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INTRODUCTION TO THE VOLUME XIII OF COLLECTED 

PAPERS ON VIBRATIONS IN PHYSICAL SYSTEMS 
 

As Heraclites said a long time ago: ‘panta rei’- all is moving, all 
is flowing, all phenomena behave dynamically, not always stationary, but 
sometimes having great oscillating component. Every two years some 
leading specialists in this field of investigation come to present the papers 
and discuss some important issues in such broad context of dynamics. 
This is possible in the frame of the “Vibrations in Physical Systems” 
Symposium, which has been organized since 1960 by the Poznań branch 
of the Polish Society of Theoretical and Applied Mechanics and the 
Institute of Applied Mechanics of Poznań University of Technology.  
This   volume, entitled Vibration in Physical Systems, is the collection 
of delivered papers on this occasion.  

The scope of these Symposia are not only dynamical problems of 
the pure mechanical systems, that means wave propagation, vibrations 
etc. in solids, fluids and mechanical constructions but also dynamical 
problems of heat conduction, electromagnetic waves and its influence on 
mechanical behavior of the medium. There are also some new and 
important areas of dynamic investigation like bio-systems including a 
human under motion and/or vibration. Finally, the important part of 
research nowadays is done by simulation, so some papers discuss this in 
terms of methodology, and/or obtained result. 

In mechanics, these oscillations and / or vibration can be observed 
as the vibration of the structure of our interest and / or the surrounding 
environment. Depending on the medium of propagation (solid, gas, fluid) 
they can be observed as the vibration, sound or even the noise. In general 
they play at least three side roles.  

First of all, they can carry information about the existence of the 
system, and also on its overall and technical condition and safe use. This 
is the cause they have been used more and more currently for the 
assessment of system condition, complex machines and equipment in 
particular. Some papers touch this problem directly or indirectly, 
considering some phenomena which can improve the reliability of the 
diagnostic decision. 
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Secondly and mostly, the influence of vibration on structures and 
the environment can be harmful. Of course, it depends on the 
characteristics of the vibration processes, the energy and its amplitude – 
frequency characteristics. For the structures and machines it gives mostly 
fatigue effects which degrade the system, its efficiency and safety. The 
most pronounced cases of large amplitude vibrations concerning large 
areas are the earthquakes, which can bring disaster to many buildings and 
the infrastructure. Prevention of such damaging effect is an area of 
intensive research. In some other cases of metrology and cutting machines 
the undisturbed position of some objects or its part are required as the 
conditions for the accuracy and quality of production process or service, 
the quality of work and life comfort of humans if the noise and vibration 
processes influence workers or inhabitants. Several papers investigating 
these important aspects of vibration are delivered in this volume. 

Thirdly, vibration processes are carriers of energy in many cases 
of mechanical technology and civil engineering. They are used to 
transport the medium or some parts, as well as in crashing and cleaning 
processes. What is important in some other technological processes, is 
that the small additional vibration process can diminish the friction 
greatly, or enable to use much less energy to provide the needed 
operation. Some papers of this volume are dedicated to these, not new but 
important problems. 

As it is usually, the papers were reviewed by the members of 
Scientific Committee, or in some cases by independent colleagues outside 
of committee, if our competence was too narrow. On the behalves of all 
participants of the Symposium, the user of our product, we would like to 
thank all reviewers for their contribution in bettering the quality of our 
discussion during the Symposium and the publication, as well. 

 

Editors 

Czesław CEMPEL 

Marian W. DOBRY 
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MODELLING AND SIMULATION OF TRIPLE PHYSICAL PENDULUM 
 

Jan AWREJCEWICZ, Grzegorz KUDRA and Grzegorz WASILEWSKI 
Technical University of Łódź, Department of Automatics and Biomechanics 

1/15 Stefanowskiego St., 90-924 Łódź, Poland 
Tel./fax: +48426312225, e-mail: awrejcew@p.lodz.pl, grekudra@p.lodz.pl 

 
Abstract 

Plane triple pendulum periodically forced is investigated both experimentally and numerically. 
Mathematical modeling includes details taking into account some characteristic features (real 
characteristics of joints built by the use of roller bearings) as well as some imperfections of the 
real system. Parameters of the model are obtained by estimation from the experimental data.  Then 
the experimental and numerical analysis of the system is performed. 

 
 

Introduction 

 
A pendulum as a simple nonlinear systems is still a subject of interest of scientists 

from all the world. It is caused by simplicity of that system on the one hand, and due to 
many fundamental and spectacular phenomena exhibited by a single pendulum on the 
other hand. In mechanics and physics investigations of single and coupled pendulums 
are widely applied. Lately, even the monograph on the pendulum has been published 
[1]. This is a large study on this simple system also from the historical point of view.   

Although a single or a double pendulum (in their different forms) are quite often 
studied experimentally [2,3], a triple physical pendulum is rather rarely presented in 
literature from a point of view of real experimental object. For example, in the work [4] 
the triple pendulum excited by horizontal harmonic motion of the pendulum frame is  
presented and a few examples of chaotic attractors are reported. Experimental rigs of 
any pendulums are still of interest of many researchers dealing with dynamics of 
continuous multi degrees-of-freedom mechanical systems. The model having such a 
properties has been analyzed in work [5]. It consists of a chain of N identical pendulums 
coupled by dumped elastic joints subject to vertical sinusoidal forcing on its base. 

In February, 2005, in the Department of Automatics and Biomechanics, the 
experimental rig of triple physical pendulum was finished and activated. This stand has 
been constructed  and built in order to investigate experimentally various phenomena of 
nonlinear dynamics, including regular and chaotic motions, bifurcations, coexisting 
attractors, etc. 

In order to have more deep insight into dynamics of the real pendulum, the 
corresponding mathematical model is required. In the work [6] the suitable mathematical 
modeling and numerical analysis have been performed, where the viscous damping in 
the pendulum joints (constructed by the use of rolling bearings) has been assumed. In 
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the next step [7], we have also taken into account the dry friction in the joints with many 
details and variants. Here we present the model of friction taking into account only 
essential details. 

1. Experimental rig 

 
Figure 1. Experimental rig: 1, 2, 3 - links; 4 - stand; 5 - rotors; 6 - stators; 7, 8, 9 - 

rotational potentiometers. 
 
The experimental rig (see Fig. 1) of the triple physical pendulum consists of the 

following subsystems: pendulum, driving  subsystem and the measurement subsystem. It 
is assumed that the pendulum is moving in a plane.  

The links (1, 2, 3)  are suspended on the frame (4) and joined by the use of radial and 
axial needle bearings. The first link is forced by a special direct-current motor of our 
own construction with optical commutation consisting of two stators (6) and two rotors 
(5). The construction ensures avoiding the skewing of the structure and forming the 
forces and moments in planes different that the plane of the assumed pendulum motion. 
On the other hand the construction allows the full rotations of all the links of the 
pendulum.  

The voltage conveyed to the engine inductors is controlled by the use of special 
digital system of our own construction together with precise signal generator HAMEG. 
As a result the square-shape in time forcing (but with some asymmetry - see the next 
sections) with adjustable frequency and desired amplitude is obtained.  
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The measurement of the angular position of the three links is realized by the use of 
the precise rotational potentiometers (7, 8, 9). Then the LabView measure-programming 
system is used for experimental data acquisition and presentation on a computer.  

2. Mathematical model 

Details on physical modeling, i.e. idealized physical concept (see Fig. 1) of real 
pendulum presented in Fig. 2 can be found in works [6, 7]. The system is idealized since 
it is assumed that it is  an ideally plane system of coupled links, moving in the vacuum 
with the assumed model of friction in joints.  

 

 
 Figure 2. Physical model of triple pendulum.  
 
The system is governed by the following set of differential equations: 
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where the pendulum position is described by the use of three angles iψ  (i =1,2,3) and 
where 

 ( )1 1 1 1
2 arctan 2RM T c= εψ + ψ
π
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 ( )( ) ( )2 2 2 1 2 1
2 arctanRM T c= ε ψ −ψ + ψ −ψ
π

& & & & , (2) 

 ( )( ) ( )3 3 3 2 3 2
2 arctanRM T c= ε ψ −ψ + ψ −ψ
π

& & & & , 

are the moments of resistance in the corresponding joints and consisting of two parts: 
dry friction and viscous damping. The dry friction moment does not depend on the 
loading of the corresponding  bearing and the sign function  is approximated by the 
arctan function. The parameter c is the damping coefficient common for the second and 
third joint while in the first joint we assume damping two times greater (since the first 
joint is built by the use of four bearings, while each other joint contain two bearings).  

In the work [7] more complex model of friction has been investigated where the dry 
friction moment consists of two part: the first one proportional to the normal loading in 
the bearing and the second one being constant (and present also in the lack of loading). 
Moreover the friction is a function of relative velocity due to the Stribeck's curve. As a 
result of those investigations we have concluded that in our case the model of friction 
can be simplified to the one presented by the Eq. 2, without any loss of precision. 

The external excitation in the pendulum model can be an arbitrary time function, and 
in particular, it can be the same function as applied (and recorded to a file) in real system 
(it is useful in the parameter estimation process). On the other hand, it is possible to 
apply a forcing due to the following mathematical description: 

 

 0

0

if ( ) mod 2 2
if ( ) mod 2 2e

q t a
M

q t a
ω + φ π ≤ π

= − ω + φ π > π
. (3) 
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which imitates the square-shape in time forcing (applied in the real pendulum), with 
adjustable angular velocity ω, initial phase φ0 amplitude q and the coefficient a (for 
a≠0.5 there is an asymmetry in the forcing, as mentioned in section 1). 

3. Model parameters 

The model parameters are  estimated by the global minimum searching of the criterion-
function of the model and real  system matching. The matching of model and real system is 
understood as the matching of the corresponding output signals ψi (i=1,2,3) from model 
integrated numerically and from the real pendulum, assuming the same inputs to both model 
and real system. The sum of squares of deviations between corresponding samples  of 
signals from model and experiment, for few different solutions, serves as a criterion 
function. Together with the  model parameters also initial conditions of the numerical 
simulation are estimated. A minimum is searched applying  the simplex method. In order to 
avoid the local minima, the simplex method is stopped from time to time and a random 
searching is then applied.  After random searching the simplex method is restarted again. 

 If we divide final value of criterion-function by the number of samples used in 
calculation of criterion-function, we obtain average square of deviation between two signals 
(obtained from the model and the experiment) - let us denote this parameter as Fcr . Now this 
parameter can be used for comparison of matching of different sets of experimental data and 
corresponding numerical solutions. 

 
 
 A1 B1 C1 
B1 [kg⋅cm2] 1650.3 1634.7 1641.3
B2 [kg⋅cm2] 386.3 1378.7 1390.9
B3 [kg⋅cm2] 163.32 166.56 164.50
N12 [kg⋅cm2] 1111.2 1104.5 1112.6
N13 [kg⋅cm2] 198.99 201.47 199.92
N23 [kg⋅cm2] 255.96 259.16  257.15
M1 [N⋅cm] 879.76 874.38 875.00
M2 [N⋅cm] 632.37 628.53 633.13
T1 [N⋅mm] 56.83 72.73 97.53
T2 [N⋅mm] 25.06 15.16 13.77
T3 [N⋅mm] 11.07 4.58 6.61
c [N⋅mm⋅s] 0 1.057 0.532
ε [s] 1000 1000 6.77
Fcr [rad2] 0.3255 0.3059 0.2809

Table 1. Parameter estimations. 
 
In the Table 1 the part of the results of the parameter estimations performed in the work 

[7] is presented. Three different sets of parameters are presented, correspondingly to three 
variants of the model of resistance in  the joints. The set A1 corresponds to the model with 
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dry friction only. The model B1 contains also viscous damping. The next model (C1) is a 
development of the previous one (B1): the parameter ε is added to the set of the identified 
parameters. 

In all the identification processes, the same set of experimental solutions is used: five 
periodic solutions with the forcing frequencies (f=ω/2π): f=0.2, 0.35, 0.6, 0.85 and 1.1 Hz 
(for each the solution the 20 sec of motion was recorded, after ignoring the transient 
motions) and one decaying solution, which starts from the periodic attractor with forcing 
frequency f=0.5 Hz (after few seconds of the recorded motion, the forcing was switched off 
and the total length of the recorded motion was 24 sec). Note that in our work, we do not 
measure actual value of the forcing, but only the control signal is recorded (determining the 
sign of the forcing), since we assume the constant forcing amplitude q=1.718 Nm 
(determined before the identification experiments).  

4. Simulation results 

The Figure 3 contains a bifurcation diagram for the mathematical model (C1) with the 
forcing frequency f as a bifurcation parameter. The chaotic window for f ∈ (0.698,0.771) 
can be here observed, which is confirmed well by the experimental observations from 
which we have the chaotic zone for f ∈ (0.695, 0.774). 

 
Figure 3. Bifurcation diagrams for the mathematical model C1 with the parameter f growing 

(→) and decreasing (←). 
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In the upper part of Fig. 4 the final model (C1) and real system matching for vanishing 
motion (started from the periodic attractor with the forcing frequency f=0.5 Hz), obtained 
during the identification process, is presented. In this scale we see almost perfect matching 
of the corresponding behaviours.  The bottom part of Fig. 4 presents enlargement of the final 
phase of decaying of the same motion, where in addition the simulation of the model A1 is  
shown. Here we can observe in details certain aspect of the difference between models A1 
and C1. 

Figure 5 shows results of investigation of the forcing frequency region 0.13-0.14 Hz. It is 
an example that the developed model with their parameters can predict real pendulum 
dynamics exhibited also for forcing frequencies f outside the region 0.2-1.1 Hz (containing 
all the periodic solutions taken to the identification process). 

 

 
Figure 4. Final model (C1 and A1) and real system matching for vanishing motion 
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Figure 5. Bifurcation diagrams exhibited by experiment  and model (C1) with the parameter 

f growing (→) and decreasing (←). 
 

5. Concluding remarks 

Few versions of the model of resistance in the joints have been tested in the 
identification process. Good agreement between both numerical simulation results and 
experimental measurements have been obtained and presented, for all the variants of the 
friction model. However, one of them, namely C1, seems to be optimal, since it gives 
relatively good results with simultaneous simplicity of the model itself, and high speed 
of the simulation.  

The model C1 is better for simulation (higher simulation speed) than others because 
the ε parameter is much smaller and the characteristic of the friction torque are is 
smooth. It is interesting that model C1 give better results than models B1, while the only 
modification  is the parameter ε treated as identified one (the result is the smaller value 
of the parameter ε). We are not able to give a physical interpretation of that at this 
moment.  But since it is important to have a model giving results close to experimental 
observations, we can accept even some artificial improvements of the model having only 
functional role, no physical sense, particularly if they speed up the simulation process. 

I should be noted, that examples of numerical and experimental simulations 
presented is section 4 are selective. However, the presented examples show quite good 
agreement between numerical and  experimental results. It leads to conclusion that the 
used mathematical model of triple pendulum with its parameters estimated can be 
applied as a tool for quick searching for various phenomena of nonlinear dynamics 
exhibited by a real pendulum as well as for explanation of its rich dynamics. 
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Abstract 
The analysis of the effort of structural components by calculation methods 
often encounters serious difficulties. Usually, aim of biomechanical research 
is determination displacement distribution of anatomical samples or physical 
models. Development of modern numerical method and computational 
techniques into field of biomechanics in recent years allow to solve highly 
complex problems encountered in the assessment of the strength and 
reliability of bone structures and implants. But they usually require 
experimentally determined boundary conditions or courses of the involved 
phenomena.   
 
Key words: FEM, photoelsticty, elctronic speckle interferometry, 
holgraphic interferometry 

1. Introduction 

One of the most important line of the research in engineering biomechanics is the 
experimental and numerical analysis of the state of stress and strain existing in the 
organs which are most heavily loaded such the spine, the hip and the knee joint, or 
elements of human body which sustained an injury or in which pathological changes 
occurred. Clinical, experimental and numerical investigations of constructions supported 
human locomotion system, especially spine fixators, artificial human joints (hip and 
knee prosthesis) is also very important field of biomechanics. Discussions in this fields 
focuses on the problems of load models, using of different methods to investigations of 
biological objects in real and model conditions, interacting on biological tissues on 
changes of mechanical load.  
In such investigations it is important to set oneself specific goals and determine what 
measured (or calculated) values will allow one to rich this goal. Physical and  numerical 
models that are used should mirror as accurately as possible the studied object and take 
into account the influence of simplifications on the obtained results. As s rule, tests on 
models cannot reproduce the whole complexity of the ligamentous - muscular system, 
the nervous system, and the biological and biomechanical factors that occur in man’s 
osteoarticular system. Even tests on anatomical specimens have these limitations. In the 
case of anatomical specimens, for instance, the time which passes since the taking of a 
specimen to the actual testing in crucial. As it was mentioned earlier, the main goal of 
experimental studies is to verify at some points theoretical models, or to confirm 
conclusion emerging from clinical practice. Still without tests and numerical 
investigations carried out on models and anatomical preparations it would be impossible 
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to determine the pathogenesis of some diseases or to evaluate the employed method of 
treatment, such as implantation.  

The objectives of these paper include: 

1. An analysis of the pathogenic mechanism of some diseases associated with the 
overloading of man’s load-bearing system (e.g. the spine, the hip-tibial joint, the 
knee joint and the lower limbs). By man’s load-bearing system we mean a complex 
of elements performing tasks chiefly in load-carrying and locomotion processes; 

2. Clinical, experimental and numerical investigations of: 
• spinal structures (an assessment of stresses, strains and displacements), 
• the hip joint and the knee joint, 
• the bone, ligament and muscular structures of the lower extremities; 
3. An analysis of the optimum course of treatment in which some technological means 

such as endoprostheses, implants, stabilizers and so on are employed; 
4. The creation of a basis for the selection and construction of implants and other 

treatment-aiding elements that meet such quality criteria as reliability, durability, 
biological compatibility, and ease of assembly and service. 

 
2. Model of the pelvis bone 
 
For solve problem analysis strain and strain in the human pelvis  was investigated by 
used experimental and numerical method. 

A geometric model of the bone was constructed on the basis of a series of cross – 
sections of the artificial pelvis bone. The model obtained in this way reflects accurately 
the actual geometry of the artificial pelvis bone. The computer programme ANSYS  was 
used in numerical analysis (Fig. 1 a).  

In numerical analysis were used three dimension, 10 – notes solid element. In the 
present case linear, isotropic material properties of the external cortical bone were 
assumed. The model of the human pelvis consisted of 59 000 elements with 98 247 
nodes. The following material propertied were assumed: the elastic modulus E = 18 600 
MPa, the Poission ratio ν = 0,3. 
   Recently significant  [11] improvements of laser doppler techniques gained interest for 
bone analysis. Laser speckle interferometry ESPI allows the full field and three-
dimensional measurement of deformation and strain on complex surfaces. In electronic 
speckle pattern interferometry (ESPI) (Fig. 2 b) a speckle pattern is formed by 
illuminating the surface of the object to be tested, with laser light. This speckle pattern is 
imaged onto a CCD array where it is allowed to interfere with a reference wave, which 
may, or may not, be speckled. The resultant speckle pattern is then transferred to a frame 
grabber on board a computer where it issued in memory and displayed. When the object 
has been deformed, or displaced, the resultant speckle pattern changes due to the change 
in path difference between the wavefront from the surface and the reference wave. This 
second resultant speckle pattern is transferred to the computer and subtracted from, or 
added to, the previously stored pattern and the result is rectified.  
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Figure 1: Numerical model of the human pelvis (a) and results of experimental 
investigations of displacement distribution for model verification (b) by ESPI method. 
[11] 
 
The loading conditions in the hip joint are a complex problem. Apart from the weight of 
the upper body, the muscles and ligaments forces operate onto the pelvis bone. Simple 
load models, which were based on Pauwels model [1], [5], were assumed in 
investigations. In the first model were considered only the interaction between femoral 
head and acetabulum, without muscles system. In the second model, the resultant force 
was a sum of the abductor muscles force like gluteus minimus and gluteus medius and 
the external force as a body weight. 
Two cases of interaction between the head of the femur bone and the pelvis were 
investigated.  
 
 
 
3. Experimental analysis of external fixator for femoral bone elongation 

The interest in the external fixation system for limbs developed by Ilizarov has 
been growing in the last decade [2][4]. This is above all due to the high, in comparison 
with other fixators, effectiveness of treatment by the Ilizarov fixator of, e.g. complicated 
fractures of long bones, pseudarthrosis and limb axis correction or shortening. This high 
efficacy of the Ilizarov fixator results from, among other thing, its modular design that 
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allows one to create numerous configurations of the fixator and to modify its spatial 
arrangement during treatment depending on the needs. Another advantage is that the 
fixator’s mechanical properties are conductive to the preservation of the optimal 
biomechanical conditions at the place of the joint of the bone fragments. The Ilizarov 
fixator is a flexible stabilizer. This mean that the load acting on the bone are carried both 
by the fixator’s structure and the place of the join of the bone fragments, which ensures 
the axial dynamicsation of the latter.  

The elongation of the lower limbs is one of the more interesting, but highly 
complex – both – in the clinical and mechanical aspects – cases of the application of the 
Ilizarov fixator. Though the clinical experience in the elongation of the lower extremities 
by means of the Ilizarov fixator is long, many disturbances and complications still 
frequently beset this process. This is particularly the case when the lower limbs are 
elongated in the thigh sections were complex conditions of a load acting an the femoral 
bone in the hip joint occur in usually strongly developed muscles groups surrounding the 
thigh begin elongated. The failures in the elongation are above all due to the still 
unexplained mechanisms of the effect of the fixator on the limb begin elongated and 
conversely the effect of the soft tissue surrounding the treated bone on the fixator’s 
structure.  

The aim of the work was to analyse the stability of the system formed by the 
Ilizarov fixator and the thigh being elongated [4]. The gaol of these studies was to 
determine the conditions of the load acting on the particular distance rods of the Ilizarov 
fixator and its changes during the elongation of the lower limbs in the thigh section. The 
tests were conducted in the distance rods of the stabilizer mounted on patients 
undergoing thigh elongation in clinical conditions. The forces were measured in all 
distance rods connecting the rings between which the bone’s shaft had been cut. It was 
presumed that knowing the load pattern for the particular rods and their distribution 
around the bone being elongated, it would be possible to determine which groups of 
muscles acted stronger and which weaker on the system: the bone fragments – the 
Ilizarov fixator and how these actions change during the whole process of elongation.  

Specially adapted extensometer converters built into the distance rods of fixator 
mounted on patients undergoing thigh elongation were used for the measurement of the 
forces acting in the distance rods (Fig 2.1).   
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Figure 2.1. Force transducers and their localisation in distance rods of external fixator 

[2][4] 

The measurement covered ten cases of thigh elongation by the Ilizarov fixator. 
Measurements were made once o day at a fixed time, immediately before and after the 
application of a distance rod length increment.  

 

   ?      rod 1
   ¦       rod 2
   ?      rod 3
   x      rod 4

time of elongation
t [day]

 
Figure 2.2.Distraction load measured in function of time: rate of elongation: 4x0.25 mm 

per day [4] 

 
Figure 2.2 shows typical variations in distance rod load as a function of time 

recorded for selected cases. An analysis of the results recorded for the particular case 
shows that in most of them, the increments of forces in neighbouring rods were similar 
both in their character and in the variation of their values. The investigations have 
demonstrated that the stability of the system: the Ilizarov fixator  - the thigh being 

◊    rod 1 
�    rod 2 

   ∆        rod 3 
   x        rod 4 



30 

elongated, measured in values of the transverse displacements of the bone fragments, is 
a function of both the mechanical properties of the adopted fixator structure and the 
distribution of the forces acting on this system.  

The clinical studies allowed determining the distribution of loads in the 
particular distance rods of the Ilizarov fixator and the variation of the loads as a function 
of the elongation time. The clinically developed and applied measuring method allows 
once to control continuously the correctness of the course of the elongation of the limb 
by analysing the conditions of the loading of the particular rods of the Ilizarov fixator 
and the changes of these loads as a function of the elongation time.  

The studies conducted under clinical conditions have indicated that the 
preliminary assessment of the patient’s physical condition – above all the degree to 
which the muscles surrounding the bone to be elongated are developed and trained, 
whether scars and pathological changes are present – is of major importance. When the 
mechanical properties of the soft tissue have been taken into account and the effect of 
the optimal spatial configuration of the fixator can be selected for the particular course 
of treatment. This means that in clinical practice the adopted goal will be achieved in the 
shortest time without complications.   

4. Strain analysis in the intact femur bone and with implant 

The loading conditions in the models of femur and femur with the stems 
implanted, respectively, were assumed after [2],[3],[5] for a single leg stance. Besides 
the resultant force of 2,47 BW (body weight), also the forces generated by three other 
muscles and tendon acting in this phase of gait were simulated; i.e., Gluteus medius – 
0,535 BW, Gluteus minimums – 0,2 BW, Iliopsoas – 0,865 BW and Tractus iliotibialis 
0,08 BW. The body weight for the considered model of femur was equal to 567 N. In the 
lower part of femur (on the condyles) the model was fully constrained. 

Only the influence of stem shapes, geometrical and mechanical properties on 
the observed parameters were investigated. Because of numerical simulation 
simplifications only this kind of comparative analysis was possible. Thus, the Huber-
Mises form of the strain energy was applied. The KERAMED stem generates 
considerably lower values of strain and stress, when compared with the values recorded 
for the intact bone changing strongly the strain and stress distribution. As a results only 
bending occurs in the lateral plane. The strain distribution shows concentrations in the 
subcollar region. However, both stems generate substantially different distributions of 
stress observed in the medial part of femur when compared with the intact femur. 

Moreover, there is a non-uniform stress and strain distribution around the 
stem in a transverse cross-section. Analysis of the values of strain occurring in the bone 
in the bone/stem interface region indicates that both stem designs affect a strongly non-
uniform and discontinuous strain distribution. 
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Figure 3: Stress and strain analysis in the hip join with endoprosthesis. 
 
After a series of investigations the most important stem design features have been 
evaluated in the bone/stem system functioning perspective: 
• Stem length. The stress and strain distribution is closest to that observed in the intact 

bone when short stems are applied, [3][5]. 
• It has been found that the collar plays a crucial role in achieving secondary stability 

of the stem. It produces, however, strain and stress concentrations in the subcollar 
region which, change decisively the implant/bone load transmission and contribute 
to an abnormality of the process of bone remodelling. A disadvantageous effect of 
the collar on the nature of stem/bone system functioning has been found in both the 
experimental investigations and numerical simulation. The investigations also show 
the occurrence of higher stresses in the bone in the proximal part of collarless stems 
when compared with those observed in stems with collars. 

• The bending stiffness of the stems plays an important role in mechanical 
cooperation of stem and femur. Cross-sections of the objects without corners reveal 
a high regularity of strain and stress distribution in the bone. There is a lack, in 
literature, of the reports on the optimisation of endoprosthesis from the point of 
view of stem/bone stiffness relationship. It is unequivocally stated that this 
relationship is of crucial importance for maintenance of the normal bone/stem 
system functioning under physiological loading. The values of strains and stresses 
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in the bone decrease considerably with the increase of stem elastic modulus, 
Huiskes et al. [9][12]. Higher values of stem elastic moduli reduce strains in the 
proximal metaphysis of the hip bone. Materials with a low elastic modulus (e.g. 
titanium alloys) are much more suitable, from the mechanical point of view, for hip 
endoprosthesis stems than materials with a high Young modulus. None of the 
materials known so far meets simultaneously all the criteria. 

 
 
5. Summary 

The experimental methods, which are often use in analysis of the 
displacements and the stress distribution of the elements of human body, have a steady 
position in the biomechanical investigations. At the present the biomechanical studies 
are carried out in many scientific centers all over the world, in order to explaining 
reasons for course of orthopedics diseases and working out the optimal method in 
treatment of human’s skeletal system. The scientific researches frequently concern one 
of the most loaded elements in human body like spine, hip joint and lower extremities. 
The experimental and numerical studies are mainly carried out at models and in the 
clinical conditions. The results of these investigations help to explain and understand 
both the formations of the degeneration changes in the skeletal system and elaborate 
efficient treatment methods.  

The relative costs of developing and testing a design are an important 
consideration in the selection of a design analysis method [12]. The costs of calculation 
methods should be compared with those of experimental methods, considering the goal 
to be achieved. A selection of a research method should also be made on the basis of the 
relative costs due to the complexity of an investigated object [6]. 

The goal of the investigation and which methods enable to achieve this goal is 
the most important target in the biomechanical studies. Physical and numerical models 
should both represent the original models as well it is possible and estimate the 
influence of simplifications, which were made, on the final results. 
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Abstract 

                The paper is devoted to the study of continuous systems subjected to moving 
loads. Several cases of dynamical problems are considered, where the motion 
of elastically supported beams are excited by a moving concentrated force. In 
particular, we study interactions with periodic structure of the medium. Earlier 
results on one-dimensional structures are extended to the case of a set of 
plates. 

               Key words: dynamics, travelling loads,oscillation 
  
Introduction 
 
The development of modern technology of explosive bonding of layer materials or 
tracked high-speed transportation systems becomes more and more important. There is a 
strong need for simplified but reliable models of continuous systems in order to study 
various dynamical effects which influence comfort, durability of structures and damage 
of the environment. The first study of a beam on Winkler foundation subjected to simple 
force moving with constant speed was initiated by Timoshenko [1]. The first stationary 
solution of the simple case devoted to Bernoulli-Euler Beam on an elastic foundation 
was obtained in proper way by Ludwig [2]. The case of moving and oscillating force was 
formulated and partly solved by Mathews [3]. The first proper solution of Mathews 
problem was given by Bogacz and Krzyżyński in [4}.There are various extensions of 
this classic problem towards more realistic models of structures and loads. A great deal 
of new effects were recognize by authors of [5] studying the problem of oscillating load 
moving along a periodic (variable in space) structures. The dynamical effects for two or 
three-dimensional problems with moving load have an important practical engineering 
applications, [6]. Some problems connected with system of plates subjected to traveling 
load will be also presented in the paper.  
 
1.1 Response of Beam to Normal Constant Force Moving at a Constant 
Speed 
 
  The classic problem of infinite Bernoulli – Euler beam on the Winkler foundation 
(flexural rigidity EI, mass density m, damping coefficient d foundation constant c) 
subjected to force F0 moving with velocity V0 is described by following equation of 
motion: 
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                 EI w,xxxx + m w,tt +d w,t+ c w = F0 δ(x - V0 t) ,                                          (2.1) 
      

Where: δ denotes Dirac ‘function’,  w = w(x,t) is deflection of the beam, - ∞ < x < ∞ , 
 t > 0. 
     The steady state solution for V0 < Vcr , Vcr = (4cEI/m 2)1/4 was obtained by Ludwig 
[2], looking for the stationary solution in the form of traveling wave with the velocity 
equal to the speed of moving force. In such a case the ordinary equation of motion has 
the form: 
             
               EI wIV

 + mV2 w” – d w’+ c w = F0 δ(X),    X = x-V0 t.                                 (2.2) 
 
The stationary solution in the elastic case for subcritical range has the form:  
 
                   w(X) = F0 /[ 4 α(c EI)1/2  ]    (cos βX + α/β sin β |X|)                                (2.3) 
 
where  α =  [1−(V/ Vcr )2 ]1/2 Vcr ,  β = [1+(V/ Vcr )2 ]1/2 Vcr. . 
               
The supercritical case yields waves expanding from the force location with smaller wave 
lengths and amplitudes in front of the load as behind it. Usual the sub-critical case is of 
technical importance. However, the critical speed can be reduced by the action of 
additional axial forces, as pointed out Kerr in ref. [7]. 
 
