
Vibrations in Physical Systems 2018, 29, 2018003 (1 of 9) 

 

Forced Response of Plate with Viscoelastic Auxetic Dampers 

Tomasz STREK 
Poznan University of Technology, Institute of Applied Mechanics 

ul. Jana Pawła II 24, 60-965 Poznan 

tomasz.strek@put.poznan.pl 

Abstract 

The example studies a forced response of plate with viscoelastic auxetic damper located at the free end of the 

plate. Damping elements consist of the cover layer and layer of viscoelastic material with positive or negative 

Poisson's ratio. Viscoelastic materials are often used for reduction of vibration (seismic or wind induced 
vibrations in building structures or other structures). The common feature is that the frequency of the forced 

vibrations is low. Calculations are made using finite element method with Comsol Multiphysics software. 
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1. Introduction 

One of the first mentions of materials with negative Poisson's ratio (NPR) can be found in 

1981 and 1982 [1-4]. Theoretical and experimental values of PR for rubber models showed 

that PR value can be negative [1]. Lora Jane Gibson [1] analyzed a model of cellular 

material as a simple, two-dimensional array of hexagonal cells and identify and analyze 

the mechanisms by which it deforms. From this Gibson calculated the elastic moduli and 

the elastic and plastic collapse stresses for ideal two-dimensional cellular materials. 

Experimentally verified results showed that mechanical properties depend on three 

parameters: a solid cell wall material property, a geometric constant, and the relative 

density of the cellular material raised to the power two or three. A few years later Almgren 

[5] and Wojciechowski [6] showed respectively mechanical and thermodynamical model 

of materials with auxetic behavior. 

In 1987 Lakes developed foams with negative Poisson’s ratio [7-8]. Since that time it 

is known that materials and structures showing the negative Poisson's ratio do exist in 

nature. Auxetic materials constitute a new class of materials that not only can be found in 

nature, i.e., cubic elemental metals, but can also be fabricated, including honeycombs, 

polymeric and metallic foams, and microporous polymers [9]. Materials with negative 

Poisson's ratio show unique and strengthened mechanical properties (indentation 

resistance, mechanical hardness, toughness, and stiffness, damping and acoustic 

properties) compared to the conventional materials. 

A variety of auxetic geometries have been developed and presented by other authors 

in previous works [10-14]. A comprehensive updated review of auxetic materials, their 

types and properties, and applications have been presented by Saxena et al. [13]. 

Based on the deformation mechanism, the auxetic cellular structures have been 

classified by authors into three types: a) re-entrant type; b) chiral type; and c) rotating 

units. These types of structures have been recently investigated by many researchers. In 
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particular, Strek and co-authors [15] presented, among other, sinusoidal ligament 

structures with small amplitude of sinusoidal geometry (stiff structures) of which was stiff 

and characterized by negative PR, when the structure is compressed or by positive PR 

during stretching. 

Another examples of auxetic materials are a composite material having no voids within 

their internal structure and yet exhibiting auxetic behavior: two-phase composites or 

structures have been presented recently [16-22].  

In 2004, Scarpa and co-authors showed that foam with the negative Poisson's shows 

an overall superiority regarding damping and acoustic properties compared to the original 

conventional foam [23]. Dynamics of auxetic structures made of positive materials were 

also investigated by other researchers [24-28]. 

In this paper, a forced response of plate with viscoelastic auxetic damper located at 

the free end of the plate is investigated. Damping elements involving layers of viscoelastic 

material with positive or negative Poisson's ratio. Viscoelastic is often used for reduction 

of vibration (seismic or wind induced vibrations in building structures or other structures) 

[29-30]. The common feature is that the frequency of the forced vibrations is low. It is 

assumed that these frequencies are not greater than 10 Hz. Calculations are made using 

finite element method with Comsol Multiphysics software. 

2. Model and material 

2.1. Governing equations 

The Navier's equation of motion with the linear constitutive relation between stresses and 

deformations is:  

𝜌
∂2𝐮

∂𝑡2
− ∇ ∙ 𝐒 = 𝐅𝐯  (1) 

where: ρ is the density, u is the vector of displacements, 𝐒 is stress tensor and 𝐅𝐯 is volume 

force. 

