-
state phase of motion could be significantly longer than either transient phase at the
beginning or at the end of the simulation time window.

3. Computational example

In the computational example the rigid overhung rotor-shaft of the industrial blower
supported on two identical rolling bearings is used as an object of considerations. This
rotor-shaft of a total weight ca. 60.13 kg and of the bearing span 0.275 m is
characterized by a relatively heavy impeller and light shaft, as shown in Fig. 1. Its total
polar and diametral mass moments of inertia are respectively equal to 7.02 and 12.75
kgm?. It is assumed that bushings of the isotropic and radially stiff rolling bearings are
embedded in the bearing housings by means of layers made of relatively soft and viscous
vulcanized rubber. The bearing suspension stiffness coefficients are assumed constant
within the entire shaft rotational speed range 0-7200 rpm.
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In Fig. 4a there are presented the imaginary parts and in Fig. 4b the real parts of four
eigenvalues of the considered rotor-shaft, where the grey lines correspond to the original
system and the black ones to the system equipped with the MRF damper built in the
bearing support #1 and operating passively. From the obtained plots it follows that
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Figure 4. Imaginary (a) and real (b) parts of the rotor-shaft eigenvalues
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Figure 5. Entire vibratory mechanical energy profiles for the passive and semi-actively
damped system for the 1% eigenmode backward precession of 6.1 Hz at 3000 rpm

the optimal passive control effectively stabilizes the backward and forward branches of
the second eigenmode and the forward branch of the first eigenmode. But it has almost
no influence on a stabilization of its backward branch characterized by the close to zero
natural frequency and modal damping coefficient at greater rotational speeds, Fig. 4.
However, the semi-active control realized using the MRF damper and the proposed
control algorithm can result in an effective stabilization of this almost no damped
backward precession of the 1% eigenmode excited here e.g. by means of periodic
retarding frictional loads in the bearings. As shown in Fig. 5, the semi-active control
minimizes fluctuation amplitudes of this backward mode by ca. 8%. Moreover, the semi-
active control suppresses lateral vibration amplitudes even by 10% for the first
eigenmode forward precession induced by unbalances at the overcritical rotational speed
110 rev/s, i.e. 6600 rev/min, as it follows from the time-history plots depicted in Fig. 6.
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Figure 6. Entire vibratory mechanical energy profiles for the passive and semi-actively
damped system for the 1% eigenmode forward precession of 13.67 Hz at 6600 rpm.

4. Conclusions

In the paper there were considered passively and semi-actively controlled periodic lateral
vibrations of the rigid overhung rotor suspended on flexible bearings equipped with the
MRF dampers. From the results of an eigenvalue analysis it follows that additional
passive damping introduced into this system can effectively suppress its oscillation
amplitudes and increase stability regions only for sufficiently stable eigenmodes. But it
is not the case for unstable or almost stable eigenmodes, e.g. due to gyroscopic effects or
skew-symmetrical bearing properties. Here, the semi-active control realized according to
the proposed algorithm based on the Optimal Control Theory seems to be a very
advantageous and universal tool for engineering applications tool for stabilization of
vibrating mechanical systems and for an attenuation of their oscillation amplitudes.
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Abstract

In the paper a numerical analysis of an autoparametric system is presented. The two main elements of a tested
system are the pendulum (tuned mass absorber) and an energy harvester. The electromechanical model takes
into account these both effects. Numerical simulations are made in a MATLAB software environment. The
obtained results allowed estimation of influence of the system parameters on efficiency of energy harvesting.

Keywords: Non-linear autoparametric system, Energy harvester, Vibration absorption, Magnetic induction

1. Introduction

Application of the pendulum to the vibration reduction is described in the literature as a
tuned mass absorber. A gigantic pendulum (about 700 tons) is applied in skyscraper
Taipei 101 building [1]. It is used to reduction of building's movement occurring during
earthquakes and high winds. The similar problem was studied intensively at the Lublin
University of Technology [2, 3]. The pendulum spring mass system shows regular or
irregular (chaotic) responses. The irregular vibrations are very dangerous, especially for
dynamic absorber devices.

In the last years the pendulum systems are intensively studied [2-4]. In application
where the primary task of the pendulum is vibration reduction (buildings, ship, etc. ) a
special devices can be added to energy harvesting. An additional harvester can increase
functionality of the original system. The new models take into account the possibility of
recovery energy from the motion of the pendulum. Generally, in literature exists two
different solutions: (1) the rotary harvester [4] and (I1) the linear harvester [5]. The word
linear describes the movement path of the magnet in relative to the pendulum. In this
paper the second solution (linear) is proposed.

A strongly non-linear model of electromechanical system and results of simple
numerical analysis are shown in paper [5]. In this paper more complex considerations are
presented. Influence of the system parameters on induced current level is investigated in
detail.
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2. Electromechanical model of system

The total system consists of two main subsystems: mechanical and electrical parts. The

parts are presented in Fig. 1(a) and (b), respectively. The mechanical subsystem has

three basic elements:

o simple oscillator — mass M suspended on linear spring k; and damper c. It is excited
kinematically by linear spring k.

e non-linear vibration absorber (tuned mass absorber)— pendulum mounted on the
oscillator and applied to vibration reduction of mass M.

e energy harvester — generally, it is movable magnet located between two fixed
magnets (polarity configurations: SN-NS-SN). In presented model this magnetic
suspension of movable magnet is modelled as linear spring ks, for small vibrations

[6].
a) b)

Xosinot

Figure 1. Model of a mechanical (a) and electrical (b) parts of the system

The movable magnet is moving inside the coil. This motion can generate current i in
electrical circuit (Fig. 1(b)). Both parts, the electrical and the mechanical are coupled by
equivalent forces Fem and Fme, which have the same values but opposite directions.
These forces depend on the current and velocity of the moving magnet relative to the
coil [7]. Differential equations of motion were derived using second kind of Lagrange’s
equations [5]. The final form of equation of motion has a form:

MX + MK + M@sSin ¢ + M@°SCoS g +M_X —m_ ' CoSg +2m,_F@sing +

N . .2 . : 1)
+m @ (R+r)sing+m ¢ (R+r)cose +kx +cx =Qsin ot

o5+ msssing +m g(R+r)° +2m gf (R+r1)+ )

+m, (R+r)Xsing+mgssing+m g(R+r)sing+c,p=0

m,F —m Xcosp—m ¢° (R+r)+ksr—m gcosg+ai=0 A3)

and for the electrical part:
Leoil + Rygl =1 - 4
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2. Numerical results

Numerical simulations of the equations (1-4) were made in MATLAB 2015 software
using odel15i method. The mechanical and electrical parameters are shown in Tab. 1.

Table 1. Parameters of mechanical and electromechanical models

Description of parameter Symbol Unit Value
The mass of the object main M kg 0.65
The mass of the pendulum m kg 0.265
The mass of the magnet 11" kg 0.02
The mass moment of inertia of the_pendulum Iy kgm? | 4.960-4
relative to the rotation axis
Distance from the gravity _center_of the s m 42502
pendulum to the rotation axis
Sum of stiffness coefficients of coil springs k=k; +k, N/m 2700
The substlt_ute stlﬁne§s of magnetic Ky N/m 2000
suspension of moving magnet
Damping coefficient of linear damper c Ns/m 10
Damping coefficient of air resistance G Nms/rad | 0.01
Distance from the gravity cgnter qf moving R m 3.750-3
magnet to the rotation axis
The coil inductance Leoir H le-3
Sum of resistance of coil and external —
receiver RTotaI - RCoil + RLoad Q 1200
Electromechanical coupling coefficient o N/A or 35
Vs/m
Amplitude of periodic excitation Q =kyXg N 110
All numerical ~ simulations  always start from the same initial

conditions[x, X, ¢, ¢, r,F,i]  =[0,0,7/2,0,0,0,0]. Non zero initial value of the

pendulum steady variable @ or @ causes that semi-trivial solution becomes unstable

(pendulum executes motion). This chapter presents influence of the electrical parameters
on efficiency of energy harvesting. The following parameters were changed: Lcoii from 0
to 0.005 H (first analysis), Rrotal from 500 to 2000 Q (second analysis) and o from 0.5 to
5 N/A (third analysis) versus frequency of excitation ® from 20 to 50 rad/s. The
efficiency of energy harvesting is described by the quality index. In this paper a simple
form of index is proposed (root mean square of current irms). RMS values were

calculated in a time window t { (0, 10)S.

initial
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Figures 2-4 present obtained 3D characteristics of recovered current. These results

show trend of change the current flowing in the electrical circuit. We observe a
significant change of the values irms 0ccurring with increasing the resistance Rrora and
the coupling coefficient a. Increase in the resistance values causes that irms decreased
slowly (see at a frequency about 45 rad/s). Another trend is observed with an increase of
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the coefficient o, then the irms increases. On the basis on Fig. 2 the definitive
conclusions cannot be made. The inductance of electrical coil practically not influences
on the energy recovery.

For selected values of the excitation frequency w, the time series are presented (Figs.
5-7). These times series of the system responses show that pendulum can perform
different kind of motion. Namely, pendulum swings (Fig. 5(a)), executes chaotic motion
(Fig. 6(a)) and rotates (Fig. 7(a)). The maximal current recovered when the pendulum
performs no regular motion (Fig. 6(b)).

3. Conclusions

In this paper numerical analysis of a pendulum vibration absorber with device to energy
recovery is presented. The influences of the harvester parameters (Lcoil, Rrota, @) ON
value of the recovered current is presented. Energy harvester based on a movable magnet
inside the coil, allows recover energy from different kind of the pendulum motion. The
3D characteristics give some information about proper tuning of the electrical
parameters. The highest level of energy recovered for the small load resistance and high
value of the coupling coefficient. Generally, efficiency of analyzed energy harvester
system is low, the obtained current is in mA. However, it can be used to power of small
electronic devices consume a little energy, for example sensor in monitoring system.
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Abstract

In the paper an experimental analysis of an autoparametric system dedicated to vibration suppression and
energy recovery is presented. The main part is an electromagnetic energy harvester. Its properties were defined
by quasi static and dynamic tests. The obtained results show influence of selected parameters on energy
recovery level. The experimentally identification of electromechanical coupling coefficient which couples
mechanical and electrical systems is done.

Keywords: Non-linear autoparametric system, Energy harvester, Experimental research, Magnetic levitation

1. Introduction

In practice application of magnet and coil systems are often used in harvester
construction. For example, Malaji and Ali [1] propose a concept in which the magnet is
attached to the pendulum end. Both elements move together relative to the coil, which is
mounted as the separated part. The similar concept is presented in the paper [2], where
author presents a solution of the coil mounted on the pendulum tube. A movable magnet
moves inside the tube and the coil and induced energy. This efficiency of the harvester
device was studies numerically and experimentally in papers [2, 3]. The harvester
application has fewer restrictions and can be used in the real object, for example
mounted on existing nonlinear vibration absorbers in high buildings.

The paper presents preliminary experimental results of the magnetic levitation
(maglev) harvester. The work is divided into two parts: the static (quasi-static) and the
dynamic tests. The obtained results show, that coupling coefficient strongly depends on
the magnet’s position in the coil. In literature this coefficient usually assumed as a
constant [2, 4].

2. Experimental setup

The experimental study has been made on a laboratory rig at the Lublin University of
Technology (LUT) in the Department of Applied Mechanics. A scheme and general
view of the real apparatuses in Fig. 1(a) and 1(b) is shown. This laboratory system
consists of three main subsystems:
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o the nonlinear oscillator (damped mass),

e the pendulum (vibration absorber),

o the energy harvester (maglev system) with the electrical circuit.
The system has three mechanical degree (x, ¢ and r) and one electrical (i) degrees of
freedom. In this section more information about construction of energy harvester is
presented (Fig. 1(c)).

e

a)

K1

Xo

Figure 1. An autoparametric vibration absorber: scheme (2), a photo of the laboratory
rig (b), and maglev harvester (c). The elements of harvester are: 1- lower fixed magnet,
2- coil, 3- movable magnet, 4- neutral magnetic tube, 5- top fixed magnet

The energy maglev harvester consists of the movable levitating magnet (3), which
moves inside the coil (2). The motion of this magnet generate current flow i in the coil
electrical circuit with the resistor (Rrowr). The initial position of the movable magnet is
determined by magnetic levitation suspension. It levitates between two fixed magnets
(no. 1 and no. 5). The electrical circuit is provided with a receiver (resistor) and
measurement system to recorder current, voltage and power of generated electrical
signal. The tube of the pendulum (4) is made of non-magnetic material. The all
parameters of electromagnetic harvester are listened in Table 1.
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Table 1. Parameters of energy harvester.

Description of parameter Unit Value
Height of movable magnet mm 35
Diameter of movable magnet mm 20
Mass of movable magnet g 98
Length of coil mm 50
Coil resistance Q 1150
Coil inductance H 1460e-3
Wire diameter mm 0.14
Turn of winding - 12740
Total length of tube mm 340
Mass of tube with two fixed magnets g 350

2. Experimental results. Static test

The first stage of experimental analysis was the quasi-static test. During this analysis, the
tube, the coil with electrical equipment and the movable magnet mounted in the machine
SHIMADZU (Fig. 2(a)) were used. The magnet was connected by a wooden rod with the
upper handle, which is moved to a triangular signal (Fig. 2(b)). The handle moves with
constant velocity £500mm/min. The resistance of the receiver can be changed, set on a

desired level.

a)

Figure 2. The system view for static tests (a), a displacement of an upper handle (b)

b)

120

Tests were made for the three different values of receiver resistance (R=1.15kQ,
R=4kQ and R=6kQ). The obtained in Fig. 3 are shown. The coordinate r describes the
distance from the coil center to center of the movable magnet. We can see, that the
maximum current is generated when a center of the magnet is located on the end of the
coil (r=25mm). Generally, with increased resistance the values of the current flowing in

the electrical circuit decreases.

140
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Figure 3. Experimental results: current versus magnet position from the static tests

3. Experimental results. Dynamic test

The second stage of experimental study was the dynamic tests. Research was made on
the complete experimental rig. The relative motion of movable magnet was measured by
the high speed camera MIRO 120 (Fig. 4(a)). The mechanical responses r and f were
determined from the video information using TEMA software (Fig. 4(b)). The
exemplary results are shown in Fig. 5. These signals were compared with the measured
current i (Fig. 6).

b)

Point#4

Point#3

Point#2

Figure 4. Photo during experiment test (a) and single picture with traced points from
TEMA software (b)

Generally in literature [2, 4], the electromechanical coupling coefficient a can be
assumed as the constant parameter. Their value depends on the construction of energy
harvester. The electrical properties of the tested system can be written in the standard
simple Kirchhoff law

I-Coili. + RTotali =a(r,nr 1)
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Based on the obtained results it is possible to determine values of the coupling
coefficient a. Equation (1) was transformed to following form

a(r.f) = (Leoil + Rrotarl) / ¥ O]

After a simple numerical calculations, the curve a=f(r) was prepared (Fig. 7).
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Figure 5. Experimental time series of the relative displacement r (a) and velocity f (b)
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Figure 6. Time series of current i (a) and the phase portrait current - relative velocity (b)

The obtained experimental coupling coefficient results show that « value is not constant.
The value depends on the distance from the coil center to center of the movable magnet,
it is function of the coordinate r.
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Figure 7. The experimental coupling coefficient characteristics

3. Conclusions

The paper presents experimental analysis of the selected electrical parameters in
recovered current. The most important observation from the static and the dynamic tests
is to detect a relationship between the electromechanical coupling
Leoill + Ryotaii COEfficients a and the coordinate r. In future research will be planned to

determine an empirical form of a new model of the coupling coefficient.
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Abstract

The problem of motion of a unicycle — unicyclist system in 3D is studied. The equations of motion of system
have been derived using the Boltzmann-Hamel equations. A description of the unicycle — unicyclist system
dynamical model, simulation results and experimental validation of the system are presented in the paper.
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1. Introduction

1.1. Unicycle — one-wheel vehicle

Unicycle, one-wheel vehicle, is a specific type of single track, which is a bicycle. It has
only one road wheel. Unicycle is shown in the figure below [1].

Figure 1. Typical unicycle [2]

The main feature of unicycle is fixed gear. Therefore, the rotation of the cranks
directly controls the rotation of the wheel, and positions of unicyclist’s legs. Riding
without pedalling is impossible. Riding a unicycle is more difficult than on regular
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bicycle, due to the fact that there is only one point of support. For this reason, a balance
must be simultaneously maintained in two planes, transverse and parallel to the direction
of moving, so that the centre of gravity oscillates above the fulcrum of the wheel.

In technical aspect unicycle-unicyclist system, can be considered as a moving double
inverted spherical pendulum with follow-up control system.

1.2. Boltzmann-Hamel equations

The Boltzmann-Hamel equations are rarely used because of complicated formulae
containing Hamel coefficients and complex relationships for the determination of these
coefficients [3, 4, 5, 6, 7]. The classic form of the Boltzmann-Hamel equations for
a system with the number of coordinates equal to K is as follows [3, 4]

d(aT™) orT" mk ik ik i da,  da, \OT"
— | — |-+ bb | —m_— 1= w =TT, (n=1...k 1
dt(awn] on 22" ”“( oq jaw = bo

m i

Matrix form of Boltzmann-Hamel equations

dror +B7(AT —pmBw) T BTIT _pr[f 9V @
dt| ow ow oq

allows to automate generation of Hamel coefficients and eliminates all difficulties
associated with a determination of these quantities [8].

2. Description of the analysed model

For the unicycle-unicyclist model description we use fixed inertial frame Oxyz (Fig. 2).
We also use no inertial frames xiyizi, inertial frames &#i¢i and parallel frames xiyizi" or
G ni ¢ related to each link (i=1,...,7), attached at the end of it.

Table 1. Model of the unicycle-unicyclist system

i 1 2 3 4 5 6 7
mark w f b tir thr til thl
link | wheel | frame | body | tibiaright | thighright | tibialeft | thigh left

To consider motion of the system, we introduce the following generalized
coordinates

q:[xw’ yw'zw1aw’ ﬁw’yw’af’ab’ﬂb]-r’ (3)

where Xw, Yw, Zw are the coordinates of the wheel contact point, and the remaining ones are
the Euler angles describing spatial orientation with respect to the particular frame, Fig. 2.
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B

Figure 2. Model of the system (some axes are omitted for reasons of clarity)
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A unicyclist leg which is used in this model consists of thigh and tibia. Foot
is omitted due to the specific and complex motion in one rotational cycle, which does not
aspect significantly in a ride. Thereby, pedal axes are covered up with ankle. Therefore,
the leg can be treated as a crank mechanism and the leg position is clearly defined by pw
and os [9].

T
Figure 3. Leg positions and coordinates, on an example of the right leg

Quasi-velocities (Fig. 2) defining the model velocities are assumed in the form:

W, 1 00 0 0 rcose, 0 O O} X,
W, 010 0 0 rsing, 0 0 O}V,
w,] |[001 0 0 0 00 0|z,
w,/] /OO0 0 1 0 00 0fa,
w=|w, |=|0 0 0 sing, 0 0 0 0 0| A, |=Aq 4)
w,| |0 0 0 cosg, 0O 1 00 0|y,
W, 0 0 0 cosg, O 0 1 0 0} a
w,/] (000 0 O 0 00 1|4
w,] [0O0OO0O 0 0 0 01 0]4]

where r is the radius of the wheel. Equations (4) are valid under assumption that the
wheel is a rigid hoop making point contact with the road and it rolls without longitudinal
slip on a flat surface. It means that the constraint equations for the wheel are: w;=0,
w,=0 and w3=0. Kinetic energy, with respect to mass canters of the system is obtained
using the formula

ngzn:ViTMiVi+%i0)iTIimi, (n=1...,7). (5)
i=1 i=1
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where v; is the vector of linear velocities, M; is the mass matrix, w; is the vector of
angular velocities and I; are the moments of inertia standing in the mass matrix.

The equations of model dynamics based on Boltzmann-Hamel equation (2) were
generated automatically and solved using Wolfram Mathematica.