1.2 Response of Beam to Moving Oscillating Force 
 
   The more complicated case from the solution point of view but very important for the 
modelling of railway engineering track-train interaction is a system which is composed 
of a beam on an elastic foundation subjected to the moving force F0, which oscillate 
harmonically with amplitude F1.  In this case the motion is described by the following 
equation:  

 
           EI w,xxxx +T w,xx,+ mw,tt + cw =( F0 +F1  cos ωt)δ(x – V0 t) ,                         ( 2.4)                  

 
Such a problem for F0 = 0  was formulated by Mathews [3]. The solution of the problem 
was expected in the form of standing waves in the system of coordinates moving, in the 
direction x with the velocity Vo. The equation ( 2.4) in the moving system of coordinates 
is equivalent to folowing equation: 
 
     EI w,XXXX +T w, XX+ m(w,tt –2V0  w,X t+ V0

2 w,XX )+ cw =( F0 +F1  cos ωt)δ(X) ,    (2.5) 
 
Looking for the solution in the form                                       
 
                                 w(X, t) =  W1(X) sin ω t + W2(X) cos ω t                                  ( 2.6) 
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one obtain the ordinary equation with respect X  which ought to be solved using proper  
condition of radiation. The solution obtained in ref. [3] was valid in the first region of 
(Ω,V) plane only, Ω=ω/ω0, V= Vo/Vcr, ie. for the relatively small velocity of force 
motion and small frequency. The error made by Mathews was connected with the wrong 
way of use of  the radiation condition. The correct solution of the Mathews’ problem was 
obtained by Bogacz and Krzyżyński in [4}, and generalized for more complicated beam 
models in [8]. The traveling wave solution in the Bernoulli – Euler beam model has 
different form in the five regions of the frequency-velocity (Ω,V) plane. Corresponding 
number of regions in the case of the Timoshenko beam is twenty two. An example of the 
regions configuration for Rayleigh beam is shown in Fig 1. About the region in the 
neighborhood of frequency Ω = 1.0  one can obtain information in ref. [8].  
Exemplary case of wave propagation in the region II for the Rayleigh or Bernoulli-Euler 
beam is shown in Fig. 2 and Fig. 3. In Fig. 2 we can see the displacement of the beam in 
time- space plane excited by the moving and oscillating source, visible in the central line 
as displacement with higher amplitudes. In the left side of the figure we can see the 
ordinary case, the waves traveling from the source of excitation, and on the right side of 
plane waves traveling to the source of excitation. The case of frequency higher then the 
resonance frequency when on both side of the plane waves are propagating from the 
source of excitation is shown in Fig. 3.  
The lines V=0.1 and V=0.3 on Fig. 1 are corresponding to the classic and high speed 
trains, respectively. This shows that above phenomena  may occur in the real conditions. 
That is why such a study are important  for engineering practice. 

 
Fig. 1. Regions of solutions of characteristic equation for the Rayleigh beam on Ω-V 
plane. Region I: 4 complex roots, Region II:  2 complex and 2 real roots,  Region III:  
real roots.     
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Fig.2  Displacement of beam on time- space plane excited by source moving in the 
central line, case of waves traveling to the source of excitation on right side of plane. 
 
 

 
Fig. 3.   Displacement of beam on time - space plane excited by source moving on the 

central line, case of waves traveling from the source of excitation on both sides of plane 
 
1.3 Response of Beam to Moving Distributed Load 
 
 The problem of a flexibly supported beam vibration, when the beam is subjected to the 
moving distributed load can be composed of solution for the limiting case of load 
described by following Heaviside function F0 H(x - V0 t): 
 

EI w,xxxx +T w,xx,+ mw,tt + hw,t + cw = F0 H(x - V0 t)                        ( 2.7) 
 

Such a case and the case of  the beam on a visco-elastic semi-space was studied by 
Bogacz and Rozenbajgier in [9]. The superposition of the obtained solution for the 
Heviside function allows to obtain various kind of pice-wise constant load distributed on 
a finite-length segment. For example if we describe a load with given value F1 
distributed  between x =0 and x= L at t=0, than it is possible to write as follows:   
                                      
                                        F(x,t) = F1 [H(x - V0 t) - H(x-L - V0 t)]                                (2.8) 
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The boundary conditions take the form: 
                                                   lim w(x) = 0  for |x|  ∞ ,                                        (2.9) 
and the displacement w(X), as well as  w,X  , w,XX , and  w,XXX  is continuous at X= 0 in the 
case of  eq.  (2.7) and (2.8) and additionally at  X= L in the case of load (2.8). 
 
The case of Timoshenko beam on an elastic foundation subjected to uniformly 
distributed moving loads has been studied by several authors, ie: refs.[10], [11].  
 

EI ϕ,xx + k’AG (w,,x - ϕ) – mI ϕ ,tt = 0, 
k’AG(w,xx - ϕ ,x  ) – m w,tt – h w,t – c w = - F0 H(x - V0 t)                       (2,10) 

 
where: ϕ  - angel of rotation of beam due to pure shear, k’ – shear coefficient, G – 
modulus of elasticity in shear,  A – cross-sectional area and  h – damping coefficient. 
 The first stationary solution obtained for the case of the Timoshenko beam on an elastic 
foundation was obtained by Achenbach and Sun in [12]. The solution obtained is valid in 
full range of velocity, but only for the set of parameters fulfilling following inequality: 
 

E  > k’G (1 + k’G A2 (Ic)-1)                                         (2.11)                                        
 
 
The discussion of qualitatively different traveling wave solution depending on the beam 
parameters is presented  in [13]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Displacements of Timoshenko beam wish parameters not fulfilling inequality 
(2.11) for chosen value of velocity. Qualitatively similar solution is given in ref. [12] 
 
 
 



40 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Displacements of Timoshenko beam wish parameters fulfilling inequality (2.11) 
for chosen value of velocity, see ref. [13] 
  
1.4  Response of Periodic Beam Structure to Moving Loads 
 
The guideways for high-speed vehicles are composed of repetitive elements or cells 
which forms a periodic structure. The track is usually modeled as one dimensional 
system but sometimes the study concerns two dimensional system, [5]. The steady-state 
system response is determined for a moving disturbances source in the form of constant 
and periodic concentrated force (2.4). 
 

w(nl+, t) = w(nl-, t);  w,x(nl+, t) =  w,x(nl-, t);  w,xx(nl+, t) = w,xx(nl- ,t);        (2.6) 
       

w,xxx(nl-,t)  – w,xxx(nl+,t) = R(nl,t)                                       (2.7) 
 
The equation of motion is completed by interface conditions at the supports which 
depend on the model assumed, e.g. for the railway track is required condition of 
continuity (2.6) and equilibrium of vertical forces (2.7), while for the supports of maglev 
model, they require continuity of displacements (position), vanishing bending moment 
and equilibrium of vertical forces. 
The solution method proposed in such a case consists in the direct application of the 
Floquet’s theorem, cf. ref. [14], to the differential equations of motion with periodic 
parameters, [5].  
The very important phenomenon connected with periodic system dynamics is connected 
with passing and stopping bands. Because in the elastic case, or case of small damping 
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small differences in the system parameters can qualitatively change the solution of the 
system. 
 

  
Fig. 6  Track of. Magnetic Levitated Train and its model as periodic structure 

 
Other approach (by the use of perturbation method) for a periodic mass and stiffness 
distribution along the beam was applied by Popp and Mueller [15] in order to 
approximate the sleepers spacing in the track. In this case, for the realistic system 
parameters, the differences were very small. Jezequel studied periodic structures 
subjected to moving load using Fourier series method, [16]. Also using such approaches 
as “space harmonic analysis”, “energetic method” and “transfer matrix method” were not 
so successful as the “traveling wave method” used by Mead [17]. The application of 
Floquet’s theorem allows to solve the problem of free and forced vibration of periodic 
structures subjected to moving load. The motion of harmonic force and traveling waves 
corresponding to the first and second passing band are studied in [14]. An example of 
such a study lead to the results for the successive steps of time and assumed parameters. 
The optimal length of the vehicle is connected with minimum displacement for the 
operating speed. The magnetic mass-less loading is modeled as many concentrated 
traveling forces moving with a constant speed.  We can see in [14], that in the optimal 
case maximum displacement take place under the vehicle only. Such a case of study is 
connected with the magnetic levitated test line realized in Germany .  
 
2. Response of Plates to Moving Load 
 
The more complicated periodical system which is composed of an array of plates 
vibrating due to moving load is used for modeling the road or an airfield. Such a model 
is a relatively complicated two or three dimensional periodic system. In the case of the 
airfield an array of single small plates, which are coupled  by appropriate boundary 
conditions and by a common foundation in form of big supporting plate, with a visco-
elastic sliding layer between supporting plate and array of plates.  
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In the beginning the problem of single plate on an elastic foundation was studied. Then 
system of plates which creates array of plates [6], which is studied with various 
boundary condition between small plates and sliding layer. 
 

 
Fig. 7. Scheme of the coordinate system of the upper plate 

 
The large plate in turn is placed on a Winkler foundation and fixed on its boundary. Such 
a system  constitutes a periodic structure, however, in two space dimensions instead of 
linear, one dimensional studied previously. Equation of motion of each plates has hence 
the form: 
 

ρ W,tt(x,y,t) + D ∆∆ W(x,y,t) = g(x,y,t) + F(t)δ (x -Vx t)δ (y–Vy t)               (2.12)                                                
 
where ρ is the mass density per unit of area, D - the stiffness of the plate, W - deflection 
of middle plane. The force g(x,y,t) couples support and top layer. It is assumed 
proportional to  difference of vertical positions. F(t) is the normal load and Vx and Vy are 
components of velocity of moving load. Looking for the dynamics of the array of plates 
subjected to moving forces acting at several  interaction points also non-symmetric case 
maybe considered. The majority of consideration deals with simply supported plates or 
free boundary (without forces). In the real case there are acting non-conservative friction 
forces and bending moment with value depending on temperature and other parameters. 
In general case the problem is non-linear due to friction low and contact  forces in lateral 
and vertical directions. 
 
In order to solve the problem use of the analytical methods is inefficacious. That is why 
the numerical  technique is an alternative approach in this case. Promising in the case of 
moving loads is the time-space element method or finite differences method. From 
engineering point of view we are interested in rectangular array of plates, hence the 
finite differences method is easy to apply, [6]. The initial results of simulation shows that 
the viscosity of the thin layer between upper and bottom plates is very important. In the 
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symmetric and rectangular case when the load is moving  with relatively small speed 
also analytical orthogonalization methods can be accepted. The results obtained using 
analytical method are shown in Fig. 6, see ref. [21].  
 
Similar investigations devoted to problems of dynamics of array of plates can be find in 
ref. [20, 22]. The high speed motion of the load excite disturbances in the system of 
plates in the form of waves which are visible in Fig. 7. Wavy phenomena of the 
disturbances is specially  important in the case of periodical property of the air plate or 
array of plates subjected to the following moving load or a set of similar loads [6].  
 

F(x,y,t) = F(t)δ (x -Vx t)δ (y – Vy t)                                        (2.13) 
 

 
 

Fig. 6. Displacements of the simply supported plate on an elastic foundation 
subjected to the force moving at lower speed along symmetry line at x2 

 
The two dimensional problem in general case is very complicated. The symmetric and 
rectangular case as shown in Fig. 6 can be easy discretized conventionally by the method 
of finite differences, [21]. With the discretization of the spatial derivates, we rewrite the 
second order equation of motion (2.12) as a first order system for the nodal positions and 
velocities. Initial conditions required for equation (2.12) we assume as a trivial one (state 
of rest before the external load is applied).  

W
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In the case of plate subjected to the concentrated  force moving at high speed along the 
line x2 = 3 (symmetry line) the wave phenomenon dominate the dynamics of the plate. 
Such situation is visible on Fig. 7. 
 

Fig. 7. Displacement of plate subjected to the force moving at  high speed along 
line x2 = 3 

 
 

          
Fig. 8. Displacement of plate under skew motion of concentrated load 

 

W

 
W

W 
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3. Conclusions 
 
Several cases of dynamical problems, where the motion of elastically supported beams 
or plates subjected to moving load was investigated in the paper. Particular attention was 
paid to the periodic excitation or periodic structures. The application of Floquet’s 
theorem allows to solve the problem of free and forced vibration of periodic systems 
(guideway) when the system is linear (one dimensional). The periodic structure 
subjected to harmonic load is connected with an infinite number of travelling waves, 
whereby the crucial contribution to the solution have the waves corresponding to the 
passing and stopping bands. Much more complicated case, the two dimensional problem 
of array of rectangular plates subjected to traveling load was formulated and partly 
solved in this paper. The results of farther investigation will be presented in the next 
publications. 
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Abstract 
The paper id devoted to applications of evolutionary algorithms to 
optimization  of dynamical physical systems. Identification of internal 
defects are also considered. Several numerical examples of shape and 
topology optimization for various criteria and crack or void detection are 
presented. 
Key words: evolutionary algorithms, optimization, defect identification 

 
 
1. Introduction 

 
Applications of classic algorithms in optimization of dynamical system is restricted by 
limitations referring to the continuity of an objective function and the necessity of 
gradient or hessian evaluation. These methods give substantial probability of finding a 
local optimum. Therefore new optimization methods, free from limitations mentioned 
above, have been still looked for. The optimization methods inspired by biological 
mechanisms have become very popular in last few decades. Most of them give good 
results in optimization problems where  a multimodal objective functional appears. The 
paper describes a computational intelligence method - evolutionary algorithm (EA) in 
optimization of vibrating physical systems. The evolutionary algorithms (EAs) are based 
on mechanisms taken from biological evolution of species. This mechanism similar to 
biological one like a mutation, a crossover and a selection are used in EAs. EAs operate 
on population of chromosomes (individuals with one chromosome). EAs have found 
several application in optimization of mechanical structures [2]. 

 
2. Formulation of the optimization problem 

 
Consider an elastic isotropic body which occupies a domain Ω bounded by a boundary  
Γ: 
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2 ( ) ( , ), , [0, ]fgrad div t t T tµ λ µ ρ∇ + + + = ∈Ω ∈ ∈u u Z u x x&&  (1)

where: 
  µ, λ – Lame constants; 
  Z – body forces. 

Equation (1) is supplemented by boundary conditions: 

( , ) ( , ),
( , ) ( , ),

t t
t t
= ∈Γ ≡ ∂Ω
= ∈Γ ≡ ∂Ω

u x u x x
p x p x x

 (2)

and initial conditions: 

 (3)

The direct initial-boundary value problem is solved by the boundary element method [1]. 
The problem of the shape and topology optimization of elastic structures being under 
dynamical loads can be formulated as the minimization of the volume of the structure 

J d
Ω

≡ Ω∫                                                          (4) 

subjected to the constraints imposed on equivalent stresses and displacements 

( , ) 0,

( , ) 0,
eq o

o

t

t u

σ σ− ≤

− ≤  

x

u x
                                                      (5) 

where: [ ] = ⋅u u u  x∈Γ or x∈Ω, t∈T=[0,tf], σo and uo are admissible equivalent 
stresses and displacement, respectively.  
There is also an alternative formulation in which one minimizes a functional:  

( , , ) ( , )
T T

J d dt d dtσ ε
Ω Γ

≡ Ψ Ω + Φ Γ∫∫ ∫∫u u p                                   (6) 

with the constraints imposed on the volume of the structure: 

     0J d Vo
Ω

≡ Ω − ≤∫                                                       (7)   

Integrands Ψ and Φ are the arbitrary functions of their arguments. Using the 
evolutionary algorithms, the minimization of (4) and (6) is performed with respect to 
shape design variables.  The dual reciprocity boundary element method [1] enables 
evaluation of the functional (6) and constraints (5). 

0 0
( , ) ( ), ( , ) ( ),o o

t t
t t

= =
= = ∈Ωu x u x u x v x x&
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The boundaries in 2-D structure are modeling as the NURBS curves. In the case of  
3-D structure the boundaries as the NURBS surfaces are modeled. Due to using the 
NURBS curves and surfaces, the number of optimized parameters can be decreased. 
The voids in 2-D structure are modeling as the: (i) – circular, (ii) – elliptical, and  
(iii) – using the closed NURBS curve. In the case of 3-D structure the void as the:  
(i) – spherical, (ii) – ellipsoidal and (iii) – using the closed NURBS surface is modeled. 

Due to introduction the special types of chromosomes the evolutionary algorithm 
finds the optimum very easy.  

 
3. Formulation of identification problem 

 
In identification problems one assumes that a body contains some defects as cracks or 
voids. The number, shapes and sizes of the defects are unknown.  
The identification problem is expressed as the minimization of the special objective 
function. This function contains the physical values which can be measured in the 
special selected sensor points. The sensor points are located on the surface of the body. 
As the measured values are considered here: (i) – displacements under static loading,  
(ii) – displacements under dynamical loading, (iii) – eigenfrequencies. Therefore the 
function takes the forms: 
  
 - for displacements under static loading: 

[ ] ( )22ˆ ˆ( ) ( ) ( )i i i i i
i

J dδ
Γ

= − − Γ = −∑ ∑∫ u x u x x x u u              (8)                                               

 - for displacements under dynamical loading: 

 [ ] ( )22ˆ ˆ( , ) ( , ) ( ) ( ) j j
i i i j i i

i j i j
J t t t t dtdδ δ

Γ

= − − − Γ = −∑∑ ∑∑∫ u x u x x x u u        (9)                                          

 - for eigenfrequencies: 

 ( )2
ˆk k

k
J ω ω= −∑                                                 (10) 

 - and for all information: 

 ( ) ( ) ( )2 2 2
ˆˆ ˆ j j

i i i i k k
i i j k

J u u u uα β γ ω ω= − + − + −∑ ∑∑ ∑                  (11) 

where: ˆ iu - measured displacement in i-th sensor point, ˆ j
iu - measured displacement in  

i-th sensor point in j-th time step, ˆkω - measured k-th eigenfrequency. The analogous 
values without the hat mean adequate values computed by evolutionary algorithm. The 
parameters: α , β  and γ are the weights. 
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The shape and topology parameters of the body are modelled in the similar way as in the 
optimization problem. 

 
4. Evolutionary computing 

 
Evolutionary algorithms are well known and applied in many areas of optimization 
problems [3]. The main disadvantage of these algorithms is the long time needed for 
computation. The parallel evolutionary algorithms  perform an evolutionary process in 
the same manner as the sequential  evolutionary algorithm. The difference is in a fitness 
function evaluation. The parallel evolutionary algorithm evaluates fitness function values 
in the parallel way. Theoretically, maximum reduction of time needed to solve the 
optimization problem using parallel evolutionary algorithms is equal to the number of 
used processing units. The flowchart of the parallel evolutionary algorithm is shown in 
Fig. 1. The starting population of chromosomes is created randomly. The evolutionary 
operators change chromosomes and the fitness function value for each chromosome is 
computed. The server/master transfers chromosomes to clients/workers. The workers 
compute the fitness function and send it to server. The workers operate on different 
processing units. The selection is performed after computing the fitness function value 
for each chromosome. The selection decides which chromosomes will be in the new 
population. The selection is done randomly, but the fitter chromosomes have bigger 
probability to be in the new population. The next iteration is performed if the stop 
condition is not fulfilled. The stop condition can be expressed as a maximum number of 
iterations. The evolutionary operators used in the presented algorithms are a crossover 
and a Gaussian mutation. The crossover chooses randomly two parent chromosomes and 
creates a new one containing a part of genes from the first and a part from the second 
parent. The Gaussian mutation creates chromosome based on a randomly chosen one. 
The part of the genes in a new chromosome have values changed by adding random 
numbers with the Gaussian distribution. The selection is performed by the use of the 
ranking method. The probability of being in the new population does not depend on the 
fitness function value, but on the number of chromosomes ordered accordingly to the 
fitness function values. 
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Figure 1. The flowchart of evolutionary algorithm 
 

 
 
5. Example 1 – Shape optimization 

 
The example concerns the minimization the mass of the support (Fig. 2). The support is 
loaded by dynamical loading F(t)=F0sin(ω t), F0=10kN. The optimization fitness 
function (4) was used. The constraints on the values of the displacements were imposed.  
The surface of the support was modeled using the NURBS surface. The coordinates of 
the marked points (Fig. 3) (control points of the NURBS surface) were modified.  
The following parameters of the evolutionary algorithms were applied: pop_size: 50, 
max_life: 400. The optimal structure on the Fig.4 was shown. 
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Fig.2. The support 

 
Fig.3. The NURBS control points

 

 
Fig.4. The support after optimization 

 
6. Example 2 – Topology optimization 

 
A shape and topology optimization problem of the structure presented in Fig.5 is 
considered for criterion (6). The evolutionary algorithm searched the optimal topology 
and shape of the structure. 

 
Fig.5. The structure before the 

optimization 

 
Fig.6. The parametrization of the structure

 



53 

 

The upper part of the boundary was modelled using the 6-point NURBS curve, 
additionally 4 circular holes could be introduced to the structure. The population size of 
the evolutionary algorithm was equal to 200. The number of generations was equal to 
100. After the optimization the fitness function was decrased from 2226 to 2271 s−1. The 
Fig. 7 shows the optimal topology and shape after the optimization. 

 

 
Fig.7. The structure after the optimization 

 
7. Example 3 – Shape identification  
 

Consider a two-dimensional elastic body (plane strains) with a circular hole (Fig.8). 

 
Fig.8. The plate with the circular defect 

The body (1 cm × 1 cm) is loaded dynamically by a traction field q(t) = qH(t), where q 
=100kN, H(t) – Heaveside function. The coordinates x, y and the radius r of the hole are 
unknown. The aim of the test is the identification of the parameters of the hole through 
the minimization of the objective functional (9). 
The actual parameters of the hole are: x = 0.30, y = 0.60 and r = 0.10. The parameters of 
the EA are as follows: the probability of the mutation: pro_mut = 0.2, the probability of 
the crossover: pro_cro = 0.2, population size: pop_size = 100. The number of 
generations is equal to 150.  
The found values are equal to: x = 0.29, y = 0.62 and r = 0.10. 
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8. Example 4 – Topology identification  
 
A 2-D structure, shown in the Fig. 9 contains two internal defects. The actual parameters 
of an elliptic void are: z2=z(2)={50, 25, 5, 2.5, 2.5}, where the first two parameters are 
co-ordinates of the ellipse center, next - two radii of the ellipse and the last one – the 
angle between the x1 axis and first radius. The actual crack parameters are: 
z1=z(1)={20, 30, 5, 0, 0.25} and are defined as for the ellipse. The identification task is 
to find a number of defects and their shape having displacements ( )ˆ ,tu x  in 33 sensor 
points, shown in the Fig. 9. 

 

 
 

Fig. 9. The 2D structure with an internal crack and void 
 
The structure is loaded by p(t)=p0sinωt (p0=40 kN/m, ω=15708 rad/s) in time  
t∈[0,600] µs. The following parameters of the evolutionary algorithms are applied: 
pop_size: 2000, max_life: 100. Fig.10 presents the best solution of the first and the last 
generation. 
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a)    b)  
 

Fig.10. Results of defect identification :  
a) 1st generation,  b) 100th generation 

 
9. Example 5 – Topology optimization based on the different informations 
  
The last discussed problem concerns the different type of information in the sensor 
points. Consider the plate presented in the Fig.11. The few possibility of distance 
between the defects was considered: distance R={1, 3, 5, 7 and 9}mm. For each distance 
the identification problem was solve on basis the different information. In order to 
checking the influence the measured information to the identification process, the many 
test has been carried out. One of them is presented in this paper. 
The aim of presented test is to find the circular defects in the plate (Fig. 11). The plate is 
constrained on the left side. The plate is loaded by q (static case) and  
q(t) = qH(t), where q =100kN, H(t) – Heaveside function (dynamic case).  
The minimized function has the following forms (8)-(11). 
The following parameters of the evolutionary algorithms are applied: pop_size: 200, 
max_life: 500. 
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Fig.11. The plate the with the circular defects 
 

The results of the identification process for following fitness functions (8)-(11) were 
presented in the Fig. 12-15. 

 
 

 
 

Fig.12. The results obtained for the 
fitness functions expressed by the 
displacement in static problem (8)       

 
 

Fig.13. The results obtained for the 
fitness functions expressed by the 

displacement in dynamic problem (9) 
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Fig.14. The results obtained for the 
fitness functions expressed by the 

frequencies in eigenvalue problem (10) 

 
 

Fig.15. The results obtained for the 
fitness functions expressed by the sum 

of previous informations (11) 
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10. Conclusions 
 

Evolutionary computing can be considered as an efficient approach for solving the shape 
and topology optimization and defect identification in dynamical physical systems.  
Using NURBS curves allows modeling complicated shapes with a relatively small 
number of design variables. This method of parameterization decreases the time of 
computation.   

Evolutionary algorithms are very time-consuming, but applications of different 
variants of parallel and distributed computing can speed up the optimization process.  
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Abstract 
Stick-slip vibrations in a mechanical system with dry friction and 
kinematical excitation with chosen friction models in a stick phase are 
studied in this work. Although there are numerous works in the scientific 
literature dedicated to stick-slip vibrations, a rigid body lying on a belt 
which moves at non-constant velocity is less investigated. A novel friction 
model is used and its advantages, in comparison to the often applied friction 
models, are illustrated. The behavior of the system is monitored via standard 
motion analysis in the system’s phase space. 
Key words: dry friction, stick-slip vibrations. 

Introduction 

Dry friction belongs to one of the most known phenomena in mechanical systems. Its 
proper mathematical modeling is not an easy task, because friction force is a complex 
process and in general depends on various parameters, e.g. slip velocity, normal load, 
temperature and time. An extensive literature review on applied friction models can be 
found in the works [1, 5, 6, 7, 9] and others. 

Many practical engineering problems are related to vibrations caused or influenced by 
physical discontinuities, e.g. dry friction or impacts. In view of mechanical aspects, the 
authors of many publications are mainly concerned with dry friction stick-slip 
oscillations with different models of friction. Even in the last decade stick-slip vibrations 
were the aim of research of many authors, for example in the works [3, 4, 8]. In these 
works, stick-slip induced vibrations are studied for cases where body or bodies are riding 
on a driving belt as a foundation that moves at a constant velocity. 

In this work, as the example of a mechanical system which exhibits stick-slip vibrations, 
the mechanical model with non-constant belt (foundation) velocity is studied. One 
degree-of-freedom model with dry friction is presented in Section 1, whereas numerical 
methods to calculate solutions in the system’s phase space and results can be found in 
Section 2. Conclusions of our study are presented in the last Section 3. 

1. Model with kinematical excitation 

Consider a simple mechanical system with 1-dof and with kinematical excitation. The 
model of this system is shown in Figure 1. Disc II is characterized by mass moment of 
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inertia B , linear stiffness k  and the coefficient of damping c . This disc is fixed to the 
frame. The second disc II is coupled with driving first disc I and dry friction occurs 
between the discs, which generates the moment of friction force frM  (the maximum 
static moment of friction force is equal to sM ). 

 
Fig. 1 One degree-of-freedom model with dry friction and kinematical excitation. 

 
The excitation of the first disc is realized by Cardan mechanism with angle Α  between 
input shaft and output shaft, whose angular displacements are described by angles 1φ  
and 2φ , respectively. Angular velocity 2Ω  is non-constant and not equal to angular 
velocity 1Ω  and is governed by the equation 
 

Αφ−
Α

Ω=Ω 2
1

212 sinsin1
cos .    (1) 

 
The relative velocity of the second disc with respect to the first disc is denoted by 

φ−Ω=Ω &
2rel . In this work we study non-constant maximum friction force sM  between 

coupled discs as a result of wear of these discs and its influence on our model dynamics. 
The additional static friction force is a function of the relative angular displacement 
between discs. For example, a model of the multi discs brakes has been studied in the 
works [10, 11]. For these reasons in our model a maximum static friction is the sum of 
constant moment of friction force HM  and additional moment with amplitude BM . 
Therefore, in our model ( )φ−φ+= 2BHs sinMMM . It has been shown in reference [11] 
that term BM  depends on the wear of discs. The motion of the second disc is governed 
by the following second order differential dimensional equation 
 

frMkcB =φ+φ+φ &&& .    (2) 
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Let us introduce coefficient *t  and the following dimensionless parameters: *tt=τ , 
φ=ϕ , 11 φ=ϕ , 22 φ=ϕ , Α=α , *tφ=ω & , *11 tΩ=ω , *22 tΩ=ω , ϕ−ω=ω &2r , 

Bctd *= , Bkt2
*

2
d =ω , BtMF 2

*HH = , BtMF 2
*BB = , ( )ϕ−ϕ+= 2BHs sinFFF . In our 

calculations we take kBt* = . Then, vibrations of the second disc are governed by the 
following non-dimensional second order equation 
 

frFd =ϕ+ϕ+ϕ &&& ,     (3) 
 
where a dot denotes the differentiation with respect to non-dimensional time τ . The 
proposed continuous friction model has the following form 
 

( )

( )

( )
( )










+ω+−
ω−

ωω

=ω

4exrsex3

3rs3

2exs

1rr

exrfr

V,FsgnFFA
V,sgnF1A2
V,FsgnF
V,sgnF

F,F , 










ε
ω

−
ε
ω

= r
2

2
r

3 23A , (4) 

where 
ε>ωr1 :V , 

( ) ( )[ ] ( ) ( )[ ]sexrsexr2 FF0FF0:V −<∩≤ω≤ε−∪>∩ε≤ω≤ , 
( ) ( )[ ] ( ) ( )[ ]sexrsexr3 FF0FF0:V >∩<ω≤ε−∪−<∩ε≤ω< , 
( ) ( )sexr4 FF:V ≤∩ε≤ω . 

 
This model of friction has been already used by the authors in studies [2, 12]. In this 
model of mechanical system we have ϕ+ω= dFex  and kinetic friction ( )rF ω  is given 
by 

( )
r

s
r 1

FF
ωδ+

=ω .     (5) 

2. Numerical Computations and Results 

Let us take the following dimensionless parameters: 01.0d = , 1FH = , 2.01 =ω , 0=α , 
30=δ . The differential equations of motion are solved via the Runge-Kutta-Fehlberg 

(RKF 45) method with varied time step h  ( 5
min 10h −= , 1

max 10h −= ) and with a Runge-

Kutta-Fehlberg tolerance of 610−=η  and steepness parameter 310−=ε . The system 
dynamics is monitored via standard time histories in the system’s phase space. 
Let us consider the first solution without an additional term in the moment of friction 
force, i.e. for 0FB = . Figure 2 shows phase portraits obtained with the two compared 
friction models (the standard approximation using a signum function modeled by the 
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second-order polynomial in the stick phase and the proposed model). For the first 
friction model the computation took 84533 integrations points to obtain the orbit with 
the non-dimensional period time 13.5. Small time steps are not necessary near the 
transitions, but during the whole stick phase, as Figure 2a shows. For our friction model 
the computation took only 231 integrations points to obtain the same orbit (Figure 2b). 
a)     b) 

 
Fig. 2 Points of trajectories of motion in the system’s phase space for different models of friction: 

a) smoothing approximation, b) the proposed model. 
 

In this case small time steps are taken only near the transitions between stick and slip 
phases and time step in the stick phase is bounded by maximum time step maxh . 
Consequently, we show that in this case smoothing approximation of classical signum 
function is clearly more expensive than the proposed model. The differential in the first 
friction model is extremely large for relative velocity equal to zero, whereas in our 
model it is equal to zero and this is an advantage for numerical computations. 
Figure 3 shows time histories in the system’s phase space in the neighborhood of zero 
value of the relative velocity. 
 
a)     b) 

 
 

Fig. 3 Trajectories of motion in the stick phase for different models of friction: switch model 
(dashed line) and the proposed model (solid line) for a) 0=α  and b) 2.0=α . 

 
Our continuous friction model was compared with the so called switch model [8]. We 
are focused now on the near-zero relative velocity because the periodic stick-slip 
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oscillations have the sliding velocity almost the same (both for the switch model and 
continuous friction model) and in the sticking phase some differences are observed. 

Below, the investigated system dynamics is reported for 2.0FH =  (Figure 4) and for 
1FH =  (Figure 5) related to various parameters BF  and α  in the time interval (50, 

150). 

 
0FB = , 0=α .    0FB = , 5.0=α . 

 

 
01.0FB = , 0=α .    01.0FB = , 5.0=α . 

Fig. 4 Phase portraits for 2.0FH =  and various parameters BF  and α . 
 

 
 

Fig. 5 Phase portraits for 0FB =  (on the left) and for 1.0FB =  (on the right). 
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Phase portraits in Figures 4 and 5 indicate that dynamical behavior depends both on 
uneven of velocity of the first disc as a result of non-zero α  angle and on the process of 
wear of discs, which strongly influences the system dynamics. 

3. Conclusions 

A continuous friction model suitable for simulation of stick-slip vibrations is proposed 
and validated using a one-degree-of-freedom mechanical system with dry friction. The 
model yields engineering accepted results and has some advantages in comparison to 
other friction models. Contrary to the smoothing methods, our calculations are less 
expensive from the computational point of view. Our results indicate better numerical 
accuracy of the proposed continuous model. Contrary to the switch model results, the 
results obtained using the continuous friction model are better. We have obtained almost 
exact solutions (high precision numerical computations). In addition, some interesting 
dynamic behaviors are reported and analyzed, including stick-slip periodic and non-
periodic motions. 
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Abstract 
The paper presents the solution of a chosen dynamic problem, i.e. determination of the 
engine power to drive a mechanism, by means of the Mathematica environment for 
numerical and symbolic computations. It was done on the example of a third class 
mechanism. The author’s intention is to show the advantages of replacing the classes 
on “Mechanism Theory” with the computer laboratory. 
Keywords: numerical methods, mechanism theory, kinematics and dynamics of 
mechanisms 

1. Introduction 

The complexity and strong nonlinearity of dynamics problems preceded by the 
kinematic and geometric analyses arise from the technical applicability of the 
mechanisms theory. Analytical solutions are restricted to simple mechanisms of well-
chosen geometry since, in general, they are time-consuming and cumbersome. It 
contributed to the development of graphical methods that are robust to the mechanism 
geometry. The solutions obtained for a few time instants are approximated on the whole 
operating cycle. The graphical methods do not allow the full kinematic analysis: singular 
position avoidance, movement simulation, optimum transfer of driving torque, etc. Then, 
it prevents from mechanism design. The growth of the computer technology causes the 
graphical methods to have been replaced with the numerical-analytical ones. It forces the 
changes in teaching Mechanism Theory, i.e. necessity of introducing computer 
laboratory, which allows to solve effectively problems of dynamics of mechanisms. 

