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Abstract  

Dynamics of the nonlinear spring pendulum is analysed using two asymptotic approaches. The multiple scale 

method is commonly applied with using two time scales. The purpose of the research is to justify the 
introduction of an additional third scale. Results of the analysis clearly show that introducing the third scale 

improve correctness of the approximate analytical solution. The obtained results allow for qualitative and 

quantitative analysis of the behavior of the studied system with a high accuracy. Calculations are made both in 
the neighbourhood of the resonance and also far from it. 
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1. Introduction 

The asymptotic method of multiple scales (MS) is quite popular in recent years. Although 

the majority of authors use only two scales, in recent years many papers have appeared in 

which three time scales have been applied. The question arises whether and how the choice 

of the number of time scales affects the quality of solutions. The motivation of this paper 

is to compare solutions obtained with using two and three time scales in MS method.  

A relatively simple system what is a spring pendulum was chosen to investigate this 

problem. Despite its simplicity, the pendulum is characterized by non-linearity of 

geometrical nature and additionally by non-linear properties of the spring itself what 

seems to be a conductive circumstance to investigate the problem. Research is perform 

both for the close neighbourhood and far from the main resonances. 

There exists many papers devoted to analysis of pendulum-like systems [1-7]. In the 

engineering machinery there are numerous elements of similar character. Moreover 

pendula serve as a good example of the intuitive nonlinear dynamical systems, that can 
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help to discover and explain many of exciting and important non-linear dynamical 

phenomena. 

2. Formulation of the problem 

Plane motion of a point of mass m mounted on a spring-damper suspension is investigated 

in the paper. The scheme of the system is presented in Figure 1. The spring is assumed to 

be massless and having the nonlinearity of the cubic type. L0 denotes the spring length in 

the non-stretched state. There are purely viscous dampers in the system. The resistance 

force R depends on the point velocity v according to the relation vR 2C . The system 

is loaded by a torque the magnitude of which changes harmonically and by the force F 

which also is harmonic. The total spring elongation )(tX  and the angle )(t are assumed 

as the generalized coordinates. 

 

Figure 1. Spring pendulum 

The dimensionless form of the motion equations of the system is as follows 
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eXLL  0 , LX ee / , eX  is elongation of the spring at the static equilibrium,  t  

denotes dimensionless time, and 2121 ,,, ppff  are dimensionless parameters describing 

external loading.  
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The static elongation e  satisfies the equilibrium condition 

023  wee  . (3) 

Equations (1) – (2) are supplemented by the initial conditions 

0000 )0(,)0(,)0(,)0(    v , (4) 

where quantities 0000 ,,,  v  are known. 

3. Solution method  

The multiple-scale method is used to solve the initial value problem (1) – (4). The method 

requires approximation of the trigonometric functions of the angle φ by a few terms of 

their power series, so we assume 2/1cos,6/sin 23   .  

According to MS method, we introduce the small parameter ε  and n time scales, 

where n takes value 2 or 3. The time scales iτ  are related to the dimensionless time as 

follows τε=τ i
i , 1, ... ,0  ni . 

The differential operators in (1) and (2) take the form 
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The solution is sought in the form of the power series of the small parameter   
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where n is both the number of time scales and the number of the power series terms taken 

into account in the approximation. 

Assumed smallness of some parameters is expressed using the small parameter [1]. 

Since two approaches are performed in parallel to find the solution to the problem (1) – 

(4), two sets of assumptions are formulated: 
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The first step of the MS method is substitution of (5) – (6) and one set of the above 

assumptions into the equations of motion (1) – (2) which yields equations containing the 

small parameter   in various powers. These equations should be satisfied for any value 

of ε, hence after rearrangement each of them according to the powers of ε, a system of 
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successive recurrence equations emerges. The solution of the lower order approximation 

equations are then introduced into the equations of the higher order approximation, and in 

this way the solution of the whole problem (1) – (4) in the form of (6) is achieved. At 

every step in the procedure, the secular terms have to be removed. This demanding leads 

to the so-called solvability conditions. The procedure is described in details in references 

[1-3]. 

The main goal of the paper is comparison between the two asymptotic solutions. Let 

us discuss separately solution far from resonance and in the neighbourhood of the main 

resonance. 

4. Vibration far from resonance  

The MS method allows to obtain analytical form of the approximate solution of the 

problem (1) – (4). 

CASE 1 – two time scales 

The solution obtained using two scales has the following form 
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where 20102010 ,,, aa are known initial values of the amplitudes and the phases, and they 

are compatible with the initial values occurring in conditions (4). 

CASE 2 – three time scales 

The solution in this case has the form 
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where 2121 ,,, aa  are functions which satisfy the following solvability conditions 
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The system of differential equations (11) is completed by the following initial conditions 

202101202101 )0(,)0(,)0(,)0(   aaaa , (12) 

where initial values of the amplitudes and the phases 20102010 ,,, aa are known and 

compatible with the initial values 0000 ,,,  v  occurring in conditions (4). 

The time histories of the generalized co-ordinates according to (7) – (10) are presented 

in Figs. 2 and 3. The assumed parameters are as follows: 006.01 f , 001.02 f , 

001.01 c , 0002.02 c , 0003.03 c , 02.0 , 21.0w , 65.01 p , 78.02 p . 

