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INTRODUCTION TO THE VOLUME XIII OF COLLECTED
PAPERS ON VIBRATIONS IN PHYSICAL SYSTEMS

As Heraclites said a long time ago: ‘panta rei’- all is moving, all
is flowing, all phenomena behave dynamically, not always stationary, but
sometimes having great oscillating component. Every two years some
leading specialists in this field of investigation come to present the papers
and discuss some important issues in such broad context of dynamics.
This is possible in the frame of the “Vibrations in Physical Systems”
Symposium, which has been organized since 1960 by the Poznan branch
of the Polish Society of Theoretical and Applied Mechanics and the
Institute of Applied Mechanics of Poznan University of Technology.
This volume, entitled Vibration in Physical Systems, is the collection
of delivered papers on this occasion.

The scope of these Symposia are not only dynamical problems of
the pure mechanical systems, that means wave propagation, vibrations
etc. in solids, fluids and mechanical constructions but also dynamical
problems of heat conduction, electromagnetic waves and its influence on
mechanical behavior of the medium. There are also some new and
important areas of dynamic investigation like bio-systems including a
human under motion and/or vibration. Finally, the important part of
research nowadays is done by simulation, so some papers discuss this in
terms of methodology, and/or obtained result.

In mechanics, these oscillations and / or vibration can be observed
as the vibration of the structure of our interest and / or the surrounding
environment. Depending on the medium of propagation (solid, gas, fluid)
they can be observed as the vibration, sound or even the noise. In general
they play at least three side roles.

First of all, they can carry information about the existence of the
system, and also on its overall and technical condition and safe use. This
is the cause they have been used more and more currently for the
assessment of system condition, complex machines and equipment in
particular. Some papers touch this problem directly or indirectly,
considering some phenomena which can improve the reliability of the
diagnostic decision.
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Secondly and mostly, the influence of vibration on structures and
the environment can be harmful. Of course, it depends on the
characteristics of the vibration processes, the energy and its amplitude —
frequency characteristics. For the structures and machines it gives mostly
fatigue effects which degrade the system, its efficiency and safety. The
most pronounced cases of large amplitude vibrations concerning large
areas are the earthquakes, which can bring disaster to many buildings and
the infrastructure. Prevention of such damaging effect is an area of
intensive research. In some other cases of metrology and cutting machines
the undisturbed position of some objects or its part are required as the
conditions for the accuracy and quality of production process or service,
the quality of work and life comfort of humans if the noise and vibration
processes influence workers or inhabitants. Several papers investigating
these important aspects of vibration are delivered in this volume.

Thirdly, vibration processes are carriers of energy in many cases
of mechanical technology and civil engineering. They are used to
transport the medium or some parts, as well as in crashing and cleaning
processes. What is important in some other technological processes, is
that the small additional vibration process can diminish the friction
greatly, or enable to use much less energy to provide the needed
operation. Some papers of this volume are dedicated to these, not new but
important problems.

As it is usually, the papers were reviewed by the members of
Scientific Committee, or in some cases by independent colleagues outside
of committee, if our competence was too narrow. On the behalves of all
participants of the Symposium, the user of our product, we would like to
thank all reviewers for their contribution in bettering the quality of our
discussion during the Symposium and the publication, as well.

Editors
Czestaw CEMPEL
Marian W. DOBRY
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MODELLING AND SIMULATION OF TRIPLE PHYSICAL PENDULUM

Jan AWREJCEWICZ, Grzegorz KUDRA and Grzegorz WASILEWSKI
Technical University of 1.6dz, Department of Automatics and Biomechanics
1/15 Stefanowskiego St., 90-924 £.6dz, Poland
Tel./fax: +48426312225, e-mail: awrejcew@p.lodz.pl, grekudra@p.lodz.pl

Abstract
Plane triple pendulum periodically forced is investigated both experimentally and numerically.
Mathematical modeling includes details taking into account some characteristic features (real
characteristics of joints built by the use of roller bearings) as well as some imperfections of the
real system. Parameters of the model are obtained by estimation from the experimental data. Then
the experimental and numerical analysis of the system is performed.

Introduction

A pendulum as a simple nonlinear systems is still a subject of interest of scientists
from all the world. It is caused by simplicity of that system on the one hand, and due to
many fundamental and spectacular phenomena exhibited by a single pendulum on the
other hand. In mechanics and physics investigations of single and coupled pendulums
are widely applied. Lately, even the monograph on the pendulum has been published
[1]. This is a large study on this simple system also from the historical point of view.

Although a single or a double pendulum (in their different forms) are quite often
studied experimentally [2,3], a triple physical pendulum is rather rarely presented in
literature from a point of view of real experimental object. For example, in the work [4]
the triple pendulum excited by horizontal harmonic motion of the pendulum frame is
presented and a few examples of chaotic attractors are reported. Experimental rigs of
any pendulums are still of interest of many researchers dealing with dynamics of
continuous multi degrees-of-freedom mechanical systems. The model having such a
properties has been analyzed in work [5]. It consists of a chain of N identical pendulums
coupled by dumped elastic joints subject to vertical sinusoidal forcing on its base.

In February, 2005, in the Department of Automatics and Biomechanics, the
experimental rig of triple physical pendulum was finished and activated. This stand has
been constructed and built in order to investigate experimentally various phenomena of
nonlinear dynamics, including regular and chaotic motions, bifurcations, coexisting
attractors, etc.

In order to have more deep insight into dynamics of the real pendulum, the
corresponding mathematical model is required. In the work [6] the suitable mathematical
modeling and numerical analysis have been performed, where the viscous damping in
the pendulum joints (constructed by the use of rolling bearings) has been assumed. In
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the next step [7], we have also taken into account the dry friction in the joints with many
details and variants. Here we present the model of friction taking into account only
essential details.

1. Experimental rig

s T : [
Figure 1. Experimental rig: 1, 2, 3 - links; 4 - stand; 5 - rotors; 6 - stators; 7, 8, 9 -
rotational potentiometers.

The experimental rig (see Fig. 1) of the triple physical pendulum consists of the
following subsystems: pendulum, driving subsystem and the measurement subsystem. It
is assumed that the pendulum is moving in a plane.

The links (1, 2, 3) are suspended on the frame (4) and joined by the use of radial and
axial needle bearings. The first link is forced by a special direct-current motor of our
own construction with optical commutation consisting of two stators (6) and two rotors
(5). The construction ensures avoiding the skewing of the structure and forming the
forces and moments in planes different that the plane of the assumed pendulum motion.
On the other hand the construction allows the full rotations of all the links of the
pendulum.

The voltage conveyed to the engine inductors is controlled by the use of special
digital system of our own construction together with precise signal generator HAMEG.
As a result the square-shape in time forcing (but with some asymmetry - see the next
sections) with adjustable frequency and desired amplitude is obtained.
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The measurement of the angular position of the three links is realized by the use of
the precise rotational potentiometers (7, 8, 9). Then the LabView measure-programming
system is used for experimental data acquisition and presentation on a computer.

2. Mathematical model

Details on physical modeling, i.e. idealized physical concept (see Fig. 1) of real
pendulum presented in Fig. 2 can be found in works [6, 7]. The system is idealized since
it is assumed that it is an ideally plane system of coupled links, moving in the vacuum
with the assumed model of friction in joints.

Figure 2. Physical model of triple pendulum.

The system is governed by the following set of differential equations:

B Npycos(yy—vy,)  Nizcos(w—v3) | [
Ny; cos(y; —y5) B, Noycos(w; =y ) [0, [+
Nizcos(y;—y3) Noycos(w —y,) By W3
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0 Nppsin(y; —yy)  Nigsin(y; —y;) Wi
+ =Ny sin(y; - y,) 0 Noysin(yy =y, ) 193 b+ (1)
=Nyssin(y; —y3) —Nossin(y; —v,) 0 V3
Mgy (1) =M gy (Wr1,V2) M, siny, M,(t)
3 My Wy, W ) = Mgy (W, W3) ¢+ M, siny, =1 0
MR3(‘i’2"i’3) M, Ni3 [Ny sinyy 0

where the pendulum position is described by the use of three angles v, (i =1,2,3) and
where

My =T, zarctan(S\ill )+ 2V,
T
2 . . . .
Mp, :ngarctan(s(\yz—\vl))+6(\vz—\vl), ()

2 . . . .
M =T Zarctan (6(7; —)) (¥~ ).

are the moments of resistance in the corresponding joints and consisting of two parts:
dry friction and viscous damping. The dry friction moment does not depend on the
loading of the corresponding bearing and the sign function is approximated by the
arctan function. The parameter c is the damping coefficient common for the second and
third joint while in the first joint we assume damping two times greater (since the first
joint is built by the use of four bearings, while each other joint contain two bearings).

In the work [7] more complex model of friction has been investigated where the dry
friction moment consists of two part: the first one proportional to the normal loading in
the bearing and the second one being constant (and present also in the lack of loading).
Moreover the friction is a function of relative velocity due to the Stribeck's curve. As a
result of those investigations we have concluded that in our case the model of friction
can be simplified to the one presented by the Eq. 2, without any loss of precision.

The external excitation in the pendulum model can be an arbitrary time function, and
in particular, it can be the same function as applied (and recorded to a file) in real system
(it is useful in the parameter estimation process). On the other hand, it is possible to
apply a forcing due to the following mathematical description:

3

_ | g if (of+¢y)mod2n < 2na
¢ |-q if (of+¢y)mod2n>2na’
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which imitates the square-shape in time forcing (applied in the real pendulum), with
adjustable angular velocity @, initial phase ¢ amplitude ¢ and the coefficient a (for
a#0.5 there is an asymmetry in the forcing, as mentioned in section 1).

3. Model parameters

The model parameters are estimated by the global minimum searching of the criterion-
function of the model and real system matching. The matching of model and real system is
understood as the matching of the corresponding output signals y; (i=1,2,3) from model
integrated numerically and from the real pendulum, assuming the same inputs to both model
and real system. The sum of squares of deviations between corresponding samples of
signals from model and experiment, for few different solutions, serves as a criterion
function. Together with the model parameters also initial conditions of the numerical
simulation are estimated. A minimum is searched applying the simplex method. In order to
avoid the local minima, the simplex method is stopped from time to time and a random
searching is then applied. After random searching the simplex method is restarted again.

If we divide final value of criterion-function by the number of samples used in
calculation of criterion-function, we obtain average square of deviation between two signals
(obtained from the model and the experiment) - let us denote this parameter as F,, . Now this
parameter can be used for comparison of matching of different sets of experimental data and
corresponding numerical solutions.

Ay B, G
B, [kg-cm’] 1650.3 1634.7 1641.3
B, [kg-cm?] 386.3 1378.7 1390.9
B; [kg-cnt’] 163.32 166.56 164.50
Ny, [kg-em?] 1111.2 1104.5 1112.6
Ni; [kg-em?] 198.99 201.47 199.92
Nys [kg-em?] 255.96 259.16 257.15
M, [N-cm] 879.76 874.38 875.00
M, [N-cm] 632.37 628.53 633.13
7y [N-mm] 56.83 72.73 97.53
T, [N-mm)] 25.06 15.16 13.77
Ty [N-mm] 11.07 4.58 6.61
¢ [N-mm-s] 0 1.057 0.532
&[s] 1000 1000 6.77
F [rad’] 0.3255 0.3059 0.2809

Table 1. Parameter estimations.

In the Table 1 the part of the results of the parameter estimations performed in the work
[7] is presented. Three different sets of parameters are presented, correspondingly to three
variants of the model of resistance in the joints. The set A; corresponds to the model with
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dry friction only. The model B, contains also viscous damping. The next model (C,) is a
development of the previous one (B;): the parameter ¢ is added to the set of the identified
parameters.

In all the identification processes, the same set of experimental solutions is used: five
periodic solutions with the forcing frequencies (f=a/2m): /=0.2, 0.35, 0.6, 0.85 and 1.1 Hz
(for each the solution the 20 sec of motion was recorded, after ignoring the transient
motions) and one decaying solution, which starts from the periodic attractor with forcing
frequency f=0.5 Hz (after few seconds of the recorded motion, the forcing was switched off
and the total length of the recorded motion was 24 sec). Note that in our work, we do not
measure actual value of the forcing, but only the control signal is recorded (determining the
sign of the forcing), since we assume the constant forcing amplitude ¢=1.718 Nm
(determined before the identification experiments).

4. Simulation results

The Figure 3 contains a bifurcation diagram for the mathematical model (C,) with the
forcing frequency f'as a bifurcation parameter. The chaotic window for f € (0.698,0.771)
can be here observed, which is confirmed well by the experimental observations from
which we have the chaotic zone for f € (0.695, 0.774).
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Figure 3. Bifurcation diagrams for the mathematical model C; with the parameter f growing
(—) and decreasing («).
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In the upper part of Fig. 4 the final model (C;) and real system matching for vanishing
motion (started from the periodic attractor with the forcing frequency /=0.5 Hz), obtained
during the identification process, is presented. In this scale we see almost perfect matching
of the corresponding behaviours. The bottom part of Fig. 4 presents enlargement of the final
phase of decaying of the same motion, where in addition the simulation of the model A is
shown. Here we can observe in details certain aspect of the difference between models A,
and C;.

Figure 5 shows results of investigation of the forcing frequency region 0.13-0.14 Hz. It is
an example that the developed model with their parameters can predict real pendulum
dynamics exhibited also for forcing frequencies f outside the region 0.2-1.1 Hz (containing
all the periodic solutions taken to the identification process).
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Figure 4. Final model (C, and A) and real system matching for vanishing motion
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Figure 5. Bifurcation diagrams exhibited by experiment and model (C,) with the parameter
ferowing (—) and decreasing («).

5. Concluding remarks

Few versions of the model of resistance in the joints have been tested in the
identification process. Good agreement between both numerical simulation results and
experimental measurements have been obtained and presented, for all the variants of the
friction model. However, one of them, namely C;, seems to be optimal, since it gives
relatively good results with simultaneous simplicity of the model itself, and high speed
of the simulation.

The model C; is better for simulation (higher simulation speed) than others because
the & parameter is much smaller and the characteristic of the friction torque are is
smooth. It is interesting that model C; give better results than models B;, while the only
modification is the parameter ¢ treated as identified one (the result is the smaller value
of the parameter ¢). We are not able to give a physical interpretation of that at this
moment. But since it is important to have a model giving results close to experimental
observations, we can accept even some artificial improvements of the model having only
functional role, no physical sense, particularly if they speed up the simulation process.

I should be noted, that examples of numerical and experimental simulations
presented is section 4 are selective. However, the presented examples show quite good
agreement between numerical and experimental results. It leads to conclusion that the
used mathematical model of triple pendulum with its parameters estimated can be
applied as a tool for quick searching for various phenomena of nonlinear dynamics
exhibited by a real pendulum as well as for explanation of its rich dynamics.
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Abstract

The analysis of the effort of structural components by calculation methods
often encounters serious difficulties. Usually, aim of biomechanical research
is determination displacement distribution of anatomical samples or physical
models. Development of modern numerical method and computational
techniques into field of biomechanics in recent years allow to solve highly
complex problems encountered in the assessment of the strength and
reliability of bone structures and implants. But they usually require
experimentally determined boundary conditions or courses of the involved
phenomena.

Key words: FEM, photoelsticty, elctronic speckle interferometry,
holgraphic interferometry

1. Introduction

One of the most important line of the research in engineering biomechanics is the
experimental and numerical analysis of the state of stress and strain existing in the
organs which are most heavily loaded such the spine, the hip and the knee joint, or
elements of human body which sustained an injury or in which pathological changes
occurred. Clinical, experimental and numerical investigations of constructions supported
human locomotion system, especially spine fixators, artificial human joints (hip and
knee prosthesis) is also very important field of biomechanics. Discussions in this fields
focuses on the problems of load models, using of different methods to investigations of
biological objects in real and model conditions, interacting on biological tissues on
changes of mechanical load.

In such investigations it is important to set oneself specific goals and determine what
measured (or calculated) values will allow one to rich this goal. Physical and numerical
models that are used should mirror as accurately as possible the studied object and take
into account the influence of simplifications on the obtained results. As s rule, tests on
models cannot reproduce the whole complexity of the ligamentous - muscular system,
the nervous system, and the biological and biomechanical factors that occur in man’s
osteoarticular system. Even tests on anatomical specimens have these limitations. In the
case of anatomical specimens, for instance, the time which passes since the taking of a
specimen to the actual testing in crucial. As it was mentioned earlier, the main goal of
experimental studies is to verify at some points theoretical models, or to confirm
conclusion emerging from clinical practice. Still without tests and numerical
investigations carried out on models and anatomical preparations it would be impossible
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to determine the pathogenesis of some diseases or to evaluate the employed method of
treatment, such as implantation.

The objectives of these paper include:

1. An analysis of the pathogenic mechanism of some diseases associated with the

overloading of man’s load-bearing system (e.g. the spine, the hip-tibial joint, the

knee joint and the lower limbs). By man’s load-bearing system we mean a complex

of elements performing tasks chiefly in load-carrying and locomotion processes;

Clinical, experimental and numerical investigations of:

spinal structures (an assessment of stresses, strains and displacements),

the hip joint and the knee joint,

the bone, ligament and muscular structures of the lower extremities;

An analysis of the optimum course of treatment in which some technological means

such as endoprostheses, implants, stabilizers and so on are employed;

4. The creation of a basis for the selection and construction of implants and other
treatment-aiding elements that meet such quality criteria as reliability, durability,
biological compatibility, and ease of assembly and service.

P)...!\.)

2. Model of the pelvis bone

For solve problem analysis strain and strain in the human pelvis was investigated by
used experimental and numerical method.

A geometric model of the bone was constructed on the basis of a series of cross —
sections of the artificial pelvis bone. The model obtained in this way reflects accurately
the actual geometry of the artificial pelvis bone. The computer programme ANSYS was
used in numerical analysis (Fig. 1 a).

In numerical analysis were used three dimension, 10 — notes solid element. In the
present case linear, isotropic material properties of the external cortical bone were
assumed. The model of the human pelvis consisted of 59 000 elements with 98 247
nodes. The following material propertied were assumed: the elastic modulus E = 18 600
MPa, the Poission ratio v =0,3.

Recently significant [11] improvements of laser doppler techniques gained interest for
bone analysis. Laser speckle interferometry ESPI allows the full field and three-
dimensional measurement of deformation and strain on complex surfaces. In electronic
speckle pattern interferometry (ESPI) (Fig. 2 b) a speckle pattern is formed by
illuminating the surface of the object to be tested, with laser light. This speckle pattern is
imaged onto a CCD array where it is allowed to interfere with a reference wave, which
may, or may not, be speckled. The resultant speckle pattern is then transferred to a frame
grabber on board a computer where it issued in memory and displayed. When the object
has been deformed, or displaced, the resultant speckle pattern changes due to the change
in path difference between the wavefront from the surface and the reference wave. This
second resultant speckle pattern is transferred to the computer and subtracted from, or
added to, the previously stored pattern and the result is rectified.
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Figure 1: Numerical model of the human pelvis (a) and results of experimental
investigations of displacement distribution for model verification (b) by ESPI method.

[11]

The loading conditions in the hip joint are a complex problem. Apart from the weight of
the upper body, the muscles and ligaments forces operate onto the pelvis bone. Simple
load models, which were based on Pauwels model [1], [5], were assumed in
investigations. In the first model were considered only the interaction between femoral
head and acetabulum, without muscles system. In the second model, the resultant force
was a sum of the abductor muscles force like gluteus minimus and gluteus medius and
the external force as a body weight.

Two cases of interaction between the head of the femur bone and the pelvis were
investigated.

3. Experimental analysis of external fixator for femoral bone elongation

The interest in the external fixation system for limbs developed by Ilizarov has
been growing in the last decade [2][4]. This is above all due to the high, in comparison
with other fixators, effectiveness of treatment by the Ilizarov fixator of, e.g. complicated
fractures of long bones, pseudarthrosis and limb axis correction or shortening. This high
efficacy of the Ilizarov fixator results from, among other thing, its modular design that
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allows one to create numerous configurations of the fixator and to modify its spatial
arrangement during treatment depending on the needs. Another advantage is that the
fixator’s mechanical properties are conductive to the preservation of the optimal
biomechanical conditions at the place of the joint of the bone fragments. The Ilizarov
fixator is a flexible stabilizer. This mean that the load acting on the bone are carried both
by the fixator’s structure and the place of the join of the bone fragments, which ensures
the axial dynamicsation of the latter.

The elongation of the lower limbs is one of the more interesting, but highly
complex — both — in the clinical and mechanical aspects — cases of the application of the
Ilizarov fixator. Though the clinical experience in the elongation of the lower extremities
by means of the Ilizarov fixator is long, many disturbances and complications still
frequently beset this process. This is particularly the case when the lower limbs are
elongated in the thigh sections were complex conditions of a load acting an the femoral
bone in the hip joint occur in usually strongly developed muscles groups surrounding the
thigh begin elongated. The failures in the elongation are above all due to the still
unexplained mechanisms of the effect of the fixator on the limb begin elongated and
conversely the effect of the soft tissue surrounding the treated bone on the fixator’s
structure.

The aim of the work was to analyse the stability of the system formed by the
Ilizarov fixator and the thigh being elongated [4]. The gaol of these studies was to
determine the conditions of the load acting on the particular distance rods of the Ilizarov
fixator and its changes during the elongation of the lower limbs in the thigh section. The
tests were conducted in the distance rods of the stabilizer mounted on patients
undergoing thigh elongation in clinical conditions. The forces were measured in all
distance rods connecting the rings between which the bone’s shaft had been cut. It was
presumed that knowing the load pattern for the particular rods and their distribution
around the bone being elongated, it would be possible to determine which groups of
muscles acted stronger and which weaker on the system: the bone fragments — the
Ilizarov fixator and how these actions change during the whole process of elongation.

Specially adapted extensometer converters built into the distance rods of fixator
mounted on patients undergoing thigh elongation were used for the measurement of the
forces acting in the distance rods (Fig 2.1).
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Figure 2.1. Force transducers and their localisation in distance rods of external fixator
[2][4]
The measurement covered ten cases of thigh elongation by the Ilizarov fixator.

Measurements were made once o day at a fixed time, immediately before and after the
application of a distance rod length increment.

-100

-200

X W=

-300

Figure 2.2.Distraction load measured in function of time: rate of elongation: 4x0.25 mm
per day [4]

Figure 2.2 shows typical variations in distance rod load as a function of time
recorded for selected cases. An analysis of the results recorded for the particular case
shows that in most of them, the increments of forces in neighbouring rods were similar
both in their character and in the variation of their values. The investigations have
demonstrated that the stability of the system: the Ilizarov fixator - the thigh being
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elongated, measured in values of the transverse displacements of the bone fragments, is
a function of both the mechanical properties of the adopted fixator structure and the
distribution of the forces acting on this system.

The clinical studies allowed determining the distribution of loads in the
particular distance rods of the Ilizarov fixator and the variation of the loads as a function
of the elongation time. The clinically developed and applied measuring method allows
once to control continuously the correctness of the course of the elongation of the limb
by analysing the conditions of the loading of the particular rods of the Ilizarov fixator
and the changes of these loads as a function of the elongation time.

The studies conducted under clinical conditions have indicated that the
preliminary assessment of the patient’s physical condition — above all the degree to
which the muscles surrounding the bone to be elongated are developed and trained,
whether scars and pathological changes are present — is of major importance. When the
mechanical properties of the soft tissue have been taken into account and the effect of
the optimal spatial configuration of the fixator can be selected for the particular course
of treatment. This means that in clinical practice the adopted goal will be achieved in the
shortest time without complications.

4. Strain analysis in the intact femur bone and with implant

The loading conditions in the models of femur and femur with the stems
implanted, respectively, were assumed after [2],[3],[5] for a single leg stance. Besides
the resultant force of 2,47 BW (body weight), also the forces generated by three other
muscles and tendon acting in this phase of gait were simulated; i.e., Gluteus medius —
0,535 BW, Gluteus minimums — 0,2 BW, Iliopsoas — 0,865 BW and Tractus iliotibialis
0,08 BW. The body weight for the considered model of femur was equal to 567 N. In the
lower part of femur (on the condyles) the model was fully constrained.

Only the influence of stem shapes, geometrical and mechanical properties on
the observed parameters were investigated. Because of numerical simulation
simplifications only this kind of comparative analysis was possible. Thus, the Huber-
Mises form of the strain energy was applied. The KERAMED stem generates
considerably lower values of strain and stress, when compared with the values recorded
for the intact bone changing strongly the strain and stress distribution. As a results only
bending occurs in the lateral plane. The strain distribution shows concentrations in the
subcollar region. However, both stems generate substantially different distributions of
stress observed in the medial part of femur when compared with the intact femur.

Moreover, there is a non-uniform stress and strain distribution around the
stem in a transverse cross-section. Analysis of the values of strain occurring in the bone
in the bone/stem interface region indicates that both stem designs affect a strongly non-
uniform and discontinuous strain distribution.
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Figure 3: Stress and strain analysis in the hip join with endoprosthesis.

After a series of investigations the most important stem design features have been
evaluated in the bone/stem system functioning perspective:

Stem length. The stress and strain distribution is closest to that observed in the intact
bone when short stems are applied, [3][5].

It has been found that the collar plays a crucial role in achieving secondary stability
of the stem. It produces, however, strain and stress concentrations in the subcollar
region which, change decisively the implant/bone load transmission and contribute
to an abnormality of the process of bone remodelling. A disadvantageous effect of
the collar on the nature of stem/bone system functioning has been found in both the
experimental investigations and numerical simulation. The investigations also show
the occurrence of higher stresses in the bone in the proximal part of collarless stems
when compared with those observed in stems with collars.

The bending stiffness of the stems plays an important role in mechanical
cooperation of stem and femur. Cross-sections of the objects without corners reveal
a high regularity of strain and stress distribution in the bone. There is a lack, in
literature, of the reports on the optimisation of endoprosthesis from the point of
view of stem/bone stiffness relationship. It is unequivocally stated that this
relationship is of crucial importance for maintenance of the normal bone/stem
svstem functioning under phvsiological loading. The values of strains and stresses
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in the bone decrease considerably with the increase of stem elastic modulus,
Huiskes et al. [9][12]. Higher values of stem elastic moduli reduce strains in the
proximal metaphysis of the hip bone. Materials with a low elastic modulus (e.g.
titanium alloys) are much more suitable, from the mechanical point of view, for hip
endoprosthesis stems than materials with a high Young modulus. None of the
materials known so far meets simultaneously all the criteria.

5. Summary

The experimental methods, which are often use in analysis of the
displacements and the stress distribution of the elements of human body, have a steady
position in the biomechanical investigations. At the present the biomechanical studies
are carried out in many scientific centers all over the world, in order to explaining
reasons for course of orthopedics diseases and working out the optimal method in
treatment of human’s skeletal system. The scientific researches frequently concern one
of the most loaded elements in human body like spine, hip joint and lower extremities.
The experimental and numerical studies are mainly carried out at models and in the
clinical conditions. The results of these investigations help to explain and understand
both the formations of the degeneration changes in the skeletal system and elaborate
efficient treatment methods.

The relative costs of developing and testing a design are an important
consideration in the selection of a design analysis method [12]. The costs of calculation
methods should be compared with those of experimental methods, considering the goal
to be achieved. A selection of a research method should also be made on the basis of the
relative costs due to the complexity of an investigated object [6].

The goal of the investigation and which methods enable to achieve this goal is
the most important target in the biomechanical studies. Physical and numerical models
should both represent the original models as well it is possible and estimate the
influence of simplifications, which were made, on the final results.
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Abstract

The paper is devoted to the study of continuous systems subjected to moving
loads. Several cases of dynamical problems are considered, where the motion
of elastically supported beams are excited by a moving concentrated force. In
particular, we study interactions with periodic structure of the medium. Earlier
results on one-dimensional structures are extended to the case of a set of
plates.
Key words: dynamics, travelling loads,oscillation

Introduction

The development of modern technology of explosive bonding of layer materials or
tracked high-speed transportation systems becomes more and more important. There is a
strong need for simplified but reliable models of continuous systems in order to study
various dynamical effects which influence comfort, durability of structures and damage
of the environment. The first study of a beam on Winkler foundation subjected to simple
force moving with constant speed was initiated by Timoshenko [1]. The first stationary
solution of the simple case devoted to Bernoulli-Euler Beam on an elastic foundation
was obtained in proper way by Ludwig [2]. The case of moving and oscillating force was
formulated and partly solved by Mathews [3]. The first proper solution of Mathews
problem was given by Bogacz and Krzyzynski in [4}.There are various extensions of
this classic problem towards more realistic models of structures and loads. A great deal
of new effects were recognize by authors of [5] studying the problem of oscillating load
moving along a periodic (variable in space) structures. The dynamical effects for two or
three-dimensional problems with moving load have an important practical engineering
applications, [6]. Some problems connected with system of plates subjected to traveling
load will be also presented in the paper.

1.1 Response of Beam to Normal Constant Force Moving at a Constant
Speed

The classic problem of infinite Bernoulli — Euler beam on the Winkler foundation
(flexural rigidity EI, mass density m, damping coefficient d foundation constant c)
subjected to force F, moving with velocity V), is described by following equation of
motion:
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ElIw, ot mw,, +dw,+cw=Fydx-Vyt), (2.1)

Where: 6 denotes Dirac ‘function’, w = w(x,¢) is deflection of the beam, - co < x < o0,
t>0.

The steady state solution for Vy < V., V., = (4cEl/m 2 )1/ * was obtained by Ludwig
[2], looking for the stationary solution in the form of traveling wave with the velocity
equal to the speed of moving force. In such a case the ordinary equation of motion has
the form:

EIW +mlVPw”—dw+cw=F,&X), X=x-Vyt. (2.2)
The stationary solution in the elastic case for subcritical range has the form:

w(X) =Fy/[ 4 a(c ED)"? 1 (cos BX + a/Bsin B|X)) (2.3)
where a= [1-(V/ V)12 Vo, B=14(V/ Ve )17 V.

The supercritical case yields waves expanding from the force location with smaller wave
lengths and amplitudes in front of the load as behind it. Usual the sub-critical case is of
technical importance. However, the critical speed can be reduced by the action of
additional axial forces, as pointed out Kerr in ref. [7].

1.2 Response of Beam to Moving Oscillating Force

The more complicated case from the solution point of view but very important for the
modelling of railway engineering track-train interaction is a system which is composed
of a beam on an elastic foundation subjected to the moving force F,, which oscillate
harmonically with amplitude F;. In this case the motion is described by the following
equation:

EIW, e 7T W,y + MW, + cw =( Fy +F; cos ot)5(x — Vyt), (2.4)
Such a problem for Fy = 0 was formulated by Mathews [3]. The solution of the problem
was expected in the form of standing waves in the system of coordinates moving, in the
direction x with the velocity V,. The equation ( 2.4) in the moving system of coordinates
is equivalent to folowing equation:
EI'w, vy +TW, syt m(W, =2V Wox i+ Vi Woxx )+ ew =(Fy +F; cos at)5X), (2.5)

Looking for the solution in the form

w(X, t) = Wi(X) sin ot + WyX) cos ot (2.6)
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one obtain the ordinary equation with respect X which ought to be solved using proper
condition of radiation. The solution obtained in ref. [3] was valid in the first region of
(2V) plane only, 2=aw/wy, V= V,/V,, ie. for the relatively small velocity of force

motion and small frequency. The error made by Mathews was connected with the wrong
way of use of the radiation condition. The correct solution of the Mathews’ problem was
obtained by Bogacz and Krzyzynski in [4}, and generalized for more complicated beam
models in [8]. The traveling wave solution in the Bernoulli — Euler beam model has
different form in the five regions of the frequency-velocity (€2 V) plane. Corresponding
number of regions in the case of the Timoshenko beam is twenty two. An example of the
regions configuration for Rayleigh beam is shown in Fig 1. About the region in the
neighborhood of frequency (2 = /.0 one can obtain information in ref. [8].

Exemplary case of wave propagation in the region II for the Rayleigh or Bernoulli-Euler
beam is shown in Fig. 2 and Fig. 3. In Fig. 2 we can see the displacement of the beam in
time- space plane excited by the moving and oscillating source, visible in the central line
as displacement with higher amplitudes. In the left side of the figure we can see the
ordinary case, the waves traveling from the source of excitation, and on the right side of
plane waves traveling to the source of excitation. The case of frequency higher then the
resonance frequency when on both side of the plane waves are propagating from the
source of excitation is shown in Fig. 3.

The lines V=0.1 and V'=0.3 on Fig. 1 are corresponding to the classic and high speed
trains, respectively. This shows that above phenomena may occur in the real conditions.
That is why such a study are important for engineering practice.

2.0

Q

1.0
J

7 1

i\l\k\\l\\

T 1T T T T 771

Fig. 1. Regions of solutions of characteristic equation for the Rayleigh beam on Q-V
plane. Region I: 4 complex roots, Region II: 2 complex and 2 real roots, Region III:
real roots.
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Fig.2 Displacement of beam on time- space plane excited by source moving in the
central line, case of waves traveling to the source of excitation on right side of plane.

Fig. 3. Displacement of beam on time - space plane excited by source moving on the
central line, case of waves traveling from the source of excitation on both sides of plane

1.3 Response of Beam to Moving Distributed Load

The problem of a flexibly supported beam vibration, when the beam is subjected to the
moving distributed load can be composed of solution for the limiting case of load
described by following Heaviside function Fy H(x - V¢):

EIW, o T W, T mw, . + hw,, + cw = Fy H(x - Vyt) (2.7)

Such a case and the case of the beam on a visco-clastic semi-space was studied by
Bogacz and Rozenbajgier in [9]. The superposition of the obtained solution for the
Heviside function allows to obtain various kind of pice-wise constant load distributed on
a finite-length segment. For example if we describe a load with given value F;
distributed between x =0 and x= L at =0, than it is possible to write as follows:

F(x,t) = F; [H(x - Vot) - H(x-L - V)] 2.8
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The boundary conditions take the form:

lim w(x) = 0 for |x| 2 oo, (2.9)
and the displacement w(X), as well as w,x , w,xx, and w, yxy is continuous at X= 0 in the
case of eq. (2.7) and (2.8) and additionally at X= L in the case of load (2.8).

The case of Timoshenko beam on an elastic foundation subjected to uniformly
distributed moving loads has been studied by several authors, ie: refs.[10], [11].

Elg,, +kAGw,,- @) —ml ¢,, =0,
KAGW, - @ v ) —mWw,u—hw,,—cw=-F,H(x -Vt (2,10)

where: ¢ - angel of rotation of beam due to pure shear, £’ — shear coefficient, G —
modulus of elasticity in shear, 4 — cross-sectional area and / — damping coefficient.
The first stationary solution obtained for the case of the Timoshenko beam on an elastic
foundation was obtained by Achenbach and Sun in [12]. The solution obtained is valid in
full range of velocity, but only for the set of parameters fulfilling following inequality:

E >k'G(I1+kGA>(c)) (2.11)

The discussion of qualitatively different traveling wave solution depending on the beam
parameters is presented in [13].

Fig. 4. Displacements of Timoshenko beam wish parameters not fulfilling inequality
(2.11) for chosen value of velocity. Qualitatively similar solution is given in ref. [12]
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Fig. 5. Displacements of Timoshenko beam wish parameters fulfilling inequality (2.11)
for chosen value of velocity, see ref. [13]

1.4 Response of Periodic Beam Structure to Moving Loads

The guideways for high-speed vehicles are composed of repetitive elements or cells
which forms a periodic structure. The track is usually modeled as one dimensional
system but sometimes the study concerns two dimensional system, [5]. The steady-state
system response is determined for a moving disturbances source in the form of constant
and periodic concentrated force (2.4).

wnls, t) =wnl-, t); w(nls, t) = w,(nl-, t); w,(nls, t) =w,(nl-,1); (2.6)
W,e(Bl-8) — W, (0l t) = R(nlt) (2.7)

The equation of motion is completed by interface conditions at the supports which
depend on the model assumed, e.g. for the railway track is required condition of
continuity (2.6) and equilibrium of vertical forces (2.7), while for the supports of maglev
model, they require continuity of displacements (position), vanishing bending moment
and equilibrium of vertical forces.

The solution method proposed in such a case consists in the direct application of the
Floquet’s theorem, cf. ref. [14], to the differential equations of motion with periodic
parameters, [5].

The very important phenomenon connected with periodic system dynamics is connected
with passing and stopping bands. Because in the elastic case, or case of small damping
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small differences in the system parameters can qualitatively change the solution of the
system.
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Fig. 6 Track of. Magnetic Levitated Train and its model as periodic structure

Other approach (by the use of perturbation method) for a periodic mass and stiffness
distribution along the beam was applied by Popp and Mueller [15] in order to
approximate the sleepers spacing in the track. In this case, for the realistic system
parameters, the differences were very small. Jezequel studied periodic structures
subjected to moving load using Fourier series method, [16]. Also using such approaches
as “space harmonic analysis”, “energetic method” and “transfer matrix method” were not
so successful as the “traveling wave method” used by Mead [17]. The application of
Floquet’s theorem allows to solve the problem of free and forced vibration of periodic
structures subjected to moving load. The motion of harmonic force and traveling waves
corresponding to the first and second passing band are studied in [14]. An example of
such a study lead to the results for the successive steps of time and assumed parameters.
The optimal length of the vehicle is connected with minimum displacement for the
operating speed. The magnetic mass-less loading is modeled as many concentrated
traveling forces moving with a constant speed. We can see in [14], that in the optimal
case maximum displacement take place under the vehicle only. Such a case of study is
connected with the magnetic levitated test line realized in Germany .

2. Response of Plates to Moving Load

The more complicated periodical system which is composed of an array of plates
vibrating due to moving load is used for modeling the road or an airfield. Such a model
is a relatively complicated two or three dimensional periodic system. In the case of the
airfield an array of single small plates, which are coupled by appropriate boundary
conditions and by a common foundation in form of big supporting plate, with a visco-
elastic sliding layer between supporting plate and array of plates.
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In the beginning the problem of single plate on an elastic foundation was studied. Then
system of plates which creates array of plates [6], which is studied with various
boundary condition between small plates and sliding layer.

Plxy.t)

ah

Al

z

Fig. 7. Scheme of the coordinate system of the upper plate

The large plate in turn is placed on a Winkler foundation and fixed on its boundary. Such
a system constitutes a periodic structure, however, in two space dimensions instead of
linear, one dimensional studied previously. Equation of motion of each plates has hence
the form:

PWulxy,t) + D AAW(x,y,0) = g(x.y,t) + F)5 (x -V )6 (y-Vy 1) (2.12)

where p is the mass density per unit of area, D - the stiffness of the plate, W - deflection
of middle plane. The force g(x,y,t) couples support and top layer. It is assumed
proportional to difference of vertical positions. F(t) is the normal load and V, and V, are
components of velocity of moving load. Looking for the dynamics of the array of plates
subjected to moving forces acting at several interaction points also non-symmetric case
maybe considered. The majority of consideration deals with simply supported plates or
free boundary (without forces). In the real case there are acting non-conservative friction
forces and bending moment with value depending on temperature and other parameters.
In general case the problem is non-linear due to friction low and contact forces in lateral
and vertical directions.

In order to solve the problem use of the analytical methods is inefficacious. That is why
the numerical technique is an alternative approach in this case. Promising in the case of
moving loads is the time-space element method or finite differences method. From
engineering point of view we are interested in rectangular array of plates, hence the
finite differences method is easy to apply, [6]. The initial results of simulation shows that
the viscosity of the thin layer between upper and bottom plates is very important. In the
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symmetric and rectangular case when the load is moving with relatively small speed
also analytical orthogonalization methods can be accepted. The results obtained using
analytical method are shown in Fig. 6, see ref. [21].

Similar investigations devoted to problems of dynamics of array of plates can be find in
ref. [20, 22]. The high speed motion of the load excite disturbances in the system of
plates in the form of waves which are visible in Fig. 7. Wavy phenomena of the
disturbances is specially important in the case of periodical property of the air plate or
array of plates subjected to the following moving load or a set of similar loads [6].

F(x,y.) = F(1)5 (x -V, ) (y — Vy 1) (2.13)
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Fig. 6. Displacements of the simply supported plate on an elastic foundation
subjected to the force moving at lower speed along symmetry line at x,

The two dimensional problem in general case is very complicated. The symmetric and
rectangular case as shown in Fig. 6 can be easy discretized conventionally by the method
of finite differences, [21]. With the discretization of the spatial derivates, we rewrite the
second order equation of motion (2./2) as a first order system for the nodal positions and
velocities. Initial conditions required for equation (2./2) we assume as a trivial one (state
of rest before the external load is applied).
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In the case of plate subjected to the concentrated force moving at high speed along the

line x, = 3 (symmetry line) the wave phenomenon dominate the dynamics of the plate.
Such situation is visible on Fig. 7.

¥ 0o o

Fig. 7. Displacement of plate subjected to the force moving at high speed along
line x,= 3

Fig. 8. Displacement of plate under skew motion of concentrated load
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3. Conclusions

Several cases of dynamical problems, where the motion of elastically supported beams
or plates subjected to moving load was investigated in the paper. Particular attention was
paid to the periodic excitation or periodic structures. The application of Floquet’s
theorem allows to solve the problem of free and forced vibration of periodic systems
(guideway) when the system is linear (one dimensional). The periodic structure
subjected to harmonic load is connected with an infinite number of travelling waves,
whereby the crucial contribution to the solution have the waves corresponding to the
passing and stopping bands. Much more complicated case, the two dimensional problem
of array of rectangular plates subjected to traveling load was formulated and partly
solved in this paper. The results of farther investigation will be presented in the next
publications.
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Abstract
The paper id devoted to applications of evolutionary algorithms to
optimization of dynamical physical systems. Identification of internal
defects are also considered. Several numerical examples of shape and
topology optimization for various criteria and crack or void detection are
presented.
Key words: evolutionary algorithms, optimization, defect identification

1. Introduction

Applications of classic algorithms in optimization of dynamical system is restricted by
limitations referring to the continuity of an objective function and the necessity of
gradient or hessian evaluation. These methods give substantial probability of finding a
local optimum. Therefore new optimization methods, free from limitations mentioned
above, have been still looked for. The optimization methods inspired by biological
mechanisms have become very popular in last few decades. Most of them give good
results in optimization problems where a multimodal objective functional appears. The
paper describes a computational intelligence method - evolutionary algorithm (EA) in
optimization of vibrating physical systems. The evolutionary algorithms (EAs) are based
on mechanisms taken from biological evolution of species. This mechanism similar to
biological one like a mutation, a crossover and a selection are used in EAs. EAs operate
on population of chromosomes (individuals with one chromosome). EAs have found
several application in optimization of mechanical structures [2].

2. Formulation of the optimization problem

Consider an elastic isotropic body which occupies a domain Q bounded by a boundary
I:
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,uV2u+(/1+ grad diva+7Z = pii(x,t), xeQ,teT e[0,z,] M
where:
u, A— Lame constants;
Z — body forces.
Equation (1) is supplemented by boundary conditions:
u(x,?)=u(x,z), xel =0Q 5
P(x)=p(x.1), xel=00 @)
and initial conditions:
u(x,t)L:0 =u’(x), u(x, t)|[:0 =v'(x), xeQ 3)

The direct initial-boundary value problem is solved by the boundary element method [1].
The problem of the shape and topology optimization of elastic structures being under
dynamical loads can be formulated as the minimization of the volume of the structure

J=E[dQ (4)

subjected to the constraints imposed on equivalent stresses and displacements
o (x,t)-0,<0,

5
[u(x,t)]—uo <0, )

where: [u]:\/u-u xel' or xeQ, teT=[0,t], o, and u, are admissible equivalent

stresses and displacement, respectively.
There is also an alternative formulation in which one minimizes a functional:

J= Ij‘i’(a,&u)dﬁdt +II®(u,p)dth (6)
TQ TT

with the constraints imposed on the volume of the structure:

JEIdQ—VOSO (7)
Q

Integrands ¥ and ® are the arbitrary functions of their arguments. Using the
evolutionary algorithms, the minimization of (4) and (6) is performed with respect to
shape design variables. The dual reciprocity boundary element method [1] enables
evaluation of the functional (6) and constraints (5).
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The boundaries in 2-D structure are modeling as the NURBS curves. In the case of
3-D structure the boundaries as the NURBS surfaces are modeled. Due to using the
NURBS curves and surfaces, the number of optimized parameters can be decreased.
The voids in 2-D structure are modeling as the: (i) — circular, (ii) — elliptical, and
(iii) — using the closed NURBS curve. In the case of 3-D structure the void as the:
(i) — spherical, (ii) — ellipsoidal and (iii) — using the closed NURBS surface is modeled.
Due to introduction the special types of chromosomes the evolutionary algorithm
finds the optimum very easy.