3. Simulation results

Results of numerical simulation for the unicycle-unicyclist model motion are shown in
Figs. 4-6. The most important initial conditions for simulations are the vertical position
and the constants of wheel velocity. It is a wire model; which means that every link is a
rigid rod, except the wheel regarded here as a rigid circular hoop. Appropriate damping
in the nodes provides that the system does not immediately collapse and small values of
masses of legs epitomize control of the unicycle by a unicyclist.

coordinate yr;, coordinate @y,
Priirs rad O¢nr» rad

| NN

th
th

4 4
3 3
2 2
1 1
0.0 0.2 0.4 0.6 08 10 12 14 00 02 04 06 08 1.0 1.2 14 b
coordinate i coordinate &y,
uny rad O, rad
¢ 6
H SW
4 4
3 3
2 2
i 1
ts

0.0 0.2 0.4 0.6 08 10 12 14 “* 00 02 04 06 08 1.0 12 14

Figure 4. Time histories of legs coordinates. Right leg (blue) and left leg (red)
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2D wheel trajectory
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Figure 5. Wheel 2D trajectory and time histories of the system Euler angels
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Figure 6. 3D trajectories of the system

4. Experimental validation

To capture motion of the real object, a high speed camera was used. A duration of single
attempt is about two seconds. The quadrant symmetry markers were used. To process the
movies, the TEMA software was used. An experiment in 2D was made in order to check,
if the way of modelling is correct. Below there are shown the parametric plots
of positions of the characteristics point of the model.

Y. pX
600
= shoulder
500
+ hip
400
+ knee
300
200 + hub
100 - ~
= pedal
X, px
0 200 400 600 800 1000 1200

Figure 7. 2D trajectories of the motion capture of the real object

By comparing Fig. 6. with Fig. 7. it can be seen, that trajectories of characteristic points
have very similar courses. Dissimilarities may be due to the fact that the experiment was
made in 2D, while the real object moves in 3D.
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5. Conclusions

The matrix notation of Boltzmann-Hamel equations eliminates drawbacks occurring
with the classical formulation of these equations. Its application allows an automation of
generation process of motion equations.

It is clearly shown that the model during movements swings around an unstable
equilibrium. Because of unbalance caused by legs and cranks with pedals, the wheel
moves in a “snake style”. To sum up, our model behaves like a real object. It is
confirmed by a comparison of the trajectory of characteristic points, by 2D motion
capture of the real object.

In the future, in this model also a tire will be taken into consideration as well as and a
system control method are going to be introduced. Upon those steps, the 3D motion
capture will be made to validate the final model.
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Abstract

The main concern of this paper are thin rectangular plates with dense system of the ribs in two directions. The
aim of the analysis is the examination of the impact of different shape functions in tolerance modeling on
natural vibrations of the plates.

The plate is made of two different materials, both for matrix and ribs. The thickness of the plate is comparable
to the width of the ribs. This provides a powerful tool for getting a desirable frequency of natural vibrations of
the plate. The tolerance averaging approach is the base for the formulation of averaged model equations. The
most accurate readings presenting this method are described in Wozniak et al. [1].

By application of the tolerance averaging technique to the known differential equations of considered plates,
the averaged equations of the tolerance model have been derived. The general results of the contribution are
illustrated using the analysis of natural vibrations. The effect of different shape functions on free vibration
frequencies is examined.

Keywords: dynamic, tolerance average technique, thin plates, natural vibrations

1. Introduction

The object of the contribution is thin composite plate with dense system of the ribs. The
aim of the analysis is the diagnosis of the impact of different shape functions in tolerance
modeling on natural vibrations of the plates.

—

.

Figure 1. Composite plate at microscopic level and at macroscopic level

The space between the ribs is filled with a homogeneous matrix material (Figure 1).
The analogous plate was examined in the paper [2]. The period 1=/, of

heterogeneity is presumed to be sufficiently small versus the measure of the midplane of
the plate. Simultaneously, it is assumed that the microstructure length parameter | is
appropriately small in contrast with the minimum characteristic length dimension of the
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plate. The size of the microstructure | is comparable with the thickness of the plate h
(h=l) (Figure 2). The differential equations of this kind of the plates have
discontinuous and rapidly oscillating coefficients. The applications of those equations to
engineering problems is not the most efficient tool. Thus, an averaged model has been
proposed in which material properties are represented by functional but smooth effective
stiffnesses.

aoOnnononnnnnnnmnnn e h

L z=x’

Figure 2. Detailed geometry of the plate

Analogous plate has been described in the paper [3] where it has been considered the
influence of initial stress forces on the free vibrations of the plate. In this work the
calculations were shown for different geometric and material properties.

The formulation of the averaged mathematical model for the analysis of dynamic
behaviour of these plates is based on the tolerance averaging approach. This approach
can be find in book Wozniak et al. [1]. This technique was applied in many papers.
Some of the following papers can be mentioned here as examples: Baron [4] has
analyzed the plates in which the period length is comparable with the thickness of the
plate. In the work [5] propagation of harmonic wave in periodically laminated
composites was analyzed. Furthermore, in the paper [6] the rectangular composite plate
under the plane stress was analyzed. The elastic plate is reinforced by system of
periodically distributed parallel ribs. Michalak [7] examined vibrations of thin plates
with initial geometrical imperfections as a model of elastic wavy plates. In the
contribution [8] the vibrations of periodic three-layered plates with inert core has been
analysed.

In contrast to the previous works [9-10], where the gradation only in one direction is
described, in the present paper it is analyzed in two directions. What is more, in the
majority of above mentioned notes, in which the plates are considered, the thickness h
of the plate is essentially smaller compared to the microstructure length parameter

I =ll, (l,1,-dimensions of the cell). Baron [4] considered the thickness of the plate

similar to the period length which is analogous to the current contribution. The
difference is in the geometry of the plate which is reinforced in two directions not just in
one (paper [4]). On a microscopic level we deal with the microheterogeneous plate
while, after averaging, we deal with a special case of a functionally graded material on
the macroscopic level (Figure 1).
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2. Direct description and modelling technique

In this contribution the rectangular plates shown in Figure 2 are considered. The
orthogonal Cartesian coordinate system is introduced Ox;X,X; and the time coordinate
t. In all respects in the note, indices i,k,l ... run over 1,2,3, indices «,p,y,... and
indices A,B,C,... run over 1,2. The summation convention holds all aforementioned
sub-and superscripts. Adopting x = (X;,X,) and z =X, the undeformed plate occupies
the region Q={(x,2):-h/2<z<h/2,xeIl}, where II is the rectangular plate

midplane and h is the plate thickness.

In the framework of a well known theory of thin plates the averaged model equations
of the dynamic behavior of microheterogeneous plate are obtained. The displacement
field of the arbitrary point of the plate is given in form

W (X,2) = Wy (X) W, (%,2) = W5 () =0, W5 (%) 2 (€
Denoting by p(x,t) the external forces, o the mass density, g, the metric tensor, €, a

Ricci tensor. Setting 0y =a/ox* we also introduce gradient operators V =(0,,0,).

After application of the linear approximated theory for thin plates we obtain the
following system of equations:

0] strain-displacement relations
Eqp(X,2) = K,p(X) Z, Kap ==V qpW3 (2
(i) strain energy
E,(x2)=3C"" g,55, 3)
(iii) kinetic energy
K, (%,2) = 3 p(Ws Wiz +W,, Wy 5) (4)

for ze(-h/2,h/2).
The strain energy averaged over the shell thickness is given by
E(X) =3BV, W5V 5wy (5)
Eh?
12(1-v?)
The coefficients in the above equations are discontinuous and highly oscillating. The

above equations will be used as a starting point of the modeling procedure.
Consequently, going to the modeling technique let us introduce the orthogonal

coordinates system O&'&? in the undeformed midplane. The midplane of the plate

where B = 0.5(5%" 577 + 59 5P1 4+ (%P + %P7

occupies the region IT=[0,L,]x[0,L,] (Figure 2). Assuming that the number of ribs in

E'and &7 directions is respectively N and m (1/n,1/m<<1). Hence |, =L, /n and
l,=L,/m are the dimensions of the cell A=(-1,/2,1,/2)x(-1,/2,1,/2). We
introduce, for the arbitrary cell A(E?)=A+ &% with center situated at point (£1,&2),
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the orthogonal local coordinate system Qy,y, which is local with its origin at
(&4&%) eTl, where T1, = (1, /2,14 — L /2)x(1,/2, L, —~1,/2) T1.

In order to derive averaged model equations for skeletonal plate under consideration
we applied tolerance averaging approach [1]. There will be introduced some basic
concepts of this technique: an averaging operator, a tolerance parameter, a tolerance

periodic function, a slowly varying function and a highly oscillating function.
The starting point of the modeling procedure is a decomposition of displacement fields.

W3(§a,2,t) :V3(§avt)
W, (£%,2,t) = (-0, V3 (£ ) +hA (M) ug (€7 1) 2
for £ =11, ze(-h/2,h/2), A=1,1l andeverytime t.

The governing equations derived from stationary action principle of the averaged
lagragian [2,3] <L >=< K >—<E >+ < F > have the form

ol B2 ) (- 1) 0

(6)

()

After simple manipulations we obtain finally the following equation for the averaged
displacements V;(&%,t),

Vo, (F9% o (N =(f°) 8)
where p = ph is mass density related to plate midplane. In contrast to equations in

direct description with the discontinuous and highly oscillating coefficients, the
coefficients in the above equation are smooth and functional.

3. Applications - fluctuation shape functions

The key point of the tolerance modeling technique is to determine of fluctuation shape
function (FSF). In dynamic problems, the system of fluctuation shape function can be
taken to represent the principal modes of free vibrations of the cell A(X,) or a

physically reasonable approximation of these modes. Our analysis is to investigate the
impact of different shape functions on free vibrations of the plate. We are restricted to

the case where we have two fluctuation shape functions, h'(x,,y,) and h"(x,,Yy,)
(Figure 3)

)b | sl (2|
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Figure 3. Fluctuation shape functions in the considered cell

(nebr wel-5e2)

dx b, b
Sl(yl): m‘ymx Y1€<——l,—l>
1

! by |
—[yl—glj-nx y16<—2131>
_(y” 22)7” V2 €<_?’_ 2

d b
S,(y2)= I_ydy‘YZ’?y Y2 €<—?2.—
2

I b, 1,
_[VZ_EZ]'ﬂy Y;z€<?:?>

where by =1, —dx(x,) b, =1, —dy(x,).
We have considered for four different amplitudes of functions S;(y;) and S,(y,) as
following (respectively versions 1-4):

(10)

L 7, (%)= dxl(lxl) 1y (%)= —dyI(ZXZ)
o dx|(1X1)' 2((88!_ 5 m)) - ybe)= dyl(zx ! 2((58[ 5 m)) (100)
3. =1 (Xl): Uy(xz)= ﬁ\/(ll - dX(Xl))~ (l2 - dy(x2 )) (|1dy()(2)Jr Izdx(xl)—dX(Xl)dy(Xz ))

- - () o o () o ) We
-1, (Br+Bm)

have analyzed free vibrations of a simple supported square plate with the constant width

of the ribs. Taking into the consideration tolerance model, we obtain from (8)

differential equation describing dynamic behavior of the considered plate
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0™V L2222 0*Vs
where for square plate and d, =d, =d, I, =1, =1 we have
I:llll= |:2222= Bllll_(l+v )(Bllll) K1I1I —2V(Bll11)2 K1I2II ’
F1122 — 1/Bllll_ (1+ VZ)(BlIll)Z Kll 21 2V(Bllll)2 Kllll , (12)

+ 2(F1122+ 2F1212)

F““Z:V 2 +<p>V3=0 (11)

Fl212 _ pl1221_ 1—2V B1111_2(1—2‘/)2(|31|11)2(K1||1|| + K1||2|) ,

Exemplified modulus:

§2II2II _§1I2II
KU _ CoRuA _ 7
Bllll BZIIZII _(BlIZII )2 Bllll B?_IIZII _(Bll2ll )2
B =B, [(1-nd)(nd +a(l—nd)) +nd], < p>=5.[(L—nd)(nd + B1—nd))+nd],
a=B,/B,, B=pml oy, nd=d/l.

In the above formulae we have assume: Poisson's ratio v =v,, =v,, B,,B, stiffness of

the matrix and rib respectively, 5m , ,5, - mass density of the matrix and rib related to the

plate midplane.

The equation (11) is in the form analogous to equation of motion of homogeneous
orthotropic plate. This equation will be solved similar to known method for simply
supported rectangular plates. Restricting our considerations to harmonic vibrations

V(xl,xz,t):v(xl, xz)ei"’t we derive equation

oV , oV . OV <p>

2 p—
x4 +2ne ox20y? ¢ o - lea) V =0 (13)
where et = F 2222 Fl122 opl212

pliie’ n= [p2222, 1111

Substituting V (X, y) =V, sin(nl]_—”x)sin(rll_—” y) into equation (13) we derive formula

X y
for free vibration frequencies
Fllll nL
Oqn = _2 m* + 2775 ( ) (_X)4 (14)
L>V<p> Ly

The results obtained above were compared to finite element method calculated by
Abaqus program [11]. It was considered two-dimensional shell element with a thickness
equal to 0,20m. The way of modeling of the plate in Abaqus program was described in
the paper [2]. Ribs are represented by the slave and matrix by master surface. The
boundary conditions were established as simply supported along the circumference of
the plate. Calculations were provided for the linear perturbation (frequency). As mesh
element we assume S4R element as a 4-node doubly curved thin (or thick) shell which
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provides reduced integration, hourglass control and finite membrane strains. The mesh
was added to the matrix and ribs separately bearing in mind that for the slave surface the
mesh needs to be denser. To verify model equations and Abaqus program there will be

compared values of the first four vibration frequencies.

4, Results

Free vibrations frequencies for the plate with constant width of the ribs and geometric

and material parameters shown below for different shape functions are in Table 1.

Geometric data: h=01m, size of the plate:
d =0,05m size

of

the

cell:

E, = 210GPa, v, =v,, =0,3, p, = 7800kg/m?, E,, =20GPa, p,, = 2400kg/m®

L, =L, =4,0m, width of the ribs:
Material

Table 1. First four free vibrations frequencies for different shape functions

1st mode 2nd mode | 3rd mode 4th mode Versions 1-4/
Abagus
[Hz] [Hz] [Hz] [Hz]
Version 1 141,783 361,147 361,147 567,133 1,62%
Version 2 161,497 405,614 405,614 645,987 13,63%
Version 3 170,305 426,001 426,001 681,22 18,09%
Version 4 182,561 455,748 455,748 730,245 23,59%
Abaqus 139,490 357,32 357,32 555,060
Frequency of 2nd and 3rd mode
Frequency of 1st mode 600 - -
PO T T T Tw ! « "Versionl"  x "Version2" !
500 ‘"xiz:g:;“ ) "5::::3:31" . " 500 4 "Version3" = "Version4" Lo
X . & " " . 4
400 "Abaqus" L : JRNSE + 400 Abagus Lo . ]
200 L ] : . L 200 L ] i g 2 X 7
100 = F 7 6 100 = %27 B

1 033 0,20 0,10 0,07 0,05 0,04 0,03

2500

2000

1500

1000

500

0

1

0

1 033 020 0,10 0,07

Frequency of 4th mode

x "Versionl"
+ "Version3"

"Abaqus"

am

worm

xemm

x "Version2"
= "Version4"

*exe
xexe

0,33 0,20 0,10 0,07 0,05 0,04 0,03

0,05 0,04 0,03

Figure 4. First four free vibrations frequencies depending on parameter g

data:
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In the Figure 4 there are shown free frequencies of the first four modes. On the
horizontal axis is presented parameter B =E_ /E,. The calculations are made for the

constant density equal to 2400kg / m®and respectively for different amplitudes (10b).

5. Conclusion

It can be observed that free vibrations for different versions vary from 2% till 24%. Only
the 2" and 4™ versions depend on Young’s modulus, We can recognize that the results
shown in the Figure 4 are convergent for homogenous plate (,8 :1). The higher the g

parameter is, the higher is the difference between parameters. The most consistent with
Abaqus' outcome is the 1st version. Further research, in which influence of different
Young’s modulus on the free vibrations will be investigated.
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Abstract

The nonlinear response of a three degree of freedom vibratory system with spherical pendulum in the
neighbourhood internal and external resonance is investigated. It was assumed that spherical pendulum is
suspended to the main body which is suspended by the element characterized by elasticity and damping and is
excited harmonically in the vertical direction. The equation of motion have bean solved numerically. In this
type system one mode of vibration may excite or damp another one, and for except different kinds of periodic
vibrations there may also appear chaotic vibration.

Keywords: Spherical pendulum, energy transfer, coupled oscillators, chaos

1. Introduction

The subject of this work is investigation of initial conditions effect on dynamics of a
three degree of freedom system with spherical pendulum. Dynamical systems with
element of the mathematical or physical pendulum type have important applications.
Different kind of coupled autoparametric oscillators with simply pendulums is presented
in book [1]. The real pendulum is a spherical character. Spherical pendulum was
investigated by a lot of researches. Spherical pendulum subject to parametric excitation
was studied by Miles and Zou [2], and with kinematic external excitation by Naprstek
and Fischer [3]. The bifurcation behaviour of a spherical pendulum where the suspension
point is harmonically excited in both vertical and horizontal directions was presented by
Leung and Kung [4], spherical pendulum with moving pivot by Mitrev and Grigorov [5],
stochastic analysis of a spring spherical pendulum was done by Viet [6], the dynamics
coupled spherical pendulums was studied by Witkowski at all [7].

In the present paper is assumed that the spherical pendulum is suspended to the
flexible element, so in this system may occur the autoparametric excitation as a result of
inertial coupling.
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2. System description and equation of motion

The investigated system is shown in Figure 1.

Ry)L < SW)

an 7/_
i

[N

Figure 1. Schematic diagram of system

The system consists of a body of mass mi suspended on the flexible element of
rigidity k and damping ¢ and a spherical pendulum of length | and mass m, suspended on
the body of mass m;.The body of mass m; subjected to harmonic vertical excitation and
the spherical pendulum subjected to harmonic horizontal excitation.

The spherical pendulum is similar to the simple pendulum, but moves in 3-
dimensional space, so we need to introduce the new variable ¢ in order to describe the
rotation of the pendulum in space xy. The position of the body of mass m1 is described
by coordinate z and position of the pendulum is describe by coordinate z and two angles:
® and ¢. Angle O is the deflections of pendulum measured from the vertical line. This
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system has three degrees of freedom . The equations of motion are derived as Lagrange’s

equations.
The kinetic energy Ex is the sum of the energy two bodies
my; | my; o mzt m(% + Y +2)
= + = +
2 2 2 2

where
X, =lsin@cosg
y, =Isingsing
z, =z+lcos@

The kinetic energy Ex are given by the expression
1 L 1 S0 122 2 .
E, =E(m +m,) Z +Em2(l &° +1°p°sin"0—-21 7 O sinb)
The potential energy E, are given by the expression

k(z+1z,)?
E, =—(m +m,)g(z +z,) + m,g(l —Icos.0)+M

@)

O]

©)

(4)

Assuming that the exciting forces are in form: F(t) =Rcoswt F,(t)=P,cosv,t, the

equations of motion of the system are in form

(m,+m,) Z—m,ldsind —m,16? cosé + kz + ¢z = P,coswt
m 126 — m,IZsing —m,124? sindcosd + m,glsingd = I cossing P, cosv,t

m,12sin? 6+ 2m,1%p Osindcosd = 1sindcosd P,cosv,t

By introducing the dimensionless time and dimensionless parameters

k 10} c _z
r=wt, o= , a)zzzg, B="2 y=——  7==
m, +m, | o, (m, +m,)e, |

m, R P, Vi Va

a= A=—>—u, A=—fg =t p=-%

- ] - 2 il
m, +m, (m, +m,)e; m,le; o, o,

(®)

(6)
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We can transform (5) into dimensionless form
7—-afsind—07cosO+z+y 7 = ACosur

6 — 7 sin@— ¢*sinfcos@ + f7sind = A, cosdsingcos i,z @)

$sing +2¢ 6cosd = A, cosHCOS 11,

(where the overbars denoting nondimensionalisation are omitted for convenience).
After transformations equations of motion can be written in form easier to calculations

7 =[(Acosuz +ab?cosd —z -y 7)+a(ep?sindcosd — sind)]sind/(L - asin’ 0)

6 = ¢,5in0cosl — 2sind +[(A cosuyr +ab? cosd —z — y ) +a(g,sindcosd +

2 i t2 H P2 (8)
— B°sin@)sin” #]sind/(L—asin” 6)

@ = (A c0s6cos 1,7 — 2 ¢ Gcosd)/sing

3. Numerical results

Equations (8) are solved numerically by using R-K method with step length variable.
The calculations are carried out for different values of parameters of the system and for
different initial conditions. Exemplary time histories of displacements z and 6 obtained
for the initial conditions for the body of mass m; are presented in Figure 2, where we can
observe the energy transfer between the modes of vibration in a closed cycle. In this case
spherical pendulum behaviour is the some than simple pendulum and the motion of
pendulum is in vertical plane (angle ¢ is constant). The diagram of internal resonance for
initial conditions put on the displacements is presented in Figure 4 and it is similar to
simple pendulum presented in work [1]. We observe resonance excitation for frequency
ratio =0.5. In this case assuming the simple pendulum results are good.

