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Abstract  

Tapered beams are more efficient compared to uniform beams as they provide a better distribution of mass and 

strength and also meet special functional requirements in many engineering applications like architecture, 
aeronautical, civil, mechanical, automobile, nuclear and robotics. The authors proposed a new method called 

Coupled Displacement Field (CDF) method in which the displacement field such as total rotation is assumed 

such that the assumed displacement must satisfy the kinematic and force boundary condition of the beam. The 
lateral transverse displacement is derived from the coupling equation which is derived from the static equilibrium 

conditions of the beam. By the application of principle of minimum total potential energy for different beam 

boundary conditions, the fundamental frequency parameter value is calculated in terms of taper ratio and 

slenderness ratio for various maximum amplitude ratios of the tapered Timoshenko shear flexible hinged-hinged 

beam boundary condition.  
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1. Introduction  

Many authors developed different methods to find the free vibration behaviour of shear 

flexible beams for a long period of time and are mentioned below. The free vibration of 

nonuniform beams with general shape and arbitrary boundary conditions was analyzed 

[1]. Free vibrations of tapered beams with general boundary condition is ealuated by using 

the ordinary differential governing equation of beams which can be solved by numerical 

methods and the natural frequencies are calculated by combining the Runge Kutta method 

and the determinant search method [2]. The dynamic behaviour of beams with linearly 

varying cross-section was studied by the equation of motion in terms of Bessel functions, 

and the boundary conditions lead to the frequency equation which is a function of four 

flexibility coefficients [3]. Natural vibration frequencies of tapered beams by using Euler-

Bernoulli beam theory in the presence of an arbitrary number of rotationally, axially and 

elastically flexible constraints were studied by the dynamic analysis, performed by means 

of the so-called cell discretization method (CDM), according to which the beam is reduced 

to a set of rigid bars, linked together by elastic sections, where the bending stiffness and 

the distributed mass of the bars is concentrated [4]. Wentzel, Kramers, Brillouin (WKB) 

approximation was used to study the transverse free vibration of a class of variable-cross-
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section beams in which the governing equation of motion of the Euler–Bernoulli beam 

including axial force distribution is utilized to obtain a singular differential equation in 

terms of the natural frequency of vibration and a WKB expansion series is applied to find 

the solution [5]. Green’s function method was used for the free vibration problem of non 

uniform Bernoulli-Euler beams, to find the Green’s function of the fourth order differential 

operator, occurring at the beam’s equation of motion, the power series method is proposed 

[6]. The differential transformation method (DTM) was used for free vibration analysis of 

beams with uniform and non-uniform cross sections [7]. 

The Coupled Displacement Field method applied to free vibration analysis of uniform 

Timoshenko beams for different beam boundary conditions [8]. The vibrations of an 

isotropic beam with a variable cross-section is studied by uysing the governing equation 

by reducing it to an ordinary differential equation in spatial coordinate for a family of 

cross-section geometries with exponentially varying width [9]. Non-linear vibration 

analysis was premeditated by establishing equations of motion for taper Timoshenko 

beams [10]. A mathematical model for vibrations of non-uniform flexural beams was 

presented for free vibrations of non-uniform viscoelastic flexural beams by getting an 

analytical solution for the fourth order differential equation of beam vibration under 

appropriate boundary conditions by factorization and calculated mode shapes and damped 

natural frequencies of the beam for wide range of beam characteristics [11]. The concept 

of coupled displacement method was sucessfully applied for large amplitude free 

vibrations of shear flexible beams and the approach leads to only one undetermined 

coefficient, in the case of single-term admissible functions, which can easily be used in 

the principle of conservation of total energy, neglecting damping, to solve the problem 

[12]. The natural frequencies and dynamic behaviour vibration of linearly tapered beams 

subjected to different combinations of edge supports by finite element algorithmic 

procedures are evaluated [13]. The Green’s function method is used in frequency analysis 

of a beam with varying cross section for the beam carrying an arbitrary number of attached 

discrete systems.The exact solution of the problem concerns a beam with quadratically 

varying cross-section area [14]. The vibrational characteristics of tapered beams with 

continuously varying rectangular cross-section of depth and breadth proportional to xs and 

xt respectively, where both s and t are arbitrary real numbers for a truncated beam and 

arbitrary positive numbers for a sharp ended beam and x is the axial co-ordinate measured 

from the sharp end of the beam and obtained the eigen frequency equation by the Rayleigh-

Ritz method [15]. 