3. Formulation of identification problem

In identification problems one assumes that a body contains some defects as cracks or
voids. The number, shapes and sizes of the defects are unknown.

The identification problem is expressed as the minimization of the special objective
function. This function contains the physical values which can be measured in the
special selected sensor points. The sensor points are located on the surface of the body.
As the measured values are considered here: (i) — displacements under static loading,
(i) — displacements under dynamical loading, (iii) — eigenfrequencies. Therefore the
function takes the forms:

- for displacements under static loading:

J = Zj‘[ﬁ(xl) —u(xi)]zé(x—xl_)dl" = Z(ﬁi -y )2 (8)

i

- for displacements under dynamical loading:
J=y> j [a(x,,0) —u(x,,0] S(x—x,)8(t —t,)dtdl" =y > (& —u/ )2 )
T i
- for eigenfrequencies:
J:Zk:(d)k—a)k)z (10)
- and for all information:

. 2 . N2 R 2
J:aZ(u[ —u[) +,822(u[’—u/) +}/Z(a)k—a)k) (11)
i i k
where: 4, - measured displacement in i-th sensor point, @/ - measured displacement in

i-th sensor point in j-th time step, @, - measured k-th eigenfrequency. The analogous

values without the hat mean adequate values computed by evolutionary algorithm. The
parameters: ¢, f and y are the weights.
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The shape and topology parameters of the body are modelled in the similar way as in the
optimization problem.

4. Evolutionary computing

Evolutionary algorithms are well known and applied in many areas of optimization
problems [3]. The main disadvantage of these algorithms is the long time needed for
computation. The parallel evolutionary algorithms perform an evolutionary process in
the same manner as the sequential evolutionary algorithm. The difference is in a fitness
function evaluation. The parallel evolutionary algorithm evaluates fitness function values
in the parallel way. Theoretically, maximum reduction of time needed to solve the
optimization problem using parallel evolutionary algorithms is equal to the number of
used processing units. The flowchart of the parallel evolutionary algorithm is shown in
Fig. 1. The starting population of chromosomes is created randomly. The evolutionary
operators change chromosomes and the fitness function value for each chromosome is
computed. The server/master transfers chromosomes to clients/workers. The workers
compute the fitness function and send it to server. The workers operate on different
processing units. The selection is performed after computing the fitness function value
for each chromosome. The selection decides which chromosomes will be in the new
population. The selection is done randomly, but the fitter chromosomes have bigger
probability to be in the new population. The next iteration is performed if the stop
condition is not fulfilled. The stop condition can be expressed as a maximum number of
iterations. The evolutionary operators used in the presented algorithms are a crossover
and a Gaussian mutation. The crossover chooses randomly two parent chromosomes and
creates a new one containing a part of genes from the first and a part from the second
parent. The Gaussian mutation creates chromosome based on a randomly chosen one.
The part of the genes in a new chromosome have values changed by adding random
numbers with the Gaussian distribution. The selection is performed by the use of the
ranking method. The probability of being in the new population does not depend on the
fitness function value, but on the number of chromosomes ordered accordingly to the
fitness function values.
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Figure 1. The flowchart of evolutionary algorithm

5. Example 1 — Shape optimization

The example concerns the minimization the mass of the support (Fig. 2). The support is
loaded by dynamical loading F(t)=F¢sin(wt), Fe=10kN. The optimization fitness
function (4) was used. The constraints on the values of the displacements were imposed.
The surface of the support was modeled using the NURBS surface. The coordinates of
the marked points (Fig. 3) (control points of the NURBS surface) were modified.

The following parameters of the evolutionary algorithms were applied: pop_size: 50,
max_life: 400. The optimal structure on the Fig.4 was shown.
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Fig.2. The support Fig.3. The NURBS cont

rol points

Fig.4. The support after optimization
6. Example 2 — Topology optimization
A shape and topology optimization problem of the structure presented in Fig.5 is

considered for criterion (6). The evolutionary algorithm searched the optimal topology
and shape of the structure.

Fig.5. The structure before the Fig.6. The parametrization of the structure
optimization
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The upper part of the boundary was modelled using the 6-point NURBS curve,
additionally 4 circular holes could be introduced to the structure. The population size of
the evolutionary algorithm was equal to 200. The number of generations was equal to
100. After the optimization the fitness function was decrased from 2226 to 2271 s '. The
Fig. 7 shows the optimal topology and shape after the optimization.
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Fig.7. The structure after the optimization
7. Example 3 — Shape identification

Consider a two-dimensional elastic body (plane strains) with a circular hole (Fig.8).

q(t)

Sensor
points

Fig.8. The plate with the circular defect
The body (1 cm % 1 cm) is loaded dynamically by a traction field ¢(f) = gH(¢), where ¢
=100kN, H(#) — Heaveside function. The coordinates x, y and the radius » of the hole are
unknown. The aim of the test is the identification of the parameters of the hole through
the minimization of the objective functional (9).
The actual parameters of the hole are: x = 0.30, y = 0.60 and » = 0.10. The parameters of
the EA are as follows: the probability of the mutation: pro_mut = 0.2, the probability of
the crossover: pro cro = 0.2, population size: pop size = 100. The number of
generations is equal to 150.
The found values are equal to: x = 0.29, y = 0.62 and » = 0.10.



54

8. Example 4 — Topology identification

A 2-D structure, shown in the Fig. 9 contains two internal defects. The actual parameters
of an elliptic void are: z,=z(2)={50, 25, 5, 2.5, 2.5}, where the first two parameters are
co-ordinates of the ellipse center, next - two radii of the ellipse and the last one — the
angle between the x; axis and first radius. The actual crack parameters are:
z1=2(1)={20, 30, 5, 0, 0.25} and are defined as for the ellipse. The identification task is
to find a number of defects and their shape having displacements d(x,#) in 33 sensor

points, shown in the Fig. 9.

X,
[mm)] 40
0 - sensor points
20
= 40
- y70]
—
Z(1) 0
Z(2) ¥
—-
X,[mm]
100

Fig. 9. The 2D structure with an internal crack and void

The structure is loaded by p(t)=p¢sinwt (pe=40 kN/m, ©=15708 rad/s) in time
te[0,600] us. The following parameters of the evolutionary algorithms are applied:
pop_size: 2000, max_life: 100. Fig.10 presents the best solution of the first and the last
generation.
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Fig.10. Results of defect identification :
a) 1st generation, b) 100th generation

9. Example S — Topology optimization based on the different informations

The last discussed problem concerns the different type of information in the sensor
points. Consider the plate presented in the Fig.11. The few possibility of distance
between the defects was considered: distance R={1, 3, 5, 7 and 9}mm. For each distance
the identification problem was solve on basis the different information. In order to
checking the influence the measured information to the identification process, the many
test has been carried out. One of them is presented in this paper.

The aim of presented test is to find the circular defects in the plate (Fig. 11). The plate is
constrained on the left side. The plate is loaded by q (static case) and
q(t) = qH(f), where q =100kN, H(f) — Heaveside function (dynamic case).
The minimized function has the following forms (8)-(11).

The following parameters of the evolutionary algorithms are applied: pop_size: 200,
max_life: 500.
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Fig.11. The plate the with the circular defects

The results of the identification process for following fitness functions (8)-(11) were
presented in the Fig. 12-15.
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Fig.12. The results obtained for the Fig.13. The results obtained for the
fitness functions expressed by the fitness functions expressed by the

displacement in static problem (8) displacement in dynamic problem (9)
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Fig.14. The results obtained for the
fitness functions expressed by the
frequencies in eigenvalue problem (10)
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Fig.15. The results obtained for the
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10. Conclusions

Evolutionary computing can be considered as an efficient approach for solving the shape
and topology optimization and defect identification in dynamical physical systems.
Using NURBS curves allows modeling complicated shapes with a relatively small
number of design variables. This method of parameterization decreases the time of
computation.

Evolutionary algorithms are very time-consuming, but applications of different
variants of parallel and distributed computing can speed up the optimization process.
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Abstract

Stick-slip vibrations in a mechanical system with dry friction and
kinematical excitation with chosen friction models in a stick phase are
studied in this work. Although there are numerous works in the scientific
literature dedicated to stick-slip vibrations, a rigid body lying on a belt
which moves at non-constant velocity is less investigated. A novel friction
model is used and its advantages, in comparison to the often applied friction
models, are illustrated. The behavior of the system is monitored via standard
motion analysis in the system’s phase space.

Key words: dry friction, stick-slip vibrations.

Introduction

Dry friction belongs to one of the most known phenomena in mechanical systems. Its
proper mathematical modeling is not an easy task, because friction force is a complex
process and in general depends on various parameters, e.g. slip velocity, normal load,
temperature and time. An extensive literature review on applied friction models can be
found in the works [1, 5, 6, 7, 9] and others.

Many practical engineering problems are related to vibrations caused or influenced by
physical discontinuities, e.g. dry friction or impacts. In view of mechanical aspects, the
authors of many publications are mainly concerned with dry friction stick-slip
oscillations with different models of friction. Even in the last decade stick-slip vibrations
were the aim of research of many authors, for example in the works [3, 4, 8]. In these
works, stick-slip induced vibrations are studied for cases where body or bodies are riding
on a driving belt as a foundation that moves at a constant velocity.

In this work, as the example of a mechanical system which exhibits stick-slip vibrations,
the mechanical model with non-constant belt (foundation) velocity is studied. One
degree-of-freedom model with dry friction is presented in Section 1, whereas numerical
methods to calculate solutions in the system’s phase space and results can be found in
Section 2. Conclusions of our study are presented in the last Section 3.

1. Model with kinematical excitation

Consider a simple mechanical system with 1-dof and with kinematical excitation. The
model of this system is shown in Figure 1. Disc II is characterized by mass moment of
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inertia B, linear stiffness k and the coefficient of damping c . This disc is fixed to the
frame. The second disc II is coupled with driving first disc I and dry friction occurs
between the discs, which generates the moment of friction force My (the maximum

static moment of friction force is equal to M).

by, €Y
Fig. 1 One degree-of-freedom model with dry friction and kinematical excitation.

The excitation of the first disc is realized by Cardan mechanism with angle A between
input shaft and output shaft, whose angular displacements are described by angles ¢,

and ¢, , respectively. Angular velocity €2, is non-constant and not equal to angular

velocity €, and is governed by the equation

CosA
Q= ——— M
I—sin” ¢;sin” A

The relative velocity of the second disc with respect to the first disc is denoted by
Q
coupled discs as a result of wear of these discs and its influence on our model dynamics.
The additional static friction force is a function of the relative angular displacement
between discs. For example, a model of the multi discs brakes has been studied in the
works [10, 11]. For these reasons in our model a maximum static friction is the sum of
constant moment of friction force My and additional moment with amplitude My.

ot = Q5 — b . In this work we study non-constant maximum friction force M; between

Therefore, in our model M = My + My sin(q)2 - (I)). It has been shown in reference [11]
that term My depends on the wear of discs. The motion of the second disc is governed
by the following second order differential dimensional equation

B +ch+kdp=M; . )
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Let us introduce coefficient t. and the following dimensionless parameters: t=t/t.,
0=, ¢ =0, 9,=0,, a=A, o=, 0 =Qt, 0,=0t., o =0,-9,
d=ct./B, o} =kt?/B, Fy =Myt?/B, Fy=Mgt?/B, F, =Fy +Fysin(p, —¢). In our
calculations we take t. = ,/B/k . Then, vibrations of the second disc are governed by the

following non-dimensional second order equation
¢o+do+o=F;, 3)

where a dot denotes the differentiation with respect to non-dimensional time t. The
proposed continuous friction model has the following form

(](0 |)sgncor, \2
F Sgn ex? V2 (D% |0)r|
F F >A = 3_2_ ) 4
fr(wr’ eX) (2A3—1)Fssgnwr, V; e [ € @
A3(_Fex +Fssgn(’0r)+Fex’ V4
where
Vi :|(or|>e,

V,:[0<0, <e)n(Ey >E)V[-e<o, <0)n(E, <-E)],
Vi [(0<co <s) (F < F)u[( sﬁmr<0)m(FeX>Fs)],

V4Z(I(Dr|S8) (] | )

This model of friction has been already used by the authors in studies [2, 12]. In this
model of mechanical system we have F,, =dw+ ¢ and kinetic friction F(Ioar|) is given

by

Fs

2. Numerical Computations and Results

Let us take the following dimensionless parameters: d =0.01, F; =1, ®; =02, a =0,
6 =30. The differential equations of motion are solved via the Runge-Kutta-Fehlberg
(RKF 45) method with varied time step h (h,,, =107, h_, =10"") and with a Runge-
Kutta-Fehlberg tolerance of n =10"° and steepness parameter =107 The system
dynamics is monitored via standard time histories in the system’s phase space.

Let us consider the first solution without an additional term in the moment of friction
force, i.e. for Fy =0. Figure 2 shows phase portraits obtained with the two compared

friction models (the standard approximation using a signum function modeled by the



62

second-order polynomial in the stick phase and the proposed model). For the first
friction model the computation took 84533 integrations points to obtain the orbit with
the non-dimensional period time 13.5. Small time steps are not necessary near the
transitions, but during the whole stick phase, as Figure 2a shows. For our friction model
the computation took only 231 integrations points to obtain the same orbit (Figure 2b).

a) b)
047w 047 G
e
) _‘ @
} — . 0 . ! =R/ . . 0 . . ]
12 . 08 04 04 08 o+ 1212 = -08 04 0.4 08 = 12
04+ - . 04+
-0,8 . . 08+
1,2+ a2t

Fig. 2 Points of trajectories of motion in the system’s phase space for different models of friction:
a) smoothing approximation, b) the proposed model.

In this case small time steps are taken only near the transitions between stick and slip
phases and time step in the stick phase is bounded by maximum time step h,,, .

Consequently, we show that in this case smoothing approximation of classical signum
function is clearly more expensive than the proposed model. The differential in the first
friction model is extremely large for relative velocity equal to zero, whereas in our
model it is equal to zero and this is an advantage for numerical computations.

Figure 3 shows time histories in the system’s phase space in the neighborhood of zero
value of the relative velocity.

a) b)
0,203 0,205 +
w w
wite — 0.201
Wy
we — 0,199
¢ ¢
| | 0197 | I o | I 0195 i | |
-1,2 -0,8 -04 0 04 0,8 12 12 -0,8 -04 0 04 08 12

Fig. 3 Trajectories of motion in the stick phase for different models of friction: switch model
(dashed line) and the proposed model (solid line) fora) oo =0 andb) o =0.2.

Our continuous friction model was compared with the so called switch model [8]. We
are focused now on the near-zero relative velocity because the periodic stick-slip
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oscillations have the sliding velocity almost the same (both for the switch model and
continuous friction model) and in the sticking phase some differences are observed.

Below, the investigated system dynamics is reported for Fy; =0.2 (Figure 4) and for

Fy =1 (Figure 5) related to various parameters Fy and o in the time interval (50,

150).

04

04

04 L

Fy =0,

04+

-04

204 L

Fy =0.01, a=0.
Fig. 4 Phase portraits for F; = 0.2 and various parameters F; and OU.
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Fy =0.01, a=0.5.

Fig. 5 Phase portraits for F; = 0 (on the left) and for F; = 0.1 (on the right).
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Phase portraits in Figures 4 and 5 indicate that dynamical behavior depends both on
uneven of velocity of the first disc as a result of non-zero o angle and on the process of
wear of discs, which strongly influences the system dynamics.

3. Conclusions

A continuous friction model suitable for simulation of stick-slip vibrations is proposed
and validated using a one-degree-of-freedom mechanical system with dry friction. The
model yields engineering accepted results and has some advantages in comparison to
other friction models. Contrary to the smoothing methods, our calculations are less
expensive from the computational point of view. Our results indicate better numerical
accuracy of the proposed continuous model. Contrary to the switch model results, the
results obtained using the continuous friction model are better. We have obtained almost
exact solutions (high precision numerical computations). In addition, some interesting
dynamic behaviors are reported and analyzed, including stick-slip periodic and non-
periodic motions.

References

1. J. Awrejcewicz, P. Olejnik, Analysis of dynamics systems with various friction laws, Applied
Mechanics Reviews, 58(6) (2005) 389 —411.

2. J. Awrejcewicz, D. Grzelczyk, Yu. Pyryev, On the stick-slip vibrations continuous friction
model, Proceedings of the 9th Conference on Dynamical Systems — Theory and Applications,
Eds: J. Awrejcewicz, P. Olejnik, J. Mrozowski, £.6dz, Poland, December 17-20 (2007) 113 —
120.

3. U. Galvanetto, S. Bishop, Dynamics of a Simple Damped Oscillator Undergoing Stick-Slip
Vibrations, Meccanica, 34 (1999) 337 — 347.

4. N. Hinrichs, M. Oestreich, K. Popp, Dynamics Oscillators with Impact and Friction, Chaos,
Solitons and Fractals, 8(4) (1997) 535 — 558.

5. R.A. Ibrahim, Friction-induced vibration, chatter, sequeal, and chaos. Part I: Mechanics of
contact and friction, Applied Mechanics Reviews, 47(7) (1994) 209 —226.

6. LV. Kragelsky, V.S. Shchedrov, Development of the science of friction, 1zd. Acad. Nauk
SSSR, Moscow 1956 (in Russian).

7. S.P. Kuznecov, Dynamical chaos , Moskva Fizmatlit 2001, in Russian.

8. R.L Leine, D.H. Van Campen, A. De Kraker, Van den Steen, Stick-Slip Vibrations Induced by
Alternate Friction Models, Nonlinear Dynamics, 16(1) (1998) 41 — 54.

9. J.A.C. Martins, J.T. Oden, F.M.F. Simoes, 4 study of static and kinetic friction, Int. J. Engng.
Sci., 28(1) (1990) 29 — 92.

10. J. Osinski, M. Sadowski, Dynamical behavior of a multi-disks brake made from composite
C/C, 11 International Conference Modeling and Simulation of the Friction Phenomena in the
Physical and Technical Systems “Friction 2002”, December (2002) 176 — 182, in Polish.

11. L. Prochowski, Vibrations generated by discs brakes, Scientific Bulletin of Vehicle Institute
of the Warsaw University of Technology, 1(44)/2002, Warszawa 2002, in Polish.

12. Yu. Pyryev, D. Grzelczyk, J. Awrejcewicz, On a novel friction model suitable for simulation
of the stick-slip vibration, Khmelnitskiy State University Bulletin, 1(4) (2007) 86 — 92.



XXIII SYMPOSIUM - VIBRATIONS IN PHYSICAL SYSTEMS- Poznan-Bedlewo 2008

MOVING INERTIAL LOAD AND NUMERICAL MODELLING
Czeslaw BAJER and Bartlomiej DYNIEWICZ
Institute of Fundamental Technological Research, Polish Academy of Sciences,
Swietokrzyska 21, 00-049 Warsaw, Poland

Abstract

The paper presents the numerical approach to the moving mass prob-
lem. We consider the string and beam discrete element carrying a
mass particle. In the literature efficient computational methods can
not be found. The same disadvantage can be observed in commercial
codes for dynamic simulations. Classical finite element solution fails.
The space-time finite element approach is the only method which now
results in convergent solutions and can be successfully applied in prac-
tice. Characteristic matrices and resulting solution scheme are briefly
described. Examples prove the efficiency of the approach.

Keywords: moving mass, time integration, space-time finite element

Introduction

Classical problems of structures subjected to a moving force were intensively treated
in recent years. Closed analytical solutions can be found for example in [1]. We
must mention here that numerous publications deal with the problem, starting
from the 18th century. Numerical application of the moving force is also relatively
simple. The force for example can be distributed between neighbouring nodes in
the mesh with the ratio varying in time and depending on the position of the
particle. The problem of inertial moving load applied to discrete systems and
efficiently solved unfortunately is practically not reported. Inertial force, which
should be considered as a couple of a force and a mass is usually replaced by a
spring-mass system. Finally the problem is solved as a problem with a massless
force. This approach is characteristic of significant error, which raises to the ratio
1:3 comparing with the accurate solution, in the case of the speed between 0.8
and 1.0 of the wave speed (Fig. 1). We must also emphasize that the ad-hoc mass
distribution between neighbouring nodes simply fails. In the case of the beam at
low speed ranges and low ratio of the moving mass to the beam mass results exhibit
errors. Unfortunately, Such formulations exist in spite of a wrong formulation and
analysis.

In the paper we present the numerical approach to the moving inertial load
problem. Classical finite element method with Newmark time integration scheme
mentioned in [2, 3] fails. The space-time finite element method is the only method
which enables us to describe the mass passing through the spatial finite element in
a continuous way. We present the solution in the case of a string and a Bernoulli-
Euler beam. The reader should be familiar with the basics of the space-time finite
element approach described in velocities [4, 5].
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Figure 1: Displacements under the moving mass from the semi-analytical solution
(left) and under the rigid oscillator (right).

The motion equation of a string under a moving inertial load with a constant
speed v has a form

. 0%u(x,t) 9 ?u(z,t) 8 2u(uvt, )
—N W pA W = (5((1 — ’UT,) P — (5((1 — ’Ut) m W . (1)
We assume initial conditions w(z,0) = 0, @(z,0) = 0 and boundary conditions

w(0,¢) = u(l,t) = 0.

1. String element carrying moving mass

The last term §(x — vt) m d?u(vt,t)/0t? in the motion equation (1) describes the
inertial moving mass. 0 2u(vt,t)/9t? is the vertical acceleration of the moving mass
and at the same time the acceleration of the point of the string in which the mass is
temporarily placed (it is ¢ = o +vt). The acceleration of the mass 9 2u(vt, t)/0t 2
moving with a constant velocity v, according to the Renaudot formula (which in
fact is the chain rule of differentiation), results in three terms:

O%u(vt, t) &u(x,t) 9Pz, 1) L Qu(x,t)

o T2 o 922

Thus we can separate the transverse acceleration, the Coriolis acceleration, and the
centrifugal acceleration, respectively. This is the so-called Renaudot notation for
the constant speed v. Another one, the so-called Jakushev notation (or approach)
finally gives the same result in our case of the constant mass m.

In our space-time finite element method we formulate equations in terms of
velocities. The mass acceleration 0 ?u(vt, t)/0t? is expressed in terms of velocities
as well:

(2)

r=vt r=vt x=vt

2 vy v VT
Q?u(vt,t)  Ov(vt,t)  Ov(z,t) L dv(x,t)

N N ox

ot? ot ot ®)

x—vt
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The first term on the right-hand side of (2) states the real inertia (when multiplied
by m) and the second term (also multiplied by m) expresses forces similar to
damping forces.

In the final stage three resulting matrices are responsible for transverse iner-
tia (the matrix has the form of the inertia matrix), damping forces (the matrix
multiplied by the velocity vector has a form similar to the Coriolis forces) and stiff-
ness (potential) forces (the matrix, if multiplied by the velocity vector, has a form
similar to the centrifugal forces). The third matrix appears as a result of initial
displacements in the time interval.

Let us now follow this idea and treat numerically the right-hand side inertial term
of (1). The same mathematical steps as in the case of pure string enables us to
integrate the inertial term

hoopb 2 0
/ / N*m 6(x — vt) w da, dt . (4)
o Jo t

First we must formulate the virtual power ;
equation. Then it is integrated in the space-
time domain. The resulting virtual work

. . . . Xo+Vmoh 7
equations allows us to derive required metri- - [
< ~
3

ces in the time stepping scheme. We use the
linear interpolation of the velocity in space

and in time. The virtual velocity v*: x
0

z b

1—
v (z,t) =N*q, = 6(t — ah) bl e,

Figure 2: Mass path in the space-
(5) time finite element domain.

SHE

Consequent integration results in two ma-
trices: the moving mass inertia matrix K,,

m[—u—ﬁf k(1 k)

M =5 —k(1—k) —K? ©

(1—5)2 k(1 — k)
h 3

k(1 —k) K2

where k = (xp + vah)/b, xo is a starting position of the mass in the space-time
element (at ¢ = tp) (see Fig. 2), and the moving mass damping matrix C,,

Cm=@{_<1_&)<l_ﬁ) <1_ﬁ)<1_ﬂ)’ —(1-r)p (1—/%),[3} o
—x{1=F) K (1=70) —kp K3

b
Let us now consider the contribution of w(z,0) being the constant term of the
integration in time. We integrate by parts the virtual work

hoob 2 hoopb ook
0w ov* du
2 * 0 2 0
, v dadt = —v dad
v /o /0 T ! ‘ /0 /0 or ox " t (8)
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Since displacements of the left and right node of the element are expressed by
ur = ul + hlBvr + (1 — B)vs) and ug = u% + h|Bve + (1 — B)va], we can derive the
required dug/dz

dug  ugp —ug ug’% — u%

}
o= = i}&q+&gfﬂfﬂwy+ﬂfﬁwﬂ 9)

Matrix K, is the stifflness mass matrix

hw? | B =B
b? -3 g

1-4  —(1-8)

K, =
—(1-0) 1-0

(10)

The term (u$, —u$)/b in (9) multiplied by mwv?/b results in initial nodal forces e
in the space-time layer.

2. Beam element carrying moving mass

We remember that virtual time function v* in the hat shape is constant in time
and in the case of the Bernoulli-Euler beam has the following form

22 23
We recognize here the well known shape functions that describe displacements (or
velocities) in terms of nodal displacement and nodal rotations. The same interpo-
lation formulas are applied as real spatial shape functions. Then the the elements
of the matrix M,, can be computed. We present here the analysis in the case of
the first element (-)17 of the inertia matrix only.

h 2 3\ 2
(Mm>11 = _E / 5 :L_:LO_'UI‘) (1_ zz +2;: ) dl‘dt =

N . ) ’ 9 (12)
_ '"/ / [17 E°+L) +2<J/0b+3b‘>} dadt
We introduce the substitution:
T :yt 21
s = Tor vt and ds = —dt . (13)
b b
The coefficient (M, )11 can be written then
h h
m 9 . m b 9 5
(Mm)H:—E ; (1— 352 +25%)° ds=—-== (7 — 255 + 58 + st —2¢° +s) :

(14)
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Figure 3: Displacements under moving mass — space-time finite element solution
for @ = 0.5 (upper) and o = 1.0 (lower) compared with analytical solution.

3. Numerical results

In our tests the string was discretized by a set of 200 finite elements. The time step
h was equal to b/40v. It means that the mass passes from joint to joint in 40 time
steps. Results obtained by the space-time finite element method are presented in
Fig. 3.

Higher velocity can also be considered. Fig. 4 presents displacements in time
of the particle for 0.9 < v/c < 1.2. We notice a good coincidence of the plot with
the expected zero line. We can recall only for information the plot of oscillator
displacements moving over the span. The oscillator spring stiffness was assumed to
be high enough, to simulate a rigid contact of the mass with the string. Results are
depicted in Fig. 1. The solution is significantly worse than results obtained with
the method presented in this paper.
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. . Figure 5: Displacements under the mass
Figure 4: Displacements under the mass

moving on a string for v equal to 0.9, 1.0,
1.1 and 1.2 ¢c.

moving on the Bernoulli-Euler beam at
the speed v=0.1, 0.2, ..., 0.6 (numerica.
and semi-analytical results).
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Numerical results of displacements in time of the Bernoulli-Euler beam are
presented in Fig. 5. The following data were applied: £=1.0, A=1.0, I=0.01, [=1.0,
p=1.0, m=1.0, and P=1.0. We emphasize here that numerical results perfectly
coincide with semi-analytical solution in a wide range of the mass velocity. We
applied non-dimensional speed v up to 0.6, which corresponds with the 0.4 of the
critical speed. The critical speed means the speed of the force travelling in a cyclic
way through a beam and increases the vertical deflection to infinity. In the case of
the moving mass the critical speed has considerably lower value and in our example
we approaches to it.

4. Conclusions

We deal with the problem of the numerical treatment of the moving mass problem.
The solution presented in the paper shows the way of mathematical analysis which
results in a universal time stepping procedure. It enables us to solve the problem
with the arbitrary speed. The solution in the case of the string exhibits discontinu-
ous mass trajectory [6, 7] at the end support. This fact influences high gradients of
the solution at the final stage of the motion. This phenomenon is the paradoxical
property of the differential equation (1) since considering boundary conditions we
intuitively expect smooth curves. Numerical results of the string vibrations exhibit
good accuracy, comparing with semi-analytical solution. In the case of the beam
the coincidence of both curves is perfect.

The solution presented in the paper is the only correct end efficient numerical
solution of the moving mass problem in the literature.
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Abstract

The paper presents the solution of a chosen dynamic problem, i.e. determination of the
engine power to drive a mechanism, by means of the Mathematica environment for
numerical and symbolic computations. It was done on the example of a third class
mechanism. The author’s intention is to show the advantages of replacing the classes
on “Mechanism Theory” with the computer laboratory.

Keywords: numerical methods, mechanism theory, kinematics and dynamics of
mechanisms

1. Introduction

The complexity and strong nonlinearity of dynamics problems preceded by the
kinematic and geometric analyses arise from the technical applicability of the
mechanisms theory. Analytical solutions are restricted to simple mechanisms of well-
chosen geometry since, in general, they are time-consuming and cumbersome. It
contributed to the development of graphical methods that are robust to the mechanism
geometry. The solutions obtained for a few time instants are approximated on the whole
operating cycle. The graphical methods do not allow the full kinematic analysis: singular
position avoidance, movement simulation, optimum transfer of driving torque, etc. Then,
it prevents from mechanism design. The growth of the computer technology causes the
graphical methods to have been replaced with the numerical-analytical ones. It forces the
changes in teaching Mechanism Theory, i.e. necessity of introducing computer
laboratory, which allows to solve effectively problems of dynamics of mechanisms.

The dynamical analysis requires determination of mechanism position from a system
of non-linear algebraic equations. In general, many solutions are possible [1-6].
Complexity of the issue depends on the structure of mechanism, mainly on the class of
Assur groups included in it. The method of changing active link in a mechanism allows
decreasing its class but cannot be used in all the cases of higher class mechanisms. The
method of modification of kinematic units was proposed by Mlynarski [5] to convert
groups of higher class into groups of second class and illustrated using the four class
mechanism of so-called Walking Machine. The paper [2] presents an interesting way of
searching all possible positions of Assur group of third class and third order with four
links and six prismatic/revolute joints when the positions of external joints are given.
The presented procedure leads from geometric equations to one polynomial equation the
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real roots of which are related to all possible positions of the internal joints. The authors
extended the applicability of the method to the group of four class with one prismatic
and five revolute joints [3]. The sixth-order polynomial is obtained which leads, in an
extreme case, to six different configurations.

The dimension of the system of kinematic equations depends strongly on the type of
chosen coordinates. Cartesian coordinates lead to less coupled and easy to formulate
constraint equations, however, the number of unknowns is greater in comparison with
the choice of natural or relative coordinates [7].

The paper presents the solution of a chosen dynamic problem in Mathematica
environment for symbolic and numerical computations [8]. It is done on the example of
the mechanism shown in Fig. 1. The advantage of the approach is that it contains general
algorithm for solving problems of this type.

2. Problem formulation

The mechanism of third class RS-SR-RR is considered. The active link is the crank
O, A rotating at given rotational speed n=1200br / min . The problem is to determine the
engine output torque and engine power to drive the mechanism assuming the slider F is
1000N; vy >0
—1000N;vy <0
L, =30cm, I, =2.4m, I, =24m, [, =1.6m, [, =1.5m, a =25, f=125", y=140".
The initial position is assumed to be known. Mass of the link BCD is essential, the others

subject to the external load P :{ . The mechanism dimensions are:

are neglected: m, = 7.2 kg, I, = 3.456 kgm”. The flywheel is to be determined also
when the admissible coefficient of the speed fluctuation 7 =1/40.

Geometric analysis

The review of literature shows that the methods of the position determination depend
on the class and type of kinematic pairs of a mechanism. Therefore, in general case the
iterative methods have to be applied [12]. The presented approach does not take the use
of the classical vector equations for kinematics. The vector equations for so-called
closed independent loops [7, 10] are written. Then, there is need to distinguish among
motions the plane motion, rectilinear translation and rotational motion, which is required
in graphical methods. The position and orientation of the revolute pair is described by
the angles measured anticlockwise from the positive direction of the Ox axis to the link.
The position of the slider in the prismatic pair describes its displacement with respect to
one of joints. Following this rules unknown angles f,, fs and displacements s,, s, are

introduced. The equation f; = f, + f—«a relates the angles f,, f; in prismatic pair.

The equations for independent loops are the minimum number of vector equations
allowing to compute these coordinates. In the considered example they are
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0,A+AB+BC=0,0,+0,F +FC, O,F +FC+CD=0,0,+0,D (1)

which leads to four scalar equations. The constant vectors (time independent) are
neglected as vanishing at differentiating.

Cos[f2[t]] s1[t] +Cos[f1[t]] 11-Cos[B+ f2[t]] 131 = -Cos[y] s2[t] + Cos[e] 14
s1(t] Sin[£2[t]] +Sin[£1{t]] 11~ Sin[B+ £2[t]] 13 = -s2[t] Sin[¥] + Sin[e] 14 (2)
—Cos[y] s2[t] + Cos[¢] 14+ Cos[a- - £2[t]] 13 = Cos[£5[t]] 1s

—s2[t] Sin[y] + Sin[e] 14+ Sin[a- - £2[t]] 13 = Sin[£5[t]] 15

Fig. 1. The scheme of the mechanism.

The initial values for f, =0 are: s, =2m, f, =15",s, =1.5m, f; =140°.

Kinematic analysis

The kinematic equations are obtained after differentiating Eqs. (2) with respect to
time. The second differentiation relates the accelerations. This is done by the program
automatically and no user activity is expected. The manual computations of accelerations
and velocities are not sophisticated but much time — consuming. The initial position is
known and the iterative method is applied for determining the subsequent ones. The

2
cycle is divided into n — time instants 7, J T r="" = %IZOrad /s.

w

Due to limited size of the paper the basic instructions of Mathematica are not
explained, the exceptions are special functions. The separate quantities are collected in
so-called lists. A user enters the following lists: : wsp — the coordinates s,, f,, §,, f;

describing the positions and orientations of the links, wartp — the values of the
coordinates at the initial position, Loopl — the x components of the loop equations.
Mathematica itself generates the subsequent lists: dwsp — the first derivative of the wsp
derived by means of instruction Dfwsp,t/, d2wsp — the second derivative of the wsp
derived by means of instruction D/dwsp,t], Loop2 — the y—component of loop equations
that are produced by replacing cosine with sine in the loopl, Loop — all the scalar
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equations for positions, Eqv - velocity equations computed as derivatives of the loop
equations Dfloop,t], Eqa — acceleration equations computed as the derivative of the Eqv
Dfegv,t].
The first fragment of the algorithm computes these lists. The input values are in boxes.
twsp={s1[¢],2[t],s2[¢],£5¢]3;
lzm=Length[wsp];
[wartp={2.0,15*Pi/180,1.5,140*Pi/180};
dwsp=D|[wsp,t];
d2wsp=D[dwsp,t];
loopl =
{la*Cos[f1[t]] + wsp[[1]] *Cos[wsp[[2]]] + 1z * Cos[B+ 7+ wsp[[2]]] ==
wsp[[3]] *Cos[y +Pi] + 14 Cos[e],
wsp[[3]] *Cos[y +Pi] + 14 *Cos[¢] +1z *Cos[B + 7 +Wsp[[2]] - 7w - a] ==
15+ Cos[wsp[[4]1]};
loop2 = loopl /. {Cos- Sin};
loop = Join[loopl, loop2]
eqv=D[loop, t];
eqa=Dleqv, t];

The below sequence of instructions rewrites the velocity equations into matrix forms:
Av=>b

Needs|["LinearAlgebra’MatrixManipulation"]
MF=LinearEquationsToMatrices[eqv,dwsp];
AA=MatrixForm[MF[[1]]] ;
X=MatrixForm[dwsp];
bb=MatrixForm[MF[[2]]];
AAp=MatrixForm[D[MF[[1]],t]];
bbp=MatrixForm[D[MF[[2]],t]];
Y=MatrixForm[d2wsp];

Cos[f2[t]] -sl[t]Sin[f2[t]] +Sin[B+f2[t]] 1l Cos[y] O \
0 Sinfa-p- £f2[t]] 13 ~Cos[y] Sin[f5[t]]1s |
Sin[f2[t]] Cos[f2[t]] sl[t] -Cos[B+ f2[t]] 1y Sin[y] O |
A= |0 ~-Cos[a-fB-f2[t]] 13 —Sin[ ] -Cos[f5[t]] 15/,
rsl’ [t] (Sln[fl[t 13 f1[t \
‘fZ'[t} i | 0 |
| s2'1t] | | ~Cos[£1[t]] 11 £1'[t] |
v= E5[t] ) | p= 10 ) (3)

The matrices are filled with the numerical values at each time instant and velocities are
derived as v=4"'h. The matrix equation for accelerations has a form Av+ Aa=b.

Then, a=A"'(b—Av). The successive positions are computed as
x(t+dt) = x(¢)+ vaft+%aaft2 . It is denoted in the program x = pol (={s,, 5,52, f5}),

v=pred, a=przys, A= Ap ,B=Bp. The instant values are added to the lists
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listasolp; (positions), listasolv; (velocities), listasola; (accelerations), subscript I
corresponds with a coordinate placed on the i-th position in the lists wps. The j-th

element of a relevant list contains the value computed at the time instant ? I The code
computing positions, velocities and accelerations is presented below.

pol = wartp;

Dol
listasolp; = {};
listasolvi = {};
listasolaj = {}, {i, 1, 1zm}]

listaalpha = {};

Dol
listap= {};
Do[AppendTo[listap, wsp[[i]] » pol[[i]]1], {i, 1, lzm}];
listal = {f1[t] -» alpha, f1'[t] »w, £1''[t] - 0};
B=N[MF[[2]] /. listal];
A=N[MF[[1]] /. listap];
pred = N[Inverse[A] .B] ;
listav= {};
Do[AppendTo[listav, dwsp[[i]] » pred[[i]]], {i, 1, 1lzm}];
B=N[MF[[2]] /. listal];
A=N[MF[[1]] /. listap];
Ap = N[D[MF[[1]], t] /. Join[listap, listav]];
Bp=N[D[MF[[2]], t] /. Join[listal, listav]];
przys = Inverse[A] . (Bp- Ap.pred) ;

pol = pol + pred x dt + przys+dt*2/2;
alpha = alpha+w=xdt;
AppendTo[listaalpha, N[alpha]];
Do[AppendTo[listasolpi, pol[[i]]], {i, 1, 1zm}];
Do[AppendTo[listasolvyi, pred[[i]]], {i, 1, 1zm}];
Do[AppendTo[listasolaj, przys[[i]]], {i, 1, 1lzm}],
{1p}]

The instruction of substitution /. requires the explanation. The MF[[2]] contains
vector of constants in velocity equation in which formulae are written symbolically.
Then, substituting numerical values into it causes replacement of the formulae with
specific values. Therefore, due to instruction B = MF[[2]]/listal the instantaneous
numerical value of the vector is computed and stored in B after substituting into
MFI[2]] the specific values in accordance to the scheme of /istal. The following

example is presented for illustrative purpose only: the result of the instructions
B = {Sin[x],Cos[y]}; ValueofB = B/.{x—>0,y—> 7} is ValueofB = {0,0} .
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The kinematic unit is the heart of the program, therefore discussed in detail. The rest

of the code is not included in the text.

n 3r 7 3 7 3rn
0 2 7 2 2r 0 2 7 2 2r 0 2 7 2 2r
2.6
2.5 3 40
2.4 — 20
il v 1 I
L23 50 oo
-1 -
w22 ] > “ _op
2.1 3
2 - -40
0 ks b ﬂ 25 0 r s ﬂ 2r 0 x s 3_7' 2n
2 2 2 2 2 2
£; £1 £
b 3n 7 3r 7 3n
0 2 7 2 2nr 2 7 2 2r 2 7 2 2r
0.3 0.6 7.5
0.28 0.4 5
5 0.26 g %2 5 22
§ o §-0.2 §-2.5
0.22 -0.4 -5
0.2 -0.6 -1.5
0 x b E 27 i bl ﬂ 2n i bl ﬂ 2n
2 2 2 2 2 2
f; £ f1
7 3n 7 3n b 3n
0 ) 7 5 2r 0 ) 7 5 2r 0 ) 7 2 2
2 2 1.5 2 2 20 2 2
1.55 1 10
= 1.5 5 03 I
hat pt 0 = 0
G 145 & -0.5 &
1.4 -1 -10
1.35 -1.5 _20
0 T bl z 2 0 i bl z 2n 0 z b 3_7£ 27
2 2 2 2 2 2
31 £1 f1
7 3n b 3r b 3n
0 2 7 2 2r o 30 2 7 2 2r 0 2 7 2 2rx
: 4
2.45 0.2
5 2.4 z %1 52
0 2.43 0 -0.1 n 0
2.42 -0.2 _2
-0.3
0 T bl z 2 0 kl b ﬂ 27 0 x bl ﬂ 27
2 2 2 2 2 2
31 £ f1

Fig 2. The coordinates describing the mechanism position, their velocities and

accelerations.

The results of the computation are presented in Fig. 2. For each time instant ¢ i the

instantancous powers of the load force N,; =—Fy$,; and of the inertia forces

NBj =my (xC3ij3_j +YesiVes) )+ 13f3/f3_;

as

well

as

the

driving

torque
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N, —N,.
M, =22
2

Xc3,Vcs are the coordinates of the mass centre of the link 3. The user has to enter these

are computed and stored up in the lists. In the foregoing equations

coordinates.
x3 = Wsp[[3]] *Cos[¥] + 14 *Cos[¢] + 13 *Cos[£2[t] + B-a/ 2]
y3=x3/.Cos- Sin

The velocities and accelerations are computed by Mathematica by using the instruction
D[-,t] .Subsequently, the mean value of the output engine torque M, =79.3766 Nm

and the engine power N = 997.475 W are computed.

7T 3 7 3rn
0 > x5 2r 0 > r 5 2n
1000 2 2 2 2
1500
_ 500 1250
z 0 & 1000
750
B _co0 £ 500
250
-1000 0
0 z bud ﬂ 2 0 z bud ﬂ 2rn
2 2 2 2
f1 £1
7T 3n b4 3n
0 2 x 2 2nx 0 2 x 3 2n
300 140
[
E 1°?,\ ~ 80
£ -100 g 6
a9 40
-200 8 20
-300 0
0 z x 37 2x 0 hdl x 37 2x
2 2 2 2
£1 £

Fig. 3. The load force, power of the load force N, power of the inertia forces N, and
output driving torque during one operating cycle.

Finally, the program computes the flywheel. The mass moment of inertia of the flywheel
is determined by the approximate method [9, 11] and expressed by the formula
A . .
1y, = —ZW =16.8kgm’, where AW is the difference between the extreme values of the
@
work done by the excess of the engine torque (difference between the torques

instantaneous and mean).



