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Abstract  

This article specifies application of machine learning for the purpose of classifying wear level of multi-piston 
displacement pump. A diagnostic experiment that was carried out in order to acquire vibration signal matrices 

from selected locations within the pump body is described herein. Measured signals were subject to time and 
frequency analysis. Signal attributes related to time and frequency were grouped in a table in accordance with 

pump wear level. Subsequently, classification models for the pump wear level were developed through 

application of Matlab package. Assessment of their accuracy was carried out. A selected model was subject to 
confirmation. The article includes its summary. 
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1. Introduction 

Multi-piston pumps make a significant part of the high-power actuator-based hydraulic 

systems. More than once, proper operation of the entire hydraulic system is made 

conditional on proper action of the pumps. Wear of individual elements of the pump leads 

frequently to a drop of its operational pressure, increase of volumetric loss, and as  

a consequence to a reduction of delivery of pump, increase of vibrations, and increase of 

pump noisiness. The pump operational vibroacoustic diagnostics is focused on searching 

symptoms of damages within a vibration signal. In case of high-level noise and mechanical 

high-complexity (as in the pumps), obtained assessments of wear level of tested elements 

are burdened with significant uncertainty. The authors of this article specified potentials 

for application of machine learning for the purpose of classification hydraulic pump wear 

level on the basis of deliberated vibration signals within typical locations of its body.  

2. Pump specification 

Figure 1 shows a simplified drawing that includes an axial multi-piston disc-deflected 

displacement pump. In such a pump, its rotor (2), piston (3), and nose bearing (7) are 

installed coaxially on a driving shaft (1). Glide shoes (4) on the pistons mate with 

immovable swashplate (5) deflected at γ angle relative to the pump rotor axis. Pistons 

along with the rotor rotate and at the same time their shoes (4) that glide on the surface of 

the immovable swashplate enforce reciprocating motion within the rotor cylinders. 
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Additionally, the rotor glides on the immovable valve plate (6) which is equipped with 

suction and pressing openings.  

 

Figure 1. Simplified structural diagram of axial multi-piston disc-deflected pump: 

1– shaft, 2 – rotor, 3 – piston, 4– glide shoe, 5 – swashplate, 6 – valve plate,  

7 – bearing [5] 

Wear of displacement pump elements is caused both by forces that arise during mating 

its individual parts which make kinematic pairs (e.g. piston-cylinder, valve plate-rotor, 

piston shoe-swashplate) and inadequate conditions related to pump operation such as 

exceeding nominal pressure, operation at too low viscosity of working medium, loss or 

insufficient filtration of working medium. 

Abrasive wear is the most frequent type of wear to displacement pump elements. 

Excessive load on the rotor unit leads to a/o abrasive wear of its elements and increasing 

radial clearance within piston-cylinder kinematic pairs. It results in increasing volumetric 

loss and lowering pump general efficiency.  

Wear of the deflected disc, which mates with surfaces of rotor piston shoes, leads to 

occurrence of elliptical notch (Figure 2) on its surface and as a consequence to total wear 

of this surface. It causes reduction of pump mechanical and hydraulic efficiency. 

Conversely, wear of the valve plate is caused by a/o decay of lubrication layer between 

the disc surface and a surface of the rotor face. It results in occurrence of flow micro-

conduits (Figure 3) on the surface of the swashplate bridge. Such conduits cause flow of 

the working medium between suction and pressure zones within the pump; as a result, loss 

of tightness, reduction in operational pressure and volumetric efficiency of the pump 

occur.  
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Figure 2. Demonstration of deflected swashplate wear 

 

 

Figure 3. View of flow micro-conduits on worn valve plate 

3. Test run 

Testing of multi-piston pump wear level was carried out in a special-design laboratory 

station. One of major purpose of testing was to obtain some wear on the pump elements 

in a natural way; for this reason, such multi-hour testing was carried out in real operational 

conditions. In the course of testing, diagnostic signals - such as working medium flow rate, 

static and dynamic pressure, as well as pump body vibration acceleration - derived from 

measuring transducers were recorded systematically. Measurements of the body vibration 

acceleration were carried out on three testing axes (X, Y, Z) upon earlier installation of 

transducers on the pump body in the vicinity of the valve plate and the swashplate. 