The total stress 𝐒 in Hooke’s law is then augmented by the viscoelastic stress 𝐒q and the 

external stress 𝐒ext  

𝐒 = 𝐒ad + 𝐂: 𝛆el                                                         (2) 

𝐒ad = 𝐒0 + 𝐒ext + 𝐒q                                                     (3) 

While elastic strain tensor 𝛆el represents the total strain minus initial and inelastic strains  

𝛆el =  𝛆 − 𝛆0                                                            (4) 

𝛆 =
1

2
((∇𝐮)𝑇 + ∇𝐮).                                                     (5) 

The elastic strain tensor can, in the same way, be decomposed into volumetric and 

deviatoric components: 𝛆el =
1

3
𝛆vol𝐈 + 𝛆dev, with the volumetric elastic strain given by 

𝛆vol = 𝑡𝑟𝑎𝑐𝑒(𝛆el) and the deviatoric contribution by 𝛆dev = 𝑑𝑒𝑣(𝛆el). 
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The Navier's equation of motion with the linear constitutive relation between stresses 

and deformations is:  

𝜌
∂2𝐮

∂𝑡2
− (𝜇∇𝟐𝐮 + (λ + 𝜇)∇∇ ∙ 𝐮) = 𝟎.  (6) 

A harmonic displacement is defined by an equation as below: 

 
∂2𝐮

∂𝑡2
= −ω2𝐮 (7) 

where: ω is forcing frequency. The displacement vector has the complex form and is 

defined as: 

𝐮(𝐱) = 𝐮1(𝐱) + 𝑗𝐮2(𝐱) (8) 

and the harmonic displacement is a real part of the complex form: 

𝐮(𝐱, 𝑡) = 𝑅𝑒[𝐮(𝐱)e−𝑗𝜔𝑡] (9) 

According to aforementioned equations the harmonic equation of motion of linear 

elastic material fulfills a formula: 

−𝜌𝜔2𝐮 − (𝜇∇𝟐𝐮 + (𝜆 + 𝜇)∇∇ ∙ 𝐮) = 𝟎 (10) 

where: µ, λ are Lamé constants. The harmonic equation may be viewed as the eigenvalue 

equation.  

In the case of viscoelastic material the harmonic equation of motion fulfills the 

formula: 

𝜌ω2𝐮 − ∇ ∙ 𝐒 = 𝐅e𝑖𝜙 .                                                     (11) 

𝐒 = 𝐒ad + 𝐂: 𝛆el − (𝑡𝑟𝑎𝑐𝑒(𝐂: 𝛆el)/3 + 𝑝𝑤)𝐈                                  (12) 

The trace of an n-by-n square matrix A is defined as the sum of the elements on the main 

diagonal (the diagonal from the upper left to the lower right): 𝑡𝑟𝑎𝑐𝑒(𝐀) = ∑ 𝐴𝑖𝑖𝑖 . 

2.2. Model of viscoelastic material 

A convenient way of describing the time-dependent viscoelastic response is to use the 

spring-dashpot models of material [29-31]. The generalized Maxwell, standard linear solid 

and Kelvin-Voigt model is the most popular models of viscoelastic materials. All the 

models are linear, and the corresponding materials can be described as consisting of one 

or more branches with a spring and a dashpot acting in parallel to a linear elastic material. 

For each viscoelastic branch, the shear modulus and the relaxation time (or viscosity) are 

introduced. 

The relaxation shear modulus function (or just relaxation function) function G(t) can 

be found by measuring the stress evolution in time when the material is held at a constant 

strain. The relaxation function is often approximated by a Prony series: 

𝐺(𝑡) = 𝐺 + ∑ 𝐺𝑚𝑒𝑥𝑝(−
𝑡

𝜏𝑚
)𝑁

𝑚=1                                    (13) 
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A physical interpretation of this approach often called the generalized Maxwell model 

with 𝐺 is the stiffness of the main elastic branch, 𝐺𝑚 represents the stiffness of the spring 

in branch m, and τ𝑚 is the relaxation time constant of the spring-dashpot pair in branch m 

(see Figure 1). 

The shear modulus of the elastic branch 𝐺 is normally called the long-term shear 

modulus, or steady-state stiffness, and is often denoted with the symbol 𝐺∞. The 

instantaneous shear modulus 𝐺0 is defined as the sum of the stiffness of all the branches 

𝐺(𝑡 = 0) = 𝐺0 = 𝐺 + ∑ 𝐺𝑚
𝑁
𝑚=1 . This is the stiffness when the external load is applied 

much faster than the shortest relaxation time of any viscous branch. 