When the initial conditions are put on the displacements and on the velocities

(2(0) =0; 2(0) = 0.; H(0) =5,6(0) = —0.04;(0) = 0; »(0) =—0.96) we observe influence of
angle ¢. (Figures 3). Exemplary internal resonance in this case we observe for frequency
ratio f=0.51 (Figure 5).
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Figure 4. Internal resonance for: a=0.8;y=0; A1=A,=0;
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Figure 5. Internal resonance for: a=0.5;y=0; A1=A>=0;
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Figure 6. Internal resonance for: a=0.2;y=0; A1=A>=0;
2(0) = 0; 2(0) = 0.65; H(0) = 50°,6(0) = —0.04;p(0) = 0; (0) = —0.296
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But when the initial conditions are put on the displacements and on the velocities
(2(0) = 0; 2(0) = 0.65; H(0) = 50°,6(0) = —0.04;»(0) = 0; ¢(0) = —0.296) we observe influence
of angle ¢ and internal resonance area in this case we observe for frequency ratio near

B=0.75 (Figure 6). In this case ¢ described the rotation of the pendulum around axis z, so
assuming the spherical pendulum we have the results more similar to the real system.

3. Conclusions

The influence of initial conditions on the behaviour of an autoparametric system with
spherical pendulum is very interesting, because sometimes when initial conditions are
put on the displacements spherical pendulum is similar to simple pendulum (angle ¢ is
const.), but when the initial conditions are put on the velocities we observe influence of
angle ¢. It is important, because near internal and external resonance area can existence
the different motion - regular or chaotic. The autoparametric systems are very sensitive
on nonlinearities. The spherical pendulum is more similar to the real systems then the
simply pendulum.
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Abstract

This study presents the influence of different kinds of damping on transverse and longitudinal vibrations of
hydraulic cylinder in a mining prop. The dissipation of vibration energy in the model is caused by
simultaneous internal damping of viscoelastic material of beams that model the system, external viscous
damping and constructional damping. Constructional damping (modelled by the rotational viscous dampers)
occurs as a result of movement resistance in the cylinder supports. The eigenvalues of the system with respect
to changes in system geometry with two values of load and for a selected and variable damping coefficient
values were calculated.

Keywords: damped vibration, hydraulic cylinder, transverse vibration, longitudinal vibration

1. Introduction

A hydraulic cylinder as an object of research studies on dynamics of mechanical systems
has been extensively investigated in the number of studies. Most of the published studies
focused on the interactions between the cylinder tube and piston rod. Results of the
investigations of the dynamic response of the model of a cylinder to axial impulse were
presented in paper [1]. The work [2] presents an analysis of the effect of initial
inaccuracy of connection between the piston and cylinder tube on critical loading force
in the cylinder. Many authors analysed the effect of sealing or the medium on the
cylinder's dynamics and dynamic stability of cylinder. In study [3] calculations of free
vibration frequencies were extended with the investigations of the dynamic stability of
the cylinder by means of determination of geometrical parameters and load at the time of
losing the stability were presented. In paper [4] the problem of the stability and free
vibrations of a slender system in the form of a hydraulic cylinder subjected to Euler's
load was carried out. The studies [5] and [6] present the effect of internal damping on
vibrations of a support beam with a mass attached to a free end of the beam and on
stability of a support column loaded with a follower force, respectively. The influence of
small internal and external damping on stability of non-conservative beam systems is
described in paper [7]. Equally interesting publication concerning the effect of external
damping on vibration of beams with stepped cross-section is the study [8]. The effect of
structural damping of fixations on free vibration of the linear Bernoulli-Euler beam was
presented in the study [9].
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In study [10] dissipation of vibration energy in the model of hydraulic cylinder —
boom crane system occurs as a result of simultaneous internal damping of the
viscoelastic material of the beam used in the model and the constructional damping in
the supports of the cylinder and crane boom. The constructional damping of supports
was modelled using rotational viscous dampers. The problem to be considered in the
study [11] is the natural vibration of the system consisting of two clamped-free rods
carrying tip masses to which several double spring-mass systems are attached across the
span. The study is concerned with longitudinal vibrations of this mechanical system and
the major contribution of this study is to derive a general formulation for the exact
solution of the system described by using the Green's function method.

This study analyses the simultaneous effect of the constructional damping, internal
damping, external damping and the influence of changes in system geometry on the
transverse and longitudinal vibrations of hydraulic cylinder in a mining prop. The results
obtained in the study were presented in 2D figures and spatial presentations.

2. Mathematical Model

A scheme of the considered system is presented in Fig. 1. The model of a hydraulic
cylinder is composed of four beams. Two of them model a cylinder tube (l11, l12) and two
- piston rod (I21, I22) in the cylinder. The liquid in the cylinder was adopted as the
medium of load transfer between the piston and the cylinder along the length filled with
liquid. The liquid rigidity in the cylinder was modelled by the translational spring.
Stiffness coefficient of spring was denoted by ks.

In adopted model dissipation of vibration energy was caused by simultaneous
internal damping, external damping and constructional damping. Internal damping of the
viscoelastic material for individual parts of hydraulic cylinder was characterized by
Young's modulus Em, and viscosity coefficients E*mn. External damping of medium
surrounding the system were denoted by coefficient c.. Constructional damping occurs
as a result of movement resistance in the piston and the cylinder supports and it was
modelled by the rotational viscous dampers. Damping coefficients of rotational viscous
dampers were denoted by cr.

The boundary problem connected to the free vibrations of the considered non-
conservative (due to damping) system was formulated on the basis of Hamilton’s
principle in the following form:

t t
SfT=V)dt+ [ oWy dt =0 )
t t
where: T — kinetic energy, V — potential energy, 6Wn — virtual work of non-
conservative forces originating from damping.
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Figure 1. Diagram and beam model of a hydraulic cylinder with damping

The vibration equations for individual beams are known and have the following form:

2

‘]mn(Emn + E:I:n QJ 54\Nmngxmn,t) P I Wn ngn,t) +

a HKinn HKinn @)
Wi Ko ) Wiy (Ko )
+ Pron A n;tzmn +Ce mndmn =0
where:

« 0 )M (Xt E°U py (X t

- Amn(Emn + Emn 5} g](r%nmn ) +pmnAmn n;t(g = ) =0 (3)

where: mn=12 (ce=0form=2andn=1)

Womn (Xmn, t) — transverse displacement of beams that model cylinder and piston rod
Umn (Xmn, t) — longitudinal displacement of beams that model cylinder and piston rod
Emn — Young's modulus for individual beams,

E”"mn — material viscosity coefficient,

Jmn — moment of inertia in beam cross-sections,

Amn — cross-sectional areas of the beams,
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omn — beam material density,
Ce — Viscous damping coefficient,
P — cylinder loading force (at the length I, of the cylinder tube coverage with the piston
rod in the cylinder P=0)
Xmn — Spatial coordinates, t — time
Solutions of equations (2) and (3) are in the form:

Wmn (an ) t) = Wi (an)eiw ‘ (4)
Umn (an,t) =Umn (an)eiwt (5)
where: »” — the complex eigenvalue of the system, i=+/-1
Substitution of (4) and (5) into (2) and (3) leads to, respectively:
Wr|1¥1 (an) + ﬁnz'mwr:!\n (an) — 7mnWmn (an) =0 (6)

urlrlm (an) +a§1numn (an) =0 (7)
where:

e b (5 5 )
Jin (Emn + Emni @) PronAnn
pmna)*2 P
o E 4 Engi) | Frn = \/(Emn +IEmn® ) mn
Boundary conditions:
w;1(0) = Wih(h) = W53(0) = W,y (152) = 0, Wi (k1) = Wi, (0),
W21(151) = Wa5(0), Wyy(hy) = Wy5(0) = Wy, (0),
W5 (h) = Woy (I1) = Wy, (0), Ep4d;,w1(0) = Cric Wi (0),
(Epz + Engi @) I ,Wi5(0) = (Eqy + Eqgie ) I (hy),
(Epp + Eol ") 5035 (0) = (Epq + Epgi )3 ,:W;1(151),
E2d2oWab(l55) = —Crie Wiy (1), (Eqs+ Epji)dyw (1) +
+ Pwiy(I;1) = (Epp + Epjl0’) I ,wi3 (0) +
—(Ep1+ Ezii0") J w1 (0) — Pwy, (0) =0, ®)
(Exz + Epgi @) 105 (hp) + (Epq + Eqgiew ) pw31 (Iy1) +
—(Epp + Epil @) 355 (0) =0, Upy(151) = Upy(0), Uy (1) = Uy,(0),
Uy3(0) = Upy(I31) =0, (Eyy + Epgie ) Agglizy (Iy1) = (Egp + Eqgier ) Agsliz,(0),
(Ep1 + Ezii’) Agyuiz; (0) = —KsU,1(0), (Egp + Exsie ) Aglizy(ly5) = P,
(B + Epgi@ ) Apif(0) = (Eyy + Eqgie ) Ay ufy (hy)
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The solution of equations (6) and (7) are expressed in the form of functions:
Winn (X) = Clmne/lmnx + CZmne_;Lmn>< + C3mneumnx + C4mne_umnx (10)

Umn (X) = Dlmneigmnx + D2mneiigmnx (11)
where:

2 4 2 2
e :\/‘ P Pt o o =\/ﬂ§n o B = D)

The boundary problem is solved numerically for the eigenvalues ”. Depending on the
solution adopted, the roots »"are complex numbers (that represent the damped vibration
frequencies Re(w”) and damping Im(w") in the considered system) and they may accept
positive or negative value. In this paper, presentation of the results was based on positive
values of the real and imaginary parts of solutions.

3. Numerical Calculation Results

Calculations were carried out for a cylinder used in a mining prop. Computations were
carried out for the data contained in Table 1. Dimensionless damping parameters: » for
internal damping, u for constructional damping, and v for external damping were placed
below the table.

Table 1. Geometrical and material data adopted in the study

Quantity Symbol Unit Value
Cylinder tube - external diameter D,1=Dy, mm 290
Cylinder tube - internal diameter d;; =dy, mm 250
Piston rod - external diameter Dy, =D,, mm 160
Piston rod - internal diameter dy; =dy, mm 120
Cylinder tube and piston rod density Prmn kg/m3 7.86e3
Young's modulus Enn Pa 21ell

Damping parameters:
. %
77: Emn ,V:Ce C ,lu:C_R, p:i,
hE,, d d Pe

2

zpmnAmn 2 (11)

h2 = Lc4m;:l—’ d= LC\/ zpmnAmnEanmn )
ZE .J m,n=1

mn* mn

m,n=1

where: Pc — the critical load of the cylinder extended to Lc=4mand L =11+ 1, +15,.
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The results of the calculations are presented in Figures 2 to 5. The system was loaded
with the longitudinal force P (p=0 and p=0.3). The dependency of the eigenvalues (real
parts Re(w:”) and imaginary parts Im(w1”)) on coefficients of constructional damping ,
external damping v, internal damping # and total length of cylinder that ranged from
Lc=2.6m to Lc=4m was also determined. The relationships between the first eigenvalue
of cylinder and changes its total length Lc and coefficient of constructional damping u at
p=0.3 without internal and external damping in the system are presented in the form of
spatial diagrams in Figure 2.

Figure 2. The dependency of the first eigenvalue (Re(w™) and Im(w™)) for the cylinder on
total length Lc and constructional damping u at =0, v =0 and p=0.3

As can be seen in the figure above, the higher value of Im(w,") then the more the
amplitudes of a particular (n) mode of vibration are damped. Figure 3 presents the
maximum values of Im(w"max) for the first mode of vibration in the examined system
depending on the hydraulic cylinder length Lc for two values of loading.

300

Ty p=03

280
260

*
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Imw,
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Figure 3. The relationships between the maximum values of Im(w"max) for the first mode
of vibration in the cylinder and the extension total length L¢ (for =0 and v=0)

Next investigations focused on consideration of effect of different kind of damping on
cylinder vibration. The dependency of real and imaginary parts of the first eigenvalue of
the hydraulic cylinder on extension total length Lc for selected values of damping
(»=0.02, v=0.5, ©=0.5) and for two values of loading are presented in Figure 4.
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Figure 4. The dependency of the first eigenvalue (Re(w™) and Im(w™)) for the cylinder on
extension total length Lc

The next figure (Figure 5) presents the change in the first eigenvalue of the hydraulic
cylinder depending on the external damping v and internal damping » without loading
and loaded with the force p=0.3 for selected length of cylinder Lc=3m. The
investigations were carried out for optimal constructional damping value x=0.5.

Figure 5. The dependency of the first eigenvalue (Re(w™) and Im(w™)) for the cylinder on
internal damping # and external damping v at x=0.5 and L¢ =3

4. Conclusions

This study presents a beam model of a hydraulic cylinder based on the system used in
mining props. The computations for the model of transverse and longitudinal vibrations
in a hydraulic cylinder with damping were carried out. The model of damping took into
consideration the internal damping of the beams that modelled a cylinder tube and a
piston rod, external damping and constructional damping that modelled motion
resistance in the supports. Substantial changes can be observed in the damped
frequencies Re(w1") and in degree of amplitude decay Im(w1") in the case of changes the
length of hydraulic cylinder Lc and coefficient of constructional damping u (Figure 2).
An increase in constructional damping causes the increase in the values of degree of
amplitude decay Im(w:”) to maximum values, followed by Im(w:")—0 where u—oo.
These substantial changes in both Re(w*) and Im(w*) are caused by considerable
intervention in the conditions of system fixation (in extreme cases, the fixation points are
changed from joint mountings into rigid mountings). The length of hydraulic cylinder
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extension for which the degree of vibration amplitude decay is the highest allows for
determination of optimum lengths of the hydraulic cylinder with respect to minimum
vibration amplitudes in the system (Figure 3). It can be concluded based on the
calculations that introduction of the internal and external damping causes only
insignificant changes in the first eigenvalue (Figure 5). The results presented in the study
help determine the geometric parameters and values of the coefficients that characterize
damping of the system for which the maximum degree of amplitude decay is maintained.
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Abstract

In this paper the results of numerical studies on natural vibration frequency and stability of a slender
supporting system loaded by external force directed towards a positive pole are presented. In the investigated
structure the failure in the form of crack is present. The boundary problem is formulated on the basis of the
principle of minimum action — Hamilton’s principle. The results in the non-dimensional form are plotted as the
characteristic curves in the external load — natural vibration frequency plane as well as the maximum loading
capacity is discussed.

Keywords: column, crack, natural vibration, instability, characteristic curves

1. Introduction

The studies on cracks which can appear in the supporting systems are very important.
The columns are classified as slender structures due to much greater length than cross
section area. In slender systems the unwanted phenomena like flutter instability,
buckling or non-axially applied load should be avoided. The presence of cracks reduces
loading capacity and has an influence on dynamic behavior of the structure that is why
an engineers must take care of this very dangerous problem before it is too late.

The investigations on cracks have been performed in recent years by inter alia Arif
Gurel M. [1], Bergman [2], Binici [3], Chondros [4], Dimarogonas [5], Sokot [6] and
Sokot and Uzny [7]. In the literature cracks are divided into always open and breathing
cracks. In the first type is a linear problems - static deflection of the structure is much
greater than an amplitude of vibrations while breathing cracks are the non-linear problem
- crack opens and closes in time as vibration amplitude dependent. The simulation of
cracks are mostly done as reduced cross section area or rotational springs. The studies
presented in [4] and [1] show that the use of rotational spring leads to the good results
accuracy (numerical simulation and experiment) despite their simplicity.

The presented in this paper slender supporting system is loaded by a force directed
towards a positive pole (comp [8, 9, 10]). This load is induced by a force with the line of
action described by two points. The points are: loaded end of the column and a pole —
point on the undeformed axis of the column. It is assumed that the positive pole is place
below the loaded end. If the point is localized above the loaded end the pole is negative.
The same nomenclature about the poles is used when the specific load introduced by
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Tomski [11 — 14] is taken into account. Depending on the location of the pole (positive
or negative) the different deflection angles of the loaded end can be obtained.

In this paper the results of numerical studies on a column subjected to external
compressive load taking into account a defect in the form of a crack are presented. The
discussed simulation data are concerned on external load - vibration frequency
relationship, loading capacity, transom length and crack size.

2. Boundary problem formulation

The investigated slender system is shown in the figure 1. Structure is loaded by external
force P which is placed on the free end of the column. The presented type of load is
called the load with a force directed towards a positive pole. The column is composed of
one element in which the crack is present. It is assumed that crack is open and the
rotational spring C is used as a discreet element in the simulations. The presence of crack
divides a structure into two elements as shown in the figure 1. In the common point the
continuity of transversal as well as bending moments and shear forces are met by means
of natural boundary conditions. The free end of a column is reinforced by a transom of
length Ic. The donations shown in the figure 1 are as follows: Ei— Young’s modulus, Ji —
moment of inertia, Ai — cross section area, pi — material density, C — rotational spring
stiffness (crack size), P — external load, I — transom length, m — loading head mass. The
total length of a column is | = I1+I,.

Rod (2)
Ez, Jo, Az, P2

Rod(1)
El, Ja, Alpl

X1 Wi(X:t)
AV >

Figure 1. Investigated system
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The boundary problem has been formulated on the basis of the Hamilton’s principle

5J%(T—V)dt=0 )

4

according to which the kinetic T and potential V energies are described as follows:

F & WY (W)
22’0'![ ot )dem[at @

;ZZ‘,EJ.II( oW, (x, t)] ix +ZC[ af()l(llt)X1 W, (x,,t )M] .\

i 0 6x2

1& H oW, (x,,t 1.1 2
_Pzzj( J xi+EPI—W2(I2,t)

i=1 o c

@)

On (1) the integration and variation operations are performed and finally inter alia the
differential equations of motion in transversal direction (4) are found:

EJ W, (x,t) + PW, (x,t) + pAW, (x,,t) =0 i=12 (4)

As well as the natural boundary conditions. The complete set of natural and geometrical
boundary conditions is presented by 4(a-h):

Wl(o!t)zwll (O,t):O Wl(ll't):WZ (0- ) W2“ Iz’t) 0
EIW," (I,,t)+ PW,'(I,,t)- EI,W," (0,t)+ PW, (0,t)=0
—EI W, (0,t)+CW, (0,t)-W,'(I,,1)]=0
EIW," (1, 1)-Clw (0,0)-w, (Il,t)]=
Ly, (nz,t)} — i, (1,,t)=0

c

(4a-h)

EIW," (I,,t)+ P{w; (I,,t)-

On the basis of solution of formulated boundary problem connected with free vibrations
characteristic curves on the plane: external load — natural vibration frequency for given
parameters such as crack size/location or position of pole can be calculated.

3. Results of numerical simulations

The results of numerical simulations are shown in the non-dimensional form:

PI2 cl |, EJ |
e =t ==l m —mpAll, = -
P T, T T, M T e = S
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The use of non-dimensional parameters does not require to specify the material
properties or cross section area.
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Figure 2. Characteristic curves of reference  Figure 3. An influence of transom length
structure at different transom length; d = on loading capacity at different crack
05, u=1my=0.15c=w size;d=0.5,u=1my=0.15
c= 106

Figure 5. Characteristic curves of at Figure 6. Characteristic curves of at
different crack size; d = 0.5, u =1, different crack size; d = 0.5, u =1,
mp = 0.15, Icg = 0.1 mp = 0.15, Icg = 0.25
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Figure 6. Characteristic curves of at Figure 7. Characteristic curves of at
different crack size; d = 0.5, u =1, different crack size; d = 0.5, u = 1,
mp = 0.15, Icg = 0.5 mp = 0.15, lcg = 0.99

In the figures 2, 3 an influence of the transom length on the natural vibrations and
loading capacity are presented. An analysis of the figure 2 allows one to conclude that if
no transom is used the column behaves like a fixed - pinned system. The use of short
transom results in change of the dynamic behaviour in relation to the reference (lcg = 0)
column. Furthermore the characteristic curve of the column with short transom has
initially positive slope what results in increase of the natural vibration frequency along
with increase of the external load magnitude. After reaching the highest natural vibration
frequency magnitude point the frequency decreases while the external load is getting
greater. This type of characteristic curve relates to the structures with divergence —
pseudo flutter instability type. The vibration modes are being changed along the
characteristic curves — see table 1 at ¢ = o a) p = 0.97, b) p = 14.6. As shown in the
figure 2 an installation of the transom leads to the reduction of vibration frequency by
reduction of transversal displacements of the free end of the column. An increase of its
length finally leads to the very rapid decrease of the loading capacity in the structure
without any defects and causes the change of instability into divergence one (refer to
figure 2 and 3). There exists such transom length above which the change of instability
can be observed. If in the column the crack appears its loading capacity is reduced. The
size and nature of this reduction highly depends on transom length. The greater the crack
and the longer transom the more smooth loading capacity reduction can be observed (see
figure 3). When the characteristic curves of the cracked system are taken into account
(figures 5 — 8) it allows one to state that at short transom (figure 5) an appearance of the
crack does not affect the initial shape of the investigated curves — the curves are
overlapping each other. Along with external load increase the curves are being shifted in
relation to the reference curve (continues one) and the loading capacity drop is observed.
The size of this reduction highly depends on crack size and transom length. At longer
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transom (figures 6, 7) the smaller crack causes the shift of the characteristic curve in
relation to the reference one. When the transom length is equal to the one of the
column’s (figure 8) the system has divergence instability type. The crack appearance
shifts the characteristic curves even at small size of the defect. It can be stated that the
crack does not affect the type of instability. The first and second vibration modes are
plotted in the table 1. The plots are done at different crack sizes of the divergence —
pseudo flutter system. Due to large number of the results the table 1 corresponds only to
one configuration of the investigated system. An analysis of the vibration modes can
easily lead to detection of the structure defect but it must cover at least first and second
modes.