78
3. Conclusions

The tool for analysis of the plane mechanisms is presented. The method discussed on
the example of the mechanism of third class can be applied to mechanisms of higher
classes. The algorithm minimizes the number of manually derived equations. The
laboratory classes on Mechanism Theory allow to solve complex problems of kinematics
and dynamics of mechanisms as well as give the opportunity to learn a widely used
environment Mathematica. The laboratory teaching enables also presentation of the
commercial products for kinematic and dynamic simulation of mechanical systems:
WorkingModel, NX / Recurdyn.
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Abstract
Machines have many faults which evolve during its life (operation). If one
observe some number of symptoms during the machine operation it is possible
to capture needed fault oriented information. One of the methods to extract
fault information from such symptom observation matrix (SOM) is to apply the
singular value decomposition (SVD), obtaining in this way the generalized fault
symptoms. The problem of this paper is to use the total damage symptom,
being a sum of all generalized symptoms, and the first generalized symptom to
infer better on machine condition. There was some new software created for
this purpose, and some cases of machine condition monitoring have been
considered as examples. Considering these it seems to the author, that both
generalized symptoms should be used for the inference on machine condition.
They are complimentary each other in some way, and should be use together to
increase the reliability of diagnostic decision.
Key words: condition monitoring, multidimensional observation, singular
value decomposition, generalized fault symptoms.

1. Introduction

The most machines in operation, even performing simple operations, have many modes
of failure. Hence their diagnostics have to be multidimensional. From the other side, the
contemporary advancement in measurement technology allows us to measure almost any
component of phenomenal field, inside or outside of the working machine. The only
condition for symptoms in such multidimensional diagnostics is some kind of
proportionality to gradual worsening of the machine condition which takes place during
it operation. If it is so, we can name the measured component of machine phenomenal
field as the symptom® of condition. In this way we are measuring a dozen of ‘would be’
symptoms, and our condition monitoring is multidimensional from the beginning. Due to

! Paper intended to DUF08 (ISMA0S)
*ul. Piotrowo 3, 60-965 Poznan, Poland, email: czeslaw.cempel@put.poznan.pl
3 Measured physical quantity being proportional to the condition of the machine.
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this situation, the application of multidimensional machine condition observation is now
well established fact, see [Cempel 99], [Korbicz 04], [Tumer 02], [Jasinski 04] - for
example. And there exist some difference in application and processing of the
multidimensional signals and/ or symptom observation matrix. For a diagnostic signals
and symptoms one can apply also so called data fusion [HallLlinas 97],
[RoemerKacprzynskiOrsagh 01], [Korbicz 04], and similar techniques developed lately.

In case of multi symptom observation one can apply principal component analysis
(PCA), or singular value decomposition (SVD), looking for principal or singular
components, which may have some diagnostic meaning. For the case of SVD method
(Singular Value Distribution), there exists the body of experimental evidence [Cempel
04], [CempelTabaszewski 07], for example, that singular components and the quantities
created from them, can be treated as generalized fault symptoms.

All these transformation and symptom processing starts from the data base called
symptom observation matrix (SOM). Let us explain now how the SOM is structured and
may be obtained.

During the machine life 8 we can observe its condition by means of several symptoms
S,.(6) physically different and measured at some moments of life 8, , n=0,1,... p > r,
6,<6,, (6, — anticipated breakdown time). This creates sequentially the symptom
observation matrix (SOM), the only source of information on condition evolution of
machine in its life time 0 < @ < §,. We assume additionally that real condition
degradation is also multidimensional, and is described by semi independent faults F,(6),
t=I,.u < r, which are evolving in the machine body, as the expression of gradual
degradation of the overall machine condition. This degradation proceeds from the not
faulty condition® up to its near breakdown state. Generalizing, one can say now, that we
have m dimensional symptom space for condition observation, and » < m dimensional
fault space, which we try to extract from the observation space, by using SVD or PCA.

Moreover, some of ‘would be’ symptoms contained in SOM are redundant; it means not
carrying enough information on the evolving faults during the machine life. But of
course there is not unique criterion of the redundancy. During the course of our research,
several measure of redundancy has been applied, the volume of observation space
(Voll), pseudo Frobenius norm (Frobl) of SOM [CempelTabaszewski 07], and others.
But they seem to be not good enough with respect of the quality of the final diagnostic
decision. This means additionally, when optimizing the observation space, we should
take into account the adequate assessment of the current and the future machine
condition. The paper considers this problem, and it is done on the level of previous SVD
works of the author. As the forecasting technique with minimal error, the grey system
model with rolling window [YaoChi 04] was adopted for diagnostic purposes, and has
been applied here according to [CempelTabaszewski 07].

* We assume machine is new, or after the overhaul and repair process.
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But having the multidimensional problem of fault assessment, it is important now what
type of generalized symptom we use for the forecasting and condition inference. Do we
use the overall degradation symptom of the machine, or some specified generalized
symptom proportional to one fault only, or both of these. The results of such new
approach to multidimensional diagnosis presented here were verified on the real data of
machine vibration condition monitoring. Concerning the software, some modification of
last programs for the data processing was needed as well. As a result is was found, that
this approach seems to be promising enabling a better understanding of machine
condition, and also the better current and future condition assessment.

2.  Extraction method of partial faults from the SOM

As it was said in the introduction, our information on machine condition evolution is
contained in pe r symptom observation matrix (SOM), where in r columns are presented
p rows of the successive readings of each symptom, made at equidistant system lifetime
moments 8,, =1,2,...p. The columns of such SOM are next centered and normalized to
three point average of the three initial readings of every symptom. This is in order to
make the SOM dimensionless, to diminish starting disturbances of symptoms, and to
present the evolution range of every symptom from zero up to few times of the initial
symptom value S,,, measured in the vicinity of lifetime &; = 0.

After such preprocessing we will obtain the dimensionless symptom observation matrix
(SOM) in the form;

Snm
SOM = Opr = [Snm]J Snm = - _1) (1)
SOm

where bold non italic letters indicate primary measured dimensional symptoms.

It was said in the introduction, we apply now to the dimensionless SOM (1), the
Singular Value Decomposition (SVD) [Golub83], [Will05], to obtain singular
components (vectors) and singular values (numbers) of SOM , in the form

0, =Uy * 2, * v,T (T- matrix transposition ) , 2)

where U, is p dimensional orthonormal matrix of left hand side singular vectors, V. is r
dimensional orthonormal matrix of right hand side singular vectors, and the diagonal
matrix of singular values 2, is defined as below

2, =diag ( 6y, ..., 67), With nonzeros.v.: 6;>63>...> 6, >0, 3)
and zero s. v. ; 6ys1= ... 6;=0, I=max (p,r), u <min (p, r), u <r<p.
In terms of machine condition monitoring the above (3) means, that from the r primarily

measured symptoms (dimension of observation space) we can extract only u <r nonzero
independent sources of diagnostic information, describing the evolving generalized
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faults Fy6), t=1,..u, and creating in this way the less dimensional fault space. But only
a few faults developing currently in a machine are making essential contribution to total
fault information (are enough developed). The rest of potential generalized faults,
symbolized here by small o, value, are usually below the standard 10% level of noise.
What is important here, that such SVD decomposition can be made currently, after each
new observation (reading) of the symptom vector /S,,J; n =1 ... p, and in this way we
can trace the faults evolution, and their advancement, in any operating mechanical
system.

3. Diagnostic interpretation of SVD

From the current research and implementation of this idea [Cempel 03], one can say, that
the most important fault oriented indices obtained from SVD; is the generalized fault
symptom 8D, , t=1,2, and also the sum of all generalized fault symptoms SumSD;, as
some equivalent symptom of total (cumulated) machine damage. In another way, the
generalized fault symptom $D, can be named also as discriminant, or the generalized
symptom of the fault order #, and one can obtain this as the SOM product and singular
vector v, , or in general in matrix notation as below:

SD = 0,,*V=U*2,
and in particular;  SD;= Oy, *vi=0; ‘0, , 1=1,..u<r. 4)

We know from SVD theory [Golub83], [Will05], that all singular vectors v, , and u, , as
the components of singular matrices, are normalized to one, so the energy norm of this
new discriminant (generalized fault symptom) gives simply the respective singular value
Oy.

Norm (SD) =||1SD/||=6.,1=1, .. (5)

The above defined discriminant SD, (6) can be also named as lifetime fault profile, and
the respective singular value o€ as a function of the lifetime seems to be its life
advancement of damage (energy norm) and the same the measure of importance of the
fault. That is the main reason why we use dimensional or dimensionless singular values
for the ordering of importance of generalized symptoms (faults).

The similar fault inference can be postulated to the meaning, and the evolution of
summation quantities, the total damage profile SumSD;(6) as below

SD, (§)oc F(6), with: || SD, (9l =5, , t=1,2,

SumSD,(8)=>"SD,(0)=5,(6)-u,(6) o« F(8), with:/ | SumSD,(9)|| = £ 0(6)  (6)
i=1 i=1
Currently it seems to be, that the condition inference based on the first summation

damage measure; SumSD;, (fotal damage measure) may stand as the first approach to
multidimensional condition inference, as it was lately shown in the previous papers (see
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Jfor example [Cempel 04; 05; 06]). The similar inference based on the first (dominating)
generalized fault SD; is valuable and complimentary, as it was shown lately
[CempelTabaszewski 08].

Going back to SVD itself it is worthwhile to show some mathematical metaphor of (5),
that every perpendicular matrix has such decomposition, and it may be interpreted also
as the product of three matrices [Will 05], namely

O, = (Hanger) x ( Stretcher) x (Aligner™). @)

This is very metaphorical description of SVD transformation, but it seems to be useful
analogy for the inference and decision making in our case. The diagnostic interpretation
of formulae (7) one can obtain very easily. Namely, using its left hand side part we are
stretching our SOM over the life (observations) dimension, obtaining the matrix of
generalized symptoms as the columns of the matrix SD (see below). And using its right
hand side part of (7) we are stretching SOM over the observed symptoms dimension,
obtaining the assessment of contribution of every primary measured symptoms in the
matrix AL, assessing in this way the contribution of each primary symptom to the
generalized fault symptom SD;.

SD =0,,*V,, = U,*%,.; and AL=U",, *0,. =X, *V', . ®)

This means that SD matrix is stretched along the life coordinate giving us the life
evolution of the weighted (o;) singular vectors. And AL matrix is aligned along the
symptom dimension with the same way of weighting by o; , giving the assessment of
information contribution of each primary symptom.

We will calculate numerically the above matrices and use them for the better
interpretation of monitoring results (SD), and optimization of dimension of the
observation space (AL).

4. The SOM information measure and optimization

Having in mind the redundancy of some primary symptoms, i.e. the primary observation
space, some additional considerations should be made concerning SOM information
assessment. In terms of previous findings this can be done by calculating the Frobenius
norm (Frob) of this matrix, and the volume (Vol) created by u-dimensional generalized
fault space identified by application of (SVD). One can calculate easily both information
indices as the sum and the product of singular values in the following way [Golub83],
[Kietbasinski92];

Frob(SOM) = {Z o/ }"?; and Vol(SOM) =ITc;, i=1,...u
But squaring the small singular values of o; (less than one) make them much smaller,
giving seemingly smaller contributions to the matrix information asset, and to the

volume of the observation space. Due to this we can propose to use not the exact
Frobenius norm but its modification as below

Frobl = X o;;and: Voll =11c;. i=1,...u 9)



84

This will give us possibility to look for the small, just evolving faults, and not omit them
when we try to reduce the redundancy of the observation vector. Consequently one can
get less redundancy of new optimized SOM, with less number of columns but also
keeping in observation the small just evolving fault information (oy).

The use of Frobenius measure for a matrix has also mathematical validation. In general,
one can understand this as the problem of approximation of matrix B, by so called k-rank
approximation. Following the paper [Berry 99] we can make the quantitative assessment
of such k-rank approximation of a matrix B as the difference below

| B-Bi|lr = {Pris+...0? } 7, (10)

where the subscript # stands for maximal dimension of nonzero singular value, i.e. the
rank of our primary SOM.

This means also, that instead of (9), we will write simplified measure of approximation
of SOM in the form of deviation from primary SOM rank, as below

Ay Frobl =Frobl, — Frobl, ={cj.; *+...0, }, (11)

Using this quality index of matrix approximation measure we, can form additional
objective measure of the SOM redundancy. And minimization of SOM rank may be
carried by excluding some primary measured symptoms S, with low information
contribution, which produce mainly small (less than one) singular vales o;,.

Such criteria of redundancy minimization we have used quite recently. But following the
last papers [CempelTabaszewski 07], one may notice that after some symptom rejection,
which gives expected increase in the volume of information space (Voll). Also the rank
approximation of SOM gives only some drop in Frobl measure, but the result of
prognosis is not enough good, giving erroneous future values, sometimes less than the
previous one. How to avoid such errors in forecasting?

There seem to be one possibility more, to make the symptom rejection more objective
and anticipating the goodness of the condition forecast. We have to consider the
contribution of primary measured symptoms to the creation of first generalized
symptoms SD; , and also the creation of total damage generalized symptom SumSDi.
The first overall information contribution measure, can be calculated separately to each
primary symptom, from the correlation matrix of our SOM (with appended lifetime in
the first column), as the centered and normalized sum of column elements. The second
measure one can obtain if we append additionally to the previous matrix the vector
SumsSDi, as a first column. When calculating covariance matrix from these and in the
first row we will have needed information. After needed normalization to the first
element of this row this will give us the contribution of every primary symptom to the
total damage symptom SumSDi.
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5.  The global and partial fault inference

We have gathered above all necessary analytical and inference knowledge concerning
processing of symptom observation matrix, the extraction of fault information, and
optimization of SOM rank. So, there is a right moment to validate these finding and
proposal by some experimental data taken from real situations of vibration condition
monitoring. In order to do this the last Matlab® program svdoptlgs.m presented in
[CempelTabaszewski 07] has been modified to svdoptInt.m. The inference basis for the
first program was the total damage generalized symptom SumSDi , while in the
modified program such inference basis is the first generalized symptom SD;. Just to
catch the the way of inference and the followed diagnostic decision difference we will
take some uneasy case of heavy fan (3MW) working in unstable and load uncontrolled
regime (random supply of the air to the mine shaft), serving as the source of fresh air for
ventilation at the deep copper mine. The main troubles with this fun were unbalance and
nonalignment between the fan and the driving electric motor, due to that the unit was
constantly monitored.

Figure 1 presents below the six pictures as the result of fan data processing by specially
prepared program svdoptint.m made in the Matlab® environment, where the main
stream of inference follows the evolution of the first generalized symptom SD;. The first
top left picture, gives the results of 30 weeks measurements of symptom life curves of
vibration velocity at a five points located on the fan aggregate structure. One may notice
here the great instability of symptom readings, symptom No 4 in particular. This is better
seen at the picture middle left when data are centered and normalized to the average
value of the three initial symptom readings. We can notice here the negative values of
symptom as an effect of load instability and normalization. The picture bottom left
presents the generalized symptoms as the result of SVD processing, indicating also the
symptom limit value calculated for the generalized symptom of total damage SumSDi
(red line) denoted there as S). , and also symptom limit value Sy; calculated from the first
generalized symptom SD;.

The picture top right shows the relative amounts of information obtained as percentage
of given singular value o; normalized to the sum of all singular values. As it follows
from (5) this indicates at the same time the advancement of the given fault evolution in
the machine life. As the legend to this picture we have indication of two redundancy
measure, the Frobl and the Voll, which will serve as some guidance in the optimization
process of the observation space.

The middle right picture presents the contribution of primary measured symptoms (the
first = lifetime) to the creation of the dominating three generalized symptoms. One can
notice here, that symptoms No 4 and 5 give minimal contribution and can be rejected in
a process of optimization of the observation space. The last picture, the bottom right, of
the Figure 1 shows the evolution of symptom limit value as calculated from the first
generalized symptom SD, indicating also the value of symptom limit value as calculated
from the sum of generalized symptoms SumSDi. One can notice from the both bottom
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pictures, that in this case the difference between symptom limit values is a small one, but
the value obtained from SD, gives better indication of the coming machine breakdown.
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Fig. 1 The results of SVD processing of vibration data of a huge fan pumping air
into the copper mine shaft, with the inference according to dominating generalized
symptom SD.
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symptoms.

As it was mentioned before, the program svdoptint.m contains not only the matrix AL
(8) (picture middle left), but also some correlation assessment of individual and overall
information contribution of every primary symptom in SOM. Figure 2 presents these
data, and we can see there, really symptom No4 has minimal overall contribution, and a
negative one to generalized symptom SD;.

Having such strong indication of the two symptoms redundancy (No 4 and No5), let us
begin a gradual rejection of these symptoms contained in SOM. As a first step we
rejected symptom No 4, however its contribution is not minimal in this case. The effect
of such rejection is shown in a Figure 2, organized in the same manner as a previous one.
Comparing the both we can notice the radical change in the symptom behavior, mainly
we have rejected the most unstable primary symptom No 4. As the result of such
rejection we have much clear situation of symptom evolution, primary symptom (picture
top left) and generalized (picture bottom left), and the values of symptom limit values
have change slightly, differing more than previously. Also the Frobenius redundancy
measure drops significantly, and the volume of the fault space increased a little. But the
most important effect of this rejection is the increased stationarity of remaining
symptoms, the primary and generalized as well. Looking at the picture middle right one
can notice very low contribution of primary symptom No 5. Hence next motion will be
the rejection of this symptom together with previously rejected No 4. The results of such
double rejection operation and subsequent processing one can find on the Figure 4.
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Fig.3 The vibration symptom observation matrix of the huge fan (see Fig.1) after the
rejection of unstable symptom No 4.

Looking at the difference between Figures 3 and 4 one can notice much more clear
situation on the right hand pictures of Fig 4. Now we can infer on fan condition using
both symptom limit values S). and S;;, however with S;; diagnosis seems to be more
reliable. The top right picture indicate that Frobenius measure does not change much, but
the volume of fault space increases almost ten times. This may mean that for the
condition inference of the fan we should take into consideration the remaining three
primary symptoms No 1, 2, 3, and due to this we will have the relative stable and reliable
situation for the inference. This conclusion is validated more by the picture middle right,
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where one can see that the contribution of all remaining symptoms and the life symptom
to the generalized symptom SD; is valuable, being almost of the same order.

One can notice also that the calculation of limit value using first generalized symptom
SD; gives us lower value and this can give us more safe assessment of lifetime moment
for machine shut down and renewal. From the point of view of reliability of diagnostic
decision, this seems to be important to have two different sources of symptom limit vale
assessment, and to confront these values and the associated knowledge.
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Fig. 4 The vibration symptom observation matrix of the huge fan (see Fig.1) after the
rejection of unstable and the redundant symptoms No 4 and No 5.
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6. Forecasting of global system damage and a partial faults advancement

The final quality of diagnostic decision one may judge making the forecast of the future
condition in terms of total damage symptom SumSDi , and the first generalized fault
symptom SD;. It was said in the introduction, that the forecast will be made by grey
system theory (GST) [Deng 89], together with the rolling window method using the first
order grey model GM(1,1) [YaoChi 04].

In general GST assumes that our incomplete and uncertain observation can be the output
of some dynamic multi input system of high order, described by the grey differential or
difference model [Wen 05]. In condition monitoring, we assume it is enough to take the
first order system described by the grey differential equation, and one forcing or control
input only. This simplest case in GST is denoted as GM(1,1), means the grey model of
order 1 with one input only. The output of the system is the series of discrete
observations (our symptom readings) denoted here as

xO = {x01), x02), ... ¥O(m)}, (12)
where n >4 is the number of observation made on a system (machine).

We will not present GST theory here, but only using the final formulae for the
forecasting, and the rolling window concept, which is implemented into the forecasting
software.

The application of GST to the above symptom readings gives the possibility to forecast
the future one step symptom value, starting from very small number observation, and
using the formula

Ok +1)= [x“’) D —u/ a](e’“" —e "y k=23,.m, (13)
where u and a are parameters to be estimated by special least square matrix procedure

using the observed data (12), and the hat ~ in (13) means future value of the forecasted
quantity.

This concept was adjusted to the purposes of vibration condition monitoring in one of
the earlier paper [CempelTabaszewski 07, 08]. One can notice here from the bottom left
picture of Fig. 3 and 4, that the total damage generalized symptom SumSDi (line with
dots) after rejection the primary symptom No 4 and S is evolved well, enabling good
forecast even without the rolling window. But of course, as usually in case of grey
system modeling, the rolling windows forecast gives the smallest error. This error can be
even smaller if we diminish the span of window (w), as it is clearly seen from the picture
bottom right of the Fig. 5.

It is worthwhile also to remark on the other pictures of this figure. Picture top left
presents clearly, that the rejection of No4 symptom was a good idea allowing us to
determine symptom limit value S;; and having this information do act properly to shut
down the fan ahead of breakdown time. The picture top right present the total forecast of
total damage symptom SD; with the model GM(1,1). It seems to be good forecast with
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the small average error, but the picture bottom left with the rolling windows forecast
have he smaller error and the actual forecast adapts smoothly to the course of SD;.
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Fig. 5 Grey rolling forecast of the fan condition using the first generalized symptom SD;,
together with the both symptom limit values and the error of the forecasts, with and
without rolling window.

It is seen from the Fig. 5 left top picture, that the course of SD; symptom is decreasing at
the end of fan life, but both assessed symptom limit values ). and S;; warns in advance
enough to undertake shut down decision, just on time. However, comparing the both
symptom limit values shown on the picture top right of the last figure, and Fig.4, it is
good to know that the global damage symptom limit value S, can be used only with a
global damage symptom SumSDi .

Summing up the results of our calculation one can say, that the idea to calculate all limit
values for the global damage symptom SumSDi, and for the first dominating generalized
symptom SD; has proved its usefulness. This integration seems to be needed both in the
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main calculation and observation space optimization (Fig /-4), as well as in the grey
system forecasting (Fig.5).

7. Conclusions

The premise to write this paper was the supposition that the integral inference basing on
the first generalized machine symptom and the total damage generalized symptom of
machine condition can bring us valuable reliable diagnostic information. As usually in
multidimensional condition monitoring we have used the singular value decomposition
to extract the fault information from the symptom observation matrix. After the first
round of calculation it was possible to optimize observation space using some measures
of fault space, such as Frobl and Voll. Having just mentioned generalized symptoms
calculated, the symptom reliability and the symptom limit values ;. , S;; were assessed
on that basis for the total damage symptom SumSDi, and for the dominating generalized
symptom SD;. The last stage of inference was the forecast of the future value of the both
symptoms made by grey system theory and GM(1,1) model. As an example we have
used the most unstable case of condition monitoring, of the huge fan working in
ventilation system of deep copper mine. It was shown here that the optimization
procedure can reject unstable symptom, and more over we are able to calculate two
symptom limit values, and infer more effectively on the basis of such integral software.
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Abstract

The main task of this work is to analyze CAD-system for the bearing systems of mobile
wheeled machines and develop new CAD-component. The algorithm and program
packages for construction of variety of cars with mounted and trailing equipment should
be analyzed and developed on the basis of modern numerical methods of dynamics of
continual-discrete systems. The calculation procedure of machine dynamics, resting on
the synthesis of block-variational, modal and adaptive schemes, should be applied. The
optimal designs were obtained for the boom suspension of boom sprayer with increased
stabilizing and vibroprotecting properties.

Keyword: mobile vehicle, sprayer boom, optimal design, vibroprotection.

One of important problems of designing modern bearing systems of transport, in
particular mobile vehicles, is providing the bearing power of a body at saving technical-
economic optimum indices, namely such as economy, energy and material capacity,
operation expenses, expenses on repair et al. A primary task in this direction is the
necessity of improvement the analytical method for calculation of effect of dynamic
loading with the purpose of approaching the theoretical results to the experimental data
and achievement the rational and effective designing of frames, joined wide overall
dimension elements: booms, towers etc. Such a task, obviously, can be fulfilled with the
help of modern computer programs.

Now there are enough programs for conducting calculations on durability of volume and
plane bearing systems on the basis of the finite element method. These are the programs
of diverse class. They can have a narrow specialized direction or be universal for a wide
class of problems. One of the most powerful design package for calculation the
engineering designs on durability is Pro/Engineer, or, briefly — Pro/E. Similar to it
according to the properties is the design package ADAMS. For implementation of
calculations on durability we can also apply the universal program NASTRAN, ANSYS,
COSMOS, for using of which it is necessary to construct a geometrical model (a finite-
element model). As a geometrical model we mean construction of points, lines, surfaces
and volumes, which in the aggregate describe the design of framework of a body. In the
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process of decomposing these geometrical constituents into smaller and giving them
physical properties (parameters of cross-section of power elements, thickness of plates,
mechanical properties of materials et al.) a finite element model is created. This model
can be created on the basis of specialized programs of technical drawing : AUTOCAD,
Solid Works, Solid Edge, ParaSolid et al. However complex designs, for example, a
body in assembly due to complication of construction not always is transferred from the
packet AUTOCAD in the packets ANSYS, NASTRAN, that is why converting models
of volume assembly units is to be executed by component-wise. Russian-language
programs of such type are, for example, the program Compass, Russian analogue of
AUTOCAD, APM WinMashin — that reminds a little Pro/E. The last has such modules
which can be used for calculation of design of a body. These programs are less universal,
than, for example, NASTRAN, or Pro/E, however they are relatively simple in
utilization. Their licensed versions with an educational purpose were bought, similarly as
“Compass”, by the Lviv Politechnic, and during a long time are studied by students and
used by them for writing the diplomas papers. We can also mark the programs “Lyre”,
“Zenith”, “Proton”, that also serve for calculation the stress-strain state, stability,
dynamics of natural and forced vibrations of three-dimensional frame designs. We will
also mark such simple program as “Analisys” — a system for calculation of the stress-
strain state of three-dimensional frame designs.

At constructing a finite element model more than 50% of the whole work occupies
creation of geometrical model of design (its bearing system). With the purpose of
keeping down expenditure on construction of geometrical model it is expedient to
transfers a design model into a more comfortable one for construction of geometrical
model. It will enable us to facilitate the task of exchange between the systems of CAD
and CAE (AutoCAD — ANSYS, NASTRAN), which is carried out by the IGES format.
If converting is not executed or we fail to decompose into separate parts, it is
recommended to correct a geometrical model in the system CADFIX and to transfer the
corrected model by a body or surfaces with the next revision of the model in ANSYS. If
correction of inaccuracies and errors does not give a positive result, it is recommended to
simplify a model. Because of complexity of design of the bearing system of mobile
vehicle and imperfection of the IGES converter, the model of design of mobile vehicle
can not fully transfer AMD in the system ANSYS as a solid body geometry. That is why
we need to form the bar system maximally close to the design of mobile vehicle. The bar
elements of design must be formed on the axes of overall sizes of the cross section and
the bar elements which intersect must meet at the point. Geometrical data
communication from the CAD system in CAE is carried out with the help of the IGES
converter.

In accordance with the requirements which are imposed on the worked out model of
mobile vehicle, in the file of drafting model together with a designer model there is a
calculation (bar) model. The elements of design in the system ANSYS are decomposed
into finite elements for calculation of the stress-strain state. At implementation of
calculation of elements of the body it is necessary to bear in mind, that for an acceptable
result it is necessary to break up bodies with exactness at which an element contains up
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to 100000 finite elements, one linear meter of pipe — more than 8000 finite elements.
According to the previous calculation of the model of body of a large mobile vehicle,
without the elements of edging, it contains approximately 1500000-2000000 finite
elements.

The known numerous methods of modeling such a complex design as the boom-sprayer
belong to foreign authors [1-5]. We will note that application only these programs is
often insufficient. At first, the dynamics loadings, which act on a frame under the real
exploitation conditions, are not exactly known, and the use for this purpose a model
“suspension - rigid body” is scarcely correctly. Secondly, we need not only a peak
instantaneous value of stress in the elements of design, but their resource estimation.
And it requires the account of difficult processes of fatigue and corrosion of metal. The
real effective optimization of multiclement model is not really. The algorithms of
condensation a model are here usually used to a littlesize model on which it is possible
to make optimization [6-9]. A possible program complex that is partly able to solve these
problems is shown in Fig.1.

Es example considers now the boom-sprayer. It is the sprayer's boom that is the main
unit of the agricultural machine. Its design peculiarities influence the basic
characteristics of the machine, i. e. uniformity of spraying. At the same time, the boom is
the unit of the machine that fails most frequently due to dynamic overloading. Therefore,
optimization of the boom design is the main step in the process of rational construction
the sprayer. One solution for this problem is to provide significantly improved
suspension for the centre vehicle section so that the centre vehicle section moves
upwardly and downwardly at a relatively slow rate in response to changing the ground
level thus reducing the shock loading to the boom. Undesirable movements of the boom
result from its connection to a vehicle rolling over uneven, rough soil and consequently
subject to vibrations such as roll and yaw. Conventional suspensions of the boom
through pivots or twin link suspensions provide protection from the rolling motion to
some extent and are widely used in commercially available machines.

The numerical schemes (NS) row is considered for the complex vibroexited
construction. Methods of decomposition and the NS synthesis are considered on the
basis of new methods of modal synthesis. Traditional design methodology, based on
discontinuous models of structures ore FEM programs is not effective for three-
dimension boom nonlinear vibration analysis. The program packages are based on
condensed mathematical models. The computer models of aggregates are tested by
adequate real time procedure. The optimality criteria for boom constructions are
formulated for various field and exploitation conditions. The optimal design decisions
are found by genetics algorithms for boom section construction, vertical and horizontal
damping and stabilization complex vibroprotecting and vibroabsorbing systems.
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For receiving of optimum projects the algorithms of genetic optimization were used in a
great number of structural parameters. In Fig. 2 the chart of the combined pendulum-
resilient suspension of a boom sprayer and dialog box of the complex of the optimization
programs of this suspension are presented.
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Fig.2b. The interface element of the optimization program

In Fig. 3a resulted the surfaces of vibroprotection levels of combined suspension
depending on parameters K (rigidity) and C (damping) are presented. The function of
angular deviation from a horizontal position is taken. In Fig. 3b the character of vibration
process of boom is presented on the combined suspension with various parameters.



100

N N '*ik
AN N
ABO OO \ \\\\\\ \\)_.‘.».4-- \\\\
LR \\\\ \\ N\
% 250 O _.§\\\\\\\\\\\C\\\\ ‘\\\\\\ \\\\k\\\\\

o

\\
A
\\\

\\\\\\\\\
\\\\\\\\\‘““ ‘\\\\\\\\\\

200
oo
o o0 S o0 290!
\00
AQO OO <0 00 se ce&&]“

Fig.3a. The level surface of vibro protection of optimized suspension of a sprayer

boom

— — Penbedp

0,25 P, Ontumym (K=200KH/m,C=4Ku*c/m)
Jrpaa — K= 40Kuim, f=4KH'c,’M

0,20+
0,15+
0,10 +---------/#- 8]
0,05+
0,00+
-0,05 ——— .

0 5 10 15 20 25 30
Fig.3b. Realization of stochastic loading of sprayer boom for the optimal and non-
optimal values of parameters

Conclusions

At present the problem of developing of the automated complexes of designing of such
types of vehicles, as large-profile software’s packages of ADAMS, CATIA, Pro-
Engineer, Nastran et al. is solving. The discrete-continue models of wheeled land-
machines and processes related to their functioning are offered. On the basis of research
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of mechanical processes, these models are realized in a number of programmatic
complexes. On their basis the algorithms for optimum planning of boom-sprayer
suspension are obtained. We will note that the mathematical models, numerical
algorithms and programmatic facilities developed for this class of vehicles are adapted
and for other vehicles.
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Abstract
The paper concerns the problem of energy modeling of a spatial Human Being —
Demolition Hammer system with WoSSO vibroisolation (C-MWzWoSSO). For this
purpose, first, new spatial physical and mathematical models of the system were
developed with the use of the data presented in the ISO 10068 standard. Then, a model
of energy flow in a dynamic structure of the investigated system was built.

Keywords: energy modeling, vibroisolation, bio-dynamics
Introduction

The energy investigations carried out at the Laboratory of Dynamics and Ergonomics of
the Metasystem: Human being — Technical object — Environment aim at reduction of
flow of energy coming from power driven tools into the dynamic structure of a Human
Being. This energy is a holistic measure of harmfulness of tool influence on a being and
of a risk of appearance of vibration induced white finger disease [1]. In order to
minimize the energy flow from the tool into a human being the tool was equipped with a
spatial vibroisolation system with a constant reactive force. The advanced energy
analysis of the energy flow phenomenon and its optimization required development of an
energy model. Such a model is shown in this paper for the case of spatial vibrations of a
Human Being — Big Power Driven Hand Tool system with vibroisolation WoSSO (C-
DZNR with WoSSO). The modeled bio-mechanical system is shown in Figure 1 [2].

The energy model of the C-DZNR system with WoSSO in the energy flow domain first
requires dynamic modeling of the system. Then, with the use of the First Principle of
Energy Flow in Mechanical Systems it is possible to pass on to the energy flow domain
[1]. The development of the dynamic model of a Human Being — DZNR (demolition
hammer) system with the WoSSO vibroisolation was preceded by definition of
simplifying assumptions concerning a real object, in which the patented method of
spatial vibroisolation WoSSO was used [1, 2]. The WoSSO vibroisolation separates the
tool engine from the tool body to which the handles for both operator’s hands are fixed.
The vibroisolation has spatially diverse efficiency of vibration reduction. The highest
efficiency is along the main direction ‘z’ of vibrations caused by impulse recoil forces,
reverse impacts and impacts of the ram on the engine body, and along the perpendicular
directions ‘x’ and ‘y’ it is such, that the requirements of vibration standards are fulfilled.
The model takes into consideration spatial, translational vibrations of a hammer
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assuming the influence of rotational vibrations of the tool to be negligible [2].
A dynamic nine degrees of freedom model of a Human Being subjected to hand arm
vibrations acting the upper limb [ISO 10068] was used to build the dynamical model of
the system. The final model was obtained by synthesis of physical models of two
subsystems: a human-operator using two hands during work with a tool and a tool — a
demolition hammer [2].

1. Physical model of the
Human Being — Demolition
Hammer system with the
WoSSO vibroisolation (C-MW
with WoSSO)

The physical model of the
investigated bio-mechanical
system is shown in Figure 2 [2].
The applied physical models of
Human Being for vibrations
penetrating into one upper limb
(presented in the ISO 10068
standard)  enables  dynamic
analysis in the structure of a
human body. It is possible in
this way to determine dynamic
effects of the influence of the
tool during work. Forces
exciting the demolition hammer

| | to vibrations will be identified
energy absorber —/ \— scales experimentally at the laboratory
when the hammer will be acting
on an energy absorber, see
Figure 1 [2]. During research the

Figure 1. The energy modeled Human Being coordinate system was assumed
— Big Power Driven Tool system with the to be oriented in such a way that
innovative, spatial vibroisolation WoSSO the ‘7’ direction is vertical
[1,2] (along the main axis of

symmetry of the tool and

working motions of its ram — the
direction of the biggest vibrations), the y’ direction is parallel to the handles, and the ‘x’
direction is perpendicular to the handles.

The assumed working position of the Human Being is consistent with the description
presented in the ISO 10068 standard, which enables the use of substitute parameters for
all directions ‘x’, ‘y’ and ‘z’, which are given therein. In the spatial physical model of
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the whole structure C-DZNR with WoSSO the following points of reduction were
assumed: Tool engine — reduced substitute mass m; (S), Tool body-Hands (both) — mass
my = my + myp + myp (K-D), Forearm-Elbow for the left hand — mass m,; (P;-L) and for
the right hand — mass mpp (Pp-L), Arm-Shoulder for the left hand — mass m3;. (R.-B) and
for the right hand — mass msp (Rp-B).

Maiz, Ksiz, CaLz
M3p, K3pz, C3pz

Maiz, Kaiz, Caz
mayy, Kawy, Cary Moe. Koo, G
2pz; K2pz, C2p2
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My, kay, Cuy Mipz, Kipz, C1pz

mzpy, Kapy, Copy

t Mipy, Kipy, C1py M3py, Kapy, Capy
I. Cuz

|
my P ‘ l Cuxs Kwx

Coys Ky WEH| RS Cwy kwy

]

Figure 2. Physical model of a Human Being — Big Power Driven Hand Tool (e.g.
demolition hammer) system with the spatial vibroisolation WoSSO [2]

The description of the points of reduction and the reduced substitute parameters for
individual directions contains additional information about the directions, i.e. ‘x’, ‘y” and
‘z’ to be subscripts. Independent consideration of both upper limbs of the Human Being
decides about its universality, because it is possible to take other positions of a human
body into consideration, for which the reduced substitute parameters are different.
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2. Mathematical model of dynamics end energy model of the investigated system

A mathematical model of dynamics of the C-DZNR system with WoSSO was built up
using Lagrange equations. The modeled system has 18 degrees of freedom. General
coordinates, listed in Table 1, were assumed to describe their motion.

Table 1. The assumed generalized coordinates for description of motion of the C-
DZNR system with WoSSO and their notation

Direction ‘x’

xs(t) — displacement of the hammer engine in the x direction,

xi(t) — displacement of the hammer body in the x direction,

Xo1x(t) — displacement of the P-L point of reduction for the left hand in the x direction,
X31x(t) — displacement of the R-B point of reduction for the left hand in the x direction,
Xopx(t) — displacement of the P-L point of reduction for the right hand in the x direction,
X3py(t) — displacement of the R-B point of reduction for the right hand in the x direction,
Direction ‘y’

ys(t) — displacement of the hammer engine in the y direction,

yk(t) — displacement of the hammer body in the y direction,

Ya1y(t) — displacement of the P-L point of reduction for the left hand in the y direction,
yary(t) — displacement of the R-B point of reduction for the left hand in the y direction,
yapy(t) — displacement of the P-L point of reduction for the right hand in the y direction,
y3py(t) — displacement of the R-B point of reduction for the right hand in the y direction,
Direction ‘z’

z4(t) — displacement of the hammer engine in the z direction,,

7 (t) — displacement of the hammer body in the z direction,

Z1,(t) — displacement of the P-L point of reduction for the left hand in the z direction,
Z31,(t) — displacement of the R-B point of reduction for the left hand in the z direction,
Zyp,(t) — displacement of the P-L point of reduction for the right hand in the z direction,,
Z3p,(t) — displacement of the R-B point of reduction for the right hand in the z direction.

In order to obtain a mathematical energy model of the investigated system two energy
principles were used: the First Principle of Power Distribution in a Mechanical
System and the First Principle of Energy Flow in a Mechanical System [1]. The
results of dynamic analysis, i.e. accelerations, velocities and displacements of all points
of reduction and the identified dynamic parameters ensuring correct motion of the
modeled system are the input values for this model. The energy model of the C-DZNR
system with WoSSO consists of 18 equations defining the streams of energy flowing in
the whole dynamic structure of the investigated system — Equations (1), (2) and (3). In
these equations forces F(t), Fo(t), Fy,(t) are the components of the sum of forces
causing the motion of the tool engine and reactive forces of the foundation for the
individual directions ‘x’, ‘y’ and ‘z’. The reduced substitute values of dynamic
parameters appearing in the above mentioned equations were determined basing on
literature research, see Table 2. They concern hand-arm vibrations penetrating into one
upper limb of the Human Being modeled by a discrete model with nine degrees of
freedom, as in the developed physical model — Figure 1. The remaining parameters will
be identified at the Laboratory of Dynamics and Ergonomics of the Metasystem: Human
Being — Technical object — Environment [2].
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3. Conclusions and summary

The developed energy model of a C-DZNR system with WoSSO describes dynamics of
energy flow in a bio-mechanical system, which takes the spatial motion of the system,
both upper limbs and real forces causing the motion generated by the tool engine into
consideration. The energy investigations concerning this system will be continued [2].
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Table 2. Values of dynamic parameters of a physical model of a human operator for

three directions X, y and z according to the ISO 10068 standard

Reduced dynamic parameters of a model of a human being

Unit Direction of vibrations
X Y Z

kg myx = mypx = 0.0267 | m;ry = myp, = 0.0086 | my, =myp, = 0.0299

kg My x = Mppx = 0.486 M2Ly = Mppy = 0.3565 M2Lz = Myp, = 0.6623

kg M3y = Mapx = 3.0952 | My = mapy = 3.2462 | M3, = msp, = 2.9023
N/m Kirx = kipx = 4368 Ky =kipy = 27090 kiry =kipy = 5335
N/m Korx = kopy = 132 kory = kaopy =300 ka1, = kop, = 299400
N/m Karx = kszpx = 1565 ksry = kspy = 6415 K31, = kap, = 2495
Ns/m CiLx = Cipx = 207,5 CiLy = Cipy = 68 CiLz = Cipz = 227,5
Ns/m Corx = Copx = 18,93 Cory = Copy = 51,75 Corz = Cop, = 380,6
Ns/m C3rx = Capx = 9,10 Csry = C3py = 30,78 CsLz = C3p, = 30,30
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Abstract

The paper provides confrontation of a surface wave of SH polarization
propagating in a superconducting layer (type II superconductor) located in a
superconducting halfspace of similar material properties. It was found that the
wave in the determined heterostructure is distinguished by the properties
significantly different from classical Love wave propagating in similar elastic
structure. Among more important differences first of all should be mentioned
occurrence of only one mode and changed direction of the inequality that
determines allowable range of phase velocity of propagating wave. Both waves
are subject to normal dispersion.

Keywords: superconductivity, thermomechanics, surface waves,

Introduction

Surface wave SH propagating in a superconducting heterostructure possess
unexpected properties as compared to the ones of classical Love wave in a similar elastic
structure [1]. In order to discuss this problem a classical solution is shortly presented
below.
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Fig. 1 Geometry of the problem.

Geometry of discussed classical problem is presented in Fig.la. It is assumed that the
displacement vector is a function of x;, x,, and time ¢,
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u=u(x,x,,?). )
It is conducive to uncoupling of the displacement equations of theory of elasticity.
Especially we have

HV Uy = pii )
where
2 2
V= 6—2 + 8—2 .
ox;  0x,
Solution of (2) is sought in the form of surface wave
u,=f (x1 )exp[ik(x2 - ct)] 3)

The solutions and material constants are specified by low indexes “1” or “2”,
according to Fig.1
Ordinary differential equation is obtained in a layer

d’ c’
Wfl(xl)—i_kzﬂlzfl(xl)zo; :812 =—-1 )
1 T1
for
—-h<x <0
In a halfspace
d2 2 n2 2 cZ
T L)+ B L) 0 B = ®)
1 T2
for
x>0

For Love wave to propagate the following assumption should be made

2 2

Br= 1508 =1-—->0 (©)
n Cra
This leads to the following set of inequalities
Cry > C > cpy @)
Hence, the equations (4) and (5) take the form
£i(x,)= 4sin(kpx, )+ Beos(kByx,), —h<x, <0 ®)
f (xz ) = Cexp(— kpyx, ) » x>0 ©)

The solutions should meet the following boundary and seam conditions
- the stress-free boundary

d
— filx =0 (10)
dx, o

- continuity of displacements

fl(xllxlz(y =f2(x1L1:0+ (11)



111

- continuity of the stress vector

d d
ﬂld_xlﬁ(xl% ] _ﬂzd_xlﬁ(xw (12)

x,=0 x,=0"
Appropriate substitutions provide a system of algebraic equations with A, B, C,
constants
Acos(Bkh)+ Bsin(Bkh)=0
B-C=0 (13)

A f +C,p, =0
The system has non-trivial solutions if
0,y = 5, tan(kfh) (14)

The equation (14) is a dispersion equation.
The dispersion curves are shown below for the following material constants
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Fig.2 Dispersion curves for Love’s wave

Characteristic feature of Love wave consists in occurrence of many modes (Fig. 2a).
Relationship between the phase and group velocities on the wave number for the first
mode is shown in Fig. 2b.

