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Abstract 

In this note a certain review of applications of a non-asymptotic modelling approach, called the tolerance 

modelling, is presented. Some objects and thermomechanical problems are shown, with a general outline of this 

method and an example of application for nonlinear vibrations of periodic beams. 
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1. Introduction 

Microheterogeneous media and structures are more and more widely used in modern 

engineering. It is very important to combine different materials into one heterogeneous 

object, which material properties are outstanding when compared to 'classic' homogeneous 

materials. However, a proper model of such structures is needed, which can be used in 

design and optimization process. 

The aim of this note is to show a scope of investigations carried out by the Research 

Team from Łódź. Presented problems were analysed by authors and their co-workers.  

Objects under consideration are composites and structures with microheterogeneity. 

These media can be divided on three kinds: 

- periodic media, which are composed from many identical small elements, called 

periodicity cells; their microstructure is regular and described by a diameter of 

the cell, called the microstructure parameter l; examples of them are shown in 

Fig. 1; 
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Figure 1. Examples of periodic media: a) a periodically stratified layer; 

b) a periodic wavy-type plate 

- multiperiodic media, in which it is difficult to distinguish one, repetitive small 

periodicity element; however, they can have more than one period size along one 

axis of a coordinate system; in this case there are many different microstructure 

parameters along this axis; an example is presented in Fig. 2; 
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Figure 2. Example of multiperiodic medium 
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Figure 3. An example of functionally graded medium: a) on the micro-level;  

b) on the macro-level 
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- media with functionally graded properties, which macroproperties can be 

determined by slowly-varying, smooth functions, but their properties on the 

micro-level are described by highly-oscillating, non-continuous functions; hence, 

they have microstructure; examples of them can be found in Fig. 3. 

Phenomena which take place in composites with periodic, multiperiodic or 

functionally graded structure are described by governing equations with functional, 

highly-oscillating, non-continuous coefficients. Hence, the direct exact description of 

these problems is rather very difficult. In order to analyse various thermomechanical 

problems of these composites different averaging methods are proposed and applied, 

which lead to differential equations with continuous, constant or slowly-varying 

coefficients. Fundamental references of them can be found in books by Woźniak and 

Wierzbicki [175], Woźniak, Michalak and Jędrysiak [173], Woźniak et al. [174]. Between 

many these approaches it is necessary to mention those, based on assumptions of the 

asymptotic homogenisation.  

Unfortunately, methods used to describe periodic, multiperiodic or functionally 

graded structures lead usually to model equations, in which, so called, the effect of the 

microstructure size is neglected, i.e. the effect of the microstructure parameter l. In order 

to take into account this effect some averaged models, proposed by authors and their co-

workers, are based on the tolerance modelling method, shown in [173-175]. Using 

concepts, assumptions and a proper modelling procedure, differential equations with non-

continuous, highly-oscillating, functional coefficients can be replaced by systems of 

differential equations with constant coefficients (for periodic or multiperiodic composites 

and structures) or with continuous, smooth, slowly-varying coefficients (for functionally 

graded composites and structures with microheterogeneity). 

A characteristic feature of the new equations is that they involve terms, which depend 

directly on the microstructure parameter l. Hence, governing equations of tolerance 

models describe the effect of the microstructure size on the overall behaviour of 

microheterogeneous media under consideration. 

2. Investigated objects and thermomechanical problems 

The tolerance modelling approach was applied to propose various tolerance models for 

different microheterogeneous structures.  

There can be mentioned following problems of periodic composites and structures: 

- wave propagation in lattice-type structures by: Cielecka [2], Cielecka et al. [6, 7]; 

- vibrations of lattice-type plates by: Cielecka [3], Cielecka and Jędrysiak [4, 5]; 

- vibrations of thin plates by: Jędrysiak and Woźniak [68], Jędrysiak [17-20, 22-24, 

26, 28, 30, 47], Baron and Jędrysiak [1], Jędrysiak and Michalak [51], Jędrysiak 

and Wyrwa [72], Marczak and Jędrysiak [80]; 

- stability problems of thin plates by Jędrysiak [21, 24, 25]; 

- dynamical stability of thin plates by Jędrysiak [27, 29]; 

- non-linear vibrations of visco-elastic thin plates by Jędrysiak [42, 43]; 