Table 1. Vibration modes of the divergence — pseudo flutter system:
d= 0.5, u = l, mp = 0.15, ICB =0.1

c=0a)p=097,b)p=146 c=5a)p=0.97,b)p=14.6
a) a)
b) b) )
c=1a)p=0.97,b)p=8.75 c=0.1a)p=0.97,b) p=4.85
a) a)
b) N b) N

Taking into account the results from table 1 it can be concluded that the loading structure
by means of which the load by a force directed towards a positive pole is created has an
influence on the vibration modes. The size of an influence depends on crack size as well



Vibrations in Physical Systems Vol. 27 (2016) 331

as on the parameters of the loading structure which are present in the boundary condition
(4h).

4, Conclusions

In this paper the studies on natural vibration frequency and loading capacity of a column
subjected to a force directed towards a positive pole are done. Additionally an influence
of the defect in the form of crack is taken into account. On the basis of the results of
numerical simulations it can be concluded that:

- in the reference structure an installation of transom of greater length causes a
decrease of maximum loading capacity in relation to the shorter elements,

- in relation to transom length the divergence or divergence — pseudo flutter
characteristic curves can be obtained,

- presence of a crack causes a reduction of maximum loading capacity. This
change highly depends on transom length — the shorter transom the more rapid
loading capacity decrease can be observed,

- the crack affects the shape of characteristic curves but doesn’t change the type
of instability (divergence or divergence — pseudo flutter),

- at short transom the appearance of the crack doesn’t change the initial shape of
characteristic curve of divergence — pseudo flutter system,

- the crack presence and location can be found on the basis of the analysis of the
vibration modes. An analysis of the higher modes allows on to indicate the
crack even if it is unseen the lower modes.

The obtained results can be used in the structure health monitoring in order to find a
defect which can lead to the destruction of the column. The presented studies should be
expanded by an analysis of the crack location on the instability and natural vibrations of
the slender system as well as by the experimental verification of the proposed
mathematical model. Additionally the investigations of the parameters of the loading
structure at which the column is the least sensitive to the crack presence can be
performed.

Acknowledgments

The study has been carried out within the statutory funds of the Czestochowa University
of Technology (BS/PB-1-101-3020/11/P).

References

1. M. Arif Gurel., Buckling of slender prismatic circular columns weakened by
multiple edge cracks, Acta Mechanica, 188 (2007) 1 — 19.

2. L. A Bergman, J. Lee., The vibration of stepped beams and rectangular plates by
an elemental dynamic flexibility method, J. Snd. and Vib, 171 (1994) 617 — 640.

3. B. Binici., Vibration of beams with multiple open cracks subjected to axial force,
J. Snd. and Vib., 287 (2005) 277 — 295.

4. T.G. Chondros, A. D. Dimarogonas., J. Yao., A continuous cracked beam vibration
theory, J. Snd. and Vib., 215 (1998) 17 — 34.



332

5.

6.

7.

10.

11.

12.

13.

14.

A. D. Dimarogonas, N. Anifantis, Stability of columns with a single crack subjected
to follower and axial loads, Int. J. Sld. and Struc., 19 (1999) 281 — 291.

K. Sokdt, Linear and nonlinear vibrations of a column with an internal crack, J.
Eng. Mech., 140 (2014) http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000719.
K. Sokoét, S. Uzny., Instability and vibration of multi-member columns subjected to
Euler’s load, Arch. App. Mech. DOI 10.1007/s00419-015-1068-6.

A. Gajewski, Pewne problem optymalnego ksztattowania preta Sciskanego silg
skierowanqg do bieguna, Mechanika Teoretyczna i Stosowana, 2(8) (1970)
159 — 173.

A. Gajewski, M. Zyczkowski, Optymalne ksztaltowanie preta Sciskanego silg
skierowanq do bieguna, Rozprawy inzynierskie, 2(17) (1969) 299 — 329.

J. Szmidla, Free vibrations of a gamma type planar frame loaded by a follower
force directed towards the positive pole, Vib. in Phys. Sys., 24 (2010) 405 — 410.

L. Tomski, J. Przybylski, M. Gotegbiowska-Rozanow, J. Szmidla., Vibration and
stability of a cantilever column subjected to a follower porce passing through a
fixed point, J. Snd. And Vib, 214(1) (1998) 67 — 81.

L. Tomski, J. Szmidla., Free vibrations and stability of discrete systems subjected to
the specific load, J. Theoret. App. Mech., 45(4) (2007) 873 — 892.

L. Tomski, S. Uzny., Free vibrations and the stability of a geometrically non-linear
column loaded by a follower force directed towards the positive pole, Int. J. of Sol.
Struct., 45(1) (2008) 1 — 24.

S. Uzny., Free vibrations of an elastically supported geometrically nonlinear
column subjected to a generalized load with a force directed towards the positive
pole, J. Eng. Mech. ASCE, 137(11) (2011) 740 — 748.



Vibrations in Physical Systems Vol. 27 (2016)

Vibration of the Oscillator Exchanging Mass
with Surroundings

Roman STAROSTA
Poznan University of Technology, Institute of Applied Mechanics
ul. Jana Pawta II 24, 60-965 Poznan, roman.starosta@put.poznan.pl

Grazyna SYPNIEWSKA-KAMINSKA
Poznan University of Technology, Institute of Applied Mechanics
ul. Jana Pawta II 24, 60-965 Poznan, grazyna.sypniewska-kaminska@put.poznan.pl

Jan AWREJCEWICZ
Technical Universityof of £odz, Department of Automatics and Biomechanics,
ul. Stefanowskiego 90-924, £4dz, jan.awrejcewicz@p.lodz.pl

Abstract

Vibration of two simple open systems (namely the linear mass-sprins oscillator and the mathematical
pendulum) are investigated. During the motion, the body absorbs matter through its boundary. In both cases,
mechanism of mass absorption is modeled as a perfectly 'inelastic' collision and constant rate of mass change is
assumed. The paper is focused on the influence of mass change on the kinematic aspects of oscillations.

Keywords: vibration of open systems, mass variable, reactive force

1. Introduction

Mass is generally not conserved when a supply of mass is present, or when open systems
with a flow of mass through their surface are to be considered. Mass of the mechanical
system then is said to be variable. In such a situation, the general methodological
approaches of mechanics have to be properly modified. In solid mechanics, the systems
with a variable mass appear as the result of a problem-oriented modelling, e.g., when
mass is expelled or captured by a structure or machine. The finite discontinual mass
variation in a very short time was not of special interest for a long time and was not
intensively discussed. Meshchersky was the first who considered the velocity change of
a translatory moving body during step-like mass variation [1]. The motion of the
continuously mass variable systems is much more investigated due to its application in
rocket theory [2] and astronomy [3]. The motion is described with differential equations
with variable parameters. For the case when the mass is varies continuously in time, the
influence of the reactive force on the motion is investigated by Cvecitanin and
Kovacic[4].

Mathematically the reactive force is the product of the mass variation function and
the relative velocity of mass separated from or added to the particle. Usually, two special
cases were considered: the first one for zero relative velocity and the second for zero
absolute velocity of separated or added mass. In case of zero relative velocity, i.e. when
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the absolute velocity of the separated or added particle is equal to the velocity of the
basic particle, the reactive force is also zero.

Based on the dynamics of the particle with time-varying variable mass and the basic
laws of dynamics, the theoretical consideration of the dynamics of the body with time
variable mass is presented in this paper. Two mechanical systems are considered: one
dimensional oscillator and a mathematical pendulum.

The process of the mass increase is considered as the perfectly inelastic impact of a
small mass on the main body. Based on the general equations of motion, the
mathematical model for the oscillatory motion is formed.

2. Linear oscillator

In this section the open mechanical system is considered which absorbs matter from the
surroundings. Its physical model is presented in Fig.1.

. dm

\d‘\\‘u
TN

m

N

Figure 1. One-dimensional linear oscillator exchanging mass with the surrounding

Let us assume that the mass m(t) of the body changes with time proportionally to the
area of its surface with a constant rate — I'. Mass change is described by the evolution
equation
mt)=T (1)
and at the beginning m(0) =m,.
In this way the mass of the body changes in time linearly
m(t)=m,+It, t>0. 2
The added mass dm drops at the body with the absolute velocity u (see Fig.1).
The momentum principle in the case of mass exchanging body is
m(t)V = F+m(t)u—v), 3)
where F is the resultant force, v velocity of the body and u velocity of the added
particles of mass dm. In the case of free vibration, the mathematical model of the one-
degree-of-freedom oscillator with time variable mass is
(my +tD)x(t)=—k x(t)+ T (u, —x(t)), (4)
Where x(t) is the coordinate describing the position of the body, u, =|u|sin(«) is the x —
component of the velocity u, mq is the initial mass of the body and k denotes the stiffness
coefficient.
After rearranging, the equation of motion (4) takes the form
(my +tD)%(t)+Tx(t)+k x(t)=Tu,, (5)
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The second term on the left hand side of (6) can be recognized as a damping of viscous
type, and a constant force occurs on the right side.
The equation of motion (5) is supplemented by the initial conditions

x(0)=%,, X(0)=V,. (6)
The analytical solution of the problem (5) — (6) is as follows

k fmo k fmo r
x(t):AJ{Z\/; ?+t]+BYO[2\/; ?+IJ+kux, 7

where J,(.) and Y,(.) are the Bessel functions of the first and second kind, respectively,

A and B are the unknown constants which fulfil the following equations resulting from
initial conditions (6)

[km [km r
AJO(Z 1_‘—20}4' BYO(Z I_‘—ZOJ'FKUX:XO (8)
k km k km
B LIV PR L Y LV P LI
mo 1[ 1—w2 J mo l( l—~2 J VO (9)

Some results of calculations are presented for the chosen values of parameters mg=1
kg,I'=0.01kg/s,k=10N/m, u,=2m/s, and initial values: Xo=0.1 m,vo=0m/s.
The solution (7) is presented in Fig.2.

X
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Figure 2. Time history of the body motion

0.10

=0
0.08

0.06
0.04

=0
0.02

0.00 1
0 500 1000 1500 2000

Figure 3. Amplitude vs. time for constant and varying mass oscillator
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The system oscillates around the equilibrium state given by the particular solution
u,L'/k . The shift, in the time history in Fig. 2, appears due to the spring extension

caused by the constant momentum supply of the added mass. The amplitude decreases in
time while the mass of the oscillator grows, which is illustrated in Fig. 3.

The amplitude — frequency spectra, obtained using the discrete Fourier transform for
the system with constant and varying mass are shown in Fig. 4.

A A
0.10 0.010
0.08 0.008
0.06 0.006
0.04 0.004
0.02 0.002
0.00 JL w0.000 w
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Figure 4. The amplitude spectra of the oscillations with constant and variable mass

The amplitude spectra in the case of mass exchange and those with constant mass are
quite different. This effect is connected with variation of the self-frequency of the system
in time.

3. Pendulum exchanging mass with surroundings

The problem of motion of the pendulum which exchanges mass with surroundings is
investigated in this section. The process of mass exchanging is the same as described
above. In this case, the governing equation of pendulum motion is

(my +tT)a(t) + T gp(t) +uT'Lsin(a— () )+ g(m, +tT)Lsing(t) =0 (10)

with the initial conditions
9(0)= . 0)=a,, (11)
where L and mo are length of the pendulum and its initial mass respectively.

The problem (10) — (11) is solved only numerically due to geometric nonlinearities in
considered problem described by Eq. (10).

Results of two simulations concerning small and large oscillations are presented
hereafter. Calculations have been made for the following values of
parameters:mo=1kg,I'=0.01kg/s,u=2m/s,L=0.7m anda=n/3.

In Fig. 5 time histories of two regimes of motion are presented. One of them, caused
by the initial values ¢o=0.1, wo=0,is related to the small oscillations and the second one,
caused bypo=1.3, wo=0, concerns the large oscillations.
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Figure 5. Time histories of small (left) and large (right) oscillations

The character of vanishing amplitude of the pendulum which absorbs mass in
comparison to constant amplitude in the case of pendulum with constant mass is
presented in Fig. 6.
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Figure 6. Amplitude vs. time for constant and varying mass pendulum

In Fig. 7 the amplitude-frequency spectra for the case of small and large oscillations are
presented.
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Figure 7. Amplitude spectra for the case of small and large oscillations

Similarly as for the linear oscillator the amplitude spectrum is strongly affected by the
effect of mass variation.



338

4. Conclusions

Two open systems with one degree of freedom have been investigated. One of them
described by the linear differential equation and the second one described by the
nonlinear equation. Nonlinearities in the pendulum equation are of geometrical type. In
the governing equations some time depending coefficients appear due to changing mass
of the system. One additional term has the same form as viscous damping, and appears
in the both discussed structures. Other additional term can be recognized in the linear
oscillator as a constant force, whereas in the pendulum its counterpart term is time
dependent and nonlinear.

The analytical solution of the initial value problem describing motion of the linear
oscillator of variable mass has been achieved. The pendulum oscillation might have been
analyzed only numerically due to nonlinearities.

The mass increase causes decreasing amplitude of oscillation in both tested
structures. The mass exchange with surroundings affects the amplitude-frequency
spectra both for the linear oscillator and pendulum.
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Abstract

Multilobe journal bearings with the sleeve of the 2-, 3 or 4- sliding lobes of cylindrical profile are applied in
different types of rotating machinery. The design of such journal bearings, the number of lobes and oil grooves
improves thermal state of bearing at higher speeds and the stability of operation.

The paper describes the results of the calculations of dynamic characteristics and determination of stability
ranges of simple symmetric rotor operating in the offset types of multilobe journal bearings. The dynamic
characteristics of supporting bearings are defined by four stiffness and damping coefficients of oil film. The
iterative solution of Reynolds, energy and viscosity equations allows the obtaining of the load capacity of
bearings and the required dynamic coefficients of oil film. Adiabatic, laminar oil film and the static
equilibrium position of journal were assumed. The oil film pressure, temperature, viscosity fields and the oil
film forces were the basis of the bearing dynamic characteristics and stability determination.

Keywords: multilobe, offset journal bearings, stability of rotor

1. Introduction

The stability of rotor operating in journal bearings can be determined on the basis of
supporting bearings dynamic characteristics expressed by the stiffness and damping
coefficients of oil film [1-6]. The multilobe bearings, mostly used in slightly loaded,
high speed rotating machines are characterised by good damping of vibrations and good
stability of operation [1-3]. Exemplary types of such bearings are the 2- (offset-halves)
[6], 3-and 4-lobe offset bearings [7-11] that are applied in the turbine gearboxes [6].

The design of 2-, 3- or 4-lobe journal bearings, the number of lobes and oil grooves
improves the thermal state of bearing and stability of operation [1-3]. These multilobe
journal bearings can be manufactured as the bearings with cylindrical sliding surfaces
[5], with pericycloid profile of bearing bore [7,8] or as the offset ones [6,9].

Typical multilobe (classic) journal bearing is composed of single circular sections whose
centres of curvature are not in the geometric centre of the bearing. The geometric
configuration of the bearing as a whole is discontinuous and not circular. The multilobe
pericycloid journal bearings (“wave bearings” [7,8] ) is characterised by continuous
profile and multihydrodynamic oil films on the journal perimeter.

The characteristic feature of multilobe, offset journal bearings are that the circle
inscribed in the bearing profile touches the end of the convex gap of the bearing [5,6] in
the direction of journal rotation (Fig. 1).

The paper presents the effect of sleeve profile on the stability of simple symmetric,
elastic rotor operating in 2-, 3- and 4-lobe offset journal bearings The oil film pressure,
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temperature and viscosity fields that are required for the calculations of the bearing static
and dynamic characteristics, have been obtained by iterative solution of the Reynolds',
energy and viscosity equations. Adiabatic, laminar oil film and the static equilibrium
position of journal were assumed. The dynamic characteristics of journal bearing are the
basis of stability ranges determination [1-3]. All the stiffness and damping coefficients
were calculated by means of perturbation method [1,6].

2. Stability of elastic rotor

Considered multilobe, offset type journal bearings are presented in Fig. 1. Their
geometry can be found in [5,6].

Figure 1. Lay-out of the 2-, 3-, and 4-lobe offset journal bearings; Ob, Oj, O1, O2 — centres of
bearing, journal, upper and bottom lobe (2-lobe offset bearing), 1 + 4 number of lobes

The journal bearing static and dynamic characteristics for adiabatic or diathermal
model of oil film can be determined by the numerical solution of the oil film geometry,
Reynolds, energy, viscosity [2,6] equations. The stiffness gik and damping bik
coefficients allow the determination of stability ranges [1-8].

The equations of motion for the journal and the centre of elastic shaft are given in
matrix form by Eqn. (1) [4].

M - %+B- %+C - x=4c0s wt+bsinet (1)

where: M, B, C —matrices of mass, damping and stiffness, a,b - coefficients of dynamic

constraints, w- angular velocity, (s?).

After transformations of Eqgn. (1) the real and imaginary part was obtained [1,4]. The
stability of elastic rotor-bearing system is analysed based on the following characteristic
frequency equation of 6-th order with regard to (A/w) [1-6].

Cs A8+ Cs 7\.5+C4 A4 C3 A3+ Co A2 +Cci A+cp =0 (2)
1.
2. Solution assumption for Eqgn. (2) is A = - u; + ivj (1<j<6), with u as damping and v
representing the self-vibrations. Stability of the linear vibrations of system occurs only
when all real parts of eigenvalues A; are negative. The coefficients co through cs in Eqn.
(2) are the functions of ag , bo , ik, bik.
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Co + cg = f(ao, bo, Gik, bik) (3)

where: ag - ratio of angular velocity o to the angular self-frequency of stiff shaft,
a=(w/ a)c)z, o ¢ - angular self frequency of stiff rotor, @ ¢ =vc*/m  bo - ratio of
Sommerfeld number to the relative elasticity of shaft, bo =So/cs , ¢* - shaft stiffness, (N
m), ¢ - relative elasticity of shaft, c,= /AR =g /(a)cz - AR), f- static deflection of shaft,
(m), F.- resultant force of oil film (N), Fsa - Static load of bearing, (N), g - acceleration
of gravity, (m s2), gik - dimensionless stiffness coefficients, gik = SO(AR/Fstat), ik , -
stiffness coefficients, (N/m), bi- dimensionless damping coefficients, bik =SO0(AR/Fstat)
o-b’ik , b’ik - damping coefficients, (N s/ m),m - mass of the rotor, (kg), So - Sommerfeld
number, So=F ~1//2 /(L-D-n-w), Sok -critical Sommerfeld number, Sox = So /o

Coefficients of characteristic Eqn. (2) depend on the stiffness and damping coefficients,
Sommerfeld number So, relative elasticity of shaft cs and the ratio of angular velocity to
the critical angular velocity of stiff rotor. The expression determining the ratio of
boundary angular speed €, to the critical wc one, and the stability of rotor [1-4], is:

2 2
(&j -1 ARy ; (4)
@ 1+b0.% A?+Ap-Ag- Ay +Ag-AS

1

where: Ao, A1, Az, As, A4, consist the stiffness gik (i=1,2 and k=1,2) and damping bix
(i=1,2 and k=1,2) coefficients [1-6], %, - boundary angular velocity (s?)