Surface wave SH in superconducting heterostructure

Basic equations describing elastodynamical properties of the vortex field type II
superconductor are proposed in the paper [6]. The problem of surface wave propagation
of SH polarization in the considered heterostructure is described by the equations

;U(MS,H + “3,22) + o hy, HY - piiy =0
/13 (h3,11 + h3,22 ) —hy+ Uz, Hlo =0
Similarly to classical case the solution is sought in the form

S(,x00= (%) explik(x,— c1)] (16)

Further consideration is carried out in dimensionless form. In order to introduce

15)



112

dimensionless coordinates x,y,z and dimensionless time 7 a characteristic dimension %
and characteristic time T are used.

x,=hx, x,=hy, x,=hz, t=T7, T=h Ll
H
The dimensionless amplitudes of sought physical fields u, (x), h, (x) and
dimensionless magnetic field H, meet the relationships
it (x))=hu (), hy(x)=H h (x), H'=H H,
where H, is critical field of the layer material..
The dimensionless angular frequency (2 and the phase velocity ¢ meet the
relationships
2r Q Q o)

Q=0T, k=—=—=—, v=c |—
A T vh y

while the dimensionless material constants and the universal constants (the symbols
with tilda) are related to corresponding dimension constants with the relationships

~_ph pzhz ~ M~ M
Pi= :19 Pr= > H :_:19 Hy ="
b H ’ T2 1 H ? H
- 2 o H? '
22 _ 201 , , _ o 7
01 hz }'01 h2 /ll

Proper substitutions lead to the following system of ordinary differential equations
met by the amplitudes

_du. QY- - _dh
e V- f e+ g H =0,
lul dxz V2 (V /0[ /’lt )uz /u() 0 dx
d’ h, Q? d (a7
72 2 u, .
A’Oi dxz (ﬂ’Ot 2 IJ z 0 dx = O: l=152

The characteristic equation of the above system takes a form

Zgz‘ /71‘ p4 + [ﬂ’éi Bi(‘Q’V)_F;(Q’V)ﬁi _/70 Hg ]pz _F;'('vi)Bi(Q’v) =0 (18)
where
QZ
B(@v)=2 (5 -7) Flav)=i2 +1 >0
v
Squares of the roots of the above equation should meet the relationships
plzi p22i = —E(Q,V)Bi(Q,v)
_plzi _p22i :[/1(2)[ Bi(‘Q5v) _E(Q’V)ﬁi _ﬁo H(?]
General integrals of the equations (17) should meet the following jump and seam

conditions
forx =-1

(19)
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- Continuity of tangential component of the magnetic field strength
- The stress-free boundary. The stress vector is equal zero

forx =0

- Continuity of tangential component of the magnetic field strength
- Continuity of displacements

- Continuity of stresses

Conditions of the task may be satisfied provided that the number of arbitrary
constants used for formulating general integrals (17) is equal to the number of above
specified number of the jump conditions. This means that one of squares of the roots of
the characteristic equation (18) met in halfspace (i=2) should be purely imaginary. In this
case an improper condition (i.e. requirement for amplitude to approach zero for x—o)
ensures equal number of the constants and conditions.

According to the above

(p2>0 A p2<0) = By(20)> 0= V2> 22 (20)
2
The result differs from the one obtained in the classical theory (7).
In the (i=1) layer the squares of both roots of the characteristic equation (18) should
be positive. Other options preclude the relationships (19).

(250 p2>0) = B(Qv)<0=v <2 o) @1
1
Hence
2oy B (22)
P P

i.e. direction of the inequality opposite to the one resulting from the classical theory (7).
Moreover, as a consequence of the exponential form of the solutions both for the layer
and halfspace, the dispersive relationship admits propagation of only one mode.
In accordance with the assumptions the solutions of the equations (17) in the layer
have the following form
u, =S, exp(p;; x)+S, exp(— p;; X) +5; exp(p,, x) + S, exp(— p,; Xx)
h.==W, (1. Qv)S, exp(pyy )+ W (py, 2v)Sy exp(-p )=, (23)
W, (le .02, V)S3 exp(py; x)+ W, (p21 .92, V)S4 exp(—py; X)
while in halfspace
MZ=S5 exp(_Plz x)’ hzzWZ(plzzgav)eXp(_pIQ X) ’ (24)
where
Ni ai Qz : N' - N'
W,-(PWQ,V)= ,LNI p 12 \: Pi— Hi
HyHy  v: u H,p,

, D, 1s a root of the characteristic equation

(18) (the first index denotes the root number, the other corresponds to the layer or
halfspace, according to Fig. 1)..
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The seam conditions lead to the dispersive relationship

fl@.v;é)=0, (25)
where § is for the set of material parameters.
In particular case of ceramic material of the layer La... and YbaCuO ceramic

material of halfspace, the plot of the dispersive relationship is shown in Fig. 3 (the
material constants are drawn from [3])

v
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1.010%  1.010°  1.010%° 1. 010t

Fig. 3 Dispersion curve.

Conclusions

Elastodynamical properties of the vortex fields in superconducting heterostructure

prove to be quite different as compared to the ones commonly known for surface Love
wave. In the structure here considered only one mode of the dispersive relationship
occurs. Moreover, the inequalities (22) are valid that, according to the notes made above,
corresponds to the arrangement opposite to classical one.

N —
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Abstract

The paper deals with the original analytical-numerical approach to the
Bernoulli-Euler beam with additional tensile effect under a moving in-
ertial load. The authors applied the 2nd kind Lagrange equation to
derive a motion differential equation of the problem. The moving mass
can travel through the string-beam with a whole range constant speed,
also overcritical. The analytical solution requires a numerical calcula-
tion in the last stage and is called a semi-analytical one.

Keywords: moving mass, inertial load, string, beam

Introduction

The problem of bridge spans under a moving inertial load has existed since the be-
ginning of the railways development. The turning point in the literature devoted to
moving loads was established by two historical publications [1, 2]. These analytical
papers were elaborated with significant mathematical simplifications. The authors
considered the complex acceleration of the moving mass. Its geometrical interpre-
tation was presented by Renaudot [3]. Although the number of publications on the
moving mass problem exceeded thousand items, still we do not have its detailed and
fully analytical solutions. The approach given by Smith [4] seems to be a positive
exception. He considered, however, the massless string only. There exist numerous
review papers [5, 6, 7, 8] which discuss problems presented in hundreds of other
publications. For a long time the main stream of works treated the problem in an
analytical-numerical way [9, 10, 11, 12] or strictly numerically [13, 14, 15].
Together with increasing ve-
locity of trains, the influence
of the wave phenomenon is ris- P
ing as well. Dynamic effects

m
are generated by the load of N v M N

elling through the power sup- | 77
ply cable of the overhead con-
tact line. In this paper, we
consider a cable as the string- Figure 1: A string-beam under the moving mass.
beam model, since it has a cer-

tain flexible stiffness. The Bernoulli-Euler beam with additional tensile effect com-
prises this phenomenon (Fig. 1). In the paper the differential equation of the motion
of a string-beam is derived from the Lagrange equation of the 2nd kind.

train current collectors, trav- A u(x,t_)_| _____ 7\
|
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1. The 2nd kind Lagrange equation

The motion equation of the string-beam under a moving mass m coupled with
a force P can be written as follows
9*u(w,t) _0%u(z, 1) 9 %u(z,t)

ET — N - A -
Ox* : Oux? e ot?

9 %u(vt,t)
at2
(1)
where ET is the beam stiffness, N is a tensile force and pA is a linear mass density.
Taking into account beam terms, we impose four boundary conditions

= §{z—vt) P — §(z—vt)m

9%u(z,t) &u(z,t)
’LL(O,t) =0 ) u(lﬂf) =0 y W . =0 s W o =0 (2)
and two initial conditions
Au(zx,t)
u(z,0) =0, =0 . (3)
ot |,
The kinetic energy of a string-beam and a travelling mass is described by
1 LT ou(z,t)]? 1 du(vt,t)]?

E, = -pA : dz + -m | —2~2 . 4
k 2”/0[&] T+2m{ at ] )

The potential energy of a string-beam and a moving force is

1. (' Tou(z,t) 2 1 LT 9%u(x, t) ?

In order to separate variables, the displacement can be written in a form of the
infinite series and then integrals in space z in Equs. (4) and (5) can be computed

o

u(z,t) = > Ui(x)éi(t) (6)

i—1
According to (6) the displacement under a moving load has the following form

00

u(vt,t) = > Us(vh)&(t) (7)

i=1
The velocity of the displacement is determined by a chain rule

+ ) Ui(@)é(t)

T=vl i=1

ou(vt,t =
%Z’f) — U;U{(I)&(w

x=vt

It is the function of general coordinates as well as their velocities

% =f (&w&) : 9)
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After calculation of required derivatives of (6) with respect to ¢ and x, the kinetic
and potential energy can be written in the following forms

By = —pA Z@ (B (¢ / Ui(w )U¢<w>dﬂf+%m{%} > (19)

L_/l

By = 3N Y6060 [ vl +

lJ1

+§EIZ§i(t)§,-(t / Ui (x)U] (x PZU ()& (t) . (11)

i,j=1

We assume orthogonal functions (12) which fulfil boundary conditions (2)
Ui(z) = sinmg—w . (12)

The orthogonality of functions U;(z) allows us to write

t CJE =g,
| v - {O S (13)

With respect to (6), (12) and (13) the kinetic energy of the hole system is given by

K < 1 [ou(wt,t)]?
_ ZPAZ ;é’f(t) + Zm [T] . (14)

The term of the moving mass is not an integral, so we can’t use the property
of orthogonality. On this stage, the kinetic energy of the travelling load is left
in the original form. According to (12) we have U/'(z) = —i*7?/I>U;(z). After
integration by parts and taking into account the recent relation, the potential energy
can be written in the form

Z "12‘ &i(t)E; t)/ Ui (2)U; (x)dx +
Ll

3B &) /0 Uy (2)U; (2)der — P;U,;(vt)&(t)

3,5=1

Finally, the orthogonality of (13) allows us to write

p:—NzZ 2() 4 = EIZZ PZE, sinmm. (16)
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The motion equation of the string-beam under a moving inertial load is obtained
from the 2nd kind Lagrange equation, of which a general form is given by the
equation

i (%) _ OE; oL,

This method results in the differential equation of variable coefficients (18).

—0. (17)

2777 vt vt Am & v imut jmut
p A& ZSJ sin — in Lin‘m Tg Jm &(t) s1n7T— osJ7Tl +

2

- 2 2m j2mu? '7r jmut
+ N R &) + E[ A fz Z 5] sin sin I =

= —sin% . (18)

The equation (18) can not be easily solved and we must integrate it in a numerical
way. We use the matrix notation here

Fl(t) @(ﬂ Flﬂ
u 52:(t) 52:@) K &ft) e

£,(t) L;ko £a(t)

which results in a short form M¢ + C€ + K¢ = P, where M, C and K are square
matrices for i = j=1,2,...,n.

When we calculate the value of general coordinates &;(t) for each i to n. Finally
we can compute displacements of the string-beam w(z,t)

+C (19)

t) = Z & (t) sin ? (20)
i—1

Displacements given in the example below are dimensionless. They were calculated
in relation to the static deflection ug of the string-beam loaded in the midpoint by

the point force P: ug = uos top/(Uos wop). uos and ugy are static deflections in the
case of a string and a beam, respectively.

Example Let us assume the following data: E=1, =001, N=1,p=1, A=1,
P = —1 and m = 1. We solve the problem for different speeds v of the moving
load. The mass trajectory is depicted in Fig. 2. The simulation of the string-beam
motion is depicted in Fig. 3.

2. Conclusions

In the paper the Bernoulli-Euler beam with additional tensile effect under moving
inertial load was presented. The proposed semi-analytical approach can be applied
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Figure 2: Mass trajectory for different speeds v.

in a hole range of the speed and for all points of the string-beam span. The accuracy
of the solution (20) depends on the number of terms in the infinite series. The
examined series of displacements is convergent, so it allows us to assume a limited
number of terms in our example to i = 130.

If we reduce the flexural stiffness of the system, we observe the discontinuity near

the end support. It was broadly presented and proved in [11]. The discontinuity
had appeared also in the case of the Timoshenko beam [12]. In the matrix form
(19) we can use classical numeric methods for the integration of the final differential
motion equation, for example Newmark method.
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Abstract
A preliminary discrete model of a rope with scleronomic and rheonomic constraints is
considered. Numerical experiments are performed and advantages of the applied
algorithm are discussed in terms of total energy of the system. In case of the non-
conservative model the work-energy relation is used to assess the computation
efficiency. The next directions of the model development are outlined.
Keywords: multibody dynamics; discrete model; differential-algebraic equations.

Introduction

Analysis of the rope dynamics may serve as an introduction to research on various
physical phenomena. One of such examples is a cracking whip, whose amazing
dynamics has been drawing attention of scientists for over a hundred years. In the
twentieth century different laboratory experiments were performed, giving a significant
insight into the phenomenon. On the other hand, theoretical works were based mostly on
kinematic models and certain conservation principles.

However, nowadays such a problem may be studied not only experimentally and
theoretically but also numerically. Works focus on behaviour of some class of similar
bodies such as chains, ropes and whips. For example, Pieranski and Tomaszewski [3]
analyze dynamics of a falling chain on the basis of laboratory and numerical
experiments. Goriely and McMillen [2] consider a dynamical model for propagation of
waves in the motion of whips and obtain numerical solutions too.

We concentrate on a simple preliminary model, which actually is a rigid, chain-like one
— closer to a rope than a whip. Applying the Lagrange’s formulation, we present the
equations of motion for the system with scleronomic as well as rheonomic constraints.
Approximate solutions to the initial value problems are obtained with the use of
computational methods. In some numerical experiments the results and the simulated
behaviour of the body are analyzed mostly in respect of time dependence of the total
energy.

1. Mechanical system and equations of motion

As a discrete model we use the one described by Pieranski and Tomaszewski in [3],
which actually is a multiple physical pendulum. Thus, the system consists of n elements
— rigid, cylindrical rods — connected by ideal joints (without friction). Each segment has
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a length / and mass m. Classically, the motion is restricted to take place in a vertical
plane only.

One end of the body is attached to a point denoted by its Cartesian coordinates (xg, yy),
whereas the other one moves freely. It is important that we focus on the mechanical
system moving in a gravitational field, with no external forces acting on it.
Consequently, the excitation studied here has purely a kinetic character.

However, let us consider a model with scleronomic constraints at first, that means the
one suspended to a fixed point. The state of the system may be simply specified with the
use of the angular generalized coordinates — position of ith element is described by a
variable ¢; which defines the angle from Y downward axis. The position of each

segment (its mass centre) in the Cartesian coordinate system may be written as follows:
i-1 =l
1 1
xi=21sin¢j+51sin(pi, yi=ZZcos¢j+Elcosgpi (L.D
Jj=l Jj=1

Having calculated terms for the velocities of the ith segment in the X and Y directions,
one may obtain formulas expressing the kinetic and the potential energy of the system:

sz,zi% i’ 3 2(n - J)+1¢l¢jcos(i_¢j) (1.2)

i=1 i=1 j=i+l
V= —mgi Vi = —mng@cas ; (1.3)
i=1 i=l

Using the terms above for the Lagrangian L=T7-V we can apply the Euler-Lagrange
equations to describe behaviour of the system:

4 8% oL =0, i=12,...,n (1.4)
dt a(ﬂ, 6(01
After substitutions and simplifications we obtain the equations in the final form:

Zaij(}}jcos((pi—(pj) Zaz/% sm(gol goj)+b Zsmgol—O i=12,...,n (15)
j=1 =1

where:
2l _2’) for j<i
0 - @ orj=i b =200 (1.6)
2(”_2j)+ for j > i

Let us turn now to the case involving rheonomic constraints. We assume that one end of
the rope is attached to a moving point, whose position expressed in the Cartesian
coordinates depends explicitly on time:
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o =x0(),  yo=olt) (1.7)
Obviously, the dependencies affect the transformation equations (1.1):
i1 i1
1
X; =X, +lein(0j+51sin(0i, Yi=Y +2100s¢j+
Jj=1 J=1

1

—lcos @, 1.8
Slcos, (1.83)
Hence, the terms for the kinetic and the potential energy of the system have more
complex form and involve the time explicitly, too. Still using the Lagrange’s formulation
(1.4), we find the following equations of motion fori =1,2,...,n:

Zn:aij(ﬁj coslp, ~0,)+ iaﬂ’jz sinlp; ~ o, )+
Jj=1 J=1

(1.9)
+bi%(g sin@; + %, cos g, = g sing;)= 0

where the coefficients a and b are defined in (1.6).

2. Numerical experiments

To solve the systems of differential equations (1.5) and (1.9) approximately, we have
applied the MEBDFYV code developed by Abdulla and Cash (Imperial College, London).
They implemented Modified Extended Backward Differentiation Formulas (MEBDF) of
Cash. The algorithm is designed to solve stiff Initial Value Problems for systems of
linearly implicit Differential Algebraic Equations (DAESs) of the form:

M(q)q=f(t.q) 2.1

where the matrix M depends on ¢, which is a vector of dependent variables, and ¢ is the
independent variable.

As typical for computational methods, the system of dynamic equations should be
reformulated into a system of first-order differential equations. Therefore, the problem
consists of 2n differential equations and 2# initial conditions written in a general form as
follows:

O =y
¢n :a)n
Z[mu(t’(Pp¢z:---’¢n)d’j]:f1(t’¢1:¢z ----- Pps O, W, ..., ,) (2.2)

J=1

n

Z[mn;’(f’ @1 Poseees %)“"j]z fn(t’ P> Poseees Py B, Wy ..y wn)
=1

olts)=00.  @iltg) =y for i=12..n
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Firstly, let us concentrate on the scleronomic system. We confronted results obtained in
our numerical simulations with the ones described in [3] and based on the RADAUS
code developed by Hairer and Wanner. As it was supposed, for the same parameters (n,
/, m) and initial conditions there was no difference between the compared configurations
of the model in certain moments of time. The time dependencies of the linear velocity of
the tip were compatible too. What is more, the authors of the paper [3] confirmed their
numerical results by laboratory experiments.

However, the choice of the solver seems to be justified by the energy principle. For
instance, using the RADAUS without any significant modifications would be inefficient
when researching long-lasting motion of such a complex mechanical system. After a
short period of “good performance” a problem arises with energy conserving by the
chain. On the other hand, the MEBDFV code gives results which meet the energy
conservation law.

To show the difference, we performed a numerical experiment using both the codes,
starting from the same initial conditions: catenary curve, ¢, =0 (for i=1,2,...,n), and

the same parameters: n=20, nm=0.5kg, nl=1m. The time dependencies of the total energy
of the system are presented in Fig. 1.

-06

MEBDFV

E [J]

tis
Fig. 1: The total energy based on results from the RADAUS code and the MEBDFV.

As visible above, the energy calculated from the results given by the MEBDFV may
serve as a reference level. When it comes to the other solver, there is a rapid decrease in
the energy around ¢=1.3s and the difference between the dependencies increases with
time. Obviously, the numerical dissipation impacts on configurations of the chain.
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It is necessary to remark that no procedure designed for testing fulfillment of the
conservation principle is embedded in the solvers. Both the codes perform the
integration process using some internal, numerical convergence tests, which do not refer
to mechanics. The user gives the physical sense to the solution and involves it in
computation of such quantities as the total energy.

Now we will analyze the dynamics of the rheonomic system. We will consider here a
free-hanging chain at a start point, so that ¢, =0 and ¢, =0 for i=12,...,n. The

simulation is performed for a model of total length n/=1m and total mass nm=0.5kg,
where n=30. Moreover, we focus only on the function x,(¢) referring to the horizontal
direction — the body will be brought into motion with the use of the following constraint
function:

Asinz(ﬁBt) for tsi
xo(t)= B 2.3)
0 for t>—
B
where A and B are some constants. Here we take:
A=0.1[m], B=5[1/s]

In this case the evolution of the rope’s shape seems to be very interesting. The applied
excitation leads to arising a kind of wave-like effects. Visually, a fold created from the
upper segments is traveling along the rope. The propagation disappears gradually with
the successive direction changes. Actually, such a specific behaviour turns out to be a
result of energy transfer between the elements of the discrete model. The fold’s flow
along the body involves consecutive segments providing additional energy to them. As it
may be supposed, the greatest increase of the function occurs at the last element and
causes sharp peaks in time dependencies of velocity and acceleration of the tip.

At the end, we will pay attention to the total energy of the whole mechanical system. It
should be noted that due to the rheonomic constraints the system is a non-conservative
one. In fact, the energy increases initially and then remains constant at the level forced
by the applied constraints. All in all, the conservation principle cannot be a test for the
approximate solution to the problem.

However, we decided to apply the work-energy principle for a rigid body. Thus, the
analysis consists in comparing changes in the kinetic energy of the system over time
with the work done by all forces during the same actual displacements. To define “all
forces” we take into account the components of the equations (1.9), which come strictly
from the gravity and the rheonomic constraints. After consideration appropriate units one
may obtain the expressions equivalent to generalized forces — the potential and non-
potential ones:

0 = —biml(g sin@; + X cos @; — ¥, sin goi), i=12,...,n 2.4

1

Alternatively, the work-energy relation is formulated in [4] as the principle of action and
counteraction. The first one is defined as the action of (active) forces, whereas the latter
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one refers to the kinetic energy of the system and is named the action of the inertia force.
Fig. 2 shows the comparison of these two quantities based on numerical integration.

0.00001
8x10° | |
6x10° |

4x10°

AlJs

2x10°

0

-2x10° |

~4x10° |

1 2 3 4 5
tisl
Fig. 2: Time dependence of the action of the active forces (dashed) and the action of the inertia
force (solid).

3. Conclusions

Although we have focused on the simple discrete model of the rope, the multibody
approach produces an expanded system of second order differential equations, which
actually need to be solved numerically. The choice of the solver is justified by the energy
principle. The code of Abdulla and Cash manages to give reliable approximate solutions
to the Lagrange-Euler equations for the conservative as well as the rheonomic system.

The results inspire to develop the model by including such aspects as elasticity, damping
and air-resistance. All in all, the problem provides many possibilities of dynamics
analysis, so we feel that the potential directions of development are worth efforts and
will be realized successively.
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A discrete model of a rope with elements of a changeable length is considered.
Scleronomic and rheonomic constraints are given to the system. Dynamic equations of
motion are formulated and their complexity is presented from the computational point
of view. Numerical experiments are performed and the obtained results are discussed
in terms of the total energy of the system.
Keywords: multibody dynamics; discrete model; differential-algebraic equations.

Introduction

Dynamics of a rope as a classical problem of mechanics can be significant in research on
motion of other real objects. Actually, various works focus on behaviour of some class
of similar bodies such as chains, ropes, fly lines and whips. The last one is extremely
interesting because of very fast motion of its tip. Laboratory experiments are connected
with different difficulties and the complexity of the problem makes the analytical
approach also hard to perform.

However, nowadays implementation of numerical methods may produce approximate
but satisfactory results, giving considerable insight into the phenomenon. Pieranski and
Tomaszewski in [5] consider dynamics of a falling chain and base on laboratory as well
as numerical experiments. Goriely and McMillen [4] study — both theoretically and
numerically — propagation and acceleration of waves in the motion of whips. Gatti and
Perkins [3] present mathematical model of fly line and discuss numerical solutions too.

In the previous paper [2] we considered a simple discrete model of the rope with
scleronomic and rheonomic constraints. Now the rigid, chain-like system is
complemented with some flexibility aspects. We formulate its Lagrange’s equations of
motion and use computational methods to solve them. In several experiments the
behaviour of the given body is simulated and analyzed in terms of the mechanical
energy.

1. Mechanical system and equations of motion

Let us modify the model assumptions specified in [2]. The system consists of # elements,
but now each segment includes a rigid, cylindrical rod and a spring at the end. More
precisely, the ith spring plays a role of a lengthening part — belongs to the ith rod and
retains its orientation. The elements as a whole are still linked by ideal joints (without
friction), but it should be noted that the connection “bar-bar” is replaced with the “bar-
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spring” type. Every rod has a length / and mass m. The springs are assumed to be linear
and identical — their free length is denoted by /; and the stiffness by k. Their mass is
neglected.

The mechanical system is placed in a gravitational field. One end of the body is attached
(by the first spring) to a point (xy, yy), whereas the other one moves freely. Classically,
the motion is restricted to take place in a vertical plane only.

The applied approach means increasing the number of degrees of freedom.
Consequently, apart from the angular generalized coordinates ¢; defining the angle
between the ith segment and the ¥ downward axis, we introduce some additional set of
variables z; for i =1,2, ..., n denoting the springs elongations.

To make our considerations more general, we focus on the rheonomic system at once.
Thus, the position of the moving support expressed in the Cartesian coordinates depends
explicitly on time:

xg =X (t), o =¥olt) (1.1)

The position of each segment (its mass centre) in the Cartesian coordinate system may
be written as follows:
i—1 1
X; =Xy + Z(hj +l)sin(pj +(hi +Eljsin(p,~
j=1

i—1
Yi=Do +Z(hj +1)C05¢j +(hi +%ljcos¢i
=

(1.2)

where h, =/, +z; for i=1,2,..., n. Having calculated terms for the velocities of the ith
segment in the X and Y directions, one may obtain formulas expressing the kinetic and
the potential energy of the system (7" and V respectively).

We apply the Euler-Lagrange equations to describe behaviour of the system:

%(s_FJ_s_Lzo, i=1,2,...n

bi) OO (1.3)
Al Ok o k=12

dt\ 0z, ) 0Oz,

where L=T-V is the Lagrangian. After substitutions and simplifications we obtain the
equations in the final and possibly concise form:

=fori=12...,n
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L, B h; 20 h h; ..
@(b”-1—2+2b”-7+aﬁj+2(alj7+a,j}[7]+lj¢jcos((pi—(pj)+

J=1
i-1

+ Zn: [%%JF%J(%JFI}% cos((p,. -)—%Z(a-hT+a )z sm((p (pj)

j=1

n i-1
1 aj(h +1jz sm( )+Z(%—+a J(h—J+l}p sinlg, (pj)+
[ l j=1 l l
h; o2 si ( 23 .y ( )
+Z ”l a; | 5 +1jpj sinle +ZZ ”l+” p;z; coslp, —o; ]+

J=i+l

+— z b}; ( +1j(ojz cos((p, (pj)+%(b;[%+bﬁj(gsm(p,+x0 cos@; — Osm(p,) 0

j =i+1
= for k=1,2,...,n

k-1 h. n h.
Z‘ia}{j[Tj+lj¢j sin(gok —goj)+ Z (a,;jTj+a,gj(bj sin(gok —goj)+
=

Jj=k+1

n . k-1 , hj 5
+Zbkaj cos((pk —(pj)—Zb,g- T+1 ?; cos((pk —(pj)+

j=1 Jj=1

_Zn:(bkjhl +bkj}a cos((pk (pj)+22aqupjz sm((pk—(pj)+

Jj=k j=1

1, o 1k
m

where:
2(n—i)+1
2 forj<i .
2(n—i)+1 L
3(n—2i)+ An=+l for j<i
a;,=4>—2"" forj=i b, = .
v 3 Yo 2(n-))+1 o
2(n— ) > for j>i (1.4)
for j>i
. 1 : 1
aijzaij+5 bljzblj+5

It should be emphasized that the summation convention is not applied in the presented
equations of motion.
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2. Numerical experiments

As mentioned in [2], in order to solve the system of differential equations approximately,
we have applied the MEBDFV code developed by Abdulla and Cash [1]. It should be
noted that from the numerical point of view broadening of the problem description gives
in fact 4n first-order differential equations:

P =0
Py =,
Z‘l :ul
: =u @.1)

n n

n 2n
zml’j a)j+ zml’j j:fi(t,¢l,...,¢n,Zl,...,Zn,a)l,...,a)n,ul,...,un)
j=1 Jj=n+l

2n

n
ZmZn,j w;+ Zmz,w-uj =f2,,(t, (/)1,...,(/),1,21,...,2”,a)l,...,a)n,ul,...,un)
j=1 Jj=n+l

where m;; are non-constant coefficients which depend explicitly on the generalized
coordinates:

m,‘,j=m,«,j(t,qo1,...,(/),,,zl,...,zn) 2.2)
Obviously, we have also 4# initial conditions:
o(to)=00» oltg)=w0, z(tg)=z0, ultg)=109 for i=12,....,n (23)

In the considered numerical experiments we will focus on the examination of the results
provided by the solver in terms of the total energy of the mechanical system. It is
essential because the code performs the integration process using some internal,
numerical convergence tests, which do not refer to mechanics. Thus, giving the physical
sense to the solution and involving it in computation of the kinetic and potential energy
seems to be an independent and objective test.

Firstly, let us consider the scleronomic system. For instance, we will show the time
dependence of the energy for a model consisted of n=20 segments with the following
parameters: nm=0.5kg, n/=1m. We have also taken ///=1/3 and kSZIO4 N/m. The initial
configuration of the rope is specified by catenary curve, where the position of the tip is:
x=0.2m, y=-0.5m. The rest of the initial conditions:

$,(0)=0, z(0)=0, 2(0)=0  for i=12,..n

In Fig.1 we present the potential, kinetic and total energy of the rope. As visible, it may
be said that these quantities are well-behaved during the simulation. However, the initial
conditions do not make the integration easy. The fall of the rope from a relatively high
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level causes that the motion of such a discrete system starts to be chaotic very quickly. It
is noticeable in the graph — the dependencies 7(¢) and V() look smoothly just up to =Is.

N

1 2 3 4 5
t(s]
Fig. 1: Kinetic energy (T), potential energy (V) and total energy (E) of the scleronomic system

Now we will deal with the rheonomic system. We will consider here a free-hanging
rope, that means ¢, (0): 0 for i=1,2,...,n. The parameters of the model are the same

as before. Additionally, zero generalized velocities are assumed at /=0 and also z, (0) =0
for i=1,2,...,n. The body will be brought into motion with the use of the following

constraint function:

Asinz(ﬁBt) for t<

1
xo(t)= B (2.3)
0 for t>—
B
where:
A=0.1[m], B=5[1/s]

To assess the obtained results one may apply the work-energy principle for a rigid body
formulated. Thus, the changes in the kinetic energy of the system over time may be
compared with the work done by all forces during the same actual displacements. Here
we present a graph of the total energy (Fig. 3), which coincides with the intuitive
approach. The total energy of the system rises as long as the rheonomic constraints “act”.
Afterwards the energy remains constant at the level forced by the constraint function.
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Fig. 2: Kinetic energy (T), potential energy (V) and total energy (E) of the rheonomic system

3. Conclusions

We have focused on the discrete model of the rope with elements of a changeable length.
From the numerical point of view the approach produces an expanded system of
differential equations. The performance of the algorithm has been tested on the basis of
the energy principles, which indicates that the code MEBDFV gives reliable
approximate solutions to the Lagrange-Euler equations for the scleronomic as well as the
rheonomic system. Thus, the results provide many possibilities of dynamics analysis and
we feel that lots of aspects merit further attention.
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Abstract

The paper presents the 2D-Statix environment which was developed for upgrading
teaching of statics. The program is designed to solve any statically determinate problem.
There is a possibility to deal with a system with different constraints such as simple
support and roller support, pin joint and some elements like beams, curved beams, rods
and polygonal rigid bodies. Various loads may be applied — concentrated as well as
distributed. As a result the program provides values of constraints reactions and
information about compression or tension of some elements. The program presented by
the authors is unique because there is no similar widely available application. In the paper
some classical problems of statics are solved to visualize capabilities of the 2D-Statix.

Introduction

The main aim of the authors was to create a simple application that is useful in didactic
process. A lot of statics problems may be solved by some popular programs like
WorkingModel 2D or SolidWorks. However, the costs of their simple versions are huge
and in fact they are not appropriate to deal with such problems. The presented program is
able to determine the solution to every 2D static problem if the considered system is
statically determinate. Otherwise, a message is generated to inform that the system is
statically indeterminate or improperly constrained.
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For planar single rigid body there are possible two cases of loading. In first case several
forces act on particle. Then we can write two equilibrium conditions. In second case the
considered rigid body is loaded by any system of forces and then we can write three
equilibrium equations. In both cases conditions usually leads to linear system of
equations with respectively two and three unknown reactions. For system of several
connected rigid bodies we can apply equilibrium conditions according to any rigid body
and then we can obtain the system of linear equations.

The aim of the paper is presentation of computer implementation of traditional system of
equilibrium equations, which can determine reaction forces for single rigid body and for
system of connected rigid bodies. In this implementation user define geometry,
constrains and loading of considered system. Those data allow to make linear system of
equations and to solve it.

The developed environment includes a graphical interface which allows to build any

statical system in a very simple way. The whole environment was designed in Fortran 90
language with the use of Winteracter library [4,5].

1. Basic elements of 2D-Statix

To derive a solution to a given statics problem, it is necessary to define basic constraints,
elements and loads. Pictures presented below are printed screens of the main 2D-Statix
window.

Constraints which may be defined by a user:

- Simple support and roller support. Both can be placed at various angles.

< 2

- Fixed support. It can be placed at various angles.

- Pin joint. It may connect different types of elements.

Elements which may be defined by a user:
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- Beams (straight and curved) and rigid bodies (polygons)

N\ @

Loads which may be applied to the elements: concentrated forces, moments and
distributed loads (defined as a linear, quadratic or cubic function).

N> ATLID
.&.OW 2

2. Test problems

Problem 1: Determine the forces in all of the members of the truss shown below [2]:

1kN 2kN TkN

6.0m

4 5m 4.5m 4.5m 4 5m

Fig. 1. Example of truss loaded by three forces - picture was made in 2D-Statix.

In classical approach the problem could be solved by solving the system of 2N
equations, where N is number of pin joints. The 2D-Statix generates this system and
determines all unknowns by solving it. Solution of the given problem is always
presented on the screen with the picture of numbered truss members and drawn reaction
forces in supports as in the fig. 2.
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Notes B

Tension

Tension

Compression

Tension

Compression

Compression

Compression

Compiesson | =

Fig. 2. Considered truss with numbered members and table of unknown reaction forces.

As it may be seen above, apart from the values of the forces in all the bars, 2D-Statix
provides information about the character of the forces (tension or compression). The
program also draws reaction forces (blue vectors in fig. 2).

Problem 2: Determine the reactions and the force in the bar taking into account mass of
the two rigid polygonal bodies m,=m,=1kg [1].

2.0m 10N/m
1 P 10N

4

2.0m

| 2.0 I 3.0m l 3.0m |

Fig. 3. Two connected polygonal rigid bodies. - picture was made in 2D-Statix.
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Solution of problem 2 from fig. 3 is generated by the system in main window of the
environment as table of unknown reaction forces and information about tension or
compression of rods or beams in considered system of rigid bodies fig. 4.

-

¢

Reaction

Walue

Unit

H

27.263

W

27263

V2

37168

H3

27.263

W3

24.715]

@ o= fo fraf—

S1

-38.555]

=zl =z|=|=|=

Compression

Fig. 4. Two connected polygonal rigid bodies. - picture was made in 2D-Statix.

The 2D-Statix does not draw the reaction forces vectors in pin joints. We can find them
in the result table that is always visible under the main picture. There is no limit set for
the program for number of connected rigid bodies and forces so it is possible to build

really complicated systems and effectively determine all unknown reaction forces.

Problem 4: We consider improperly constrained polygonal rigid body presented in the
fig. 5. The message generated by the program informs user about statical indeterminacy

of considered system [3].
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x

\\J) The system is statically indeterminate!

Fig. 5. Two connected polygonal rigid bodies. - picture was made in 2D-Statix.

2D-statix seems to be very useful environment and it could be perfect tool to teach
statics in engineering fields of study. The application should be upgraded and there are
plans to add to the program some elements of strength of materials in the future.

Acknowledgment: The paper was supported by the Project 21-288/2008 DS.
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Abstract

The paper is devoted to analysis of effectiveness of vibration reduction with the use
of resonance-type vibration eliminators, viz. the frictional and viscous-type ones.
Their usefulness for vibration minimization in the extra-resonance range has been
shown. The resonance-type eliminators, i.e. the frictional and viscous-type ones, are
distinguished by similar ability to reduce vibration. Nevertheless, effectiveness of
vibration elimination of these eliminators is lower as compared to the effect
achieved by increasing the mass of the protected system.

Keywords: dynamics, vibration minimization, vibration eliminators

Introduction

The aim of elimination of mechanical vibration is very important from the point of
view of durability and reliability of technological equipment. The most effective method
of reduction of dynamical response of a mechanical object consists in elimination of its
reasons, i.e. changing amplitudes or spectral composition of excitations. In case the use
of such a method (often referred to as a direct method) becomes impossible the
intermediate methods are used instead, that consist in interference into mechanical
properties of the considered object. Three such methods may be mentioned here
e change of mass — elastic — dissipative parameters, with unchanged object structure;

e introduction of an additional mechanical system into the object, located at the
disturbance path, i.e. vibroinsulation;

e introduction of an additional mechanical system — vibration elimination

The paper discusses the problem of vibration in case of a particular coupling between the

protected system and the eliminator.

1. Physical and mathematical model of resonance type vibration eliminator

Ability of mechanical vibration minimization depends on the type of vibration
eliminator. High effectiveness of vibration reduction is characteristic for dynamical and
impact eliminators. The paper describes researching of vibration reduction effectiveness
of one of resonance-type eliminators, in which the coupling with the protected object is
of dissipative character. Hence, the forces acting in it depend on relative velocity of both
sub-systems, i.e. the main, the vibration of which is to be minimized, and the eliminator
itself. Two types of eliminators may be mentioned:
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e a viscous-type one, in which the interactive force is proportional to odd powers of
relative velocity of both bodies;

e a frictional one, in which the interactive force depends on relative velocity of both
bodies and is referred to as a dry friction force.

The present paper describes analytical & numerical research of effectiveness of both

eliminator types. The consideration is carried out with the assumption that a protected

object may be modeled by a non-linear system of one degree of freedom (M, K*, C*)

with force harmonic excitation F(t). The vibration eliminator is modeled as a material

point of the mass m coupled with the mass M by a force depending on relative velocity

of both bodies S (x - )7) . Physical model of such a system is shown in Fig. 1.
a) IE c* |

M S-y) H m

O | O O _O
P77 b) G,

C %
0 =L

Fig. 1. Physical model of protected system with resonance-type vibration eliminator
a) viscous-type eliminator; b) frictional eliminator

Equation of motion of the mechanical system MK*C* provided with a resonance-type
eliminator may be formulated in the form [2,5,6]:

Mx+C*x+K*x+S(x—y)=F0 Sin(a)t), )
my—S(x—y)=0
where stiffness and damping coefficients of the protected system are assumed in the
form: K~ = K(1+Bx2) c = C(1+ wx’ )
In case of a viscous-type eliminator (a) the coupling force between the protected system
and the eliminator is assumed in the form

S(e=5)=clx= i+ wls- 5] @
where ¢ and w are constants that describe the nonlinear resisting force.
For a friction eliminator (b) the model of dry friction force is of the form
S (VW ) = ftQ(VW) , Where f; is a constant, Q(v,,) is dimensionless shape function, and

K*

RN

Vv, = X— Y isrelative velocity of both bodies. According to [1,3,4] the shape function

should satisfy the following conditions:
e the function Q is continuous in the whole range of relative velocity v,,;
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o 1lim(Q)=1, lim(Q)=-1

V>0 V,,—>—®0

. min(Q)=—fS ! fr, max(Q)=fs / fi . where f / fis the ratio of static to

kinematic friction force.
. . . . 2r | K L
In case of dimensionless relative velocity v, =v,, —, I the shape function is
g

proposed in the form

cvyy for -v;2v,; >V,

0(v,,)= oy — Cysign[v,, Habs[v,, 1-v " for -v;>v,, 2w, or vy>v,, 2y, )

wl =
sign(vw1><]+[j}—l}exp{- c3[abs(vw1)—v2]m}> for v, <—v, lub v, 2v,
k

where
dx, d t K K

Vil zil_ﬂ, T=—,X,=X——, Y, =V——, n,m2-evennumbers
dr dr T Mg M,

Boundaries of subdomains of the function Q have been determined from the conditions:

1
cvy=1=v,=—,

€
/s 1
£ _ o
SRS S S Ly,
Je o dvy ¢, n-1

e

Je

Example patterns of the function S(v,,;) for the viscous-type eliminator and function
Q(v,;) for the frictional one are shown in Figure 2.

a) Stv,,,) w>0  b) Qvy1)

w=0 f .

w<0 1 :

VoV
vw1 v —
w<0 v Vi Vo Vi
w=0
S

w>0 bl I N

Fig. 2. Coupling forces between the protected system and vibration eliminator:
a) viscous friction; b) shape function of dry friction force
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Behaviour of the systems has been researched based on dimensionless equations of
motion obtained with the use of the equation (1) and the relationships (2) and (3):

2
&’ x] +4ré dxl{ aM[ilxlj :l+472’2(]+ﬂx12)+S1(VW1)=4ﬂ'2F01 sin(Zn'é'r)
T

dr’
, 6)
d );1 _iSJ(Vm):O
dr H
2
d d d d
4rsy il 48 I+a, Py D for viscotic eliminator
dr dr dr dr
where S, (v, )= . .
47T2ft1Q i—ﬂ;n,m,cbcy& for friction eliminator
dr dr fr

while the dimensionless values describing dynamics of the main system and the
vibration eliminator are given in the form:

2

KTO K Mg~ w, M T,

2
c M,
A I
C KT, Mg

The equations of motion (5) have been solved numerically, with the help of a simulation
model developed with the use of the SIMULINK package in the MATLAB environment.

2. Investigation of effectiveness of vibration elimination

Effectiveness of elimination of mechanical vibration of a mechanical object MK*C*
with a resonance-type eliminator has been assessed based on the value of the
effectiveness function defined as the ratio of mean-square amplitudes of vibration
displacements of the protected system without the eliminator to the one provided with
such an eliminator

E = “IRMS (ﬂ = 0) (©)
X 1RMS (1 #0)

] .+T 7z
2 . . .
where  x;pu0 = T jxl (z')dz'z le , 7,=zAtr— dimensionless time to
TZ

stabilization of the system vibration, counted from the beginning of the simulation ,
T =nAr — dimensionless averaging time, A7 - time step of the simulation.
Simulation of the system motion has been carried out with the following parameters:
e  excitation
o dimensionless part of the excitation & = 0.95 - 1.05 with the step 46 = 0.01
for the viscous-type eliminator and Ad = 0.005 for the frictional one;
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o dimensionless excitation amplitude Fy=1;

e the protected system

o damping degree £=0.01;

o coefficient of damping non-linearity o=0;
o coefficient of stiffness non-linearity 3

e eliminator

o dimensionless mass of the eliminator p=0.1

e coupling

o dimensionless damping coefficient y=0, 1, 2, 5, 10, o for a viscous-type

eliminator;

o coefficient of damping non-linearity o,,=0;

>

o dimensionless amplitude of dry friction force f;;=0./—0.8 with the step
Af;=0.1 and f;; = oo for a frictional eliminator;
o parameters of the shape function n =m =2, ¢, = 100, c; = 1000, f/f, = 1.2.