Frequency of signal sampling was 50 kHz. A simplified diagram of the pump body 

vibration measurement including vibration transducers is shown in Figure 4. Cumulative 

root mean square related to short-time Fourier transform from vibration signals recorded 

on three operational conditions of the pump is shown in Figure 5.  
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Figure 4. Simplified block diagram related to measurement chain for pump body 

vibration acceleration on laboratory station 

 

Figure 5. Cumulative root mean square related to short-time Fourier transform  

from vibration signals recorded on three operational conditions of the pump 

Upon completion of laboratory testing, the pump was subject to assessment in relation to 

wear of its components. Basing on visual inspection, wear of the rotor unit and wear of 

the valve plate were confirmed. Neither the swashplate surface nor the piston foot surfaces 

were worn. Such kinematic pair was not obtained due to the pump static operational 

conditions as the effect of decay of lubricating surface between mating surfaces of the 

swashplate and the piston foot did not occur. Wear of the rotor unit consisted in  

(on average) approx. 10 μm enlargement of radial clearance in each piston-cylinder pair. 

Additionally, wear of the rotor end face mating with surface of the valve plate was 
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confirmed. Degradation of the rotor end face was measured with a profile measurement 

gauge [4] within three selected directions (Fig. 6). Upon comparison of profile courses, 

identical wear of the rotor end face was confirmed with its average depth approximately 

50 µm. 

 

 
 

Figure 6. View of wear of rotor end face and a wear profile 

Wear of surfaces on the valve plate caused occurrence of flow micro-conduits on the 

surfaces of the transition zones (so-called bridges) between suction and pressure conduits, 

Fig. 7. Upon measuring profiles on A transition zone (transition from suction side to 

pressure side) and B transition zone (transition from pressure side to suction side) uneven 

wear of the transition zones was confirmed (Fig. 7). However, surface of A transition zone 

(transition from suction to pressure side) was subject to increased degradation.  

Side A 

  

Side B 

 

Figure 7. View of worn surface on the valve plate and wear profiles on transition zones 

Obtained courses of the pump body vibration were grouped in accordance with the 

pump efficiency level and attributed with the following grades (labels): efficient, end of 

use, worn. The next stage of testing included creation of models related to classification 

of the pump efficiency on the basis of vibration courses that have been grouped. 
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4. Machine learning 

Considering complexity of physical phenomena during the unit operation (usually 

intensely non-linear and intensely non-stationary), modelling of multi-piston pumps is  

a hard task in terms of mechanics. Current mathematical models usually constitute 

approximation of phenomena that occur within pumps during their operation [3]. As part 

of the operations engineering, machine learning systems have been applied more and more 

frequently; these form conditions for industrial process or its elements (e.g. machines) 

only on the basis of available measurement data ascribed to the process conditions (grade). 

Machine learning systems have been widely used in multiple industries. These are applied 

a/o in finance, power energy, machine vision, and (broadly defined) operations 

engineering for the purpose of anticipation of machine wear level and discovery of their 

damages. In particular, machine learning is applied in all locations where (considering 

complex conditions within the testing item) it is not possible to provide a full mathematical 

description of phenomena that occur inside the unit (as such a description does not exist 

or it could be inaccurate), and the signals recorded at the output (which are responses to 

input function) make the only available information to be provided. 

Considering methods of learning, machine learning can be divided into supervised  

and non-supervised systems. Supervised learning includes creation of a process model  

(an issue) on the basis of input data only (collected earlier) and reference output data 

(labels, grades). This is widely applied to classification in order to use obtained model to 

classify input data (e.g. recognition of sounds, speech, illness in a patient) as well as 

regression for the purpose of continuous anticipation of changes to a certain output value 

induced by alteration of input value. Non-supervised learning, however, is based only on 

input data, collected earlier, and their grouping as well as interpreting. Such systems are 

applied for the purpose of data grouping and detecting hidden properties [1]. In case of 

classification of wear of displacement multi-piston pump, supervised learning algorithms 

are to be used. 