The dynamical analysis requires determination of mechanism position from a system 
of non-linear algebraic equations. In general, many solutions are possible [1-6]. 
Complexity of the issue depends on the structure of mechanism, mainly on the class of 
Assur groups included in it. The method of changing active link in a mechanism allows 
decreasing its class but cannot be used in all the cases of higher class mechanisms. The 
method of modification of kinematic units was proposed by Mlynarski [5] to convert 
groups of higher class into groups of second class and illustrated using the four class 
mechanism of so-called Walking Machine. The paper [2] presents an interesting way of 
searching all possible positions of Assur group of third class and third order with four 
links and six prismatic/revolute joints when the positions of external joints are given. 
The presented procedure leads from geometric equations to one polynomial equation the 
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real roots of which are related to all possible positions of the internal joints. The authors 
extended the applicability of the method to the group of four class with one prismatic 
and five revolute joints [3]. The sixth-order polynomial is obtained which leads, in an 
extreme case, to six different configurations. 

The dimension of the system of kinematic equations depends strongly on the type of 
chosen coordinates. Cartesian coordinates lead to less coupled and easy to formulate 
constraint equations, however, the number of unknowns is greater in comparison with 
the choice of natural or relative coordinates [7]. 

The paper presents the solution of a chosen dynamic problem in Mathematica 
environment for symbolic and numerical computations [8]. It is done on the example of 
the mechanism shown in Fig. 1. The advantage of the approach is that it contains general 
algorithm for solving problems of this type. 

2. Problem formulation 

The mechanism of third class RS-SR-RR is considered. The active link is the crank 
AO1  rotating at given rotational speed n= min/120obr . The problem is to determine the 

engine output torque and engine power to drive the mechanism assuming the slider F is 

subject to the external load 




<−

>
=

0;1000

0;1000

F

F
U

vN

vN
P . The mechanism dimensions are: 

cml 301 = , ml 4.231 = , ml 4.232 = , ml 6.14 = , ml 5.15 = , o25=α , o125=β , o140=γ . 

The initial position is assumed to be known. Mass of the link BCD is essential, the others 

are neglected: =3m  7.2 kg, =3I  3.456 2kgm . The flywheel is to be determined also 

when the admissible coefficient of the speed fluctuation 40/1=η . 

Geometric analysis 

The review of literature shows that the methods of the position determination depend 
on the class and type of kinematic pairs of a mechanism. Therefore, in general case the 
iterative methods have to be applied [12]. The presented approach does not take the use 
of the classical vector equations for kinematics. The vector equations for so-called 
closed independent loops [7, 10] are written. Then, there is need to distinguish among 
motions the plane motion, rectilinear translation and rotational motion, which is required 
in graphical methods. The position and orientation of the revolute pair is described by 
the angles measured anticlockwise from the positive direction of the Ox axis to the link. 
The position of the slider in the prismatic pair describes its displacement with respect to 
one of joints. Following this rules unknown angles 2f , 5f  and displacements 1s , 2s  are 

introduced. The equation αβ −+= 23 ff  relates the angles 2f , 3f  in prismatic pair. 

The equations for independent loops are the minimum number of vector equations 
allowing to compute these coordinates. In the considered example they are 
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FCFOOOBCABAO ++=++ 3311 , DOOOCDFCFO 2233 +=++  (1) 

which leads to four scalar equations. The constant vectors (time independent) are 
neglected as vanishing at differentiating.  

Cos@f2@tDD s1@tD+ Cos@f1@tDD l1− Cos@β + f2@tDD l31� −Cos@γD s2@tD + Cos@ϕD l4   
s1@tD Sin@f2@tDD+ Sin@f1@tDD l1− Sin@β + f2@tDD l31� −s2@tD Sin@γD + Sin@ϕD l4  (2) 

−Cos@γD s2@tD + Cos@ϕD l4+ Cos@α − β− f2@tDD l32� Cos@f5@tDD l5  

−s2@tD Sin@γD + Sin@ϕD l4+ Sin@α − β− f2@tDD l32� Sin@f5@tDD l5  

 
Fig. 1. The scheme of the mechanism. 

The initial values for 01 =f  are: oo 140,5.1,15,2 5221 ==== fmsfms . 

Kinematic analysis 

 The kinematic equations are obtained after differentiating Eqs. (2) with respect to 
time. The second differentiation relates the accelerations. This is done by the program 
automatically and no user activity is expected. The manual computations of accelerations 
and velocities are not sophisticated but much time – consuming. The initial position is 
known and the iterative method is applied for determining the subsequent ones. The 

cycle is divided into n – time instants T
n

j
t j = , 

ω
π2

=T , srad /120
30

π
ω = . 

 Due to limited size of the paper the basic instructions of Mathematica are not 
explained, the exceptions are special functions. The separate quantities are collected in 
so-called lists. A user enters the following lists: : wsp – the coordinates 1s , 2f , 2s , 5f  

describing the positions and orientations of the links, wartp – the values of the 
coordinates at the initial position, Loop1 – the x components of the loop equations. 
Mathematica itself generates the subsequent lists: dwsp – the first derivative of the wsp 
derived by means of instruction D[wsp,t], d2wsp – the second derivative of the wsp 
derived by means of instruction D[dwsp,t], Loop2 – the y–component of loop equations 
that are produced by replacing cosine with sine in the loop1, Loop – all the scalar 
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equations for positions, Eqv - velocity equations computed as derivatives of the loop 
equations D[loop,t], Eqa – acceleration equations computed as the derivative of the Eqv 
D[eqv,t].  

The first fragment of the algorithm computes these lists. The input values are in boxes. 

wsp={s1[t],f2[t],s2[t],f5[t]}; 

lzm=Length[wsp]; 

wartp={2.0,15*Pi/180,1.5,140*Pi/180}; 

dwsp=D[wsp,t]; 
d2wsp=D[dwsp,t]; 

loop1=

8l1∗Cos@f1@tDD + wsp@@1DD∗Cos@wsp@@2DDD +l31∗Cos@β+ π + wsp@@2DDD�

wsp@@3DD∗Cos@γ +PiD +l4∗Cos@ϕD,

wsp@@3DD∗Cos@γ +PiD +l4∗Cos@ϕD +l32∗Cos@β+ π +wsp@@2DD − π −αD ==

l5∗Cos@wsp@@4DDD<;

loop2= loop1ê. 8Cos→ Sin<;

loop= Join@loop1,loop2D  
eqv=D[loop, t]; 

eqa=D[eqv, t]; 
 

The below sequence of instructions rewrites the velocity equations into matrix forms: 
bAv =  

Needs["LinearAlgebra`MatrixManipulation`"] 

MF=LinearEquationsToMatrices[eqv,dwsp]; 

AA=MatrixForm[MF[[1]]] ; 
X=MatrixForm[dwsp]; 

bb=MatrixForm[MF[[2]]]; 

AAp=MatrixForm[D[MF[[1]],t]]; 
bbp=MatrixForm[D[MF[[2]],t]]; 

Y=MatrixForm[d2wsp]; 

A= 

i

k

jjjjjjjjj

Cos@f2@tDD −s1@tD Sin@f2@tDD + Sin@β+ f2@tDD l31 Cos@γD 0

0 Sin@α − β − f2@tDD l32 −Cos@γD Sin@f5@tDD l5
Sin@f2@tDD Cos@f2@tDD s1@tD − Cos@β + f2@tDD l31 Sin@γD 0

0 −Cos@α − β− f2@tDD l32 −Sin@γD −Cos@f5@tDD l5

y

{

zzzzzzzzz
, 

v= 

i

k

jjjjjjjjj

s1′@tD

f2′@tD

s2′@tD

f5′@tD

y

{

zzzzzzzzz
, b= 

i

k

jjjjjjjjj

Sin@f1@tDD l1 f1
′@tD

0

−Cos@f1@tDD l1 f1
′@tD

0

y

{

zzzzzzzzz
.     (3) 

The matrices are filled with the numerical values at each time instant and velocities are 

derived as bAv 1−= . The matrix equation for accelerations has a form bAavA && =+ . 

Then, )(1 vAbAa &&−= − . The successive positions are computed as 

2

2

1
)()( adtvdttxdttx ++≈+ . It is denoted in the program polx = (={ 1s , 2f , 2s , 5f }), 

predv = , przysa = , ApA =& , BpB =& . The instant values are added to the lists 
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listasolpi (positions), listasolvi (velocities), listasolai (accelerations), subscript i  
corresponds with a coordinate placed on the i-th position in the lists wps. The j-th 

element of a relevant list contains the value computed at the time instant jt . The code 

computing positions, velocities and accelerations is presented below.  

pol = wartp;

Do@

listasolpi= 8<;

listasolvi= 8<;

listasolai= 8<, 8i, 1, lzm<D

listaalpha = 8<;

Do@

listap = 8<;

Do@AppendTo@listap, wsp@@iDD → pol@@iDDD, 8i, 1, lzm<D;

lista1 = 8f1@tD → alpha, f1'@tD → w, f1''@tD → 0<;

B = N@MF@@2DD ê. lista1D;

A = N@MF@@1DD ê. listapD;

pred = N@Inverse@AD.BD;

listav = 8<;

@ @ @@ DD @@ DDD 8 <D
 

@ @@ DD ê D

@ @ D D

listav = 8<;

Do@AppendTo@listav, dwsp@@iDD → pred@@iDDD, 8i, 1, lzm<D;

B = N@MF@@2DD ê. lista1D;

A = N@MF@@1DD ê. listapD;

Ap = N@D@MF@@1DD, tD ê. Join@listap, listavDD;

Bp = N@D@MF@@2DD, tD ê. Join@lista1, listavDD;

przys = Inverse@AD.HBp− Ap.predL;

pol = pol+pred∗dt+ przys∗dt^2ê2;

alpha = alpha+w∗dt;

AppendTo@listaalpha, N@alphaDD;

Do@AppendTo@listasolpi, pol@@iDDD, 8i, 1, lzm<D;

Do@AppendTo@listasolvi, pred@@iDDD, 8i, 1, lzm<D;

Do@AppendTo@listasolai, przys@@iDDD, 8i, 1, lzm<D,

8lp<D  

The instruction of substitution /. requires the explanation. The ]]2[[MF  contains 

vector of constants in velocity equation in which formulae are written symbolically. 
Then, substituting numerical values into it causes replacement of the formulae with 
specific values. Therefore, due to instruction 1./]]2[[ listaMFB =  the instantaneous 

numerical value of the vector is computed and stored in B  after substituting into 
]]2[[MF  the specific values in accordance to the scheme of 1lista . The following 

example is presented for illustrative purpose only: the result of the instructions 
]}[],[{ yCosxSinB = ; },0.{/ π>−>−= yxBValueofB  is }0,0{=ValueofB .  
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The kinematic unit is the heart of the program, therefore discussed in detail. The rest 

of the code is not included in the text. 
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Fig 2. The coordinates describing the mechanism position, their velocities and 

accelerations. 

The results of the computation are presented in Fig. 2. For each time instant jt , the 

instantaneous powers of the load force jUjj sPN 20 &−=  and of the inertia forces 

( ) jjjCjCjCjCBj ffIyyxxmN 33333333
&&&&&&&&& ++=  as well as the driving torque 
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1

0

ω
jBj

j

NN
M

−
=  are computed and stored up in the lists. In the foregoing equations 

33 , CC yx  are the coordinates of the mass centre of the link 3 . The user has to enter these 

coordinates. 

x3 = wsp@@3DD∗Cos@γD +l4∗Cos@ϕD+l32∗Cos@f2@tD +β−αê2D

y3 =x3 ê.Cos→ Sin  

The velocities and accelerations are computed by Mathematica by using the instruction 
],[ tD ⋅ .Subsequently, the mean value of the output engine torque MNM =79.3766 Nm 

and the engine power =N  997.475 W are computed.  
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Fig. 3. The load force, power of the load force ON , power of the inertia forces BN  and 

output driving torque during one operating cycle. 

Finally, the program computes the flywheel. The mass moment of inertia of the flywheel 
is determined by the approximate method [9, 11] and expressed by the formula 

2

2
8.16 kgm

W
I KZ =

∆
=

ηω
, where W∆  is the difference between the extreme values of the 

work done by the excess of the engine torque (difference between the torques 
instantaneous and mean). 
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3. Conclusions 

The tool for analysis of the plane mechanisms is presented. The method discussed on 
the example of the mechanism of third class can be applied to mechanisms of higher 
classes. The algorithm minimizes the number of manually derived equations. The 
laboratory classes on Mechanism Theory allow to solve complex problems of kinematics 
and dynamics of mechanisms as well as give the opportunity to learn a widely used 
environment Mathematica. The laboratory teaching enables also presentation of the 
commercial products for kinematic and dynamic simulation of mechanical systems: 
WorkingModel, NX / Recurdyn. 
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Abstract 
Machines have many faults which evolve during its life (operation). If one 
observe some number of symptoms during the machine operation it is possible 
to capture needed fault oriented information. One of the methods to extract 
fault information from such symptom observation matrix (SOM) is to apply the 
singular value decomposition (SVD), obtaining in this way the generalized fault 
symptoms. The problem of this paper is to use the total damage symptom, 
being a sum of all generalized symptoms, and the first generalized symptom to 
infer better on machine condition. There was some new software created for 
this purpose, and some cases of machine condition monitoring have been 
considered as examples. Considering these it seems to the author, that both 
generalized symptoms should be used for the inference on machine condition. 
They are complimentary each other in some way, and should be use together to 
increase the reliability of diagnostic decision. 
Key words: condition monitoring, multidimensional observation, singular 
value decomposition, generalized fault symptoms. 

1. Introduction 

The most machines in operation, even performing simple operations, have many modes 
of failure. Hence their diagnostics have to be multidimensional. From the other side, the 
contemporary advancement in measurement technology allows us to measure almost any 
component of phenomenal field, inside or outside of the working machine. The only 
condition for symptoms in such multidimensional diagnostics is some kind of 
proportionality to gradual worsening of the machine condition which takes place during 
it operation. If it is so, we can name the measured component of machine phenomenal 
field as the symptom3 of condition. In this way we are measuring a dozen of ‘would be’ 
symptoms, and our condition monitoring is multidimensional from the beginning. Due to 

                                                 
1 Paper intended to DUF08 (ISMA08) 
2 ul. Piotrowo 3, 60-965 Poznań, Poland, email: czeslaw.cempel@put.poznan.pl  
3 Measured physical quantity being proportional to the condition of the machine. 
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this situation, the application of multidimensional machine condition observation is now 
well established fact, see [Cempel 99], [Korbicz 04], [Tumer 02], [Jasiński 04] - for 
example. And there exist some difference in application and processing of the 
multidimensional signals and/ or symptom observation matrix. For a diagnostic signals 
and symptoms one can apply also so called data fusion [HallLlinas 97], 
[RoemerKacprzyńskiOrsagh 01], [Korbicz 04], and similar techniques developed lately.  

In case of multi symptom observation one can apply principal component analysis 
(PCA), or singular value decomposition (SVD), looking for principal or singular 
components, which may have some diagnostic meaning. For the case of SVD method 
(Singular Value Distribution), there exists the body of experimental evidence [Cempel 
04], [CempelTabaszewski 07], for example, that singular components and the quantities 
created from them, can be treated as generalized fault symptoms.  

All these transformation and symptom processing starts from the data base called 
symptom observation matrix (SOM). Let us explain now how the SOM is structured and 
may be obtained. 

During the machine life θ we can observe its condition by means of several symptoms 
Sm(θ) physically different and measured at some moments of life θn , n=0,1,… p > r, 
θp<θb, (θb – anticipated breakdown time). This creates sequentially the symptom 
observation matrix (SOM), the only source of information on condition evolution of 
machine in its life time 0 < θ < θb. We assume additionally that real condition 
degradation is also multidimensional, and is described by semi independent faults Ft(θ), 
t=1,..u <  r,  which are evolving in the machine body, as the expression of gradual 
degradation of the overall machine condition. This degradation proceeds from the not 
faulty condition4 up to its near breakdown state. Generalizing, one can say now, that we 
have m dimensional symptom space for condition observation, and r < m dimensional 
fault space, which we try to extract from the observation space, by using SVD or PCA. 

 Moreover, some of ‘would be’ symptoms contained in SOM are redundant; it means not 
carrying enough information on the evolving faults during the machine life. But of 
course there is not unique criterion of the redundancy. During the course of our research, 
several measure of redundancy has been applied, the volume of observation space 
(Vol1), pseudo Frobenius norm (Frob1) of SOM [CempelTabaszewski 07], and others. 
But they seem to be not good enough with respect of the quality of the final diagnostic 
decision. This means additionally, when optimizing the observation space, we should 
take into account the adequate assessment of the current and the future machine 
condition. The paper considers this problem, and it is done on the level of previous SVD 
works of the author. As the forecasting technique with minimal error, the grey system 
model with rolling window [YaoChi 04] was adopted for diagnostic purposes, and has 
been applied here according to [CempelTabaszewski 07]. 

                                                 
4 We assume machine is new, or after the overhaul and repair process.  
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But having the multidimensional problem of fault assessment, it is important now what 
type of generalized symptom we use for the forecasting and condition inference. Do we 
use the overall degradation symptom of the machine, or some specified generalized 
symptom proportional to one fault only, or both of these. The results of such new 
approach to multidimensional diagnosis presented here were verified on the real data of 
machine vibration condition monitoring. Concerning the software, some modification of 
last programs for the data processing was needed as well. As a result is was found, that 
this approach seems to be promising enabling a better understanding of machine 
condition, and also the better current and future condition assessment. 

2. Extraction method of partial faults from the SOM 

As it was said in the introduction, our information on machine condition evolution is 
contained in p• r symptom observation matrix (SOM), where in r columns are presented 
p rows of  the successive readings of each symptom, made  at equidistant system lifetime 
moments θn, t=1,2,…p. The columns of such SOM are next centered and normalized to 
three point average of the three initial readings of every symptom. This is in order to 
make the SOM dimensionless, to diminish starting disturbances of symptoms, and to 
present the evolution range of every symptom from zero up to few times of the initial 
symptom value Son, measured in the vicinity of lifetime θ1 = 0. 

After such preprocessing we will obtain the dimensionless symptom observation matrix 
(SOM) in the form; 

      SOM ≡  Opr  = [Snm],       Snm = 1
0

−
m

nm

S
S

,     (1) 

where bold non italic letters indicate primary measured dimensional symptoms. 

It was said in the introduction, we apply now to the dimensionless SOM  (1),   the 
Singular Value Decomposition (SVD) [Golub83], [Will05], to obtain singular 
components (vectors) and singular values (numbers) of SOM , in the form 

Opr = Upp * Σpr * Vrr
T,      (T- matrix transposition ) ,   (2) 

where Upp is p dimensional orthonormal matrix of left hand side singular vectors, Vrr is r 
dimensional orthonormal matrix of right hand side singular vectors, and  the diagonal 
matrix of singular values Σpr  is defined as below 

Σpr = diag ( σ1, …, σl ),  with nonzero s. v.:   σ1 > σ2 >…> σu >0,  (3) 
 
and zero s. v. ; σu+1 = … σl = 0,   l= max (p, r),   u ≤ min ( p, r),  u <.r < p. 
 
In terms of machine condition monitoring the above (3) means, that from the r primarily 
measured symptoms (dimension of observation space) we can extract only u ≤ r nonzero 
independent sources of diagnostic information, describing the evolving generalized 
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faults  Ft(θ), t=1,..u, and creating in this way the less dimensional fault space. But only 
a few faults developing currently in a machine are making essential contribution to total 
fault information (are enough developed). The rest of potential generalized faults, 
symbolized here by small σu value, are usually below the standard 10% level of noise.  
What is important here, that such SVD decomposition can be made currently, after each 
new observation (reading) of the symptom vector [Sm];   n = 1 … p, and in this way we 
can trace the faults evolution, and their advancement, in any operating mechanical 
system.  

3.  Diagnostic interpretation of SVD 

From the current research and implementation of this idea [Cempel 03], one can say, that 
the most important fault oriented indices obtained from SVD; is the generalized fault 
symptom SDt , t=1,2,  and also the sum of all generalized fault symptoms SumSDi , as 
some equivalent symptom  of total (cumulated) machine damage. In another way, the 
generalized fault symptom SDt  can be named also as discriminant, or the generalized  
symptom of the fault order t, and one can obtain this as the SOM product and singular 
vector vt , or in general in matrix notation as below:  

    SD = Opr*V = U*Σ,  

                and in particular;     SDt = Opr * vt = σt  ⋅ ut  ,     t=1,...u < r.  (4)  

We know from SVD theory [Golub83], [Will05], that all singular vectors vt , and ut , as 
the components of singular matrices, are normalized to one, so the  energy norm of this  
new discriminant (generalized fault symptom) gives simply the respective singular value 
σt:  

     Norm (SDt) ≡ SDt = σt. , t = 1, ...,u.         (5)  

The above defined discriminant SDt (θ) can be also named as lifetime fault profile, and 
the respective singular value σt(θ) as a function of the lifetime seems to be its life 
advancement of damage (energy norm) and the same the measure of importance of the 
fault. That is the main reason why we use dimensional or dimensionless singular values 
for the ordering of importance of generalized symptoms (faults).  

The similar fault inference can be postulated to the meaning, and the evolution of 
summation quantities, the total damage profile SumSDi(θ) as below 

SDt (θ)∝  Ft(θ), with:  SDt (θ)= σt  , t=1,2, 

( ) ( ) ( ) )()(
11

θθθσθθ FuSDSumSD
u

i
ii

u

i
ii ∝⋅== ∑∑

==

, with:SumSDi(θ)  ≅  Σ σi(θ)    (6) 

Currently it seems to be, that the condition inference based on the first summation 
damage measure; SumSDi, (total damage measure) may stand as the first approach to 
multidimensional condition inference, as it was lately shown in the previous papers (see 
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for example [Cempel 04; 05; 06]). The similar inference based on the first (dominating) 
generalized fault SD1 is valuable and complimentary, as it was shown lately 
[CempelTabaszewski 08]. 

Going back to SVD itself it is worthwhile to show some mathematical metaphor of (5), 
that every perpendicular matrix has such decomposition, and it may be interpreted also 
as the product of three matrices [Will 05], namely 

Opr =  (Hanger) x ( Stretcher) x (AlignerT).    (7) 

This is very metaphorical description of SVD transformation, but it seems to be useful 
analogy for the inference and decision making in our case. The diagnostic interpretation 
of formulae (7) one can obtain very easily. Namely, using its left hand side part we are 
stretching our SOM over the life (observations) dimension, obtaining the matrix of 
generalized symptoms as the columns of the matrix SD (see below). And using its right 
hand side part of (7) we are stretching SOM over the observed symptoms dimension, 
obtaining the assessment of contribution of every primary measured symptoms in the 
matrix AL, assessing in this way the contribution of each primary symptom to the 
generalized fault symptom SDi . 

SD =Opr*Vrr = Upp*Σrr ;    and    AL = UT
pp *Opr = Σrr *VT

rr  .   (8) 

This means that SD matrix is stretched along the life coordinate giving us the life 
evolution of the weighted (σi) singular vectors. And AL matrix is aligned along the 
symptom dimension with the same way of weighting by σi , giving the assessment of 
information contribution of each primary symptom. 
We will calculate numerically the above matrices and use them for the better 
interpretation of monitoring results (SD), and optimization of dimension of the 
observation space (AL). 

4. The SOM information measure and optimization  

Having in mind the redundancy of some primary symptoms, i.e. the primary observation 
space, some additional considerations should be made concerning SOM information 
assessment. In terms of previous findings this can be done by calculating the Frobenius 
norm (Frob) of this matrix, and the volume (Vol) created by u-dimensional generalized 
fault space identified by application of (SVD). One can calculate easily both information 
indices as the sum and the product of singular values in the following way [Golub83], 
[Kiełbasiński92]; 

Frob(SOM)  ≡≡  {Σ σi
2 }1/2 ;   and  Vol(SOM)  ≡ Π σi , i = 1,…u.    

But squaring the small singular values of σi (less than one) make them much smaller, 
giving seemingly smaller contributions to the matrix information asset, and to the 
volume of the observation space. Due to this we can propose to use not the exact 
Frobenius norm but its modification as below 

Frob1 =  Σ σi ; and:   Vol1 = Π σi . i = 1,…u.    (9) 
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This will give us possibility to look for the small, just evolving faults, and not omit them 
when we try to reduce the redundancy of the observation vector. Consequently one can 
get less redundancy of new optimized SOM, with less number of columns but also 
keeping in observation the small just evolving fault information (σi). 

The use of Frobenius measure for a matrix has also mathematical validation. In general, 
one can understand this as the problem of approximation of matrix B, by so called k-rank 
approximation. Following the paper [Berry 99] we can make the quantitative assessment 
of such k-rank approximation of a matrix B as the difference below 

|| B -Bk ||F  = {σ2
k+1 +…σ2

u } 1/2 ,       (10) 

where the subscript u stands for maximal dimension of nonzero singular value, i.e. the 
rank of our primary SOM.  

This means also, that instead of (9), we will write simplified measure of approximation 
of SOM in the form of deviation from primary SOM rank, as below 

 ∆k Frob1 ≡ Frob1o – Frob1k ={σk+1 +…σu },    (11) 

Using this quality index of matrix approximation measure we, can form additional 
objective measure of the SOM redundancy. And minimization of SOM rank may be 
carried by excluding some primary measured symptoms Sm with low information 
contribution, which produce mainly small (less than one) singular vales σu.  

Such criteria of redundancy minimization we have used quite recently. But following the 
last papers [CempelTabaszewski 07], one may notice that after some symptom rejection, 
which gives expected increase in the volume of information space (Vol1). Also the rank 
approximation of SOM gives only some drop in Frob1 measure, but the result of 
prognosis is not enough good, giving erroneous future values, sometimes less than the 
previous one. How to avoid such errors in forecasting?  

There seem to be one possibility more, to make the symptom rejection more objective 
and anticipating the goodness of the condition forecast. We have to consider the 
contribution of primary measured symptoms to the creation of first generalized 
symptoms SD1 , and also the creation of total damage generalized symptom SumSDi. 
The first overall information contribution measure, can be calculated separately to each 
primary symptom, from the correlation matrix of our SOM (with appended lifetime in 
the first column), as the centered and normalized sum of column elements. The second 
measure one can obtain if we append additionally to the previous matrix the vector 
SumSDi, as a first column. When   calculating covariance matrix from these and in the 
first row we will have needed information. After needed normalization to the first 
element of this row this will give us the contribution of every primary symptom to the 
total damage symptom SumSDi.  
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5. The global and partial fault inference  

We have gathered above all necessary analytical and inference knowledge concerning 
processing of symptom observation matrix, the extraction of fault information, and 
optimization of SOM rank. So, there is a right moment to validate these finding and 
proposal by some experimental data taken from real situations of vibration condition 
monitoring. In order to do this the last Matlab® program svdopt1gs.m presented in 
[CempelTabaszewski 07] has been modified to svdoptInt.m. The inference basis for the 
first program was the total damage generalized symptom SumSDi , while in the 
modified program such inference basis is the first generalized symptom SD1. Just to 
catch the the way of inference and the followed diagnostic decision difference we will 
take some uneasy case of heavy fan (3MW) working in unstable and load uncontrolled 
regime (random supply of the air to the mine shaft), serving as the source of fresh air for 
ventilation at the deep copper mine. The main troubles with this fun were unbalance and 
nonalignment between the fan and the driving electric motor, due to that the unit was 
constantly monitored.  

Figure 1 presents below the six pictures as the result of fan data processing by specially 
prepared program svdoptint.m made in the Matlab® environment, where the main 
stream of inference follows the evolution of the first generalized symptom SD1. The first 
top left picture, gives the results of 30 weeks measurements of symptom life curves of 
vibration velocity at a five points located on the fan aggregate structure. One may notice 
here the great instability of symptom readings, symptom No 4 in particular. This is better 
seen at the picture middle left when data are centered and normalized to the average 
value of the three initial symptom readings. We can notice here the negative values of 
symptom as an effect of load instability and normalization. The picture bottom left 
presents the generalized symptoms as the result of SVD processing, indicating also the 
symptom limit value calculated for the generalized symptom of total damage SumSDi 
(red line) denoted there as Slc , and also symptom limit value Sl1 calculated from the first 
generalized symptom SD1.  

The picture top right shows the relative amounts of information obtained as percentage 
of given singular value σi normalized to the sum of all singular values. As it follows 
from (5) this indicates at the same time the advancement of the given fault evolution in 
the machine life. As the legend to this picture we have indication of two redundancy 
measure, the Frob1 and the Vol1, which will serve as some guidance in the optimization 
process of the observation space. 

The middle right picture presents the contribution of primary measured symptoms (the 
first = lifetime) to the creation of the dominating three generalized symptoms. One can 
notice here, that symptoms No 4 and 5 give minimal contribution and can be rejected in 
a process of optimization of the observation space. The last picture, the bottom right, of 
the Figure 1 shows the evolution of symptom limit value as calculated from the first 
generalized symptom SD1, indicating also the value of symptom limit value as calculated 
from the sum of generalized symptoms SumSDi. One can notice from the both bottom 
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pictures, that in this case the difference between symptom limit values is a small one, but 
the value obtained from SD1 gives better indication of the coming machine breakdown.  
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Fig.1 The results of SVD processing of vibration data of a huge fan pumping air 
into the copper mine shaft, with the inference according to dominating generalized 

symptom SD1. 
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Fig.2. The Correlation measure of overall and particular contribution of primary 

symptoms. 
 

As it was mentioned before, the program svdoptint.m contains not only the matrix AL 
(8) (picture middle left), but also some correlation assessment of individual and overall 
information contribution of every primary symptom in SOM. Figure 2 presents these 
data, and we can see there, really symptom No4 has minimal overall contribution, and a 
negative one to generalized symptom SD1. 

Having such strong indication of the two symptoms redundancy (No 4 and No5), let us 
begin a gradual rejection of these symptoms contained in SOM. As a first step we 
rejected symptom No 4, however its contribution is not minimal in this case. The effect 
of such rejection is shown in a Figure 2, organized in the same manner as a previous one. 
Comparing the both we can notice the radical change in the symptom behavior, mainly 
we have rejected the most unstable primary symptom No 4. As the result of such 
rejection we have much clear situation of symptom evolution, primary symptom (picture 
top left) and generalized (picture bottom left), and the values of symptom limit values 
have change slightly, differing more than previously. Also the Frobenius redundancy 
measure drops significantly, and the volume of the fault space increased a little. But the 
most important effect of this rejection is the increased stationarity of remaining 
symptoms, the primary and generalized as well. Looking at the picture middle right one 
can notice very low contribution of primary symptom No 5. Hence next motion will be 
the rejection of this symptom together with previously rejected No 4. The results of such 
double rejection operation and subsequent processing one can find on the Figure 4. 
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Fig.3 The vibration symptom observation matrix of the huge fan (see Fig.1) after the 
rejection of unstable symptom No 4. 

 
Looking at the difference between Figures 3 and 4 one can notice much more clear 
situation on the right hand pictures of Fig 4. Now we can infer on fan condition using 
both symptom limit values Slc and Sl1, however with Sl1 diagnosis seems to be more 
reliable. The top right picture indicate that Frobenius measure does not change much, but 
the volume of fault space increases almost ten times. This may mean that for the 
condition inference of the fan we should take into consideration the remaining three 
primary symptoms No 1, 2, 3, and due to this we will have the relative stable and reliable 
situation for the inference. This conclusion is validated more by the picture middle right, 
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where one can see that the contribution of all remaining symptoms and the life symptom 
to the generalized symptom SD1 is valuable, being almost of the same order. 