  

Figure 2. Time histories of longitudinal vibrations; dashed curve – numerical solution, 

continuous curve – analytical solution 
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Figure 3. Time histories of swing vibrations; dashed curve – numerical solution, 

continuous curve – analytical solution 

The graphs presented in Figs. 2 and 3 show that both results regarding two and three 

time scales results are very similar. A measure of the accuracy of the approximate solution 

can be the absolute error of fulfilment of the governing equations (1) – (2). The error 

calculated for the solutions (7) – (8) and (9) – (10) is presented in Fig. 4. 

 

  

  

Figure 4. Absolute error 

Though the error is very small for both approaches but it is approximately two times 

lower when three time scales are used than in the case with two time scales. 

5. Vibration in the neighbourhood of resonance  

We are focused on the case when two main resonances appear simultaneously  

in the system what is caused by the circumstances that 11 p  and .2 wp    
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The detuning parameters 1 and 2  are necessary to deal with this case. They are 

introduced in the way 

,,1 2211   wpp  (13) 
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Employing the analogous procedure to the one described in Section 3, the asymptotic 

solution to the problem (1) – (4) with additional conditions (13) is obtained. However, due 

to assumptions (13), the solvability conditions have more complicated form than 

previously, what makes impossible to solve them analytically. The solvability conditions 

describe the slow modulation of the amplitudes and phases and the knowledge of which 

is necessary to obtain the final form of solution. They are also of significantly meaning in 

the study of resonance. For the reasons mentioned, we are focused on the slow modulation 

equations. In dependence on the number of time scales the system of the first order 

differential equations governing the slow modulation in main resonances case have the 

following form. 

CASE 3 – two time scales; vibration near resonance 
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CASE 4 – three time scales; vibration near resonance 
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The initial conditions for equations (14) and for equations (15) have the same form 

.)0(,)0(,)0(,)0( 202101202101   aaaa  (16) 

where 20102010 ,,, aa , which are compatible with 0000 ,,,  v , are known. 

Solving equations (14) or (15), depending on the chosen number of time scales, allows 

us to obtain the approximate solution to the problem (1) – (4) involving conditions (13) 

for two main resonances. Time histories of the generalized coordinates obtained 

analytically compared to the numerical solution are presented in Fig. 5 and Fig. 6. The 

parameters assumed in simulation are as follows: 001.01 f , 0001.02 f , 001.01 c , 

001.02 c , 0.03 c , 01.0 , 12.0w , 005.01  , 01.02  . 

 

Figure 5. Time histories of longitudinal vibrations; dashed (red) curve – numerical 

solution, continuous curve – analytical solution 

  

Figure 6. Time histories of swing vibrations; dashed (red) curve – numerical solution, 

continuous curve – analytical solution 

The graphs reported in Fig. 5 and Fig. 6 show that the results obtained using three time 

scales are much more closer to the numerical solution than these ones for two scales. 
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Figure 7. Absolute error of the analytical solutions for resonance vibration 

The error as a function of time for the asymptotic solutions obtained using two and 

three scales is presented in Fig. 7. The graphs show that the error of the solution with three 

scales is much lower that the error for the solution with two scales. 

While studying the resonance very important role play response curves presenting the 

relationship between the magnitude of vibration amplitude and the frequency of the 

forcing force. Because this relation applies to steady state vibration, we postulate that 

derivatives of amplitudes and phases are equal to zero in equations (14) or their 

counterparts (15) concerning the analysis with three time scales. As a result of this 

assumption we get system of algebraic equations, the solution of which are amplitudes 

and phases regarding steady state vibration. Resonance response curves shown in Fig. 8, 

present dependence of the amplitudes 1a  and 2a versus the detuning parameter 2  (it 

means physically the frequency dependence of the harmonically changing torque driving 

the pendulum). The results are obtained for the following fixed parameters:  

001.01 f , 001.02 f , 006.01 c , 006.02 c , 0001.03 c , 01.0 , 21.0w , 

01.01  , differ significantly. The graphs obtained using the approach with two time 

scales suggest there is no coupling between longitudinal and swing vibration in the system. 

Surprisingly, the numerical results do not confirm this conclusion. Both significant 

decreasing of the amplitude 1a  as well as the strongly nonlinear compatible with 

dependence of the amplitude 2a  on the 2  are noticed in numerical experiments made 

for the above values of parameters. Moreover, a high quantitative agreement is observed 

between the numerical results and results obtained using MS method with three time 

scales. 
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Figure 8. Response curves for two main resonances occurring simultaneously 

6. Concluding remarks  

The problem of motion of the nonlinear spring pendulum has been solved in two variants 

of the MS method, i.e. with the help of two and three scales in time domain. Comparison 

of analytical results with numerical solutions shows that for the case of non-resonant 

vibration both approaches yield good results. However, the absolute error of solving the 

equations of motion is significantly lower when three time scales are used. However the 

situation changes dramatically in the case of resonance. Based on the asymptotic analysis 

it can be concluded that three time scales are necessary to achieve reasonably small error 

of the approximate analytical solution. 

Numerical solutions of the original motion equations confirm that the spring pendulum 

behave in double main resonance as a strongly nonlinear and coupled system. The increase 

of the swing vibration affect the decreasing of the longitudinal vibration what is observable 

only on the base of approach with using three time scales. Both effects are caused by 

nonlinear terms that occur only in the slow modulation equations (15). All simplifications 

proper for the MS method in the approach based on using two time scales turned out too 

much coarse. In effect, the behaviour of the relatively simple mechanical system is not 

described sufficiently well. 

The study presented in the paper shows that one should be very careful when applying 

the MS method while studying nonlinear dynamical systems. 

Two scales Two scales 

Three scales 

Three scales 
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