4.1. Arrangement of data for machine learning system 

Recorded measurement signals that have been obtained every day during the experiment 

related to operation of the multi-piston pump were subject to qualitative assessment  

in order to recover potential major error resulting from a/o unpredictable faults 

(interference) in the course of recording. Subsequently, constant component was removed 

from the signals and then subject to wall filtration at cut-off frequency f = 20 kHz. Bearing 

in mind that during signal measurement, a signal related to pump shaft rotation marker 

was also recorded, all recorded signals were divided as per such marker signal. Matrices 

related to a single-rotation length were obtained in that manner.  

Considering hydraulic oil temperature growth during test, input data of the machine 

learning system constituted only courses obtained at temperature T = 50° [C] at which oil 

viscosity does not undergo alteration and may be accepted as a constant. 429 courses of 

the pump body vibration signals were recorded in total, whereby signals measured for  

an efficient pump constituted 144 of these and signals measured for a pump in transition 

condition (end of use) constituted 144 of these courses. Last 141 courses were obtained 

from operation of a worn pump. A consecutive stage related to arrangement of data for 
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machine learning system was its division into data applied in the process of learning 

classifier model and data for its later attestation. 25% of general data were used for testing 

of operation accuracy of the classifier model that has been obtained. Data received in such 

a manner were read in to the operational space of Matlab package [2], where further 

analysis was carried out in the following way: 

 selection and calculation of signal properties,  

 selection of classifier model,  

 assessment of the applied classifier efficiency. 

4.2. Selection of signal properties 

Another important issue related to a structure of machine learning system is selection of 

signal features on which the learning system will be basing. Quantity of calculated features 

is theoretically countless, but practically it is aimed at obtaining a minimum number of 

properties to describe signal features. It favours obtaining a dense model including 

accurate mating. Signal property selection optimisation may be carried out with one of 

available methods [1], that is Correlation Matrix, Principal Component Analysis (PCA), 

and Sequential Feature Reduction.  

For each of obtained matrices related to the pump body vibration signals, time  

and frequency-feature signals were determined. In case of time-feature signals, standard 

deviations, entropies, and root-mean-square values were calculated. In case of frequency-

feature signals, signal spectrum entropy, maximum power spectral density, and frequency 

at which maximum power spectral density occurred were accepted. 56 features were 

obtained in total. 

Calculated features of vibration signals were grouped in the table in which pump 

operational grades (labels) were specified in its last column i.e. efficient, end of use, worn 

pump. Basing on a cumulative curve including standard deviations related to 56 features 

(of each pump efficiency grade), their quantity was narrowed to 19 most separative 

towards individual grades (Figure 8).  

 
Figure 8. Distribution of standard deviations for signal features related to a given 

grade of pump efficiency 
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Vibration signal entropy and their standard deviations were selected as the most 

convenient. An example of distribution of vibration signal entropy measured in the vicinity 

of the pump swashplate (along Y and Z measurement directions) that properly separate 

grades related to pump efficiency are specified in Figure 9. 

 

Figure 9. Example of separation of efficiency grades on the tested pump with application 

of entropy from swashplate vibration signals along Y and Z  

measurement directions 

4.3. Selection of classification algorithm 

Both in case of systems that use supervised and non-supervised learning, there is a large 

group of learning algorithms; selection of the most convenient algorithm is subject to 

multiple factors. First of all, in order to select an appropriate learning algorithm, it is 

necessary to determine properly a relevant task for a model (classification, regression, 

grouping). The next issue is related to the type and quantity of input data which has an 

impact on learning rate, load of computer memory (controller) as well as accuracy of 

output data prediction (model response). Selection of an appropriate type of algorithm is 

not explicit; only an experienced researcher is able to quickly determine an exact 

algorithm. Usually, selection of the most relevant algorithm of classification is carried out 

on the basis of multiple type tests as well as provision of assessment related to classifiers 

that have been obtained in terms of action swiftness, accuracy of classification, and 

memory load of a computing unit. 

