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Abstract  

The paper deals with the problem of evaluation of technical condition of rolling bearings on the basis of 

synchronously measured vibroacoustic symptoms and temperature. Rolling bearings were subjected to 
accelerated wear under controlled conditions. The values recorded in the study were sound pressure in a broad 

band including ultrasound (band up to 40 kHz), vibration acceleration in a radial direction, ultrasound in a band 
up to 100 kHz (processed into audible band), and bearing housing temperature. The identification of  

the condition was carried out with the help of a supervised learning system. Two conditions were 

distinguished: fit - examples were obtained in the initial phase of bearing operation in temperature stability 
conditions, and pre-failure - examples were obtained from fragments of recording just before the occurrence of 

bearing failure. The CART (Classification and Regression Tree) binary tree method was used to determine  

the technical condition and significance of particular diagnostic symptoms. 
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1. Introduction 

It can be assumed that up to 80% of machines have rolling bearings in their design and 

therefore they are very important elements in the context of machine maintenance. 

Rolling bearings are the cause of a significant number of failures in industry. They occur 

before the nominal life of the bearings is reached and result from incorrect installation or 

operating conditions (poor lubrication conditions, grease contamination, excessive  

loads [1]). Of course, there are many methods of diagnosing bearings based on such 

symptoms as: increase in temperature, increase in resistance to motion, grease or oil 

pollution, increase in emitted noise (in audible and ultrasound bands) and/or vibrations, 

phenomena of acoustic emission. In the case of vibrations, the SMP (Shock Pulse 

Method) method is commonly used in industry [2]. Bearing damage can also be detected 

by measurement of kurtosis, observation of crest factor changes in a broad frequency 

band, envelope analysis, wavelet analysis, synchronous averaging and many others [3-7]. 

In order to clearly determine the technical condition of a rolling bearing, especially  

in automatic systems, synchronous observation of many diagnostic symptoms and the 

use of classification methods give good results [8]. In order to build the classifier it is 

necessary to have a rich collection of training examples. However, in the case of a large 

number of data concerning the same or similar objects, the construction of such a system 

is feasible.  

Classifiers are used in a wide range of fields, for example in the processing of large 

data resources [9-15]. There are many publications on the use of machine learning, 
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including deep learning, in diagnostics, for example: [16-22]. The classification process 

can be carried out using many methods with specific properties and capabilities [22-26]: 

neural networks, distance classifiers, statistical classifiers, approximation classifiers, 

fuzzy classifiers, etc. One of the widely used methods are CART classification  

and regression trees developed by Breiman in 1984 [23, 25, 26]. The advantage of the 

tree structure is the way the knowledge can be represented after the learning process. It is 

easy to generate a set of human-readable rules on the basis of such a structure, which is 

very important at the stage of preparing diagnostic procedures to be used by maintenance 

services. This is one of the main reasons why the classification tree method has been 

proposed here. In addition, the tree enables to identify those diagnostic symptoms that 

are relevant to the process of classification of state. This is another important reason for 

proposing this method for classification in this work. The CART method does not 

require the user to discretize the values of input variables, which undoubtedly facilitates 

its use. Details of the operation of the tree structure algorithm can be found, for example, 

in [23]. 

2. Description of tests  

Diagnostic data on rolling bearing vibrations in various phases of their life were obtained 

during accelerated bearing wear tests carried out on a test stand specially designed  

for this purpose. Figure 1 shows a photograph of the stand, including the measuring 

head, in which the bearing was mounted. The effect of accelerated wear was achieved by 

improper lubrication conditions and excessive axial loads on the bearing.  
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Figure 1. General view of the test stand (1 – motor, 2 – belt transmission, 3 – support,  

4 – measuring head, 5 – motor control and protection system) – photo by R. Barczewski 

The bearings were monitored during continuous operation. The temperature of  

the casing, acceleration of absolute vibrations in the band up to 1000 Hz and up to 

12800 Hz, sound pressure levels in the band up to 40 kHz, and ultrasound signal  

in the band up to 100 kHz processed into the audible band (in the range from 50 Hz to  

3 kHz) were recorded. Based on the signals, a number of measures were determined  

(34 different components of the observation vector). Teaching examples were obtained 

by selecting a few initial observations after stabilization of thermal conditions and a few 
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observations immediately preceding the failure. A total of 16 bearings were tested.  