One can notice also that the calculation of limit value using first generalized symptom 
SD1 gives us lower value and this can give us more safe assessment of lifetime moment 
for machine shut down and renewal. From the point of view of reliability of diagnostic 
decision, this seems to be important to have two different sources of symptom limit vale 
assessment, and to confront these values and the associated knowledge.  
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Fig. 4 The vibration symptom observation matrix of the huge fan (see Fig.1) after the 
rejection of unstable and the redundant symptoms No 4 and No 5. 
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6. Forecasting of global system damage  and a partial faults advancement 

The final quality of diagnostic decision one may judge making the forecast of the future 
condition in terms of total damage symptom SumSDi , and the first generalized fault 
symptom SD1. It was said in the introduction, that the forecast will be made by grey 
system theory (GST) [Deng 89], together with the rolling window method using the first 
order grey model GM(1,1) [YaoChi 04].  

In general GST assumes that our incomplete and uncertain observation can be the output 
of some dynamic multi input system of high order, described by the grey differential or 
difference model [Wen 05]. In condition monitoring, we assume it is enough to take the 
first order system described by the grey differential equation, and one forcing or control 
input only. This simplest case in GST is denoted as GM(1,1), means the grey model of 
order 1 with one input only. The output of the system is the series of discrete 
observations (our symptom readings) denoted here as  

 x(0) = { x(0)(1), x(0)(2),… x(0)(n)},      (12) 

 where n ≥ 4  is the number of observation made on a system (machine). 

We will not present GST theory here, but only using the final formulae for the 
forecasting, and the rolling window concept, which is implemented into the forecasting 
software.  

The application of GST to the above symptom readings gives the possibility to forecast 
the future one step symptom value, starting from very small number observation, and 
using the formula 

[ ] )(/)1()1(ˆ )1()0()0( −−− −−=+ kaak eeauxkx ,k=2,3,..n,                            (13) 
where u and a are parameters to be estimated by special least square matrix procedure 
using the observed data (12), and the hat ^  in (13) means future value of the forecasted 
quantity. 

This concept was adjusted to the purposes of vibration condition monitoring in one of 
the earlier paper [CempelTabaszewski 07, 08]. One can notice here from the bottom left 
picture of Fig. 3 and 4, that the total damage generalized symptom SumSDi (line with 
dots) after rejection the primary symptom No 4 and 5 is evolved well, enabling good 
forecast even without the rolling window. But of course, as usually in case of grey 
system modeling, the rolling windows forecast gives the smallest error. This error can be 
even smaller if we diminish the span of window (w), as it is clearly seen from the picture 
bottom right of the Fig. 5. 

It is worthwhile also to remark on the other pictures of this figure. Picture top left 
presents clearly, that the rejection of No4 symptom was a good idea allowing us to 
determine symptom limit value Sl1 and having this information do act properly to shut 
down the fan ahead of breakdown time. The picture top right present the total forecast of 
total damage symptom SD1 with the model GM(1,1). It seems to be good forecast with 
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the small average error, but the picture bottom left with the rolling windows forecast 
have he smaller error and the actual forecast adapts smoothly to the course of SD1.  
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Fig. 5 Grey rolling forecast of the fan condition using the first generalized symptom SD1, 
together with the both symptom limit values and the error of the forecasts, with and 

without rolling window. 
 
It is seen from the Fig. 5 left top picture, that the course of SD1 symptom is decreasing at 
the end of fan life, but both assessed symptom limit values Slc and Sl1 warns in advance 
enough to undertake shut down decision, just on time. However, comparing the both 
symptom limit values shown on the picture top right of the last figure, and Fig.4, it is 
good to know that the global damage symptom limit value Slc can be used only with a 
global damage symptom SumSDi . 
Summing up the results of our calculation one can say, that the idea to calculate all limit 
values for the global damage symptom SumSDi, and for the first dominating generalized 
symptom SD1 has proved its usefulness. This integration seems to be needed both in the 
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main calculation and observation space optimization (Fig 1-4), as well as in the grey 
system forecasting (Fig.5).  

7. Conclusions 

The premise to write this paper was the supposition that the integral inference basing on 
the first generalized machine symptom and the total damage generalized symptom of 
machine condition can bring us valuable reliable diagnostic information. As usually in 
multidimensional condition monitoring we have used the singular value decomposition 
to extract the fault information from the symptom observation matrix. After the first 
round of calculation it was possible to optimize observation space using some measures 
of fault space, such as Frob1 and Vol1. Having just mentioned generalized symptoms 
calculated, the symptom reliability and the symptom limit values Slc , Sl1 were assessed 
on that basis for the total damage symptom SumSDi, and for the dominating generalized 
symptom SD1. The last stage of inference was the forecast of the future value of the both 
symptoms made by grey system theory and GM(1,1) model. As an example we have 
used the most unstable case of condition monitoring, of the huge fan working in 
ventilation system of deep copper mine. It was shown here that the optimization 
procedure can reject unstable symptom, and more over we are able to calculate two 
symptom limit values, and infer more effectively on the basis of such integral software. 
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Abstract 
The main task of this work is to analyze CAD-system for the bearing systems of mobile 
wheeled machines and develop new CAD-component. The algorithm and program 
packages for construction of variety of cars with mounted and trailing equipment should 
be analyzed and developed on the basis of modern numerical methods of dynamics of 
continual-discrete systems. The calculation procedure of machine dynamics, resting on 
the synthesis of block-variational, modal and adaptive schemes, should be applied. The 
optimal designs were obtained for the boom suspension of boom sprayer with increased 
stabilizing and vibroprotecting properties. 
 

Keyword: mobile vehicle, sprayer boom, optimal design, vibroprotection. 

One of important problems of designing modern bearing systems of transport, in 
particular mobile vehicles, is providing the bearing power of a body at saving technical-
economic optimum indices, namely such as economy, energy and material capacity, 
operation expenses, expenses on repair et al. A primary task in this direction is the 
necessity of improvement the analytical method for calculation of effect of dynamic 
loading with the purpose of approaching the theoretical results to the experimental data 
and achievement the rational and effective designing of frames, joined wide overall 
dimension elements: booms, towers etc. Such a task, obviously, can be fulfilled with the 
help of modern computer programs. 

Now there are enough programs for conducting calculations on durability of volume and 
plane bearing systems on the basis of the finite element method. These are the programs 
of diverse class. They can have a narrow specialized direction or be universal for a wide 
class of problems. One of the most powerful design package for calculation the 
engineering designs on durability is Pro/Engineer, or, briefly – Pro/E. Similar to it 
according to the properties is the design package ADAMS. For implementation of 
calculations on durability we can also apply the universal program NASTRAN, ANSYS, 
COSMOS, for using of which it is necessary to construct a geometrical model (a finite-
element model). As a geometrical model we mean construction of points, lines, surfaces 
and volumes, which in the aggregate describe the design of framework of a body. In the 
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process of decomposing these geometrical constituents into smaller and giving them 
physical properties (parameters of cross-section of power elements, thickness of plates, 
mechanical properties of materials et al.) a finite element model is created. This model 
can be created on the basis of specialized programs of technical drawing : AUTOCAD, 
Solid Works, Solid Edge, ParaSolid et al. However complex designs, for example, a 
body in assembly due to complication of construction not always is transferred from the 
packet AUTOCAD in the packets ANSYS, NASTRAN, that is why converting models 
of volume assembly units is to be executed by component-wise. Russian-language 
programs of such type are, for example, the program Compass, Russian analogue of 
AUTOCAD, APM WinMashin – that reminds a little Pro/E. The last has such modules 
which can be used for calculation of design of a body. These programs are less universal, 
than, for example, NASTRAN, or Pro/E, however they are relatively simple in 
utilization. Their licensed versions with an educational purpose were bought, similarly as 
“Compass”, by the Lviv Politechnic, and during a long time are studied by students and 
used by them for writing the diplomas papers. We can also mark the programs “Lyre”, 
“Zenith”, “Proton”, that also serve for calculation the stress-strain state, stability, 
dynamics of natural and forced vibrations of three-dimensional frame designs. We will 
also mark such simple program as “Analisys” – a system for calculation of the stress-
strain state of three-dimensional frame designs. 

At constructing a finite element model more than 50% of the whole work occupies 
creation of geometrical model of design (its bearing system). With the purpose of 
keeping down expenditure on construction of geometrical model it is expedient to 
transfers a design model into a more comfortable one for construction of geometrical 
model. It will enable us to facilitate the task of exchange between the systems of САD 
and CAE (АutoCAD → ANSYS, NASTRAN), which is carried out by the IGES format. 
If converting is not executed or we fail to decompose into separate parts, it is 
recommended to correct a geometrical model in the system CADFIX and to transfer the 
corrected model by a body or surfaces with the next revision of the model in ANSYS. If 
correction of inaccuracies and errors does not give a positive result, it is recommended to 
simplify a model. Because of complexity of design of the bearing system of mobile 
vehicle and imperfection of the IGES converter, the model of design of mobile vehicle 
can not fully transfer АМD in the system ANSYS as a solid body geometry. That is why 
we need to form the bar system maximally close to the design of mobile vehicle. The bar 
elements of design must be formed on the axes of overall sizes of the cross section and 
the bar elements which intersect must meet at the point. Geometrical data 
communication from the CAD system in CAE is carried out with the help of the IGES 
converter. 

In accordance with the requirements which are imposed on the worked out model of 
mobile vehicle, in the file of drafting model together with a designer model there is a 
calculation (bar) model. The elements of design in the system ANSYS are decomposed 
into finite elements for calculation of the stress-strain state. At implementation of 
calculation of elements of the body it is necessary to bear in mind, that for an acceptable 
result it is necessary to break up bodies with exactness at which an element contains up 
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to 100000 finite elements, one linear meter of pipe – more than 8000 finite elements. 
According to the previous calculation of the model of body of a large mobile vehicle, 
without the elements of edging, it contains approximately 1500000-2000000 finite 
elements. 

The known numerous methods of modeling such a complex design as the boom-sprayer 
belong to foreign authors [1-5]. We will note that application only these programs is 
often insufficient. At first, the dynamics loadings, which act on a frame under the real 
exploitation conditions, are not exactly known, and the use for this purpose a model 
“suspension - rigid body” is  scarcely correctly. Secondly, we need not only a peak 
instantaneous value of stress in the elements of design, but their resource estimation. 
And it requires the account of difficult processes of fatigue and corrosion of metal. The 
real effective optimization of multielement model is not really. The algorithms of 
condensation a model are here usually used to a littlesize  model on which it is possible 
to make optimization [6-9]. A possible program complex that is partly able to solve these 
problems is shown in Fig.1. 

Es example considers now the boom-sprayer. It is the sprayer's boom that is the main 
unit of the agricultural machine. Its design peculiarities influence the basic 
characteristics of the machine, i. e. uniformity of spraying. At the same time, the boom is 
the unit of the machine that fails most frequently due to dynamic overloading. Therefore, 
optimization of the boom design is the main step in the process of rational construction 
the sprayer. One solution for this problem is to provide significantly improved 
suspension for the centre vehicle section so that the centre vehicle section moves 
upwardly and downwardly at a relatively slow rate in response to changing the ground 
level thus reducing the shock loading to the boom. Undesirable movements of the boom 
result from its connection to a vehicle rolling over uneven, rough soil and consequently 
subject to vibrations such as roll and yaw. Conventional suspensions of the boom 
through pivots or twin link suspensions provide protection from the rolling motion to 
some extent and are widely used in commercially available machines. 

The numerical schemes (NS) row is considered for the complex vibroexited 
construction. Methods of decomposition and the NS synthesis are considered on the 
basis of new methods of modal synthesis. Traditional design methodology, based on 
discontinuous models of structures ore FEM programs is not effective for three-
dimension boom nonlinear vibration analysis. The program packages are based on 
condensed mathematical models. The computer models of aggregates are tested by 
adequate real time procedure. The optimality criteria for boom constructions are 
formulated for various field and exploitation conditions. The optimal design decisions 
are found by genetics algorithms for boom section construction, vertical and horizontal 
damping and stabilization complex vibroprotecting and vibroabsorbing systems. 
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For receiving of optimum projects the algorithms of genetic optimization were used in a 
great number of structural parameters. In Fig. 2 the chart of the combined pendulum-
resilient suspension of a boom sprayer and dialog box of the complex of the optimization 
programs of this suspension are presented. 
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Fig.2а. Scheme of stringing the frame and sprayer boom 

  

 
Fig.2b. The interface element of the optimization program 

 

In Fig. 3a resulted the surfaces of vibroprotection levels of combined suspension 
depending on parameters K (rigidity) and С (damping) are presented. The function of 
angular deviation from a horizontal position is taken. In Fig. 3b the character of vibration 
process of boom is presented on the combined suspension with various parameters. 
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Fig.3a. The level surface of vibro protection of optimized suspension of a sprayer 

boom 

  

 
Fig.3b. Realization of stochastic loading of sprayer boom for the optimal and non-

optimal values of parameters 

Conclusions 

At present the problem of developing of the automated complexes of designing of such 
types of vehicles, as large-profile software’s packages of ADAMS, CATIA, Pro-
Engineer, Nastran et al. is solving. The discrete-continue models of wheeled land-
machines and processes related to their functioning are offered. On the basis of research 



101 

of mechanical processes, these models are realized in a number of programmatic 
complexes. On their basis the algorithms for optimum planning of boom-sprayer 
suspension are obtained. We will note that the mathematical models, numerical 
algorithms and programmatic facilities developed for this class of vehicles are adapted 
and for other vehicles. 
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Abstract 
The paper concerns the problem of energy modeling of a spatial Human Being – 
Demolition Hammer system with WoSSO vibroisolation (C-MWzWoSSO). For this 
purpose, first, new spatial physical and mathematical models of the system were 
developed with the use of the data presented in the ISO 10068 standard. Then, a model 
of energy flow in a dynamic structure of the investigated system was built. 

Keywords: energy modeling, vibroisolation, bio-dynamics 

Introduction 

The energy investigations carried out at the Laboratory of Dynamics and Ergonomics of 
the Metasystem: Human being – Technical object – Environment aim at reduction of 
flow of energy coming from power driven tools into the dynamic structure of a Human 
Being. This energy is a holistic measure of harmfulness of tool influence on a being and 
of a risk of appearance of vibration induced white finger disease [1]. In order to 
minimize the energy flow from the tool into a human being the tool was equipped with a 
spatial vibroisolation system with a constant reactive force. The advanced energy 
analysis of the energy flow phenomenon and its optimization required development of an 
energy model. Such a model is shown in this paper for the case of spatial vibrations of a 
Human Being – Big Power Driven Hand Tool system with vibroisolation WoSSO (C-
DZNR with WoSSO). The modeled bio-mechanical system is shown in Figure 1 [2]. 

The energy model of the C-DZNR system with WoSSO in the energy flow domain first 
requires dynamic modeling of the system. Then, with the use of the First Principle of 
Energy Flow in Mechanical Systems it is possible to pass on to the energy flow domain 
[1]. The development of the dynamic model of a Human Being – DZNR (demolition 
hammer) system with the WoSSO vibroisolation was preceded by definition of 
simplifying assumptions concerning a real object, in which the patented method of 
spatial vibroisolation WoSSO was used [1, 2]. The WoSSO vibroisolation separates the 
tool engine from the tool body to which the handles for both operator’s hands are fixed. 
The vibroisolation has spatially diverse efficiency of vibration reduction. The highest 
efficiency is along the main direction ‘z’ of vibrations caused by impulse recoil forces, 
reverse impacts and impacts of the ram on the engine body, and along the perpendicular 
directions ‘x’ and ‘y’ it is such, that the requirements of vibration standards are fulfilled. 
The model takes into consideration spatial, translational vibrations of a hammer 
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assuming the influence of rotational vibrations of the tool to be negligible [2]. 
A dynamic nine degrees of freedom model of a Human Being subjected to hand arm 
vibrations acting the upper limb [ISO 10068] was used to build the dynamical model of 
the system. The final model was obtained by synthesis of physical models of two 
subsystems: a human-operator using two hands during work with a tool and a tool – a 
demolition hammer [2].  

1. Physical model of the 
Human Being – Demolition 
Hammer system with the 
WoSSO vibroisolation (C-MW 
with WoSSO) 

The physical model of the 
investigated bio-mechanical 
system is shown in Figure 2 [2]. 
The applied physical models of 
Human Being for vibrations 
penetrating into one upper limb 
(presented in the ISO 10068 
standard) enables dynamic 
analysis in the structure of a 
human body. It is possible in 
this way to determine dynamic 
effects of the influence of the 
tool during work. Forces 
exciting the demolition hammer 
to vibrations will be identified 
experimentally at the laboratory 
when the hammer will be acting 
on an energy absorber, see 
Figure 1 [2]. During research the 
coordinate system was assumed 
to be oriented in such a way that 
the ‘z’ direction is vertical 
(along the main axis of 
symmetry of the tool and 
working motions of its ram – the 

direction of the biggest vibrations), the ‘y’ direction is parallel to the handles, and the ‘x’ 
direction is perpendicular to the handles.  

The assumed working position of the Human Being is consistent with the description 
presented in the ISO 10068 standard, which enables the use of substitute parameters for 
all directions ‘x’, ‘y’ and ‘z’, which are given therein. In the spatial physical model of 

Figure 1. The energy modeled Human Being 
– Big Power Driven Tool system with the 
innovative, spatial vibroisolation WoSSO 
[1, 2] 



 105 

the whole structure C-DZNR with WoSSO the following points of reduction were 
assumed: Tool engine – reduced substitute mass ms (S), Tool body-Hands (both) – mass 
mzk = mk + m1L + m1P (K-D), Forearm-Elbow for the left hand – mass m2L (PL-L) and for 
the right hand – mass m2P (PP-L), Arm-Shoulder for the left hand – mass m3L (RL-B) and 
for the right hand – mass m3P (RP-B). 
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Figure 2. Physical model of a Human Being – Big Power Driven Hand Tool (e.g. 

demolition hammer) system with the spatial vibroisolation WoSSO [2] 

The description of the points of reduction and the reduced substitute parameters for 
individual directions contains additional information about the directions, i.e. ‘x’, ‘y’ and 
‘z’ to be subscripts. Independent consideration of both upper limbs of the Human Being 
decides about its universality, because it is possible to take other positions of a human 
body into consideration, for which the reduced substitute parameters are different.  
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2. Mathematical model of dynamics end energy model of the investigated system 
A mathematical model of dynamics of the C-DZNR system with WoSSO was built up 
using Lagrange equations. The modeled system has 18 degrees of freedom. General 
coordinates, listed in Table 1, were assumed to describe their motion. 

Table 1. The assumed generalized coordinates for description of motion of the C-
DZNR system with WoSSO and their notation 
Direction ‘x’ 
xs(t) – displacement of the hammer engine in the x direction, 
xk(t) – displacement of the hammer body in the x direction, 
x2Lx(t) – displacement of the P-L point of reduction for the left hand in the x direction, 
x3Lx(t) – displacement of the R-B point of reduction for the left hand in the x direction, 
x2Px(t) – displacement of the P-L point of reduction for the right hand in the x direction, 
x3Px(t) – displacement of the R-B point of reduction for the right hand in the x direction, 
Direction ‘y’ 
ys(t) – displacement of the hammer engine in the y direction, 
yk(t) – displacement of the hammer body in the y direction, 
y2Ly(t) – displacement of the P-L point of reduction for the left hand in the y direction, 
y3Ly(t) – displacement of the R-B point of reduction for the left hand in the y direction, 
y2Py(t) – displacement of the P-L point of reduction for the right hand in the y direction, 
y3Py(t) – displacement of the R-B point of reduction for the right hand in the y direction, 
Direction ‘z’ 
zs(t) – displacement of the hammer engine in the z direction,, 
zk(t) – displacement of the hammer body in the z direction, 
z2Lz(t) – displacement of the P-L point of reduction for the left hand in the z direction, 
z3Lz(t) – displacement of the R-B point of reduction for the left hand in the z direction, 
z2Pz(t) – displacement of the P-L point of reduction for the right hand in the z direction,, 
z3Pz(t) – displacement of the R-B point of reduction for the right hand in the z direction. 

In order to obtain a mathematical energy model of the investigated system two energy 
principles were used: the First Principle of Power Distribution in a Mechanical 
System and the First Principle of Energy Flow in a Mechanical System [1]. The 
results of dynamic analysis, i.e. accelerations, velocities and displacements of all points 
of reduction and the identified dynamic parameters ensuring correct motion of the 
modeled system are the input values for this model. The energy model of the C-DZNR 
system with WoSSO consists of 18 equations defining the streams of energy flowing in 
the whole dynamic structure of the investigated system – Equations (1), (2) and (3). In 
these equations forces Fsx(t), Fsy(t), Fsz(t) are the components of the sum of forces 
causing the motion of the tool engine and reactive forces of the foundation for the 
individual directions ‘x’, ‘y’ and ‘z’. The reduced substitute values of dynamic 
parameters appearing in the above mentioned equations were determined basing on 
literature research, see Table 2. They concern hand-arm vibrations penetrating into one 
upper limb of the Human Being modeled by a discrete model with nine degrees of 
freedom, as in the developed physical model – Figure 1. The remaining parameters will 
be identified at the Laboratory of Dynamics and Ergonomics of the Metasystem: Human 
Being – Technical object – Environment [2]. 
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3. Conclusions and summary 

The developed energy model of a C-DZNR system with WoSSO describes dynamics of 
energy flow in a bio-mechanical system, which takes the spatial motion of the system, 
both upper limbs and real forces causing the motion generated by the tool engine into 
consideration. The energy investigations concerning this system will be continued [2]. 
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C) for ‘z’ direction: (3) 
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Table 2. Values of dynamic parameters of a physical model of a human operator for 
three directions x, y and z according to the ISO 10068 standard 

Reduced dynamic parameters of a model of a human being 
Direction of vibrations Unit 

X Y Z 
 kg m1Lx = m1Px = 0.0267 m1Ly = m1Py = 0.0086 m1Lz = m1Pz = 0.0299 
 kg m2Lx = m2Px = 0.486 M2Ly = m2Py = 0.3565 M2Lz = m2Pz = 0.6623 
 kg m3Lx = m3Px = 3.0952 M3Ly = m3Py = 3.2462 M3Lz = m3Pz = 2.9023 

N/m k1Lx = k1Px = 4368 K1Ly = k1Py = 27090 k1Ly = k1Py = 5335 
N/m k2Lx = k2Px = 132 k2Ly = k2Py = 300 k2Lz = k2Pz = 299400 
N/m k3Lx = k3Px = 1565 k3Ly = k3Py = 6415 k3Lz = k3Pz = 2495 
Ns/m c1Lx = c1Px = 207,5 c1Ly = c1Py = 68 c1Lz = c1Pz = 227,5 
Ns/m c2Lx = c2Px = 18,93 c2Ly = c2Py = 51,75 c2Lz = c2Pz = 380,6 
Ns/m c3Lx = c3Px = 9,10 c3Ly = c3Py = 30,78 c3Lz = c3Pz = 30,30 
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Abstract 
The paper provides confrontation of a surface wave of SH polarization 
propagating in a superconducting layer (type II superconductor) located in a 
superconducting halfspace of similar material properties. It was found that the 
wave in the determined heterostructure is distinguished by the properties 
significantly different from classical Love wave propagating in similar elastic 
structure. Among more important differences first of all should be mentioned 
occurrence of only one mode and changed direction of the inequality that 
determines allowable range of phase velocity of propagating wave. Both waves 
are subject to normal dispersion. 
Keywords: superconductivity, thermomechanics, surface waves,  

 
Introduction 

Surface wave SH propagating in a superconducting heterostructure possess 
unexpected properties as compared to the ones of classical Love wave in a similar elastic 
structure [1].  In order to discuss this problem a classical solution is shortly presented 
below. 

 
Fig. 1 Geometry of the problem. 

 
Geometry of discussed classical problem is presented in Fig.1a. It is assumed that the 

displacement vector is a function of x1, x2, and time t, 
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a b
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 ( )txx ,, 21uu = .  (1) 
It is conducive to uncoupling of the displacement equations of theory of elasticity. 

Especially we have  
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Solution of (2) is sought in the form of surface wave 
 ( ) ( )[ ]ctxikxfu −= 213 exp   (3) 
The solutions and material constants are specified by low indexes “1” or “2”, 

according to Fig.1 
Ordinary differential equation is obtained in a layer 
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In a halfspace 
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For Love wave to propagate the following assumption should be made 
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This leads to the following set of inequalities  
 12 TT ccc >>  (7) 

Hence, the equations (4) and (5) take the form  
 ( ) ( ) ( )111111 cossin xkBxkAxf ββ += ,   01 <<− xh   (8) 
 ( ) ( )1222 exp xkCxf β−= , 01 >x   (9) 
The solutions should meet the following boundary and seam conditions 
- the stress-free boundary 

 ( ) 0
1

11
1

=
−= hx

xf
dx
d   (10) 

- continuity of displacements 
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- continuity of the stress vector 
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Appropriate substitutions provide a system of algebraic equations with A, B, C, 
constants 
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The system has non-trivial solutions if 
 ( )hk 11122 tan ββµβµ =   (14) 
The equation (14) is a dispersion equation. 

The dispersion curves are shown below for the following material constants 
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Fig.2 Dispersion curves for Love’s wave 
 
Characteristic feature of Love wave consists in occurrence of many modes (Fig. 2a). 

Relationship between the phase and group velocities on the wave number for the first 
mode is shown in Fig. 2b.  

 
Surface wave SH in superconducting heterostructure 

Basic equations describing elastodynamical properties of the vortex field type II 
superconductor are proposed in the paper [6]. The problem of surface wave propagation 
of SH polarization in the considered heterostructure is described by the equations 
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Similarly to classical case the solution is sought in the form 
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Further consideration is carried out in dimensionless form. In order to introduce 
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dimensionless coordinates x,y,z and dimensionless time τ a characteristic dimension h 
and characteristic time T are used.  
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The dimensionless amplitudes of sought physical fields ( ) ( )xhxu zz ,  and 
dimensionless magnetic field H0 meet the relationships 
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where H1 is critical field of the layer material.. 
The dimensionless angular frequency Ω and the phase velocity c meet the 

relationships 
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while the dimensionless material constants and the universal constants (the symbols 
with tilda) are related to corresponding dimension constants with the relationships  
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Proper substitutions lead to the following system of ordinary differential equations 
met by the amplitudes 
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The characteristic equation of the above system takes a form 
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Squares of the roots of the above equation should meet the relationships 
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General integrals of the equations (17) should meet the following jump and seam 
conditions  

for x = -1 
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- Continuity of tangential component of the magnetic field strength 
- The stress-free boundary. The stress vector is equal zero  
for x = 0 
- Continuity of tangential component of the magnetic field strength 
- Continuity of displacements 
- Continuity of stresses 
 
Conditions of the task may be satisfied provided that the number of arbitrary 

constants used for formulating general integrals (17) is equal to the number of above 
specified number of the jump conditions. This means that one of squares of the roots of 
the characteristic equation (18) met in halfspace (i=2) should be purely imaginary. In this 
case an improper condition (i.e. requirement for amplitude to approach zero for x→∞) 
ensures equal number of the constants and conditions. 

According to the above 
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The result differs from the one obtained in the classical theory (7). 
In the (i=1) layer the squares of both roots of the characteristic equation (18) should 

be positive. Other options preclude the relationships (19). 
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i.e. direction of the inequality opposite to the one resulting from the classical theory (7). 
Moreover, as a consequence of the exponential form of the solutions both for the layer 
and halfspace, the dispersive relationship admits propagation of only one mode.  

In accordance with the assumptions the solutions of the equations (17) in the layer 
have the following form 
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(18) (the first index denotes the root number, the other corresponds to the layer or 
halfspace, according to Fig. 1).. 
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The seam conditions lead to the dispersive relationship 
 ( ) 0;, =ξvΩf ,  (25) 
where ξ is for the set of material parameters. 
In particular case of ceramic material of the layer La… and YbaCuO ceramic 

material of halfspace, the plot of the dispersive relationship is shown in Fig. 3 (the 
material constants are drawn from [3]) 
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Fig. 3 Dispersion curve. 

 
Conclusions 

Elastodynamical properties of the vortex fields in superconducting heterostructure 
prove to be quite different as compared to the ones commonly known for surface Love 
wave. In the structure here considered only one mode of the dispersive relationship 
occurs. Moreover, the inequalities (22) are valid that, according to the notes made above, 
corresponds to the arrangement opposite to classical one.  
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Abstract 
A preliminary discrete model of a rope with scleronomic and rheonomic constraints is 
considered. Numerical experiments are performed and advantages of the applied 
algorithm are discussed in terms of total energy of the system. In case of the non-
conservative model the work-energy relation is used to assess the computation 
efficiency. The next directions of the model development are outlined. 
Keywords: multibody dynamics; discrete model; differential-algebraic equations. 

Introduction 

Analysis of the rope dynamics may serve as an introduction to research on various 
physical phenomena. One of such examples is a cracking whip, whose amazing 
dynamics has been drawing attention of scientists for over a hundred years. In the 
twentieth century different laboratory experiments were performed, giving a significant 
insight into the phenomenon. On the other hand, theoretical works were based mostly on 
kinematic models and certain conservation principles. 

However, nowadays such a problem may be studied not only experimentally and 
theoretically but also numerically. Works focus on behaviour of some class of similar 
bodies such as chains, ropes and whips.  For example, Pierański and Tomaszewski [3] 
analyze dynamics of a falling chain on the basis of laboratory and numerical 
experiments. Goriely and McMillen [2] consider a dynamical model for propagation of 
waves in the motion of whips and obtain numerical solutions too. 

We concentrate on a simple preliminary model, which actually is a rigid, chain-like one 
– closer to a rope than a whip. Applying the Lagrange’s formulation, we present the 
equations of motion for the system with scleronomic as well as rheonomic constraints. 
Approximate solutions to the initial value problems are obtained with the use of 
computational methods. In some numerical experiments the results and the simulated 
behaviour of the body are analyzed mostly in respect of time dependence of the total 
energy. 

1. Mechanical system and equations of motion 

As a discrete model we use the one described by Pierański and Tomaszewski in [3], 
which actually is a multiple physical pendulum. Thus, the system consists of n elements 
– rigid, cylindrical rods – connected by ideal joints (without friction). Each segment has 
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a length l and mass m. Classically, the motion is restricted to take place in a vertical 
plane only.  

One end of the body is attached to a point denoted by its Cartesian coordinates (x0, y0), 
whereas the other one moves freely. It is important that we focus on the mechanical 
system moving in a gravitational field, with no external forces acting on it. 
Consequently, the excitation studied here has purely a kinetic character. 

However, let us consider a model with scleronomic constraints at first, that means the 
one suspended to a fixed point. The state of the system may be simply specified with the 
use of the angular generalized coordinates – position of ith element is described by a 
variable iϕ  which defines the angle from Y downward axis. The position of each 

segment (its mass centre) in the Cartesian coordinate system may be written as follows:  
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Having calculated terms for the velocities of the ith segment in the X and Y directions, 
one may obtain formulas expressing the kinetic and the potential energy of the system: 
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Using the terms above for the Lagrangian L=T-V we can apply the Euler-Lagrange 
equations to describe behaviour of the system:  
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After substitutions and simplifications we obtain the equations in the final form: 
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Let us turn now to the case involving rheonomic constraints. We assume that one end of 
the rope is attached to a moving point, whose position expressed in the Cartesian 
coordinates depends explicitly on time:   
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( ) ( )tyy,txx 0000 ==                                      (1.7) 

Obviously, the dependencies affect the transformation equations (1.1): 
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Hence, the terms for the kinetic and the potential energy of the system have more 
complex form and involve the time explicitly, too. Still using the Lagrange’s formulation 
(1.4), we find the following equations of motion for n,,,i K21= :   
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where the coefficients a and b are defined in (1.6). 

2. Numerical experiments 

To solve the systems of differential equations (1.5) and (1.9) approximately, we have 
applied the MEBDFV code developed by Abdulla and Cash (Imperial College, London). 
They implemented Modified Extended Backward Differentiation Formulas (MEBDF) of 
Cash. The algorithm is designed to solve stiff Initial Value Problems for systems of 
linearly implicit Differential Algebraic Equations (DAEs) of the form: 

),t()( qfqqM =&                                                 (2.1) 

where the matrix M depends on q, which is a vector of dependent variables, and t is the 
independent variable.  

As typical for computational methods, the system of dynamic equations should be 
reformulated into a system of first-order differential equations. Therefore, the problem 
consists of 2n differential equations and 2n initial conditions written in a general form as 
follows: 
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( ) ( ) n,,,it,t iiii K21for0000 === ωωϕϕ  
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Firstly, let us concentrate on the scleronomic system. We confronted results obtained in 
our numerical simulations with the ones described in [3] and based on the RADAU5 
code developed by Hairer and Wanner. As it was supposed, for the same parameters (n, 
l, m) and initial conditions there was no difference between the compared configurations 
of the model in certain moments of time. The time dependencies of the linear velocity of 
the tip were compatible too. What is more, the authors of the paper [3] confirmed their 
numerical results by laboratory experiments.  