The solution for the large amplitude free vibration problems using energy method 

involves assuming suitable admissible functions for lateral displacement and the total 

rotation which leads to two coupled nonlinear differential equations in terms of lateral 

displacement and the total rotation. This can be overcome with less computational efforts 

by Coupled Displacement Field method in which lateral displacement and total rotation 

are coupled through the static equilibrium equation of the shear flexible beam.  
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2. Coupled Displacement Field (CDF) method 

The concept of coupled displacement field method is explained in detail. In the Coupled 

Displacement Field Method (CDF) with the single term admissible function for total 

rotation θ, the function for transverse displacement w is derived  using the coupling 

equation. The coupling equation has been derived from the kinematic and static boundary 

conditions of beam.  

 

Figure 1. Tapered Timoshenko beam with linearly varying height (depth) 

2.1. Coupling equation 

From the kinematics of a shear flexible beam theory  

                                                              
_
u (x, z) = z                                                            (1) 

                                                        
_
w (x, z) = w (x, z)                                                     (2) 

where 
_

u  is the axial displacement and 
_

w  is the transverse displacements at an any point 

of the beam, z is the distance of the any point from the neutral axis and  is the total rotation 

anywhere on the beam axis and x, z are the independent spatial variables. The axial and 

shear strains are given by  

                                                             x  = z 
x


                                                                          (3) 

                                                           
  






x

w
xz                                                             (4) 

Now, the expressions for the strain energy ‘U’ and the work done ‘W’ by the externally 

applied loads are given by  

                                        

2 2
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L L
EI d kGA dw

U dx dx
dx dx
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   
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where EI is the flexural rigidity, GA is the shear rigidity, k is the shear correction factor 

(taken as 5/6 in the present study), p(x) is the static lateral load per unit length acting on 

the beam, E is the Young’s modulus, G is the shear modulus, x is the axial coordinate and 

L is the length of the beam. Applying the principle of minimization of total potential 

energy, as  

                                                                (U – W) = 0                                                    (7) 

The following equilibrium equations can be obtained  

                                                    

2

2
0

d w d
kGA p

dxdx

 
   

 
 

                                          (8) 

                                                

2

2
0

d dw
EI kGA

dxdx




 
   

 
                                        (9) 

where θ is total rotation, w is transverse displacement. Equations (8) and (9) are coupled 

equations and can be solved for obtaining the solution for the static analysis of the shear 

deformable beams. A close observation of equation (8) shows that it is dependent on the 

load term p and equation (9) is independent of the load term p. Hence, equation (9) is used 

to couple the total rotation  and the transverse displacement w, so that the two 

undetermined coefficients problem (for single term admissible function) becomes a single 

undetermined coefficient problem and the resulting linear free vibration problem becomes 

much simpler to solve. 

 

Figure 2. Tapered Timoshenko hinged-hinged beam (depth taper) 

with axially immovable ends 

An admissible function for tapered Timoshenko hinged-hinged beam θ which satisfies all 

the applicable boundary conditions and the symmetric condition is assumed in the beam 

domain as 

                                                          







 x

LL
a


 cos                                                    (10) 

                                                     







 x

LL
a

dx

d 
sin

2

2

                                             (11) 
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3

3

2

2

cos
L

x
L

a
dx

d 








                                                      (12) 

where a is the central lateral displacement of the beam which is also the maximum lateral 

displacement. Rewriting equation (9) 

                                                       
2

2

dx

d

kGA

EI

dx

dw 
                                                         (13) 

By integrating the above equation, lateral displacement can be obtained as 

                                             



















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LkGA

EI

L
aw


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2
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                                       (14) 

It may be noted here that because of the coupled displacement field concept, the 

transverse displacement w distribution contains the same undetermined coefficient a as 

the θ distribution and satisfies all the applicable essential boundary and symmetric 

conditions. 