In case the damping coefficient y=oo (viscous-type eliminator) and the dry friction
force f;;=co (frictional eliminator) no relative motion occurs between the two masses M
and m. This is equivalent to change in the mass of the protected system. The assumption
that the protected system is linear allows to write down the effectiveness of the changes
in vibration amplitude E,, according to the relationship (6):

v 1—(1+ﬂ)§2.2 +(2&5)

m

in Fig. 3b.
a) viscotic eliminator
6
[-3 I VI
FPECE SURPPRTTOPPPREEY A EPRELERPPREES
c
o
‘g [ 30 P /AR W
2 H
> H
g :
g 2peeegyl AR 3
o .
£ : !
© '
1
1—/ H
4 H
o H
0 T
0.95 1 1.05

dimensionless forcing frequency §

(1 - 52)2 +(2&8Y

Effectiveness of vibration elimination of a protected object with the use of a linear
viscous-type eliminator is shown in Fig. 3a, while for a frictional vibration eliminator —

y=
—2—0
—o—1
—a—2
—4—5
——10
= infinity

b) friction eliminator
6

efficiency function E

dimensionless forcing frequency §

(7

fy=
—o0—0.1
——02
——03
—0—04
—a—05
——06
——0.7
——038

e infinity

Fig. 3. Effectiveness of vibration elimination of a mechanical object with the use of:
a) viscous-type eliminator; b) frictional eliminator
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3. Summary

The research of effectiveness of both types of the vibration eliminators allows to draw

the following conclusions:

e The functions of effectiveness of vibration elimination are of equalized variability in
the range of dimensionless excitation frequency.

e Value of the function of effectiveness of vibration elimination exceeds one
(reduction of vibration amplitude of a protected system) for O > §g where 5g for
definite values of xzand £ are specified below:

for a viscous-type eliminator

y 1 2 5 10

S, 1093210953 ]0.967 | 0.971

for a frictional eliminator

fi 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
O 0.941 | 0.951 | 0.957 | 0.961 | 0.964 | 0.967 | 0.969 | 0.971

* inthe range 0 < d, the function £ meets the conditions 0 < E > E, <1,

* intherange 6> &, the function £ meets the condition. 0 < E<E, >

The numerical research presented here gives evidence that the use of resonance-type
eliminators enables several-fold reduction in vibration amplitude. Nevertheless,
effectiveness of vibration elimination achieved this way is lower than in case of simple
increase in the mass of the protected system.
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Abstract
In following paper some aspects of tossed coin dynamics are presented. Firstly: one-,
two-, and three-dimensional coin models are presented. More general case of
nonsymmetric or nonhomogenous coin is described. It is assumed that the coin is released
above a plain floor. Free fall of the coin as well as the coin motion including air
resistance forces and moments are analysed. Some results of numerical solution
simulations are shown.

Keywords: coin tossing, coin dynamics, air resistance, numerical simulation

Introduction

The study of flipped coins was begun by Keller [1]. He assumed that the coin spins
about vertically moving horizontal axis (Fig. 1a). Similar problem — plane motion of the
coin model — was presented in papers of Vulovi¢, Prange [2] and Mizuguchi, Suwashita

[3].

d)

N

Figure 1. Basic coin models: @) one dimensional model (plane motion of thin disk),
b) one dimensional model including air resistance, ¢) two dimensional model (spatial
motion of thin disk), d) three dimensional model (spatial motion of thick cylinder)
including air resistance
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Analysis of spatial motion of thin coin model (Fig. 1c) taking precession into account
and results of coin tossing are thoroughly described by Diakonis, Holmes and
Montgomery [4]. Special emphasis of this work was put on the probability of heads in
the process of flipping a coin, which is caught in the hand (for natural flips, the chance
of coming up as started is about 0.51). Previous literature on the dynamics of coin
tossing was also presented in [4].

In our previous paper [5] three-dimensional model of coin was shown. Euler parameters
(normalised quaternions) used to describe orientation of the body as well as dynamics of
the coin. Collisions with flat surfaces were also analysed.

In this paper air resistance forces and moments are included in the model.

1. Kinematics of coin

Any arbitrary position of a rigid body with respect to the fixed reference frame Oxyz
(Fig. 2) can be described by a combination of the position of the origin of the local
reference frame xy’z" and the orientation (angular position) of this frame £7¢ . The local

reference frame xy’z’ is rigidly attached to the body and its axes are parallel to the xyz
frame and &7 is the frame embedded and fixed in the body.

It is convenient to choose the centre of mass of the body (C) or geometric centre of the
body model (B) as the origin of local frames. (A real coin is in fact nonsymmetric body,
therefore to describe its motion we will use the geometric centre of the cylinder
modelling the coin (B) and the centre of mass of the coin (C)).

1.1. Euler parameters

An alternative to Euler angles and similar conventions of body orientation description
are Euler parameters called Euler symmetric parameters and known in mathematics as
normalized quaternions [6], [7]. They are very useful in representing rotations due to
some advantages above the other representations. The main advantage of Euler
parameters is that they do not produce any singularities in numerical solutions of body
motion equations.

In the matrix notation Euler parameters are represented by a column matrix

COSg
:eo — 2 | 1
p {} f (D
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Figure 2. Coin rotation by ¢ — with respect to the vector v

The rotation matrix R — expressed by unit quaternions (eo yeees €3 ) has following form

—1+2e] +2e; 2ee,—2ee;, 2eye, +2ee,
R=| 2ee,+2ee, —1+2e +2e; —2ese +2ee, | )
—2eje, +2ee, 2eje +2e,e; —1+2e) +2e;

Antysymmetric matrix € containing scalar components of coin angular velocity vector
— in the body embedded frame £7¢ — has the form

0 —eéje, +é,e —ée, téje;  é,e, +eée —éje, —ée,
1 T_ iy . . o .
Q=RR =2 0 ee, +eje +ee, —é,e, 3)
asym. 0

The angular velocity vector of the coin in the body embedded frame £7d is expressed
by following column matrix

o, ée, — e, —ée, +eé,e
0=|o, |=2|ee, +eée —ee, —ée, )
o, ése, —é,e +ée, —é e

The column matrix containing xyz scalar components of the coin angular velocity vector
(i.e. components in fixed spatial frame) has the form of

1) ée, —eéye +ée, —ée,

x

0, =0, |=2|ée, —eée —¢e, +ée; || )

y

(0] ee, +ee —ee, —eye;

z
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2. Dynamics of tossed coin

2.1. Free fall of the coin

Rigid body dynamics equations can be expressed as two equations in matrix form that
describe:

— motion of the body mass centre

M(aB+QrC+QQrC):f, Q)
— spatial orientation of the body
J,0+QJ,0+MR.a.=m,. @)

In the mentioned equations M is the mass matrix of the coin (M=diag [m,; m, m]), ag
denotes absolute acceleration of the point B, rc and R include coordinates of the vector
rc, describing the position of centre mass (C) relative to the origin B, J; is the body
moment of inertia matrix (determined with respect to the body embedded frame &z773¢5 —
parallel to the £nd and with origin B), and m; is the body force moment with respect to
the B, » and Q are the body angular velocity vector in the form of column and
antisymmetric matrices. In general case, for nonsymmetric or nonhomogenous coin, the
matrix Jp is not diagonal, because the axes &, 73, ¢ are not principal axes (some
nonzero inertia products in J; appear).

The column matrices ap and f are expressed by vector components with respect to the
fixed frame (xyz): a, =[% j 2] . f:[fx f, fZ]T-

On the other hand it is more convenient to describe rotations of the body (equation (7))
by their components with respect to the body embedded frame (£7¢).

The equations (6) and (7) are coupled equations even though free fall of a coin is

considered, i.e. even if the air resistance is neglected.

2.2. Air resistant forces and moments

It is assumed that total air resistance force (f.) can be divided into two components:
normal (f,), and tangential (f;) to the coin surfaces i.e. head (1) and tail (2) circles and
cylindrical surface (3)

f =f +f =f,+f, +f,, +f, +f,, +f, . (8)
For thin model (coin thickness #=0) air resistance force acting on cylindrical surface is
neglected (f;, = f;,= 0) and normal and tangential forces components on both circles are

described as
r 2z
fin = _ﬁ’n -[0 (J.O ‘VAin

'V pd0) dp- ©)
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f, =4[ ( R pdaj dp- (10)

where 4 , A are air force coefficients, v, and v, _are normal (outer) and tangential

total velocity components of a point on the coin surface, and b is the value of air force
velocity exponent (0 <h<1).

As results of (8)—(10) it was found that for thin coin

sSst//(fca),] —Nc®; +sl9§1//5c—sl901//j/+032')

f =—7r°2, —s1901//(§Ca)]7—77Ca15+s19s1//)'c—s1901//y+&92') ) (11)
cS(cfca),]—nca)g+s351//5c—s1901//)'/+cl92‘)
and
X
f =27 A|cHcGy+592)| (12)
s(cy+59z)

where s9=sin?, cd=cos 9, sy =siny, cyy =cosy .

Moment of the air resistance force with respect to the coin centre (C) for thin
symmetrical coin (and @, =0, @, =) was described as
, (r2+477§)a)§+4776(s9j/—c.92') "
wr . . 13
0

3. Results and conclusion

As an example of numerical results a comparison of coin tossing results for three models
is presented in the Fig. 4. Black regions denote that end result is “head” and white ones
mean “tail”. These results are obtained using Mathematica system [8].

a) b)

20.0 @, [rdfs] 251 20.0 @, [rd/s] 251

Figure 4. Coin tossing results: a) free fall of coin, b) air resistance included,
¢) air resistance and bouncing included
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In the Fig. 5 comparison of tossed coin motion for two models of coin (bar model [4] —
Fig. 5a, 5b and thin plate model of coin — Fig. 5¢, 5d) is shown.

Sz
7

NS

Z

IR

L )

/
/
==
—
S=
Ny
S

-
o
o

Figure 5. Motions of tossed coin for two models of coin (A, =4,=0.3):
bar model a) A,=0.075, b) A=0; thin plate model c¢) 4,=0, d) 4,=0.075

Presented in the paper more realistic mechanical model of coin tossing allow examining
whether the initial states leading to “head” or “tail” are distributed uniformly in phase

space.
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Abstract

In mechanics of continuous media, one of the sub areas is the coupled field theory
describing interactions of mechanical, thermal, diffusion and electromagnetic field. All
this physical fields are represented in the tensors introduced in this theory. Taking into
consideration the momentum and angular momentum of the electromagnetic field in
medium requires introduction of the fields: couple stress, mass angular momentum and
mass couple in balance equations. From the vectorial nature of momentum, angular
momentum, force and couple it appears that the stress tensor and couple stress tensor are
the second order. Bearing in mind the importance for modern technology of the physical
properties of the surface and surface layer of a solid, the conception of balance equations
will be applied to describe the material surface interacting with an electromagnetic field.
Keywords: coupled fields, micropolar medium, angular momentum, couple stress

Introduction

In the coupled field theory understood as the phenomenological theory of the material
bodies, the mass as a quantity typically mechanical becomes a carrier of the electric
charge and the magnetic moments. In this way the electromagnetic fields join the
interactions in the model medium as typically mechanical or thermo-mechanical. In this
case the physical laws considering all the occurring fields should be used. The
convenient forms of the physical law in the continuous medium are the balance
equations derived from the field theory. The physical fields in the continuous medium
are connected with the impact, what determined the form of the theory of the coupled
field theory in the theory of the continuous media. From the utilitarian needs of the
mechanical engineering point of view the impact of the physical reasons different from
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the mechanical load on the stress field in the continuous medium is essential. It cost the
advent of the approximate theory aiming these considerations. The quantity relations of
the tested effect in used the applied approximations in vital. A good example of such
proceedings can be uncoupled thermo-elasticity where the impact of the strain field on
the distribution of the temperature in the medium studying only influence on the
displacement field and further on the stress fields is omitted.

The theory of coupled field is very successful and there are many interesting problems
which have not been worked out yet. The examples of such cases can be the influence of
momentum and the angular momentum of the electromagnetic field on the balances of
these qualities in the continuous medium.

1. The Geometry of Surface

Let us assume that a material surface is described by the Gaussian method, using
curvilinear coordinates , by the fundamental form [1]

dszzaaﬁ du®du”, a,B=12, (1)

where, S, Ayp sl P are the length, the metric tensor, and the assumed Gaussian
curvilinear coordinates of the surface respectively. The covariant and contravariant
components of the metric tensor satisfy the relation

a,a’’ =57, (2)

ap

where, O 0}: is the Kronecker’s delta.

The natural basis of the surface S : X(ua) IS (X1 X, ,m) , where the vectors X, are

tangent to the coordinate lines and M is normal.

Let a vector field V(ua ), v=y* (u s )xa defined on the surface X(ua ) The covariant

derivative of the vector V(u “ ) is the mixed tensor of the second order

Bl

vy =07+ v,
v,

v
V,v,=0,v,+ . v, ,
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gl . . 0
being the Christoffel symbol of the second kind and O « (0)= PG (0) Ifa
v, u

tensor field of the second order S “ (uﬁ ) is determined on the surface X(ua ), the

covariant derivative of the components of that tensor is determined, in agreement with
[1], by the formulae

V,8%=0,8% +{ “ }S‘”’ +{ p }S“5 ;
o,y o,y

V.S 0.5 0 S o S
= — — s 4
v o v op a,y B ﬁ,ﬂ/ ad 4)

V S¢=0 S“+{ a}sé—{ o }S“
=B r= B 5,7 B /857/ 5

A theory of balance equations will now be formulated for such a surface.

2. Balances of Momentum and Angular Momentum

The momentum balance in the continuous medium is written in the form:

d
EJ‘VkadV:J.V(aJ tkl"'pfk)dV ®)

where the first integral on the right side describes the contact forces applied to the
surfaces limiting the considered area, while the second integral describes far-reaching
forces derived from gravitational and electromagnetic external fields [2].

These forces are called volume of mass because they reach every unit of the body and
act on every unit of the mass of body. The integral o these forces are show as the sum of
the interactions of both fields:

[pfidv =] pfemarv] prrav. ©

According to [2], [3], [4] balance of momentum of electromagnetic field gets a form:

d
— [ P(DxB),dV=| @, T,+pf")dv, )
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where: D,B are vectors of electric induction and magnetic induction, 7}, is the

Maxwell stress tensor. Let substitute (7) and (6) to equation (5), we will get

1, ol +OxB)Jav =] (0,0, 4T, )+ p £ 1V

According to [3], [4] the Maxwell stress tensor has a form:

T,=D,E, +B.H, - % 5,(D,E, +B.H,),

To facilitate we will introduce notation:

Ve=vi +(DxB), , Jy=t+T, ,

then
LI pydv=[ 0,3, +p fr)av
dr v v

The differential balance of momentum will be shown as follows

pDYV, =03, +p™,
where: D, is material derivative..

The balance of angular momentum has a form

iki =m,,
dt

where: angular momentum and moment of the force have the forms [2], [5]

®)

(10)

an

(12)

(13)
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k, = IV (,0 € XV, +p/<,.)a’V, (14,)
m, = jV[a, (€ X; 34 +m”)+<eijk x, of " + pb, )]dV, (154)

K, - is a mass angular momentum, 71, - couple stress tensor, b, - mass moments of the

force. The local form of balance of angular momentum can be derived while using the
law of conservation of the mass and the balance of momentum (12), in a form

pD,x, =0m,; +pb+e, I, . (16)

It is the most general form of this balance, as occurring in it quantities exhaust all the
possibilities of mathematical modeling .

3. Surface Effects

Let us consider the following vector and tensor fields on the surface X(#“) described by

(1-@.

VEwe,t), 3 s (1), ow®,t), ou”,t),

a7
Ky(u,0), mgs(u®,t), by(u®,1)
where 0 denote the surface density.
The balance equations have, in agreement with Eq. (12), (16), the form
oDV, =V Saﬂ +0'fﬂ ,
(18)

_ a ~
oD, ky;=Vim,+obs+ey, I

m am?
Equations (18) constitute a balance description of coupled fields at the surface.

4. Conclusions

The consideration made in this paper show that in the medium the electromagnetic
field has an influence on the stresses through the Maxwell tensor. In the medium the
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couple stresses and mass moments of the forces occur. The mass angular momentum
can be interpreted as the mass moment of inertia and spin of electromagnetic field.
The results just presented make it possible to construct a linear and also nonlinear
theory of any type of coupled surface effects.

This work was supported by Poznan University of Technology grant

21-289/2008 DS
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Abstract
Toupin’s version of Saint-Venant’s principle in linear elasticity is generalized to the case
of linear magnetoelasticity. That is, it is shown that, for a straight prismatic bar made
a linear magnetoelastic material end loaded by a self-equilibrated system at one end only,
the internal energy stored in the portion of the bar which is beyond a distance s from the
loaded end decreases exponentially with the distance .
Key words: magnetoelasticity, Saint-Venant’s principle

Introduction

There are many mathematical versions of the Saint-Venant’s theorem for instance by
Mises -Sternberg, Knowles, Zanaboni, Robinson and Toupin. All the mentioned have
been discussed by Gertin[1] in his monograph. In this paper we will prove the Saint-
Venant’s principle analogically to the Toupin’s version. For a linear -elastic
homogeneous prismatic body of arbitrary length and cross-section loaded on one end
only by an arbitrary system or self-equilibrated forces, Toupin [4] showed that the elastic
energy U(s) stored in the part of the body which is beyond a distance s from the loaded

end satisfies the inequality[5]

U(s)<U(0) exp{— (:Ell))} (1)

The characteristic decay length s (/) depends upon the maximum and the minimum

elastic moduli of the material and the smallest nonzero characteristic frequency of free
vibration of a slice of the cylinder of length 1. Inequalities similar to (1) have been
obtained by Batra [5] for linear elastic piezoelectric prismatic bodies and by Borrelli &
Patria [6] for a semi-infinite magnetoelastic cylinder on the asymptotic behaviour of the
Dirichlet integral of the magnetic field and of the elastic energy.

Here we consider a linear theory of magnetoelasticity (for infinitesimal strain) in which
only the ponderomotive force remains non-linear in presence of a magnetic field . We
assume that the elastic body is homogeneous, isotropic and electrically conducting [7],

(81, [9], [10].
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1. Equations for static magnetoelasticity
Let the finite spatial region occupied by the magnetoelastic body be V', the boundary
surface of ' be §, the unit outward normal of S be n, and S be partitioned as
§=S, 0S8, =85,US,, Q)
0=8,NS;=8,NS;.
Physically, S ,S, are, respectively, parts of the boundary S on which mechanical
displacements and tractions are prescribed. §, is the part of S which is in contact with
electrode, hence the tangential electric field vanishes on it, and §, the parts of S on

which the magnetic induction is prescribed. The governing equations and boundary
conditions for static magnetoelasticity in rectangular Cartesian coordinates in SI units
are:

0,3,=0, £ 0,E,=0, 0,D, =0, in V,
&, 0,H, = Jj,, 0,8,=0, inV, 3)
Ji=0E,, D,=¢E,, B =uH,, inV,
- 1 .
T,=t,+T,, 1, =Co Eus Zy:BiHj*Eé‘qB/‘Hw in V,
1
8,-,-:5(@“,"'6]'“[')7 inV,
u,=u, on S, niﬁ/:?f on S;,
EunE =0 on S, n,B,=0 on Sy,

where u, is the mechanical displacement, f,y the mechanical stress tensor, T, the
Maxwell stress tensor, £ the strain tensor, E, the electric field vector, D, the electric
displacement vector, H, the magnetic field vector, J. the current vector, B, the
magnetic induction vector, ¢ u,o the electromagnetic material constants, Ciu the
elastic moduli, 5 the permutation tensor, 5, the unit tensor, o . the spatial derivative,
u, and 7] are the prescribed boundary mechanical displacement and traction vectors.

The magnetic enthalpy function /4 is determined by volume and given by:
1. 1
h== Sy = BH,, “
where 3, is the magnetoelastic stress tensor.

We assume that the material constants occurring in our considerations are described
positively. We will introduce to our deliberations the internal energy density:
1 1
W =h+ BH, == Sys,+ BH,. )

To facilitate the further considerations the magnetic quantities will be show in the
representation of the vector potential:
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H =¢04 0.4, =0,

rsq s g

1 (©)
H, :Eg”qHW H, =0,4,-0,4,.
The Maxwell stress tensor in this representation takes the form:
Ty=BuH,, By =uH . Q)
The internal energy density will have a form:
1 1 1
W:EIklgk[_i_EBskHlsgk[+EBS/(HI\'S' (8)
If we use the Hook’s law for the transformation (8), we will get
1 1 1
W= Eck/mgmgk/ + EBskHls‘gkl + EB.kaks . ©®)

The above density of internal energy is positively defined quadratic function of nine
variables {gkl’ H M}. If we form arranged pairs (gk,’ H kl) as the components of the nine-

dimensional vector I', we will write the equation (9) in the symbolic form:

W=r-Cl= rck,r, (10)

where C is a linear transformation from a nine—dimensional linear space into a nine-
dimensional linear space the matrix of transformation created. Because of the positive
definiteness of W the inequality is fulfilled:

2?/ 2?/ =c,I,C,I, =T,CT, <a,T,C,T, =2a, W (1

where: g, is the biggest eigenvalue of the matrix C.

2.  Formulation of the problem

Now, we consider the prismatic bar. We introduce the Cartesian coordinate system In
such a way that the axis X, is the axis longitudinal of the bar. The surface X is loaded

by a self-equilibrated force system. Let label the area of the cross-section for x, =0 as
CO and X, =5 as CS.
The internal energy as a scalar in non-variable relatively to the stiff body motions. The

conditions of the mutual equilibrium of loadings gets a form:
ow

jnJ dS = jn—ds_—j—ds 0,

Cy ‘9!/ Cy ag!f (12)
[eixem, a—WdS =— [ &, W 45 .

& 0¢; o 08

We will additionally label the total internal energy as:
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U(s) = j wav,
Vs (13)
U= [way.

THEOREM. If a prismatic body made of a linear magnetoelastic material and with
materially uniform cross-section loaded on C, by a self-equilibrated force system, then

U(s) <U(0)exp[- (s —1)/s,1]; (14)
Where
s, (1) =2aM | 2,(1)"'?, (15)
2, (1) is the smallest nonzero eigenvalue of the following eigenvalue problem

o| Y \=m,, oW\t v,
Os, / 0B, !

g

(16)
nis[/ =0
!/ N
Eyn; Ay = O‘S\[C\UC\H]’
ntH; = 0‘[qucw]’

for the section of the prismatic body put on the axis length I. In the eq. (13) V is the
volume between the sections X, =8 and x,=s+1, S is the total surface containing V,

C, and C, are the areas of the sections. The written equations (16) correspond with

the problem of the free vibrations of the magnetoelastic prismatic body with the length

1, unit density and the unit density inertia affiliated with the vector potential.
Proof of the theorem: On the strength of (13) | we can write:

B ow oW 17
Us)=7 | [wey+w3deV. (17)

V,xy=s ij ij

Taking under consideration that the internal energy as a scalar is non variable relatively
to the stiff rotations we ca write

1
Oy = &y @Dy :E(akul _aluk)zo’ (18)
omitting the rotation tensor. At the same moment
Bij = ZluaiAjs (19)
Using (18) 1 (19) we can write (17)
Uy == [ | Low, +2u2 0.4, lav. (20)
2 Vaos Og; 0B,

On the surface C_ the orthonormal outer vector has a form ,, = -g5,,, we can write the

expression
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U(s)—f{ { o +2ya£/ﬂds_—j{ag .+2,u§£V AdeS, 2D

3j
which means the internal energy on the surface C . Next, we will utilize inequality

Schwarza used by Toupin [1965]
zjfngSajfzdmijgde, a>0, (22)
vV 14 a Vv

where f, g are any functions for which the above integrals exist.

Using the inequality (22) to the surface integrals we will obtain:

_7j uds <t o [ ow oW dS+ijujude . (23)
o0&y, 4\ ¢, 08, Ogy; o
Similarly
—fj W gas<t a | o om dS+ijAjAde . 24
: 0B, 4| ?loB, 0B, a,}
Hence
U(s), _ ﬂf OW oW oW OW | . —qu+AA (25)
d¢, 0¢, OB, 0B,

because it was assumed ¢, = @, = . Substituting from (11) into (25) we get

Us),— {ﬂIZaMWdS+ﬂ [, + 4,4, )dS} (26)

integrating on both sides (26) in respect to x, in the boundaries from x, =5 to

x, =s+/ for/ >0 and labeling

s+l

O(s,1) = j U(y)dy > 27)
we will obtain

0.y < B demfjuu A ANV, (28)

where ¢, is the volume between the sectlons Xy =5 and x,=s+1.1n his volume ¢,

we will consider the following eigen problem:
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(29)

, £y, A4, o\

s ik

nH, = 0‘

s\(¢,uCy)’

CUCyy

In the equations (29) and the earlier (10) the conditions formulated on the boundary
should be understood as the conditions of the jump regarding to the continuity of the
quantity of the electromagnetic field. It needs to be like this because the polar quantities
are present in the self-equilibrating force system. Introduced in (29) quantities p and y

are not important in the static problem which we consider and were introduced in aiming
obtaining the uniformity of the physical dimensions of the unit of the eigenvalues 4. In
the problem of the free vibrations on which Toupin[1965] invokes p and y mean

respectively the mass density and the inertia density of the medium contained in the
volume between X, =8 and x,=s+1.1n the further considerations we assume them as

equal to one. Multiplying (29); by u/_and (29), by 4, adding these equations and

integrating after volume (C_, using the conditions in the boundary (29); 45 we obtain

2deV

I(uu +AA)dV

Coa

.- (30)

The density on the internal energy is non negative and get the zero value W =0 only if
£,=0 and B, =0, then A =0. The deformation tensor £ =0 when the displacement

concerns the stiff motion. B, =0 concerns the case when there is lack of magnetizing.

Omitting these cases as non physical we assume that the integral in the denominator of
the equation (30) is always different from zero. The smallest eigenvalue 4 (/) must be

positive and fulfill the inequality

2 [wav
2,(0) < C. . (3D
I uu, + A4, )dV
Using in (31) expression (28) we get the following result
0(s, 1y < 3eY L(l) deV (32)
where
1 2
D=Lpa, + 2 (33)
S('( ) 2 ﬁaM loﬁ
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In our considerations g is any positive constant. If we opt

2 4
e (34)
ay i
on the strength of (33) we will obtain

1

a. )2
=2/ > (35)

0= 2%]

in accordance with (15).

Differentiating (27) relative to § we get

dg 1 1 (36)
= _Cus+D-U(s)|=-- [war.
as Ve D-Uw) li
If we combine (36) with the inequality (32) the result is as follows:
g@§Q+qu (37)

ds

In our considerations the quantity Q(s,/) defined as (27) means the density of the
internal energy averaged along the segment / therefore it Has to fulfill the obvious
inequality:

U(s+1) < O(s,1) <U(s)- (38)
Next, we will integrate the inequality (37) taking into account that {(s) is non rising
function, with the effect:

. 39

Uty <ol =s) 5] (39)
Assuming that 5, =0, s, = s —/ we proved the inequality (14), which ends the proof.

Remarks

In this paper, analogically to the Toupin’s version Saint-Venant’s principle we have
proved is that the energy stored In the portion of the bar beyond a distance s from the
loaded end decreases exponentially with the distance s. It is generally difficult to find the
optimum decay rate unless one considers specific cross-sections.
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Abstract

Avian embryos are commonly used as ethically acceptable physiological models for research into prenatal live.
Although easily available, avian embryos are difficult objects for investigation. The main difficulties result
from the presence of shell separating the embryo from environmental influences and, what is more important,
from the presence and interference of many biomechanical, chemical, electrical and other phenomena. The tiny
changes in the object parameters of different nature are hardly measurable by means of the indirect methods.
Investigation into the embryo prenatal life requires application of the non-invasive methods, which complicates
the measurements. Taking into account the fact that as early as in the second day of incubation the avian
embryo hart begins to work being by itself at the beginning of mutual conversions, it is easy to become
conscious of the scale of the measurements and resulting identification problems. In the process of forming and
growth, the heart of avian embryo undergoes constant biomechanical modifications. This aspects of
embryogenesis are correlated to electrical and hydro-dynamical activity. Only mechanical vibrations and
acoustical effects can be analysed on the basis of the indirect non-invasive measurements. The research carried
out by authors is presented in the series of two papers. The current paper (part I) concerns the innovative non-
invasive method dedicated for measurements of low-amplitude vibrations induced by the work of cardiac
muscles while in the second paper (part II) there is presented vibration analysis carried out by means of the
classical LSCE modal analysis method. Although the biomechanical model of developing heart is
characterized by significant nonlinearity of observed parameters resulting from rapid increase in the cardiac
muscle mass, during a given measurement session the changes in the object parameters are negligible and the
assumptions of modal analysis are valid.

The changes in the proportions and organ masses as well as in time histories and values of forces generated by
beating heart are the source of changes not only in the estimated modal model parameters but also in the model
order. Some natural frequencies and corresponding mode shapes evolve and change their values, decay or
appear. This variability can be observed in the longer time scale (e.g. days). In a single identification
experiment lasting up to tens of minutes per day, after elimination of disturbances, the measured
vibroacoustical signal can be treated as quasi stationary. Modal model parameters and the model order were
determined for each separate measurement session lasting 10 to 40 minutes. Parameter values estimated for the
consecutive measurement sessions made it possible to track the changes in modal model in the consecutive
days of incubation.

Key words: influence of detrimental substances on biotic functions, non-invasive ethical measurement
method, ballistocardiography, modal analysis.
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Introduction

Pollutions of natural environment have a detrimental influence on mutual, formed for
thousands of years interactions between human kind and the environment. Medicines,
rubbish, industrial discards, pollutions of rivers, lakes, seas and the air are the most
noticeable forms of environmental pollutions that are dangerous to human health and, in
the extreme, to human life. The state of our health is also influenced by changes in
environmental conditions determined by physical quantities such as temperature,
humidity, air pressure, intensity of magnetic, electric and acoustical fields, etc. Therefore
the prevention and early identification of hazards are of great importance.

Carried out research aimed at inventing sensitive and non-invasive method making it
possible to examine in ethical way the influence of chemical substances (e. g. medicines,
pollutions) and physical factors on the growth of organisms as early as in the prenatal
phase. Such formulated objective is especially important since young, still forming
organisms are especially sensitive to changes in environmental conditions. The
knowledge of influence of chemical substances on the course of embryogenesis makes it
possible to test new medicines and, on the other hand, to learn the teratogenous influence
of chemical substances already present in the natural environment on alive organisms.
Elaborated research methodology aims at life protection in its early period. Results of
research carried out on animals are frequently the only base for early assessment of
teratogenous influence of environmental pollutions on human health and life. In these
research, for the ethical purposes, the experiments are frequently carried out on tissue
cultures [2, 15]. In the view of the fact that proper organism functioning is influence by
many, connected with each other factors, such as hormones, enzymes, psyche, charge
and electromagnetic balance, it seems that far more reliable are the results obtained in
research carried out on laboratory animals by the use of non invasive methods.

Chick embryo as a biological model system

The chick embryo has a long history as the biological model system [5, 12] that is
frequently used in medical and environmental research. Numerous publications concerns
the usage of a chick embryo as a model in research into infectious disease, viral
(influenza 14, 30], toxoplasmosis [29], cowpox [16], Kaposi's sarcoma [34], AIDS [22])
as well as bacterial [1, 31], different types of turmous, such as glioma [6, 27], melanoma
[26, 32], myeloma [9] and testing various pharmacological substances, such as
Pseudolaric acid B [18], Baicalein [20], Apigenin [10]. Due to easiness of carrying out
surgical manipulations and vast amount of information concerning chicken
embryogenesis, the chic embryo has also served as a model in physiological studies of
eye lens [5], genitals [21] and nervous system [25]. Spanel [33] reported applications of
chick embryos to biomaterials testing. For years chick embryos have served as a model
in research into influence of detrimental chemical substances, such as heavy metals (Cu-
sulphate, Cd-sulphate [4], mercury [13], lead [7] or chlorine compounds (PCB 126 [11],
TCDD [28]) and electromagnetic field (EMF) [17] on alive organisms. Such works are
of great importance since people in the industrialized countries live in an environment of
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ubiquitous EMF exposure, both natural and anthropogenic. The intensity, variety, and
geographic distribution of anthropogenic EMF exposures have grown dramatically since
the mid 20th century, with many uses serving, and in close proximity to, human
populations, such as electric power distribution, radio and television transmission, and
more recently, personal cell phone communication units and transmitting towers [3].

One of the earliest symptoms of biotic functions of the growing avian embryo is its
cardiac work. By cardiac work monitoring it is possible to carry out non-invasive
observation of the influence of different factors applied in ovo on developing embryo
cardiac work. Although there exist a few methods of monitoring chick embryo cardiac
work, it is non-contact ballistocardiography [8, 23] that seems to be the most accurate
and noninvasive method. In this method the mechanical work of the heart is investigated
on the basis of graphical registration of body movements induced by the heart [8, 19,
35]. Mechanical impulses resulting from cardiac work make the whole embryo body
vibrate, which, in turn, results in micro vibrations of the whole egg.

Identification experiment

The measurements of growing chick embryo cardiac work were carried out by means of
the non-invasive method presented in [35]. In this approach an eggshell with electric
charges on it represents one capacitor plate, the other being a receiving antenna of the
measuring equipment. The cardiac work of chick embryo induces micro-movements of
the whole egg, resulting in changes in the distances between the plates and thus in the
difference of potentials between the shell and the receiving antenna, which are registered
by measuring equipment (Fig. 1).
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Fig. la) Idealized ‘egg oscillator’ [4], where M: the egg mass approximated by a sphere
and firmly cradled at the end of a spring of stiffness k, &: displacements of the mass M
center in the course of vertical oscillations, dy: equilibrium distance between the top of
the egg shell and the upper electrode, b) measurement set [4]: e;, e,: detection system
electrodes, D: detector, R: suspension system, C: Faraday cage, H: heaters, P: heavy
platform, S: 4 springs, Sy: 4 springs by which the cage is suspended to the laboratory
ceiling.
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The measuring set consists of the Faraday cage which holds two heaters, detector of
electric field and a block of amplifiers, filters and an egg polarization system, supplier,
vibration damper and acquisition data system (A/C card for PC computer) [24, 35].
During the measurements, each egg was taken out of the incubator and placed on an
elastic suspension in the Faraday cage (Fig. 1b). In order to protect the caged embryo
from thermal stress, cage air was heated to the incubator temperature. The measuring
antenna of the ballistocardiograph was placed 2 [mm] from the eggshell surface. Each
time the measurements were taken 4 minutes after the egg with an embryo was placed in
Faraday cage, which aimed at minimization of possible interference in
ballistocardiograms resulting from stress of moving an embryo into a new place,
position, temperature and other physical conditions. A similar procedure was used by
Pawlak et all. [24]. Polarized system was turned on, the signal from each egg was
registered for 1,5 minutes, after which the egg was put back into the incubator.

Conclusions and final remarks

The paper concerns the non-invasive measurement method invented and still developed
by authors, which is dedicated for measurements of low-amplitude vibrations induced by
the work of avian embryo cardiac muscles. Methodology and the results of carried out
analysis of signals measured on the chic embryos by means of the proposed method is
presented in the paper under the same title (part II) that stands for the continuation of this

paper.
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Abstract

The research carried out by authors aimed at inventing the sensitive non-invasive method for ethical
investigation into the influence of chemical substances and physical factors on the growth of organisms in the
prenatal phase. The knowledge of effects of chemical substances on the course of embryogenesis provides the
possibility of testing new medicines and assessing the teratogenous influence of chemical substances already
present in the natural environment on alive organisms. The results of the research are presented in the form of
the series of two papers under the same title. The first paper, denoted as the part I, concerns the invented non-
invasive method dedicated for measurements of low-amplitude vibrations induced by the work of cardiac
muscles. The current paper (part II) is dedicated to vibration analysis of measured ballistocardiograps carried
out by means of the classical LSCE modal analysis method. Due to the rapid increase in the cardiac muscle
mass, the parameters of the biomechanical model of developing avian embryo are nonlinear. Nevertheless in a
single measurement session the changes in the object parameters are negligible, which enables application of
the classical modal analysis methods.

Key words: influence of detrimental substances on biotic functions, non-invasive ethical measurement
method, ballistocardiography, modal analysis.

Introduction

Recently, methods of modal analysis [1, 2, 3, 4] are commonly applied to analysis of
dynamic signals measured on technical objects such as machines, vehicles and bridges.
Estimated results, so called modal models consisted of corresponding system natural
frequencies, modal damping factors and mode shapes, are used as a basis for technical
state assessing as well as introducing structural modifications aiming at improvement of
system dynamic properties. In this paper, for the purposes of identification of natural
frequencies of chick embryo heart contractions on the basis of cardiac time histories
recorded during consecutive days of incubations, the LSCE (Polyreference Least
Squares Complex Exponential) frequency domain method of modal analysis was
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chosen. According to the authors’ knowledge, the results of modal analysis application
to analysis of data measured on biological systems have not been published before.

Polyreference Least Squares Complex Exponential method (LSCE)

Polyreference Least Squares Complex Exponential (LSCE) method is a multiple degree
of freedom method providing global estimates of system poles and mode shapes. It
consists in approximation of measured characteristics by the use of complex exponential
functions [1, 4]. In order to introduce basic formulas used for modal parameters
estimation, it is necessary to express the sampled impulse response in the modal

coordinates:
[r(nae)] = [ e Jz] m

where: [V/] — modal vector matrix, [¢""] — fundamental matrix, [L] — modal participation

factor matrix.
Single row of impulse response matrix equals [6]:

N
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Combinations of exponential function and modal participation factors z, {Lr} or

z ,* {Li } are the solution of differential equation of order p:

LML 2 L 2L, = o) ®)

r p

N,xN, N.xN, , . 2N
where: [VV1] , [Wz] , N; : number of applied excitations, p = Nm : order
i
of differential equation, N,, : number of identified mode shapes.
Since the system impulse responses measured in the point m are the linear combination

of equation (3) solutions, z, {Lr} and Z: {Lj} are also a solution of this equation.
Therefore:

[a(nar)], 1]+ [a((n = D)AD], [ T+ [l = p)ao)], 7, [= [0] - @)

For the equation (4) written for all the measurement points, by the use of the least
squares method, it is possible to determine estimates of [¥], ..., [W,] matrices. In the
next step, estimates of matrices [WW], ..., [W,] are inserted into the equation (3), resulting
in formulation of the eigenvalue problem. System poles and corresponding mode shapes
are obtained as a solution of eigenvalue problem. Presented method is one of the most
often used methods of modal analysis and serves as a reference point for evaluating other
methods [16].
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Stabilization diagram method

Stabilization diagram method consists in observing system poles for increasing model

order (Fig. 1b). The method allows the user to select poles interactively. It can be stated

that a given pole is the true pole of the tested structure if the following conditions are

satisfied:

— considered pole is stable with respect to the frequency, damping factor and modal
vector (it is marked as ‘s’ on the stabilization diagram),

— considered pole occurs at the frequency corresponding to maximum of the
amplitude-frequency characteristic shown in the background.

The meaning of symbols used in the stabilization diagram is as follows: ‘s’- the pole is

stable, ‘v’ - vibration frequency and modal vector are stable, ‘d’ - vibration frequency

and damping factor are stable, ‘f” - vibration frequency is stable, ‘0’ - the pole is

unstable.

o
I~ it s

= e
= ouse | oa | o _|_caes

S|

Fig. la) VIOMA toolbox for modal analysis, b) example of stabilization diagram.

Accuracy of system poles estimation depends on the measurement data quality, accuracy
of the assumed analysis method, correct assumption of the modal model order as well as
personal experience and intuition. For instance, as a result of analysis of noisy data or
assumption of too high model order, apart from real system poles, so called
computational poles can be estimated. Therefore nowadays, for the purposes of
interpretation of stabilization diagrams estimated on the basis of data measured on
complex systems in the presence of noisy background, supporting methods are used (e.
g. balanced realization method used for identification and removing from stabilization
diagrams poles that are computational, unstable or poorly represented in the
measurement data, fuzzy logic methods applied to assessing which poles belong to a
given pole line.

Discussion of obtained results

The analysis of chick embryo cardiac signals measured during consecutive days of
incubation was carried out by the use of the procedure realising LSCE method,
implemented in the VIOMA (Virtual In-Operation Modal Analysis) toolbox dedicated
for Matlab environment (Fig. 1a). Below there are presented results of modal analysis
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carried out for data measured on two chick embryos from the 9™ day of incubation up to
chick hatching in the 21* day of incubation. Values of natural frequencies estimated on
the basis of measured ballistocardiographs are gathered in the Table 1.

f 9 day 10 day 11 day 12 day 13 day 14 day 15 day

1 - - - - - R -

2 - 18,800 19,410 17,945 17,132 18,760 17,350

3 21,361 - - 22,811 20,912 - 22,055

4 - 23,416 23,553 - - 23,429 -

5 29,019 28,251 28,960 27,401 26,178 26,316 | 26,613

6 34,373 - - 36,376 32,061 34,310 -

7 39,114 - - - - - -

8 - - 45,435 - 46,430 | 44,790 | 41,250

9 52,814 55,703 - 55,866 56,573 - 56,286

10 | 58,501 - 57,454 - - 58,232 -

11 | 62,920 - - 63,985 64,834 63,025 61,638

12 - 67,686 67,155 67,952 68,330 65,907 65,810

13 - 71,662 78,824 - 78,268 75,108 -

14 | 83,615 - - - 85,327 80,576 83,164

15 - - - 90,098 96,975 92,806 97,530

16 | 101,843 | 104,943 | 99,846 | 105,531 | 103,855 | 102,842 | 106,59

17 - - 108,369 | 115,138 | 114,253 | 109,184 | 111,677

18 - - - - 123,392 | 121,121 -
16 day 17 day 18 day 19 day 20 day 21 day 21 day

1 - 12,9083 - - - - -

2 17,038 17,176 17,100 16,079 15,935 16,191 -

3 20,509 | 22,0867 | 21,230 20,021 20,998 22,061 -

4 23,565 | 24,8278 | 25,487 23,920 24,952 24,172 -

5 30,486 | 29,9154 | 29,952 27,895 27,517 26,748 -

6 37,825 - - 32,978 32,165 30,226 -

7 - - - - - - -

8 45,359 - - - - - -

9 56,779 | 56,1962 - 53,541 - 52,652 -

10 | 59,431 - 57,451 - 57,595 56,735 -

11 - - 62,437 - - 61,959 -

12 | 65,579 64,318 68,771 - 65,832 - -

13 | 73,677 | 71,8507 | 73,472 72,592 71,410 70,947 -

14 | 83,334 | 82,4109 | 84,056 81,647 81,417 87,683 -

15| 95,877 | 98,4129 | 95,050 93,584 96,714 96,351 -

16 | 101,127 | 106,741 | 105,662 | 104,548 | 103,321 | 100,181 -

17 | 110,198 - 109,564 | 115,037 | 115,667 | 109,537 -

18 | 119,996 | 120,825 | 121,251 | 123,201 | 121,492 | 124,148 -

Table 1. The first 18 natural frequencies estimated by the LSCE method during
consecutive days of incubation.
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Graphical interpretation of the estimated results gathered in the Table 1 is presented in
the form of Fig. 2a and Fig. 2b.
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Fig. 2. Changes in natural frequencies during consecutive days of incubation,
measurements taken on the chosen 2 eggs.

While analysing the cardiac signals measured on different chick embryos, the examples

of which are presented in Fig. 2a and Fig. 2b, the following regularities were observed:

- According to the progress of embryogenesis higher natural frequencies appear,

- Once observed natural frequencies are present in the signal up to the chick hatching
in the 21 day of incubation; the only exception to this rule is natural frequency of
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40 [Hz], which appears between 9" and 11™ day of incubation and fades between
14™ and 16™ day of incubation.

- Values of low natural frequencies are close to each other while the higher natural
frequencies are wider spaced and well separated.

- Values of identified natural frequencies remains almost unchanged during the whole
period of incubation; computed 3-point moving average trends are almost linear.

Conclusions and final remarks

The paper concerns analysis of the chick embryo ballistographs measured by means of
the method proposed by authors that was presented in the paper under the same title
denoted as part I. Analysis was carried out by means of the LSCE classical modal
analysis method for cardiac signals registered from 9" to 21" day of incubation in
measurement session lasting 10 to 40 minutes.

The changes in the time histories and values of forces generated by beating heart resulted
in the changes of modal model parameters estimated in the consecutive days of
incubation. Some natural frequencies and corresponding mode shapes evolve and change
their values, decay or appear. This variability can be observed in the daily time scale.
Observed regularities of changes in the values of natural frequencies in the consecutive
days of incubation can be used as a basis for assessing the influence of tested substances,
such as medicines, environmental pollutions and detrimental substances, on avian
embryo biotic functions.