However, the choice of the solver seems to be justified by the energy principle. For 
instance, using the RADAU5 without any significant modifications would be inefficient 
when researching long-lasting motion of such a complex mechanical system. After a 
short period of “good performance” a problem arises with energy conserving by the 
chain. On the other hand, the MEBDFV code gives results which meet the energy 
conservation law.  

To show the difference, we performed a numerical experiment using both the codes, 
starting from the same initial conditions: catenary curve, 0=iϕ&  (for n,,,i K21= ), and 

the same parameters: n=20, nm=0.5kg, nl=1m. The time dependencies of the total energy 
of the system are presented in Fig. 1. 
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Fig. 1: The total energy based on results from the RADAU5 code and the MEBDFV. 

As visible above, the energy calculated from the results given by the MEBDFV may 
serve as a reference level. When it comes to the other solver, there is a rapid decrease in 
the energy around t=1.3s and the difference between the dependencies increases with 
time. Obviously, the numerical dissipation impacts on configurations of the chain. 
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It is necessary to remark that no procedure designed for testing fulfillment of the 
conservation principle is embedded in the solvers. Both the codes perform the 
integration process using some internal, numerical convergence tests, which do not refer 
to mechanics. The user gives the physical sense to the solution and involves it in 
computation of such quantities as the total energy.  

Now we will analyze the dynamics of the rheonomic system. We will consider here a 
free-hanging chain at a start point, so that 0=iϕ  and 0=iϕ&  for n,,,i K21= . The 

simulation is performed for a model of total length nl=1m and total mass nm=0.5kg, 
where n=30. Moreover, we focus only on the function x0(t) referring to the horizontal 
direction – the body will be brought into motion with the use of the following constraint 
function:  
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where A and B are some constants. Here we take: 

[ ] [ ]s15m10 /B,.A ==  

In this case the evolution of the rope’s shape seems to be very interesting. The applied 
excitation leads to arising a kind of wave-like effects. Visually, a fold created from the 
upper segments is traveling along the rope. The propagation disappears gradually with 
the successive direction changes. Actually, such a specific behaviour turns out to be a 
result of energy transfer between the elements of the discrete model. The fold’s flow 
along the body involves consecutive segments providing additional energy to them. As it 
may be supposed, the greatest increase of the function occurs at the last element and 
causes sharp peaks in time dependencies of velocity and acceleration of the tip. 

At the end, we will pay attention to the total energy of the whole mechanical system. It 
should be noted that due to the rheonomic constraints the system is a non-conservative 
one. In fact, the energy increases initially and then remains constant at the level forced 
by the applied constraints. All in all, the conservation principle cannot be a test for the 
approximate solution to the problem.  

However, we decided to apply the work-energy principle for a rigid body. Thus, the 
analysis consists in comparing changes in the kinetic energy of the system over time 
with the work done by all forces during the same actual displacements. To define “all 
forces” we take into account the components of the equations (1.9), which come strictly 
from the gravity and the rheonomic constraints. After consideration appropriate units one 
may obtain the expressions equivalent to generalized forces – the potential and non-
potential ones:  

( ) n,,,i,sinycosxsingmlbQ iiiii K&&&& 2100 =−+−= ϕϕϕ        (2.4) 

Alternatively, the work-energy relation is formulated in [4] as the principle of action and 
counteraction. The first one is defined as the action of (active) forces, whereas the latter 
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one refers to the kinetic energy of the system and is named the action of the inertia force. 
Fig. 2 shows the comparison of these two quantities based on numerical integration.  
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Fig. 2: Time dependence of the action of the active forces (dashed) and the action of the inertia 

force (solid). 

 

3. Conclusions 

Although we have focused on the simple discrete model of the rope, the multibody 
approach produces an expanded system of second order differential equations, which 
actually need to be solved numerically. The choice of the solver is justified by the energy 
principle. The code of Abdulla and Cash manages to give reliable approximate solutions 
to the Lagrange-Euler equations for the conservative as well as the rheonomic system.  

The results inspire to develop the model by including such aspects as elasticity, damping 
and air-resistance. All in all, the problem provides many possibilities of dynamics 
analysis, so we feel that the potential directions of development are worth efforts and 
will be realized successively. 
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Abstract 
A discrete model of a rope with elements of a changeable length is considered. 
Scleronomic and rheonomic constraints are given to the system. Dynamic equations of 
motion are formulated and their complexity is presented from the computational point 
of view. Numerical experiments are performed and the obtained results are discussed 
in terms of the total energy of the system.  
Keywords: multibody dynamics; discrete model; differential-algebraic equations. 

Introduction 

Dynamics of a rope as a classical problem of mechanics can be significant in research on 
motion of other real objects. Actually, various works focus on behaviour of some class 
of similar bodies such as chains, ropes, fly lines and whips. The last one is extremely 
interesting because of very fast motion of its tip. Laboratory experiments are connected 
with different difficulties and the complexity of the problem makes the analytical 
approach also hard to perform. 

However, nowadays implementation of numerical methods may produce approximate 
but satisfactory results, giving considerable insight into the phenomenon. Pierański and 
Tomaszewski in [5] consider dynamics of a falling chain and base on laboratory as well 
as numerical experiments. Goriely and McMillen [4] study – both theoretically and 
numerically – propagation and acceleration of waves in the motion of whips. Gatti and 
Perkins [3] present mathematical model of fly line and discuss numerical solutions too. 

In the previous paper [2] we considered a simple discrete model of the rope with 
scleronomic and rheonomic constraints. Now the rigid, chain-like system is 
complemented with some flexibility aspects. We formulate its Lagrange’s equations of 
motion and use computational methods to solve them. In several experiments the 
behaviour of the given body is simulated and analyzed in terms of the mechanical 
energy.  

1. Mechanical system and equations of motion 

Let us modify the model assumptions specified in [2]. The system consists of n elements, 
but now each segment includes a rigid, cylindrical rod and a spring at the end. More 
precisely, the ith spring plays a role of a lengthening part – belongs to the ith rod and 
retains its orientation. The elements as a whole are still linked by ideal joints (without 
friction), but it should be noted that the connection “bar-bar” is replaced with the “bar-
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spring” type. Every rod has a length l and mass m. The springs are assumed to be linear 
and identical – their free length is denoted by ls and the stiffness by ks. Their mass is 
neglected.  

The mechanical system is placed in a gravitational field. One end of the body is attached 
(by the first spring)  to a point (x0, y0), whereas the other one moves freely. Classically, 
the motion is restricted to take place in a vertical plane only. 

The applied approach means increasing the number of degrees of freedom. 
Consequently, apart from the angular generalized coordinates iϕ defining the angle 

between the ith segment and the Y downward axis, we introduce some additional set of 
variables iz for n,,,i K21= denoting the springs elongations.   

To make our considerations more general, we focus on the rheonomic system at once. 
Thus, the position of the moving support expressed in the Cartesian coordinates depends 
explicitly on time:  

( ) ( )tyy,txx 0000 ==                                         (1.1) 

The position of each segment (its mass centre) in the Cartesian coordinate system may 
be written as follows:  
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where isi zlh +=  for n,,,i K21= . Having calculated terms for the velocities of the ith 

segment in the X and Y directions, one may obtain formulas expressing the kinetic and 
the potential energy of the system (T and V respectively).  
We apply the Euler-Lagrange equations to describe behaviour of the system:  
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where L=T-V is the Lagrangian. After substitutions and simplifications we obtain the 
equations in the final and possibly concise form: 

� for n,,,i K21=  
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It should be emphasized that the summation convention is not applied in the presented 
equations of motion. 
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2. Numerical experiments 

As mentioned in [2], in order to solve the system of differential equations approximately, 
we have applied the MEBDFV code developed by Abdulla and Cash [1]. It should be 
noted that from the numerical point of view broadening of the problem description gives 
in fact 4n first-order differential equations:   
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  (2.1)         

where mi,j are non-constant coefficients which depend explicitly on the generalized 
coordinates: 

( )nnjiji zztmm ,,,,,, 11,, KK ϕϕ=                                            (2.2) 

Obviously, we have also 4n initial conditions: 

( ) ( ) ( ) ( ) niutuztztt iiiiiiii ,,2,1for,,, 00000000 K===== ωωϕϕ      (2.3) 

In the considered numerical experiments we will focus on the examination of the results 
provided by the solver in terms of the total energy of the mechanical system. It is 
essential because the code performs the integration process using some internal, 
numerical convergence tests, which do not refer to mechanics. Thus, giving the physical 
sense to the solution and involving it in computation of the kinetic and potential energy 
seems to be an independent and objective test. 

Firstly, let us consider the scleronomic system. For instance, we will show the time 
dependence of the energy for a model consisted of n=20 segments with the following 
parameters: nm=0.5kg, nl=1m. We have also taken ls/l=1/3 and ks=10

4 N/m. The initial 
configuration of the rope is specified by catenary curve, where the position of the tip is: 
x=0.2m, y=-0.5m. The rest of the initial conditions: 

( ) ( ) ( ) nizz iii ,,2,1for00,00,00 K&& ====ϕ  

In Fig.1 we present the potential, kinetic and total energy of the rope. As visible, it may 
be said that these quantities are well-behaved during the simulation. However, the initial 
conditions do not make the integration easy. The fall of the rope from a relatively high 
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level causes that the motion of such a discrete system starts to be chaotic very quickly. It 
is noticeable in the graph – the dependencies T(t) and V(t) look smoothly just up to t=1s.    
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Fig. 1: Kinetic energy (T), potential energy (V) and total energy (E) of the scleronomic system 

 
Now we will deal with the rheonomic system. We will consider here a free-hanging 
rope, that means ( ) 00 =iϕ  for n,,,i K21= . The parameters of the model are the same 

as before. Additionally, zero generalized velocities are assumed at t=0 and also ( ) 00 =iz  

for n,,,i K21= . The body will be brought into motion with the use of the following 

constraint function:  
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where: 

[ ] [ ]s15m10 /B,.A ==  

To assess the obtained results one may apply the work-energy principle for a rigid body 
formulated. Thus, the changes in the kinetic energy of the system over time may be 
compared with the work done by all forces during the same actual displacements. Here 
we present a graph of the total energy (Fig. 3), which coincides with the intuitive 
approach. The total energy of the system rises as long as the rheonomic constraints “act”. 
Afterwards the energy remains constant at the level forced by the constraint function.  
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Fig. 2: Kinetic energy (T), potential energy (V) and total energy (E) of the rheonomic system 

3. Conclusions 

We have focused on the discrete model of the rope with elements of a changeable length. 
From the numerical point of view the approach produces an expanded system of 
differential equations. The performance of the algorithm has been tested on the basis of 
the energy principles, which indicates that the code MEBDFV gives reliable 
approximate solutions to the Lagrange-Euler equations for the scleronomic as well as the 
rheonomic system. Thus, the results provide many possibilities of dynamics analysis and 
we feel that lots of aspects merit further attention.  
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Abstract 
The paper presents the 2D-Statix environment which was developed for upgrading 
teaching of statics. The program is designed to solve any statically determinate problem. 
There is a possibility to deal with a system with different constraints such as simple 
support and  roller support, pin joint and some elements like beams, curved beams, rods 
and polygonal rigid bodies. Various loads may be applied – concentrated as well as 
distributed. As a result the program provides values of constraints reactions and 
information about compression or tension of some elements. The program presented by 
the authors is unique because there is no similar widely available application. In the paper 
some classical problems of statics are solved to visualize capabilities of the 2D-Statix.  

  

  

Introduction 

The main aim of the authors was to create a simple application that is useful in didactic 
process. A lot of statics problems may be solved by some popular programs like 
WorkingModel 2D or SolidWorks. However, the costs of their simple versions are huge 
and in fact they are not appropriate to deal with such problems. The presented program is 
able to determine the solution to every 2D static problem if the considered system is 
statically determinate. Otherwise, a message is generated to inform that the system is 
statically indeterminate or improperly constrained.  
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For planar single rigid body there are possible two cases of loading. In first case several 
forces act on particle. Then we can write two equilibrium conditions. In second case the 
considered rigid body is loaded by any system of forces and then we can write three 
equilibrium equations. In both cases conditions usually leads to linear system of 
equations with respectively two and three unknown reactions. For system of several 
connected rigid bodies we can apply equilibrium conditions according to any rigid body 
and then we can obtain the system of linear equations. 

The aim of the paper is presentation of computer implementation of traditional system of 
equilibrium equations, which can determine reaction forces for single rigid body and for 
system of connected rigid bodies. In this implementation user define geometry, 
constrains and loading of considered system. Those data allow to make linear system of 
equations and to solve it.                       

The developed environment includes a graphical interface which allows to build any 
statical system in a very simple way. The whole environment was designed in Fortran 90 
language with the use of Winteracter library [4,5].   

 

1. Basic elements of 2D-Statix 

To derive a solution to a given statics problem, it is necessary to define basic constraints, 
elements and loads. Pictures presented below are printed screens of the main 2D-Statix 
window. 

Constraints which may be defined by a user: 

- Simple support and roller support. Both can be placed at various angles. 

 

- Fixed support. It can be placed at various angles. 

 

- Pin joint. It may connect different types of elements. 

 

Elements which may be defined by a user: 
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- Beams (straight and curved) and rigid bodies (polygons) 

 

Loads which may be applied to the elements: concentrated forces, moments and 
distributed loads (defined as a linear, quadratic or cubic function). 

 

 

2. Test problems 

Problem 1: Determine the forces in all of the members of the truss shown below [2]:  

 

Fig. 1. Example of truss loaded by three forces - picture was made in 2D-Statix. 

In classical approach the problem could be solved by solving the system of 2N 
equations, where N is number of pin joints. The 2D-Statix generates this system and 
determines all unknowns by solving it. Solution of the given problem is always 
presented on the screen with the picture of numbered truss members and drawn reaction 
forces in supports as in the fig. 2.  

1kN 1kN2kN

4.5m 4.5m 4.5m 4.5m

6.0m 

1kN 1kN2kN

4.5m 4.5m 4.5m 4.5m

6.0m 
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Fig. 2. Considered truss with numbered members and table of unknown reaction forces. 

As it may be seen above, apart from the values of the forces in all the bars, 2D-Statix 
provides information about the character of the forces (tension or compression). The 
program also draws reaction forces (blue vectors in fig. 2). 

Problem 2: Determine the reactions and the force in the bar taking into account mass of 
the two rigid polygonal bodies m1=m2=1kg [1]. 

 

 

Fig. 3. Two connected polygonal rigid bodies. - picture was made in 2D-Statix. 

 
 

10N/m
10N 

2.0 3.0m 3.0m

2.0m 

2.0m 
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Solution of problem 2 from fig. 3 is generated by the system in main window of the 
environment as table of unknown reaction forces and information about tension or 
compression of rods or beams in considered system of rigid bodies fig. 4.  

 

Fig. 4. Two connected polygonal rigid bodies. - picture was made in 2D-Statix. 

The 2D-Statix does not draw the reaction forces vectors in pin joints. We can find them 
in the result table that is always visible under the main picture. There is no limit set for 
the program for number of connected rigid bodies and forces so it is possible to build 
really complicated systems and effectively determine all unknown reaction forces. 

  

Problem 4: We consider improperly constrained polygonal rigid body presented in the 
fig. 5. The message generated by the program informs user about statical indeterminacy 
of considered system [3].  
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Fig. 5. Two connected polygonal rigid bodies. - picture was made in 2D-Statix. 

 

2D-statix seems to be very useful  environment and it could be perfect tool to teach 
statics in engineering fields of study. The application should be upgraded and there are 
plans to add to the program some elements of strength of materials in the future.  
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Abstract 

The paper is devoted to analysis of effectiveness of vibration reduction with the use 
of resonance-type vibration eliminators, viz. the frictional and viscous-type ones. 
Their usefulness for vibration minimization in the extra-resonance range has been 
shown. The resonance-type eliminators, i.e. the frictional and viscous-type ones, are 
distinguished by similar ability to reduce vibration. Nevertheless, effectiveness of 
vibration elimination of these eliminators is lower as compared to the effect 
achieved by increasing the mass of the protected system.  
Keywords: dynamics, vibration minimization, vibration eliminators  

 
Introduction  
 

The aim of elimination of mechanical vibration is very important from the point of 
view of durability and reliability of technological equipment. The most effective method 
of reduction of dynamical response of a mechanical object consists in elimination of its 
reasons, i.e. changing amplitudes or spectral composition of excitations. In case the use 
of such a method (often referred to as a direct method) becomes impossible the 
intermediate methods are used instead, that consist in interference into mechanical 
properties of the considered object. Three such methods may be mentioned here 
• change of mass – elastic – dissipative parameters, with unchanged object structure; 
• introduction of an additional mechanical system into the object, located at the 

disturbance path, i.e. vibroinsulation; 
• introduction of an additional mechanical system – vibration elimination  
The paper discusses the problem of vibration in case of a particular coupling between the 
protected system and the eliminator.  

 
1. Physical and mathematical model of resonance type vibration eliminator  
 

Ability of mechanical vibration minimization depends on the type of vibration 
eliminator. High effectiveness of vibration reduction is characteristic for dynamical and 
impact eliminators. The paper describes researching of vibration reduction effectiveness 
of one of resonance-type eliminators, in which the coupling with the protected object is 
of dissipative character. Hence, the forces acting in it depend on relative velocity of both 
sub-systems, i.e. the main, the vibration of which is to be minimized, and the eliminator 
itself. Two types of eliminators may be mentioned:  
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• a viscous-type one, in which the interactive force is proportional to odd powers of 
relative velocity of both bodies; 

• a frictional one, in which the interactive force depends on relative velocity of both 
bodies and is referred to as a dry friction force.  

The present paper describes analytical & numerical research of effectiveness of both 
eliminator types. The consideration is carried out with the assumption that a protected 
object may be modeled by a non-linear system of one degree of freedom (M, K*, C*) 
with force harmonic excitation F(t). The vibration eliminator is modeled as a material 
point of the mass m coupled with the mass M by a force depending on relative velocity 
of both bodies ( )yxS && − . Physical model of such a system is shown in Fig. 1.  
 

 
 
 
 
 
 
 
 
 

Fig. 1. Physical model of protected system with resonance-type vibration eliminator  
a) viscous-type eliminator; b) frictional eliminator 

Equation of motion of the mechanical system MK*C* provided with a resonance-type 
eliminator may be formulated in the form [2,5,6]:  

( ) ( )
( ) 0yxSym

,tsinFyxSxKxCxM 0
**

=−−
=−+++

&&&&

&&&&& ω       (1) 

where stiffness and damping coefficients of the protected system are assumed in the 
form: ( ),Bx1KK 2* +=  ( )2* xW1CC &+= .  
In case of a viscous-type eliminator (a) the coupling force between the protected system 
and the eliminator is assumed in the form  

( ) ( ) ( )[ ]2yxw1yxcyxS &&&&&& −+−=−         (2) 
where c and w are constants that describe the nonlinear resisting force.  
For a friction eliminator (b) the model of dry friction force is of the form 

( ) ( )wtw vQfvS = , where ft is a constant, Q(vw) is dimensionless shape function, and 

yxvw && −=  is relative velocity of both bodies. According to [1,3,4] the shape function 
should satisfy the following conditions:  
• the function Q is continuous in the whole range of relative velocity vw; 

( )yxS && −M 

x 

F(t)

m 

y 

b)
ft

K* 

c*a)

x&

x&

y&

y&

C* 
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• ( ) ( ) 1Qlim  ,1Qlim
ww vv

−==
−∞→∞→

 

• ( ) ( ) ksks f/fQmax  ,f/fQmin =−= , where ks f/f is the ratio of static to 
kinematic friction force.  

In case of dimensionless relative velocity 
M
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Boundaries of subdomains of the function Q have been determined from the conditions: 
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Example patterns of the function S(vw1) for the viscous-type eliminator and function 
Q(vw1) for the frictional one are shown in Figure 2.  
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Fig. 2. Coupling forces between the protected system and vibration eliminator: 

a) viscous friction; b) shape function of dry friction force 
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Behaviour of the systems has been researched based on dimensionless equations of 
motion obtained with the use of the equation (1) and the relationships (2) and (3): 
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while the dimensionless values describing dynamics of the main system and the 
vibration eliminator are given in the form: 
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The equations of motion (5) have been solved numerically, with the help of a simulation 
model developed with the use of the SIMULINK package in the MATLAB environment.  
 
2. Investigation of effectiveness of vibration elimination  
 

Effectiveness of elimination of mechanical vibration of a mechanical object MK*C* 
with a resonance-type eliminator has been assessed based on the value of the 
effectiveness function defined as the ratio of mean-square amplitudes of vibration 
displacements of the protected system without the eliminator to the one provided with 
such an eliminator 

( )
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, τ∆τ zz = – dimensionless time to 

stabilization of the system vibration, counted from the beginning of the simulation , 
τ∆nT =  – dimensionless averaging time, ∆τ - time step of the simulation. 

Simulation of the system motion has been carried out with the following parameters:  
• excitation  

o dimensionless part of the excitation δ = 0.95 - 1.05 with the step ∆δ = 0.01 
for the viscous-type eliminator and ∆δ = 0.005 for the frictional one; 
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o dimensionless excitation amplitude F01=1; 
• the protected system  

o damping degree ξ=0.01; 
o coefficient of damping non-linearity αM=0; 
o coefficient of stiffness non-linearity β 

• eliminator  
o dimensionless mass of the eliminator µ=0.1 

• coupling  
o dimensionless damping coefficient γ=0, 1, 2, 5, 10, ∞ for a viscous-type 

eliminator; 
o coefficient of damping non-linearity αm=0; 
o dimensionless amplitude of dry friction force ft1=0.1–0.8 with the step 

∆ft1=0.1 and ft1 = ∞ for a frictional eliminator; 
o parameters of the shape function n = m =2, c1 = 100, c3 = 1000, fs/fk = 1.2. 

In case the damping coefficient γ=∞ (viscous-type eliminator) and the dry friction 
force ft1=∞ (frictional eliminator) no relative motion occurs between the two masses M 
and m. This is equivalent to change in the mass of the protected system. The assumption 
that the protected system is linear allows to write down the effectiveness of the changes 
in vibration amplitude Em according to the relationship (6): 

( )[ ] ( )
( ) ( )222

222

m
21

211E
ξδδ

ξδδµ

+−

++−
=         (7) 

Effectiveness of vibration elimination of a protected object with the use of a linear 
viscous-type eliminator is shown in Fig. 3a, while for a frictional vibration eliminator – 
in Fig. 3b.  

a) viscotic eliminator
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Fig. 3. Effectiveness of vibration elimination of a mechanical object with the use of:  

a) viscous-type eliminator; b) frictional eliminator 
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3. Summary  
 

The research of effectiveness of both types of the vibration eliminators allows to draw 
the following conclusions: 
• The functions of effectiveness of vibration elimination are of equalized variability in 

the range of dimensionless excitation frequency.  
• Value of the function of effectiveness of vibration elimination exceeds one 

(reduction of vibration amplitude of a protected system) for  δ > δg where δg  for 
definite values of µ and ξ  are specified below:  

  for a viscous-type eliminator 
γ 1 2 5 10 
δg 0.932 0.953 0.967 0.971 

for a frictional eliminator 

ft1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
δg 0.941 0.951 0.957 0.961 0.964 0.967 0.969 0.971 

 in the range δ < δg the function E meets the conditions 1EE0 m ≤>< , 
 in the range δ > δg the function E meets the condition. 1EE0 m ><<  

The numerical research presented here gives evidence that the use of resonance-type 
eliminators enables several-fold reduction in vibration amplitude. Nevertheless, 
effectiveness of vibration elimination achieved this way is lower than in case of simple 
increase in the mass of the protected system.  
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Abstract 
In following paper some aspects of tossed coin dynamics are presented. Firstly: one-, 
two-, and three-dimensional coin models are presented. More general case of 
nonsymmetric or nonhomogenous coin is described. It is assumed that the coin is released 
above a plain floor. Free fall of the coin as well as the coin motion including air 
resistance forces and moments are analysed. Some results of numerical solution 
simulations are shown.  

Keywords: coin tossing, coin dynamics, air resistance, numerical simulation 

Introduction 

The study of flipped coins was begun by Keller [1]. He assumed that the coin spins 
about vertically moving horizontal axis (Fig. 1a). Similar problem – plane motion of the 
coin model – was presented in papers of Vulović, Prange [2] and Mizuguchi, Suwashita 
[3].  

    

Figure 1.  Basic coin models:  a) one dimensional model (plane motion of thin disk),  
b) one dimensional model including air resistance, c) two dimensional model (spatial 

motion of thin disk), d) three dimensional model (spatial motion of thick cylinder) 
including air resistance 
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Analysis of spatial motion of thin coin model (Fig. 1c) taking precession into account 
and results of coin tossing are thoroughly described by Diakonis, Holmes and 
Montgomery [4]. Special emphasis of this work was put on the probability of heads in 
the process of flipping a coin, which is caught in the hand (for natural flips, the chance 
of coming up as started is about 0.51). Previous literature on the dynamics of coin 
tossing was also presented in [4].  

In our previous paper [5] three-dimensional model of coin was shown. Euler parameters 
(normalised quaternions) used to describe orientation of the body as well as dynamics of 
the coin. Collisions with flat surfaces were also analysed.  

In this paper air resistance forces and moments are included in the model.  

1. Kinematics of coin 

Any arbitrary position of a rigid body with respect to the fixed reference frame Oxyz 
(Fig. 2) can be described by a combination of the position of the origin of the local 
reference frame x'y'z' and the orientation (angular position) of this frame ξηζ . The local 
reference frame x'y'z' is rigidly attached to the body and its axes are parallel to the xyz 
frame and ξηζ  is the frame embedded and fixed in the body.  

It is convenient to choose the centre of mass of the body (C) or geometric centre of the 
body model (B) as the origin of local frames. (A real coin is in fact nonsymmetric body, 
therefore to describe its motion we will use the geometric centre of the cylinder 
modelling the coin (B) and the centre of mass of the coin (C)). 

1.1. Euler parameters 

An alternative to Euler angles and similar conventions of body orientation description 
are Euler parameters called Euler symmetric parameters and known in mathematics as 
normalized quaternions [6], [7]. They are very useful in representing rotations due to 
some advantages above the other representations. The main advantage of Euler 
parameters is that they do not produce any singularities in numerical solutions of body 
motion equations. 

In the matrix notation Euler parameters are represented by a column matrix 
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Figure 2.  Coin rotation by φ  – with respect to the vector vr  

The rotation matrix R  – expressed by unit quaternions ( )30 ,...,ee  has following form 
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Antysymmetric matrix Ω  containing scalar components of coin angular velocity vector 
– in the body embedded frame ξηζ  – has the form 
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The angular velocity vector of the coin in the body embedded frame ξηζ  is expressed 
by following column matrix 
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(4) 

The column matrix containing xyz scalar components of the coin angular velocity vector 
(i.e. components in fixed spatial frame) has the form of 
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2. Dynamics of tossed coin 

2.1. Free fall of the coin 

Rigid body dynamics equations can be expressed as two equations in matrix form that 
describe:  

– motion of the body mass centre 

( ) frraM B =ΩΩ+Ω+ CC
& , (6) 

– spatial orientation of the body  

BCCBB maMRωJωJ =+Ω+& . (7) 

In the mentioned equations M is the mass matrix of the coin (M=diag [m; m; m]), aB 
denotes absolute acceleration of the point B, rC and RC include coordinates of the vector 
rC, describing the position of centre mass (C) relative to the origin B, JB is the body 
moment of inertia matrix (determined with respect to the body embedded frame ξBηBζB – 
parallel to the ξηζ  and with origin B), and mB is the body force moment with respect to 
the B, ω  and Ω  are the body angular velocity vector in the form of column and 
antisymmetric matrices. In general case, for nonsymmetric or nonhomogenous coin, the 
matrix JB is not diagonal, because the axes ξB, ηB, ζB are not principal axes (some 
nonzero inertia products in JB appear).   

The column matrices aB and f are expressed by vector components with respect to the 
fixed frame (xyz): [ ]TB zyx &&&&&&=a , [ ]Tzyx fff=f . 

On the other hand it is more convenient to describe rotations of the body (equation (7)) 
by their components with respect to the body embedded frame (ξηζ ). 

The equations (6) and (7) are coupled equations even though free fall of a coin is 
considered, i.e. even if the air resistance is neglected. 

2.2. Air resistant forces and moments   

It is assumed that total air resistance force (fr) can be divided into two components: 
normal (fn), and tangential (fτ) to the coin surfaces i.e. head (1) and tail (2) circles and 
cylindrical surface (3) 

ττττ 321321 fffffffff +++++=+= nnnnr . (8) 
For thin model (coin thickness h=0) air resistance force acting on cylindrical surface is 
neglected (f3n = f3τ = 0) and normal and tangential forces components on both circles are 
described as 
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where nλ , τλ  are air force coefficients, Ainv  and τAiv are normal (outer) and tangential 
total velocity components of a point on the coin surface, and b is the value of air force 
velocity exponent )10( ≤≤ b . 

As results of (8)–(10) it was found that for thin coin 
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where ϑϑ sin≡s , ϑϑ cos≡c , ψψ sin≡s , ψψ cos≡c .  

Moment of the air resistance force with respect to the coin centre (C) for thin 
symmetrical coin (and 0ωη = , 0ω =ζ ) was described as 

( ) ( )
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(13) 

3. Results and conclusion 

As an example of numerical results a comparison of coin tossing results for three models 
is presented in the Fig. 4. Black regions denote that end result is “head” and white ones 
mean “tail”. These results are obtained using Mathematica system [8].  

 
Figure 4.  Coin tossing results: a) free fall of coin, b) air resistance included,  

c) air resistance and bouncing included  
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In the Fig. 5 comparison of tossed coin motion for two models of coin (bar model [4] – 
Fig. 5a, 5b and thin plate model of coin – Fig. 5c, 5d) is shown. 

 

Figure 5.  Motions of tossed coin for two models of coin (Λn =λn=0.3):   
bar model  a) Λτ=0.075, b)  Λτ=0;  thin plate model c) λτ=0, d) λτ=0.075  

Presented in the paper more realistic mechanical model of coin tossing allow examining 
whether the initial states leading to “head” or “tail” are distributed uniformly in phase 
space. 
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Abstract 
In mechanics of continuous media, one of the sub areas is the coupled field theory 
describing interactions of mechanical, thermal, diffusion and electromagnetic field. All 
this physical fields are represented in the tensors introduced in this theory. Taking into 
consideration the momentum and angular momentum of the electromagnetic field in 
medium requires introduction of the fields: couple stress, mass angular momentum and 
mass couple in balance equations. From the vectorial nature of momentum, angular 
momentum, force and couple it appears that the stress tensor and couple stress tensor are 
the second order. Bearing in mind the importance for modern technology of the physical 
properties of the surface and surface layer of a solid, the conception of balance equations 
will be applied to describe the material surface interacting with an electromagnetic field. 
Keywords: coupled fields, micropolar medium, angular momentum, couple stress 

Introduction 

In the coupled field theory understood as the phenomenological theory of the material 
bodies, the mass as a quantity typically mechanical becomes a carrier of the electric 
charge and the magnetic moments. In this way the electromagnetic fields join the 
interactions in the model medium as typically mechanical or thermo-mechanical. In this 
case the physical laws considering all the occurring fields should be used. The 
convenient forms of the physical law in the continuous medium are the balance 
equations derived from the field theory. The physical fields in the continuous medium 
are connected with the impact, what determined the form of the theory of the coupled 
field theory in the theory of the continuous media. From the utilitarian needs of the 
mechanical engineering point of view the impact of the physical reasons different from 
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the mechanical load on the stress field in the continuous medium is essential. It cost the 
advent of the approximate theory aiming these considerations. The quantity relations of 
the tested effect in used the applied approximations in vital. A good example of such 
proceedings can be uncoupled thermo-elasticity where the impact of the strain field on 
the distribution of the temperature in the medium studying only influence on the 
displacement field and further on the stress fields is omitted. 

The theory of coupled field is very successful and there are many interesting problems 
which have not been worked out yet. The examples of such cases can be the influence of 
momentum and the angular momentum of the electromagnetic field on the balances of 
these qualities in the continuous medium.  

1. The Geometry of Surface 
 

Let us assume that a material surface is described by the Gaussian method, using 
curvilinear coordinates , by the fundamental form [1]  

,2,1,,2 == βαβα
αβ duduads   (1) 

where,  β
αβ uas ,,  are the length, the metric tensor, and the assumed Gaussian 

curvilinear coordinates of the surface respectively. The covariant and contravariant 
components of the metric tensor satisfy the relation  

γ
α

γβ
αβ δ=aa , (2) 

where, γ
αδ is the Kronecker’s  delta. 