- vibrations of wavy-type plates by: Michalak et al. [105], Michalak [87-92]; 

- stability of wavy-type plates by: Michalak [85, 86, 90, 93]; 
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- vibrations of medium thickness plates by: Baron and Jędrysiak [1], Jędrysiak and 

Paś [54-56], Paś [119]; 

- dynamics of thin shells by: Tomczyk [136, 137, 141, 143, 145-151], Tomczyk and 

Litawska [152, 153], Tomczyk and Ślęzowski [157]; 

- stability of thin shells by: Tomczyk [138-140, 148]; 

- dynamical stability of thin shells by: Tomczyk [142, 144]; 

- dynamics of periodically laminated layers by: Jędrysiak and Juszczak [48]; 

- non-linear bending of thin plates by: Domagalski and Jędrysiak [11-13], 

Domagalski [8], Domagalski and Gajdzicki [10], Ma. Świątek and Domagalski 

[132]; 

- vibrations of periodic sandwich plates by: Jędrysiak and Zaleska [73], Marczak and 

Jędrysiak [81-84], Marczak [79]; 

- non-linear vibrations of beams by: Domagalski and Jędrysiak [14-16], Domagalski 

[9], Mi. Świątek and Domagalski [133]; 

- linear vibrations of beams by: Mi. Świątek et al. [134], Ma. Świątek et al. [135]; 

- vibrations of thin plates with uncertain distribution of properties by Jędrysiak and 

Ostrowski [53]; 

- heat transfer in periodic laminates with uncertain distribution of properties by 

Ostrowski and Jędrysiak [115]. 

For multiperiodic composites and structures it was investigated wave propagation in 

reinforced composite by Jędrysiak and Woźniak [69]. 

In the last years analyses of various thermomechanical problems for functionally 

graded composites and structures, using the tolerance modelling, were developed and 

presented. It can be mentioned: 

- heat transfer in functionally graded composites by: Michalak and Woźniak [106], 

Jędrysiak and Radzikowska [61-65], Jędrysiak [32-34], Radzikowska and 

Jędrysiak [128, 129], Michalak et al. [107], Michalak [97], Ostrowski [108-112]; 

Ostrowski and Michalak [116, 117], Radzikowska [127], Radzikowska and 

Ostrowski [130], Radzikowska and Wirowski [131], Woźniak et al. [171]; 

- vibrations of functionally graded laminated plates by: Jędrysiak et al. [66]; 

- thermolelasticity problems of functionally graded composites by: Jędrysiak [36, 

32], Jędrysiak and Pazera [57-60], Ostrowski [113, 114], Ostrowski and 

Radzikowska [118], Pazera and Jędrysiak [121, 122], Pazera [120]; 

- vibrations of thin plates with transversally graded structure and a thickness smaller 

than the size of the microstructure by: Jędrysiak [31, 32, 35], Wirowski et al. [168], 

Kaźmierczak and Jędrysiak [74-76], Kaźmierczak et al. [78], Jędrysiak and 

Kaźmierczak-Sobińska [49, 50]; 

- stability of thin plates with transversally graded structure by: Jędrysiak and 

Michalak [52], Kaźmierczak-Sobińska and Jędrysiak [77]; 

- vibrations of thin plates with longitudinally graded structure by: Michalak [95, 97], 

Michalak and Wirowski [102], Wirowski [160-167], Wirowski et al. [169]; 

- stability of thin plates with longitudinally graded structure by: Michalak [94, 96, 

97], Perliński et al. [123]; 

- dynamics of microlayered functionally graded media by: Jędrysiak et al. [67], 

Jędrysiak and Pazera [59]; 
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- dynamics of thin functionally graded shells by: Jędrysiak and Woźniak [70, 71], 

Jędrysiak [30, 37]; 

- dynamics of thin skeletonal functionally graded shells by: Michalak and Woźniak 

[103, 104], Woźniak and Michalak [172], Michalak [98]; 

- stability of thin skeletonal functionally graded shells by: Michalak [98]; 

- vibrations of thin transversally graded plates with a thickness of an order of the size 

of the microstructure by: Jędrysiak [38-41, 45]; 

- vibrations of medium thickness transversally graded plates with a thickness of an 

order of the size of the microstructure by: Jędrysiak [41, 44, 46]; 

- dynamics of thin-walled structures with dense system of ribs by: Michalak [99], 

Michalak and Rabenda [101], Rabenda [124], Rabenda and Michalak [125, 126], 

Wirowski et al. [170], Tomczyk and Woźniak [158]; 

- stablity of thin-walled structures with dense system of ribs by: Michalak and 

Ostrowski [100]; 

- dynamics of thin transversally graded shells by: Tomczyk and Szczerba [154-156]. 