                                                0)()0(
2/


Lxdx

dw
Lww                                                 (15) 

2.2. Linear free vibrations 

Linear free vibrations can be studied, once the coupled displacement field for the lateral 

displacement w, for an assumed θ distribution is evaluated using the principle of 

conservation of total energy at any instant of time, neglecting damping, which states that 

U + T = constant. The expression for U and T are given by 

                                    

22
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L L
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U I dx A dx
dx dx


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   
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where T is the kinetic energy, hL, h0 , are the height of the beam at left end x = 0 and the 

right end x = L respectively, A0 and I0 are cross sectional area and area moment of inertia 

at right side, A is the area at any cross section, α is the taper ratio. Substituting equations 

(11), (13) and (18) in equations (16) and after simplification 
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          
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Substituting equations (10), (14) and (18) in equations (17) and after simplification 
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By the application of principle of minimum total potential energy principle 
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TU
 with respect to undetermined coefficient a, the fundamental frequency 

parameter is obtained and is given as below 
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4        (22) 

where λ is the non dimensional fundamental frequency parameter, β = L/r (slenderness 

ratio) and r is radius of gyration for the cross-section of the beam. 

3. Large Amplitude free vibrations 

For an assumed θ distribution, the coupled displacement field for the lateral displacement 

w is evaluated, after the lateral displacement w is calculated, the large amplitude free 

vibrations can be studied using the principle of conservation of total energy at any instant 

of time neglecting damping. 

                                                        U + T + W = const.                                                  (23) 
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Work done due to large amplitudes  

                                                       

2

0

1

2 2

L
aT dw

W dx
dx

 
  

 
                                                (24) 

where w is transverse displacement obtained from coupling equation. From Woinowsky-

Krieger equation  
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Ta is the tension developed in the beam because of large deformations. W is the work done 

by the tension developed because of large amplitudes, ρ is the mass density. Ta is evaluated 

in terms of the amplitude ratio (a/r). Substituting the values of w (obtained from coupled 

displacement field),equation (25) in equation (24) and solving the work done due to large 

amplitudes becomes 
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Substituting equations (19), (20) and (27) in equation (23) and simplifying, 

the following form is obtained 

                                                   2
4

1
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The ratio of non linear and linear frequency is expressed as  
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4. Numerical results and discussion 

The concept of coupled displacement field and harmonic balance method are used to 

determine the ratios of non linear radian frequency ωNL to the linear radian frequency ωL 

of tapered Timoshenko beams with the two most practically used hinged-hinged beam 

boundary condition. Suitable single term trigonometric admissible functions are used to 

represent the total rotatio θ in the coupled displacement field method. The corresponding 

coupled lateral displacement w is derived using the coupling equation. The numerical 

results are obtained in terms of ωNL/ωL for various maximum amplitude, taper parameter 

and slenderness ratios. To assess the accuracy of the results, the present results obtained 

from the coupled displacement filed method are compared with the existing literature. 

Table.1 shows the variation of linear non dimensional Fundamental frequency parameter 

with slenderness ratio and taper ratio for hinged-hinged beam boundary condition. For the 

sake of comparison and validation of the coupled displacement filed method, the same 

results obtained by the other researchers are also included in Table 1. It is observed from 

Table 1 that the non dimensional linear fundamental frequency parameter value increases 

with increase in taper ratio for a given slenderness ratio. It is also observed from Table 1, 

the non dimensional linear fundamental frequency parameter value increases with increase 

in slenderness ratio for a given taper parameter. Table 2 Table 3 and Table 4 show the 

variation of frequency ratio ωNL/ωL with maximum amplitude and taper parameter for 

different slenderness ratios such as 20, 50 and 100 are given respectively for hinged-

hinged beam boundary condition. It is found from Table 2, Table 3 and Table 4 that 

frequency ratio is function of three parameters such as maximum amplitude ratio, taper 

parameter and  slenderness ratio. It is In general found from Table 2, Table 3 and Table 4 

that frequency ratio increases with increase of maximum amplitude ratio for a given taper 

parameter and slenderness ratio. It is also observed from Table 2, Table 3 and Table 4 that 

frequency ratio decreases with increase of taper parameter for a given slenderness ratio 

and amplitude ratio. This is mainly because of as taper ratio increases mass of the beam 

also increases. 
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Table 1. 2/1  values for a tapered Timoshenko hinged-hinged beam (depth taper) 