The vectors of observation were described with the label – “fit” and “pre-failure”.  

As a result of the experiment, 160 examples were collected, with almost half  

(77 examples) referring to a fit condition and the second part to a pre-failure condition. 

The uneven distribution was due to the omission of a few unusual observations (outliers) 

probably resulting from the fact of getting into the bearing contamination in the form of 

solid substance. To measure vibration acceleration in both bands and the ultrasonic 

signal in the band from 20 kHz to 100 kHz recorded with the Ultraprobe 2000 

instrument, the following measures were used: rms value, peak (upper and lower peak), 

mean, absolute peak, interpeak, kurtosis, crest factor, clearance and shape.  

The maximum, minimum and average sound pressure levels were used to measure  

the sound pressure in the band from 16 Hz to 40 kHz. All measurements were obtained 

from 30 second recording buffers acquired every 10 minutes.  

Figure 2 shows a block diagram of the measuring chain.  
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Figure 2. Block diagram of the measuring chain 

Figure 3 shows examples of symptom life curves for one of the bearings. In order to 

present them in a clear way on one drawing and simultaneously show the dynamics of 

changes during the experiment, the measured values were normalized to the mean of 

several initial values. 

As the figure shows, an unambiguous assessment of the technical condition of  

the bearing is not simple in the case at hand. There are rapid increases in the values of 

some symptoms and then decreases in their values before failure. In addition, there is  

a problem of determining limit values for individual symptoms. Taking into account  

the whole set of bearings it seems that the application of diagnostics based on many 

symptoms and the application of machine learning should facilitate such diagnosis, 
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especially because the proposed method can provide clear rules to determine  

the technical condition of the bearing.  
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Figure 3. Normalized values for vibroacoustic symptoms and temperatures  

obtained during the experiment. Drawing on the left - all life curves,  

drawing on the right - the final fragment just before the failure 

Figure 4 presents the data obtained in the space of features created by selected features.  
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Figure 4. Measurements obtained in the sample space of features formed by temperature, 

maximum sound pressure level and vibration acceleration kurtosis in the HB band  

(up to 12.8 kHz) 

3. Application of the CART method to data 

In order to develop the methodology of two-state classification of rolling bearing 

condition, a CART type tree was used. The Gini index [26] was used as a measure of 

node contamination. The main advantage of classification trees here is generation of 

clear rules, which will allow to develop a simple algorithm for detecting the pre-failure 

condition of a bearing. Such understandable diagnostic rules may be used by 

maintenance services to identify the technical condition of an object. Another important 
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advantage is that there is no need to select diagnostic features. This selection is 

performed by the algorithm during the tree construction.  

The first step in building a tree was to optimize it. For this purpose, a leave-one-out 

cross validation test was used for different values of the minimum leaf size. The choice 

of this test was based on a small number of available data. The analysis shows that the 

optimal tree is a tree in which the hyperparameter associated with the minimum number 

of observations in a leaf is 1 or 2. In the next step the most important input features of 

the classifier were selected. This is done by examining the change in the mean square 

error (MSE) at each breakdown for each predictor. Table 1 shows the three best rated 

measures of recorded signals.  

Table 1. The best symptoms obtained on the basis of the classification tree 

Pos. Symptom 

1 Rms value of vibration acceleration in the HB band (up to 12.8 kHz)  

2 Bearing temperature 

3 Peak value of vibration accelerations in the LB band (up to 1 kHz) 

As can be seen from the table above, the most important parameter in determining 

the condition of the bearing in the conducted experimental studies was the rms value of 

vibration accelerations in a wide frequency band, which confirms the validity of  

the measurement of this value. The second parameter turned out to be the temperature. 

This is due to the fact that the bearing was brought to failure and thus also reached  

the thermal phase of wear. The last parameter affecting the determination of  

the technical condition of the tested bearings was the peak value of vibration 

accelerations. However, it appears that it should be determined in a narrower frequency 

range than the rms value. Of course it is not possible to generalize this conclusion for all 

bearings, but it may turn out that measures such as the crest factor may not be effective 

in diagnosis, because both values on which it depends should be determined in different 

bands.  