In the next sections there are presented an outline of the tolerance modelling, an 

example of application to non-linear vibrations of periodic beams and a certain summary. 

2. Outline of the tolerance modelling 

2.1. Introduction 

The tolerance modelling method (called also the tolerance averaging technique) was 

proposed and developed for periodic composites and structures by prof. Czesław Woźniak 

and His co-workers since the beginning of the 90s of the 20th century. The basic books, 

in which there are presented fundamental concepts and assumptions of this method, its 

modelling procedure and also various applications and some discussions and summaries 

of its development, are following: 

- Woźniak C., Wierzbicki E. [175]; 

- Woźniak C., Michalak B., Jędrysiak J., [173]; 

- Woźniak C., et al., [174]. 

In general the whole modelling procedure with the use of the tolerance modelling 

method applies some introductory concepts, such as: an averaging operator, a slowly-

varying function, a tolerance-periodic function or a highly-oscillating function. The idea 

standing behind those concepts, as well as a detailed description of this modelling 

approach, can be found in the above books. 

Let Ox1x2x3 be the orthogonal Cartesian co-ordinate system in the physical space and 

t be the time co-ordinate. Let subscripts , , (i, j, ) run over 1, 2 (over 1, 2, 3) and 

indices A, B, (a, b,) run over 1,,N (1,,n). It is assumed that summation convention 

holds for all aforementioned indices. Let us introduce x(x1,x2,x3). Let the region  be 

occupied by the undeformed microheterogeneous medium. Media under consideration are 

assumed to have a periodic (tolerance-periodic) structure with periods l1, l2, l3, 

respectively, along the x1-, x2-, x3-axis directions. By ≡[-l1/2, l1/2]×[-l2/2, l2/2]×[-l3/2, l3/2] 

the basic cell is denoted. The cell size is specified by a parameter l, which is a diameter of 

the cell and satisfies the condition l<<min(L), and l is called the microstructure 
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parameter. Let (∙),i≡/xi denote the partial derivatives with respect to a space co-ordinate.  

2.2. Introductory concepts 

Following the above books some of the introductory concepts are reminded below. 

Let cell at xΩ be denoted by (x)=x+, where Ω={xΩ: (x)Ω}. The averaging 

operator is the basic concept of the modelling technique, which is defined by 
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for any integrable function . For tolerance-periodic function  of x the averaged value 

calculated from (1) is slowly-varying function in x, but for periodic – is constant. 

Denote by  and X an arbitrary positive number and a linear normed space, 
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where ),(~ )(  xk  is the periodic approximation of k in (x), xΩ, k=0, 1,…,α. 

Function )( HF  is
 
the slowly-varying function, ),(  

SVF , if 
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Function )( H  is the highly oscillating function, ),(  
HO , if 
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Let us introduce a highly oscillating function g(), ),(2  HOg , defined on  , 

being continuous together with gradient 1g and with a piecewise continuous and bounded 
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gradient 2g. Function g() is the fluctuation shape function of the 2nd kind, ),(2 FSF , 

if it depends on l as a parameter and holds the conditions: 
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where l is the microstructure parameter. Condition (6 ii) can be replaced by <g> (x)  0 

for every xΩ, where  > 0 is a certain tolerance-periodic function. 

2.3. Fundamental assumptions 

Using the above introductory concepts some fundamental modelling assumptions can be 

formulated, cf. [175, 173-174]. Let w(x,t) be a basic unknown field in the problem under 

consideration, xΩ, t(t0,t1). 

The basic modelling assumption is so called the Conformability Assumption. It is 

assumed that the basic unknown field w(·,t) has to be conformable to a microstructure of 

the considered medium, i.e. it is a tolerance-periodic function 

),,(),( α  TPtw  

for any time t. This condition may be violated only near the boundary of the medium. 