Consequently, we can write the relaxation function (13) as: 

𝐺(𝑡) = 𝐺0 −∑ 𝐺𝑚 +
𝑁
𝑚=1 ∑ 𝐺𝑚 𝑒𝑥𝑝 (−

𝑡

𝜏𝑚
) =𝑁

𝑚=1 𝐺0 − ∑ 𝐺𝑚 (1 − 𝑒𝑥𝑝 (−
𝑡

𝜏𝑚
))𝑁

𝑚=1 . (14) 

 

Figure 1. Generalized Maxwell model with m branches (a spring-dashpot pair) 

The relaxations time 𝜏𝑚 is normally measured in the frequency domain, so the 

viscosity of the dashpot is not a physical quantity but instead, it is derived from stiffness 

and relaxation time measurements. The viscosity of each branch can be expressed in terms 

of the shear modulus and relaxation time as 𝜂𝑚 = 𝐺𝑚𝜏𝑚. The sum of the stresses in the 

viscoelastic branches as: 𝐒q = ∑ 𝐺𝑚
𝑁
𝑚=1 𝑞𝑚 = ∑ 𝐺𝑚

𝑁
𝑚=1 (𝜀 − 𝛾𝑚), where 𝑞𝑚 is the 

auxiliary strain variable introduced to represent the extension of the corresponding abstract 

spring. 

Using Fourier transforms the time-dependent shear relaxation modulus can be 

expressed in the frequency domain as 

𝐺 = 𝐺𝒔 + 𝑗𝐺𝑙                                                        (15) 

where 𝐺𝒔 is storage modulus and Gl is loss modulus defined as Prony's series 

𝐺𝒔 = ∑ 𝐺𝑚
(𝜔𝜏𝑚)

𝟐

1+(𝜔𝜏𝑚)
𝟐𝑚                                                  (16) 

𝐺𝑙 = ∑ 𝐺𝑚
𝜔𝜏𝑚

1+(𝜔𝜏𝑚)
𝟐𝑚                                                  (17) 

𝐒q =2(𝐺𝒔 + 𝑗𝐺𝑙) 𝑑𝑒𝑣(𝜺𝑒𝑙)                                             (18) 

where 𝑑𝑒𝑣(𝛆𝑒𝑙) is the deviatoric of strain tensor.  
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3. Numerical results 

The viscoelastic layers of dampers mounted on the steel plate are modeled by the 

generalized Maxwell model. The generalized Maxwell model represents the viscoelastic 

material as a series of branches, each with a spring-dashpot pair. Eighteen viscoelastic 

branches guarantee accurate representation of the material behavior for a wide range of 

excitation frequencies when the damper is subjected to forced vibration. The values of the 

shear moduli and relaxation times for each branch used in this research were presented by 

Park [30] and are summarized in Table 1. Material parameters (Young's modulus, 

Poisson's ratio, bulk modulus, 𝐾 = 𝐸 (3 ∙ (1 − 2ν))⁄ , and shear modulus,  

𝐺 = 𝐸 (2 ∙ (1 + ν))⁄ , of the plate and viscoelastic dampers are presented in Table 2.  

The steel plate is fixed on the left boundary and free on the right boundary. Damper on the 

right side of the plate is harmoniously loaded at the top boundary with a total force 

amplitude 𝐅 = [0, 𝐹, 0] with 𝐹 = 1000 N. Dampers consists of steel and viscoelastic 

layers and are mounted on both sides of the plate (see Figure 2). Steel is marked in gray 

and the viscoelastic material is in blue. The thickness of the plate is 0.004 m, length is 0.2 

m and width is 0.1 m. Damper thickness is 0.014 m and thickness of the viscoelastic 

material is 0.01 m.  

Table 1. The values of the shear moduli and relaxation times for 18 branches [30] 

Branch,  

m 

Shear 

modulus, 

 𝐺𝑚 [MPa] 

Relaxation 

time, 

 𝜏𝑚 [s] 

Branch,  

m 

Shear 

modulus, 

 𝐺𝑚 [MPa] 

Relaxation 

time, 

 𝜏𝑚 [s] 

1 13.3 1e-7 10 4.15 1e-2 

2 286 1e-6 11 2.03 3.16e-2 

3 291 3.1e-6 12 1.11 1e-1 

4 212 1e-5 13 0.491 3.16e-1 

5 112 3.16e-5 14 0.326 1 

6 61.6 1e-4 15 0.0825 3.16 

7 29.8 3.16e-4 16 0.126 10 

8 16.1 1e-3 17 0.0373 100 

9 7.83 3.16e-3 18 0.0118 1000 

Table 2. Parameters of materials of the plate and viscoelastic material 

Parameter 
Steel AISI 

4340 

Classic 

material 

Cork 

material 
Auxetic 

material A 

Auxetic 

material B 

Young's modulus, E [Pa] 205e9 2e5 2e5 2e5 2e5 

Poisson's ratio, ν [-] 0.28 0.4 0 -0.5 -0.9 

Bulk modulus, K [Pa] 1.553e11 3.3333e5 66667 33333 23810 

Shear modulus, G [Pa] 8.0078e10 71429 1e5 2e5 1e6 

Density, 𝜌 [kg/m3] 7850 1060 1060 1060 1060 
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Figure 2. The geometry of plate fixed on the left side and the harmonically loaded on the 

damper mounted on right side of the plate 

 

a) 

