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Abstract  

The paper presents a method for expanding the working range of separation elements, where the separation is 

conducted through the use of inertia particles. The presented dynamic separation elements work as the automatic 
control system (the regulating action is the elastic energy; the regulation object is the hydraulic resistance). It 

was taken the first step to the engineering method development for their calculation using analytical 

dependences of the finite element method. The critical velocity of the gas-liquid flow was determined, that 

causes a divergence phenomenon of dynamic separation device elements and expressions for generalized forces 

for the system “gas-liquid flow is a dynamic deflection element.” Two-knot finite elements with two degrees of 

freedom (transverse displacement and angle of the cross-section rotation) were used for dynamic deflection 
elements. The given number of degrees of freedom of the mechanical system “gas-liquid flow is a dynamic 

deflection element” due to the consideration of the transverse deformations of the plate allows simplifying the 

mathematical model. It was suggested to use aerohydroplastic phenomena of dynamic non-stability of dynamic 
deflection elements of separating devices, analogous to the method of applying acoustic oscillations to a 

heterogeneous stream, for the coagulation of dispersed particles in the flow.  
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1. Introduction 

Technological and natural gases used in production processes are often heterogeneous in 

its composition and contain unwanted admixtures in the form of liquid and solid particles. 

These third-party inclusions can lead to equipment wear and emergency situations. Today 

separation methods based on the use of inertia of particles [1, 2] are the most applicable 

for the heterogeneous mixtures separation. When changing the direction of the deposition 

contaminated flow of existing inclusions occurs on the walls of the channel. These 

separation methods combine a single general disadvantage, namely, the operating modes 
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are limited to the critical values of the hydraulic resistance, where a sharp decrease in the 

separation efficiency occurs due to the removal of trapped particles from the deposition 

surfaces. Dynamic separation elements [3, 4] were proposed for expansion of working 

modes, which work is based on the principles of the automatic regulation system (the 

regulating action is the elastic energy; the regulation object is the hydraulic resistance). 

The flow, that is directed to the channel with elastic plates (deposition surfaces) makes a 

hydrodynamic pressure on them, in turn, internal stresses arise in the walls of the channel, 

that leads to the deformation of channel’s form, and hence the hydraulic resistance. This 

paper considers the dynamic separation element, which elastic deposition surfaces have a 

form of an inclined parabolic semicylinder [4]. 

In respect that under the influence of the flow there will be significant deformations of 

the channel, which in turn will cause a change in the flow parameters, the static and 

dynamic hydro-aerosol effects, which can reduce the limits of the use of these elements, 

will be appropriate. Such hydroelectric static phenomena include the flow velocity at 

which divergence will take place, and hence a significant reduction in the heterogeneous 

system separation efficiency. 

Thus, this paper is objected to the determination of the critical velocity of the gas-

liquid flow that causes the divergence phenomenon of dynamic deflection elements of 

separation devices. 

2. General problem description and mathematical model 

In the stationary formulation, the deformation analysis of the separation device deflection 

element as a result of the action of the gas-liquid flow is based on the determination and 

further study of the equations of bending deformations of the plate relative to the 

predetermined static deformed state in accordance with the calculation scheme shown in 

Figure 1. The research of the previously deformed state was conducted in [5]. 

 
Figure 1. Design scheme 

The follow-up research is based on the application of analytic dependencies of the 

finite element method [6, 7]. In particular, the deformation of dynamic deflection elements 

in the result of the gas-flow in the global coordinate system x - y can be described by the 

matrix equation: 

    ,FUC                                                      (1) 
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where [C] is the stiffness matrix of the dynamic deflection element, which was defined in 

[5]. The vector of generalized knot forces {F} can be represented as the sum of the 

generalized forces vector {F}0, determined as a result of the previous static calculation in 

[5], and the vector {δF} of stationary components of generalized external forces [8]: 

     .0 FFF                                                     (2) 

The latter is determined by the distributed load p(x), obtained by integrating the height 

of the pressure plate obtained as a result of experimental studies or as a result of numerical 

simulation of the interaction of the gas-liquid flow with the dynamic detachable element 

of the separation device in the subcritical mode, when the flow rate does not cause the 

flutter to appear.  

For taking into account the load distributed along the length of the deformed deflection 

element under the arbitrary (or prescribed) law ps(x), the transition to the equivalent system 

of forces in node j (Figure 1) is carried out. For this reason, the work of the actual loading 

system on the corresponding displacements should be equal the work of equivalent system 

of forces and moments on the knot j motions.  