The results obtained for many eggs reveled surprisingly small changes in values of
observed modal parameters. One of the possible explanations is that the very rapid
growth and formation of hart occurs in the early stage of incubation. So the future efforts
will be aimed at the improvement of the device sensitivity and moving the observations
towards the earlier days of prenatal live.
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Abstract

Rigid condition plays an essential role in creating of motion equations for the body. The
basic principles of balance, concerned with the global behavior of the body, translate in
various forms when they are applied to the rigid body dynamics and to the continuum
media theory. On the other hand, just for a rigid body the principles of balance of
momentum and moment of momentum take some various forms when are applied to the
chosen poles of reduction.

Keywords: rigid body, continuous media, basic principles, stiffness condition

Introduction

The theory of continuous media is concerned with the global behavior of bodies under
the influence of external disturbances. A satisfactory training in this field requires the
study of the interrelations among external agents and the response of the medium. The
external agents that produce changes in the state of the medium may appear in the form
of surface and body forces. The nature of these agents, the laws governing them, their
mathematical characterization, and the physical measurements of the external effects
must be an integral part of study in the rigid body dynamics and in the theory of
continuous media. In engineering, the ultimate interest lies in predicting the way in
which a medium responds to the external load. In this input-output relationship, the
physical model assumed for the constitution of the body occupies a central position. The
unified approach to the study of the global behavior of materials consists of, first,
a thorough study basic principles common to all media and, second, a clear
demonstration of the types of media (such as the solid, rigid body, etc.) within the
structure of the theory. The theory so constructed makes available methods, which are
useful in the creation of new fields of research. In the exact theories one finds not only
a satisfying permanence but also an aesthetic structure that is fundamental to all basic
research. Exact theories are frequently criticized for the mathematical difficulties they
present in the treatment of nontrivial engineering problems. This objection is balanced,
however, by the simplicity of the exact theories. The basic principles are: conservation
of mass, balance of momentum and balance of moment of momentum. These are the
fundamental axioms essential in the construction of the foundations of the theory.

1. Basic principles of balance

Let a model of the body occupies a region € in a 3D space. The position of a place
A e€Q in this region is denoted by a vector x that extends from an origin O of the
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coordinate system O e,e.e to the point 4. The manifold 0Q = Q\Q will be called
boundary. The position of a place N € 0Q on the boundary referred to the coordinate
system O e,ee is denoted by a vector y. Similarly, let a model of the time occupies a

range (0,00) in a 1D space. The position of an instant ¢ € (0,%0) in this range is a real

number. The manifold {0} =(0,0)\(0,0) will be called initial instant.

In classical mechanics, with each body we associate a measure called mass. It is
nonnegative and additive, and it is invariant under the motion. If this measure is
absolutely continuous, then there exists a density p(x) of the position of a place 4€ Q.

The function p is called mass density. The total mass m of the body is then found by
mzfp(x)-dx. )
The axiom of mass conservation states that the mass is invariant under the motion:
m()=0, te(0,0),
m(0) = m,
where m is initial total mass, and dot defines material derivative.
Velocity is the time rate of change of position of a given place 4 € Q

x(4)=g(x.0), 1e(0,%0) 3)
Note that the velocity is defined locally. In order to express the momentum p and

@)

moment of momentum k by the velocity we must take into account the mass density [1]
p(1:0) = [ p(0g(x, )dx, te(0,%) @

K(1;0) = j P(X)X x g(x,0)dx, te(0,0) (5)

To the basic principle of mass conservation we add two other important axioms of
mechanics. The axiom of global momentum conservation states that the time rate of
change of momentum is equal to the resultant force W of both passive and active load
on the free- body diagram:
p(:0)= W(5;0), 1e(0,), ©
p(0;0)=p,
Here p is initial momentum vector of the body, 0 is position of an origin O . Axiom

(3) constitutes principle of balance of momentum about O .
The axiom of global moment of momentum conservation states that the time rate of
change of moment of momentum is equal to the resultant moment M of both passive
and active load on the free-body diagram:

k(t; 0) =M(t;0), <(0,0),

~ 7
Kk(0;0) =K. @

Here K is initial moment of momentum of the body. Axiom (6) constitutes principle of
balance of moment of momentum about O . Equation (6), like (7), is a balance equation.
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The deep significance of the foregoing two basic principles of continuous media may be
better appreciated after the development of the concept of stress.

2. Equations of motion for continuous media

The basic principles are valid for all materials irrespective of their constitution. It is
therefore expected that their mathematical expressions are not sufficient to predict
uniquely the behaviour of the body. In order to take account of the nature of different
materials, we must find additional characteristics of the substance with respect to the
response sought. This is done by introducing models appropriate to the particular class of
phenomena under scrutiny. There exist certain rules and invariants requirements
[1, p. 136], which must be satisfied by such models. It remains acceptable until the
phenomena predicted by the theory do not agree with the experiments.

Global mass conservation when applied to an infinitesimal neighbourhood of a place
A € Q) implies local mass conservation:

%p(x, t)+ div[p(x, nHg(x, t)] =0, (x¢)eQx(0,0),

p(x,0)= 5(x), xeQ, ®)

P00 on(y,0) = j(y,0),  (y,1) € 0Q2x(0,0).
Here n is outside normal to the boundary, p is field of initial mass density distribution
in the region, ]~ is initial mass flow on the boundary, and cross means Cartesian set
product. Formula (8) is the initial-boundary value problem for the unknown function p .

Forces and moments create load in mechanics, but are not defined. The force W and the
couple M acting on a body are vector quantities known a priori. The resultant force W
consists of the vector sum of all forces acting on the body. The resultant moment M is
the sum of the moment of the individual forces about O and the sum of all concentrated
couples. The internal loads create a system of surface forces t(x,f;m) called stress
vectors. They depend not only on the vector x of the place 4 € Q on the surface under
consideration and the time instant ¢, but also on the exterior normal m to the surface at

the place. On the boundary they become external surface tractions ?(y, tm).
Let b be the body force per unit mass. Then the resultant force and the resultant moment
acting on the body about the origin O are given by [1, p.96]

W(5:0) = [ p()b(x,1)dx + §t(x,m)dor, 1€ (0,00) )

M(t;0) = .[p(x)x x b(x,)dx + §x xt(x,t;m)do, te(0,0) (10)

Here S is material surface. The stress vector acting on any plane through a place is fully
characterized as a linear function of the stress tensor T at the place. Applying the
Green- Gauss theorem to convert surface integrals into volume integrals in (9), we get a
necessary and sufficient condition for the local balance of momentum:
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PE(x,0) = pb(x,0) + divT(x,1),  (X,1) € Qx(0,00),
g(x,0)=V(x), xeQ, an
Ton(y,?) = t(y,n), (y,t) € 0Qx(0,).
Here v is field of initial velocity distribution in the region. Partial differential equations
in (11) contain some differential operators with respect to time and space. That is why
the motion of the body has to be determined from initial boundary value problem (11).
Applying the Green- Gauss theorem to convert surface integrals into volume integrals in
(10), we get a necessary and sufficient condition for the local balance of moment of
momentum, when the momentum is locally balanced:
T'(x,0) =T(x,1), (x,1)eQx(0,0). (12)
The formulae (11,12) are respectively the first and the second laws of motion of Cauchy.
We can see that the necessary and sufficient condition for the local balance of moment
of momentum is the symmetry of the stress tensor. Therefore we have only six
independent stress components. Consequently the left and right mixed components of the
stress tensor are the same.

3. Role of mass center and moment of inertia in rigid body dynamics

Let we consider a body model, which takes the region Q , and the distance (in Euclidean
metric) between places A4, B € Q is a time function:
d(4,B)= f(t; 4, B), 1e(0,) (13)
If f is constant function for any places 4, B € (), then body model is called rigid body.
The axiom of mass conservation states that the total mass is invariant under the motion:
m(t)=m, te(0,00) (14)
Absolute motion in reference system with coordinate system O e.,e.e can be described
locally for chosen both place 4€Q and instant ¢e (0,00) with two mathematical
objects: rotation matrix R and position vector x connecting point O with the place 4
Absolute linear velocity v(4) of the place 4 is time derivative of x vector. Following

the Chasles theorem [3, p.329] rotation of rigid body can be described by absolute
angular velocity w(A). Finally the rigid body motion can be determined locally by two
functions of time

V(A) = g(x,t), O)(A) = h(x,t), te (O,oo) (15)
Global properties of motion can be described kinematically by the stiffness condition:
v(B)=v(4)+a(4)x AB, o(B)=a(d), 4,BeQ. (16)
Formulae (15,16) exhaust the rigid body kinematics. In particular, if:
h(x,7)=0, 7e(0,0) (17)

then the rigid body will be called particle. Rigid body dynamics is described by the
formulae (4-7). They are of a global character, invariant of the place in the region. Note
that the absolute angular velocity does not appear in the formulae (4-7). That means that
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the particle dynamics is the same as the rigid body dynamics. Absolute linear velocity is
an unknown function in (4,5). That makes impossible to execute an integration
procedure. We therefore have the stiffness condition to lead out the unknown vectors in
front of integral signs. Let us now denote a set of points in the space that fulfils the

stiffness condition (16) by Q. Then the principles of balance of both momentum and

moment of momentum about B € Q take the form:

p(t; B) =mg(X,1) + h(X,1) xS(B), t€(0,) (18)
k(t;B)=S(B)x g(X,1) + J(B) o h(X,1), 1€ (0,) (19)

Here X is the position vector for the place B , and the notations correspond to:
S(B) = j P(X)(x - X)dx (20)
J(B)oh = [ p(x)(x— %) x[h x (x— %)]dx @1

Formulae (20,21) represent the following mathematical objects: static moment S and

moment of inertia I with respect to the reduction pole B € Q. They are also called the
mass moments, first and second kind properly. Note that the moment of inertia is the
tensor and only the scalar product gives a vector (21) in result [4, p.382]. The mass
moments depend on the time instant, and so is why the motion equations have very
complicated coupled form:

(22)
mg(X,0)+h(X,0)xS(B) = p,
—[S(B)xg(x,1)+ 3(B)oh(X,1)]= M(1;B), te(0,0), 23)
S(B)x g(%,0)+ 3(B)-h(X,0)= k
Here the initial conditions are coupled also. For the particle we have:
mg(i,t) = W(t;B), te (0,00),
~ - (24)
mg(X,0)=p,
d ~
E[S(B)x g(X,1)]= M(;B), 7e(0,0), 5)

S(B)xg(x,0)= k.
The moment of inertia has no influence on the movement of the particle. Formula (25)
describes the changes of the particles moment of momentum that can be caused by the
resultant moment acting on the body, or by the initial moment of momentum.
We can choose a moving frames of motion O fff that rotating with the rigid body
together. Then the formulae (22,23) take the form:
mg(X,1)+h(X,1)xS(B)= W(t; B), 1e(0,0),

mg(X,0)+h(X,0)xS(B)=p, (26)
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S(B)x g(X,7)+ 3(B)oh(X,1)= M(z; B), e (0,00),
S(B)x g(X,0)+ 3(B)-h(x,0) = k.
We can remove the coupling of the initial-value problems for the rigid body, if we are
writing the principles of balance of both momentum and moment of momentum about

C € Q so well chosen that S(C)=0:

@n

V(C) = LI p(x)x dx = V(B)+ oa(B)x BC, O)(C) = O)(B), BeQ. (28)
d(m-1)%
Then the initial-value problems (22,23) become uncoupled:
d

—|3(B)oh(x,2)|= M(£;B), te(0,0),

4 [3(5)- 0] = M(:B). 1<(0.%) o)
3(B)oh(x,0)= k.

Here X is the position vector for the place C . The reduction pole C e Q is called mass

center. Analogously we get an uncoupled shape of the initial-value problems (26,27).

Note that the initial-value problems (24,25) for the particle takes diametrically opposed

views, when the reduction pole is the mass center C e Q:

mg(%,1)= W(5;C), t<(0,00),mg(%,0)=p, (31)

0=M(C), te(0,0) (32)

The equation (32) is the equilibrium equation for the couple resultant about a place
CeQ for the rigid body.

4. Conclusions

In this paper we have determined the motion equations and the associated mass
conservation law to the rigid body and continuous medium. The shapes of the equations
follow from the ways of translating the global basic principles of balance for the body
into some local ones. It leads to the initial-boundary value problems for the continuous
media and to the initial value problems for the rigid bodies.
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Abstract
This article presents the foundations of Newton-Euler rigid body dynamics and its
generalized forms in the light of the load reduction principle. We prove that most of the
features of dynamics may be directly deduced from this principle and that some
generalizations on a system of rigid bodies are acceptable.

Keywords rigid body systems, constraints load, moment of momentum
Introduction

The principle of load reduction has played an important role in statics. On the one hand,
as soon as we consider the principle of momentum and want to strictly preserve its form,
the well-known vector addition is not dependent of the reductions pole. On the other
hand, to express the laws of rigid body dynamics with respect to both possible
independence motions: translations and rotations necessitates of the effect of a moment
of momentum on the mathematical representation of forces and moments appearing to
the motion equations. This is actually the role of an axiom stating that momentum and
moment of momentum are quantities on equal terms and, in a consistent theory, the
motion equations must concern the same reductions pole in the principles of momentum
and moment of momentum. The remark extends to dynamics of rigid body systems with
Euler equations for rotations. To clarify this matter it is inevitable to return to the
interpretation of the motion equations not only for particles but also for realistic models
of mechanisms, with forces and torques, what is much more complicated.

1. Rigid body dynamics

Let the body model takes the region € in 3D Euclidean space Z . Element 4 Q of
the region is called the place. Interval (0,00) of the real numbers in 1D space R is called

time, and its element ¢ e (0,00) is called instant. Set {O}:iO,ooi\(O,oo) will be called
initial instant. The distance (in Euclidean metric) between places 4,B € Q is a time

function:

d(4,B)=f(t), te(0,00). (1)
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If 1 is constant function for any places A4, B € Q, then body model is called rigid body.

Ruthless motion in reference system with Cartesian coordinate system O e,ee can be

described locally for chosen both place 4eQ and instant ¢e(0,00) with two
mathematical objects: rotation matrix R and position vector x connecting point O
with the place 4 . Absolute linear velocity v(4) of the place 4 is time derivative of x
vector. Following the Chasles theorem [1, p.329] rotation of rigid body can be described
by absolute angular velocity oo(A). Finally the rigid body motion can be determined by
two functions of time

V(A) = g(x,t), m(A) = h(x,t), te (0,00). 2)

If h is the zero function, then the body will be called particle.
Global properties of rigid body motion can be described kinematically by stiffness
condition

v(B)=v(4)+w(4)x AB, o(B)=w(4), 4,BeQ. ?3)

Inertial properties of the body dynamics is determined with the momentum- velocity
relation:

p(:0)= [ p(x)g(x.1) dx, 1 e(0,00) @)

k(t;O) = I X X p(x)g(x,t) dx, te (0,00), ®))
where: p- momentum, k- moment of momentum, p - mass density. Rigid body
dynamics can be characterize globally by the influence of all of forces and moments
acting in an active and passive way on the model of the body. The definition of
equipollent force systems correctly suggests that we may replace any system, no matter
how complicated, by a force W named the total force and a couple M named the total
moment at any place O named the reduction pole. The force-couple pair, W and M is
called a resultant of the load system. The influence all of the passive and active loads on
the movement of the body is characterized by a momentum p and a moment of
momentum k changes:

p(z;o): W(t;O), te (O,oo), ©
p(0:0)=p,
k(;0)=M(1;0), te(0,00),
k(0;0)=k.

Here p is an initial momentum of the rigid body, K is an initial moment of momentum

O]

and the dot over a vector sign means the time derivative. Rigid body motion is specified
here in the place O . The equations (6,7) have got some global character. It means there
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are defined place independent for the region. Ordinary differential equations, whose
unknowns are vector functions of the single time variable, appear as a side effect.
A primary aim of the rigid body dynamics is to find the solutions of initial value
problems (6,7). At this point it is reasonable to wonder why there is no absolute angular
velocity in the equations (4,5). The reason is that the relationship between linear and
angular velocities can be found in the stiffness condition (3).

2. Moments of mass

The set of the points in space Z kinematically connected with the region by the stiffness
condition will be denoted by Q. To avoid the procedure of solving integral equations
(4,5) we use (3). Thus, we can write the relations (6, 7) in the reduction pole B e Q:

p(t; B) = mg(X,t)+h(X,1)xS(B), te(0,), ®)
k(;B)= S(B)x g(X,1)+ 3(B)oh(X,z), 1e(0,0), ©)
where X is the position vector for B . Here we introduced the following denotations:
m= [ p(x) dx, (10)
8(8)= [ (x=%)plx) dx, (11)
3(B)oh(X.1)= [ (x=%)x[n(X,1)x (x= )] p(x) ax. (12)

The formulae (10-12) are mass of the body, static moment and tensor of inertia
according to the reduction pole B . It allows us to rewrite the equations of motion (for
the rigid body) in the following form

m%g(;,t)%[h(z,t)xs(g)]z W(:B), 1e(0,0)

mg(0)+h(0)xS(B)=p,

(13)

dt X (14)

In particular, for the particle we have

m%g(i,t): W(B), te(0,),

mg(0)=p,

15)
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%[S(B)xg(it)k M(5:B), 1< (0.) (16)

S(B)xg(0)= k.

We can see that the system of initial value problems is coupled only for the rigid body,
but not for the particle.

3. Reduction pole for the system

For the system of n rigid bodies, both models rigid body and particle can be some
elements with number i . For chosen element, which encloses the region Q,i = I,_n, the
position vector  x shows the place .4 Q. Thus the motion of the element is locally
determined by two functions of time:

V([A)= g(,x,t), 0)(,A)= h(,x,t), te (O,oo), i= l,_n (17)

Global properties of system element motion can be described kinematically by stiffness
condition
v(,B)=v(,4)+o( 4)x AB, o B)=w( 4), 4,Be Q. (18)

Inertial properties of the system element dynamics is determined with the momentum-
velocity relation:

p(t;O): Z. ,p(t;O), te (0,00), (19)

K(::0)= 3 k(:0), te(0,) (20)

We can apply the momentum and moment of momentum principles (6,7), where total
force and total moment are taken for the whole rigid body system. But the practical
application of these equations is negligible because the linear velocities are unknown.
That is why we define the momentum and moment of momentum vectors for the

reduction pole Be Q as follows

p(e; B)= mg( X,1)+h(x,)x S(,B), (21)
k(; B)= S(,B)xg( %,t)+ 3(,B)oh( X,1) (22)

Here
m= IQ p(x) dx, (23)

S(,8)= [ (x~ %) plx) dx, 24)
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.3(,B)oh(,%,7)= J"Q(x— X)x[n( %,0)x(x - X)] p(x) dx. (25)

The influence all of the passive and active loads on the movement of the system element
is characterized by a momentum ,p and a moment of momentum k changes:

p(t; B)= W(t; B), te(0,%),

g 26
pO; B)= p, i=ln, 20
k(r; B)= M(s; B 0
ke B)= Ml B). re(0.2) o
k(0; B)= k, i=ln
We can add above equations and we have the result

> b B)=Y W B), ie(0,)

(28)

> p(0: B)=3" p.

Y k(s B)=> M B), te(0,)

i=1 i=1 (29)

> k(0; B)=3 k.

Since the right-hand sides of the motion equations contain the set of reduction poles, the
question is: can we substitute the total force and total moment for the system.
Analogously the momentum and moment of momentum have not any reduction pole.

As is coming to see the reaction forces could appear in the equation (29). Our goal is to
get the internal forces acting in neighbourhood of a body. We can expect the momentum
and moment of momentum principles to be valid for the system of the rigid bodies
whenever the interactions of the bodies are negligible. As it is known, the total moment
for internal forces is equal to zero [1, p. 300]. That is why the sum of total moments in
the formula (29) cannot be the total moment for the system.

5. Concluding remarks

In the paper we have extended the rigid body dynamics on the rigid bodies systems
based on the relation velocity-momentum standpoint. In order to gain an intuitive
understanding of the effects of the mechanism motions, we have to realize that
kinematical quantities are essentially frame-dependent. That is why we called absolute
velocities. The possibility of linking absolute velocities to rigid body motion is
a consequence of some presumptions that load is an objective quantity and that inertial
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forces depend only of absolute quantities in Newtonian mechanics. But the mathematical
form of the inertia operators is strictly defined in the configuration with respect to a body
fixed frame. But the connected rigid bodies are not a rigid body. That is why we come
not into possession of dynamic laws for the rigid bodies systems. Only some
mathematical transformations are possible for them.
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Summary

In the work presented are methods of identification of uncorrelated operational forces
based on orthogonal decomposition of crosspower spectrum matrix. In this purpose were
used methods based on eigen- and singular value decomposition of PSD matrix. Except
methods in frequency domain were used methods in time domain (ICA - Independent
Component Analysis) for identification statistically independent and principal
component. The methods were used to identify the number of sources of the exciting
forces acting during the work of a real mechanical system..

Key words: force identification, singular value decomposition, independent component
analysis.

Introduction

Knowledge of the operational loads is very useful in diagnostic process of mechanical
structures and to simulate the response under working condition. In many cases, dynamic
forces are not directly measurable and need to be identified using inverse solution
method. In the present work presented are methods of identification of uncorrelated
operational forces based on orthogonal decomposition of response PSD matrix. Except
methods in frequency domain were used methods in time domain (ICA - Independent
Component Analysis) for identification statistically independent and principal
component. The methods were used to identify the number of sources of the exciting
forces acting during the work of a real mechanical system — machine for compostable
organic materials processing. Knowledge of impendent principal component could be
useful for identification of force application points.

1. Mathematical bases of procedures of separation of uncorrelated components
from crosspower spectrum matrices

The relationship between the input x(t), and the output y(t) of a linear system can be
written in the following form:

[G,, (©)]1=[H(®)] G, ()] [H(w)]" (1)
where: [G_(w)] is the input spectral matrix, [ny(m)] is the output spectrum matrix,
and [H(w)] is the Frequency Response Function (FRF) matrix.
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Computing all crosspower spectra we archiving 3 dimensional crosspower spectrum
matrix. This matrix can be considered as a set of square matrix (determined for each
frequency). The element (i,j(®)) of this matrix contained crosspower spectrum between

signal x ; and x ; at frequency .

A commonly used method of identification the uncorrelated sources of exciting
forces is the method of square crosspower spectrum matrix decomposition into
eigenvalues:

[G yen (@) 1=[U g,y (@)1 [A g (@) 11U .y (0)17 )

The obtained eigenvalues [A . (@)] of [G , v (@)] in descending order can be

considered as the principal component autopower spectra. The principal component
spectra are mutually totally uncorrelated (crosspower spectra are zero). The principal
autopower spectra, sorted in descending order and plotted as a function of frequency yield
a graphical representation of the rank of crosspower matrix, which indicates the number of
incoherent phenomena (principal uncorrelated sources of mechanical vibration), observed
in the signal set S(X,,X,,...,X, ) at every frequency.

Instead of analysing eigenvalue decomposition of a square matrix one can use its SVs.
SVD allows drawing conclusions of the number of uncorrelated sources in the same way
as the eigenvalues analysis. The decomposition of crosspower spectrum matrices into
singular values can be performed by mean following relationship:

[G sy (@) 15U ypps (@) TIZ yyn (@) TIV oy ()] . 3)
2. Independent component analysis

Independent component analysis, or ICA, is a statistical technique that represents a
multidimensional random vector as a linear combination of nongaussian random
variables ('independent components') that are as independent as possible. For
nongaussian random vectors, this decomposition is not equivalent to decorrelation as is
done by principal component analysis, but something considerably more sophisticated.
ICA allows one to separate nongaussian source signals from their linear mixtures
'blindly’, i.e. using no other information than the congaussianity of the source signals.
ICA can also be used to extract features from image and sound signals according to the
principle of redundancy reduction that has its origins in the neurosciences. Independent
component analysis (ICA) is a multivariate analysis technique that aims at recovering
linearly mixed unobserved multidimensional independent signals from the mixed
observable variables. Let x be an m-dimensional observed vector. The ICA model for x
is written as:

x=As “
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where: A is called a mixing matrix and s is an n-dimensional vector of independent
components with zero mean and unit variance.

ICA analysis of vibration signals can be used for both assessing the statistical
independence of signals and segmenting nondeterministic signal sources for further
analysis.

4. Practical example of identification of uncorrelated forces acting in the agricultural
machines

The depicted above method were used to identify sources of exciting forces acting
during the work of real mechanical system — a machine for compostable organic materials
processing (Fig 1).

Fig.1. Machine for compostable organic materials processing

The data used for identification of the operational loads was collected from series
measurements in a different operational condition scenario:

- exhaust engine works only,
- exhaust engine and feeders works only,
- all mechanisms of combines work.
The vibration acceleration signals from 21 points were measured simultaneously.

During work of combine for organic materials on idle run when exhaust engine
works only or exhaust engine and feeders works totals number of uncorrelated forces
identified by decomposition crosspower spectrum matrices were 3. During when all
mechanisms of combines work total number of uncorrelated forces were 5 (Fig. 2).
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Fig.3. Singular spectra of PSD response matrices- all mechanisms of combines work
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time [=]

Fig.4. Independent component computed from ICA procedures- exhaust engine and
feeders works only

L
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time [s]

Fig.5. Independent component computed from ICA procedures - all mechanisms of
combines work

You can then reduce the dimension of the data by retaining only the subspaces
corresponding to the largest eigenvalues of the covariance matrix of the data.

The number of independent component computed from ICA procedures was the same as
number of uncorrelated forces identified by decomposition crosspower spectrum

matrices (Fig 4-5).
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Knowledge of impendent principal component could be useful for identification of force
application points.
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Abstract
It is found the propagation of longitudinal solitary waves in an elastic rod made
of material with negative Poisson’s ratio. It is used the difference scheme to
solve the non-linear partial differential equation.
Keywords: auxetic, solitary wave, finite difference method

Introduction

Many physical systems are modeled by nonlinear partial differential equations, which
are not exactly integrable. The numerical investigations of solitary waves in an elastic
rod made of auxetic material is presented. Existence of solitary waves is provided by a
balance between non-linearity and dispersion. Non-linearity in the elastic rod is caused
by the finite stress values and the elastic material properties while the dispersion results
from finite transverse size of the rod [1]. The solitons can propagate as long bell-shaped
strain waves with permanent form and transfer energy long distance along. Recently the
successful experiments on solitary waves observation in a transparent polystyrene rod
have caused the interest on propagation of solitary waves in solids.

Auxetics or auxetic materials, both names are related to materials with negative
Poisson’s ratio v, exhibit the unusual behavior; becoming wider when stretched and
narrowed when compressed. A wide range of auxetic materials and structures have been
discovered in the last decade [2,3]. Auxetics possess many extraordinary properties,
consequently the interest of them increases. Areas of application are seen in the
biomedical field as prosthetic materials or surgical implants. Auxetic fibre
reinforcements should also enhance the failure properties of composites. Fibre pull-out is
a major failure mechanism in composites.

The negative Poisson’s ratio, has been treated as an abnormal elastic parameter. In
conventional isotropic materials the range of Poisson’s ratio varies from 0 to 0.5, but
generally the possible range of v for isotropic case varies from —1 to 0.5, based on
thermodynamic consideration of strain energy in the theory of elasticity [4,5].

From theoretical and experimental point of view the study of non-linear strain waves in
rod made of auxetics seems attractive, because these new materials can have many
practical applications and may be the part of any construction. Recently isotropic elastic
materials with negative Poisson’s ratio have been produced. Consequently, many
theoretical and experimental results of the theory dealing with positive Poisson’s ratio
have to be reexamined on auxetics.
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1. Governing equation

Taking into account the geometrical and physical nonlinearties leads to nonlinear
mathematical models. There are many equations describing the propagation of solitary
waves in the elastic rod. One of the most popular is Boussinesq equations with one
dispersive term:

o'u 0w 1 8% [ 5\ 0'u
— +——\U + = 0 . 1
x> ot 2 0ox? ( ) ox’ot’ 2
’u *u 1 0% [, otu
R
ox~ ot 20x Ox~Ot
there are terms with cubic (1) and quadratic nonlinearity (2).

0, @

Let us consider a nonlinear infinite elastic rod of a radius R. The structural element has
been defined in the cylindrical Lagrangian coordinates (x,7,¢). The torsion was

neglected, then the displacement vector is V= [4,w,0]. Murnaghan developed the
energy as a power series in the invariants of the strain tensor. The density of potential
energy is:

L2213 ot 1, 3)

I :’”%112 —2ul, +

A,u are Lamé constants, /,m,n are the Murnaghan moduli, /,,/,,/, are invariants of

the deformation tensor.
The density of kinetic energy have a form:

2 2
K :& a_u + @ s (4)
2 |\ ot ot
where p, is the rod material density.

The single governing equation has been obtained in [1] using the Hamilton’s principle

in variational form:
R

4 +o0
5S=5jdtznjdxerdr=o, )
1 - 0
where the Lagrangian density per unit volume is defined as L = K —I1, as follows:
0%u 0%u ot [, o'u o'u
2 9473 _( )_ b, 242 2 A4
ot ox Ox~ot Ox
2 2
a =£, q =£, b, =M, b, =— VER , B is the coefficient of nonlinearity,
Po 2p, 2 2p,
u(x,t) is the longitudinal strain function.

=0, Q)

The equation (6) is called double dispersive equation (DDE), because it has two
dispersive terms. The coefficients b,b, in case of materials with negative Poisson’s

ratio are always negative, consequently changing the form of the solutions equation (6).
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The numerical simulations of the equation (6) has been performed to show how the
solitary waves in an elastic rod made of auxetic materials propagate.

2. Solitary wave solution

Using the central-difference formula the equation (6) with space step Ax and time step
At takes the form:

- + + -l _2U") -
Un+1 sz 2b Un+1 bUn+1 sz Unl ZUn

J+l
aAP U, =20 +U" ) = e AP (U, = U +(U!,)) -
b(U'S 20", —2U" +4U" + U™} —2U", ) + ™

bAt

(U, —4U", +6U" —4U", +U",),

u(x,t) = U(pr,th) =U}, p=0,1,2,.,.M, g=0,1,...
The result of discretization is Crank-Nicolson system with a tridiagonal matrix, which is
solve by the Gauss elimination with initial conditions:

=/0)s ®
U' = g()),
and numerical boundary conditions [6]:
Uy =U;, =0. ©)

The figures below show the propagation of solitary waves from bell-shaped initial pulse.
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Figure 1. Formation of solitary waves in a rod made of material with negative Poisson’s
ratio (v =-0.8)
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Figure 2. Formation of solitary waves in a rod made of material with negative Poisson’s
ratio (v =-0.8)

X

The stability analysis of equation (7) base on method developed by John von Neumann
[7] was done. The finite difference scheme is “conditionally stable”.

4. Conclusion

The double dispersive equation (6) was solved using the finite difference method. The
propagation of solitary waves in the rod made of auxetic materials is possible. The value
of the amplitude in the material with negative Poisson’s ratio decreases, when v is less

than 0.
References

1. A. V. Porubov, Amplification of Nonlinear Strain Waves in Solids, World
Scientific, Singapore, 2003.

2. A. William Lipsett, A. 1. Beltzer, Reexamination of Dynamic Problems of
Elasticity for Negative Poisson’s Ratio, J. Acoust. Am., 84 (1988) 2179 —2186.

3. B. Liithi, Physical Acoustics in the Solid State, Springer, Berlin, 2005.

4. L. Landau, E Lifszic, Mechanika Osrodkow Ciqglych, PWN, Warszawa, 1958.

5. W. Nowacki, Teoria Sprezystosci, PWN, 1969.

6. V. Y. Belashov, S.V. Vladimirov, Solitary Waves in Dispersive Complex

Media, Springer Berlin 2005.
7. J. L. Davis, Finite Difference Methods in Dynamics of Continuous Media, MCP
New York 1986.



XXIII SYMPOSIUM — VIBRATIONS IN PHYSICAL SYSTEMS — Poznan — Bedlewo 2008

VIBRATIONS DUE TO THE PASSAGE OF A RAILWAY VEHICLE
ON STRAIGHT AND CURVED TRACKS
Robert KONOWROCKI, Czestaw BAJER
Institute of Fundamental Technological Research (IPPT PAN)
Swigtokrzyska 21, 00-049 Warsaw

rkonow(@ippt.gov.pl, bajer@ippt.gov.pl

Abstract
The paper presents the results of vibration measurements on line of railway during
passages of a train at a constant speed. The measurements have been performed on
a railway track at straight and curve sections as well as and inside the train on the floor.
The experimental results exhibited higher amplitudes of vibrations on the curve of the
track than on its straight segments. The lateral slip in rail/wheel contact zone
is considered as a possible reason of such a phenomenon.

Keywords: railway vibrations, dynamic train-track interaction, ground borne vibrations,
moving load.

Introduction

There is an increasing interest in the scientific world in the issue of ground borne
vibrations from railway tracks, and in the vibration control by means of the track
structure modification [1]. A wide range of different track and train structures is
available, characteristic of different levels of performance. A train generates vibrations
which are transmitted through the track to the ground, resulting in vibration and re-
radiation noise in nearby building. The amplitude of vibrations depends on several
factors, such as roughness of wheels and rails, dynamic properties of a train, a vehicle
speed, characteristics of a railway track, a soil damping and a propagation of waves
thought the soil [2, 3, 4].

Vibration propagation

| in the air Dynamic wheel/rail

I} contact force
Structural noise s _ _ ” f _
| Vibration propagation in the soil

Soil-foundiation coupling

Fig. 1. The mechanism of the ground borne noise generation .
The main objective of the paper is to present results of experimental measurements of
vibrations within the train and on the sleeper at straight and curve segments of track and
to compare experimental data with numerical simulation results. The paper is focused on
the influence of the lateral slip in rail/wheel contact zone on the generation of vibrations
and a noise [5].
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1. Measurement system

Our measurement system can be divided into two subsystems. The first one allows us to
measure vibrations on the railway track, the second one can measure vibrations on the
floor inside the train car-body. The external measurement system included: two-axis
vibration transducer, geophone, infrared gate system, analog-digital converter of
12 bit/20kHz and data acquisition computer (Fig. 2). The two-axial accelerometer and
geophone were fixed in the middle of railway sleeper (Fig. 3). The sensors were
connected with the data acquisition computer through the A/D converter. The
measurement was initialized and stopped when the infrared gate system gave an impulse
to the converter. The first infrared gate switched on the converter when the train arrived
at the measuring area while the second gate stopped measurements when the train was
leaving this area.

External measurement IR gate 1
system

IR gate 2

data
acquisition
computer

" . AID
vibration transducer | '\ oo ter

zy lJ/geuphun
z

Fig. 2. Scheme of measurement system. Fig. 3. Sensors placed on a railroad.

The second measuring system included two one-axis transducers and the mobile A/D
converter of 12bit/10kHz. The converter contained data acquisition system (Fig. 4). The
transducers was fixed to a steel bar in vertical and horizontal direction. The steel bar was
placed on the train floor (Fig. 5).

Fig. 4. Mobile converter with self data Fig. 5. Vibration transducers placed
acquisition system. on the train floor.

The average speed of the train has been estimated from two sources. The first one was
a portable GPS module located in the train. The infrared system was the second source
of information. The infrared gates measured time between the passage of the first and the
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last wheelset. The time interval and the distance between both axles allowed
us to estimate the train speed.

2. Characteristic of the rolling stock

The investigated train of type EN 71-100 consisted of four coaches (Fig. 6). Each coach
had two bogies with two wheelsets. Two final coaches had motor bogies while two
middle coaches had trailer bogies. The length of motor car was 20.70 m, while the length
of the trailer cars was 21.57 m. The total length of the train was 85 m. The distance
between axles on the bogie was 2.70 m. The dead weight of the trailer car was 34 T
whereas of the motor car was 57 T. The total mass of the train was 182 T. The traction
and trailer wheels were of monobloc type and had a diameter of about 0.94 m and
1.00 m, respectively.

Fig. 6. Investigated train of type EN71-100.

3. Experimental results

The vibration measurements were performed during rush hours (10 am + 16 pm) for
10 passages of EN 71-100 type trains on straight and curve test segments of a track and
in the train in the same places. The radius of the curvature of the tested track segment
was about 1000 m. The average speed of the railway vehicle was equal to 58 km/h on the
curve segment of the track and the average speed of the train was equal to 61 km/h on
the straight segment. The vertical and horizontal accelerations and vertical velocity were
measured by two-axial accelerometer and one-axial geophone (Fig. 3).

Vibrations were analyzed in terms of accelerations, velocities or displacements
as a function of time and frequency. The displacements were obtained by double
integration of acceleration results. Displacements were checked by integrated velocity
results obtained by measurements by the geophone.

Comparison of experimental results demonstrated higher amplitudes of vibrations
generated on curves of the track than on straight segments (Fig. 7, 9). Measurements on
curves exhibited eight characteristic predominant groups of vibrations (Fig. 7). These
groups confirmed the passage of respective wheelsets of bogies by the point
of measurement. In Fig. 8 the spectral analysis of experimental results of vibration are
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Fig. 7. Time history of the vertical accelerations and displacements measured
on the sleeper: curve segment (left), straight segment of a track (right).
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Fig. 9. Time history of lateral accelerations measured on the sleeper:
curve segment of track (left), straight segment of track (right).
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depicted. Frequencies from ranges 1+2 Hz and 40+80 Hz on the curve segment of the
track can be noticed whereas on the straight the respective frequency is equal to 30+75
Hz. The predominant frequency on the curve and straight segments of track is equal to
53 Hz and 58 Hz, respectively.

Fig. 10 shows the time history of vertical and horizontal vibration measured inside a car
body on the floor for a period of time corresponding to the passage of approximately one
train length. The measurements were performed during the passage in the place of
investigation on the track. The comparison of the graphs in Fig. 10 exhibits higher
intensity of horizontal vibrations (in transversal direction) for the curve segment than
for the straight segment. Moreover, in this case we have about 2 times higher amplitude.
Differences in amplitudes of vibration in the vertical direction are significantly lower
than in the transversal direction.

Fig. 11. shows the spectra of vertical and horizontal acceleration measured inside a car
body. It can be noticed that vibrations with higher range frequencies occur on the
straight track than on the curve segments. The spectral analysis of vibrations (Fig. 11)
shows the frequencies of ranges 2+60 Hz and 300600 Hz on the curve segment whereas
on the straight segment the frequency was 500+700 Hz for transversal direction and
400+750 Hz for vertical direction. The predominant frequency on the curve and straight
segments is equal to 43, 400, 700 Hz and 52, 83, 550, 630 Hz, respectively.

08 transversal direction
transversal direction

Acceleration [m/sZ]
bbbooo
5328888

Acceleration [m/s?]
343444

7 8 9 10 11 12 13 14 15 16 17 18

. 6 7 8 9 [CIT] 12 13
10 Time [s] Time [s]

vertical direction

Acceleration [m/sz]
bbb6000
R

Acceleration [m/s?]
5385%%

7 8 [ 10 11 12 13 14 15 16 17 18 3 4 B 6 7 ° 10 " 12 13

Time [s] Timl [s]
Fig. 10. Time history of vertical and horizontal acceleration measured inside car body
on the floor: curve segment of track (left), straight segment of track (right).

4. Numerical results

Intensive numerical modelling of vibrations generated by a travelling vehicle was
performed by the space-time finite element models. It was the only method which
allowed us to analyze the moving mass problem. In classical approaches the track was
subjected to a moving system of massless forces. The wave phenomena could not be
considered with a sufficient accuracy in higher ranges of a speed. In reality the moving
wheel or wheelset considered as an inertial point is bound with the track or simply with
the rail. It significantly influences the dynamic response of the trail-track system. This
problem, however, will not be considered in the present paper.
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Fig. 11. Spectra of vertical and horizontal acceleration measured inside a car body on the
floor: curve segment of track (left) and straight segment of track (right).

5. Conclusions

Higher vibrations on curves can be resulted from the wear of railway track which was
caused by centrifugal forces influenced by the passages of the train, deformations
of wheels, wheelsets and rails, different linear velocity of wheels on curves and rotary
oscillations of wheelsets. Plane of the wheel skewed to the direction of the rolling
resulted in lateral slip in rail/wheel contact zone. The rail/wheel system oscillates and
generates noise.

In the future the experimental data presented here as well as results of measurements
in the Metro tunnel will be used for validation of numerical prediction models, being
under development. Model development, calibration and validation will benefit from the
available data set. In further stage of the project the obtained models of vibration source
and models of soil will be applied to describe vibration propagation through the soil to
the buildings in the environment.
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Abstract

The purpose of this paper is to consider the reflection-refraction problem of plane 2-D
acoustic SH waves at a plane interface between two initially deformed nonlinear
rubberlike materials. The standard procedure for the linearisation of the equations of
motion was used. This approach bases on the assumption that small, time depending
motions are superimposed on large static deformations. The initial deformations induce
additional effects essential for the calculations of the reflection and refraction
coefficients.

Key words: acoustic SH waves, initially deformed rubberlike materials, reflection-
refraction problem, small motions superimposed on large static deformations

Introduction

Paper reports the results of an examination of the reflection-refraction plane wave
problem. The interaction of harmonic SH-type waves with a plane boundary between
two different isotropic half-spaces, which are perfectly welded along the plane X,=0
(Fig. 1) is investigated. It is assumed that the half-spaces have different mechanical
properties and that the static deformations in both material regions are also distinct. In
spite of a simplicity, the problem illustrates some new phenomena characteristic for the
nonlinear initially deformed materials. Results are presented for a specific elastic
compressible Blatz-Ko rubberlike material and a general discussion of the limitations of
the solutions is presented. The obtained results differ very strong from the results of the
same problem in the linear theory. In the regions with inital deformation the speed of
propagation of the shear waves is not constant, it depends on the direction of
propagation. Both shear waves propagation speeds ¢, and ¢, | in the direction normal

and perpendicular to the interface are different. In contrast to the linear theory these both
speeds are equal ¢y, =cy| =co+/pt/ pr . The speed of propagation u, (comp.(15)) in
arbitrary direction depends on c¢,;, and ¢, and also on the unit normal N to the plane
of the wave front.

1. Basic equations

The general motion to be discussed here is defined by (1). It is assumed that the material
has been subjected to an initial static homogeneous deformation with constant principal
stretches A4,,4,,4; and to a superimposed small motion wu; =u;(X;,X,,t)

characterized by a small displacement field which is time dependent:
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xp =X, xp=AhXy, x3=A3X5+u3(X,X,0). (1
The final and static deformations are very close. The components of the deformation
gradient F; and F (for static and final deformation) and the components of the right
Cauchy-Green tensor C, are:

A4 0 0 4 0 0 /E +”32a1 Usply,y ity
[Fol=|0 4 O 5[Fl=| 0 24 0 |s[Cl=|uspus,y HG+15, Ay ()
00 4 U,y Uy A Atz Asitz5) ﬂ%

where uy = w(X,)u(X,,?).

Er .ER:EQ

Fig. 1 Reflection and refraction of an SH wave at the interface

For a compressible isotropic hyperelastic material there exists a strain energy function
denoted W =W(F), defined on the space of deformation gradients such that, the

nominal stress tensor S (transpose of the first Piola-Kirchhoff tensor (comp.[2], [3])) is
defined as

S = [o(w (F))/ oF | = 2w, FT +2W2(11FT e )+ 2 1F L 3)

where I, invariants of the tensor C and W, =oW /adl;, i= 1, 2, 3 . The stress tensor

components which we need to consider are S;;and S, . It follows from (2) and (3) that

Sy5 = 2(W1 + Wy 23 )u3,1 , Sy = 2(W1 + Wy} )u3,2 : 4)
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Substitution of (4) into the differential equations of motion of finite elasticity gives for
the superimposed infinitesimal displacement two trivial one non-trivial equations of
motion

AL (Fo Juzsap =0, A3 (Fo iz 1 +435 (Fo Jus. 00 = o ®)
where 4% = (as,, /0F,5) » and these derivatives are evaluated at F=Fy , u;,;=0and for

ia=1,2; f=3 also 4%(F,)=0. The one nontrivial equation takes the form

&3 (X)) 63, (X)X )] o = ol X, i t) (6)

where ¢35, = 2(W1 + Wz/ig) and ¢7 = 2(W1 +W2/112) (comp. (17)). Suppose now that the
displacements in both media are given by

uy = w(X, )expli(kX, —ar)], @3 = W(Xz)exp[i(ngl —Et)]. @)
Substituting of (7),, » into (6) gives two equations for two unknown functions

w(X, ) w(X;)

[W(X2)122+k2P2W(X2):0 [W(Xz)],22+1€252W(X2):0 ) ®)

where  p? =(602 /(kzci)—(czm/cu)z)a p’ =(52 /(/;2522L)*(52///52L)2)a and  the
displacement take the form
uy =expli(kX, — ot +kpX, )], 3 = exp[i(l;Xl — ot £ kpX, )] . O]

The linearised equations of motion must be complemented with the continuity conditions
at the interface. The initial static deformations A;and A; (i=1,2,3) in both half-spaces

under consideration are different. When two half-spaces are in rigid contact, then the
displacement vector and stress vector must be continuous at the interface i.e.