 

b) 

 

Figure 3. Average value of (a) storage and (b) loss moduli for the viscoelastic material of 

damper 

 

a) 

 

b) 

 

Figure 4. The average amplitude of displacement of the plate for different Poisson's ratio 

of (a) viscoelastic material and (b) elastic material of damper 

 

Average stores moduli and loss of the viscoelastic material with different Poisson's 

ratio of dampers mounted on the plate are presented in Figure 3. Both axes are with the 

logarithmic scale to show changes in the characteristics. Value of both modulus generally 

increase and depends on a considered range of frequency. Calculations were made for a 

range of frequency from 10-4 to 106 Hz calculated with step 100.25 Hz. Value of storage 

moduli depends on the frequency of motion. The moduli are highest for auxetic 
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viscoelastic material (𝜈 = −0.99) and smallest for classic material with positive Poisson's 

ratio (𝜈 = 0.49). 

In the considered problem, the analysis was made for the plate with mounted dampers 

with viscoelastic and elastic properties. Comparison of amplitudes of motion of plate is 

presented in Figure 4. Calculations were made for a range of frequency from 10-4 to 101 

Hz with step 100.2 Hz. Finite element method was used to solve Navier's equation with 

Comsol Multiphysics software. Second order Lagrange polynomial shape functions and 

tetrahedral elements were used. The number of mesh elements was 9899 (vertex elements: 

28, edge elements: 50, boundary elements: 60) and the number of degrees of freedom was 

48522. 

The average amplitude of displacement of the right edge of the plate is frequency-

dependent and is calculated for the lowest located boundary of the considered geometry. 

For assumed values of Poisson's ratio of the material of damper, the minimum value of 

average displacement is for frequency: about 3 Hz in the case of viscoelastic material and 

close to 0 Hz for an elastic material. The smallest values of total displacement of the plate 

are achieved for a whole range of considered frequencies for 𝜈 = −0.99 for vthe 

iscoelastic and elastic material of dampers. 

4. Conclusions  

In this paper, a forced response of a plate with viscoelastic auxetic damper located at the 

free end of the plate was studied. Damper consists of two layers: steel cover layer and 

layer of viscoelastic material with positive or negative Poisson's ratio. Viscoelastic 

materials are often used for reduction of vibration. The common feature is that the 

frequency of the forced vibrations is low. Calculations were made using finite element 

method with Comsol Multiphysics software.  

Values of stores and loss moduli depend on the frequency of load and motion. The 

storage moduli are highest for auxetic viscoelastic materials and smallest for classic 

material with positive Poisson's ratio. The average amplitude of displacement of the plate 

for different Poisson's ratio of viscoelastic material and elastic material of damper are 

compared. It was shown that the minimum value of the average displacement is for 

frequency: about 2 Hz in the case of viscoelastic material and close to 0 Hz for an elastic 

material. 

Acknowledgments 

This work was supported by grants of the Ministry of Science and Higher Education in 

Poland: 02/21/DS-PB/3513/2018. The simulations have been made at the Institute of 

Applied Mechanics, Poznan University of Technology. 

References 

1. L. J. Gibson, The elastic and plastic behaviour of cellular materials, University of 

Cambridge, Churchill College (doctoral thesis) 1981. 

2. L. J. Gibson, M. F. Ashby, G. S. Schayer, C.I. Robertson, The mechanics of two-

dimensional cellular materials, Proc. Roy. Soc. Lond. A 382 (1982) 25 – 42. 



Vibrations in Physical Systems 2018, 29, 2018003 (8 of 9) 

3. L. J. Gibson, M.F. Ashby, The mechanics of three-dimensional cellular materials, 

Proc. Roy. Soc. Lond. A 382 (1982) 43 – 59. 

4. L. J. Gibson, M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed.; 

Pergamon Press: London, UK, 1988. 

5. R. F. Almgren, An isotropic three-dimensional structure with Poisson's ratio =−1, 

Journal of Elasticity 15 (1985) 427 – 430. 

6. K. W. Wojciechowski, Constant thermodynamic tension Monte Carlo studies of 

elastic properties of a two-dimensional system of hard cyclic hexamers, Molecular 

Physics 61 (1987) 1247 – 1258. 

7. R. Lakes, Foam structures with a negative Poisson’s ratio, Science, 235 (1987)  

1038 – 1040. 