The natural basis of the surface  ( ) ( )mxxx ,,: 21isuS α , where the vectors αx are 
tangent to the coordinate lines and m is normal. 

Let  a vector field ( ) ( ) α
βαα xvv uvu =,  defined on the surface ( )αux . The covariant 

derivative of the vector ( )αuv  is the mixed tensor of the second order 
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, (3) 
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,

 being the Christoffel symbol of the second kind and ( ) ( )•
∂
∂

=•∂ αα u
. If a 

tensor field of the second order ( )βαβ uS  is determined on the surface ( )αux , the 
covariant derivative of the components of that tensor is determined, in agreement with 
[1], by the formulae 
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, (4) 

A theory of balance equations will now be formulated for such a surface. 

2. Balances of Momentum and Angular Momentum 

The momentum balance in the continuous medium is written in the form: 

( )dVftdVv
dt
d

V kkllV k ∫∫ +∂= ρρ                                            (5) 

where the first integral on the right side describes the contact forces applied to the 
surfaces limiting the considered area, while the second integral describes far-reaching 
forces derived from gravitational and electromagnetic external fields  [2]. 

These forces are called volume of mass because they reach every unit of the body and 
act on every unit of the mass of body.  The integral o these forces are show as the sum of 
the interactions of both fields: 

∫∫∫ +=
V

mec
kV

elm
kV k dVfdVfdVf .ρρρ  (6) 

According to [2], [3], [4] balance of momentum of electromagnetic field gets a form: 

( ) ,)( dVfTdV
dt
d elm

kklV lkV
ρρ +∂=× ∫∫ BD                                                      (7) 
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where: BD,  are  vectors of electric induction and magnetic induction, klT  is the 
Maxwell stress tensor. Let substitute (7) and (6) to equation (5), we will get 

( )[ ] dVfTtdVv
dt
d mec

kklklV lV kk ])([ ρρ ++∂=×+ ∫∫ BD                                 (8) 

According to [3], [4] the Maxwell stress tensor has a form: 

( ),sssskllklkkl HBEDHBEDT +−+= δ
2
1

                            (9) 

To facilitate we will introduce notation: 

,,)( klklklkkk TtvV +=ℑ×+= BD                                                    (10) 

then 

dVfdVV
dt
d mec

kklV lV k )( ρρ +ℑ∂= ∫∫                             (11) 

The differential balance of momentum will be shown as follows 

,mec
kllkt fVD ρρ +ℑ∂=                                                                                      (12) 

where: tD  is material derivative.. 

The balance of angular momentum has a form 

,ii mk
dt
d

=                                                                                               (13) 

where: angular momentum and moment of the force have the forms [2], [5]  
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                                          ( ) ,∫ +∈=
V ikjijki dVVxk ρκρ  (14a) 

( ) ,])([∫ +∈++ℑ∈∂=
V i

mec
kjijkilkljijkli dVbfxmxm ρρ                      (15b) 

iκ  - is a mass angular momentum, ilm  - couple stress tensor, ib  - mass moments of the 
force. The local form of balance of angular momentum can be derived while using the 
law of conservation of the mass and the balance of momentum (12), in a form 

.kjikjiillit bmD ℑ∈++∂= ρκρ                                                                           (16) 

It is the most general form of this balance, as occurring in it quantities exhaust all the 
possibilities of mathematical modeling . 

 

3. Surface Effects 

Let us consider the following vector and tensor fields on the surface )( αux described by 
(1) - (4). 
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                                        (17) 

where σ  denote the surface density. 

The balance equations have, in agreement with Eq. (12), (16), the form 
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,

mmt

t
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fVD

αβαβαβ
α

β

βαβ
α

β

σκσ

σσ

ℑ∈++∇=

+ℑ∇=

                                                             (18) 

Equations (18) constitute a balance description of coupled fields at the surface. 

4. Conclusions 

The consideration made in this paper show that in the medium the electromagnetic 
field has an influence on the stresses through the Maxwell tensor. In the medium the 
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couple stresses and mass moments of the forces occur. The mass angular momentum 
can be interpreted as the mass moment of inertia and spin of electromagnetic field. 
The results just presented make it possible to construct a linear and also nonlinear 
theory of any type of coupled surface effects. 

 

This work was supported by Poznan University of Technology grant  

21-289/2008 DS 

 

 

References 

1. J. L. Synge, A. Schild, The Tensor Calculus, [in polish] PWN Warszawa 1964 
2. C. Rymarz .: Mechanics of continuous media. [in polish] PWN Warszawa, 

1993. 
3. J. D. Jacson, Classical electrodynamics, [in polish] PWN Warszawa 1997 
4. M. Suffczyński, Classical electrodynamics. . [in polish]  PWN Warszawa, 

1966. 
5. T.J. Hoffmann, Tensory naprężenia pól sprzężonych i pól torsyjnych w 

ośrodkach ciągłych, I Kongres Mechaniki Polskiej, Warszawa, 28 – 31 sierpnia 
2007 r. 

 



XXIII SYMPOSIUM – VIBRATIONS IN PHYSICAL SYSTEMS – Poznań – Będlewo 2008 
 

SAINT-VENANT’S PRINCIPLE IN STATIC MAGNETOELASTICITY  
Tadeusz J. HOFFMANN, Marta CHUDZICKA-ADAMCZAK 

Poznan University of Technology 
Instytute of Applied Mechanics 

ul. Piotrowo 3, 60-965 Poznań, Poland 
Phone: 048 061 665 23 02, e-mail: Tadeusz.Hoffmann@put.poznan.pl 

Phone: 048 061 665 20 65, e-mail: martachudzicka@wp.pl 
 

Abstract 
Toupin’s version of Saint-Venant’s principle in linear elasticity is generalized to the case 
of linear magnetoelasticity. That is, it is shown that, for a straight prismatic bar made       
a linear magnetoelastic material end loaded by a self-equilibrated system at one end only, 
the internal energy stored in the portion of the bar which is beyond a distance s from the 
loaded end decreases exponentially with the distance s .  
Key words: magnetoelasticity, Saint-Venant’s principle 

 

Introduction 

There are many mathematical versions of the Saint-Venant’s theorem for instance by 
Mises -Sternberg, Knowles, Zanaboni, Robinson and Toupin. All the  mentioned have 
been discussed by Gertin[1] in his monograph. In this paper we will  prove the Saint- 
Venant’s principle analogically to the Toupin’s version. For a linear elastic 
homogeneous prismatic body of arbitrary length and cross-section loaded on one end 
only by an arbitrary system or self-equilibrated forces, Toupin [4] showed that the elastic 
energy )(sU  stored in the part of the body which is beyond a distance s from the loaded 
end satisfies the inequality[5]  

        ( ) .
)(

exp)0()( 






 −
−≤

ls
lsUsU

c

             (1) 

The characteristic decay length )(lsc  depends upon the maximum and the minimum 
elastic moduli of the material  and the smallest nonzero characteristic frequency of free 
vibration of a slice of the cylinder of length l. Inequalities similar to (1) have been 
obtained by Batra [5] for linear elastic piezoelectric prismatic bodies and by Borrelli & 
Patria [6] for a semi-infinite magnetoelastic cylinder on the asymptotic behaviour of the 
Dirichlet integral of the magnetic field and of the elastic energy. 

Here we consider a linear theory of magnetoelasticity (for infinitesimal strain) in which 
only the ponderomotive force remains non-linear in presence of a magnetic field . We 
assume that the elastic body is homogeneous, isotropic and electrically conducting [7], 
[8], [9], [10].  
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1.  Equations for static magnetoelasticity 

Let the finite spatial region occupied by the magnetoelastic body be V , the boundary 
surface of V  be S , the unit outward normal of S be 

in , and S  be partitioned as 

    
.0
,

BEu

BEu

SSSS
SSSSS

∩=∩=
∪=∪=

Τ

Τ              (2) 

Physically, 
ΤSSu ,  are, respectively, parts of the boundary S  on which mechanical 

displacements and tractions are prescribed. ES  is the part of S  which is in contact with 
electrode, hence the tangential electric field vanishes on it, and BS   the parts of S  on 
which the magnetic induction is prescribed. The governing equations and boundary 
conditions for static magnetoelasticity in rectangular Cartesian coordinates in SI units 
are: 
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   (3) 

where iu  is the mechanical displacement, 
ijt  the mechanical stress tensor, 

ijT  the 
Maxwell stress tensor, 

ijε  the strain tensor, kE  the electric field vector, kD  the electric 
displacement vector, kH  the magnetic field vector, kj  the current vector, kB  the 
magnetic induction vector, σµε ,,  the electromagnetic material constants, 

ijklc  the 
elastic moduli, 

ijkε  the permutation tensor, 
ijδ  the unit tensor, k∂  the spatial derivative, 

iu~  and 
jt~  are the prescribed boundary mechanical displacement and traction vectors.  

The magnetic enthalpy function h  is determined by volume and given by:   

,
2
1

2
1

kkklkl HBh −ℑ= ε                                               (4) 

where klℑ  is the magnetoelastic stress tensor. 

We assume that the material constants occurring in our considerations are described 
positively. We will introduce to our deliberations the internal energy density: 

    .
2
1

2
1

kkklklkk HBHBhW +ℑ=+= ε                          (5) 

To facilitate the further considerations the magnetic quantities will be show in the 
representation of the vector potential: 
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The Maxwell stress tensor in this representation takes the form:  
    ., sksklsskkl HBHBT µ==                                              (7) 

The internal energy density will have a form: 
  .

2
1

2
1

2
1

ksskkllsskklkl HBHBtW ++= εε                                   (8) 

If we use the Hook’s law for the transformation (8), we will get 
                                      .

2
1

2
1

2
1

ksskkllsskklrsklrs HBHBcW ++= εεε                                    (9) 

The above density of internal energy is positively defined quadratic function of nine 
variables { }klkl H,ε . If we form arranged pairs ( )klkl H,ε  as the components of the nine-
dimensional vector Γ , we will write the equation (9)  in the symbolic form: 

        
lklkCCW ΓΓ=⋅=

2
1ΓΓ

( ,                                                (10) 

where C
(

 is a linear transformation from a nine-dimensional linear space into a nine-
dimensional linear space the matrix of transformation created. Because of the positive 
definiteness of  W the inequality is fulfilled: 

WaCaCCCWW
MlklkMlklllkllkl

kk

22 =ΓΓ≤ΓΓ=ΓΓ=
Γ∂
∂

Γ∂
∂ ,                    (11) 

where: Ma  is the biggest eigenvalue of the matrix C
(

. 
 

2. Formulation of the problem 

Now, we consider the prismatic bar. We introduce the Cartesian coordinate system In 
such a way that the axis 3x  is the axis longitudinal of the bar. The surface 3x  is loaded 
by a self-equilibrated force system. Let label the area of the cross-section for 03 =x  as 

0C  and sx =3  as sC .  

The internal energy as a scalar in non-variable relatively to the  stiff body motions. The 
conditions of the mutual equilibrium of loadings gets a form: 
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We will additionally label the total internal energy as: 
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THEOREM. If a prismatic body made of a linear magnetoelastic material and with 
materially uniform cross-section loaded on 0C  by a self-equilibrated force system, then 

         [ ]lslsUsU c/)(exp)0()( −−≤ ,           (14) 
Where 
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for the section of the prismatic body put on the axis length l. In the eq. (13) V is the 
volume between the sections sx =3  and lsx +=3 , S  is the total surface containing V , 

sC  and lsC +
 are the areas of the sections. The written equations (16) correspond with 

the problem of the free vibrations of the magnetoelastic prismatic body with the length  
l , unit density and the unit density inertia affiliated with the  vector potential. 
Proof of the theorem:  On the strength of (13) 1 we can write: 
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Taking under consideration that the internal energy as a scalar is non variable relatively 
to the stiff rotations we ca write 

           kllk u ε≈∂ ,      ( ) 0
2
1

≈∂−∂= kllkkl uuω ,                    (18) 

omitting the rotation tensor.  At the same moment 
,2 jiij AB ∂= µ                                                        (19) 

Using (18) i (19) we can write (17)  
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On the surface sC  the orthonormal outer vector has a form kkn 3δ−= , we can write the 
expression 
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which means the internal energy on the surface sC . Next, we will utilize inequality 
Schwarza used by Toupin [1965] 
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VVV
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where f , g  are any functions for which the above integrals exist. 

Using the inequality (22) to the surface integrals we will obtain: 
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Similarly 
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Hence 
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because it was assumed βαα == 21 . Substituting  from (11) into (25) we get 
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integrating on both sides (26) in respect to  3x  in the boundaries from sx =3  to 

lsx +=3  for 0>l  and labeling  
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we will obtain 
        ( )∫ ∫ ++≤

ls lsC C
jjjj

M dVAAuu
l

WdV
l

alsQ
, ,

,
4
1

2
),(

β
β            (28) 

where 
lsc ,
 is the volume between the sections sx =3  and lsx +=3 . In his volume 

lsc ,
 

we will consider the following eigen problem: 



 162 

       
( )

.0

,0,0

,,

\

lss

lss

CCiji

CCSkjijkSiji

j
ij

ij
ij

i

Hn

Ann

A
B
WuW

+

+

∪

∪

=

==ℑ

=










∂
∂

∂=










∂
∂

∂

ε

λγλρ
ε

          (29) 

In the equations (29) and the earlier (10) the conditions formulated on the boundary 
should be understood as the conditions of the jump regarding to the continuity of the 
quantity of the electromagnetic field. It needs to be like this because the polar quantities 
are present in the self-equilibrating force system.  Introduced in (29) quantities ρ  and γ  
are not important in the static problem which we consider and were introduced in aiming 
obtaining the uniformity of the  physical dimensions of the unit of the eigenvalues λ . In 
the problem of the free vibrations on which Toupin[1965] invokes ρ  and γ  mean 
respectively the mass density and the inertia density of the medium contained in the 
volume between sx =3  and lsx +=3 . In the further considerations we assume them as 
equal to one. Multiplying (29)1 by 

ju and (29)2  by 
jA , adding these equations and 

integrating after volume 
lsC ,
 using the  conditions in the boundary (29)3,4,5  we obtain 
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The density on the internal energy is non negative and get the zero value 0=W  only if 
0=ijε  and 0=ijB , then 0=λ . The deformation tensor 0=ijε  when the displacement 

concerns the stiff motion. 0=ijB  concerns the case when there is lack of magnetizing. 
Omitting these cases as non physical we assume that the integral  in the denominator of 
the equation (30) is always different from zero. The smallest eigenvalue )(0 lλ  must be 
positive and fulfill the inequality 
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Using in (31) expression (28) we get the following result 
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In our considerations β  is any positive constant. If we opt 
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on the strength of (33) we will obtain 
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in accordance with (15). 

Differentiating (27) relative to s  we get 
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If we combine (36) with the inequality (32) the result is as follows: 

.0)( ≤+Q
ds
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                                                   (37) 

In our considerations the quantity ),( lsQ  defined as (27) means the density of the 
internal energy averaged along the segment l  therefore it Has to fulfill the obvious 
inequality: 

    )(),()( sUlsQlsU ≤≤+ .            (38) 
Next, we will integrate the inequality (37) taking into account that )(sU  is non rising 
function, with the effect: 
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Assuming that 01 =s , lss −=2  we proved the inequality (14), which ends the proof. 

Remarks 

In this paper,  analogically to the Toupin’s version Saint-Venant’s principle we have 
proved is that the energy stored In the portion of the bar beyond a distance s  from the 
loaded end decreases exponentially with the distance s. It is generally difficult to find the 
optimum decay rate unless one considers specific cross-sections. 
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Abstract 

Avian embryos are commonly used as ethically acceptable physiological models for research into prenatal live. 
Although easily available, avian embryos are difficult objects for investigation. The main difficulties result 
from the presence of shell separating the embryo from environmental influences and, what is more important, 
from the presence and interference of many biomechanical, chemical, electrical and other phenomena. The tiny 
changes in the object parameters of different nature are hardly measurable by means of the indirect methods. 
Investigation into the embryo prenatal life requires application of the non-invasive methods, which complicates 
the measurements. Taking into account the fact that as early as in the second day of incubation the avian 
embryo hart begins to work being by itself at the beginning of mutual conversions, it is easy to become 
conscious of the scale of the measurements and resulting identification problems. In the process of forming and 
growth, the heart of avian embryo undergoes constant biomechanical modifications. This aspects of 
embryogenesis are correlated to electrical and hydro-dynamical activity. Only mechanical vibrations and 
acoustical effects can be analysed on the basis of the indirect non-invasive measurements. The research carried 
out by authors is presented in the series of two papers. The current paper (part I) concerns the innovative non-
invasive method dedicated for measurements of low-amplitude vibrations induced by the work of cardiac 
muscles while in the second paper (part II) there is presented vibration analysis carried out by means of the 
classical LSCE modal analysis method. Although the biomechanical model of developing heart is 
characterized by significant nonlinearity of observed parameters resulting from rapid increase in the cardiac 
muscle mass, during a given measurement session the changes in the object parameters are negligible and the 
assumptions of modal analysis are valid. 
The changes in the proportions and organ masses as well as in time histories and values of forces generated by 
beating heart are the source of changes not only in the estimated modal model parameters but also in the model 
order. Some natural frequencies and corresponding mode shapes evolve and change their values, decay or 
appear. This variability can be observed in the longer time scale (e.g. days). In a single identification 
experiment lasting up to tens of minutes per day, after elimination of disturbances, the measured 
vibroacoustical signal can be treated as quasi stationary. Modal model parameters and the model order were 
determined for each separate measurement session lasting 10 to 40 minutes. Parameter values estimated for the 
consecutive measurement sessions made it possible to track the changes in modal model in the consecutive 
days of incubation. 
Key words: influence of detrimental substances on biotic functions, non-invasive ethical measurement 
method, ballistocardiography, modal analysis. 



 166 

Introduction 

Pollutions of natural environment have a detrimental influence on mutual, formed for 
thousands of years interactions between human kind and the environment. Medicines, 
rubbish, industrial discards, pollutions of rivers, lakes, seas and the air are the most 
noticeable forms of environmental pollutions that are dangerous to human health and, in 
the extreme, to human life. The state of our health is also influenced by changes in 
environmental conditions determined by physical quantities such as temperature, 
humidity, air pressure, intensity of magnetic, electric and acoustical fields, etc. Therefore 
the prevention and early identification of hazards are of great importance. 
 
Carried out research aimed at inventing sensitive and non-invasive method making it 
possible to examine in ethical way the influence of chemical substances (e. g. medicines, 
pollutions) and physical factors on the growth of organisms as early as in the prenatal 
phase. Such formulated objective is especially important since young, still forming 
organisms are especially sensitive to changes in environmental conditions. The 
knowledge of influence of chemical substances on the course of embryogenesis makes it 
possible to test new medicines and, on the other hand, to learn the teratogenous influence 
of chemical substances already present in the natural environment on alive organisms. 
Elaborated research methodology aims at life protection in its early period. Results of 
research carried out on animals are frequently the only base for early assessment of 
teratogenous influence of environmental pollutions on human health and life. In these 
research, for the ethical purposes, the experiments are frequently carried out on tissue 
cultures [2, 15]. In the view of the fact that proper organism functioning is influence by 
many, connected with each other factors, such as hormones, enzymes, psyche, charge 
and electromagnetic balance, it seems that far more reliable are the results obtained in 
research carried out on laboratory animals by the use of non invasive methods. 

Chick embryo as a biological model system 

The chick embryo has a long history as the biological model system [5, 12] that is 
frequently used in medical and environmental research. Numerous publications concerns 
the usage of a chick embryo as a model in research into infectious disease, viral 
(influenza 14, 30], toxoplasmosis [29], cowpox [16], Kaposi's sarcoma [34], AIDS [22]) 
as well as bacterial [1, 31], different types of turmous, such as glioma [6, 27], melanoma 
[26, 32], myeloma [9] and testing various pharmacological substances, such as 
Pseudolaric acid B [18], Baicalein [20], Apigenin [10]. Due to easiness of carrying out 
surgical manipulations and vast amount of information concerning chicken 
embryogenesis, the chic embryo has also served as a model in physiological studies of 
eye lens [5], genitals [21] and nervous system [25]. Spanel [33] reported applications of 
chick embryos to biomaterials testing. For years chick embryos have served as a model 
in research into influence of detrimental chemical substances, such as heavy metals (Cu-
sulphate, Cd-sulphate [4], mercury [13], lead [7] or chlorine compounds (PCB 126 [11], 
TCDD [28]) and electromagnetic field (EMF) [17] on alive organisms. Such works are 
of great importance since people in the industrialized countries live in an environment of 
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ubiquitous EMF exposure, both natural and anthropogenic. The intensity, variety, and 
geographic distribution of anthropogenic EMF exposures have grown dramatically since 
the mid 20th century, with many uses serving, and in close proximity to, human 
populations, such as electric power distribution, radio and television transmission, and 
more recently, personal cell phone communication units and transmitting towers [3]. 
One of the earliest symptoms of biotic functions of the growing avian embryo is its 
cardiac work. By cardiac work monitoring it is possible to carry out non-invasive 
observation of the influence of different factors applied in ovo on developing embryo 
cardiac work. Although there exist a few methods of monitoring chick embryo cardiac 
work, it is non-contact ballistocardiography [8, 23] that seems to be the most accurate 
and noninvasive method. In this method the mechanical work of the heart is investigated 
on the basis of graphical registration of body movements induced by the heart [8, 19, 
35]. Mechanical impulses resulting from cardiac work make the whole embryo body 
vibrate, which, in turn, results in micro vibrations of the whole egg. 

Identification experiment 

The measurements of growing chick embryo cardiac work were carried out by means of 
the non-invasive method presented in [35]. In this approach an eggshell with electric 
charges on it represents one capacitor plate, the other being a receiving antenna of the 
measuring equipment. The cardiac work of chick embryo induces micro-movements of 
the whole egg, resulting in changes in the distances between the plates and thus in the 
difference of potentials between the shell and the receiving antenna, which are registered 
by measuring equipment (Fig. 1). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1a) Idealized ‘egg oscillator’ [4], where M: the egg mass approximated by a sphere 
and firmly cradled at the end of a spring of stiffness k, ξ: displacements of the mass M 
center in the course of vertical oscillations, d0: equilibrium distance between the top of 
the egg shell and the upper electrode, b) measurement set [4]: e1, e2: detection system 
electrodes, D: detector, R: suspension system, C: Faraday cage, H: heaters, P: heavy 
platform, S: 4 springs, S0: 4 springs by which the cage is suspended to the laboratory 
ceiling. 
 

b) a) 

k
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The measuring set consists of the Faraday cage which holds two heaters, detector of 
electric field and a block of amplifiers, filters and an egg polarization system, supplier, 
vibration damper and acquisition data system (A/C card for PC computer) [24, 35]. 
During the measurements, each egg was taken out of the incubator and placed on an 
elastic suspension in the Faraday cage (Fig. 1b). In order to protect the caged embryo 
from thermal stress, cage air was heated to the incubator temperature. The measuring 
antenna of the ballistocardiograph was placed 2 [mm] from the eggshell surface. Each 
time the measurements were taken 4 minutes after the egg with an embryo was placed in 
Faraday cage, which aimed at minimization of possible interference in 
ballistocardiograms resulting from stress of moving an embryo into a new place, 
position, temperature and other physical conditions. A similar procedure was used by 
Pawlak et all. [24]. Polarized system was turned on, the signal from each egg was 
registered for 1,5 minutes, after which the egg was put back into the incubator. 

Conclusions and final remarks 

The paper concerns the non-invasive measurement method invented and still developed 
by authors, which is dedicated for measurements of low-amplitude vibrations induced by 
the work of avian embryo cardiac muscles. Methodology and the results of carried out 
analysis of signals measured on the chic embryos by means of the proposed method is 
presented in the paper under the same title (part II) that stands for the continuation of this 
paper. 
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Abstract 

The research carried out by authors aimed at inventing the sensitive non-invasive method for ethical 
investigation into the influence of chemical substances and physical factors on the growth of organisms in the 
prenatal phase. The knowledge of effects of chemical substances on the course of embryogenesis provides the 
possibility of testing new medicines and assessing the teratogenous influence of chemical substances already 
present in the natural environment on alive organisms. The results of the research are presented in the form of 
the series of two papers under the same title. The first paper, denoted as the part I, concerns the invented non-
invasive method dedicated for measurements of low-amplitude vibrations induced by the work of cardiac 
muscles. The current paper (part II) is dedicated to vibration analysis of measured ballistocardiograps carried 
out by means of the classical LSCE modal analysis method. Due to the rapid increase in the cardiac muscle 
mass, the parameters of the biomechanical model of developing avian embryo are nonlinear. Nevertheless in a 
single measurement session the changes in the object parameters are negligible, which enables application of 
the classical modal analysis methods. 
 
Key words: influence of detrimental substances on biotic functions, non-invasive ethical measurement 
method, ballistocardiography, modal analysis. 

Introduction 

Recently, methods of modal analysis [1, 2, 3, 4] are commonly applied to analysis of 
dynamic signals measured on technical objects such as machines, vehicles and bridges. 
Estimated results, so called modal models consisted of corresponding system natural 
frequencies, modal damping factors and mode shapes, are used as a basis for technical 
state assessing as well as introducing structural modifications aiming at improvement of 
system dynamic properties. In this paper, for the purposes of identification of natural 
frequencies of chick embryo heart contractions on the basis of cardiac time histories 
recorded during consecutive days of incubations, the LSCE (Polyreference Least 
Squares Complex Exponential) frequency domain method of modal analysis was 
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chosen. According to the authors’ knowledge, the results of modal analysis application 
to analysis of data measured on biological systems have not been published before. 

Polyreference Least Squares Complex Exponential method (LSCE) 

Polyreference Least Squares Complex Exponential (LSCE) method is a multiple degree 
of freedom method providing global estimates of system poles and mode shapes. It 
consists in approximation of measured characteristics by the use of complex exponential 
functions [1, 4]. In order to introduce basic formulas used for modal parameters 
estimation, it is necessary to express the sampled impulse response in the modal 
coordinates: 
 ( )[ ] [ ][ ][ ]LeVtnh tn∆=∆ λ  (1) 

where: [V] – modal vector matrix, [eλn∆t] – fundamental matrix, [L] – modal participation 
factor matrix. 
Single row of impulse response matrix equals [6]: 
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Combinations of exponential function and modal participation factors { }rr Lz  or 

{ }**
rr Lz  are the solution of differential equation of order p: 
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of differential equation, Nm :  number of identified mode shapes. 
Since the system impulse responses measured in the point m are the linear combination 
of equation (3) solutions, { }rr Lz  and { }**

rr Lz  are also a solution of this equation. 
Therefore: 

 ( )[ ] [ ] ( )( )[ ] [ ] ( )( )[ ] [ ] [ ]01 1 =∆−++∆−+∆ pmmm WtpnhWtnhItnh K  (4) 

For the equation (4) written for all the measurement points, by the use of the least 
squares method, it is possible to determine estimates of [W1], …,  [Wp] matrices. In the 
next step, estimates of matrices [W1], …, [Wp] are inserted into the equation (3), resulting 
in formulation of the eigenvalue problem. System poles and corresponding mode shapes 
are obtained as a solution of eigenvalue problem. Presented method is one of the most 
often used methods of modal analysis and serves as a reference point for evaluating other 
methods [16]. 
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Stabilization diagram method 

Stabilization diagram method consists in observing system poles for increasing model 
order (Fig. 1b). The method allows the user to select poles interactively. It can be stated 
that a given pole is the true pole of the tested structure if the following conditions are 
satisfied: 
− considered pole is stable with respect to the frequency, damping factor and modal 

vector (it is marked as ‘s’ on the stabilization diagram), 
− considered pole occurs at the frequency corresponding to maximum of the 

amplitude-frequency characteristic shown in the background. 
The meaning of symbols used in the stabilization diagram is as follows: ‘s’- the pole is 
stable, ‘v’ - vibration frequency and modal vector are stable, ‘d’ - vibration frequency 
and damping factor are stable, ‘f’ - vibration frequency is stable, ‘o’ - the pole is 
unstable. 

Fig. 1a) VIOMA toolbox for modal analysis, b) example of stabilization diagram. 
 
Accuracy of system poles estimation depends on the measurement data quality, accuracy 
of the assumed analysis method, correct assumption of the modal model order as well as 
personal experience and intuition. For instance, as a result of analysis of noisy data or 
assumption of too high model order, apart from real system poles, so called 
computational poles can be estimated. Therefore nowadays, for the purposes of 
interpretation of stabilization diagrams estimated on the basis of data measured on 
complex systems in the presence of noisy background, supporting methods are used (e. 
g. balanced realization method used for identification and removing from stabilization 
diagrams poles that are computational, unstable or poorly represented in the 
measurement data, fuzzy logic methods applied to assessing which poles belong to a 
given pole line. 

Discussion of obtained results 

The analysis of chick embryo cardiac signals measured during consecutive days of 
incubation was carried out by the use of the procedure realising LSCE method, 
implemented in the VIOMA (Virtual In-Operation Modal Analysis) toolbox dedicated 
for Matlab environment (Fig. 1a). Below there are presented results of modal analysis 

a) b) 
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carried out for data measured on two chick embryos from the 9th day of incubation up to 
chick hatching in the 21st day of incubation. Values of natural frequencies estimated on 
the basis of measured ballistocardiographs are gathered in the Table 1.  
 

f 9 day 10 day 11 day 12 day 13 day 14 day 15 day 
1 - - - - - - - 
2 - 18,800 19,410 17,945 17,132 18,760 17,350 
3 21,361 - - 22,811 20,912 - 22,055 
4 - 23,416 23,553 - - 23,429 - 
5 29,019 28,251 28,960 27,401 26,178 26,316 26,613 
6 34,373 - - 36,376 32,061 34,310 - 
7 39,114 - - - - - - 
8 - - 45,435 - 46,430 44,790 41,250 
9 52,814 55,703 - 55,866 56,573 - 56,286 
10 58,501 - 57,454 - - 58,232 - 
11 62,920 - - 63,985 64,834 63,025 61,638 
12 - 67,686 67,155 67,952 68,330 65,907 65,810 
13 - 71,662 78,824 - 78,268 75,108 - 
14 83,615 - - - 85,327 80,576 83,164 
15 - - - 90,098 96,975 92,806 97,530 
16 101,843 104,943 99,846 105,531 103,855 102,842 106,59 
17 - - 108,369 115,138 114,253 109,184 111,677 
18 - - - - 123,392 121,121 - 

 16 day 17 day 18 day 19 day 20 day 21 day 21 day 
1 - 12,9083 - - - - - 
2 17,038 17,176 17,100 16,079 15,935 16,191 - 
3 20,509 22,0867 21,230 20,021 20,998 22,061 - 
4 23,565 24,8278 25,487 23,920 24,952 24,172 - 
5 30,486 29,9154 29,952 27,895 27,517 26,748 - 
6 37,825 - - 32,978 32,165 30,226 - 
7 - - - - - - - 
8 45,359 - - - - - - 
9 56,779 56,1962 - 53,541 - 52,652 - 
10 59,431 - 57,451 - 57,595 56,735 - 
11 - - 62,437 - - 61,959 - 
12 65,579 64,318 68,771 - 65,832 - - 
13 73,677 71,8507 73,472 72,592 71,410 70,947 - 
14 83,334 82,4109 84,056 81,647 81,417 87,683 - 
15 95,877 98,4129 95,050 93,584 96,714 96,351 - 
16 101,127 106,741 105,662 104,548 103,321 100,181 - 
17 110,198 - 109,564 115,037 115,667 109,537 - 
18 119,996 120,825 121,251 123,201 121,492 124,148 - 

Table 1. The first 18 natural frequencies estimated by the LSCE method during 
consecutive days of incubation. 
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Graphical interpretation of the estimated results gathered in the Table 1 is presented in 
the form of Fig. 2a and Fig. 2b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Changes in natural frequencies during consecutive days of incubation, 
measurements taken on the chosen 2 eggs. 
 
While analysing the cardiac signals measured on different chick embryos, the examples 
of which are presented in Fig. 2a and Fig. 2b, the following regularities were observed: 
- According to the progress of embryogenesis higher natural frequencies appear, 
- Once observed natural frequencies are present in the signal up to the chick hatching 

in the 21st day of incubation; the only exception to this rule is natural frequency of 
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40 [Hz], which appears between 9th and 11th day of incubation and fades between 
14th and 16th day of incubation. 

- Values of low natural frequencies are close to each other while the higher natural 
frequencies are wider spaced and well separated. 

- Values of identified natural frequencies remains almost unchanged during the whole 
period of incubation; computed 3-point moving average trends are almost linear. 