3. Results of calculations

The stability of simple elastic, symmetric rotor (Jeffcott rotor) was determined with the
use of the calculated dynamic characteristics The calculations included the non-
dimensional load capacity Sp and journal displacement ¢ as well as the static equilibrium
position angles owq, t00. The offset journal bearings under consideration have the length
to diameter ratio L/D=0.6, L/D=0.75 and L/D=0.8. Different lobe relative clearances
(for the 3-lobe pericycloid bearing its relative eccentricity was A* = 0.25 [6,7] ) and
rotational speeds were assumed. The bearing relative clearances werey = 0,9%o, v =
1.5%0 and i = 2.7%o. The feeding oil temperature was T¢=40°C and the corresponding
thermal coefficients Ky [2,8] were 0.139, 0.215 and 0.315; Ky =
w-ng/(Ct-p-9-Ty ~y/2) where: c; - specific heat of oil, (J/kgK), g - acceleration of
gravity (m/s?), 1o - dynamic viscosity of supplied oil (Ns/m?), p - oil density, (kg/m?), v
- bearing relative clearance, (%o).

Exemplary results of the calculations of dynamic characteristics and stability are shown

in Fig. 2 through Fig. 15. The stiffness gix and damping bix coefficients are given in Fig.2
through Fig.7. The stability ranges can be observed in Fig. 8 through Fig. 15.
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Fig. 2 and Fig. 3 show the stiffness and damping coefficients of the offset-halves bearing
with the lobe relative clearance ys =2. The largest values have the coefficient g, for the
Sommerfeld numbers over 0.44. The values of the coupled damping coefficients b1, and
b2 are very close (e.g. Fig. 3). The damping coefficient bi; is larger than the ones bi
and by; in the range of Sommerfeld numbers So from 0 to about 0,6. At increasing values
of Sommerfeld numbers, the coefficient b1; is smaller than the coupled terms b1, and by
(Fig. 3).

6 T ’|( - /(
/< f bik —— b11 1€/ﬁ>>‘.‘
5 -+ —B— by, iy
e =40°
1=40° 4 b T
7 —%— b. T
o 2 | ¢ Up=075
3 w=0,9°%,, _—
| ve=2 // =1800 rpm
e ? N K I 0 215I
So 7=,
1 xﬂv)( /3_
P '*7"’ So | p
0 - .
12
0 02 04 06 08 1 1,2
Figure 2. Stiffness coefficients of Figure 3. Damping coefficients of
offset-halves offset- journal bearing halves journal bearing

The stiffness and damping coefficients of the 3-lobe offset journal bearing are presented
in Fig. 4 and Fig. 5. The bearing length to diameter ratio L/D=0.8, clearance ratio y =
1.5 %o and lobe relative clearance ys=2 were assumed. Heat number Kt was K1=0.315.
The largest values have the coefficients g2 and ba. but the smallest gi» and b2 (Fig. 4
and Fig.5). The values of the coupled damping coefficients b1, and b2; are very close and
b1 is larger than the coupled coefficients (Fig. 5).

The stiffness and damping coefficients of 4-lobe offset bearing are given in Fig. 6 and
Fig. 7. The largest values has the stiffness coefficient g1 and the smallest value the
coefficient g1 (Fig. 6); In the range of Sommerfeld number from nil to about 0.12 the
coefficient g2, is larger than gi» but at higher Sommerfeld numbers there is reverse
dependence. The damping coefficient by, is the largest and the coupled coefficients have
the smallest, equal values, i.e. bio=b2: (Fig. 7).

The stability ranges of symmetric rotor operating in 2-lobe offset bearings with the lobe
relative clearance ys =1 (Fig. 8 - cylindrical sliding surfaces) and ys =2 (Fig. 9 - lemon
shaped sliding surfaces) show the difference. The rotor running in the bearings
characterized by the value of lobe relative clearance ys =2 shows larger range of stability
(e.g. Fig. 8 and Fig. 9).

Exemplary results of stability ranges that were obtained for 3-lobe offset journal bearing
at different values of lobe relative clearance ys and at different relative elasticity of shaft
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Cs are shown in Fig. 10 and Fig. 11. At the values of the relative elasticity of shaft under
consideration there is an increase in the stability at the increase in the lobe relative
clearance ys (e.g. the curves for cs=0.1 in Fig. 10 and Fig. 11). The coefficient tg t in the
range of larger critical Sommerfeld numbers Sqk is the measure of stability properties of
bearing [2,3]. Larger values of angle T mean the larger range of stability, i.e. at assumed
load of bearing there is higher boundary of stability Qu/ o ¢ [2,3].

For the comparison task, the stability ranges of rotor operating in 3-lobe pericycloid
journal bearing and in classic 3-lobe bearing are shown in Fig.12 and Fig. 13. It results
from the comparison that the 3-lobe offset bearing has better stability properties than the
3-lobe pericycloid and 3-lobe classic bearings.
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Figure 4. Stiffness coefficients of 3-lobe Figure 5. Damping coefficients of 3-lobe
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Figure 6. Stiffness coefficients of 4-lobe Figure 7. Damping coefficients of 4-lobe
offset journal bearing offset journal bearing
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4. Conclusions

Dynamic characteristics including the stability ranges of the chosen types of offset

bearing with different sleeve profiles and on the assumption of adiabatic model of oil

film, were obtained by means of perturbation method. Investigation that were carried out

at assumed geometric and operating parameters, various relative shaft elasticity values,

allows to draw the following conclusions:

1. Static and dynamic characteristics of the considered journal bearings of different
sleeves profiles can be obtained from developed program of numerical calculations.

2. The offset type multilobe journal bearings show better stability than the classic
multilobe bearings.

3. Anincrease in the relative elasticity of shaft increases the range of rotor stability.

4. The results of developed program form the input data for the investigation and
analysis into the stability of different types of multilobe journal bearings.
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Abstract

The present study shows the experimentally and numerically determined response of a single timber-frame
house wall panel filled with polyurethane (PU) foam under dynamic loads. The harmonic tests were conducted
for the following frequencies: 0.5 Hz, 1.0 Hz, 2.0 Hz and 5.0 Hz for various values of the specified
displacement. Based on the results of the comparison between the experimental tests and the numerical
analyses, the numerical model has been verified to be correct. The model can be used in further analyses so as
to investigate the behaviour of the whole building under dynamic loads, including seismic and paraseismic
excitations. Using such a numerical model, it will be possible to evaluate the improvement in resistance against
dynamic loads for the case when PU foam is used instead of mineral wool.

Keywords: timber-frame house, earthquake resistance, dynamic loads, numerical model

1. Introduction

The use of timber-frame houses is very popular in many places around the world. The
resistance of small building, including wooden houses, under seismic and paraseismic
excitations (see, for example, [12, 11]), in terms of cost effectiveness is one of the most
attractive aspects. The possibility of improving the dynamic resistance in existing houses
is another positive and desired issue (see [5, 2]).

Correctly designed structures are marked by good resistance against dynamic loads,
for example extreme earthquakes [9]. OSB/3 and MFP waterproof boards are used as
slab, wall and roof sheathing. Those boards increase the structural stiffness of the
building due to their relative high strength and because of their good resistance against
shear forces and they reduce the forces transmitted to the structure during dynamic loads
[9, 10, 11].

With the experience gained in North America and Japan, it can be stated that wooden
houses are able to survive the catastrophic earthquake with little damage. In many cases,
extremely effective design solution is to use a plywood wall panels. This material has a
beneficial effect on the level of shear forces due to stiffening effect [5, 6]. Structures
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with such walls panels are relatively rigid and therefore resistant to dynamic actions,
such as earthquakes, paraseismic excitations or impact loads [7, 1].

The use of thermal insulation in form of wool in sheathed timber-frame elements
shows almost none influence on the timber-frame in terms of dynamic resistance [8].

The purpose of this article is to present the results of experimental studies of the wall
panel of a skeletal wooden building of traditional technology filled with polyurethane
(PU) foam, that have been adopted to create a whole building numerical model. This
model was subjected to horizontal forces so as to verify the behaviour of a PU foam
filled building in comparison to a mineral wool filled structure.

2. Experiment setup

The experimental setup consisted of especially designed steel frame, in which the tested
specimen were mounted - see Fig 2 and Fig. 3. A PARKER dynamic actuator was used
to generate harmonic excitation. For the purpose of this study, a typical timber frame
house wall panel was built with dimension as shown in Fig. 1. The frame was covered
with OSB3 sheaths and then the space inside was filled with PU foam. This frame was
then mounted into the previously fabricated steel frame and connected with the actuator.

-
0w e [N i

Figure 1. Example of real size wooden house with basic element (shown in red)

~ “ELEMENT C

. ELEMENTB
50x50x4mm

ELEMENT A

Figure 2. Steel frame used in the experiment
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3. Analysis Description

During the test, the specimen has been exposed to harmonic loads with the following
frequencies: f=0.5Hz; f=1.0Hz; f=2.0Hz;f=5.0Hz and different displacements.
During the tests, force has been recorded with a force meter KMM40 with a range up to

50 kN as well as

the resulting displacement (for the induced dynamic displacement) was

recorded by a laser meter optoNCDT1302 with a range of +-100 mm (see Fig 3).

displacement sensor

force direction

7.4 / =
774>//7 bIOCkade

Figure 3. Experiment setup details (see [12])

The test was conducted with traditionally constructed wall panels, as described
before. The panels have been fixed at one end, while the other end was subjected to
displacement from 8 mm to 75 mm. The examples of the results, for the frequency of
2 Hz, are shown in Fig. 4 and Fig. 5.

force [kN]

8 T T - T

6

displacement [mm]

Figure 4. Hysteresis loop at 2 Hz (PU foam filling)
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force [kN]

displacement [mm]

Figure 5. Hysteresis loop at 2 Hz (mineral wool filling)

The tested specimen filled with PU was able to withstand higher frequencies as well
as a larger force in comparison to a wool filled wall panel, where a frequency of 2 Hz
and a displacement of 28 mm caused the OSB3 sheathing to break from the wood frame
as well as cracking in the connection in the wood frame itself (see [12]).

4. Numerical Model of the Polyurethane Foam Filled Panel

The program RFEM was used to create a numerical model of the tested panel (see Fig.
6). The geometry as well as the material characteristics and support conditions have been
considered to be identical as in the experimental specimen. Shell elements have been
used with material properties as for C30 wood. The thickness of the shell elements was
45 mm for the frame parts and 18 mm for the OSB3 sheaths and one shell with a
thickness of 145 mm for the mineral wool filling. Polyurethane foam material
parameters (see Fig. 7) have been established through the experimental tests. The
support conditions have been modelled as shown in Fig. 6 — all translations were fixed
but all rotations were free. Those support conditions have been considered as best
approximation of the conditions of the experimental setup. The numerical model was
calibrated by changing only the stiffness of the OSB3 sheathing in order to reflect the
character of the connection between the frame and sheathing. In order to use damping,
the following formulas were used in order to obtain the damping coefficents:

a0 = 2{ananl(an + @) 1)
a1 = 2d(an+ an) )
where:
ao — Rayleigh’s damping factor,
a1 — Rayleigh’s damping factor,
¢ — damping coefficient obtained by experimental investigations [%],
w1 2— angular frequency [rad/s].
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5

1.200

Figure 6. Numerical wall panel model

Color Description

l poliurethane|foam

Material Constants

Modulus of elasticity

Shear modulus

v
o o

Poisson’s ratio e [
Specific weight 7. [kN/m?]
Coefficient of thermal expansion w [0
Partial safety factor Thit 5]

5. Numerical Analysis

Figure 7. Polyurethane foam parameters

The created numerical model was tested in order to verify its accuracy by subjecting it to
the same loads as applied in the experiment and by comparing the resulting
displacements. For example, for the hysteresis loop received at the frequency of 2 Hz,
the resulting force was 3.30 kN and the displacement was U =6.4 mm (see Fig. 8).
Exactly the same results were obtained from the numerical analysis (see Fig. 9 and Fig.

10).
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Figure 8.

3.3kN — 6.4mm

force [kN]

8 5 4 2 0 2 4

displacement [mm]

Hysteresis loop — maximum displacement and corresponding force

= 145.0 mmpm

Figure 9. Deformation of the numerical model
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4.2 Modes - Deformations

Elel N S e s | P (E

B | c | D E | 3 1 G

Node Displacements [mm] Rotations [mrad]

No. Jul ux uy uz ox @ oz
0.0 0.0 0.0 [1X1] 28 0.0 0.0
2 759 0.0 79 0.1 039 0.0 0.0
0.0 0.0 0.0 0.0 28 0.0 0.0
4 0.0 0.0 0.0 0.0 2.4 0.0 0.0
75 0.0 759 01 0.5 0.0 0.0
[: 75 0.0 75 0.1 0.8 02 1.2
7 75 0.0 75 0.1 0.8 0.2 1.1
a8 75 0.0 79 0.1 0.8 0.2 12
9 75 0.0 759 -0.1 0.8 02 -1.1
10 0.0 0.0 0.0 0.0 2.8 1.4 -1.3
1 0.0 0.0 0.0 0.0 2.7 -1.5 -1.1
12 0.0 0.0 0.0 0.0 2.8 -1.4 a1
13 0.0 0.0 0.0 0.0 -2.7 1.5 1.1
14 0.0 0 0 0.0 0.0
15 0.0 0.0 0.0 0.0 23 0.0 0.0
16 6.4 0.0 6.4 0.1 0.8 0.0 0.0
17 6.4 0.0 64 0.1 0.8 0.2 11
18 6.4 0.0 6.4 0.1 0.8 02 0.9
19 6.4 0.0 6.4 0.1 0.8 02 -1.1
20 6.4 0.0 6.4 0.1 0.8 02 0.9

_ || Results - Summary | Nodes - Support Forces | Modes - Deformations | Surfaces - Local Deformations | Surfaces - Global Defor

Figure 10. Results of the numerical analysis indicating the same displacement value as
during experimental test

6. Conclusions

Based on the results of the comparison between the experimental tests and the numerical
analyses, the numerical model has been verified to be correct. On this basis, it can be
concluded that not only the material properties and characteristics but also the support
conditions have been properly modelled. Therefore, the numerical model can be used in
further analyses so as to investigate the behaviour of the whole building (see Fig. 11)
under dynamic loads, including seismic and paraseismic excitations. Using such a
numerical model, it will be possible to evaluate the improvement in resistance against

dynamic loads for the case when PU foam is used instead of mineral wool.

Figure 11. Numerical model of the whole wood-frame house
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Abstract

The results of theoretical and numerical studies concerning continuous system subjected to the follower force
directed towards the positive pole, locally resting on Winkler elastic foundation are presented in this paper.

The load by follower force directed towards the positive pole is guaranteed by loading structure built of
loading and receiving heads made of elements of circular outlines. Abovementioned heads are real
constructions, used in experimental research of continuous systems.

Taking into account total mechanical energy of the system, the Hamilton’s principle and the small parameter
method, the differential equations of motion and boundary conditions of the considered column were
determined. On the basis of a solution of the issue of dynamics of the system, an appropriate formulas were
formulated and then the trajectory of curves on the plane frequency of free vibrations — the value of external
load were calculated taking into considerations physical and geometrical parameters of the structure, including
parameter of loading head and parameters describing Winkler elastic foundation.

Keywords: frequency of free vibrations, Winkler elastic foundation, slender systems

1. Introduction

The issue of stability and free vibrations of slender geometrically nonlinear bar
systems [1] lying on the Winkler elastic foundation is the subject of many scientific
publications, where an influence of elastic base parameters on the value of bifurcation
load and the scope of changes in the frequency of free vibrations was analysed.

Taking into account the physical models, the following types of arrangement of
elastic foundation are defined:
—along the full length of each rod of the system (total foundation — linear systems [2]),
— along the full length of selected rod of the system (partial foundation — geometrically
nonlinear systems [3]),
— at a certain distance along the axis of the system (local foundation for the rod- linear
structures [4] or for the selected rods - geometrically nonlinear structures [5]).

2. The Physical Model of the System

The physical model of geometrically nonlinear column (NW) subjected to the follower
force directed towards the positive pole locally resting on the Winkler elastic foundation
is presented in Figure 1.
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The column (Figure 1a) is built of two external prismatic rods @,® of length I, and
I, and one prismatic internal rod mounted symmetrically in relation to the external rods.
In order to model the local elastic foundation of stiffness K, the internal rod was divided
into three segments @,@,® of constant flexural stiffness and lengths ls s s
respectively.

Taking into consideration presented description, the following relations relating to
the lengths I; (i = 1...5), distribution of the flexural stiffness (EJ)i, compressive stiffness
(EA)i, and mass per unit length (0A); are assumed:

— in the case of external rods of the system:

=1, )

(E3), = (BJ), (2

(EA), = (EA), ©)

(pA), = (pA), ()

— in the case of the internal rod:

L=l =Il3+l4+1s (5)

(B)); = (B), = (B))s (6)

(EA); = (EA), = (EA)s @)

(PA); = (PP, = (PA)s (8)

The internal rod, which is supported on the elastic foundation (member @) is
characterised by lower flexural stiffness (EJ); as compared to the flexural stiffness of
external rods of the column, that is:

(B3)s < (B3) + (ED), ©

Rods @©,@,® are mounted rigidly (cantilevered) (xi = X2 = x3 = 0). The free ends of
the rods ©,@,® (x1= 1, X2 = I, X5 = Is) of the system are connected by the element of
concentrated mass m that ensures the equality of longitudinal and transverse
displacements as well as the equality of angles of deflection of these rods. The follower
force directed towards the positive pole (see Figure 1a) is realised by loading ® and
receiving heads @,® of circular outlines (constant curvature) [6]. The direction of
external load P @ passes through a stationary point O lying on the non-deformed axis of
the column and is tangential to the line of deflection of free end of the system. It is
assumed in this paper that the elastic foundation does not effect the symmetry of the
structure. The free end of the column is connected with the receiving head by the
infinitely rigid element ® of length Iy that is a part of loading structure. Consideration of
this element jest necessary due to real constructional solution of head realising the load
[7]. The flexural stiffness of abovementioned element is many times higher than the
flexural stiffness of the essential system. The pole O is located at a distance of (R-lo)
from the free end of the column.
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Figure 1. a) The physical model of geometrically nonlinear column (NW) locally
resting on Winkler elastic foundation,
b, ¢) The physical model of rods of the geometrically nonlinear column

Taking into account the elastic foundation, the following parameters describing a
location and a size of the elastic base relative to the total length of the analysed structure
were determined:

L 2 _ly (10)
¢ Il Il $ Il Il

Assuming that the sum of the total flexural stiffness of the geometrically nonlinear
system (NW) is constant:

ol

3
> (BJ), = idem, (11)
n=1
the asymmetry of flexural stiffness coefficient 4 was defined in the form:
EJ
u:A—LJL—f (12)

(E3); + (E3),
Taking into consideration the physical model of the column, a components of kinetic
energy and potential energy were specified. The kinetic energy T is a sum of the kinetic
energy of particular rods and the kinetic energy of concentrated mass m :

2 2
138 L[ AaWi(x,t) 1 W1 (l,,t)
T=2> | —— 2 [ d o+ =m| —2 1
PG X +oml —— (13)



358

The components of the potential energy V refer to the energy of bending elasticity, the
potential energy resulting from external load and the energy of elastic foundation:

2

18 L a2 w; (x t) [ ow .<x t) aui(x,,1)
EZ M dx += Z(EA)I +— dx +

v | (14)

2
1 OW, (X, t 1 ¢
+PU1('1»U+EP(R*|0){716(1 )} +3 {(Wux )) de,

Xy

3. Problem Formulation, Differential Equations of Motion, Boundary Conditions

The issue of the stability and free vibrations of the geometrically nonlinear column was
formulated using the Hamilton’s principle [6]:

tZ
3[(T-V)dt=0 (15)
Y
where: 0 — variation operator.
Using the formulas (13) and (14), after computation of the variation of the Kinetic
and potential energies, the following equations were obtained:
— the differential equations of transverse displacements
~4 2 2
W, 05,0 Wéx(?x“t) vgy Wi D (?X"t) + (o, T W(‘?:zx“t) - 0,j=1235 (16)

(E),

(ED), (17)

+ (PA),

' Wa (¥, t W4 (%, t
(;x(“4 ) 4 s, ;X(z“ ) + KWy (%4, 1) = 0

Wi (X4, )
i ; ot

where longitudinal forces in external rods and particular members of the internal rod are
defined as:

ox; 2\ o
— the equations on motion in the longitudinal direction:

: {au .0 1(aw x, t))} o i_is

2
Si (1) = — (EA) {GU‘ 0 1 (o, (Xi’t)) } i—15 (18)

(19)

Double integration of the formulas (19) over an adequate ranges and taking account
of the relationships (18) allowed the determination of the formulas describing the
longitudinal displacements of the each rod of the system:

2
) 1% Wi(x;,1)
Ui (%, -U;i O, = - ( X; 2_([( J dx; (20)

OX; OX; 2 0X;
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Known geometrical boundary conditions of the considered structure are written as
follows:

Wi (0,t) =w, (0, ) =w3(0,t) =U;(0,t) =U, (0, 1) =U3(0, 1) =0
Wl (Ila t) = W5 (IS’t)a WZ (|25 t) = W5 (IS’ t)a
Ur (I, 1) = U2 (I, 1) = Us (s, 1),

oWy (Xl,t)| _ OW» (Xz,t)| _ OW3 (X3,t)| -0,
0%, - OXy - 0X4 Yot
an (Xl’ t)| — aWS (XSst)| , aWZ (X2’t)| — aWS (XS’t)|
X X =h s %5 =lg 2 X2=lp s |><5:|5 (21-35)
Ws(lsz,) =W, (0, 1), Wsls,t) =Ws(0,1),
Us(3,) =U4s(0,1), Usls,t) =Us(O 1),
w06 0| W] aWeGwd| L aWs )
s |><3:I3 Xy X3 =0 X4 X4=l4 O%s x=0
Wl(lla t) = (R - |0)—6W16(X1’ t)
X1 X =h

Substituting of conditions (21-35) into the equation (15) allowed to determine remaining
natural boundary conditions that are expressed by the following formulas:

+ (EJ)SiaSW;Ef’ J
5

Wi (X, 1)
oxd

oW, (x,, 1)

+ (EJ), pw
X

x=h

(Ed),

x=ly x=lg

1 [(Ej)lc?zw(xl,t)l \ (e2), O Web.)