S2i(F):§2i(F)> i=1,23 and 4, =2, A =45, u3(X),0,0)=u3(X,,0,7) . (10)

The boundary conditions at the interface are meet if and only if w=o,k=F.
Expanding into the power series the components of the stress tensor we obtain

S (F): S (F0)+ Ai231 (Fo )‘43=1+A1%2 (Fo )143,2 . (11)

According to the continuity conditions at the interface, the small wave motion is
dynamically admissible if and only if, the static deformations and small wave motions
satisfy the following conditions:

S21(F0)=§21(f0)=0, 52 (Fy)= 55, (Fy )»

2 2 (v 2 _ o _
As; (Fo )“3:2 = A33 (Fo )'73,2 Or pprey U3, =PRCI U3 (12)
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The relationship (12), for i = 2 gives the dependency between the components A, and
2_,2 in both half-spaces.

3. Reflection — refraction problem

It is assumed that the incident plane SH wave of given amplitude A; propagates in the
lower medium. Taking into account the solutions (9) it is possible to define the wave
motion in both regions I and II in the form:

uz = Ay expliK (N1 X + NNy —c,t)|+ Ay exp[iK (N1 X| = NaNy —cpt))
L73 = 21 exp[i]?(ﬁle + N2N2 - Enl)],

(13)

where K =k(1+ pz)l/z, K =k( +52)1/2 are wave numbers in respective regions. The
above solution will of course change its character according to whether p and p are real
or imaginary. Let us suppose that both p and p are real , ie. c=w/k>(cay,Cay)-

The first and second term in (13),; are two plane waves in the first medium which
propagate respectively, in the directions N = [N}, N,] (incident wave) and N’ = [Ny, -N;]
(reflected wave) where (comp.(Fig. 1))

Ny =(1+p*) 2, Ny = p+ p?) 72 (14)
with propagation speed
5172
u,=c\l+p . (15)

The expression (13), represents the wave refracted in the second medium. The
propagation directions and speed of propagation for this wave are obtained by replacing
c and p in (14) and (15) by corresponding values ¢ and p respectively.

The analysis of the reflection-refraction problem for the strain energy function in the
general form W=W(l,, I, I;) is very complicated. For this reason in the further
considerations we take the special Blatz-Ko strain energy function adequate for the the
foam rubber

v
Wity 1) =2 123,122 -2 -] (16)
2 13 1%

The expressions for the propagation speeds c¢,, and c,, in the directions paralell and
perpendicular to the boundary take in this case very simple forms:
> 41 > _ o p 1
=752 Cw=_ .
Pr 375 Pr A%

(17
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Additionally the Poisson ratio v for the foam rubber takes the value v = 0.25.
Substituting this value into (12), we obtain the following relationship between the
components of the static deformation gradient

_ -1/3
A Hl —é]ﬂ% +é} , (18)
A2 u u

where A = 4,4, = 4,4, . The unknown amplitudes A, and Zl can be determined on
using the continuity conditions at the interface(10)4, (12); 4. These yield

4 _ 2 4 _1-A

A2 & 72 (19)
4 1+A 4 1+A
where
o, 2 = ) 2 1/2
A:'O—Rcle£=q;2L (_zi_z] cos249,+—3sin2 0, —sin? 0, , q=H/u,
A5 cosd A, C 2
PrCy P 2 1 2 G 1

0; is the incident angle and ¢, =i/ pr , ¢y =411/ pr are shear wave speeds in

initially undeformed medium i.e. when F, =1and F, =1 respectively. The structure of

the expressions (19) is similar as in linear theory (comp.[1] ), but the term A has more
complicated form. The amplitude of the reflected waves vanishes wherever A=1 or at the

following angle of incidence
-1
6 2 41 2 72( 22
sin® @, = 1—q2’i—gc—22 1+q2/1—i 0—22’1—5 ’1—3—1 —1]b (20)
Ay ¢ A ey LA

If Fy=1and F, =1, then (20) takes the form well known from the linear theory

sin? Oorin =(1- q20§ / 522 )/(1- q2) The geometrical nonlinearity influents very strong
the results known from the linear theory. As a spectacular example it will be considered

bellow the analysis of the expression for the incident angle (20) at which the reflected
wave vanishes.

4. Numerical results

The numerical analysis will be confined here to define the angles of incidence 6, at
which the reflected wave vanishes. It is evident, that a real angle 8, can be found only

for selected combinations of the shear moduli, densities and initial deformations. For the
analysis of (20) we assume here the following data representativ for the foam rubber
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g=p/u=11, pp/pr =107 and (c, /52)2 =0.964. For the chosen numerical data
the solution 6y;,, in the linear theory exists. Fig. 2 shows the relations between the

values of the function sin? 6o at which the reflected wave vanishes, as function of the

ratio A, /A, for three values of the components rate Q=15 /4. It is easy to observe

the essential dependence of the results on the initial deformations. The angles of
incidence 6, vary rapidly in a small range of changes of the static deformations. This

remark is important also for the analysis of the reflection and refraction coefficients (19).

=y
Q-1
sk sin? By, =
[T e
06 —
sin” &,
10 o SN 4
0=1222
02 r =1
| | | | | | |
0z 085 09 nes 1 1.05 1.1 115 1.2

Ay 14y
Fig. 2 The incident angle 6 at which the reflected wave vanishes
as function of the changing components ratio A, /4, and Q= A3/
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Abstract
In the paper the formulation of the differential quadrature method based on spline
functions as well as the way of determination of the weighting coefficients are presented.
The convergence and accuracy of the method in comparison to the finite difference
method are studied on the example of the geometrically nonlinear free vibrations of a
beam.

Keywords: differential quadrature method, nonlinear vibrations

Introduction

Recently the differential quadrature method (DQM) has become a tool that has been
willingly used in solving various computational tasks, especially in mechanical analysis
[1]. It is a result of a high rate of convergence and great accuracy provided by the method.
With a few sampling points the method allows to obtain much better accuracy then popular
discretization techniques as finite element or finite difference method (FDM). Better
efficiency of the DQM follows from the way the wanted solution is approximated. In the
conventional DQM the solution is searched in the form of the interpolation polynomial,
whose nodes are all the sampling points from the entire domain, while in the other
mentioned methods a local approximation is used. One can say that the conventional DQM
is equivalent to the FDM of the highest order of accuracy. As a global numerical technique
the DQM has some limitations and drawbacks. The main of them are difficulties with
application to problems with irregular domain and computational instability. In order to
overcome these drawbacks some modifications of the conventional method have still
appeared. One of them is an approach presented in [2], where the spline interpolation is
used to approximate the wanted solution. This approach eliminates unfavorable effects of
the polynomial interpolation, especially appearing when the equally spaced nodes are
imposed, that lead to instability of the method. It was found that spline-based differential
quadrature method (SDQM) gives very accurate results using various grid point
distributions and in the problems where the conventional method fails [2,3]. However the
rate of convergence of the SDQM is weaker then the conventional method. Therefore the
question concerning the efficiency of the SDQM in comparison to low order numerical
techniques arises. In the paper the rate of convergence and the accuracy of the method
based on spline functions are studied and compared with the results obtained by the FDM.
The estimation is done on the example of the geometrically nonlinear free vibrations of a
beam. The choice of the computational example has been motivated by the prediction
contained in [4], that the efficiency of the DQM should rise with the higher nonlinearity of
the problem.
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1. Formulation of the problem

In the paper the equation for the geometrically nonlinear free vibrations of a beam with
simply supported and immovable ends is analyzed. The equation of motion of the beam
can be derived with various assumptions and with the help of several procedures, what is
described in detail in [5]. In this paper the equation derived with the assumption of the
axial displacement and nonlinear strain-displacement relationship is taken under
consideration

o*w o'w o*w
m—+E[——-N—=0 1
o’ ox* o’ M
where w and m represent the transverse displacement and the mass density per unit
length, respectively, E denotes Young’s modulus and / is the moment of inertia.

Taking into account that the ends are immovable, the dynamic axial force N can be
expressed as

N(t):% (%j dx Q)

where A is the cross-section area of the beam and L denotes its length.

Assuming the solution in Equation (1) in the form
w(x,t) = av(x)cosmt 3)

where quantity v(x) is the so-called nonlinear normal mode and @ is the nonlinear free
vibration frequency and applying Ritz-Galerkin procedure one obtains [5]

4 2L 2 2
@mo+ pr40 3| BAC (o) 1d v )
dx” 4| 2L \dx dx

Further analysis is carried out using the dimensionless form of Equation (4)

d*v 3(a* Y avY . \d?
e [ |t I R R (5)
det 8| s\ de dE
4
where&zi, wzzﬁsz, rzzi
L EI 4

The problem is completed by the boundary conditions which have the following form

0(0) = V"(0) = v(l) = V(1) = 0 (©)
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2. Discretization of the problem
To discretize Equations (5) and (6), the SDQM and classic formulation of FDM are used.
2.1. Spline-based differential quadrature method

The idea of the method is similar to the difference method and relies on the approximation
of the derivatives in the governing equation by the linear weighted sum of unknown
function values. The difference to the FDM lies in the fact that each derivative is expressed
with the aid of all function values from the entire domain, what can be put as

d' f(x)
dx"

N N
_— Z}aﬁ-’)(x,-)f(X,) =Z‘Taf,~”f,~ i=1..N (7
J= J=

where N denotes the number of grid points and a;) are the weighting coefficients for the
rth order derivative.

In the SDQM these coefficients are determined on the base of the piecewise polynomial
interpolation. Using odd degree polynomials, the function can be expressed as

f(x)z{s,.(x), xe[x,.,xl.ﬂ], i=l,..,N—l} ®)

where the ith spline section has the form

5, (x) = icijxj )

The coefficients c; are determined from the interpolation conditions and the derivative
continuity ones described in detail in [2]. These coefficients depend on nodes
distribution and unknown function values, what can be generally written as

N
¢ = ZC(/k(xl,...,xN)fk , i=L.,N-1,j=0,..,n (10)
k=1

(r)
i

polynomial piecewise function (8)

The weighting coefficients a;’ are determined by calculating appropriate derivatives of

af,:):i(cﬁk 7 11 zJ, i=1..N-1, a¥) =§":(CN,jk Nl IJ (11)

Jj=r I=j-r+1 Jj=r I=j-r+1

In the paper the weighting coefficients obtained from the polynomial piecewise function
of the eleventh degree (n=11) are used. Owing to the appropriate formulation of the
conditions for the determination of the spline function, the derivative boundary
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conditions are introduced on the stage of the calculation of the weighting coefficients
(11). Then the discretization of the analyzed Equation (5) according to the differential
quadrature rules is done in -2 interior points of imposed mesh

N-1 3(a 2N N-1 N-1 N-1
2o, ——(—J ch[za,ﬁl)o,}(zaﬁ)u\.j >aPv, =o'y, i=2,.,N-1 (12)
j=2 g\ r k=1 =2 5=2 j=2

where C; are the coefficients derived by the Newton-Cotes integration formulas.

2.2. Finite difference method

To discretize Equation (5) classic formulation of the FDM (based on the uniform grid
distribution) is also used. This approach is well known and does not require detailed
description. The difference equation corresponding to Equation (5) has the form

3(a)[X
Yi_g(_j {ZC,c o, ak}ﬁi =o'V, i=2,.,N-1 (13)
r) L=l

where oy, B, 1v; are difference formulas for the first, second and fourth order derivatives
respectively. In the paper the three-points (first and second order derivative) and five-
points (fourth order derivative) central difference formulas are used

B = L — 20, + U,y _ Ly —4u, +6v, —4u,,
) i hz s Yi - h4

— Vi1 7V

2h

+ Di-v-2

Oy

where h=1/(N —1) denotes the distance between adjacent nodes.

3. Solution of nonlinear eigenvalue problem

Expressions (12) and (13) are the sets of N-2 nonlinear algebraic equations, which can be
written in the following matrix form

F(v,a) =2\v (14)

where A =®’, v is the nodal values vector and F(v,a) is the vector whose elements are
nonlinear functions of the elements of v and the parameter a (the amplitude of
vibration). In order to determine the fundamental frequency of the beam, Equation (14)
has to be solved. To this end, the vector iteration method, described in detail in [6], is
used. The iteration scheme related to Equation (14) is as follows

F(v,,,,a) =\, (15)

i+12

To solve Equation (15), the Newton-Raphson method is applied. As starting values for
the nonlinear eigenpair (A, v), the values that meet the associated linear problem are



215

assumed. In each cycle of the iteration, the eigenvector v; should be normalized so that
||1),.||w =maxv,, =1, before using in Equation (15). New approximation of A is obtained
J

as

_y, ol (16)

i+l i
i+1|| o

A

The iteration process is broken when |7» - Ki| / Ay S €, ||1)l.+1 —1),."2 / ||1)M||2 <g,, where

i+l
g, and g, are assumed accuracies of the calculation.

The percentage relative error of the ratio of the nonlinear frequency to the linear one
0)/ o, versus number of sampling points applied is shown in Fig.1. As a reference values
the exact results are chosen. The calculations are carried out for several dimensionless
amplitudes. Fig.1 shows that the SDQM gives very accurate results even using only few
nodes. One can notice that when the amplitude of vibration rises the rate of convergence
of SDQM is higher unlike the FDM. It is clearly seen in Fig.2 when the results for
N =7, 15 are presented as a dependence on the amplitude of vibration.

Mo 15 P LS 2

rd

221 =21

“4151%] -445[%]

O -SDQM O - FDM

Fig.1. The percentage relative error of the ratio of the nonlinear frequency to the linear one versus
number of sampling points
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Fig.2. The percentage relative error of the ratio of the nonlinear frequency to the linear one versus
dimensionless amplitudes

4. Conclusion

In the paper the convergence and accuracy of the SDQM — the alternative for the known
method based on the interpolation polynomial — and classic FDM are compared on the
example of the nonlinear vibration of the beam. The results show that the rate of
convergence of the SDQM is considerably higher then the FDM and improves when the
amplitude of vibration rises. It should be noted that the solution of the nonlinear set of
equations (15) takes more time when the differential quadrature discretization is applied.
However very accurate results can be obtained using only few discrete points.
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Abstract

Due to difficulties in determining precise initial conditions for the motion of sea
waves and the nature of wind undulation, the dynamics of sea waves can be only
modelled within the framework of a stochastic theory.

The article presents a method for determining differential equations of motion for
multihulls, such as catamaran or trimaran. The catamaran sails at constant translatory
velocity and at an arbitrary angle to the undulation direction. The set of differential
equations of motion presented in the article models anti-symmetric (lateral)
movements of the catamaran. For those movements, stochastic differential equations
(Ito equations) are constructed in the form of the equation set (8). Using the state

vector X and the excitation vector Y , the [to equations take the form (9) and (10).

1. Introduction

With respect to their marine operation, watercraft units can be divided into stationary
objects (in the geographic sense) or moving objects. The latter include catamarans and
trimarans as the units equipped with their own drive. These units represent extremely
complicated dynamic systems and reveal strongly nonlinear characteristics.

A catamaran (double hull) is a watercraft unit having two hulls situated parallel to each
other and linked with a deck.

Fig.1. Large exerimental catamaran Fig.2. Lagoon Catamaran
built for military purposes

Catamarans are built in various sizes, from big ocean-going vessels down to small boats,
the length of which does not exceed 5 meters. They can be either equipped with an
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engine, or driven by wind or paddles. An advantage revealed by the catamaran is high
initial stability, which (in case of sail drive) allows it to reach much higher speeds than
those achieved by monohulls of comparable size. It also reveals higher resistance to side-
overturning. At the same time its disadvantage is almost inability to restore the correct
position when the overturning already takes place, and higher susceptibility to bow-
overturning. Both catamarans and trimarans, frequently referred to as pontonboots, are
flat-bottomed boats with multi-chamber floats, stable and safe.

2. Movements of the catamaran as a linear object

A multihull with non-deformable structure sails freely at constant translatory

velocity V..

In our studies the examined object is idealised as a linear dynamic system with 6
freedom degrees, which are:

a) longitudinal oscillation (surge)-77,,
b) lateral oscillation (sway)-77,,

c) heaving -177,,

d) rolling -77,,

€) pitching -775,

f) yawing - Mg -
N3 n, n,
> ]
AN — .
N2 b 4 G°

Fig. 3. Scheme of the physical model of a catamaran

Local movements of the vessel around the equilibrium position are its response to the
excitations coming from sea undulation.
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For the vessel treated as a rigid object moving at constant speed v and an arbitrary angle
to the direction of sea waves, its movements are described by the mathematical model
having the form of a set of second-order differential equations (1).

If the model of the dynamic system is a linear model of watercraft, then the equations

6 .. .
21,7, +B; 1, +C; n, =F@®) 1

in which:

I =M + A - matrix of inertia,

B - matrix of dynamic damping,

C - matrix of hydrostatic stiffness,
n - vector of displacements,

F(¢) - vector of exciting forces,

can be treated as a system of two uncoupled groups of mutually coupled equations. The
coupling is assumed to be executed via linear and nonlinear damping coefficients and
hydrostatic elasticity coefficients.

The first group of equations represents symmetric (longitudinal) movements. They
include 7, - linear longitudinal movements (surging), 77, - linear vertical movements

(heave) and 7s - angular longitudinal, movements (pitch). In our discussion we will
neglect 77, - linear longitudinal movements (surging). These movements are usually

examined on models with one freedom degree.

The second group consists of the equations describing antisymmetric movements. They
include:

1, - lateral linear movements (swaying), 77, - lateral angular movements (rolling) and

1 - horizontal angular movements (yawing).

Since our further goal is to construct stochastic differential equations ( /z0 equations), let
us introduce new variables:

uh Z
UB Z,
B @
772 Z4
m, Zs
s Zs

The mutually coupled variables are 7,, 7, and 7,,7,,7, .

Equation (1), taking into account two groups of mutually coupled movements, takes the
following form written in new variables:



M, +4, 0 0 0 0 0 Z,

0 0 M, +A4, 0 M, + A4, 0 z,

0 0 M, + A4, 0 M, + A, 0 z .

0 M,+4, 0 M, +A, 0 M, +4, ||z,

0 M, + A, 0 M, +A, 0 M, +A4, ||Z,
0 M, +4, 0 M, +A, 0 My +A4,||Z
(B, 0 0 0 01l(z,] [c, 0 0 0 0 0]z F,

0 0 B, 0 B, 0 ||z, 0 0 C, 0 C, O0|z| |F
. 0 0 B, 0 B, 0|z, . 0 0C, 0 Cy 0|z _|F
0 B, 0 B, 0 B,||z, 0o Cc, 0 C, 0 C,llz,| |F
0 B, 0 B, 0 B, |z, 0 Cc, 0 C, 0 C,l|lz| |F
|0 B, 0 B, 0 B,|lz] |0 C, 0 C, 0 Cgllz,] |F

To get explicit forms of the equations with respect to Z we have to solve a set of second-
order differential equations with two unknowns.

£ =g, +F, 3)

or

) (4] |5

22 ¢2 F2

ﬁ?} — ¢3 + ~3 (4)

Z| |9 |F,

25 ¢5 ,\;

26 _¢6_ _ﬁﬁ_
Here:
¢k:Bk+Ck A
dla k=1, Bk:Bk(zl)', 'Ck:Ck(zl), )
dla k=23, B, =B,(z,,z,), C,=C.(z,,z,),
dla k=456, B, =B,(z,,z,,z,), C,=C,(z,,25,2,

3. Stochastic equations for a linear object ( /z0 equations)

In the stochastic differential equations ([f0 equations), making the starting point for
examining the nonlinear process of object response with the aid of the method based on
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the diffusion process theory, the state vector has components representing construction
response and those representing the multidimensional Markov process that models
undulation excitation.

Stochastic Ito equations are used for modelling dynamic systems with rapidly changing
random excitations, for instance those described by white noise. At relatively general
assumptions, the solutions to the stochastic [t0 equations are Markov diffusion
processes.

Equations (1) for separated coupled movements 7,, 77, and 77, can be written as:

7, 4,01, 77) + €, (0,11,01,) = F, ©)
where: 1? =I?‘I.(F2,F4,F6), dla i=24,6
In the new variables z,, z; and z, adopted by us at the beginning the equations (6)
take the form:

Z,=0,(2,,25,2) 1y, (2,,25,2) + [,(D) (7
where:
i=45,6,
;- damping in i-th movement,

v, - stiffness in i-th movement,

fi - excitation in i-th movement.

Finally, /to equations for z,, z5 and z, take the form:
Z,=0,(2,,25,2)+y,(2,,25,2) + [, (D)
Z,=0(2,,25,2) YW (2,,25,2) + [ (D) 3
Zo=0,(2,,25,2) W (2,25, 2) + [ (1)

If the process F(t) can be presented by a multidimensional homogeneous Markov process
in the phase space corresponding to the vector

3
Y(y1,¥250¥,), Where Y =F(1) then F(t)=Z(aiyf +b,y2) = F(31,32: 3, ¥4) -
0
Let X be the state vector, components of which describe the behaviour of the object
modelled by the set of second-order differential equations, and let vector Y represent the

excitations, then the /f0 equations take the form:
X =G(X)+F(t) ©)
with:
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X1 =Z yl = F4 (t)
Sy N=»n
.X2 = Z4 .
= V=23

Xy = Zs _
X, =Zs 3= =804 = S1a¥1 = Sa4¥2 = S3av3 + &4 (1)
X5 = Zg Yo =Fs (¢)
X6 = Z6 Ya=Ds (10)
M=% Vs = e
Xy =24 V6 =—Sos = Si501 = Sas¥y = 353 + &5 (1)
X3 =Xy y; = Fy (1)
X4 =25 V7 =g
X5 =X Vo =

. p Y8 =Xy
X =% .

676 Yo ==So6 = Si601 = S26¥2 = S363 + &6 ()

Here:
& - white noise,

S, - coefficients of linear filters (determined from the excitation correlation function, or

from its spectral density).
Using relevant linear filters the “white noise” process, for which the spectral density is
constant, is substituted by densities corresponding to different undulation spectra.
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Abstract

The passive dampers are often modeled using the either classical or fractional rheological
models. An important problem, bounded with the fractional models, is an estimation of
the model parameters from the experimental data. The process of parameter identification
is an inverse problem which is underdetermined and can be ill conditioned. The new
method of parameters identification of the fractional Maxwell model is proposed. The
parameters are estimated using results obtained from dynamical tests. Results of example
calculation based on artificial and experimental data are presented.

Keywords: dampers, identification of parameters, fractional Maxwell model

Introduction

Viscoelastic (VE) dampers have been often used for control vibration of structures to
reduce eof oscillations of building structures induced by earthquakes and strong winds.
Many applications of VE dampers in civil engineering are listed in [1]. The VE dampers
could be divided broadly into the fluid and the solid VE dampers. Analysis of structures
supplemented with VE dampers requires the good description of the dynamical
behaviour of dampers. The dampers behaviour depends mainly on the rheological
properties of the viscoelastic material from which dampers are made.

In a classical approach, the mechanical models consisting of the springs and dashpots are
used to describe the rheological properties of VE dampers [2, 3]. A good description of
VE dampers requires mechanical models build from a set of appropriately connected
springs and dashpots. In this approach the dynamic behaviour of a single damper is
described by a set of differential equation, (see [3]) what considerably complicate the
dynamic analysis of structures with dampers because the large set of motion equation
must be solve. Moreover, the nonlinear regression procedure, described for example in
[4], must be used to determine parameters of the mentioned above models.

The rheological properties of VE dampers are also described using the fractional
mechanical models. Currently this approach received considerable attention and has
been used in modeling the rheological behaviour of linear viscoelastic materials [5 — 7].
The fractional models have an ability to correctly describe the behaviour of viscoelastic
material using a small number of parameters. A single equation is enough to describe the
VE damper dynamics, what is an important advantage of the discussed models. In this
case the VE damper equation of motion is the fractional differential equation. The
fractional models of VE fluid dampers are proposed in [8, 9].
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An important problem, bounded with fractional models is an estimation of model
parameters from the experimental data. In the past, many different methods have been
tested for estimation of model parameters [2, 10, 11]. The process of parameter
identification is an inverse problem which can be ill conditioned (see, [4, 11]).

The aim of this paper is to describe a new method of parameters identification of the
fractional Maxwell model. The parameters are estimated using results obtained from
dynamical tests. Results of example calculation are further presented.

1. Fractional Maxwell model equation of motion and their steady state solution

In order to construct the fractional models equation of motion, we introduce the
fractional element called also the springpot which obey the following equation:

u(t)=c*Diq(t) =c Dq(t) , )

where ¢=¢” and o, (0<a<1), are the springpot parameters and Dq(¢) is the
fractional derivative of order o with respect to time ¢. There are a few definitions of
fractional derivatives which coincide under certain conditions. Here, symbols like
Dfq(t) means the Riemann-Liouville fractional derivatives with the lower limit —co

(see [12]). The considered element can be understood as an interpolation between the
spring element (& = 0) and the dashpot element (o =1).

The fractional Maxwell model is build from the spring and the springpot connected in
series as it is shown schematically on Fig 1. For the considered model we can write:

u(®) =kq,(1) , u(®)=c“Df(g()-¢q,()) , (2)
where 7 =r*=c“/k=clk.

Eliminating ¢,(¢) from above relations we get the motion equation in the form:
u(t)+7° Du(t)=kr*Dq(t) . 3)

The considered model has three real and positive value parameters: k, ¢ and « .

q(v)

k a :
|_> u(t)

q,(t)

Fig. 1 Scheme of fractional Maxwell model

In a case of harmonically excitation, the steady state solution to motion equation of the
Maxwell fractional model is assumed in the following form:



225

u(t)=u,cosAt+u sinit , q(t)=gq. cosAt+q sin it , 4)
where A is the excitation frequency.

Introducing relations (4) into equation (3) we obtain that the coefficients ¢_, g, , u, and

u, are interrelated in the following way:

q.= ¢1 u, _¢2 u,, q, = ¢2 u.+ ¢1 u,, (5)
where
1

T k()"

@ [(zvl)" +cos(axr/ 2)] , @, sin(az/2) . 6)

" k(A"
2. Identification of parameters of the fractional Maxwell model

In the proposed method, for the given frequency of excitation A,, the experimentally
measured damper force u,(¢f) and the experimentally measured damper displacement

q,,(t) are approximated by

u(t)y=u,coslt+u, sin At , q.(t)y=¢q,cosAt+q, sin At , @)

where quantities #,, u,, g, and ¢, are determined using the last-square method.
When the experimental data concerning damper force are considered the values of

and u, are obtained from the following equations:

La,+1a, =1, , L, + 1, =1, , ®)
where
) 2 )
I, =[cos At , I, =[sin Aedt , I, =1, = [sinAtcos At ©9)
It 1 n
n ”
I, = ju (f)cos At dt I = Iue,(t)sin Atdt . (10)

1 1
In a similar way the parameters ¢, and g, are determined.

Next, we assume that the quantities #,, u,, ¢, and ¢, obtained from the experimental
data approximately fulfils equations (5) i.e. we can rewrite (5) in the form:

¢I:izci - ¢2i17si = ‘Z, P ¢2iz/7ci + ¢1i1'7.w = ('?.ci > (1 1)

where ¢, =¢,,(4,) and ¢,, = ¢,,(4,) . From above equations we have

oty + 4.1, 4.4, — 9.1,
b === b === = - (12)

~2  ~2 ~2  ~2
u.+u u.+u.
ci si ci si
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For a given set of excitation frequencies A, (i =1,2,..,n), used in experiments, two sets
of values of ¢, and ¢,, are obtained.

The model parameters ¢, & and o will be determined using the last-square method.
The error functional which will be minimized is chosen in the form:

J@Ea) =307+ (13)

where k =1/k, ¢ =1/c and

r=k+ei" cosaT”—gzﬁ“ , s, = A" sina—zﬁ—géz,. . (14)

If we assume that parameter o is known, the stationary conditions of functional (13)

with respect to & and ¢ give us the following system of equations:

- ar <&
nk+c2/1i"0057=z¢“ ,
i=1 i=l

BN ar - . ar ar
kY A%cos—+cC Y A=) 1 @ cos—+¢, sin— | , 15
S cos D ey i = 3 cos Do g sin % 15)

For particular values of « the values of damper parameters, resulting from (15), could
be negative. These solutions haven’t physical meaning and must be rejected. The right
value of & are obtained using the method of systematic searching. The values of &, k
and ¢ for which (13) has a minimal value are the searched parameters of the model.

3. Results of example identification of Maxwell model parameters

First the method is applied to the artificially generated experimental data. The artificial
solutions are calculated on a base of steady state solution given by relations (4) and (5).
The following data are used: n=9 ¢,=0, ¢,=0.001lm, a=0.6 k=290.0kN/m,

c=680kNs/m, A =05Hz, A, =10Hz, A, =20Hz, A, =40Hz, A =6.0Hz,
A, =80Hz, A, =10.0Hz, A, =12.5Hz, A, =15.0 Hz. The obtained data are modified
applying random perturbations. After application of the identification procedure the

following results are obtained: o =0.61, k=284.543 kN/m, ¢=68.096 kNs/m,
when 3 percent noises are randomly introduced to artificial data.

On Fig. 2 the plot of functional (13) versus the & parameter is shown for three levels of
noises (3, 5 and 10%). In a range of values of & parameter we have one minima of
functional. Results of calculation performed for the artificial data shown that if noises
are not too much the results obtained using suggested method of identification is not
sensitive to noises. Errors of values of parameters obtained are of order of noises level.
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The next step is to apply the identification procedure to real experimental data. The
experimental data presented by Makris and Constantinou [9] are chosen and used in this
example. Makris and Constantinou were using the damper manufactured by GERB
Schwingungsisolierungen GmbH & Co. KG in their investigations. Similar dampers are
often used in piping systems or in machine foundations. The following parameters of
fractional Maxwell model are determined: «=0.77, k=503.350kN/m,
c¢=13.823 kNs/m. On Figs. 3 and 4 the comparison of experimental and approximated

storage modulus K' and loss modulus K" are presented. These quantities can be
calculated from:

o k@A [z ) +cos(ar /2)] s k(z )" sin(ar / 2)
1+ (r ) +2(r ) cos(ar /2) 1+ () + 2 A)” cos(an 12)

(16)

The three-parameter fractional Maxwell model satisfactory well describes dynamic
properties of the considered damper.

3.0E-11

2.5E-11 —

2.0E-11

|

1.5E-11 —

error functional

1.0E-11

5.0E-12 —

0.0E+0

0.0 0.1 02 03 04 05 06 0.7 08 09 1.0
fractional parametr alfa

Fig. 2 Error functional (13) of Maxwell model versus the & parameter
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4. Concluding remarks

The presented model is working satisfactory. The identification procedure of parameters
of the fractional Maxwell model is simply, well applicable and efficient. After few
modifications this procedure can be used to determine parameters of other fractional
models, for example, to determine parameters of the fractional Kelvin-Voight model.

However the three-parameter fractional Maxwell has some limitations. There are
materials (used in VE dampers) to which this model cannot be fitted in satisfactory way.
The other restriction is an impossibility to analyze very low and medium frequencies
together. The results are going worse when experimental results for very low frequencies
are included.
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Abstract
In this paper the Lyapunov equation is used to analyse random vibration of building
structure. The structures with mass dampers are considered. The excitation forces which
are functions of fluctuations of wind velocity are treated as random forces. Lyapunov
equation is used to determine root mean square of displacements. Results of example
calculation are presented and briefly discussed.

Keywords: tuned mass damper (TMD), multiple-tuned mass damper (MTMD), Lyapunov
equation

Introduction

Dynamic analysis of structure with tuned mass dampers (TMD) and multiple-tuned mass
dampers (MTMD) have been studied for many years [1-3]. Mainly, the numerical
integration have been used to calculate the root mean square of quantities which
characterize the structures response.

In this paper it will be studied the possibility of application of Lyapunov equation to
dynamic analysis of structure loaded by forces excitated by wind pressure. Wind is
treated as white noise random process. Some calculations were made for 20-story
building. Results of calculations were compared with ones obtained in classical way. On
this basis conclusions concerning effectiveness of using Lyapunov equation are
formulated.

1. Designing of multiple tuned mass dampers

The parameters of tuned mass damper (or group of dampers) are chosen in such a way
that the damper is tuned to the selected mode of vibration. It means, that the frequency

of the damper (or a group of dampers) @, , treated as the one degree of freedom of the
system, is close to selected vibration mode of structure @, (w, za)s). The optimal
parameters of such damper (or group of dampers) can be determined from formulae
given in paper [4]. The optimal frequency ratio is:
a)_j _ 2+p

o 201+ p)?’

s

(1

where
luzmd/Msﬁ wszsz/Ms’ wjzkd/md' (2)
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Here M, and K are the modal mass and modal stiffness of the structure of the s-th
vibration mode, respectively.

If only one damper is tuned to frequency @, , then m, is the mass of damper, and &, is

the stiffness coefficient of damper. However, if the group of dampers is tuned to the
frequency @, , then m; and k,; denote the mass and the stiffness coefficient of selected

damper of this group, respectively. Assuming that the mass ratio u is known, the
damper frequency w, and the stiffness coefficient k,; can be determined from above

formulae.

If excitation forces acting on structure have a random character and can be treated as the
white noise process, the optimal value of non-dimensional damping coefficient of
damper is determined from formula:

[ @3
Yo 3+ w2 ) ©)

The value of damping coefficient ¢, can be calculated in the following way:

Cqg = 270pza’dmd . “4)

2. Equation of motion
Equation of motion of the system shown on Fig. 1 can be written in the form:

Mq (1) + Cq(1) + Kq(1) = P(1), )
where M, C,K are the global matrices of mass, damping and stiffness of the
system, q(¢) is vector of displacement of the system q(¢) =col(y(?), x(¢)), y(¢) are
horizontal displacements of frame, x(t) are horizontal displacements of dampers, f’(t) is
vector of excitation forces f’(t) = col(P(t), 0).

It is assumed that the damping matrix of the structure has the form as follows:

C=0oM +«K . Details concerning the mass and stiffness matrices of structure with
multiple mass dampers are given in [7].

If Lyapunov equation is used to analyse random vibration of structure then it is desired
to write the equation of motion (5) with a help of state-space variables. Introducing
symbols

z=col(q" (t),q" (t)), p()=P(t), (6)

0 1 0
A:|:_M—1K _M—IC:|’ B:|:_M—1:|’ (7N

where z(?) denotes the space-state vector we can rewrite (5) in the following form
z(t) = Az(t) + Bp(?), (8)
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Fig.1. The system with MTMD
3.Modeling of wind load

It is assumed that load is the random, stationary process. Thus, the wind pressure in the
arbitrary point of structure can be described in the following form:

Pi(t)=C44pU; X *u;(t), ©)
where: C, is the aerodynamic drag coefficient, 4 is the wind-exposed area, p is air
density, X is the admittance function and u;(¢) are the fluctuations of wind velocity on
the level of floors.

Fluctuations of wind velocity are random process and, in this paper, are treated as white
noise process. Taken into account the spatial correlation of fluctuations of wind velocity
the matrix of spectral density of fluctuations of wind velocity S, (A1) can be calculated.

Elements of the matrix S, (A1) are calculated from formula:

Sk =ySp(A)sK (1) e™®, (10)
where @ denotes the correlation coefficient. In case of white-noise, elements S}, (1)
and S (1) are independent from A and then S;(1)=S,, =const,
S (A) =S =const.
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The relationship between the spectral density matrix of load excited by wind pressure
and the spectral density matrix of fluctuations of wind velocity is

S, =(C,4pU)*X°’S, . (11)

4. Solution to the equation of motion

Solution to the equation of motion (8) has the following form (see [6]):

2(1) - Z(t) = exp(A(t — 1) \z(t) - Z(1))+ [ exp(A(t - 7))B(p(z) - P(7) ) . (12)

)
The stochastic properties of response of randomly loaded structures is fully described by
covariance matrix Z(¢) and the mean value of response z(¢). Here, the mean value of

structure displacements is zero because the mean value of excitation is equal zero. The
covariance matrix is defined as follows:

Z(1) = E[2(1), 2" (1)]. (13)
Using the theory presented in [6] the covariance matrix can be calculated from the
following Lyapunov equation:

Z()= AZ()+ Z()AT +BP(H)B”, (14)
where lA’(t) =2TP(f) and P(¢) is the covariance matrix of excitation forces. Moreover,

f’(t) =P= F)I =const . Because wind forces are treated as the white noise random
process it can be proved that Z(t) = Z = const if t — oo . In this case the Z matrix can
be determined from the following linear algebraic Lyapunov equation:

AZ+ZAT +BPB” =0, (15)
and the covariance matrix of structure response Z is equal the correlation matrix R, .

5. Results of calculations

In this section the results of dynamic analysis of the structure using Lyapunov equation
are discussed. It is considered structure with TMD and MTMD. Additionally, for
comparison it has been made analysis in a classical way.

Parameters of building are given in Table 1. Non-dimensional damping coefficients of
first and second vibration mode are equal 1% of critical damping. TMD (tuned to the
first mode of vibration) and MTMD (tuned to first three modes of vibration) were
located on the top floor. Parameters of dampers are shown in Table 2.The mean wind
velocity i-th floor was calculated from formula:

U(z)=25u1n(z/z,), u. =UQ0Wk , (16)
U(10) is the mean wind velocity on the altitude 10m, £ is the coefficient depended on

type of area, z, is the roughness length and z is altitude. Moreover, the following data

are used: p =1226kg/m*, U(10)=30m/s?, z, =03, k=12-107".
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story mass [kg] stiffness [N/m] number of mode | mass [kg] | stiffness[N/m]
1 2,83 x10° 3,31 x10° TMD
2-4 2,76 x10° 1,06 x10°
4.7 2,76 x10° 6,79 x10° 1 | 3e214 | 472468
8-10 2,76 x10° 6,79 x10° MTMD
11-13 2,76x102 5,84 xlOZ 1 18107 238870
14- 16 2,76 x10 3,86 x10
17— 19 2,76 x10° 3,47 x10° 2 7956 722685
20 2,92 x10° 2,29 x10° 3 8550 2182386

Table 1. Parameters of structure

Table 2. Parameters of dampers

The root mean square of i-th displacement of the structure is calculated from formula:

2 _
Oy _Rq’

(17)

where R, is i-th element from diagonal of the R, matrix. Using above formulae the

analysis of the structure without dampers, with conventional TMD and with MTMD
were made. The classical method of calculation of root mean square of displacement are
described in [7] Results of calculation are shown on Fig. 1.

number of story

20
19
18
17
16
15
14
13
12

-
(=

O = N W AN OO O N © ©

—O—  structure - classical method

—O&—  structure - Lyapunov equation

—F—— structure with TMD - classical method
—— structure with TMD - Lyapunov equation
—}—  structure with MTMD - classical method
—

structure with MTMD - Lyapunov equation

0.00 0.10

0.20 0.30 0.40 0.50
rms of displacement [m]

Fig. 1. Root mean square of displacements
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It has been observed that in cases of structure without dampers and structure with TMD
root mean square of displacements calculated using Lyapunov equation and calculated in
a classical way are almost the same.

6. Conclusions

In this paper the possibility of application of Lyapunov equation to analysis of random
vibration of structure with tuned mass dampers has been studied. The root mean square
of displacement of structure were determined.

The proposed method which use the Lyapunov equation to dynamic analysis of structure
can be alternative to the classical method of analysis of random vibrations of structures.
However, currently the proposed method can be used only when wind is treated as the
white noise process.
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Abstract
The paper presents low damped vibrations of a continuous system. Such vibrations are
present in many structures, and effective elimination method is requested. In the pa-
per, temporal stiffness modification is proposed in order to distribute the energy
amount different modes of the system (for example to these that are better damped).
The method is tested with a bridge span numerical model.
Keywords: Continuous system; low damped vibrations; energy transfer

Introduction

The paper concentrates on continuous systems with low damped vibrations. Some alter-
native, effective elimination method is requested, as additional dampers could be techni-
cally difficult to install. Such proposition is presented in the paper. Damping modifica-
tions are discarded, and temporal stiffness fluctuations are introduced in the system.
Some changes in system’s modal characteristic are indicated and energy transfer is pos-
sible. Energy of low damped vibrations is distributed amount all modes of the modified
system, i.e. to some higher damped vibrations, too. The higher damped vibrations dissi-
pate their energy and the total system energy is reduced. When system’s initial parame-
ters are recovered, vibrations amplitudes are lower. Additionally, some energy elimina-
tion is associated with deformation of the attached stiffing element. This energy is elimi-
nated quickly, if stiffer vibrations appear after it is disconnected

To verify the method, a test is performed on numerical model of a planar bridge span
supported by a cable stay. The span stiffness is low, thus low frequency and low damped
forms are present in the system’s vibrations. Next, the system is stiffed by addition of an
additional cable.

The use of the inter-modes energy transfers was proposed by Diaz and Mukherjee [4, 5].
In their flexible truss-like structure, nine additional cables were introduced. The struc-
ture’s modes 1 through 6 was observed, but only 1, 3 and 5 was controlled. Total energy
in the uncontrolled modes was removed through the process of stiffness switching, i.e.
by stiffening and releasing the tension in the cables. The other test was related to some
small, non-structural masses added at strategic locations of the structure.
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The actual paper is divided in three paragraphs. The first presents the considered struc-
ture as well as a method of its mathematical modelling. The second presents results of
illustrative tests, done on the structure. The last is devoted for conclusions.

1. CONSIDERED SYSTEM

The physical model corresponds to a planar deformable bridge span supported by a cable
stay (Fig 1.a). The span and the stay are modelled with finite elements (FE). Low discre-
tization is considered, as the paper focuses on physical phenomena and not on span
modelling precision. The span is discretized by beam elements. Nine elements are used
(Fig 1.a). The elements’ displacements/deformations are described by nodes’ motions,
and each of the nodes has two degrees of freedom (vertical and rotational), only. The
nodes’ longitudinal degrees are locked. The stay is modelled as a tension element. The
stiffer is an additional tension bar present between the span and its surroundings.

a) sta b) FE #10

stiffer

FE #11 FE #9
node #11

A — - E—
pivot bearing span = subsystem 1 node #2 node #5 node #7

Fig. 1. Considered system: physical model (a), finite elements model (b)

Nodes’ vertical and angular positions are system’s generalized coordinates. They de-
scribe system’s deformations. Coordinates: g, +¢,, describes the span, g¢,, g, g, de-
scribes the stays. Independent are: ¢, +g,,. The other are fixed in zero position

a) b)
4 G q g. q.
t20 *JP':;A ji ) qn 9;;
t=0 A o)
node #i / =
Ya
node #j

X 1
X7 qlz q./I

Fig. 2. Details of the finite elements: translations of the bar element (a); transformation
between the local and global coordinates (b); displacements of beam element (c)

The global coordinate system is fixed to the reference body. In local (elements’) coordi-
nates of beam elements, vertical displacements are performed along y, axis, and rotations
are about y; axis. For bar elements, their displacements are along axis y;. Then, if the
element’s nodes are numbered 7 and j, the elements coordinates are [1-3]:

d/)e :COI(qi]’qj])’ Qe :COI(éizyém:éjz"}js)’ (1)

where: ¢,,q,, - bar translation along y; (Fig. 2a), ¢,,,q,, - beam translation along y,
(Fig. 2¢), ¢,4, 4,5 - beam rotation about y; (Fig. 2c).
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Symbol * denotes coordinate measured in local (element’s) system of coordinates. Sys-
tem loads could be attached in the nodes, only. Their coordinates are:

Ppe 2001(13,'1’?)/1) ﬁbe = COZ(éz,éﬁ,éz,ﬁjg) ()

where: 13”, 1'3_1 - bar element’s loads (forces) collinear to y;, P, P, - beam element’s
loads (forces) collinear to y;, P, 13,_ , - beam element’s loads (torque) collinear to y;.