Conclusions and final remarks 

The paper concerns analysis of the chick embryo ballistographs measured by means of 
the method proposed by authors that was presented in the paper under the same title 
denoted as part I. Analysis was carried out by means of the LSCE classical modal 
analysis method for cardiac signals registered from 9th to 21st day of incubation in 
measurement session lasting 10 to 40 minutes.  
The changes in the time histories and values of forces generated by beating heart resulted 
in the changes of modal model parameters estimated in the consecutive days of 
incubation. Some natural frequencies and corresponding mode shapes evolve and change 
their values, decay or appear. This variability can be observed in the daily time scale.  
Observed regularities of changes in the values of natural frequencies in the consecutive 
days of incubation can be used as a basis for assessing the influence of tested substances, 
such as medicines, environmental pollutions and detrimental substances, on avian 
embryo biotic functions. 
The results obtained for many eggs reveled surprisingly small changes in values of 
observed modal parameters. One of the possible explanations is that the very rapid 
growth and formation of hart occurs in the early stage of incubation. So the future efforts 
will be aimed at the improvement of the device sensitivity and moving the observations 
towards the earlier days of prenatal live. 
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Abstract 
Rigid condition plays an essential role in creating of motion equations for the body. The 
basic principles of balance, concerned with the global behavior of the body, translate in 
various forms when they are applied to the rigid body dynamics and to the continuum 
media theory. On the other hand, just for a rigid body the principles of balance of 
momentum and moment of momentum take some various forms when are applied to the 
chosen poles of reduction.  
Keywords: rigid body, continuous media, basic principles, stiffness condition 

Introduction 

The theory of continuous media is concerned with the global behavior of bodies under 
the influence of external disturbances. A satisfactory training in this field requires the 
study of the interrelations among external agents and the response of the medium. The 
external agents that produce changes in the state of the medium may appear in the form 
of surface and body forces. The nature of these agents, the laws governing them, their 
mathematical characterization, and the physical measurements of the external effects 
must be an integral part of study in the rigid body dynamics and in the theory of 
continuous media. In engineering, the ultimate interest lies in predicting the way in 
which a medium responds to the external load. In this input-output relationship, the 
physical model assumed for the constitution of the body occupies a central position. The 
unified approach to the study of the global behavior of materials consists of, first, 
a thorough study basic principles common to all media and, second, a clear 
demonstration of the types of media (such as the solid, rigid body, etc.) within the 
structure of the theory. The theory so constructed makes available methods, which are 
useful in the creation of new fields of research. In the exact theories one finds not only 
a satisfying permanence but also an aesthetic structure that is fundamental to all basic 
research. Exact theories are frequently criticized for the mathematical difficulties they 
present in the treatment of nontrivial engineering problems. This objection is balanced, 
however, by the simplicity of the exact theories. The basic principles are: conservation 
of mass, balance of momentum and balance of moment of momentum. These are the 
fundamental axioms essential in the construction of the foundations of the theory. 

1. Basic principles of balance 

Let a model of the body occupies a region Ω  in a 3D space. The position of a place 
Ω∈A  in this region is denoted by a vector x  that extends from an origin O  of the 
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coordinate system eee 321O  to the point A . The manifold ΩΩ=Ω∂ \  will be called 
boundary. The position of a place Ω∂∈N  on the boundary referred to the coordinate 
system eee 321O  is denoted by a vector y . Similarly, let a model of the time occupies a 
range ),0( ∞  in a 1D space. The position of an instant ),0( ∞∈t  in this range is a real 

number. The manifold { } ),0(\),0(0 ∞∞=  will be called initial instant. 
In classical mechanics, with each body we associate a measure called mass. It is 
nonnegative and additive, and it is invariant under the motion. If this measure is 
absolutely continuous, then there exists a density )(xρ  of the position of a place Ω∈A . 
The function ρ  is called mass density. The total mass m  of the body is then found by 

 .)( xx dm ⋅= ∫
Ω

ρ  (1) 

The axiom of mass conservation states that the mass is invariant under the motion:  

 
,~)0(

),,0(,0)(
mm

ttm
=

∞∈=&
 (2) 

where m~  is initial total mass, and dot defines material derivative. 
Velocity is the time rate of change of position of a given place Ω∈A   
 ( ) ),0(),,( ∞∈= ttA xgx&  (3) 
Note that the velocity is defined locally. In order to express the momentum p  and 
moment of momentum k  by the velocity we must take into account the mass density [1] 
 ),0(,),()();( ∞∈= ∫

Ω

tdtt xxgx0p ρ  (4) 

 ),0(,),()();( ∞∈×= ∫
Ω

tdtt xxgxx0k ρ  (5) 

To the basic principle of mass conservation we add two other important axioms of 
mechanics. The axiom of global momentum conservation states that the time rate of 
change of momentum is equal to the resultant force W  of both passive and active load 
on the free- body diagram: 
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Here p~  is initial momentum vector of the body, 0  is position of an origin O . Axiom 
(3) constitutes principle of balance of momentum about O . 
The axiom of global moment of momentum conservation states that the time rate of 
change of moment of momentum is equal to the resultant moment M  of both passive 
and active load on the free-body diagram: 

 
( ) ( ) ( )
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0M0k

=
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 (7) 

Here k~  is initial moment of momentum of the body. Axiom (6) constitutes principle of 
balance of moment of momentum about O . Equation (6), like (7), is a balance equation. 
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The deep significance of the foregoing two basic principles of continuous media may be 
better appreciated after the development of the concept of stress. 

2. Equations of motion for continuous media 

The basic principles are valid for all materials irrespective of their constitution. It is 
therefore expected that their mathematical expressions are not sufficient to predict 
uniquely the behaviour of the body. In order to take account of the nature of different 
materials, we must find additional characteristics of the substance with respect to the 
response sought. This is done by introducing models appropriate to the particular class of 
phenomena under scrutiny. There exist certain rules and invariants requirements 
[1, p. 136], which must be satisfied by such models. It remains acceptable until the 
phenomena predicted by the theory do not agree with the experiments. 
Global mass conservation when applied to an infinitesimal neighbourhood of a place 

Ω∈A  implies local mass conservation: 
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Here n  is outside normal to the boundary, ρ~  is field of initial mass density distribution 

in the region, j~  is initial mass flow on the boundary, and cross means Cartesian set 
product. Formula (8) is the initial-boundary value problem for the unknown function ρ . 
Forces and moments create load in mechanics, but are not defined. The force W  and the 
couple M  acting on a body are vector quantities known a priori. The resultant force W  
consists of the vector sum of all forces acting on the body. The resultant moment M  is 
the sum of the moment of the individual forces about O  and the sum of all concentrated 
couples. The internal loads create a system of surface forces );,( mxt t  called stress 
vectors. They depend not only on the vector x  of the place Ω∈A  on the surface under 
consideration and the time instant t , but also on the exterior normal m  to the surface at 
the place. On the boundary they become external surface tractions );,(~ nyt t . 
Let b  be the body force per unit mass. Then the resultant force and the resultant moment 
acting on the body about the origin O  are given by [1, p.96] 
 ),0(,);,(),()();( ∞∈+= ∫∫

Ω

tdtdtt
S

σρ mxtxxbx0W  (9) 

 ),0(,);,(),()();( ∞∈×+×= ∫∫
Ω

tdtdtt
S

σρ mxtxxxbxx0M  (10) 

Here S  is material surface. The stress vector acting on any plane through a place is fully 
characterized as a linear function of the stress tensor T  at the place. Applying the 
Green- Gauss theorem to convert surface integrals into volume integrals in (9), we get a 
necessary and sufficient condition for the local balance of momentum: 
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Here v~  is field of initial velocity distribution in the region. Partial differential equations 
in (11) contain some differential operators with respect to time and space. That is why 
the motion of the body has to be determined from initial boundary value problem (11). 
Applying the Green- Gauss theorem to convert surface integrals into volume integrals in 
(10), we get a necessary and sufficient condition for the local balance of moment of 
momentum, when the momentum is locally balanced: 
 ).,0(),(),,(),( ∞×Ω∈= tttT xxTxT  (12) 
The formulae (11,12) are respectively the first and the second laws of motion of Cauchy. 
We can see that the necessary and sufficient condition for the local balance of moment 
of momentum is the symmetry of the stress tensor. Therefore we have only six 
independent stress components. Consequently the left and right mixed components of the 
stress tensor are the same. 
 
3. Role of mass center and moment of inertia in rigid body dynamics 
 
Let we consider a body model, which takes the region Ω , and the distance (in Euclidean 
metric) between places Ω∈BA,  is a time function: 
 ( ) ( ) ( ).,0,,;, ∞∈= tBAtfBAd  (13) 
If f  is constant function for any places Ω∈BA, , then body model is called rigid body. 
The axiom of mass conservation states that the total mass is invariant under the motion: 
 ( ) ( ).,0,~ ∞∈≡ tmtm  (14) 
Absolute motion in reference system with coordinate system eee 321O  can be described 
locally for chosen both place Ω∈A  and instant ( )∞∈ ,0t  with two mathematical 
objects: rotation matrix ℜ  and position vector x  connecting point O  with the place A  
Absolute linear velocity ( )Av  of the place A  is time derivative of x  vector. Following 
the Chasles theorem [3, p.329] rotation of rigid body can be described by absolute 
angular velocity ( )Aω . Finally the rigid body motion can be determined locally by two 
functions of time 
 ( ) ( ) ( ) ( ) ( ).,0,,,, ∞∈== ttAtA xhxgv ω  (15) 
Global properties of motion can be described kinematically by the stiffness condition: 
 ( ) ( ) ( ) ( ) ( ) .,,, Ω∈=×+= BAABAAB ωωω ABvv  (16) 
Formulae (15,16) exhaust the rigid body kinematics. In particular, if: 
 ( ) ( ),,0,0, ∞∈= ttxh  (17) 
then the rigid body will be called particle. Rigid body dynamics is described by the 
formulae (4-7). They are of a global character, invariant of the place in the region. Note 
that the absolute angular velocity does not appear in the formulae (4-7). That means that 
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the particle dynamics is the same as the rigid body dynamics. Absolute linear velocity is 
an unknown function in (4,5). That makes impossible to execute an integration 
procedure. We therefore have the stiffness condition to lead out the unknown vectors in 
front of integral signs. Let us now denote a set of points in the space that fulfils the 
stiffness condition (16) by Ω̂ . Then the principles of balance of both momentum and 
moment of momentum about Ω∈ ˆB  take the form: 
 ),0(),(),~(),~();( ∞∈×+= tBttmBt Sxhxgp  (18) 
 ),0(),,~()(),~()();( ∞∈+×= ttBtBBt xhJxgSk o  (19) 
Here x~  is the position vector for the place B , and the notations correspond to: 
 ∫

Ω

−≡ xxxxS dB )~)(()( ρ  (20) 

 ∫
Ω

−××−≡ xxxhxxxhJ dB )]~([)~)(()( ρo  (21) 

Formulae (20,21) represent the following mathematical objects: static moment S  and 
moment of inertia ℑ  with respect to the reduction pole Ω∈ ˆB . They are also called the 
mass moments, first and second kind properly. Note that the moment of inertia is the 
tensor and only the scalar product gives a vector (21) in result [4, p.382]. The mass 
moments depend on the time instant, and so is why the motion equations have very 
complicated coupled form: 
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Here the initial conditions are coupled also. For the particle we have: 
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The moment of inertia has no influence on the movement of the particle. Formula (25) 
describes the changes of the particles moment of momentum that can be caused by the 
resultant moment acting on the body, or by the initial moment of momentum. 
We can choose a moving frames of motion fff 321O  that rotating with the rigid body 
together. Then the formulae (22,23) take the form: 
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We can remove the coupling of the initial-value problems for the rigid body, if we are 
writing the principles of balance of both momentum and moment of momentum about 

Ω∈ ˆC  so well chosen that ( ) 0S =C : 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) .,, Ω∈=×+=
⋅

= ∫Ω BBCBBd
tmd

dC ωωω BCvxxxv ρ  (28) 

Then the initial-value problems (22,23) become uncoupled: 
 ( ) ( ) ( ) ( ) ,~0,ˆ ,,0,;,ˆ pxgWxg =∞∈= mtCttm&  (29) 
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Here x̂  is the position vector for the place C . The reduction pole Ω∈ ˆC  is called mass 
center. Analogously we get an uncoupled shape of the initial-value problems (26,27). 
Note that the initial-value problems (24,25) for the particle takes diametrically opposed 
views, when the reduction pole is the mass center Ω∈ ˆC : 

 ( ) ( ) ( ) ( ) ,~0,ˆ,,0,;,ˆ pxgWxg =∞∈= mtCttm&   (31) 
 ( ) ( ).,0,; ∞∈= tCtM0  (32) 
The equation (32) is the equilibrium equation for the couple resultant about a place 

Ω∈ ˆC  for the rigid body. 
 
4. Conclusions 
 
In this paper we have determined the motion equations and the associated mass 
conservation law to the rigid body and continuous medium. The shapes of the equations 
follow from the ways of translating the global basic principles of balance for the body 
into some local ones. It leads to the initial-boundary value problems for the continuous 
media and to the initial value problems for the rigid bodies. 
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Abstract 
This article presents the foundations of Newton-Euler rigid body dynamics and its 
generalized forms in the light of the load reduction principle. We prove that most of the 
features of dynamics may be directly deduced from this principle and that some 
generalizations on a system of rigid bodies are acceptable. 
Keywords rigid body systems, constraints load, moment of momentum 

Introduction 

The principle of load reduction has played an important role in statics. On the one hand, 
as soon as we consider the principle of momentum and want to strictly preserve its form, 
the well-known vector addition is not dependent of the reductions pole. On the other 
hand, to express the laws of rigid body dynamics with respect to both possible 
independence motions: translations and rotations necessitates of the effect of a moment 
of momentum on the mathematical representation of forces and moments appearing to 
the motion equations. This is actually the role of an axiom stating that momentum and 
moment of momentum are quantities on equal terms and, in a consistent theory, the 
motion equations must concern the same reductions pole in the principles of momentum 
and moment of momentum. The remark extends to dynamics of rigid body systems with 
Euler equations for rotations. To clarify this matter it is inevitable to return to the 
interpretation of the motion equations not only for particles but also for realistic models 
of mechanisms, with forces and torques, what is much more complicated. 

1. Rigid body dynamics 

Let the body model takes the region Ω  in 3D Euclidean space Z . Element Ω∈A  of 
the region is called the place. Interval ( )∞,0  of the real numbers in 1D space R  is called 

time, and its element ( )∞∈ ,0t  is called instant. Set { } ( ) ( )∞∞= ,0\,00  will be called 
initial instant. The distance (in Euclidean metric) between places Ω∈BA,  is a time 
function: 
 
 ( ) ( ) ( ).,0,, ∞∈= ttfBAd  (1) 



 184 

If f  is constant function for any places Ω∈BA, , then body model is called rigid body. 
Ruthless motion in reference system with Cartesian coordinate system eee 321O  can be 
described locally for chosen both place Ω∈A  and instant ( )∞∈ ,0t  with two 
mathematical objects: rotation matrix ℜ  and position vector x  connecting point O  
with the place A . Absolute linear velocity ( )Av  of the place A  is time derivative of x  
vector. Following the Chasles theorem [1, p.329] rotation of rigid body can be described 
by absolute angular velocity ( )Aω . Finally the rigid body motion can be determined by 
two functions of time 
 
 ( ) ( ) ( ) ( ) ( ).,0,,,, ∞∈== ttAtA xhxgv ω  (2) 
 
If h  is the zero function, then the body will be called particle. 
Global properties of rigid body motion can be described kinematically by stiffness 
condition 
 ( ) ( ) ( ) ( ) ( ) .,,, Ω∈=×+= BAABAAB ωωω ABvv  (3) 
 
Inertial properties of the body dynamics is determined with the momentum- velocity 
relation: 
 ( ) ( ) ( ) ( ),,0,,; ∞∈= ∫Ω tdtOt xxgxp ρ  (4) 
 
 ( ) ( ) ( ) ( ),,0,,; ∞∈×= ∫Ω tdtOt xxgxxk ρ  (5) 
where: p - momentum, k - moment of momentum, ρ - mass density. Rigid body 
dynamics can be characterize globally by the influence of all of forces and moments 
acting in an active and passive way on the model of the body. The definition of 
equipollent force systems correctly suggests that we may replace any system, no matter 
how complicated, by a force W  named the total force and a couple M  named the total 
moment at any place O  named the reduction pole. The force-couple pair, W  and M  is 
called a resultant of the load system. The influence all of the passive and active loads on 
the movement of the body is characterized by a momentum p  and a moment of 
momentum k  changes: 

 
( ) ( ) ( )
( ) ,~;0

,,0,;;
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=
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O
tOtOt&
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Here p~  is an initial momentum of the rigid body, k~  is an initial moment of momentum 
and the dot over a vector sign means the time derivative. Rigid body motion is specified 
here in the place O . The equations (6,7) have got some global character. It means there 



 185 

are defined place independent for the region. Ordinary differential equations, whose 
unknowns are vector functions of the single time variable, appear as a side effect. 
A primary aim of the rigid body dynamics is to find the solutions of initial value 
problems (6,7). At this point it is reasonable to wonder why there is no absolute angular 
velocity in the equations (4,5). The reason is that the relationship between linear and 
angular velocities can be found in the stiffness condition (3). 

2. Moments of mass 

The set of the points in space Z  kinematically connected with the region by the stiffness 
condition will be denoted by Ω̂ . To avoid the procedure of solving integral equations 
(4,5) we use (3). Thus, we can write the relations (6, 7) in the reduction pole Ω∈ ˆB : 

 
 ( ) ( ) ( ) ( ) ( ),,0,,~,~; ∞∈×+= tBttmBt Sxhxgp  (8) 
 
 ( ) ( ) ( ) ( ) ( ) ( ),,0,,~,~; ∞∈ℑ+×= ttBtBBt xhxgSk o  (9) 
where x~  is the position vector for B . Here we introduced the following denotations: 
 
 ( ) ,xx dm ρ∫Ω=  (10) 
 
 ( ) ( ) ( ) ,~ xxxxS dB ρ−= ∫Ω  (11) 
 
 ( ) ( ) ( ) ( ) ( )[ ] ( ) x.xxxxhxxxh dttB ρ~,~~,~ −××−=ℑ ∫Ωo  (12) 
The formulae (10-12) are mass of the body, static moment and tensor of inertia 
according to the reduction pole B . It allows us to rewrite the equations of motion (for 
the rigid body) in the following form 
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In particular, for the particle we have 
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( ) ( )[ ] ( ) ( )

( ) ( ) .~0

,,0,;,~
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We can see that the system of initial value problems is coupled only for the rigid body, 
but not for the particle. 

3. Reduction pole for the system 

For the system of n  rigid bodies, both models rigid body and particle can be some 
elements with number i . For chosen element, which encloses the region nii ,1, =Ω , the 
position vector xi  shows the place Ω∈ ii A . Thus the motion of the element is locally 
determined by two functions of time: 
 ( ) ( ) ( ) ( ) ( ) .,1,,0,,,, nittAtA iiii =∞∈== xhxgv ω  (17) 
 
Global properties of system element motion can be described kinematically by stiffness 
condition 
 ( ) ( ) ( ) ( ) ( ) .,,, Ω∈=×+= iiiiiiiiii BAABAAB ωωω BAvv  (18) 
 
Inertial properties of the system element dynamics is determined with the momentum- 
velocity relation: 
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We can apply the momentum and moment of momentum principles (6,7), where total 
force and total moment are taken for the whole rigid body system. But the practical 
application of these equations is negligible because the linear velocities are unknown. 
That is why we define the momentum and moment of momentum vectors for the 
reduction pole Ω∈ ˆ

ii B  as follows  
 ( ) ( ) ( ) ( ),,~,~; BttmBt iiiiiii Sxhxgp ×+=  (21) 
  
 ( ) ( ) ( ) ( ) ( ).,~,~; tBtBBt iiiiiiii xhxgSk oℑ+×=  (22) 
Here 
 ( ) ,xx dm i

i
i ρ∫ Ω

=  (23) 

 
 ( ) ( ) ( ) ,~ xxxxS dB ii

i
ii ρ−= ∫ Ω

 (24) 
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 ( ) ( ) ( ) ( ) ( )[ ] ( ) .~,~~,~ xxxxxhxxxh dttB iiii
i

iii ρ−××−=ℑ ∫ Ω
o  (25) 

 
The influence all of the passive and active loads on the movement of the system element 
is characterized by a momentum pi  and a moment of momentum ki  changes: 
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We can add above equations and we have the result 

 
( ) ( ) ( )

( ) ,~;0

,,0,;;

11

11

pp

Wp

i

n

i
ii

n

i

ii

n

i
ii

n

i

B

tBtBt

∑∑

∑∑

==

==

=

∞∈=&

 (28) 

 

 
( ) ( ) ( )

( ) .~;0

,,0,;;

11

11

kk

Mk

i

n

i
ii

n

i

ii

n

i
ii

n

i

B

tBtBt

∑∑

∑∑

==

==

=

∞∈=&

 (29) 

 
Since the right-hand sides of the motion equations contain the set of reduction poles, the 
question is: can we substitute the total force and total moment for the system. 
Analogously the momentum and moment of momentum have not any reduction pole. 

As is coming to see the reaction forces could appear in the equation (29). Our goal is to 
get the internal forces acting in neighbourhood of a body. We can expect the momentum 
and moment of momentum principles to be valid for the system of the rigid bodies 
whenever the interactions of the bodies are negligible. As it is known, the total moment 
for internal forces is equal to zero [1, p. 300]. That is why the sum of total moments in 
the formula (29) cannot be the total moment for the system. 

5. Concluding remarks 

In the paper we have extended the rigid body dynamics on the rigid bodies systems 
based on the relation velocity-momentum standpoint. In order to gain an intuitive 
understanding of the effects of the mechanism motions, we have to realize that 
kinematical quantities are essentially frame-dependent. That is why we called absolute 
velocities. The possibility of linking absolute velocities to rigid body motion is 
a consequence of some presumptions that load is an objective quantity and that inertial 
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forces depend only of absolute quantities in Newtonian mechanics. But the mathematical 
form of the inertia operators is strictly defined in the configuration with respect to a body 
fixed frame. But the connected rigid bodies are not a rigid body. That is why we come 
not into possession of dynamic laws for the rigid bodies systems. Only some 
mathematical transformations are possible for them. 
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Summary 
In the work presented are methods of identification of uncorrelated operational forces 
based on orthogonal decomposition of crosspower spectrum matrix. In this purpose were 
used methods based on eigen- and singular value decomposition of PSD matrix. Except 
methods in frequency domain were used methods in time domain (ICA - Independent 
Component Analysis) for identification statistically independent and principal 
component. The methods were used to identify the number of sources of the exciting 
forces acting during the work of a real mechanical system.. 

 
Key words: force identification, singular value decomposition, independent component 
analysis.  

Introduction 
Knowledge of the operational loads is very useful in diagnostic process of mechanical 
structures and to simulate the response under working condition. In many cases, dynamic 
forces are not directly measurable and need to be identified using inverse solution 
method. In the present work presented are methods of identification of uncorrelated 
operational forces based on orthogonal decomposition of response PSD matrix. Except 
methods in frequency domain were used methods in time domain (ICA - Independent 
Component Analysis) for identification statistically independent and principal 
component. The methods were used to identify the number of sources of the exciting 
forces acting during the work of a real mechanical system – machine for compostable 
organic materials processing. Knowledge of impendent principal component could be 
useful for identification of force application points. 

 
1. Mathematical bases of procedures of separation of uncorrelated components 

from  crosspower spectrum matrices  
 

The relationship between the input x(t), and the output y(t) of a linear system can be 
written in the following form: 

 
                       [G yy )(ω ] =[H )(ω ]*  [G xx )(ω ] [H )(ω ] H                          (1) 

 where: [Gxx(ω)] is the input spectral matrix, [Gyy(ω)] is the output spectrum matrix, 
and [H(ω)] is the Frequency Response Function (FRF) matrix.  
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Computing all crosspower spectra we archiving 3 dimensional crosspower spectrum 
matrix. This matrix can be considered as a set of square matrix (determined for each 
frequency). The element (i,j(ω)) of this matrix contained crosspower spectrum between 
signal x i and x j  at frequency ω.   

A commonly used method of identification the uncorrelated sources of exciting 
forces is the method of square crosspower spectrum matrix decomposition into 
eigenvalues:   

 
 [G N N× )(ω ] =[U N N× )(ω ]  [Λ NN× )(ω ] [U N N× )(ω ] H  (2) 
 
 The obtained eigenvalues [Λ NN× )(ω ] of [G N N× )(ω ] in descending order can be 

considered as the principal component autopower spectra. The principal component 
spectra are mutually totally uncorrelated (crosspower spectra are zero). The principal 
autopower spectra, sorted in descending order and plotted as a function of frequency yield 
a graphical representation of the rank of crosspower matrix, which indicates the number of 
incoherent phenomena (principal uncorrelated sources of mechanical vibration), observed 
in the signal set S( x x xN1 2, ,..., ) at every frequency.  

Instead of analysing eigenvalue decomposition of a square matrix one can use its SVs. 
SVD allows drawing conclusions of the number of uncorrelated sources in the same way 
as the eigenvalues analysis. The decomposition of crosspower spectrum matrices into 
singular values can be performed by mean following relationship: 

 
 [G M N× )(ω ] =[U M M× )(ω ] [Σ M N× )(ω ] [V N N× )(ω ] H  (3) 
 

2. Independent component analysis 
 

Independent component analysis, or ICA, is a statistical technique that represents a 
multidimensional random vector as a linear combination of nongaussian random 
variables ('independent components') that are as independent as possible. For 
nongaussian random vectors, this decomposition is not equivalent to decorrelation as is 
done by principal component analysis, but something considerably more sophisticated. 
ICA allows one to separate nongaussian source signals from their linear mixtures 
'blindly', i.e. using no other information than the congaussianity of the source signals. 
ICA can also be used to extract features from image and sound signals according to the 
principle of redundancy reduction that has its origins in the neurosciences. Independent 
component analysis (ICA) is a multivariate analysis technique that aims at recovering 
linearly mixed unobserved multidimensional independent signals from the mixed 
observable variables. Let x be an m-dimensional observed vector. The ICA model for x 
is written as: 

 
                                                    x = As                                                 (4) 
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where: A is called a mixing matrix and s is an n-dimensional vector of independent 
components with zero mean and unit variance. 
ICA analysis of vibration signals can be used for both assessing the statistical 
independence of signals and segmenting nondeterministic signal sources for further 
analysis. 

 
 

4. Practical example of identification of uncorrelated forces acting in the agricultural 
machines 

 
The depicted above method were used to identify sources of exciting forces acting 

during the work of real mechanical system – a machine for compostable organic materials 
processing (Fig 1). 

 

 
Fig.1. Machine for compostable organic materials processing 

 

The data used for identification of the operational loads was collected from series 
measurements in a different operational condition scenario: 

- exhaust engine  works only, 
- exhaust engine and feeders works only, 
- all mechanisms of combines work. 

The vibration acceleration signals from 21 points were measured simultaneously.  
During work of combine for organic materials on idle run when exhaust engine 

works only or exhaust engine and feeders works totals number of uncorrelated forces 
identified by decomposition crosspower spectrum matrices were 3. During when all 
mechanisms of combines work total number of uncorrelated forces were 5 (Fig. 2).  
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Fig.2. Singular spectra of PSD response matrices - exhaust engine  

and feeders works only 
 

 
Fig.3. Singular spectra of PSD response matrices-  all mechanisms of combines work 
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Fig.4. Independent component  computed from ICA procedures- exhaust engine and 
feeders works only 

 

 

Fig.5. Independent component  computed from ICA procedures - all mechanisms of 
combines work 

 

You can then reduce the dimension of the data by retaining only the subspaces 
corresponding to the largest eigenvalues of the covariance matrix of the data. 
The number of independent component computed from ICA procedures was the same as 
number of uncorrelated forces identified by decomposition crosspower spectrum 
matrices (Fig 4-5). 
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Knowledge of impendent principal component could be useful for identification of force 
application points. 
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Abstract 
It is found the propagation of longitudinal solitary waves in an elastic rod made 

of material with negative Poisson’s ratio. It is used the difference scheme to 

solve the non-linear partial differential equation.  

Keywords: auxetic, solitary wave, finite difference method  

Introduction 

Many physical systems are modeled by nonlinear partial differential equations, which 

are not exactly integrable. The numerical investigations of solitary waves in an elastic 

rod made of auxetic material is presented. Existence of solitary waves is provided by a 

balance between non-linearity and dispersion. Non-linearity in the elastic rod is caused 

by the finite stress values and the elastic material properties while the dispersion results 

from finite transverse size of the rod [1]. The solitons can propagate as long bell-shaped 

strain waves with permanent form and transfer energy long distance along. Recently the 

successful experiments on solitary waves observation in a transparent polystyrene rod 

have caused the interest on propagation of solitary waves in solids. 

Auxetics or auxetic materials, both names are related to materials with negative 

Poisson’s ratio ν, exhibit the unusual behavior; becoming wider when stretched and 

narrowed when compressed. A wide range of auxetic materials and structures have been 

discovered in the last decade [2,3]. Auxetics possess many extraordinary properties, 

consequently the interest of them increases. Areas of application are seen in the 

biomedical field as prosthetic materials or surgical implants. Auxetic fibre 

reinforcements should also enhance the failure properties of composites. Fibre pull-out is 

a major failure mechanism in composites. 

The negative Poisson’s ratio, has been treated as an abnormal elastic parameter. In 

conventional isotropic materials the range of Poisson’s ratio varies from 0 to 0.5, but 

generally the possible range of ν for isotropic case varies from –1 to 0.5, based on 

thermodynamic consideration of strain energy in the theory of elasticity [4,5]. 

From theoretical and experimental point of view the study of non-linear strain waves in 

rod made of auxetics seems attractive, because these new materials can have many 

practical applications and may be the part of any construction. Recently isotropic elastic 

materials with negative Poisson’s ratio have been produced. Consequently, many 

theoretical and experimental results of the theory dealing with positive Poisson’s ratio 

have to be reexamined on auxetics. 
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1. Governing equation 

Taking into account the geometrical and physical nonlinearties leads to nonlinear 

mathematical models. There are many equations describing the propagation of solitary 

waves in the elastic rod. One of the most popular is Boussinesq equations with one 

dispersive term: 
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there are terms with cubic (1) and quadratic nonlinearity (2). 

Let us consider a nonlinear infinite elastic rod of a radius R. The structural element has 

been defined in the cylindrical Lagrangian coordinates (x,r,φ). The torsion was 

neglected, then the displacement vector is ]0,,[ wuV =
r

. Murnaghan developed the 

energy as a power series in the invariants of the strain tensor. The density of potential 

energy is:   
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µλ,  are Lamé constants, nml ,,  are the Murnaghan moduli, 221 ,, III  are invariants of 

the deformation tensor. 
The density of kinetic energy have a form: 
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where 0ρ  is the rod material density. 

The single governing equation  has been obtained in [1] using the Hamilton’s principle 

in variational form: 
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where the Lagrangian density per unit volume is defined as Π−= KL , as follows: 
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u(x,t) is the longitudinal strain function.  

The equation (6) is called double dispersive equation (DDE), because it has two 

dispersive terms. The coefficients 21,bb  in case of materials with negative Poisson’s 

ratio are always negative, consequently changing the form of the solutions equation (6). 
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The numerical simulations of the equation (6) has been performed to show how the 

solitary waves in an elastic rod made of auxetic materials propagate. 

2. Solitary wave solution 

Using the central-difference formula the equation (6) with space step x∆  and time step 

t∆  takes the form: 
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The result of discretization is Crank-Nicolson system with a tridiagonal matrix, which is 

solve by the Gauss elimination with initial conditions: 
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and numerical boundary conditions [6]: 
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The figures below show the propagation of solitary waves from bell-shaped initial pulse. 
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Figure 1. Formation of solitary waves in a rod made of material with negative Poisson’s 

ratio ( 8.0−=ν ) 
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Figure 2. Formation of solitary waves in a rod made of material with negative Poisson’s 

ratio ( 8.0−=ν ) 

The stability analysis of  equation (7) base on method developed by John von Neumann 

[7] was done. The finite difference scheme is “conditionally stable”. 

4. Conclusion 

The double dispersive equation (6) was solved using the finite difference method. The 

propagation of solitary waves in the rod made of auxetic materials is possible. The value 

of the amplitude in the material with negative Poisson’s ratio decreases, when ν is less 

than 0. 
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Abstract   
The paper presents the results of vibration measurements on line of railway during 
passages of a train at a constant speed. The measurements have been performed on  
a railway track at straight and curve sections as well as and inside the train on the floor. 
The experimental results exhibited higher amplitudes of vibrations on the curve of the 
track than on its straight segments. The lateral slip in rail/wheel contact zone  
is considered as a  possible reason of such a phenomenon.  
Keywords: railway vibrations, dynamic train-track interaction, ground borne vibrations, 
moving load.    