2
_mé Wi (X%, 0 _ 0
x=I,

T R-, 2 ‘x:u ox2 at?
2 W3 (X3, 1) _ 82W4(X4>t)| 52W4(X4,t)| _ 62W5(X5,t)| (32-37)
2 2 ’ 2 2 -
% X2 =l3 i |x3:0 29 |x4:0 s |x5:0
53W3(X37t)| _ Wy (X4,t)| 63W4(X4,t)| _ 63W5(X57t)|
3 3 ’ 3 3
OX3 Yomts OX, %y =0 OX, Xy =0 OXs Y0
3
S, - P=0

n=1
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4. Results of Numerical Computations

Taking into account the solution of the boundary problem, the numerical calculations
were carried out relating to the free vibrations of the considered system.

An exemplary scope of change in the value of the first frequency of vibrations
(parameter () as a function of external load (parameter A.") for given parameters of
Winkler elastic foundation (K"Ic"l¢") and parameter of the loading head R™ was
presented in Figure 2.

3
i = PI? =t

- ,
> (EJ), > (E),
n=1

=1

: K oo R-lg,

== R= =
D (ED, !
n=1

Depending on the external load, the curve representing eigenvalues may be positively
or negatively inclined to the axis of ordinates. In order to compare the results, besides
the trajectories of curves relating to the frequencies of vibrations of NW system, the
scope of changes in frequencies for L and N columns were presented too. The
geometrically nonlinear column N is built of three rods (two external and one internal
rods). The physical model of geometrically nonlinear column is identical as the physical
model of NW column (without considering the Winkler elastic foundation). The linear
column L consists of two external rods @,@ of the column N- the flexural stiffness of
these elements is the same as the flexural stiffness of external rods of the nonlinear
column N for given value of the asymmetry of flexural stiffness coefficient . The linear
system is treated in this paper as a comparative system.

KT

(oA), 11 o?
(38a-d)
3)

. 1L.NW(K 10)
40 — ?:0'667 2NW(K"20)
AL a=0> 3NW(K 60)
i 4NW(K"80)
(Ae) .
30 R=0.333
1=0.123

(ey]
20

10 -

I | T
0 4 8 12 Q[-16

Figure 2. The curves representing the first frequency of free vibrations of the NW, N
and L columns - the changes in frequencies of nonlinear and linear systems
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The value of the bifurcational load parameter A." for each of the courses of curves of
the free vibrations occurs while «2° = 0. On the basis of the obtained results it has been
proved that there are such a parameters of Winkler elastic foundation, for which the
system can “exit” from the range of local loss of stability (A.">A.", compare curves 3, 4
in Figure 2.). The detailed results of studies were presented during the 27" Symposium
on vibrations in physical systems.

5. Conclusions

The analysis of the free vibrations of the geometrically nonlinear column NW locally
resting on the Winkler elastic foundation subjected to the follower force directed towards
the positive pole was the subject of this paper. The Winkler elastic foundation, its length
and location effect on the value of frequency of free vibrations of the examined system.
Consideration of the Winkler elastic foundation in the physical model of the column
causes an increase in the value of frequency of vibrations of the system. The value of
bifurcational load is rising with the increase in elastic base stiffness. The elastic
foundation of sufficiently large stiffness causes an “exit” from the range of the local loss

of stability.
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Abstract

The paper contains the results of theoretical and numerical studies within the scope of kinetic criterion
of stability loss of slender non-prismatic column subjected to the follower force directed towards the positive
pole (the case of specific load). Shape of the system approximation by a linear function and polynomial of
degree 2 was considered. On the basis of the Bernoulli — Euler’s theory, the mechanical energy was defined.
The differential equations of motion and natural boundary conditions were determined according to the
Hamilton’s principle. The issue of free vibrations was solved using the small parameter method. Within the
range of numerical calculations, the changes in the eigenvalues were presented as a function of external load
with variable geometrical parameters of the system, including parameters resulting from the shape
approximation and parameters of loading structure.

Keywords: slender systems, non-prismatic systems, free vibrations, specific load

1. Introduction

Non-prismatic systems are commonly used in mechanics and mechanical constructions.
Due to increasing technical requirements for the designers, an optimal shapes of
structures, that will ensure an increase in transferred load or mass reduction are looked
for. The issue of dynamics of slender non-prismatic systems is the subject of many
scientific publications.

The dynamic analysis of Bernoulli — Euler’s beam with stepped variable flexural
stiffness with discrete elements was presented in work [1]. The problem was solved on
the basis of the mode summation method. The results regarding to the issue of stability
and free vibrations of non-prismatic column under Euler’s load were shown in
publication [2]. The solution of vibration problem of beam with stepped variable cross-
section was presented in [3].

In scientific papers, the shape optimization was based on different methods, such as
the Lagrange multiplier formalism [4], modified simulated annealing algorithm [5],
finite element method [6], cellular automata method [7] or using Green’s function
properties [8].
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2. The physical model of the system

A slender non-prismatic column of rectangular cross-section subjected to the chosen
case of specific load is considered in this paper. The physical model of analysed system
is presented in Figure 1. To model cross-section variable along the axis, the structure
was divided into n segments of constant length | and thickness h and variable width b. It
is assumed that total volume of each segments Vo, total length of the column
L=I-n=const.and the values of material density pas well as Young’s modulus E of
each parts are constant. In addition, the value of width b of segments must satisfy the
condition that b>h. The column’s shape was described by linear

function b(x)=2a(Z)- x+d and by polynomial of degree 2 b(x)= Z[a(p, q)-[x-pF+ q],
where0<x<L.

AW, (x,.1)
i ax, xi=l
w0 _| - 7
/wl W, (x,.1)
¥ |x.f; (ED), W, (x..1)
/ I.\',,.;‘ (£J) , !ﬁ_;(x,,;.!)
/ I\‘ (EJ), H;',‘j(.r,..,.!)
/ .\',,.1 |(E)),., lﬁ...,(.\',,.,,l)
/ Yosif VB W (x,0)
1} | *e )&, W, 5,01
NIRRT
/ I X1 (LJ), W, (x,,1)
1 I % 4@/), W.(x,,1)

W, (x,1)

Figure 1. The scheme of physical model of considered column

The load by follower force directed towards the positive pole (the case of specific
load, see [9]) is achieved by loading and receiving heads of circular outlines.
The direction of the force P is tangential to the line of deflection of end of system
(x =L) and additionally passes through stationary point O located on the non-deformed
axis of the column at the distance of R from its free end (positive pole). The system is
connected with receiving head through infinitely rigid element lo, which consideration is
necessary for reasons relating to the construction.
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3. The mathematical model

On the basis of the physical model of non-prismatic column (comp. Figure 1), the total
mechanical energy of the system was defined. The potential energy V consists of:
e energy of bending elasticity:

V- i@j(_azwi (s 't)) o (1)

i=1 0 aXi
2
J )
Xn=I

e potential energy V> resulting from the external load:
| 2
v, :_BJ M dx; + PUn(l,t)+£ P(R-I, M
2y X 2 X,
V=V, +V, (3)
The Kkinetic energy T of the system is formulated in the following form:
2 2
n LW, (x;,t oW, (1,t
T:z(pA)IJ. I( 1 ) dXi+£m L) (4)
0 2 ot 2 ot

The solution of the problem of free vibrations of column was obtained on the basis of
Hamilton’s principle (see [2,9]), using the properties of the calculus of variation:

t
s[(T-vyt=0 (5)
4
where t1, t, — coordinates of time, & — variation operator.
Known a priori geometrical boundary conditions and continuity conditions were written
as follows:

AW, (x,t)

Wy (0,t)=—24 =0, -
0)=—7 » (6-7)
V\/i(|,t)=VVi+1(0,t) (®)

WG ( t)J _ {awm(xiw t)J
( X; x; =l OXisy X; +1=0 | ©
W 1.1)= R 1) Malet) (10)

n Xn=I

where the condition (10) results from the geometry of loading head.

Taking into account the variation of mechanical energy (1-4) and conditions (6-10) in
the equation (5), the following relations were obtained:
— differential equations of motion:

(E9), 64Wi(:(i1t)+P82Wi(Xi't)+(pA) o'W (x,1) _

11
; o’ ot ()
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— missing natural boundary condition and continuity conditions:

PWo(xt) 1 AW(xat) m oW, (xot) .
6’Xn3 |x = (R h IO) 8an - (E‘] )n at? - (12)
(EJ ){azwi (>2<| 1) ~(EJ )Hl(azwnl(xi;l’t) 13)
28 i+1
% =l X; +1=0
(E3), (% =(E3), +1[—83Wi +1(Xi3+l’t) (14)
i % =l i+l %; +1=0

The solution of the differential equations of motion was obtained on the basis of small
parameter method, which consists of expanding of nonlinear members of differential
equations into the power series with respect to the amplitude parameters (& <<1).

4. The Results of Numerical Calculations

To compare the results, the following dimensionless parameters were determined:
— external load parameter

PL
A=y (15)
(E‘J )pr
— parameter of frequency of natural vibrations
0)2 (pA)pr L4
= (16)
(E3)or
— parameters describing cross-section variable along the axis of the column
« by —Db, « P « q
Z =—=—".100%, =, =—, 17-20
3 o p=1 4= (17-20)
— radius of loading head parameter

where the subscript ,,pr” refers to the geometrical parameters of prismatic column
(a comparative system).

The results of numerical computations in the scope of kinetic criterion of stability
loss were shown in Figures 2 and 3.The considerations are limited to presentation of
changes in two first frequencies of natural vibrations of column (2, £2) as a function of
the parameter of external load. In Figure 2., the changes in first frequency of natural
vibration of non-prismatic system for different values of taper parameter Z (shape
approximation by linear function) was illustrated. The results regarding to the
approximation by quadratic function were presented in Figure 3., taking into account
variable location of a vertex of parabola (p*, " parameters).
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Figure 2.The first frequency of vibration of non-prismatic column approximated by
linear function (R"=1.3) for selected values of taper parameter Z
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Figure 3. The characteristic curves of column approximated by quadratic function
(R™=0.3) for chosen values of parameters p“and g

The value of critical load for presented curves on the plane dimension less parameter
of external load — dimensionless parameter of frequency of free vibrations is determined

for £2=0. The results regarding to the values of critical load parameter, obtained on the
basis of the kinetic criterion of stability loss, show compliance with the results from the
energetic method (the static criterion of loss of stability).Presented courses of changes in
eigenvalues have the positive, zero or negative slope, depending on the value of external
load and radius of loading head. Therefore, considered structures may be classified as a
divergent or divergent pseudo fluttering type of system.
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5. Conclusions

The analysis of free vibrations of non-prismatic column subjected to the follower force
directed towards the positive pole was presented in this paper. On the basis of conducted
numerical calculations, the following conclusions were formulated:

— shape of system approximation effects the value of frequency of vibration. The value
of critical load of the system depends on the parameters describing shape of the column
and geometrical parameters of loading structure,

— depending on the value of radius of the loading head parameter, the system under
consideration may be classified as the divergent or divergent pseudo fluttering type
of system,

— approximation of the shape of the considered column is restricted by the condition
which states that the value of width b of each segments of system must be greater than or
equal to the thickness h of segments.
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Abstract

Vibrations of Timoshenko beams with properties periodically varying along the axis are under consideration.
The tolerance method of averaging differential operators with highly oscillating coefficients is applied to
obtain the governing equations with constant coefficients. The dynamics of Timoshenko beam with the effect
of the cell length is described. A asymptotic model is then constructed, which is further studied in analysis of
the low order natural frequencies. The proposed model is able to describe dynamics of beams made of non-
slender cells.

Keywords: beam vibrations, periodic beams, tolerance modelling

1. Introduction

The analysis will be restricted to the linear free vibrations of elastic shear-deformable
beam with rotational inertia. Considered structure consists of many small, identical and
ordered pieces of length I, called periodicity cells. The geometric and material properties
are varying periodically along longitudinal axis of the beam. A fragment of such beam is
shown in Figure 1.

"-.IL _‘I]. ..-;r]. .E'_. |'_'|1

Figure 1. A fragment of periodically inhomogeneous Timoshenko beam

The direct analytical formulation of considered Timoshenko beam model leads to
equations of motion which usually do have non-continuous, highly oscillating, periodic
coefficients. Many methods have been developed in analysis of periodically
inhomogeneous solids and structures. The most advanced are the analytical methods
based on asymptotic homogenization of differential operators [1-2].

Here, the tolerance averaging technique [9-10] is applied in order to replace the
differential equations with highly oscillating coefficients by equations with constant
coefficients. The presented method enables continuous analysis of an equivalent
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homogeneous medium with effective properties. The model reduces the computational
cost and disposes of numerical difficulties. The approach used here has been applied in
analysis of many thermo-mechanical problems of periodic and almost-periodic solids
and structures. To name only few, tolerance models of beams with periodically variable
parameters are considered in [3,8]. In [6] some aspects of modelling of dynamic
problems of thin functionally graded plates with a special tolerance—periodic
microstructure in planes parallel to the plate midplane are considered.

Detailed analytical solution of homogeneous Timoshenko beam is considered in [6].
A numerical example is shown for a non-slender beam to signify the differences among
the Timoshenko, Bernoulli, shear and Rayleigh beam models.

2. Formulation of the problem

The strain-displacement relations in Timoshenko beam theory are assumed as
k=00, y=0w-0, (@)
where w, 0, « and y represent the deflection, the cross-section rotation, the bending

curvature, and the shear strain, respectively. The strain energy U and the Kinetic energy
K for a Timoshenko beam can be written as

L L L
U= ;{(EM +KGAY Jx, K = ;E[pAWZdX + ;_([pJezdx, @

where p, A, J, E, G and k are the mass density per unit volume, cross-section area of the
beam, the area moment of the inertia, Young’s modulus and shear modification
coefficient, respectively. The equations of motion may be derived from Hamiltons
principle (3).

s[(U-K)t=0. 3)

3. Introductory concepts, fundamental assumptions

The domain occupied by the beam is given by one-dimensional A = (0,L), where L is the
beam length. It is assumed that the cell length is much smaller than the beam length,
I<<L. Following the book edited by Wozniak cf. [9], some introductory concepts of the
tolerance modelling are used, i.e. the averaging operator, tolerance system, slowly-
varying function SV% (A,A), tolerance-periodic function TP% (A,A), highly oscillating
function HO% (A,A), fluctuation shape function FS% (A,A), where & is the tolerance
parameter and o is a positive constant determining kind of the function. The basic
concept of the modelling technique is the averaging operator, for an integrable function f
defined by:

1
()= [ fox )
A(x)
The unknown deflection w, and rotation 6 are decomposed into their averaged and
fluctuating part:
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wix,t)=W(x,t)+hA(xVA(x,t) A=1...,N,
0(x,t)=0(x,t)+ p?(x)z®(x,t), R=1...,M, (5)
W()VAC) O() ZF()esva(A,a) hA() pH()e FSg(A,a).

The new basic kinematic unknowns W(x,t) and O(x,t) are called the transverse
macro-displacement and the macro-rotation; VA(x,t), ZR(x,t) are additional kinematic
unknowns, called the fluctuation amplitudes. The unknown functions are assumed to be
slowly-varying (SV) together with their first derivatives. The highly oscillating
fluctuation shape functions (FSFs) h* and pR are assumed a priori in every problem
under consideration in order to describe the unknown fields oscillations caused by the
structure inhomogeneity. Apart from the restriction of I-periodicity, the FSFs have to
satisfy the following conditions:

<pAhA>=O, <pJpK>=O. (6)

4. The tolerance model of a Timoshenko beam
The Lagrange function for considered problem is given as follows:
L=U-K= %[EJ@H@H + KGA(owow — 26W8 + 66) — pAww — p.Jo0) )

As the basic modelling assumption micro-macro decompositions (5) of the unknown
deflection w, longitudinal displacement up and shear angle 6 are introduced into
Lagrangian. Applying averaging operator (4) and the tolerance averaging
approximations, the tolerance averaged form <£> of Lagrangian (7) is obtained in the

form:
(L)= %kEJ 0056 +2(EJop™ 1062 + (Eop"op® ZRZ° + (KGA)OWAW +
+ 2<kGAah A >awv Ay <kGAah Aoh® >v AV B —2(kGAoWe — 2<kGAp R >awz R+
- 2<kGAah A >@V Ay —2<kGAah ApR >v AZR + (KGA)OO + 2<kGAp R >@Z Ry (8)
+ <kGAp RpS >z RZS — (pAViw +—2<pAhA>WV A <pAhAhA>V AVB 4
~(pJ )06 ~ 2<pJp R >@z R_ <pJp RpS >z RzS

Subsequently, variation of above Lagrangian leads to four equations of motion with
constant coefficients.

(kGA[o?w - 00+ (kaAdn™ v * — (kGAp® oz — (pAMI — (pAn* V* =0,

<kGAah A >(aw ~0)+ <kGAah Aoh® >v B _ <kGAahA pR >z R <pAhA >N + 9)

+(pAh*hB VB =0,
(pAn"n®
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(E3)0%0 +(EJop" 02" + (KGA (oW - ©)+ (kGAch* Vv * ~ (kGAp® 12" +
o~z -0
(E3ep® jo© + (EdopRap® |2° — (kGAD oW -©)- M VA ©)

+<kGApR pS>ZS +<pJpR>®+<pJpR pS>ZS =0.
The underlined terms depend on the microstructure size.

5. Asymptotic model equations

Neglecting the terms dependent on the cell length I, we obtain the system of equations of
the asymptotic model. It describes the behaviour of Timoshenko beam only in the
macroscale:

(KGA(ooW - 0©)+ <kGA6hA>8V A~ (pAM =0,

<kGAah A >(aw -0)+ <kGAah Aoh®B >v B,

(10)
(E3)000 + (E3ap® 02" + (KGA (oW - ©)+ (KGA" v * — (p3 )0 =0,
<EJ6pR >a® + <EJ6pR8pS >z S =0
Equations (10) 2and (10) 4 can be rewritten as
<|<GAah A> <E.18p R >
VA=—_ L+ | (W-0) ZR=— 1 I _5O. (12)
<kGA6h AahB> <EJ6pR8pS >

We can further define the effective shear stiffness He and effective bending stiffness D
which are constant:

<kGAahA ><kGAah B > <EJap R ><EJ6pS >
<kGAah Aoh® > <EJap RopS >
Combining equations (10-12), we obtain the following system of differential

equations which represents the asymptotic model of considered Timoshenko beam:
H*" (6oW —60)- (pAW =0,

D600 + H*" (oW - ©)- (pJ }® =0.

It can be noted that the above equations have the same form as the equations for a
homogeneous beam, cf. [4].