Table 2. ωNL/ωL values for a tapered Timoshenko hinged-hinged beam for β = 20 

⍺ 

 

β 

10 20 40 80 100 

CDF 

Method 
Ref.[13] 

CDF 

Method 
Ref.[13] 

CDF 

Method 

CDF 

Method 

CDF 

Method 
Ref.[13] 

0 8.3912 8.388 9.4107 9.411 9.7470 9.8384 9.8496 9.850 

0.1 8.6916 8.683 9.8415 9.829 10.2267 10.3317 10.3446 - 

0.15 8.8435 - 10.0595 - 10.4695 10.5816 10.5953 - 

0.2 8.9962 8.955 10.2789 10.228 10.7141 10.8333 10.8480  

0.25 9.1496 - 10.4996 - 10.9604 11.0869 11.1024 - 

0.3 9.3036 9.205 10.7214 10.610 11.2082 11.3420 11.3585 - 

0.35 9.4580 - 10.9443 - 11.4574 11.5987 11.6161 - 

0.4 9.6127 - 11.1681 - 11.7079 11.8569 11.8752 - 

0.45 9.7676 - 11.3926 - 11.9596 12.1163 12.1356 - 

0.5 9.9225 - 11.6178 - 12.2124 12.3770 12.3973 - 

0.55 10.0774 - 11.8435 - 12.4661 12.6389 12.6601 - 

0.6 10.2321 - 12.0697 - 12.7208 12.9018 12.9241 - 

0.65 10.3866 - 12.2962 - 12.9764 13.1658 13.1891 - 

0.7 10.5407 - 12.5230 - 13.2327 13.4307 13.4551 - 

0.75 10.6943 - 12.7500 - 13.4897 13.6965 13.7219 - 

0.8 10.8475 - 12.9771 - 13.7474 13.9631 13.9897 - 

0.85 11.0000 - 13.2042 - 14.0057 14.2304 14.2582 - 

0.9 11.1519 - 13.4313 - 14.2644 14.4986 14.5274 - 

0.95 11.3030 - 13.6583 - 14.5237 14.7673 14.7974 - 

1 11.4533 - 13.8852 - 14.7834 15.0368 15.0681 - 

am/r 

⍺ = 0.25 ⍺ = 0.5 ⍺ = 0.75 ⍺ = 1 

CDF 

Method 
Ref.[10] 

CDF 

Method 
Ref.[10] 

CDF 

Method 
Ref.[10] 

CDF 

Method 
Ref.[10] 

0.10 1.0009 1.0009 1.0005 1.0007 1.0003 1.0006 1.0002 1.0005 

0.20 1.0036 1.0037 1.0019 1.0030 1.0011 1.0025 1.0007 1.0021 

0.30 1.0081 - 1.0042 - 1.0025 - 1.0016 - 

0.40 1.0144 1.0146 1.0075 1.0119 1.0044 1.0100 1.0028 1.0085 

0.50 1.0224 - 1.0118 - 1.0069 - 1.0044 - 

0.60 1.0321 1.0325 1.0169 1.0266 1.0099 1.0224 1.0064 1.0190 

0.70 1.0434 - 1.0230 - 1.0134 - 1.0087 - 

0.80 1.0564 1.0570 1.0299 1.0467 1.0175 1.0394 1.0113 1.0336 

0.90 1.0709 - 1.0377 - 1.0221 - 1.0143 - 

1.00 1.0868 1.0878 1.0464 1.0721 1.0272 1.0608 1.0177 1.0519 

1.10 1.1042 - 1.0559 - 1.0328 - 1.0213 - 

1.20 1.1230 1.1239 1.0662 1.1022 1.0389 1.0864 1.0253 1.0740 

1.30 1.1430 - 1.0773 - 1.0455 - 1.0297 - 

1.40 1.1642 - 1.0891 - 1.0526 - 1.0343 - 

1.50 1.1865 1.1878 1.1017 1.1552 1.0602 1.1315 1.0393 1.1131 
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Table 3. ωNL/ωL values for slenderness ratio β (L/r) = 50 for higed-hinged tapered 