The next assumption is the Micro-Macro Decomposition, which stands, that the basic 

unknown field can be formulated as sum of macrofield U(x,t) and products of fluctuation 

shape functions hA(x) and fluctuation amplitudes VA(x,t): 
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Macrofield U(x,t) and fluctuation amplitudes VA(x,t) are new basic unknowns, additionally 

assumed to be slowly-varying functions for every t. 

The third assumption is the Tolerance Averaging Approximations. In the modelling 

procedure terms of an order of O(δ) can be treated as negligibly small in the following 

relations: 
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where ),( 


TPf  is tolerance-periodic function, f  is a periodic approximation of f, 

),( 


SV  is slowly-varying function, ),( 


HOh  is highly-oscillating function, 

0 < δ << 1. 

2.4. Outline of the modelling procedure 

Here, it is presented only an outline of the tolerance modelling procedure, which is detaily 

shown in the book [174].  
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The starting point of the modelling is formulation of the action functional for the 

thermomechanical problem of the microstructured medium under consideration: 

 ,)())((
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where the lagrangian )(  is defined by the unknown fields w and their derivatives in this 

problem: 

 )).,(),,(),,(,()( twtwtw yyyy    (10) 

This lagrangian (10) is a tolerance-periodic function. Using to (10) the principle of 

stationary there can be derived the known Euler-Lagrange equations of the 

microstructured medium under consideration, which have periodic or tolerance-periodic, 

highly-oscillating, non-continuous coefficients. 

However, introducing micro-macro decomposition (7) into lagrangian (10), averaging 

by (1) and using tolerance averaging approximations (8) the tolerance averaged action 

functional can be obtained 
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with the tolerance averaged lagrangian )( h  defined by the new basic unknown fields 

U, VA and their derivatives: 
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This lagrangian is slowly-varying function. Using the principle of stationary to (12) 

there can be derived the new averaged Euler-Lagrange equations of the microstructured 

medium under consideration, which have constant or slowly-varying, smooth coefficients. 

3. Example: non-linear vibrations of periodic beams 

3.1. Introduction 

As an example a linearly elastic prismatic beam is considered. Let Oxyz be an orthogonal 

Cartesian coordinate system, the Ox be the axis of the beam, the cross section of the beam 

be symmetric with respect to the plane Oxz, the load act in the direction of the axis Oz. 

The problem can be treated as one-dimensional, so that the region occupied by the beam 

is defined as Ω≡[, L], L stands for the beam length. Let k = k/xk be the k-th derivative 

of a function with respect to the x coordinate, overdot stands for the derivative with respect 

to time. 

The periodic beam is assumed to be made of many repetitive small elements – 

periodicity cells, ≡[l/2,l/2], where l<<L is the length of the cell, called the 

microstructure parameter. 
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Considerations are based on the Rayleigh theory of beams with von Kármán type 

nonlinearity, with neglected effect of axial inertia. Let w = w(x,t) be the transverse 

deflection, u= u(x,t) the longitudinal displacement, EA = E(x)A(x) and E(x)J = EJ(x) 

tensile and flexural stiffness, μ = μ(x) and ϑ = ϑ(x) mass and rotational moment of inertia 

per unit length and q = q(x,t) – the transverse load. 

Hence, non-linear vibrations of these beams can be described by the system of 

nonlinear differential equations for the longitudinal displacements u0 and the transverse 

deflection w: 
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The coefficients EA, EJ, μ, ϑ are highly-oscillating, periodic, often non-continuous 

functions of the x-coordinate. Since equations (13) are not a good tool to analyse 

vibrations, an approximately equivalent tolerance model is proposed, which describes this 

problem taking into account the effect of the microstructure size. 

3.2. Tolerance model equations 

Using the introductory concepts and modelling assumptions, e.g. the micro-macro 

decomposition (5) in the form adopted for basic unknown fields of the beam – u, w; 

substituting these decompositions and averaging resulting equations, after some 

manipulations we arrive to averaged equations of the tolerance model. Denoting constant 

coefficients related to the beam properties (hA, gK – fluctuation shape functions): 
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and to the transverse load: 

 ,, 2 AA QlqhQq   (15) 

the tolerance model equations take the form, cf. [16]: 
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 (16) 

for the macrodisplacements U(), W() and for the fluctuation amplitudes of the axial 

displacement TK() and of the deflection VA(). 