(KGA) - =H" (B))- =D, (12)

(13)

6. Asymptotic model solution

We assume that functions W, ® share the same time solution T(t):

Lo s
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After substitution of (14), equations (13) can be rewritten in matrix form:

0= + +
0 D |00 | |HE 0 00

(15)
N <pA>u)2 W
0 —H 4 0) 0|
These equations can be decoupled to y|eId
pA J
aaaa®+(|<48ﬁ>+l<§ >J 2000 — DEﬁ( J ©=0,
> (16)

aaaa/\/+(|<j§f>+<§‘]>] 200W — < [ ) > szzo.

The differential equations for W(x) and ®(x) have the same form, so that it is
assumed that he solutions also have the same form and differ by a constant as

m((:ﬂ — due™ 17)

The characteristic equation is given by

" +{ PA) ) >}02r2 _<‘)A>[1_ ) mzjmz _o, (18)

H eff Deff Deff H eff
therefore the eigenfrequencies can be expressed as:

H eff Deff Deff H eff

i=1,2,3,4,and from the following equation:

H e 2 <pA> _Heffy _u_o 20

He r DY r? —H"r+ (pd o’ '

the corresponding eigenvectors u are obtained:
" - Her ub DY r? —Hr+ (pJ)o? . 1)
i Heﬁl’2+<pA>(02 _Heffr
The spatial solutions are given by
Wm(x) _ 2 d erix =d ebx+d e—bx+d eiax+d e—iax 22
0,(x)|" Zl: Ui = Oyuy 2Uz 3U3 4Uge ™, (22)
1=

where

m+@sz+J(<pA>+<w>fm4+<pA>[l_<pJ>mz}Dz, @)

H eff Deff H eff Deff Deff H eff
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{<"A> + <'”J>T@4 +<"A>(1_ o) mZ}Oz . ®

A J
b:—<p>+@m2+ ~ Ly L X 7
\ H eff Deff \ H eff Deff Deff H eff
Spatial solution (22) can be also written in terms of the sinusoidal and hyperbolic
functions with real arguments:

{W (X)} = {Cl} sinax + {Cz } COS ax + {Cs}sinh bx + {C" } cosh bx, (24)
o(x)| | b, D, D, D,

and only four from the constants C1-C4 and D1-D4 are independent, cf. [4].

Substituting (24) into the boundary conditions for W and ®, we obtain a system of
linear homogeneous equations for the suitable constants C and D. Then, the frequency
equation is derived from the condition that the determinant of coefficients matrix has
to vanish.

7. Application

In this section, analysis of influence of geometrical parameters in a cell on the first
natural frequency of hinged-hinged beam with periodically varying cross-section, cf.
Figure 1, is performed. The boundary conditions for considered beam are:
0®=0 and W=0 for x=0,L. (25)

The frequencies were obtained in the framework of the proposed model and
compared with the results from a finite element model (30 elements, 60 degrees of
freedom) with Hermite polynomials as shape functions.

The fluctuation shape functions defining the fluctuating parts of unknown
displacements were assumed in the form of trigonometric series:

hA(y)=1Isin 22 pR(y)=Isin ZRlny’ (26)
to ensure non-zero correctors in calculating the effective shear and bending
stiffness (12). The conditions (6) are satisfied for considered symmetric unit cell. The
number of functions (26) has been selected by the analysis of the effective stiffness
convergence, and the satisfactory results were obtained for N = M =10.

The beam length is L =1 m, shear factor k = 5/6, the mass density of the material
p =7860 kg/m®, Young modulus E =210 GPa. The cross-section is rectangular,
piecewise constant. The saturation parameter o changes in range 0.1-0.9, section width is
b1 = b, =20 mm, section height is hy = 20 mm, h, = a h; = {0.95,0.9,0.85,0.8,0.75} hy.
The number of the cells is 10, hy / I =1/5, hence the cell can be considered as moderately
thick. Dependence of the first natural frequency @ for asymptotic model (lines) and finite
element model (dots) is depicted in Figure 2, and the relative difference between these
models, versus parameter a is shown in Figure 3. As it can be seen from the Figure 3, the
results differ no more than 0.5% in the considered cases.
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8. Conclusions

The natural vibration analysis of a periodic beam has been performed in the framework
of tolerance modelling technique. The Timoshenko beam theory, including first order
kinematic correction for shear strain, have been applied in order to analyse beams
consisting of non-slender repetitive cells. The obtained system of differential equations
with constant coefficients and additional degrees of freedom makes it possible to
describe the dynamics of the beam in the macro-scale. The coefficients of these
equations depend on so-called fluctuation shape functions which describe the vibrations
of a periodicity cell.

A simplified version of the proposed model has been applied in analysis of first
natural frequency of a variable cross-section beam. From the obtained results it can be
concluded that application of approximate fluctuation shape functions leads to
satisfactory results.
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Abstract

In this paper there are considered vibrations of Euler-Bernoulli beams with geometrical and material properties
periodically varying along the axis. The basic exact equations with highly oscillating periodic coefficients are
replaced by the system of averaged equations with constant coefficients. The new model is based on the
tolerance modelling technique, which describes macro-dynamics of the beam including the effect of the
microstructure size. The purpose of this paper is to present an approximately equivalent model, which describe
vibrations of periodic beams taking into account length of the periodicity cell.

Keywords: periodic beams, Euler-Bernoulli beams

1. Introduction

This paper is related to certain problems, which are met in the analysis of periodic
beams. Dynamics of such beams is described by differential equations with non-
continuous highly oscillating periodic coefficients. Therefore, various approximate
models, introducing effective beam properties are proposed. Amongst them, can be
mentioned those, based on the asymptotic homogenization, cf. [1, 2, 7]. However, in
many technical problems, number of cells is finite. Thus, neglecting the microstructure
size may lead to erroneous results, especially in the range of high frequencies.

In order to include the effect of microstructure size, the tolerance modelling
technique is introduced (cf. the book edited by Cz. Wozniak, Michalak and Jedrysiak
[10]). The preceding method is very general and convenient for modelling problems,
described by differential equations with highly oscillating coefficients, e.g. modelling of
dynamic behaviour of microstructured thin functionally graded plates [6] and dynamic
problems for plates with a periodic structure [8]. In contrary to the exact solutions, the
obtained relations have constant coefficients, some of which explicitly depend on the
microstructure size.

Wave propagation and linear vibrations in periodic beams are revised in many
research papers. For a periodic Euler-Bernoulli beam it is considered in [3] and [9].
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Frequency band gaps were analyzed by the differential quadrature method in [11]. The
transfer matrix method was applied in [12] in analysis of flexural wave propagation in
the beam on elastic foundation. In [4] a wide literature study on composite beam
vibration can be found. In order to determine a homogenized model of a composite beam
with small periodicity the two-scale asymptotic expansion method is used in [5].

In this paper the tolerance model of Euler-Bernoulli beam with geometrical and
material properties periodically varying along the axis is presented and discussed. The
tolerance averaging model is applied to investigate free vibration frequencies for an
Euler-Bernoulli beam. Obtained results are compared with finite element method.

2. Formulation of the problem

Let Oxyz be an orthogonal Cartesian coordinate system, the Ox axis coincides with the
axis of the beam. It is assumed that considered elastic periodically inhomogeneous
Euler-Bernoulli beam consists of many small repetitive elements called periodicity cells.
It is also assumed that every such element can be treated as an Euler-Bernoulli beam.
Hence, it is defined the region Q = [0, L], where L is the beam length. The considered
cells are defined as A=[-1/2,1/2], where I<<L is the dimension of the cell, called
microstructure parameter. It is assumed that the beam possesses principal planes and that
the vibration takes place in one of the principal planes. Let w = w(x,t) denote the small
deflection of the neutral axis of the beam from its initial, straight configuration. The
following notation is introduced: 6=0%/0x* is the k-th derivative with respect to the x
coordinate and overdot stands for the derivative with respect to time. For small
deflections of the beam strain and kinetic energy are:

L L
U =4 [EJ0°wowdx, K =14 [ ainidx, 1)
0 0

where E = E(x), J = J(X), 4 = u(X) are the Young’s modulus of the beam material, the
cross-sectional moment of inertia, the mass per unit length of the beam, respectively.
Since only free vibrations are considered, the potential energy of the external load is
assumed to be zero.

The equation of motion is derived from Hamilton’s principle:
t t

s[Ldt=6[(U-K)dt=0. )
to to

The Lagrange function for the problem can be written as:

£ =1E10°wo*w—1 i, ©)
Following the usual procedure of the calculus of variations, the Euler equation of motion
is obtained:

02(E30°w)+ s = 0. )

The coefficients E, J, u, are in considered cases highly oscillating, non-continuous
functions of the x-coordinate.
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3. The tolerance averaging approach — introductory concepts and basic assumptions

The main concept of tolerance averaging approach is the tolerance reflexive relation.
Amongst the fundamental ideas of the technique the most remarkable are certain classes
of functions such as the tolerance-periodic (TP), slowly-varying (SV), highly oscillating
(HO) and fluctuation shape (FS) function.

Acellat xeQ, isdenoted by A(x) = x+A, Q, ={x e Q:A(X) = O} . The averaging

operator for an arbitrary integrable function f is defined by
1
(H)=7 [fNdy, xeQu, yeam. (5)

A(X)
The basic assumption of micro-macro decomposition plays imperative role in tolerance
modelling technique. The unknown transverse deflection can be decomposed into their
averaged and fluctuating part:

w(x,t)=W(x,t)+h*(xVA(x,t), A=1...,N, 6

WOV AQ)e SVE@.A) hA()e Fs2(Q.A), ©
where W(-) (macrodeflection) and VA(:) (fluctuation amplitudes of the deflection)
functions are the basic unknowns; h* is the known fluctuation shape function. The
tolerance parameter, associated with the tolerance relation, is denoted by d, 0<d<<1. It is
assumed that the unknown functions are slowly-varying (SV) up to the second derivative,
which is denoted by the top index.

The highly oscillating fluctuation shape functions (FSFs) h”, proposed a priori for
every considered problem, are assumed to describe the unknown fields oscillations
caused by the structure inhomogeneity. What is more, FSFs have to ensure the I-
periodicity constraint and provide the conditions below:

(#h*)=0, (sh*n®)=0 or AxB; o"h*eO>™) AB=1..N. @)

4. Governing equations of the model
4.1. Tolerance model equations

In the first place, the micro-macro decomposition (6) of Lagrangian (3) is performed.
Next, averaging over an arbitrary periodicity cell is performed (5), applying the
aforementioned approximations (7).

The variation of averaged functional has the specified form:

tL tL
S[ [{Ly)dxdt = [ [o(L,) dxdt. )
0 0
Therefore, after expanding we obtain:

2
t, 0 to

5ﬁ<£h>dxdt - 5;[1“( EJ)0"WoW +2(EJ0*h " )oPWV A +
0
+<EJ62hA62hB>V AV B (i —2<mA>wvA —<mAhB>v' A\/'B]dxolt.

©)
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From the principle of stationary action, applied to the averaged Lagrangian, the averaged
Euler-Lagrange equations are obtained:
(E9)0*W +(EI0*h™)o?V A + (uil + (™ N * =0,

(E30%h* )W +(E30?n"o?h® v ® +<mAWﬂhAhB>\78 —o0. (10)

In contrast to the exact formulation (4), obtained system of 1+N differential equations
for the macrodisplacement W(:) and fluctuation amplitudes of deflection VA(-) has
constant coefficients. Underlined coefficients depend on the microstructure parameter 1.
In order to present (10) in more convenient form, let us denote coefficients by:

D (£2) M [ )

DA (B30%n*) h {MA b=l (ih?) b (11)

AB AB

D <EJ62hA62hB> M </JhAhB>

After taking into account (11) we get:
D&*W + DA%V A + MW =0,
D"0°W + D"V + MV ® =0,

where MA8 depends on microstructure size.

(12)

4.2. Asymptotic model equations

The asymptotic tolerance model is obtained by neglecting coefficients dependent on
microstructure size I. If matrix D*B is nonsingular, then there exists an inverse matrix
(D). Thus, let us denote the effective stiffness of the beam by:

D, =D-D*(D" "D, (13)
Therefore the asymptotic model equations become
Dgd*W + MW =0,

VA =—(D® ) DBa?w. (1)

5. Natural frequencies

We can transform system of PDEs (12) into system of ODEs using separation of
variables. Let us expand macrodeflection and fluctuation amplitudes of the deflection
into series of eigenfunctions of a simply supported beam:

W(X‘t) _ - Wm(t) . —M
{VA(x,t)}_n%{vrﬁ(t)}s'”‘fmx' fm =" (15)

Substituting (16) into (13) and limiting the analysis for one FSF we obtain:
EPDW,, — E2DNVE + M, =0,
- &2D'w, + D, + MM =0.
There can be assumed the following solutions:

(16)
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W, W
{v@}:{ﬁgl}msaﬁ' (17)

In order to find free vibrations frequencies, we introduce subsequent symbols:
D - _ &D' - _ 4D o DU

M "M Cm=— YE =M11'
System of equations (17) is in fact, an eigenvalue problem:

= 2 6‘ - 0
{ama w : _ma)z}{‘\’/\’%1 } = {0} (19)

We can obtain expressions for high and low natural frequencies by finding the roots of
characteristic polynomial:

(o F = %|:5m vd @, -df + 45,5, } (20)

(18)

an

6. Examples of applications

6.1. Introduction

The object under consideration is a hinged-hinged beam, which fragment is shown in
Fig. 1. The beam’s cross section, moment of inertia, Young’s modulus and mass per unit
length are periodically varying along the axis. It is assumed that cross section of the
beam is rectangular. Considered periodicity cell, presented in Fig. 2, has symmetrical
shape. Length of its segments depends on an « parameter.

|| A(X), J(X), E(X), u(X)
1 I _'_'_I r-
| T =

Figure 1. Fragment of considered periodic Euler-Bernoulli beam

The fluctuation shape functions represent the oscillations of displacements within the
periodicity cell. For a purposes of this paper there were used approximate I-periodic
trigonometric functions: hi(y) = I’[cos(2zy/l)+c].

- | -
Qa2 o ol 172
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Figure 2. Periodicity cell
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6.2. Results and discussion

The free vibrations of a slender periodic beam depending on the « parameter are
considered. The calculations are carried out for two cases:
1. Constant geometrical properties and periodically varying values of mass density and

Young’s modulus.

2. Constant material properties and periodically varying height of beam’s cross
section.

In both cases it is assumed that considered beam has following properties: length

L = 1.0 m; periodicity cell’s length | = 1/10L = 10 cm.

For the first problem it is assumed that Young’s modulus E; = E = 210 GPa;
E. =[0.25, 0.50, 0.75]E; mass density p1 = p= 7860 kg/m3; p, = [0.25, 0.50, 0.75]p;
cross section width and height: b =2 cm, h =2 cm. The results are shown in Fig. 3 and
Fig. 4. It is evident that TAT has the best agreement with FEM for less disproportion of
material parameters. For E; = 0.75E and E, = 0.50E the solutions are almost equal.

In the second case we declare following properties: E = 210 GPa, p= 7860 kg/m?;
b=2cm; hy=h=2cm, h, =[0.50, 0.70, 0.90]h. Figure 4(a) shows the results for this
particular case. It is evident that difference in stiffness of the beam’s segments is
noticeably high. Similarly, as it was earlier, the proposed method delivered the best
results for less disproportion of given properties. It is evident that tolerance model in
cases with high disproportion is stiffer that FEM. The maximum value of obtained
frequencies from both tolerance averaging method and FEM is denoted by wmax. What is
more, TAT gives the opportunity to analyse higher natural frequencies, as it is shown in
Fig. 4(b). Study based on the finite element method does not provide such a possibility.

The assumed tolerance averaging model has 2 degrees of freedom and approximate
fluctuation shape functions. It is worth noting, that comparative finite element model has
30 elements and 60 degrees of freedom.
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Figure 3. First natural frequencies for various values of mass density
and Young’s modulus
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Figure 4. First lower (a) and higher (b) natural frequencies for various values of cross
section height

7. Conclusions

The free vibrations of Euler-Bernoulli beams, with geometrical and material properties
periodically varying along the axis have been considered. The model equations are
obtained by implementing the tolerance averaging technique. Derived differential
equations have constant coefficients. The main advantage of this approach is that
it includes the effect of the period lengths on the overall behaviour of these beams.
Despite the use of the approximate fluctuation shape functions the results are consistent
with finite element method.
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Abstract

The paper presents an analysis of vibrations of a ram, body and handle of a heavy, air-operated demolition
hammer. The research was conducted in order to determine the character of dynamic inputs and resulting
vibrations at the tool handle which were necessary to build a structural model of local influences on an
operator taking the hammer design into account. The experiment was carried out on a test stand without
participation of an operator, which guaranteed repeatability of measurements and elimination of ontogenetic
characteristics. The displacements of selected structural elements of the tool were recorded by means of a
camera and the accelerations at the handle were recorded by means of a standard measuring apparatus. The
recorded signals were subjected to the spectral analysis and the short-time Fourier transform (STFT) using
dedicated software in MATLAB environment.

Keywords: vibrations, dynamic inputs, short-time Fourier transform (STFT)

1. Introduction

As part of the conducted research an analysis of vibrations of a ram, body and handle of
a heavy air-operated demolition hammer was performed. Such type of tools are
commonly used e.g. in building industry, and their negative influence on an operator is
well known [1, 4, 5]. The source of the harmful interaction are vibrations originating
both in the driving unit and in the working process itself [2, 3].

The research was conducted in order to recognize vibration transmission in the
hammer structure, to determine the main direction of their propagation, and to determine
the character of dynamic inputs and resulting vibrations at the tool handle. The analysis
of motion of individual parts of the tool is necessary for proper modeling and enables to
interfere in the tool structure selectively. The recognition of the main direction of
propagation enables to eliminate small influences and to limit the investigations to
significant directional interactions. As a result of the performed analyses of vibrations at
the tool handle it will be possible to create a structural model of a human being — tool
object (with consideration and modeling of the hammer structure), which, in turn, will
enable to model the influence of local vibrations on the tool operator. It should be
remembered that the correct model of the system should include both the operator and
the tool, because there exist mutual interactions between these elements [3, 6, 7].


mailto:maciej.tabaszewski@put.poznan.pl
mailto:malgorzata.wojsznis@put.poznan.pl

386

2. Research object — test stand

Measurements were performed on a dedicated stand equipped with a holder to fix heavy
hand-held tools (Fig. 1). The holder had been designed and made specially for the
performed investigations in order to eliminate the participation of an operator, and hence
to be independent of operator’s ontogenetic characteristics (body mass, pressure force on
the hammer, clamping force on the handle etc.). Foundation and positioning of the
hammer in the test stand reflected its position during work in real environment. For the
investigations a standard foundation in the form of an impact energy absorber was used —
see Fig. 1.

ZOELSCTRICE
—t, "
ELEROMETERS

ARKERS

00L WITH /
DEMOLITION HAMMER

ABSORBER ON THE TEST STAND

Figure 1. Research object in the test stand

As the research object a demolition hammer TEX 140 (Fig.1) was used, which is
usually used in building industry for crushing asphalt, concrete, frozen soil etc.

3. Methodology of research

The research being the subject of this work was based on the analysis of the recordings
of motions of the ram and casing of the investigated hammer and its handle, an operator
is in contact with. For measurements of motion of the ram (and additionally the tool
casing) a high-speed camera 1024 PCI [8] was used, which enabled to record
displacements of vibrations. For this purpose several markers were placed on the tool,
which motion was analyzed with the dedicated software. Additionally, three markers
were placed on the ram to average its motion in time synchronously - Fig.l.
The recordings enabled to identify the motion in the plane of the filmed picture.
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During the test vibration accelerations of the handle in three perpendicular directions
X-Y-Z were recorded as well. To do this, a measuring head with three piezoelectric
absolute vibration accelerometers was used (Fig.1).

The results obtained from both methods enabled to determine vibrations at the handle
and transmission of vibrations from the ram to the handle. As the measurements with the
camera enabled to record the displacements, and with the accelerometers — vibration
accelerations, the obtained results had to be subjected to an appropriate transformation
and brought to one physical quantity. Integration of the acceleration signal was
performed numerically after initial high-pass filtration.

4. Results

Figure 2 shows the comparison of displacements and spectra in Z-axis direction (the
direction of work of the tool): for the hammer casing (point 1 — Fig.1) and the ram,
computed by synchronous averaging of displacements of three points on the ram,
marked as 2, 3 and 4 (Fig.1).