Timoshenko beam 

am/r 

α 

α = 0.25 α = 0.5 α = 0.75 α = 1 

CDF Method CDF Method CDF Method CDF Method 

0.10 1.0005 1.0002 1.0001 1.0000 

0.20 1.0018 1.0010 1.0005 1.0004 

0.30 1.0041 1.0021 1.0012 1.0008 

0.40 1.0073 1.0038 1.0022 1.0014 

0.50 1.0114 1.0060 1.0034 1.0022 

0.60 1.0164 1.0086 1.0049 1.0032 

0.70 1.0222 1.0116 1.0067 1.0043 

0.80 1.0290 1.0152 1.0088 1.0056 

0.90 1.0366 1.0192 1.0111 1.0071 

1.00 1.0450 1.0236 1.0137 1.0088 

1.10 1.0542 1.0285 1.0165 1.0106 

1.20 1.0642 1.0338 1.0196 1.0127 

1.30 1.0750 1.0396 1.0230 1.0148 

1.40 1.0865 1.0458 1.0266 1.0172 

1.50 1.0987 1.0524 1.0305 1.0197 

2 1.1697 1.0914 1.0536 1.0348 

3 1.3521 1.1959 1.1170 1.0767 

4 1.5724 1.3284 1.2001 1.1327 

5 1.8168 1.4815 1.2991 1.2009 

Table 4.  ωNL/ωL values for a tapered Timoshenko hinged-hinged beam for β = 100 

 ⍺ 

 

am/r 

0.25 0.5 0.75 1 

CDF 

Method 
Ref.[10] 

CDF 

Method 
Ref.[10] 

CDF 

Method 
Ref.[10] 

CDF 

Method 
Ref.[10] 

0.10 1.0010 1.0010 1.0004 1.0008 1.0003 1.0007 1.0002 1.0006 

0.20 1.0033 1.0040 1.0017 1.0033 1.0010 1.0028 1.0006 1.0025 

0.30 1.0075 - 1.0039 - 1.0022 - 1.0014 - 

0.40 1.0132 1.0158 1.0069 1.0132 1.0040 1.0113 1.0025 1.0098 

0.50 1.0206 - 1.0107 - 1.0062 - 1.0040 - 

0.60 1.0295 1.0353 1.0154 1.0294 1.0089 1.0252 1.0057 1.0219 

0.70 1.0400 - 1.0209 - 1.0121 - 1.0078 - 

0.80 1.0519 1.0619 1.0272 1.0516 1.0158 1.0444 1.0101 1.0387 

0.90 1.0653 - 1.0344 - 1.0199 - 1.0128 - 

1.00 1.0800 1.0950 1.0423 1.0795 1.0245 1.0685 1.0158 1.0597 

1.10 1.0961 - 1.0509 - 1.0296 - 1.0191 - 

1.20 1.1134 1.1344 1.0603 1.1127 1.0351 1.0972 1.0227 1.0849 

1.30 1.1319 - 1.0704 - 1.0411 - 1.0266 - 

1.40 1.1516 - 1.0813 - 1.0475 - 1.0308 - 

1.50 1.1724 1.2033 1.0928 1.1712 1.0543 1.1479 1.0352 1.1296 
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5. Conclusions 

The concept of the Coupled Displacement Field (CDF) method applicable to beams 

presented in this paper is successfully applied to study the large amplitude free vibration 

behaviour of tapered Timoshenko beams with axially immovable ends. Elegant and 

accurate closed form expression for 

2















L

NL




for the hinged-hinged beam boundary 

condition is obtained in terms of maximum amplitude ratio, taper ratio and slenderness 

ratio for the assumed single term admissible function for the total rotation θ. 
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