If an internal point of the bar element is considered (as point 4 in Fig. 2a) its displace-
ments are approximated by linear functions. For a beam element, a cubic function is
imposed. Corresponding shape functions are [1-3]:

i R 287 =387 +1 187 =287 +8) =287 +387 1,($P-¢7)
N.(¢)=[1-¢) <] Niol)=| 67 =C) 3 _ypyy S0 500 5 | 3)
L I,

where: ¢ =%, /I, - point’s relative position.
Then displacements and velocities of 4 are obtained if the shape functions are used:
COl(éAzquA6):ﬁbe(§)'&be ’ COI(qAAZ’qAAé):Nbe(é/)'Gbe : “)

Next mass and elasticity matrices are calculated. They are [1-3]:

- for beam element:

156 221, 54 —13I, 12 6, -12 6l

2 2 2 2
o _PEL 41 131, -3 ’ £ _EJ, al; —e6l, 217 |, ®)

420 156 —221, P 12 -6,

sym. 472 sym. 41’

- for bar element:
4, pLL) 2 ¢ EJp 1 -1 (6)
4 6 |sym. 2 g 2osym. 1

Damping matrices are approximated as proportional to mass and elasticity [1-3]
B,=aA,+5C,. (7

Equations (1+7) are expressed in element’s coordinate systems. They have to be trans-
formed to the global system. It is identity matrix transformation, if the systems are col-
linear. The case is valid for beam elements. Thus [1-3]:

qye = abe ; Pbe = Isbe 5 Abe = Abe; Cbe = Cbe ; Bbe = Bhe . (8)
For the bar element (Fig. 2b), the transformation matrix is [1-3]

o - cos(a;,) cos(a,,) 0 0 )

pe 0 0 cos(a,,) cos(ay,)|

And the relation between the local and the global coordinates are [1-3]:



238

9.,-9,.9,; P,=0, P, A, =0 A 0 ;C,=0 C,0.; B,=0"B,0, . (10)

The set of independent elements has to be jointed into the common construction. To
perform it, vector of nodes’ displacements and vector of nodes’ loads are collected to:

q. =col(q,) ; P, =col(P) : i=12,...w (11)

c

where: q; - vector of i" node’s displacements; P; - vector of i" node’s loads.

Next, an arrangement of the global matrices A;,C., B, is performed. For a given ele-
ment, crossing cells of global matrices are selected, for rows and columns with numbers
matching to the element’s coordinates. Corresponding blocs of local A,,C,, B, matrices
are placed in these cells. The other elements are zero. It can be illustrated as [1-3]:

A B i
(o D j (12)

R A

In the next step, global matrices of the system are obtained by summing matrices of all
system’s elements [1-3]:

A; = Z:;lA; ’ C: = Z:;lc; ? B: = ZZ;B; . (13)

where: n, - number of elements in the considered system. It equals 10 for initial system
and 11 for the system with activated stiffer.

Finally rows and columns corresponding to locked nodes are eliminated from the matri-
ces, and final form of dynamics equations is [1-3]
A -G.+B;-q.+C.-q =P, (14)

c

2. NUMERICAL TESTS

Presented model has been implemented in MATLAB [6]. Then, modal analyses of the
system are performed (Table 1) and the lowest damped mode is selected (Fig 3.a). As it
is presented in the table, the lowest mode is extremely low damped, as the vibration’s
reduction rate is lower that 0.2 %. Some initial excitation corresponding to the form of
the mode is introduced and numerical time integrations of the model’s motion are per-
formed. 20 seconds period of integration is proposed. Motions of its selected points are
presented in Fig 4.a for the system without activation of the stiffer. For a comparison, a
stiffed system is analyzed in the same conditions. Some additional cable stay is con-
nected to the span at its 7™ node vertical displacement. Lowest damped form of vibra-
tions (Table 2) is selected for the stiffed system (Fig. 3.b), and 20 seconds time integra-
tion is performed for it. Motions of a selected point are presented in Fig. 4.c for the
stiffed system.
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When the system’s characteristics are determined, the main test is performed for elimi-
nation of the low damped vibrations. The tested period is 20 seconds, again. Twice, the
stiffing element is connected to the system and twice is disconnected as well. The inte-
gration time points are about: 2 s (for first connection); 8 s (for disconnection); 12 s (for
second connection); 15 s (for last disconnection). The test results are presented in Fig.
4.b. To insure smooth transitions between the initial and the stiffed periods, additional
conditions are set on the transition moments. To avoid any impulsive interactions, the
stiffer may be connected only if stiffer/span relative velocity is zero. To increase energy
dissipation, the cable is disconnected in the highest span position (the highest com-
pressed cable).

Table 1. Lowest damped modes of the initial system

# | real part imaginary part NU(Hz) ksi(%) NUO(Hz)
1 -6.8780e-02 -3.7075e+01 5.90 0.19 5.90
2 -1.5377e-01 -5.5448e+01 8.82 0.28 8.82
3 -7.9407e-01 -1.2602e+02 20.06 0.63 20.06
4 -2.9401e+00 -2.4247e+02 38.59 1.21 38.59
5 -7.0918e+00 -3.7654e+02 59.93 1.88 59.94
6 -1.6434e+01 -5.7308e+02 91.21 2.87 91.25
Table 2. Lowest damped modes of the stiffed system
# | real part imaginary part NU(Hz) ksi(%) NUO(Hz)
1 -1.1531e-01 -4.8012e+01 7.64 0.24 7.64
2 -2.1705e-01 -6.5879e+01 10.48 0.33 10.49
3 -8.6652e-01 -1.3164e+02 20.95 0.66 20.95
4 -2.9416e+00 -2.4253e+02 38.60 1.21 38.60
5 -7.1046e+00 -3.7688e+02 59.98 1.88 59.99
6 -1.6453e+01 -5.7340e+02 91.26 2.87 91.30

Form of the mode # 1 Form of the mode # 1 Third period
10 10 012
5 E T Active stiffer
< 5 = 5 L
g H 5008
°
g 5 E
8 o€ D S0 D 5004
a a 1
2 % k) ¥ ©
o h=}
5 5 0 M
3 6 9 3 6 9 10 20 30
span distance [s] span distance [s] frequency [Hz]

Fig. 3. Forms of vibrations: lowest damped form of the initial system (a); lowest damped
form of the stiffed system (b); modal characteristic after recovering initial stiffness (c)

As it is seen in the Fig. 4.b, effective damping was performed for the low damped mode.
Final amplitudes are in significantly lower in compare to the initial (Fig.4.a) and to the
locked (fig 4.c) systems. Effective inter modes energy transfers are observed. The initial



240

conditions are compatible with the first (the lowest damped) mode of vibrations. After
the firs connecting/disconnecting action (the period between § s and /2 s) the inter-
modes energy transfer can be observed. Fourier transformation procedure indicated fre-
quencies of three dominant modes (Fig. 3.c). They are: f;= 5.9786 Hz; f;= 8.7684 Hz;
f7=20.09676 Hz. They are in closed correlation to free modes indicated by the system‘s
modal analyses.

0 Vertical displacement of 7" node 10 Vertical displacement of 7" node 0 Vertical displacement of 7" node
- w B Active stiffer = Locked stiffer
S 5 S 5 S 5
kS € kS
[} [ [}
E 0 £ 0 E 0
[T} [ [T}
& 3 &
@© © @©
s 5 a5 e 5
2 & @2
a o a

-10 -10 -10

5 10 15 20 5 10 15 20 5 10 15 20
time [s] time [s] time [s]

Fig. 4. System’s time evolution: initial system (a): controlled system (b), stiffed
system (c)

3. CONCLUSIONS

Modal disparity method looks to be an effective active damping method for low damped
vibrations present in continuous systems. The method can be employed, if technical
reasons preclude installations of additional damping elements. The energy of unrequited
vibrations could be easily distributed amount different (including these better damped)
modes and there the energy could be dissipated. To avoid unsmooth transitions, the
stiffer connecting and disconnecting moments have to be precisely determined. Future
test are requires. They should concern about optimal stiffer localization and about pa-
rameters of optimal switching conditions, as well.
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Abstract

Multibody modelling of a combustion engine is presented in the paper. The engine’s
vibrations are of primary interest as well as energy dissipated in the engine’s suspen-
sion. System’s excitation is proportional to engine’s rotational velocity, thus vibra-
tion’s amplitude converges to some constant, non-zero value for high rotational ve-
locities. With the amplitude being constant, suspension’s dissipated energy grows sig-
nificantly with the velocity. A method to reduce the energy is considered in the paper.
Keywords: Vibrations of combustion engine; forced vibration; energy minimization

Introduction

According to significant masses and to nonlinear motions, combustion engine’s elements
cause significant inertial effects. Neighbour constructions could be affected, and thus the
engines have to be separated from their surrounding. Elasto-damping suspensions are
used to fix the engines. They have to be significantly resistant to transmit the engine’s
inertial effects and stiff to minimize engine’s displacements.

The elasto-damping suspension and the periodic loads effect in forced vibrations. The
excitation frequencies and the loads depend on engine’s rotational velocity. When tuning
the suspension parameters some elementary request is to avoid from a coincidence be-
tween the engine’s rotational velocity and the frequencies of its free vibrations. As the
engine’s rotational velocity alters within wide range of velocities, the free modes are
arranged as lower then the lowest work rotational velocity. According to it, suspension’s
characteristic has to be soft.

In the engine’s suspension, damping elements prevent against its high vibrations. Their
role becomes fundamental, if a temporal coincidence is present between the free modes
and the rotational velocity (during engine’s acceleration). The dampers are active during
engine’s normal work, too. In [3], the damper’s dissipated energy was evaluated and
found as significant. As the lonely source of the system’s energy is the engine itself, the
dissipation reduces the engine’s efficiency. A postulate to reduce the dissipation was
formulated in [3]. The present paper investigates such elimination by use of segmented
dampers or gap dampers, where regions of low and high damped motions are present.

Presented problem is tested by numerical analyses and the tests are presented in the
paper. Four parts of the presentation are indicated. The first presents multibody model of
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the combustions engine. In the next fundaments of multibody dynamics are presented. In
the subsequent, results of numerical test are presented for different models of the main
damping elements at the suspension. The last part presents conclusions.

b
ccl cc2 cc3 _rc04 ] ) G _I'cm cc2 cc3 ccd i C)
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Fig. 1: Multibody model of the engine: bodies’ and joint’ types (a); bodies’ numbering
(b); motion of the system (c)
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1. CONSIDERED SYSTEM

A multibody model [1] of a four pistons, combustion engine is presented in this section
(Fig. 1). It is composed of 19 rigid bodies. Initial five of them are fictitious, point bodies.
Together with joints, engine’s mobility (complete) between the sixth body and the sys-
tem reference is modelled. The sixth body models the engine’s base. The used sequence
of joint mobility is presented in Fig. 1. Translational joints are denoted by T letter. Their
indexes indicate direction of translation. It is parallel to corresponding axis of the refer-
ence coordinate system. By analogy, rotational joints are denoted by R letter with an
index. Seventh body models the crankshaft. A joint connecting it with the engine’s base
is a rotational joint. Its axis is collinear to y axis of the coordinate system (in non-
displaced configuration). Bodies # 8, 11, 14, 17 model connecting-rods. They are con-
nected to the crankshaft by rotational joints. Bodies # 9, 12, 15, 18 model pistons. Re-
maining bodies # 10, 13, 16, 19 are factious, point bodies used to model translational
motion of the pistons in respect to the engine’s base. The bodies are connected to the
base by use of shadow-body constrains [1].

Table 1: Inertia parameters of bodies

m Ixx 1, vy ]ZZ
engine’s base 300 20 12 28
crankshaft 100 6 1 6
connecting-rods 2 0.007 0.01 0.002
pistons 4 0.05 0.05 0.04

For details, bodies’ and joints’ numbering is presented in Fig 1.b. Bodies’ sizes are pre-
sented in fig 2.b, and their inertia parameters are presented in Table 1.
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Three elasto-damping elements are used to connect the reference body and the engine.
Position of the elements is drawn in Fig. 2.b. The elements are fictitious, point-
condensed elements. In non-loaded configurations their terminal points coincide. Only
translational deformations are considered for the elements and linear characteristic is
assumed between the force and the deformation:

K =diag(10°, 10°, 2:10°)N/m . Uy =col(x,x,,Xx,)

f,=K-u,+D-u ;
b b b D =diag(600, 600, 600)Ns/m =~ fo=col(f,[,,[.)’

(1)
where: K — stiffness matrix; D — damping matrix; up, — vector of deformations; fj, - vec-
tor of forces.
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Fig. 2: Model’s parameters: positions of elasto-damping elements
and dimensions of the engine’ base (a),; dimensions of engine’s
interior elements (b); time evolution of engine’s base (c)

2. DYNAMICS OF MULTIBODY SYSTEM

Multibody systems are composed of rigid bodies and massless connections (Fig. 3b).
The system’s reference is motionless. Other bodies (with some exceptions) are mobile,
have dimensions and inertia properties. Connections are massless, deformable. Struc-
tures resulting from body/joints contacts are called kinematical chains (Fig. 3b). Succes-
sion order is introduced for such structures. The kinematical chain can have closed struc-
ture (Fig. 3b), if the succession leads to a body being its own successor. If not ever one
of system’s kinematical chains is closed, the system is defined as a tree structure.

RB
body

Fig. 3: A multibody system: interactions acting on body i (a); closed system (b)

Bodies are numbered in ascending order with zero at reference. A kinematical chain
connecting body i with the reference exists. It is called reference chain, and its bodies are
called preceding bodies. Connections are composed of joints and of massless, dimen-
sionless bodies called point bodies. A joint is a restricted connection of translational or
rotational type, and if linking body 7 with its directly preceding body, it has number .
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Velocities of rotations and of translations are described for bodies’ centres of mass [1]:
E)lez'i-q ; ;i =A1’i-q ; o= A2,i_d+a-)i,k ; ;i:A1,i.d+j‘éi,R , (2)
where: A" A% - matrices of vectors; o™%, ¥*% - reminders free of joint’s accelerations

For dynamics, bodies are separated by joint cutting procedure and joints are replaced by
interactions. According to it Newton/Euler dynamics equations [1]:

@X(I:EJ)+I:E)= !1,0+Z!lr xf, ; m~§0=zl,;lfi ) 3)

where: m —mass, I - inertia tensor about the mass centre; jéo— acceleration of the mass
centre; & - body’s rotational speed; 7 - i" force acting on the body (Fig. 3.a); Ty - i"
torque acting on the body; 7, - position vector from the mass centre to i" force attaching.

Combining the dynamics Eq. (2) with the kinematics Eq. (1), and separating coefficients
in front of joint’s accelerations, the dynamics equations obtains form [1]:

B Granll-aT-du@@ -3 i+ X ix © B drmi@p=X 7. O
where: q - column matrix of joint displacements; B, B> - square matrices of vectors.

Then, symbols of successors’ interactions are eliminated. The dynamics Egs. (3) are
projected into direction of preceding joint’s axis and they are collected in [1]

M(q)-G+F(q.9)+Q(q.q9.f,.t,,1)=0, “
where: M - mass matrix; F - vector of generalised forces set form centrifugal, gyroscopic

and Coriolis terms; Q - vector of generalised forces stem form 7,7, ;¢ - time.

If closed kinematical chains are present, then loop cutting procedures are used. It results
in a reference tree structure, in its dynamics equations and in algebraic constraint equa-
tions. The constraints functions are grouped in a matrix [1] and the equations’ differen-
tial part is extended with constraints interactions [2]:

M(q.t)-G+F(q.9)+Q(q.q.f,.t.,1)+J'(q)- A=0; (5)
h(q)=0; h(q)=J@)-q=0; h(@)=J@)-G+A@q)=0
where: h - matrix of constraints; J — Jacobian of constraints; A - Lagrange multipliers.

The vector, g, consists of independent coordinates, v, and of dependent ones, u. The
dependent and the Lagrangian multipliers are eliminated, as in [2]. The final form is:

M'(v)-v+F' (v,v)+Q'(v,v,f t)=0 (6a)

2fes e’
where: M =M, -M,, ;' J, - (J,") (M, -M,, I -J,);

F=F -M,J'c - -(LF -m, 9" ¢) (6b)
@-q, -J-('a.
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3. NUMERICAL TESTS

Presented model is implemented in MATLAB [5]. The model is used for numerical
integrations and time evolution of system’s dissipated power is calculated. Its estimation
is based on elasto-damping elements’ deformations and is calculated as a scalar product
of damping forces and velocities of deformations. MATLAB’s standard procedure
(odel5s) is used for integrations. Integration period corresponds to a singe rotation of the
crankshaft. Maximal step of integration is limited to 1/750 of the integrations period.

Calculated energy should correspond to system’s steady-state conditions. They are esti-
mated before the integration. Again a singe crankshaft’s rotation is considered. The
steady state condition is formulated as identity between initial and final state coordinates
[5]. The condition depends on 12 parameters, and it is described by 12 nonlinear func-
tions. The system is solved numerically and classical Newton-Raphson’s algorithm is
employed. Nonlinear equations are linearized about the actual calculation point, and the
solution of the linear system is calculated. The step is repeated until a neighbourhood of
zero is obtained. Finite differences are used to obtain simplified numerical linearization.

The system’s dynamic equations (6) are nonlinear in respect to system’s state coordi-
nates. The mass matrix is non-constant and the vector Q is nonlinear, too. It is confirmed
in fig 2.c, where time evolution of the base motion is presented for crankshaft rotational
velocity of 1.25 rot/s. The evolution differs from a harmonic function of rotation fre-
quency. Frequency domain analyses of linear system become non-useful. The system’s
evolutions have to be obtained by numerical integration of the dynamics equations.

A set of numerical integrations is performed for velocities from 0.5 to 200 rot/s. In the
first test, the damping coefficient equals 600 Ns/m. Resulting base displacements are
presented in Fig 4, where relations between the engine’s velocity and position’s maximal
changes (conf. Fig 2.¢) are presented.

a)

ranges of changes in translational motion b) power dissipated in engine's suspension c dissipated power and vertical motion
1271

30 1.24

lateral power
vertical vertical motion

N
N
N

[N

Vertical changes [mn]
lateral changes [mn]
power [kW]

ranges of changes [mn]

2 4 6 0118 50 100 150 200
rotational velocity [rot/s] rotational velocity [rot/s] rotational velocity [rot/s]

Fig. 4: Results of integration: ranges of change in translational motion for low
rotational velocities (a),; dissipated power for low rotational velocities (b);
ranges of change and dissipated power for high rotational velocities (c)

Few zones of resonance are observed for low rotational velocities (Fig. 4a). It effects in
higher dissipated power in the zones. For higher velocities, changes of vertical motions
are stabilised about 1.19 mm. The other motions decay. The vertical motion becomes
responsible for significant growth of the dissipated power for higher velocities. The
power grows parabolically with the velocity and it obtains 2 kW for 200 rot/s.
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As the dissipated power obtains significant value, the engine’s efficiency is reduced. The
dissipated power should be reduced for higher rotational velocities. It can be done if a
clearance is present in dampers. In the next model damping coefficient equals 5 Ns/m
until damper’s deformations obtain 1.2 mm. Then it switches to 600 Ns/m. New integra-
tion results are presented in Fig. 5.

a) ranges of changes in translational motion b) power dissipated in engine’s suspension C) dissipated power and vertical motion
9 H

60] 1614 23
T X S
EE E
89 2 12
25 £ 40 g5
fs ] 1.21
23 : 55 8
g3 10 S
£ 8 g%
2 20 2
5 4
2 “l1.19
0
0 2 4 6 0 50 100 150 200

rotational velocity [rot/s] rotational velocity [rot/s] rotational velocity [rot/s]

Fig. 5: Results of integration for dampers with clearance: ranges of change for
low rotational velocities (a); dissipated power for low rotational velocities (b),
ranges of change and dissipated power for high rotational velocities (c)

4. CONCLUSIONS

Multibody modelling looks to be an effective tool for modelling of engine’s vibrations.
The tests proof that significant damping coefficients are necessary in the suspensions to
damp vibrations during low rotational velocities. It prevents against significant ampli-
tudes in zones of resonance with the engine’s free vibrations. The damping effects in
significant dissipated power for high rotational velocities. It reduces engine’s efficiency
as the energy source is the engine’s power. The dissipated power can be reduced in some
clearance is present in the dampers and the clearance size is higher that the vertical vi-
brations for high velocities. Some low damping coefficient is necessary for low veloci-
ties to damp system free vibrations (indicated by initial non-equilibrium conditions).
Performed calculations confirm that it the dissipated power can be reduced from 2 kW to
16 W only if the dampers with the clearance are introduced to the engine’s suspension.
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Summary

This work examines a comparison of acoustic attenuation performance of well known
Helmbholtz resonator and spiral element inserted into circular duct, which creates spiral
duct. The paper consists results of numerical computations by the use of Finite Element
Method. Here the spiral is a kind of resonant element, which can be applied in circular
ducts, mainly for low speed velocity ducts e.g. ventilation, air-conditioning and heat
systems. Results are presented as a transmission loss. The sound attenuation
performances of Helmholtz resonator and spiral duct depend on their geometrical
relationships. The most important observation is that the sound attenuation in both
solutions are based on similar phisical phenomenon — resonance.

Keywords: spiral duct, acoustic resonator, sound attenuation.

1. Introduction

There is many silencing applications described in world’s famous papers, but authors
couldn’t find any information about acoustical properties of a spiral element inserted into
a duct and used for attenuating sounds. That is a good basis to find out what happen
when we do so. This solution is inspired by an Archimedes’ screw, historically used for
transferring water from a low-lying body of water into irrigation ditches — Fig. 1.

Fig.1. Archimedes' screw from Chambers's Encyclopedia
(Philadelphia: J. B. Lippincott Company, 1875).

Authors expose a different view on this well known and practical solution, presented in
Fig.1, by using it in acoustical systems [1-4]. It still requires a lot of research work, but
the work already done can be a great basis to formulate fundamental conclusions. The
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most important one is that the newly discovered physical phenomenon of a specific
sound pressure distribution achieved by inserting spiral element into a circular duct
occurs in similar form in well-known Helmholtz resonator. Despite of fact, that
construction of both devices is diametrically different. As it is shown in Fig.2 the spiral
duct can be made as one spiral turn of Archimedes’ screw with a mandrel placed axially.
Helmholtz resonator [5] is a kind of simple empty chamber (cavity) connected with duct
by a small branch tube - called a neck.

Spiral lead of one spiral turn

Empty chamber
(cavity)

A
Y

Spiral profile

Circular duct

Circular duct

/

a) b)

Fig. 2. Examples of resonant elements construction as a part of simple acoustic system
(circular duct): a) Helmholtz resonator - outside a circular duct; b) spiral element - inside
a circular duct.

Main difference is that the spiral element is situated inside the duct, and Helmholtz
resonator stands outside. Whatever, both solutions can be used in series in one acoustic
system — Fig. 3.

Fig.3. Possible application of Helmholtz resonator and one turn of spiral element inside
circular duct used in series in simple acoustic system - circular duct.

2. Simulation

Finite Element Method (FEM) was used to compute three-dimensional (3D) numerical
models by the use of time-harmonic analysis in a COMSOL Multiphysics - Acoustics
Module [6] computer application. All spiral elements were solidly inserted into circular
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ducts and they consisted one spiral turn. The mandrel was placed in axis of each spiral
element. The circular ducts are straight and each has the same diameter as spirals — see
Fig. 2 b.

Helmbholtz resonators were calculated for the same resonance frequency as spirals. The
resonance frequency of Helmholtz resonator, at which it would yield very high
transmission loss, can be calculated using equation (1) [5]:

w,; =c_|—* @)

where:
leg=lnttyt1.71,
S, =nr,>
Vc — cavity volume,
ty, — thickness of the wall of the propagation circular duct,
1, — radius of the neck,
1, — length of the neck,
¢ — sound speed (343m/s),
oy =27fy; , where fi; [Hz] resonance frequency of Helmholtz resonator.

There isn’t such accurate equation for spiral ducts, but authors still work on it. Circular
duct length is 6,83m and radius is 0,1839m. Geometrical dimensions of resonators are
presented in Tab. 1.

Helmbholtz resonator Spiral duct

Parameter: Value: Parameter: Value:

Vc — cavity volume - sphere | 3,3188e-4 m’ | Spiral lead 0,765m

R - radius of the sphere 0,04295m | Lhickness of the 0,0147m
spiral profile

I, — length of the neck 005m | Diameterofthe 0,0883m
mandrel

1, — radius of the neck 0,025 m

le=lHty 1. 71y 0,0925 m

S,=nr,” 1,9635e-3 m’

Tab.1. Geometrical parameters of Helmholtz resonator and spiral duct.

3. Results

The results are shown as the transmission loss (TL) [1,3,5,6]. Calculated resonance
frequency for investigated resonators f, = 414Hz. Fig. 4 presents a sound pressure level
(SPL) distribution inside silencing system with resonant elements applied to circular
duct for the highest value of TL in resonance frequency. There is also shown the shape
view of SPL distribution in the distance of 0,1m from the end of resonators.
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a) Helmholtz resonator,

b) spiral duct,

Fig.4. Example views of SPL distribution caused by resonant elements in resonance
frequency f,=414Hz with shape view at the distance of 0,1m from the end of resonators.
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TL of investigated Helmholtz resonator and spiral duct is presented in Fig. 5. Higher
level of TL in resonance frequency f,, about 65dB, is achieved by the spiral duct, and
Helmholtz resonator reaches almost 20dB of TL.

70 |
f, =414 Hz

60

50

40 emm=spiral duct |

Helmbholtz

: I\
" N T~

350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500
Frequency [Hz]

TL [dB]

Fig.5. TL of Helmholtz resonator and spiral duct inside investigated simple acoustic
system — circular duct; resonance frequency f.= 414Hz.

In this case the spiral duct seems to be better sound attenuator than Helmholtz resonator.
It is also shown in Fig.5 that the spiral duct attenuates wider range of frequency. This is
the most important information for practical applications.

4. Conclusions

The spiral duct and Helmholtz resonator can be tuned in frequency band width. That is
very important property for practical applications of acoustic Band Stop Filters (BSF) in
e.g. heat, ventilation and air-conditioning systems. The best conclusion is that the new
type of resonant element has been developed for silencing systems as an alternative
substitution of Helmholtz resonator — well known acoustic BSF. The frequency bands of
sound attenuation of the spiral ducts are wider than Helmholtz resonator. However, the
spiral duct can be applied in large diameter circular ducts silencing systems when
Helmholtz resonators do not work properly. This is the most important practical
advantage of the spiral ducts.
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Summary
In the paper the problem of optimal choice of the distributed damping force suppressing
the waves traveling along the cable is considered. For the proposed objective function —
mean dissipation efficiency - numerical calculations were performed.
Keywords: cable motion, optimal damping, active methods.

Introduction

Cables used in overhead transmission lines and cable-stayed bridges are subjected to
large vibrations causing fatigue damages of the cable and assemblies. Long cables are
vulnerable to the aerodynamic disturbances due to the low intrinsic damping. The
loading process within a span is often imprecisely known through interpretation of
displacement response. Wave motion and vibrations occur mainly due to vortex
shedding, rivulet formation, galloping and buffeting.
Countermeasures proposed to protect cables can be arranged into:
e Cable surface modifications preventing from the aerodynamic forces induced by
the air flow
e Wave energy dissipation methods:
a) increasing of the cable internal damping,
b) using the special dampers, damping loops and spacers [2][3][4].
In the paper the problem of optimal distributed damping force necessary to suppress the
waves traveling along the cable is considered.

1. Waves induced by the distributed load
q(xt)
C

AL Il Vas

L

\4

—~——

Fig. 1. Distributed force as a source of waves

The equation of motion of the cable excited by load applied to the segment (Fig. 1) can
be written in the following form:
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o’u . 0u

Mo " ar

=q(x,1) (1)
where u is a linear mass density and 7 is a tension force,

{q(x ) 0<x<L

qx0)= 2

x<0, x>L

The solution of equation (1) without the components dependent on the initial conditions
can be written in the integral form [11]:

t x+c(t—1)

u(x, z)——f [ dendedr 3)

C M0 x— c(t1-1)

where ¢ denotes the velocity of traveling waves equal to , /% .

In numerical calculations of energies of the traveling waves will be utilized the
following expression derived from (3):

ou(x,t) 1

—_t[ q(x—c(t—t),r)+c](x+c(t—r),1:)]d1: 4
ot 2y

2. Optimal damping distributed force

The damping segment exerts the resisting distributed force applied to the cable which is
a source of two secondary waves (Fig. 1): the reflected wave traveling in opposite
direction to the original wave and the wave that adds to the original wave forming in
result the transmitted wave.

It was shown [8] that for the concentrated force the optimization problem can be solved
exactly. The optimal force takes the opposite direction to the component of velocity
vector associated with the original wave. The force magnitude is proportional to the
magnitude of velocity component. The constant of proportionality is equal to the ratio of
the cable tension to the wave velocity. The maximum value of the dissipated energy is
equal to the half of the original wave energy.

In order to increase the damping the similar strategy for the distributed damper force was
proposed. The damping force is proportional to the component of the cable velocity
resulting from the motion of the original wave:

o Ou,(x,t)

Py ®)

q(xrt) =-

The original wave used in numerical simulations was assumed in the form of packet
wave, described by the expression:
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(x—ct+4c)zj ©)

u,(x,t) =", sin(k,(x —ct + 40)) exp(— =
c

where: k, - wave number; ¢ - packet width parameter.
This type of wave with amplitude modulation is convenient in modeling of many
disturbances observed in cables. The original wave at the moment before it reaches the

damping segment is presented in Fig. 2.

Fig. 2. Original wave before the damping segment

In order to determine the energy E, dissipated in the active segment the principle of

energy conservation can be used:
ED :ES_(ER +Er) (7)

where:

e ou, (0,1)
= J. NV (%J dt - energy of the original wave,
0

_[ \/7(6”(0 t)j dt - energy of the reflected wave,

&"ii ou(L, ou,(L,t
.[ 7 ( u( t) U, ét )j - energy of the transmitted wave.
L

The ratio of the energy dissipated in the active segment to the energy of the original
wave is called the dissipation efficiency:

= ®)
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In the paper [10] the aim of calculations was to find the optimal value of ¢{, which

maximizes the energy dissipated in the active segment. Numerical calculations proved
benefits of the distributed force damper over the concentrated force damper. When the

segment is longer than 0.2) (where A = 2%0) the optimal distributed force dissipates

over 98% of energy of the original wave. With decrease of the segment width the
maximal efficiency ratio decreases and approaches 0.5, as for the optimal concentrated
force.

It is apparent that the length of the active damping segment is limited due to the
technological restrictions. For a given segment length one should adjust the damping so
the damper might be efficient in a wide range of the wave length A and the packet width
parameter . The optimization problem will be defined using the mean dissipation
efficiency:

[[n(a.5. 0% (5. 1)dsdn

j f dsd\ 2

n(a) =

The arbitrary weighing function # introduced to the above expression may be related to
the probability distribution of packet wave arguments or severity of a packet wave with
parameters given. The aim of calculation is to find the optimal value of & which
maximizes the mean dissipation efficiency given by expression (9).

3. Numerical results

The Table 1 shows the optimal values of & [l/s] altogether with the maximal

dissipation efficiency m,,,, reached for different values of G and X .

Table 1

A=1 rA=3 rA=6

al
Il
Q

G, =80 | M, =0.995 | G,,, =71 | n,,, =0.876 | &,,, =55 | n,,, =0.676

=0.999 | a,,, =69

al
Il
W
o}
|
o0
S

=0.856 | &,,, =48 [ n,,, =0.604

T] MAX n MAX

ql
Il
(o)}

[}

=80 | m,,, =099 | &, =68 | n,, =0854 |d,, =47 [ n,, =0.59
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Assuming the weighing function W equal to one optimization of the following
function:

66 _ _
[ [n(@.5.3)d5dn
11

() = (10)

25

gave the results:

a,,, =72[1/s],

T,y = 0.906.

4. Conclusions

The active segment damper model intended to suppress the traveling waves motion in
cables is intuitive and physically motivated. For a given damping segment length when
the wave length increases the maximal dissipation efficiency decreases (Table 1),

ranging from 1 (when 4 — 0)to 0.5 (when 1 — ).
The target was to adjust the damper parameter & [1/s] so the damper could be effective

in the given ranges of parameters A and o. For the proposed objective function
illustrative optimizing numerical calculations were performed.
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Abstract
In this paper we consider nonlinear traveling waves in a Mooney — Rivlin elastic
layer. By the procedure of averaging the equations of motions over the width of the
layer we obtain a system of partial differential equations in one space dimension and
time. From analysis follows that obtained wave is a solitary wave of transverse stretch.
Key words: discontinuous surface, traveling waves, hyperelastic materials

We consider the motion of a continuum represented by a set of functions [6]

X, = xl.(Xa,t) where i,a=123 €))
We assume that the traveling wave is propagating in the half-infinite elastic layer, which
occupies the material region X, >0 in the direction of axis X,. At the frontal area of
layer X, =0, the boundary conditions for deformations are given (compare [4]). We

assume that motion described by equations (2) undergoes without imposing additional
contact forces at the lateral planes of layer X, =t/ [8].

Motion of the considered traveling wave is assumed as
x =X, +u,(X,,1) X, =X, + X,6,(X,,1) x;, = X, ()
The strain ¢, the gradient of the transversal strain & and speeds of the particle of the
medium v, and v, in both direction of the layer are equal, respectively
& =Uy, K=&, Vllezul(Xl’t) V2=X2=X2é‘2(X1,t) 3)

For the assumed motion (2), the deformation gradient and the left Cauchy-Green tensor
have the form

l+g 0 0 (1+¢) (l+e)X,x 0 @
F=| X,x 1+¢, 0 B=|(l+&)X,x (X,x) +(1+&) 0
0 0 1 0 0 1

For an incompressible material, there is identity detF =1, then for the considered
material (I1+¢& Y1+&,)=1.
We assume that the layer is made of the Mooney-Rivlin material characterized by the
strain-energy function

W:ﬂ[C1(11_3)+C2(12_3)] ®)
where /; and 7, are the invariants of the left Cauchy-Green deformation tensor, C, and

C, are constitutive constants and u is the shear modulus for infinitesimal deformation.
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According to [7] or [2] the Cauchy tensor has the form
T=—gl+2ucB-CB") (6)
where ¢ is an arbitrary hydrostatic pressure.
The Piola-Kirchhoff tensor T, may be expressed by the Caychy tensor T
T, =TF”' ™
For deformation gradient (4), the equations of motion are reduced to a system of

equations for the plane strain deformation
Terig + Trina = Prityy Trory + Tronn = PrXo82, T35 =0 ®)
The boundary conditions at the top and bottom surfaces of the layer have the form
TR12(Xl’ih=X3):TR22(X1’ih’X3):0 (€
In pursuance of averaged procedure for equations of motion over the width of the layer,
we obtain fundamental equations of traveling waves in Mooney-Rivlin material

2 10
clove)-0ea) v e, tra) scfisa)-0ea)s
2

+ %(hgu )2 (1+g)° ]—h? [ZCZgM2 (1+g)° +

- (Cl + Cz )[2‘91,12(1 té )75 - “5‘1,11(1 t+é )74] ] ] . = %Vo—zum
where v, =./u/p, is the speed of infinitesimal shear waves.
The phase ¢ is defined by

E=X, -t (1)

where V' is the speed of propagation of traveling wave with a constant profile displaced
along the axis X,. For the traveling wave with any profile, we express motion as a
function of one parameter & only

ul(Xl’t)zul(g) gz(Xl,t)zgz(g) (12)
Substituting (11), integrating the equation (10) with respect to &, multiplying mutually
by & . and integrating once more we obtain

2 13)
S fieal +ea) e v 2ea) 4

hz 2 —4 1 2
—?(C1 +C, )51,5 (1 + 51) = ngl +d,g +d,
where v =V / vo2 and d, and d, are integration constants.
Multiplying the equations of motion in the form (13) by 4/ (v—2C1) and including b, ,
b,, D, and D, according to [5], we obtain an approximate form
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2 -2 h2 2 -4 2 (14)
O+ o P 1) [ Soe 20 e)*(1-b.) =27 (1+,)+ 2D, 2D,
Now we introduce the following transformation
B (15)

¢ =7§
Apart from a scaling factor, ¢ is just the current configuration coordinate X, in terms
of the phase £ and (14) takes the form
51,42 :F(gl,Dz) (16)
where
(142 ) [2De +2D, + & (140 ) |- (b, +b 1+ £) +(1+2)] (D

(1-b,)1+¢)

In the above equations (16) and (17) D, is an argument of F (compare [4]).

F(glaDz):

The phase point is the equilibrium point if

F(z,.D,)=(1+2Y[2Di&, +2D, +£2(1+ 5|~ (b, +b, |1+, +(1+2)]=0 (3
5 2 6 )

F'(e,D,)=6(1+¢ Y 2D, +2D, + &7 (1+5, )+ 21+ & Y [D, +£,(1+5, )]+

—a(b,+b, 21+ ) +(1+e)]=0

Eliminating D, and simplifying, we obtain the polynomial equation

{142 )[D, ++61+5 )+ (b, +b,\1+2F —(+2 ) J1+2) =0 (19)
According to Theorem | from [2] (compare[5]), we suppose that a center point for
function F(gl,Dz) exists for & =¢,, (then F(&lC,D2)= 0 and F’(glc,DQ)z 0), and we

can find D, and D, as functions of ¢,., which determines this center

b= i+ ) s bi+b )[(1+510)" —(1+alc)2]—glc(1+bl) (20)
- b +b [ 1+€ )] (bl+b2)[(1+glc)6+(1+810)2] 1
D, = 1+g ) 2(1+510)4 +—=¢, (1+b1)

Substituting D, 1 D, according to (20) (replacing &, by ¢&,,), into equation (17) and

simplifying we receive

g .2 _(51_51x)2(51_51n)(51_51m) @n
e (1 - bz )

where
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-1 (22)

(1 + & )3 (bz - 1)
(b +5, e, 246, N2+ 26, + 6,7 1-b, )+ 1+ b, )j

&, variable aims to &, if { — oo, the minimal value of & is &, >0. & is just the

(b1 +b, +(1+¢, ) (b, 1)+

gln,m =

current configuration in terms of the phase & then ¢ (g’ ) represents solution of single
traveling wave, for which ¢, >0 is the value of axial stretch in the infinity, however
&, >0 is the minimum value of axial stretch aims to the cusp point. If the lateral
surface of the layer is described by equation H = +4/(1+¢,), the wave amplitude %, is
hy = h —  h >0 (23)
(e, +1) (&, +1)

and is positive if &, > &, .
Taking square root, separating variables, integrating and substituting 7° =L-—¢,,
equation (21) takes the form

P 2,/1-b, 7 dr (24)
' (glx € )\/(gln _glm) 0 (l_ﬁIZTQ)\/l'f'leTz
where
1 1 25
712 =& T &y, ﬂlz = m12 e i— (23)
s — 6 &, — &

s n

in (24) &, is the value ¢ for which & =¢,,.
We assume that both expression (25),3 are positive. According to (22) ¢,, corresponds
with sign plus, and &,, with sign minus, then we receive

C2(b b, e, 24 e, N2+ 28, 4,2 f1-b,) 4145
B (1+51x)3(b2 _1)
Above expression fulfill condition ¢, —¢,, >0 if b, <1. It means that condition b, <1

(26)

gln - glm

is the necessary condition to existing real solutions for this expression.
Finally equation (24) after transformation takes the form

27
_+ﬂ2m\/1_bz ﬂ1+m12\/‘91_‘91n @7
—_T ar tgh +

¢ l"'”/‘12(‘91 _gln)

2

- B+ & —¢ -

+ar tgh b m12 L g tghﬁ —ar tgh(—ﬂﬂ
Py1+m, (‘91_‘91;1) ¢ 4

¢—¢,
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In the square brackets of above expression there are four elements. From analysis
follows that only first of element of equation (27) have the infinite value and the right
hand side of expression (27) approach too as & — ¢, .

In fig.1 there is a graph of expression (27). From above analysis follows that for
& =¢,=-044, (=¢,, however for {—>two, ¢ =¢g,=0,5 (according to
assumption).

The graph in fig.1 is in <— 0,44;0,5> interval. The deformation values correspond to

speed V' =20,5m/s and constants b, =0,335and b, =0,047 (Mooney-Rivlin material).

Then this is the graph of solitary wave of transverse stretch, which decrease from the
cusp of wave according to zgh function (compare [5]).

0,5
V=17,5 m/s
R G
(A v=20,5 mis
& -
"'. 0 .’l

0,24

-0,44

B

ba-5 ¢ Gat+s

Fig.1. Graph of & —¢, integral according to (27) in the Mooneya — Rivlina material for OKA-1 rubber
(n=146 kG/sz , p=1190 kg/m3 ). We assumed ¢, = 0,5 however &, (and &, except of
figure scale) according to (22). For speed V' = 20,5m/s (broken line), &,, =-0,44 , b, = 0,335,
b, =0,047 and v =3,49. For speed V =17,5 m/s (solid line), ¢,, =—0,24, b, =0,525,
b, =0,0739 and v =2,545

In

In fig.2.b there is profile of soliton wave corresponding to fig.1 for speed V = 20,5m/s
(broken line). Assuming &, =&, =0,5 from (1+¢ f1+¢,)=1 we have

(1+05)1+5,)=1 = (1+&,)=0,66 (28)
if the layer high is /', after contraction
B =(1+8)h=0,66h = 2h'=132h (29)

Similarly, substituting &, = ¢,, = —0,44 , in the place of transverse stretching the high of
the layer A" will be equal 24" =3,57h.

The range of ,,hump” we calculate from (15). From fig.1 follows, that the graph quickly
disappeared out of area A =10. For ¢ this is the area

_n¢ MG 10, o

B T Y5 TH

(30
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It will be then considerable change of wave thickness % (comp. (23)), because the wave
amplitude is &, = (3,57 - 1,32)- 0,5=1L112h and this changes there are in the small area
equal 5,77k . In fig.2.c there is profile of soliton wave corresponding to fig.1 for speed
V =17,5m/s (solid line). The layer height after contraction is 24" =1,32h (comp. (29)),
however substituting &, = ¢, =—0,24 , in the place of transverse stretch, the layer height
is 2k’ =2,63h . The range of ,hump” is A& =5,77h (comp. (30)). If the speed is smaller

the change of wave thickness % is smaller too, the wave amplitude is
h = (2,63 - 1,32)- 0,5 = 0,655k , the changes there are in the area equal 5,774 .

Fin
(b}
(a) ) PN _I3.57h
R T e .,
7

(c) il
. T }2,63h
1,32h ]

Fig.2. Profiles of solitary waves of transverse stretch for the layer, &, =0,5, A =10, the value A’

according to (28) and (29). (a) reference configuration, (b) for the parameters like in Fig.1 and the
speed V' =20,5 m/s , (c) for the parameters like in Fig.1 and the speed V =17,5 m/s
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