A group of algorithms that meet classification requirements related to wear of multi-

piston pump include [1]:  

 Decision Trees  

Within this algorithm, in order to classify data, a decision tree is based on a starting 

point and branching which make a binary decision system; its end branches make a result 

of attributing data to a specific grade. 
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 Discriminant Analysis 

It is based on analysis of signal Gaussian distribution received from observation (input) 

set. The classifier provides estimation of parameters of Gaussian distribution received 

from observation set; on such a basis the classifier will ascribe those to a relevant grade. 

 Support Vector Machines 

It classifies data through finding the most relevant hyperplane which separates data of 

a grade from another grade. The most convenient hyperplane to be considered is the one 

that separates data with the biggest possible margin. 

 Nearest Neighbour Classifiers 

It determines affiliation of a new data (received from an input set) to the specified 

grade on the basis of location of anticipated number (K Nearest Neighbour) related to 

nearest (neighbouring) input set data in relation to this data. However as a position 

measure, a measure of distance related to classified data from neighbouring data is 

accepted. 

 Naive Bayes Classifiers 

It makes a probable classifier in which mutual independency of input variables is 

assumed (naively). Following the Bayes' theorem, this classifier is used to calculate 

probability related to affiliation of input data to a specific grade.  

In the course of classification of the pump wear level, it was decided to test two of 

previously mentioned algorithms, i.e. algorithm of decision trees and algorithm of K  

Nearest Neighbour.  

4.4. Classification of pump wear level  

With application of previously specified data, vibration signal features provide the best 

possible separation of efficiency grades; decision tree classifier was applied in the course 

of classification process.  

Accuracy of the classifier was estimated through application of Confusion Matrix 

which is shown in Figure 10. From amongst 144 input signals received from vibrations of 
efficient pump body, the model was able to recognise 142 signals accurately and remaining 

2 signals were incorrectly ascribed as end of use. Within end of use grade the model 

recognised 142 observations correctly and 2 observations were incorrectly classified as 
efficient pump. All signal observations as part of end of use grade were recognised 

properly. Obtained model is used to classify the pump wear level at 99.1% accuracy; 

relevant learning time was 0.95 s. 

 



Vibrations in Physical Systems 2019, 30, 2019222 (10 of 14) 

 
 

Figure 10. Confusion matrices for pump wear level  

with application of decision tree model 

In order to reduce the dimension of the obtained model (which is to prevent against its 

overtraining and to ensure better physical implementation), Principal Component Analysis 

(PCA) was applied. From amongst 19 signal features that has been applied for the purpose 

of determination of initial classifier model, only those that totally circumscribe 95% of 

signal variance value within the optimised model were retained. Within examined model, 

the features that circumscribed 95.9% of signal variance were constituted by entropy of 

recorded vibrations at the pump swashplate along Y measurement direction and vibration 

entropy recorded at the pump rotor along Y measurement direction. Accuracy of the pump 

efficiency grades (as per optimised model) was estimated with confusion matrix; its shown 

in Figure 11. 

  

Figure 11. Confusion matrix for pump wear level  

with application of optimised decision tree model  

The obtained model provides classification of the pump wear classification at 99.1% 

accuracy. From amongst 144 input signals that have been obtained from vibrations of 

efficient pump body 143 were properly recognised by the model and 1 was recognised 
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incorrectly as end of use. Within end of use grade, the model recognised 141 observations 

correctly, and 3 observations were qualified incorrectly as efficient pump. Similar to the 

basic model, all 141 observations (as part of worn pump grade) were recognised properly. 

A model prediction of the pump deflection gear vibration signal entropy (along Y and Z 

measurement directions) obtained through estimated model of decision tree is shown  

in Figure 12. 

 

Figure 12. Example of prediction of the pump swashplate vibration signal entropy 

obtained through optimised model of decision tree 

The subsequent algorithm used to classify efficiency of the tested pump was K Nearest 

Neighbour. As in case of the previous classifier, 19 vibration signal features were used; 

those were separating individual grades of pump efficiency in the best possible way. 