The vector of generalized nodal forces of a finite element in a local coordinate system 

is determined by the following formula: 

    .
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In the stationary problem formulation with the representation of function distribution 

of a load in the form of a quadric polynomial 
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where Δp = p1 – p2 – pressure drop across the length of the element; a = d2p(xl)/dxl
2 – the 

curvature of the distributed load diagram (for the linear distribution law, the coefficient  

a = 0), the vector of generalized nodal forces will be determined by the formula: 
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where ξ = x / L – relative coordinate. 

After integration, the components of the vector of generalized nodal forces 

{δF}sl = {δY1l , δM1l , δY2l , δM2l}T are determined by such dependencies: 
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In the global coordinate system, the components of the vector of generalized nodal 

forces {δF}s = {δX1 , δY1 , δM1 , δX2 , δY2 , δM2}T, determined by the formula 

     ,FTF sls                                                     (7) 

take the following form: 
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With account of kinematic boundary conditions for the node i (x10 = y20 = 0; θ10 = 0) 

the column vector of stationary values of the generalized forces 

  .
10

6.0
12

1
;cos

12
7.0

2

1
;sin

12
7.0

2

1
1

2
0101

T
a

ppL
a

ppL
a

ppLF


































      (9) 

The nodal displacement vector {U}s can be represented as the sum of the displacement 

vector {U}0 as a result of the previous static loading of the plate and the vector {δU}s of 

the forced displacement components [8]: 

      .0 ss UUU                                                (10) 

The expressions (2), (10) allow rewriting the equation (1) in the next form: 

          ,00 ss FFUCUC                                   (11) 

which in view of the matrix equation of elastic equilibrium given in [5], reduces to the 

matrix differential equation of the forced oscillations of the separation device’s dynamic 

deflection element: 

     ,ss FUC                                                   (12) 

containing exclusively forced components of external forces {δF}s and corresponding 

displacements {δU}s. 

The research of the multicomponent mixtures separation process is inextricably linked 

with the solution of the problem of hydroaeroelastic gas-liquid flow interaction with the 

separator’s dynamic deflection elements. For this purpose, the mathematical model (12) 

should be supplemented with an expression describing the dependence of the vector {F}s 
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on the generalized dynamic components of the motion from the motion vector {U}s and 

the flow velocity u. 

Further, the equation (12) will be considered as the system with two degrees of 

freedom - the transverse displacement δy and the cross section rotation angle δθ. In this 

approach, the rigidity matrix acquires the next form: 
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Reducing the number of freedom degree of the mechanical system “gas-liquid 

flow - dynamic deflection element” is determined through the consideration of the 

prevailing transverse deformations of the plate that simplifies the mathematical model. 

From the perspective of the hydroaeroelasticity theory [8] the vector of generalized 

stationary forces can be represented by the following dependence: 

     ,ss UCF                                                   (14) 

where [ΔC] – matrix of added rigidity, which elements are the flow velocity function u. 

The Theory of Flow Past Immersed Bodies is taken as a basis for determining the 

components of this matrix. This problem is solved by methods of conformal 

transformations [9], hydrodynamic peculiarities [10], and operational calculus [11] with 

the use of Laplace [12] and Fourier [13] transforms. 

The specific values of the generalized forces for the system “gas-liquid flow - dynamic 

deflection element” are determined by this dependence [14]: 

    ,;2 22  kcuMkcuY                                 (15) 

where ρ – liquid density; c(k) – Theodorsen’s function [15], which can be determined by 

the functions of Bessel [16] or Hankel [17].  

In the general case, the vector components of generalized forces can be written as: 

,; 2
2
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1  ucMucY                                           (16) 

where c1, c2 – attached stiffness coefficients, which can be calculated by the methods of 

evaluation theory based on the results of physical experiment, numerical simulation or a 

combination of them. 

The stationary hydroaeroelasticity equation of dynamic separation elements (12) in 

view of the formulas (14) and (16) takes the next form: 

     ,0 sUC                                                    (17) 

where {0} – zero column vector; [C]Σ – matrix of system’s total rigidity, according to 

formulas (13) and (16): 
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The critical velocity of the gas-liquid flow, in which the phenomenon of divergence of 

the dynamic deflection elements occurs 

  .sec5,0/ 012 LccLEIudiv                                           (19) 

3. Conclusions  

This work demonstrates the definition of gas-liquid flow critical velocity that causes the 

divergence phenomenon of dynamic deflection elements of the separation devices, and 

expressions for generalized forces for the system “gas-liquid flow – dynamic deflection 

element.” Further research will be focused on determining the distributed load p(x) by 

numerical simulation of the interaction of the gas-liquid flow with the dynamic deflection 

element in a subcritical mode when the flow rate does not cause the flatter. Also, we will 

consider the possibility of using dynamic instability (buffeting and flutter) for 

vibrocoagulation analogously to the method of applying acoustic oscillations to a 

heterogeneous flow in order to reduce the dispersion of the weighed phase. 
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