8. R. Lakes, Advances in negative Poisson’s ratio materials, Advanced Materials 

(Weinheim), 5(4) (1993) 293 – 296. 

9. X. Zhang, D. Yang, Mechanical Properties of Auxetic Cellular Material Consisting 

of Re-Entrant Hexagonal Honeycombs, Materials (Basel), 9(11) (2016) 900. 

10. Y. Prawoto, Seeing auxetic materials from the mechanic point of view: A structural 

review on the negative Poisson’s ratio, Computational Materials Science, 58 

(2012) 140 – 153. 

11. J. C. A. Elipe, A. D. Lantada, Comparative study of auxetic geometries by means of 

computer-aided design and engineering, Smart Mater. Struct., 21(10) (2012) 105004. 

12. T. C. Lim, Auxetic Materials and Structures, Springer-Verlag, Singapur, 2015. 

13. K. K. Saxena, R. Das, E. P. Calius, Three Decades of Auxetics Research Materials 

with Negative Poisson’s Ratio: A Review, Adv. Eng. Mater., 18 (2016)  

1847 – 1870. 

14. H. M. A. Kolken, A. A. Zadpoor, Auxetic mechanical metamaterials, RSC Adv., 7, 

(2017) 5111. 

15. T. Strek, H. Jopek, K. W. Wojciechowski, The influence of large deformations on 

mechanical properties of sinusoidal ligament structures, Smart Mater. Struct., 25  

(2016) 054002 (10pp). 

16. D. Li, J. Maa, L. Dong, R. S. Lakes, A bi-material structure with Poisson's ratio 

tunable from positive to negative via temperature control, Materials Letters, 181 

(2016) 285 – 288. 

17. T. Strek, H. Jopek, E. Idczak, K. W. Wojciechowski, Computational Modelling of 

Structures with Non-Intuitive Behaviour, Materials, 10 (2017) 1386. 

18. T. Strek, A. Matuszewska, H. Jopek, Finite element analysis of the influence of the 

covering auxetic layer of plate on the contact pressure, Phys. Status Solidi B, 254(12) 

(2017) 1700103. 

19. H. Jopek, Finite Element Analysis of Tunable Composite Tubes Reinforced with 

Auxetic Structures, Materials, 10 (2017) 1359. 

20. H. Jopek, T. Strek, Torsion of a two-phased composite bar with helical distribution 

of constituents, Phys. Status Solidi B, 254(12) (2017) 1700050. 

21. E. Idczak, T. Strek, Minimization of Poisson's ratio in anti-tetra-chiral two-phase 

structure, IOP Conf. Series: Materials Science and Engineering 248 (2017) 012006. 



Vibrations in Physical Systems 2018, 29, 2018003 (9 of 9) 

22. E. Idczak, T. Strek, Dynamic Analysis of Optimized Two-Phase Auxetic Structure, 

Vibrations in Physical Systems, 28 (2017) 2017003-01-20017003-12. 

23. F. Scarpa, L. G. Ciffo, J. R. Yates, Dynamic properties of high structural integrity 

auxetic open cell foam, Smart Mater. Struct., 13 (2004) 49. 

24. R. Lakes, T. Lee, A. Bersie, Y. C. Wang, Extreme damping in composite materials 

with negative-stiffness inclusions. Nature, 410 (2001) 565 – 567. 

25. M. Nienartowicz, T. Stręk, Finite Element Analysis of Dynamic Properties of 

Thermally Optimal Two-Phase Composite Structure, Vibrations in Physical Systems, 

26 (2014) 203 – 210. 

26. T. Strek, H. Jopek, M. Nienartowicz, Dynamic response of sandwich panels with 

auxetic cores, Phys. Status Solidi B, 252(7) (2015) 1540 – 1550. 

27. E. Idczak, T. Stręk, Computational Modelling of Vibrations Transmission Loss of 

Auxetic Lattice Structure, Vibrations in Physical Systems, 27 (2016) 124 – 128. 

28. W. Liu, M. Wang, T. Luo, Z. Lin, In-plane dynamic crushing of re-entrant auxetic 

cellular structure, Materials & Design, 100 (2016) 84 – 91. 

29. K. L. Shen, T. T. Soong, Modeling of Viscoelastic Dampers for Structural 

Applications, J. Eng. Mech., 121 (1995) 694 – 701. 

30. S. W. Park, Analytical Modeling of Viscoelastic Dampers for Structural and Vibration 

Control, Int. J. Solids and Structures, 38 (2001) 8065 – 8092. 

31. D. Gutierrez-Lemini, Engineering Viscoelasticity, Springer, New York 2014. 

 