Correctness of the classifier operations were estimated through application of Confusion 

Matrix, which is shown in Figure 13. The obtained model classifies the pump wear level 

at 100% accuracy; learning time was 3.77 s.  

 

Figure 13. Confusion matrix for pump wear with application of K Nearest Neighbour 
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The optimisation of the obtained model with application of Principal Component 

Analysis caused reduction of its dimension. As part of the optimised model, features that 

describe totally 97.7% of signal variance are entropy of vibrations measured at the 

deflected gear along Y measurement direction and entropy of vibrations measured at the 

impeller along Y measurement direction. Results of estimations for parameters of 

optimised model were determined through application of Confusion Matrix; these are 

shown in Figure 14. 

The obtained model classifies the pump wear level at 99.5% accuracy; the training 

time was 1.76 s. From amongst 144 input signals received from vibrations of efficient 

pump body, 143 were recognised correctly by the model and 1 was incorrectly recognised 

as end of use. As part of end of use grade, 143 observations were recognised correctly 

while 1 observation was incorrectly qualified as efficient pump. Similar to the basic model, 

all 141 signal observations as part of worn pump grade were recognised properly. 

 

 

Figure 14. Confusion matrix for pump wear classification  

with application of K Nearest Neighbour  
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An example distribution of the pump deflected gear vibration signals (along Y and Z 

measurement directions) obtained through application of K Nearest Neighbour is shown 

in Figure 15. 

 

Figure 15. An example of deflected gear vibration signal entropy distribution  

with application of K Nearest Neighbour  

On the basis of analysis of obtained results related to classification of the pump wear 

level with application of engineered model set it was confirmed that K Nearest Neighbour 

separates the pump efficiency grades at the highest possible accuracy. This model was 

subject to further verification that included check of accuracy of the classification related 

to new measured pump body vibration signals in three levels of efficiency. Basing on pre-

calculated features of measured signals the classifier model (exported to Matlab) 

recognised the pump efficiency grades at 90% accuracy. 

5. Summary 

As part of issues related to classification of damages to machines and equipment which 

operations are determined by occurrence of complex mechanical and fluid phenomena  

(as in case of displacement pumps) the major factor is to carefully arrange input data for 

machine learning system. Relevant selection of signals and locations for the purpose of 

measurement provision makes reception of highly informative data possible.  

With reference to classification of displacement pumps, input data sets that contain 

measured signals should be as numerous as possible. Input data must include operation 

courses within entire range of operational pressure changes as well as operational medium 

viscosity that changes in accordance with temperature fluctuations. It has an impact on the 

training of obtained classifier model and obtained efficiency during classification of the 

pump wear level. The next important issue is a selection of such signal features which 
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separate efficiency grades or machine damages in the best possible way. In case of 

classification of multi-piston pump, features which separated its efficiency grade in the 

best way were entropies related to vibration signals. Minimum number of applied features 

during classification process has an impact on the classifier learning time and prevents 

against its overtraining. Selection of relevant machine learning algorithms is decisive  

in relation to obtained accuracy of classification. Basic and modified algorithms of 

decision tree and nearest neighbours confirmed their usefulness for the purpose of 

classification of the displacement multi-piston pump wear level at a satisfactory accuracy. 

References 

1. I. Goodfellow, Y. Bengio, A. Courville, Deep learning: systemy uczące się, 

Wydawnictwo Naukowe PWN SA, 2018. 

2. J. Kiusalaas, Numerical methods in engineering with MATLAB, Cambridge 

University Press, 2005. 

3. W. Łatas, J. Sojek, Dynamic model of axial piston swash-plate pump for diagnostics 

of wear in elements, The Archive of Mechanical Engineering, 2 (2011) 135 – 155.  

4. A. Sadowski, E. Miernik, J. Sobol, Length and angle metrology (in Polish), 

Wydawnictwa Naukowo-Techniczne, Warszawa 1978. 

5. S. Stryczek, Hydrostatic drive (in Polish), Wydaw. Nauk.-Techniczne, Warszawa 

1990. 