3.3. Computations results – free linear vibrations 

Let us consider a hinged-hinged beam, which has constant cross section and is provided 

by a system of periodically distributed system of concentrated masses M1, M2 with 

rotational inertia I1, I2, as it is shown in Fig. 4. 

 

Figure 4. The considered beam and its fragment, cf. [16] 

The mass distribution in a periodicity cell is given by 
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The solutions of the tolerance model equations can be assumed in the form of truncated 

Fourier series 
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 (18) 

For the hinged-hinged boundary conditions the linear natural vibration modes are: 

   ./,sin LmxxX mmm   (19) 

The length of the beam is L = 1.0 m, the Young modulus E = 205 GPa, the mass density 

ρ = 7850 kg/m3. The other, dimensionless parameters are as follows: 

L L L L 

L 

M 2 ,  I 2 M 1 ,  I 1 M 2 ,  I 2 

l  / 2 l  / 2 

l l 

E ,  ρ ,  A , J 
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Let us restrict considerations only to the first two (m = 2) terms of the Fourier series (18) 

and two FSFs (N = 2), so that the model has m  (1 + N) = 6 degrees of freedom.  

Table 1. Comparison of the linear eigenfrequencies of considered beam, cf. [16] 

mode finite 

element 

tolerance model 

approximate FSFs FE-based FSFs 

ωFE [rad/s] ωTA [rad/s] Δ [%] ωTA [rad/s] Δ [%] 

1 w1 15.861 15.876 0.094 15.872 0.071 

2. w2 32.884 33.050 0.505 33.041 0.477 

3. v2
2 223.491 239.454 7.143 212.200 5.052 

4. v2
1 224.244 246.109 9.751 224.088 0.069 

5. v1
2 14855.007 15129.460 1.848 15034.591 1.209 

6. v1
1 14989.493 15129.460 0.934 15034.591 0.301 

A finite element method procedure for beam dynamics analysis was prepared in Maple 

to validate the results. The Rayleigh beam elements with Hermitian polynomials and 

consistent mass matrix were used. 

Results of comparative analysis of the calculations obtained for the finite element 

model (40 elements) and the tolerance model, using the approximate (trigonometric) and 

refined (finite element based) fluctuation shape functions (FSF), are shown in Table 1 

(linear eigenfrequencies) and Fig. 5 (linear eigenvectors). 

 

Figure 5. Comparison of the linear eigenforms of considered beam:  

a) finite element model, b) tolerance model with trigonometric FSFs, 

c) tolerance model with FE-based FSFs, cf. [16] 

 

a)  

b)  
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4. Remarks 

In this note the tolerance modelling method is shown, which is applied to description 

various thermomechanical problems of different microheterogeneous media and structures 

by the Research Team from Łódź.  

This modelling approach allows to replace differential governing equations of the 

problem, which have highly-oscillating, non-continuous functional coefficients (periodic 

or tolerance-periodic) by averaged differential governing equations with constant or 

slowly-varying coefficients. 

The following general remarks can be formulated. 

- The tolerance modelling method is applied to obtain averaged mathematical 

models of different thermomechanical problems of periodic or non-periodic 

microheterogeneous composites and structures. 

- Tolerance models allow to analyse various problems, mainly non-stationary, of 

thermomechanics of solids and structures with taking into account the effect of the 

microstructure. 

- The effect of the microstructure on the overall behaviour of investigated medium 

can be manifested for instance by: 

o higher order vibrations (e.g. higher frequencies), 

o form of solutions, in which some fluctuations related to heterogeneity can be 

occurred. 

Results of the example can lead to the following remarks: 

- The proposed tolerance model makes it possible to investigate the effect of the 

microstructure size on dynamic problems of periodic beams under consideration, 

e.g. the “higher order” vibrations related to the beam microstructure. 

- The governing equations of the tolerance model have a physical sense for 

unknowns W, U, VA, A = 1,...,N, TK, K = 1,...,M, being slowly-varying functions.  

Problems developed but still open there are:  

- Geometrically non-linear problems (e.g. large plate deflections). 

- Physically non-linear problems (e.g. dependency of heat conduction properties or 

elastic/inertial properties on temperature). 

- Optimisation of distribution of properties in composites and non-periodic 

structures. 

- More detailed analysis of the solutions to the cell problem. 
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