After determining the most important predictors, the tree was re-constructed on their 

base. On the basis of the leave-one-out test, results were obtained, which are presented  

in Table 2.  

Table 2. Results obtained for the optimally selected classifier's hyper-parameter  

and a limited number of the best predictors 

Total 

classification 

error 

True 

Positive 

Rate 

TPP 

True 

Negative 

Rate 

TNR 

Positive 

Predictive 

Value 

PPV 

Negative 

Predictive 

Value 

NPV 

0.019 0.998 1.000 1.000 0.987 

 

A small classification error of 1.9% shows the possibilities of the method in the case 

of an optimally selected hyperparameter as well as input quantities. The probability of 

detecting an impending bearing failure when it is actually in this state is close to 1.0 
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(0.998 to be precise). The TNR indicator indicates the probability that a fit condition will 

be detected if the bearing is in that condition. On the other hand, PPV determines to what 

extent it is possible to be sure that the result is true if a pre-failure condition is detected. 

Similarly, the NPV indicator for the fit condition can be defined. All values indicate very 

good properties of the classifier.  

An important reason for using the classification tree was to generate knowledge that 

could be useful for maintenance services. For example, the following rules can be 

generated from the finally built classifier:    

R1: IF RMS (in the HB band) >=4,8 m/s2 AND TEMP >= 34,7 C THEN PRE-

FAILURE CONDITION 

R2: IF RMS (in the HB band) >=4,8 m/s2 AND TEMP < 34,7 C THEN FIT 

CONDITION 

R3: IF RMS (in the HB band) < 4,8 m/s2 AND PEAK (in the LB band) >= 16,7 m/s2 

THEN PRE-FAILURE CONDITION 

R4: IF RMS (in the HB band) < 4,8 m/s2 AND PEAK (in the LB band) < 16,7 m/s2 

THEN FIT CONDITION 

where: RMS – rms value of absolute vibration accelerations, PEAK – peak value 

of absolute vibration accelerations, TEMP – bearing housing temperature, 

HB – measurement in the band up to 12.8 kHz, LB – measurement in  

the band up to 1 kHz.  

The simple rules generated can enable you to make the right diagnostic decisions. Of 

course, in the case of bearings and operating conditions other than the tested ones, it may 

turn out that the given rules do not work. The presented methodology, however, can be 

easily applied in other cases (e.g. by bearing manufacturers), as soon as a suitable 

database is available.  

4. Conclusions 

Vibroacoustic diagnostics of rolling bearings is a very important element of the machine 

maintenance strategy depending on the technical condition. By using classification 

methods it is possible to assess the technical condition of bearings on the basis of many 

symptoms measured synchronously. Such an approach may be necessary in many cases, 

as it may turn out that the measurements of one measure of the diagnostic signal are 

insufficient to determine the technical condition of the bearing. This creates the problem 

of defining limit values for various measures that can be used in the diagnosis process.  

In addition, it may turn out that one combination of measures will work in a given case 

and not in another one. The use of machine learning methods makes it easy to develop  

a statistical approach to the problem and to eliminate these disadvantages. The only 

serious problem is the need to teach the system using examples that also include bearing 

damage. It may turn out, however, that with proper separation of vibroacoustic 

phenomena, it is sufficient to test the bearings themselves under more sterile conditions 

and extrapolate the results to complex objects. Furthermore, with a sufficiently large set 

of the same machines (pumps, fans, electric motors), obtaining a minimum number of 

training examples may be realistic. It is also important that thanks to the tree method,  

a clear knowledge base can be obtained in the form of a set of simple rules allowing its 
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easy direct application in machine monitoring. In addition, information on  

the significance of the measured parameters is obtained, which may allow to reduce the 

redundancy of the diagnostic system over time.  

The proposed methodology was applied to small-size bearings 608, but it can also be 

applied in other cases. In the example described above, a total classification error of 

1.9% was achieved, which is a very good result. The entire diagnostic inference was 

reduced to just four simple rules.  

It is also important to note that useful signal measures can be determined in different 

frequency bands, which means that the use of relative measures (e.g. crest factor, etc.) 

for bearing diagnostics may not be appropriate.   
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