Point 1 and Avg. displacement- direction z Avg. displacement, directionz
3 ,

25 | —=—Avg_disp. point 2,3 4 07 | ﬂf;\i;tdﬂ\sp_ point 2,3,4
sl M o
ST TR | g
£ st gl £l M 1 i Zos
LI 2
ot LT T ) 4 ] 3
e e
71120 0.1 02 03 04 05 OWWO - ‘

Figure 2. Displacements of the casing and the ram of the investigated air-operated
hammer in time and frequency domains (enlarged sections)

In the range below 20 Hz and for the frequency of work of the tool (about 22 Hz) the
tool casing vibrates generally with lower amplitudes than the ram. The differences are,
however, not so big as one could have expected. One can say, that the amplitudes of
displacements are comparable even for higher frequency ranges than those shown in the
picture, which means that the casing of this hammer is not separated from the source.
Moreover, as one can see, the vibrations of both elements are cophasic. A question may
arise here, whether when building a dynamic model it is worthwhile to take both
elements into consideration. This seems purposeless. Hence, in the case of the
investigated tool, the model being created may be limited to a model with fewer degrees
of freedom, taking the tool casing and the ram together into account.

Analyzing the motion of the casing at a measuring point placed near the ram (Fig. 3a)
and the motion of the ram itself (Fig. 3b) in the Y-Z plane one can see, that these
motions in the axis perpendicular to the impact direction are significant and cannot be
omitted in the modeling of interactions of vibrations on the operator.
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Figure 3. Movements of a selected point on the casing near the ram (Fig. a)
and the ram itself in its middle point (Fig. b)

What is the most important this indicates the character of fixing the hammer in the
test stand. At points placed at longer distance from the ram their lateral movements are
not so important. This results from the fact, that the hammer is fixed well in its upper
part, and that the collisions between the ram and the absorber are not central. To a degree
this simulates real working conditions of the tool held by an operator. Hence, it seems to
be important that forces perpendicular to the hammer axis are also taken into account in
the model.

The performed analysis of vibrations of the hammer handle shows a reduction in
vibration amplitudes (Fig. 4).

Point DA, direction z
T T

0 10 2i0 3|0 40 50
Frequency [Hz]

Figure 4. A section of an amplitude spectrum of vibration displacements of the handle.

The result has been obtained by double integration of the recorded signals of vibration

accelerations

In comparison to the amplitudes of the ram movements at the frequency of work of
the tool (about 22 Hz) this drop equals almost 50%. Unfortunately it is not a lot when
protection of the operator against excessive vibrations is considered.
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To work out guidelines for building a proper model of the investigated air-operated
hammer a time and frequency analysis of the signals was performed as well. The work of
the hammer is non-stationary. This results at least from the fact that the collision process
and possible fluctuations of working frequency of the tool are unrepeatable. That is why
the short-time Fourier transform (STFT) was applied, which is defined as [9]:

X(f,7)= Tw(t —7)x(t)e ¥ dt, (1)

where: t is time, x(t) is the analyzed signal, w(t, z) is a moving window function, z is the
shift of the window in time domain, f is frequency, and i is the imaginary unit.
Examples of results of such a time and frequency analysis are shown in Fig. 5.

STFT STFT

250" 3 Time [s] 200 350 3 Time [s]

Frequency [Hz] Frequency [Hz]

200

Figure 5. STFT analysis for two points. On the left: motion of a point on the casing near
the ram; on the right: motion of a point on the ram near the casing

As it can be seen from the figures the input itself is non-stationary regarding
amplitudes, the spectral composition of the signals, however, remains invariable.
Moreover, it seems that only two or three components of the signal frequency should be
essential in the analysis (see vibrations of the casing in Fig. 5), especially if the ram itself
will be omitted in the model. This enables to define well the input in the dynamic model
as regards both its average amplitude and its frequency composition. To assume,
however, the input as a harmonic function with the working frequency of the ram, which
sometimes is done, would be a too big simplification.

5. Conclusions

As a result of the conducted experimental research information enabling to build a
dynamic model of the considered air-operated hammer was obtained. The results show
that the modeling can be done by taking only the hammer casing and handle into account
and omitting the ram. Additionally, it is essential to limit the complex frequency
composition of the input to two or three harmonic frequencies. It also seems important to
assume such a model, which takes also lateral input forces into account. This also
determines the choice of the model of the operator of the hammer. Non-stationarity of
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the work of the hammer and, what follows, of the inputs may be taken into consideration
by using the average amplitude of each component of the input or by modeling the
system using stochastic differential equations.
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Abstract

A dynamics analysis of a selected truck-mounted crane is presented in this article. A mathematical model of
the crane, considered in a form of an open-loop kinematic chain, allows to take into account flexibility of its
support system, hoist rope and drives of particular links, and also friction in the joints. The geometry of the
crane model is described using the Denavit-Hartenberg notation based on joint coordinates and homogeneous
transformation matrices. lts equations of motion were derived on basis of the Lagrange formalism. The LuGre
model was used to describe friction in the joints.

1. Introduction

In the today’s era of computer systems a development of virtual complex models of
mechanical systems is achieved using commercial or proprietary calculation programs.
Computerization of a designing process of these systems shortens time significantly
from determining design assumptions to making a final product.

In the literature there are lots of publications devoted to the dynamics analysis of
different types of cranes. Unfortunately, there are hardly any publications devoted
strictly to issues of the dynamics analysis of the truck-mounted cranes. This scope of
investigations can be deemed — according to the authors of this publication — as poorly
advanced. While making an overview of the literature the authors want to draw attention
to a few selected works devoted to the dynamics analysis of cranes taking into account
flexibility of their support systems (e.g. [1, 2, 3, 4]), flexibility of a hoist rope (e.g. [2,
3]), and also occurring of friction in joints (e.g. [5, 6]). All the issues mentioned are also
a subject of the analysis presented in this work.

In the work it is assumed that the links of the modeled crane are driven directly by
torques, whereas the retractable link by a force. It is a simplification, because in the real
system the links are driven by three hydraulic cylinders (two of them are jib cylinders,
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and the third one is a telescopic cylinder). The assumed crane model is an open-loop
kinematic chain, like models of robot manipulators. For this reason the Denavit-
Hartenberg notation [7], taken from robotics, based on use of joint coordinates and
homogeneous transformation matrices was applied to describe its geometry. Equations
of the model motion were assumed using the Lagrange formalism [8]. Transported load
was modeled in a form of a material point. In all the revolute joints, and also in the
prismatic joint of the crane between the links moving on each other friction is taken into
account. The friction phenomenon is described by the advanced LuGre model [9] based
on bristle interpretation of friction [10]. This model allows to take into account the both
phases of friction in the joints, that is the static and kinetic friction, and more precisely
such phenomena as: a preliminary displacement, the Stribeck effect and a frictional lag.

2. Mathematical model of the crane

The model of the crane in question is presented in Fig. 1. This model consists of five
links (n, =5). First of them constitutes a truck chassis on which the crane is mounted.

This chassis is settled flexibly by six supports (nS = 6) , out of which four are the wheels
of the truck.

link 4 link 3
RHS420x280x6 " RHS360x280x 6
=4.1m

link 5

link 2
RHS 400 280% 6 RHS360%300x10
v I®=233m
. link 1

flexible supported base

L (X(”.y(”,z(”)

Figure 1. Model of the truck-mounted crane
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A vector of the generalised (joint) coordinates of the developed model was
determined in a form:

T T T (T (T oy T T

q:[q(c) q® } :[q(l) g §9 §9 g9 qO } , (1)
~ T ~ ~

where: §® :[x“) yo  z® V/(l) ow ¢(1)] ,§? = V/(Z):|: g@ :[l//(s)],

T
G :[y/(“)] q® :[z(s)], q® =[x(" y® z(')] ]
The matrices of the homogeneous transformations from the local coordinate systems
of particular links of the model to the assumed reference system can be presented as:

T(p)|p:1,...,n. — TOPDF®) )

where: TO =1,

(1 0 g0 xO cy® spy® 0 0
20 _ l//(l) 1 —{Z)(l) y(1) 700 _ 5‘//(2) Cl//(Z) 0 0
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[ep®  —sp® 0 —1@ca® cy® sp®@ 0 1O
FO _ 0 0 1 0 - spy® cpy® 0 0

—spy® —cpy® 0 1Psg® | 0 0 1 0/

| 0 0 0 1 0 0 0 1

1 0 0 O
TG = 00129 ,sa®? =sina”, ca” =cosa”.

0 -10 O
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Mo;jels of a revolute joint and a prismatic joint with friction were developed for the
needs of the analysis and they are presented in Figs. 2a and 2b, respectively.

friction
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friction “= friction y t/&l’” trc

B = =
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Figure 2a. Model of a revolute joint
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Figure 2b. Model of a prismatic joint

Values of friction torques t{” in the revolute joints and friction force f® in the
prismatic joint are calculated on basis of knowledge about joint forces and torques

£(p)
fo(P) ’

(p) in those joints determined by the Newton-Euler recursive algorithm [7].

The equations of the crane model motion can be presented as:

where:
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m®" — mass of the load, g — acceleration of gravity,
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s,,d, — stiffness and damping coefficient of the hoist rope,

r’® — vector of the position of point P in the coordinate system of link 5,
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The LuGre friction model adopted by the authors of this work, describing friction

coefficients ﬂ|”:"5°’\ae<m; in a form of two differential equations of a first order, has
ﬂ:ﬂ(p)
already been presented in details in other works by them, namely in the publication
devoted to dynamics of spatial linkages [11], and also in the article dealing with the grab
crane [6].

The formulated equations of motion were solved by the Runge-Kutta method of the
fourth order with a fixed-step.
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3. Results of numerical calculations

Some results of the numerical calculations presenting a trajectory of the load moved,
determined in plane K@y of the reference system in the case of taking into account or
omitting friction in the crane joints, are presented in Fig. 3.

P [m]® 1

— without friction
with friction

N

(%)
o
ok
IS

X[m]
Figure 3. Trajectory of the load

An influence of friction on time courses of the values of the drive torques in the
revolute joints and the drive force in the prismatic joint is presented in Fig. 4.

150 £ [kNm] 150 r/3[kNm]

dr

50

50 b 50 b i
—without friction § — without friction
we with friction - with friction
100 100 ~
(4) (5),
150 1 2; [kNm] 50 15'[kN]

—without friction ~—without friction
444444 with friction wew with friction
-100 L -50

Figure 4. Courses of the values of the drive torques and the drive force
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The performed calculations showed that friction in the joints of the modeled crane
and also — as it was to be expected — flexibility of its support system and hoist rope had a
significant influence on the crane dynamics, changing significantly courses of the
determined parameters.

4, Conclusions

A dynamics analysis of the selected truck-mounted crane is presented in the work. The
developed mathematical model can be treated as a virtual prototype of a real crane
helpful while performing a process of its designing, and also while developing control
algorithms. High degree of advancement of the prepared model provides — according to
the authors — a possibility of a precise reflection of real system behavior in the dynamics
conditions, what should make correctness of the calculation results reliable. However,
the final verification of correctness of the prepared model can be made by experimental
tests of a real system.
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Abstract

In this study the fixed-fixed column subjected to axial Euler’s load has been investigated. The load
is placed between the fixed ends of the structure and its location can be changed along column’s
length. The boundary problem of free vibrations of the mentioned system has been formulated on
the basis of Bernoulli — Euler theory and taking into account non-linear axial deformation
relationship. Due to non-linear expressions the solution of the problem was done with small
parameter method. In the paper the change of the first vibration frequency in relation to location
and magnitude of the loading force was obtained. The relationship between natural vibration
frequency and the amplitude is also discussed.

Keywords: column, Bernoulli-Euler’s theory, free vibrations frequency, nonlinear system, characteristic
curves, amplitude of vibrations, nonlinear component of free vibrations frequency

1. Introduction

In the literature the papers in which the vibrations of beams [1, 3, 4, 5, 11], columns [6,
12,7, 8,9, 15-21] and frame [10, 13, 14] are investigated can be found. In the boundary
problem formulation process of these systems the theory of Bernoulli — Euler is mostly
used. (see [2, 8-22]). This theory is sufficient when slender systems are taken into
account (structures in which the total length is much greater than transverse dimensions)
and when the system is not connected to mass elements with translational and rotational
inertia. In the other cases (especially then higher order vibration frequencies are
considered) the theory of beams proposed by Timoshenko should be used in which the
shear energy and the rotational inertia energy of cross section are considered [1, 3-7].
The second problem which is present in the boundary problems are the linear and non-
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linear theories. When the non-linear one is taken into account the deformation of the
elastic element at moderately large deflections is written in the form:

2
£ (x 1) 6Ui(xi,t)+£(6wi(xi,t)J O
OX 2 OX;
where: Ui(x;,t), Wi(x;,t) longitudinal and transversal displacements respectively.

In non-linear systems in which the boundary problem is described by non-linear
differential equations [2, 8, 15, 16, 19-22 ] the components of vibration frequency can be
computed as dependent on amplitude of vibration (non-linear components of vibration
frequency). The non-linear components may have great influence on vibration frequency
and can’t be omitted. In relation to the method of solution of the boundary problem the
estimation of the non-linear component may be hard and time consuming. Nonlinear
components of vibration frequencies of complex non-linear systems were investigated by
Tomski and Przybylski [16], Przybylski [9] and Sokot [12] in relation to the conservative
and non-conservative loads. The estimated components of vibration frequency were
computed at rectilinear components of static equilibrium. The non-linear component of
vibration frequency at rectilinear as well as at curvilinear form of static equilibrium of
the column loaded by Euler’s force were discussed in [21, 22]. At specific load studies
on an influence of an amplitude on natural vibration frequency can be found in the
following publications [19, 20]. The results were discussed at rectilinear and curvilinear
form of static equilibrium. It has been shown that an influence of an amplitude on
vibration frequency highly depends on the magnitude of external load. The use of
specific load allows one to choose such load magnitude along with the parameters of the
loading structure that an influence of an amplitude is negligible.

The main purpose of this paper is to present the results of the studies on the
magnitude and location of the external force on natural vibration frequency (both linear
and non-linear components) of the partially tensioned geometrically non-linear column.

2. Boundary problem

The considered column is presented in the figure 1. The column is fixed on both ends
and loaded by a force P with constant line of action regardless to the deflection of the
host element. The line of action of the force is compatible to the undeformed axis of the
column. The point of location of the force is described by ¢ parameter which is
calculated as a relationship between length I, to total length I:
|

{=7 @)
The bending stiffness and compression stiffness and mass of the tensioned part (above
the point of external force location) and compressed one are as follows: ((EA). = (EA), =

(EA); (Ed)1 = (EJ)2 = (EJ); (pA)1 = (pA)2 = (0A)).
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7

(EJ),, (EA),, (pA),

(B, (EA);, (pA),

7 W)
Figure 1. Considered column

The boundary problem is formulated on the basis of relation (1) and Bernoulli —
Euler theory. The differential equations (in transversal and longitudinal direction) of
vibration of the column are as follows:

W), )20, ) PV g ®
Ui(Xilt)—Ui(olt)Z—%xi —%X(%J dx; 4)

where: Si(t) — force in i — th element, Ui(x;,t), Wi(xi,t) — longitudinal and transversal
displacements of the cross section of the i — th element described by coordinate x;.
The boundary conditions of the considered system are presented below (5a-l):

Xy =ly
U,(0,)=U, (1, £) =W, (0,t)= M0ut) _yy @y Male ) g e g
Xy %<0 X,
Uy, t) =U,(0t), Wi(ly,t)=W,(0,t), S; - S, =P (59-1)
oW, 0, ) AW, (k1) W,(6.t) .
(E\l)lax—13 (E3), o X2=0+P o Xz:o_o (5))
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(E\])lawl—(xl')Xl:I1 —(EJ) M =0 (5k)

2 2
% X5 %, =0

W, 0, 8“7 _ W, (xy,t)
6’X1 | ax2 |>(2 =0

The further consideration are performed in non-dimensional form with the following
relations:

XI
§i=T:

G

Wi(fi’f)=wi(fi’r): Ui(fi’T)ZUi(:i’T): k()= S('E(J) ,  (6a-d)

214 2
Q$=—(”A)i"’ " r=at, 0, =A =12 (6e-9)
(E3); Ji

where @ is the natural vibration frequency.
The parameters presented in (6) are substituted into differential equations and boundary
conditions what leads to their non-dimensional forms. The non-linear elements of the
differential equations and boundary conditions are written into power series of the small
parameter of an amplitude. In this study only the rectilinear form of static equilibrium is
investigated at which the series are as follows:

N
wi(£7) =Y &2 w4 (6, r)+ 02N ), (72)

J:

N
o(&)+ Y Puy (,7)+ 02" ) (7b)
=1
N

o + 2057k () +olg2v), (70)

=

02 =02 + Zg”szj +0(2M) (7d)

where: "
W (&,7) =i (&)cosz, wi(£,7)=w ()COSHJV,L(g)cossf;... (Bab)
uale)- Jl( ot (£)cos2e ;.. )
k2(z)= k IL)COSZr;... (8d)

On the basis of the obtained equations and boundary conditions the distribution of the
external load on the elements of the structure can be found as well as magnitudes of the
axial forces during vibrations and basic (av) and nonlinear («) components of natural
vibrations.
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3. Results of numerical simulations

The results of numerical simulations are presented with the use of the following
parameters:

_ 2 2 4
o= Ml()o%, A= Pl L Q= @ (pA)I , (9a-c)
I5) (E3) EJ)
2 4
Q:M;i:()’ 2; 6()226054‘820)22 (9d,e)

(EJ)
The parameters expressed by the formulas (9a-e) are the non-dimensional ones.
Wherefore no information about material properties and cross-section area of the column
can be found in this paper.

In the numerical calculations of an influence of a non-linear component @, on natural
vibration frequency @ the magnitude of the small parameter of an amplitude was defined
as ¢=0.008.

700 —

650 —

1.2a=0
2.4=2.34

625 3.4=11.69
4.2.=21.05
4 5.2=3041
6.2 =39.76

e
00 01 02 03 04 05 06 07 08 09C 10

Figure 2. Magnitude of vibration frequency £2 parameter in relation to the point of
location of external load ¢

In the figure 2 the change of vibration frequency parameter 2 (taking into account the
non-linear component) in relation to the point of location of external load ¢ has been
presented. The calculations were performed at different magnitudes of external load
parameter - A. The vibration frequency highly depends on the magnitude and point of
location of the external load. An increase of the magnitude of the external load causes an
increase of the difference between the highest and the lowest magnitudes of vibrations in
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the investigated range of . In this range the three points along the length of the column
can be found in which the natural vibration frequency is not highly dependent on
external load.

38

Cal»h  1.x=0 6.

374 2.a=234 5.
4 3A=11.69 4

36— 4.2.=21.05 3.
1 5.4=3041 )

359 6.1=39.76 1.

34 —

33 -

32

31 -

30 -

e e e S A I B \

T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 €10

Figure 3. Magnitude of an influence on an amplitude on vibration frequency Z»
parameter in relation to the point of location of external load ¢

In the figure 3 the change of ¢n parameter along length of the column at different
magnitudes of external load has been plotted. It has been shown that an influence of an
amplitude on natural vibrations depends on both external load magnitude and point of
location of the external force. The highest magnitude of o has been found at £~ 0.34. In
the unloaded system an influence of the second component of vibrations on vibration
frequency is about 31.97 % at given amplitude corresponding to small parameter & =
0.008.

4. Conclusions

In this paper the non-linear column fixed on both ends subjected to Euler’s load (the load
with constant line of action) has been investigated. The loading force was placed
between the fixed ends of the structure. The boundary problem has been formulated on
the basis of the Bernoulli — Euler theory and with taking into account the non-linear
relationship of the axial deformation. In the final step of formulation of the boundary
problem the small parameter method was used on the basis of which the computations of
natural vibration frequency with consideration of linear and non-linear components
(which depends on amplitude) were done. It has been shown that the natural vibration
frequency of the investigated structure depends on both point of location and magnitude
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of the external force. The similar relationship can be observed at component which
depends on amplitude of vibrations. It has been stated that the non-linear component of
vibration can’t be omitted especially at higher magnitudes of external load as well as at
some point of location of external load. It’s influence on final magnitude of vibration
frequency can be significant but on the other hand it depends on amplitude.

In the future it is planned to develop of the studies started in this paper by addition of
the elements which can have an influence on the behavior of the column during
vibrations. The presented in this study results of numerical simulations may have
engineering importance in investigation on the systems in which the point of location of
the external load changes along their length (for example the screw along which the nut
transferring loads changes position).
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