Introduction 

There is an increasing interest in the scientific world in the issue of ground borne 
vibrations from railway tracks, and in the vibration control by means of the track 
structure modification [1]. A wide range of different track and train structures is 
available, characteristic of different levels of performance. A train generates vibrations 
which are transmitted through the track to the ground, resulting in vibration and re-
radiation noise in nearby building. The amplitude of vibrations depends on several 
factors, such as roughness of wheels and rails, dynamic properties of a train, a vehicle 
speed, characteristics of a railway track, a soil damping and a propagation of waves 
thought the soil [2, 3, 4]. 

 
Fig. 1. The mechanism of the ground borne noise generation . 

 

The main objective of the paper is to present results of experimental measurements of 
vibrations within the train and on the sleeper at straight and curve segments of track and 
to compare experimental data with numerical simulation results. The paper is focused on 
the influence of the lateral slip in rail/wheel contact zone on the generation of vibrations 
and a noise [5]. 
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1. Measurement system 
 
Our measurement system can be divided into two subsystems. The first one allows us to 
measure vibrations on the railway track,  the second one can measure vibrations on the 
floor inside the train car-body. The external measurement system included: two-axis 
vibration transducer, geophone, infrared gate system, analog-digital converter of  
12 bit/20kHz and data acquisition computer (Fig. 2). The two-axial accelerometer and 
geophone were fixed in the middle of railway sleeper (Fig. 3). The sensors were 
connected with the data acquisition computer through the A/D converter. The 
measurement was initialized and stopped when the infrared gate system gave an impulse 
to the converter. The first infrared gate switched on the converter when the train arrived 
at the measuring area while the second gate stopped measurements when the train was 
leaving this area.   

  
Fig. 2. Scheme of measurement system. Fig. 3. Sensors placed on a railroad. 

The second measuring system included two one-axis transducers and the mobile A/D 
converter of 12bit/10kHz. The converter contained data acquisition system (Fig. 4). The 
transducers was fixed to a steel bar in vertical and horizontal direction. The steel bar was 
placed on the train floor (Fig. 5).  
 

  
Fig. 4. Mobile converter with self data 

acquisition system. 
Fig. 5. Vibration transducers placed  

on the train floor. 
 

The average speed of the train has been estimated from two sources. The first one was  
a portable GPS module located in the train. The infrared system was the second source 
of information. The infrared gates measured time between the passage of the first and the 
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last wheelset. The time interval and the distance between both axles allowed  
us to estimate the train speed. 
 
2. Characteristic of the rolling stock 
The investigated train of type EN 71-100 consisted of four coaches (Fig. 6). Each coach 
had two bogies with two wheelsets. Two final coaches had motor bogies while two 
middle coaches had trailer bogies. The length of motor car was 20.70 m, while the length 
of the trailer cars was 21.57 m. The total length of the train was 85 m. The distance 
between axles on the bogie was 2.70 m. The dead weight of the trailer car was 34 T 
whereas of  the motor car was 57 T. The total mass of the train was 182 T. The traction 
and trailer wheels were of monobloc type and had a diameter of about 0.94 m and  
1.00 m, respectively. 

  
Fig. 6. Investigated train of type EN71-100. 

 
3. Experimental results  
The vibration measurements were performed during rush hours (10 am ÷ 16 pm) for  
10 passages of EN 71-100 type trains on straight and curve test segments of a track and 
in the train in the same places. The radius of the curvature of the tested track segment 
was about 1000 m. The average speed of the railway vehicle was equal to 58 km/h on the 
curve segment of the track and the average speed of the train was equal to 61 km/h on 
the straight segment. The vertical and horizontal accelerations and vertical velocity were 
measured by two-axial accelerometer and one-axial geophone (Fig. 3).  
Vibrations were analyzed in terms of accelerations, velocities or displacements  
as a function of time and frequency. The displacements were obtained by double 
integration of acceleration results. Displacements were checked by integrated velocity 
results obtained by measurements by the geophone.  
Comparison of experimental results demonstrated higher amplitudes of vibrations 
generated on curves of the track than on straight segments (Fig. 7, 9). Measurements on 
curves exhibited eight characteristic predominant groups of vibrations (Fig. 7). These 
groups confirmed the passage of respective wheelsets of bogies by the point  
of measurement. In Fig. 8 the spectral analysis of experimental results of vibration are 
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Fig. 7. Time history of the vertical accelerations and displacements measured  

on the sleeper: curve segment (left), straight segment of a track (right). 

 
Fig. 8. Spectra of vertical accelerations measured on the sleeper: 

 curve segment of a track (left), straight segment of a track (right).  

 
Fig. 9. Time history of lateral accelerations measured on the sleeper: 

curve segment of track (left), straight segment of track (right). 
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depicted.  Frequencies from ranges 1÷2 Hz and 40÷80 Hz on the curve segment of the 
track can be noticed whereas on the straight the respective frequency is equal to 30÷75 
Hz. The predominant frequency on the curve and straight segments of track is equal to 
53 Hz and 58 Hz, respectively. 
Fig. 10 shows the time history of vertical and horizontal vibration measured inside a car 
body on the floor for a period of time corresponding to the passage of approximately one 
train length. The measurements were performed during the passage in the place of 
investigation on the track. The comparison of the graphs in Fig. 10 exhibits higher 
intensity of  horizontal vibrations (in transversal direction) for the curve segment than 
for the straight segment. Moreover, in this case we have about 2 times higher amplitude. 
Differences in amplitudes of vibration in the vertical direction are significantly lower 
than in the transversal direction.  
Fig. 11. shows the spectra of vertical and horizontal acceleration measured inside a car 
body. It can be noticed that vibrations with higher range frequencies occur on the 
straight track than on the curve segments. The spectral analysis of vibrations (Fig. 11) 
shows the frequencies of ranges 2÷60 Hz and 300÷600 Hz on the curve segment whereas 
on the straight segment  the frequency was 500÷700 Hz for transversal direction and 
400÷750 Hz for vertical direction. The predominant frequency on the curve and straight 
segments is equal to 43, 400, 700 Hz and 52, 83, 550, 630 Hz, respectively. 

  
Fig. 10. Time history of vertical and horizontal acceleration measured inside car body  

on the floor: curve segment of track (left), straight segment of track (right).  

4. Numerical results 

Intensive numerical modelling of vibrations generated by a travelling vehicle was 
performed by the space-time finite element models. It was the only method which 
allowed us to analyze the moving mass problem. In classical approaches the track was 
subjected to a moving system of massless forces. The wave phenomena could not be 
considered with a sufficient accuracy in higher ranges of a speed. In reality the moving 
wheel or wheelset considered as an inertial point is bound with the track or simply with 
the rail.  It significantly influences the dynamic response of the trail-track system. This 
problem, however, will not be considered in the present paper. 
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Fig. 11. Spectra of vertical and horizontal acceleration measured inside a car body on the 

floor: curve segment of track (left) and straight segment of track (right).  

5. Conclusions 

Higher vibrations on curves can be resulted from the wear of railway track which was 
caused by centrifugal forces influenced by the passages of the train, deformations  
of wheels, wheelsets and rails, different linear velocity of wheels on curves and rotary 
oscillations of wheelsets. Plane of the wheel skewed to the direction of the rolling 
resulted in lateral slip in rail/wheel contact zone. The rail/wheel system oscillates and 
generates noise. 
In the future the experimental data presented here as well as results of measurements  
in the Metro tunnel will be used for validation of numerical prediction models, being 
under development. Model development, calibration and validation will benefit from the 
available data set. In further stage of the project the obtained models of vibration source 
and models of soil will be applied to describe vibration propagation through the soil to 
the buildings in the environment.  
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Abstract 
The purpose of this paper is to consider  the reflection-refraction problem of  plane  2-D 
acoustic SH waves at a plane interface between two initially deformed nonlinear 
rubberlike materials. The standard procedure for  the  linearisation of the equations of 
motion  was used. This approach bases on the assumption that small, time depending 
motions are superimposed on large static deformations. The initial deformations induce 
additional effects essential for the calculations of the reflection and refraction 
coefficients.  
Key words: acoustic SH waves, initially deformed rubberlike materials, reflection-
refraction problem, small motions superimposed on large static deformations 

Introduction 

Paper reports the results of an examination of the reflection-refraction plane wave 
problem. The interaction of harmonic SH-type waves with a plane boundary between 
two different isotropic half-spaces, which are perfectly welded along the plane X2=0 
(Fig. 1) is investigated. It is assumed that the half-spaces have different mechanical 
properties and that the static deformations in both material regions are also distinct. In 
spite of a simplicity, the problem illustrates some new phenomena characteristic for the 
nonlinear initially deformed materials. Results are presented for a specific elastic 
compressible Blatz-Ko rubberlike material and a general discussion of the limitations of 
the solutions is presented. The obtained results differ very strong from the results of the 
same problem in the linear theory. In the regions with inital deformation the speed of 
propagation of the shear waves is not constant, it depends on the direction of 
propagation. Both shear waves propagation speeds //2c  and ⊥2c  in the direction normal 
and perpendicular to the interface are different. In contrast to the linear theory these both 
speeds are equal //2c = Rcc ρµ /22 =⊥ . The speed of propagation nu  (comp.(15)) in 
arbitrary direction depends on //2c  and ⊥2c  and also on the unit normal N to the plane 
of the wave front. 

1. Basic equations 

The general motion to be discussed here is defined by (1). It is assumed that the material 
has been subjected to an initial static homogeneous deformation with constant principal 
stretches 321 ,, λλλ  and to a superimposed small motion ),,( 2133 tXXuu =  
characterized by a small displacement field which is time dependent: 
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                 ),,(,, 213333222111 tXXuXxXxXx +=== λλλ .                       (1) 
The final and static deformations are very close. The components of the deformation 
gradient 0F  and F  (for static and final deformation) and the components of the right 
Cauchy-Green tensor C, are: 
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where ),()( 123 tXuXwu = . 

                            

Fig. 1 Reflection and refraction of an SH wave at the interface 

For a compressible isotropic hyperelastic material there exists a strain energy function 
denoted  ( )FWW = , defined on the space of deformation gradients such that, the 
nominal stress tensor S (transpose of the first Piola-Kirchhoff tensor (comp.[2], [3])) is 
defined as 
                  [ ] ( ) 1

33121 I2I22/))(( −+−+=∂∂= FCFFFFFS WWWW TTT  ,             (3) 
 

where Ii invariants of the tensor C and ii IWW ∂∂= / ,  i= 1, 2, 3 . The stress tensor 
components which we need to consider are 13S and 23S . It follows from (2) and (3) that 
 

                    ( ) ( ) 23
2
1212313

2
22113 ,2,,2 uWWSuWWS λλ +=+= .                                        (4) 
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Substitution of (4) into the differential equations of motion of finite elasticity gives for 
the superimposed infinitesimal displacement two trivial one non-trivial equations of 
motion  
                            ( ) ( ) ( ) 32230

22
331130

11
33303 ,,,0, uuAuAuA Ri &&ραβ

αβ =+= FFF  ,                           (5) 
 

where )/( βα
αβ

kiik FSA ∂∂= , and these derivatives are evaluated at F=F0 , 0,33 =u and for 
3;2,1, == βαi  also ( ) 003 =Fαβ

iA . The one nontrivial equation takes the form 
 
                     ( ) ( )[ ] ( ) ( )[ ] ( ) ( )tXuXwXwtXuctXuXwc R ,,,,, 122221

2
21112

2
//2 &&ρ=+ ⊥  ,                (6) 

 
where ( )2

221
2

//2 2 λWWc +=  and ( )2
121

2
2 2 λWWc +=⊥  (comp. (17)). Suppose now that the 

displacements in both media are given by 
 

                    ( ) ( )[ ] ( ) ( )[ ]tXkiXwutkXiXwu ωω −=−= 123123 exp,exp .                        (7) 
 

Substituting of (7)1, 2 into (6) gives two equations for two unknown functions 
( ) ( )22 , XwXw  

 

                     ( )[ ] ( ) 0, 2
22

222 =+ XwpkXw           ( )[ ] ( ) 0, 2
22

222 =+ XwpkXw  ,                (8) 
 

where ( )( )2
2//2

2
2

222 /)/( ⊥⊥ −= ccckp ω , ( )( )2
2//2

2
2

222 /)/( ⊥⊥ −= ccckp ω , and the 
displacement take the form 
 

                          ( )[ ] ( )[ ]213213 exp,exp XpktXkiukpXtkXiu ±−=±−= ωω .                      (9) 
 

The linearised equations of motion must be complemented with the continuity conditions 
at the interface. The initial static deformations iλ and iλ  (i=1,2,3) in both half-spaces 
under consideration are different. When two half-spaces are in rigid contact, then the 
displacement vector and stress vector must be continuous at the interface i.e. 
 

        ( ) ( ) 3,2,1,22 == iSS ii FF   and ( ) ( )tXutXu ,0,,0,,, 13133311 === λλλλ  .     (10) 
 

The boundary conditions at the interface are meet if and only if kk == ,ωω . 
Expanding into the power series the components of the stress tensor we obtain 
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According to the continuity conditions at the interface, the small wave motion is 
dynamically admissible if and only if, the static deformations and small wave motions 
satisfy the following conditions: 
 

                                   ( ) ( ) 0021021 == FF SS ,      ( ) ( )022022 FF SS = , 
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The relationship (12)2 for i = 2 gives the dependency between the components 2λ and 

2λ  in both half-spaces. 

3. Reflection – refraction problem 

It is assumed that the incident plane SH wave of given amplitude A1 propagates in the 
lower medium. Taking into account the solutions (9) it is possible to define the wave 
motion in both regions I and II in the form: 
 
                 [ ] [ ]

[ ],)(exp
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nn

−+=

−−+−+=               (13) 

 

where ,)1( 2/12pkK += 2/12 )1( pkK +=  are wave numbers in respective regions. The 
above solution will of course change its character according to whether p and p are real 
or imaginary. Let us suppose that both p and p  are real , i.e. ),(/ //2//2 cckc >=ω . 
The first and second term in (13)1 are two plane waves in the first medium which 
propagate respectively, in the directions N = [N1, N2] (incident wave) and N’ = [N1, -N2] 
(reflected wave) where (comp.(Fig. 1)) 
  

                             ,)1( 2/12
1

−+= pN 2/12
2 )1( −+= ppN                                           (14) 

 

with propagation speed 

                                                        ( ) 2/121
−

+= pcun  .                                             (15) 
 

The expression (13)2 represents the wave refracted in the second medium. The 
propagation directions and speed of propagation for this wave are obtained by replacing 
c and p in (14) and (15) by corresponding values c and p respectively.  
The analysis of the reflection-refraction problem for the strain energy function in the 
general form W=W(I1, I2, I3) is very complicated. For this reason in the further 
considerations we take the special Blatz-Ko strain energy function adequate for the the 
foam rubber 
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The expressions for the propagation speeds //2c  and ⊥2c in the directions paralell and 
perpendicular to the boundary take in this case very simple forms: 
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Additionally the Poisson ratio ν for the foam rubber takes the value ν = 0.25. 
Substituting this value into (12)2 we obtain the following relationship between the 
components of the static deformation gradient 
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where 3131 λλλλ ==Λ . The unknown amplitudes 2A  and 1A  can be determined on 
using the continuity conditions at the interface(10)4, (12)3,4. These yield 
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Iθ  is the incident angle and Rc ρµ /2 = , Rc ρµ /2 =  are shear wave speeds in 

initially undeformed medium  i.e. when 1F =0 and 1F =0  respectively. The structure of 
the expressions (19) is similar as in linear theory (comp.[1] ), but the term ∆ has more 
complicated form. The amplitude of the reflected waves vanishes wherever ∆=1 or at the 
following angle of incidence 
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If 1F =0 and 1F =0 , then (20) takes the form well known from the linear theory 

)1/()/1(sin 22
2

2
2

2
0

2 qccqLin −−=θ  The geometrical nonlinearity influents very strong 
the results known from the linear theory. As a spectacular example it will be considered 
bellow the analysis of the expression for the incident angle (20) at which the reflected 
wave vanishes. 

4. Numerical results 

The numerical analysis will be confined here to define the angles of incidence 0θ  at 
which the reflected wave vanishes. It is evident, that a real angle 0θ  can be found only 
for selected combinations of the shear moduli, densities and initial deformations. For the 
analysis of (20) we assume here the following data representativ for the foam rubber 
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1.1/ == µµq , 07.1/ =RR ρρ  and 964.0)/( 2
22 =cc . For the chosen numerical data 

the solution Lin0θ in the linear theory exists. Fig. 2 shows the relations between the 

values of the function 0
2sin θ  at which the reflected wave vanishes, as function of the 

ratio 22 / λλ  for three values of the components rate 13 / λλ=Ω . It is easy to observe 
the essential dependence of the results on the initial deformations. The angles of 
incidence 0θ  vary rapidly in a small range of changes of the static deformations. This 
remark is important also for the analysis of the reflection and refraction coefficients (19). 

 

 
 

Fig. 2  The incident angle 0θ at which the reflected wave vanishes  
as function of the changing components ratio 22 /λλ and 13 /λλ=Ω  
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Abstract 
In the paper the formulation of the differential quadrature method based on spline 
functions as well as the way of determination of the weighting coefficients are presented. 
The convergence and accuracy of the method in comparison to the finite difference 
method are studied on the example of the geometrically nonlinear free vibrations of a 
beam. 
Keywords: differential quadrature method, nonlinear vibrations  

Introduction 

Recently the differential quadrature method (DQM) has become a tool that has been 
willingly used in solving various computational tasks, especially in mechanical analysis 
[1]. It is a result of a high rate of convergence and great accuracy provided by the method. 
With a few sampling points the method allows to obtain much better accuracy then popular 
discretization techniques as finite element or finite difference method (FDM). Better 
efficiency of the DQM follows from the way the wanted solution is approximated. In the 
conventional DQM the solution is searched in the form of the interpolation polynomial, 
whose nodes are all the sampling points from the entire domain, while in the other 
mentioned methods a local approximation is used. One can say that the conventional DQM 
is equivalent to the FDM of the highest order of accuracy. As a global numerical technique 
the DQM has some limitations and drawbacks. The main of them are difficulties with 
application to problems with irregular domain and computational instability. In order to 
overcome these drawbacks some modifications of the conventional method have still 
appeared. One of them is an approach presented in [2], where the spline interpolation is 
used to approximate the wanted solution. This approach eliminates unfavorable effects of 
the polynomial interpolation, especially appearing when the equally spaced nodes are 
imposed, that  lead to instability of the method. It was found that spline-based differential 
quadrature method (SDQM) gives very accurate results using various grid point 
distributions and in the problems where the conventional method fails [2,3]. However the 
rate of convergence of the SDQM is weaker then the conventional method. Therefore the 
question concerning the efficiency of the SDQM in comparison to low order numerical 
techniques arises. In the paper the rate of convergence and the accuracy of the method 
based on spline functions are studied and compared with the results obtained by the FDM. 
The estimation is done on the example of the geometrically nonlinear free vibrations of a 
beam. The choice of the computational example has been motivated by the prediction 
contained in [4], that the efficiency of the DQM should rise with the higher nonlinearity of 
the problem.        
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1. Formulation of the problem 

In the paper the equation for the geometrically nonlinear free vibrations of a beam with 
simply supported and immovable ends is analyzed. The equation of motion of the beam 
can be derived with various assumptions and with the help of several procedures, what is 
described in detail in [5]. In this paper the equation derived with the assumption of the 
axial displacement and nonlinear strain-displacement relationship is taken under 
consideration 
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where w and m represent the transverse displacement and the mass density per unit 
length, respectively, E denotes Young’s modulus and I is the moment of inertia.  

Taking into account that the ends are immovable, the dynamic axial force N can be 
expressed as   
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where A is the cross-section area of the beam and L denotes its length.   

Assuming the solution in Equation (1) in the form   

txatxw ωυ= cos)(),(                                                 (3) 

where quantity )(xυ  is the so-called nonlinear normal mode and ω  is the nonlinear free 
vibration frequency and applying Ritz-Galerkin procedure one obtains [5] 
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Further analysis is carried out using the dimensionless form of Equation (4) 
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The problem is completed by the boundary conditions which have the following form 

0)1()1()0()0( =υ′′=υ=υ′′=υ                                       (6) 
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2. Discretization of the problem  

To discretize Equations (5) and (6), the SDQM and classic formulation of FDM are used.  

2.1. Spline-based differential quadrature method 

The idea of the method is similar to the difference method and relies on the approximation 
of the derivatives in the governing equation by the linear weighted sum of unknown 
function values. The difference to the FDM lies in the fact that each derivative is expressed 
with the aid of all function values from the entire domain, what can be put as 
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where N denotes the number of grid points and )(r
ija  are the weighting coefficients for the 

rth order derivative.  

In the SDQM these coefficients are determined on the base of the piecewise polynomial 
interpolation. Using odd degree polynomials, the function can be expressed as   
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The coefficients cij are determined from the interpolation conditions and the derivative 
continuity ones described in detail in [2]. These coefficients depend on nodes 
distribution and unknown function values, what can be generally written as   
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The weighting coefficients )(r
ija  are determined by calculating appropriate derivatives of 

polynomial piecewise function (8)  
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In the paper the weighting coefficients obtained from the polynomial piecewise function 
of the eleventh degree ( 11=n ) are used. Owing to the appropriate formulation of the 
conditions for the determination of the spline function, the derivative boundary 
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conditions are introduced on the stage of the calculation of the weighting coefficients 
(11). Then the discretization of the analyzed Equation (5) according to the differential 
quadrature rules is done in N-2 interior points of imposed mesh   
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where Ck are the coefficients derived by the Newton-Cotes integration formulas. 

2.2. Finite difference method 

To discretize Equation (5) classic formulation of the FDM (based on the uniform grid 
distribution) is also used. This approach is well known and does not require detailed 
description. The difference equation corresponding to Equation (5) has the form 
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where αk, βi i γi are difference formulas for the first, second and fourth order derivatives 
respectively. In the paper the three-points (first and second order derivative) and five-
points (fourth order derivative) central difference formulas are used  
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where )1(1 −= Nh  denotes the distance between adjacent nodes. 

3. Solution of nonlinear eigenvalue problem 

Expressions (12) and (13) are the sets of N-2 nonlinear algebraic equations, which can be 
written in the following matrix form  

υυF λ=),( a                                                         (14) 

where 2ω=λ , υ is the nodal values vector and F(υ,a) is the vector whose elements are 
nonlinear functions of the elements of υ and the parameter a (the amplitude of 
vibration). In order to determine the fundamental frequency of the beam, Equation (14) 
has to be solved. To this end, the vector iteration method, described in detail in [6], is 
used. The iteration scheme related to Equation (14) is as follows 

iii a υυF λ=+ ),( 1                                                    (15) 

To solve Equation (15), the Newton-Raphson method is applied. As starting values for 
the nonlinear eigenpair (λ, υ), the values that meet the associated linear problem are 
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assumed. In each cycle of the iteration, the eigenvector υi should be normalized so that 
1max , =υ=

∞ ijjiυ , before using in Equation (15). New approximation of λ is obtained 

as  
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i
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The iteration process is broken when 22121111 , ε≤−ε≤λλ−λ ++++ iiiiii υυυ , where 

ε1 and ε2 are assumed accuracies of the calculation.  

The percentage relative error of  the ratio of the nonlinear frequency to the linear one 
Lωω versus number of sampling points applied is shown in Fig.1. As a reference values 

the exact results are chosen. The calculations are carried out for several dimensionless 
amplitudes. Fig.1 shows that the SDQM gives very accurate results even using only few 
nodes. One can notice that when the amplitude of vibration rises the rate of convergence 
of SDQM is higher unlike the FDM. It is clearly seen in Fig.2 when the results for 

15,7=N  are presented as a dependence on the amplitude of vibration.  
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Fig.1. The percentage relative error of  the ratio of the nonlinear frequency to the linear one versus 

number of sampling points 
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Fig.2. The percentage relative error of  the ratio of the nonlinear frequency to the linear one versus 
dimensionless amplitudes 

4. Conclusion 

In the paper the convergence and accuracy of the SDQM – the alternative for the known 
method based on the interpolation polynomial – and classic FDM are compared on the 
example of the nonlinear vibration of the beam. The results show that the rate of 
convergence of the SDQM is considerably higher then the FDM and improves when the 
amplitude of vibration rises. It should be noted that the solution of the nonlinear set of 
equations (15) takes more time when the differential quadrature discretization is applied.    
However very accurate results can be obtained using only few discrete points.  
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Abstract  

Due to difficulties in determining precise initial conditions for the motion of sea 
waves and the nature of wind undulation, the dynamics of sea waves can be only 
modelled within the framework of a stochastic theory.  
The article presents a method for determining differential equations of motion for 
multihulls, such as catamaran or trimaran. The catamaran sails at constant translatory 
velocity and at an arbitrary angle to the undulation direction. The set of differential 
equations of motion presented in the article models anti-symmetric (lateral) 
movements of the catamaran. For those movements, stochastic differential equations 
( oIt ˆ  equations) are constructed in the form of the equation set (8). Using the state 
vector X  and the excitation vector Y , the oIt ˆ  equations take the form (9) and (10). 

 
1. Introduction   
 
With respect to their marine operation, watercraft units can be divided into stationary 
objects (in the geographic sense) or moving objects. The latter include catamarans and 
trimarans as the units equipped with their own drive. These units represent extremely 
complicated dynamic systems and reveal strongly nonlinear characteristics.  
A catamaran (double hull) is a watercraft unit having two hulls situated parallel to each 
other and linked with a deck. 

       
Fig.1. Large experimental catamaran           Fig.2. Lagoon Catamaran  
built for military purposes  
 
Catamarans are built in various sizes, from big ocean-going vessels down to small boats, 
the length of which does not exceed 5 meters. They can be either equipped with an 
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engine, or driven by wind or paddles. An advantage revealed by the catamaran is high 
initial stability, which (in case of sail drive) allows it to reach much higher speeds than  
those achieved by monohulls of comparable size. It also reveals higher resistance to side-
overturning. At the same time its disadvantage is almost inability to restore the correct 
position when the overturning already takes place, and higher susceptibility to bow-
overturning. Both catamarans and trimarans, frequently referred to as pontonboots, are 
flat-bottomed boats with multi-chamber floats, stable and safe. 
 
2. Movements of the catamaran as a linear object  
 
A multihull with non-deformable structure sails freely at constant  translatory 
velocity V0..  
In our studies the examined object is idealised as a linear dynamic system with 6 
freedom degrees, which are:  

a) longitudinal oscillation (surge)- 1η , 

b) lateral oscillation (sway)- 2η , 

c) heaving - 3η , 

d) rolling - 4η ,  

e) pitching - 5η , 

f) yawing - 6η . 

η

∇

η

η

η

η

η

 
Fig. 3. Scheme of the physical model of a catamaran  
 
Local movements of the vessel around the equilibrium position are its response to the 
excitations coming from sea undulation.   
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For the vessel treated as a rigid object moving at constant speed v  and an arbitrary angle  
to the direction of sea waves, its movements are described by the  mathematical model 
having the form of a set of second-order differential equations (1). 
If the model of the dynamic system is a linear model of watercraft, then the equations  
                   )(

6

1,
tFCBI iiijiiji

ji
ij =++∑

=
ηηη &&&                                         (1) 

in which:  
AMI +=  - matrix of inertia, 

B - matrix of dynamic damping, 
C  - matrix of hydrostatic stiffness, 
η  - vector of displacements, 

( )F t  - vector of exciting forces, 
can be treated as a system of two uncoupled groups of mutually coupled equations. The 
coupling is assumed to be executed via linear and nonlinear damping coefficients and 
hydrostatic elasticity coefficients. 
The first group of equations represents symmetric (longitudinal) movements. They 
include 1η - linear longitudinal movements (surging), 3η  - linear vertical movements 
(heave) and 5η  - angular longitudinal, movements (pitch). In our discussion we will 
neglect 1η - linear longitudinal movements (surging). These movements are usually 
examined on models with one freedom degree.   
The second group consists of the equations describing antisymmetric movements. They 
include: 

2η  - lateral linear movements (swaying), 4η - lateral angular movements (rolling) and  

6η  - horizontal angular movements (yawing).  
Since our further goal is to construct stochastic differential equations ( oIt ˆ equations), let 
us introduce new variables: 
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The mutually coupled variables are 53 ,ηη  and 642 ,, ηηη . 
Equation (1), taking into account two groups of mutually coupled movements, takes the 
following form written in new variables: 
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To get explicit forms of the equations with respect to z&& we have to solve a set of second-
order differential equations with two unknowns. 
                                                   kkk Fz ~

+= φ&&                                               (3) 
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Here: 
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3. Stochastic equations for a linear object ( oIt ˆ equations) 
 
In the stochastic differential equations ( oIt ˆ equations), making the starting point for 
examining the nonlinear process of  object response with the aid of the method based on 
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the diffusion process theory, the state vector has components representing construction 
response and those representing the multidimensional Markov process that models   
undulation excitation. 
Stochastic oIt ˆ  equations are used for modelling dynamic systems with rapidly changing 
random excitations, for instance those described by white noise. At relatively general 
assumptions, the solutions to the stochastic oIt ˆ  equations are Markov diffusion 
processes. 
Equations (1) for separated coupled movements 2η , 4η  and 6η  can be written as: 

   iiii Fcb ~),,(),,( 642642 =++ ηηηηηηη &&&&&                                (6) 

where:   6,4,2),,,(~~
642 == idlaFFFFF ii  

In the new variables 4z , 5z  and 6z  adopted by us at the beginning the equations (6) 
take the form: 
                                         )(),,(),,( 654654 tfzzzzzzz iiii ++= ψϕ &&&&&                               (7) 
where: 

6,5,4=i , 

iϕ  - damping in i-th movement, 

iψ  - stiffness in i-th movement, 

if  - excitation in i-th movement. 

Finally, oIt ˆ  equations for  4z , 5z  and 6z  take the form: 
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If the process F(t) can be presented by a multidimensional homogeneous Markov process 
in the phase space corresponding to the vector  

3

1 2 1 2 1 2 3 4
0

( , ,.... ), ( ) ( ) ( ) ( , , , )i i
n i iY y y y where Y F t then F t a y b y F y y y y= = + =∑ . 

Let X be the state vector, components of which describe the behaviour of the object 
modelled by the set of second-order differential equations, and let vector Y represent the 
excitations, then the ˆIto  equations take the form:    
                                                            ( ) ( )X G X F t= +&                           (9) 
with: 
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Here: 
ξ - white noise, 

iS - coefficients of linear filters (determined from the excitation correlation function, or 
from its spectral density). 
Using relevant linear filters the “white noise” process, for which the spectral density is 
constant, is substituted by densities corresponding to different undulation spectra.  
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Abstract 
The passive dampers are often modeled using the either classical or fractional rheological 
models. An important problem, bounded with the fractional models, is an estimation of 
the model parameters from the experimental data. The process of parameter identification 
is an inverse problem which is underdetermined and can be ill conditioned. The new 
method of parameters identification of the fractional Maxwell model is proposed. The 
parameters are estimated using results obtained from dynamical tests. Results of example 
calculation based on artificial and experimental data are presented. 
Keywords: dampers, identification of parameters, fractional Maxwell model 

Introduction 

Viscoelastic (VE) dampers have been often used for control vibration of structures to 
reduce of oscillations of building structures induced by earthquakes and strong winds. 
Many applications of VE dampers in civil engineering are listed in [1]. The VE dampers 
could be divided broadly into the fluid and the solid VE dampers. Analysis of structures 
supplemented with VE dampers requires the good description of the dynamical 
behaviour of dampers. The dampers behaviour depends mainly on the rheological 
properties of the viscoelastic material from which dampers are made. 

In a classical approach, the mechanical models consisting of the springs and dashpots are 
used to describe the rheological properties of VE dampers [2, 3]. A good description of 
VE dampers requires mechanical models build from a set of appropriately connected 
springs and dashpots. In this approach the dynamic behaviour of a single damper is 
described by a set of differential equation, (see [3]) what considerably complicate the 
dynamic analysis of structures with dampers because the large set of motion equation 
must be solve. Moreover, the nonlinear regression procedure, described for example in 
[4], must be used to determine parameters of the mentioned above models.  

The rheological properties of VE dampers are also described using the fractional 
mechanical models. Currently this approach received considerable attention and has 
been used in modeling the rheological behaviour of linear viscoelastic materials [5 – 7]. 
The fractional models have an ability to correctly describe the behaviour of viscoelastic 
material using a small number of parameters. A single equation is enough to describe the 
VE damper dynamics, what is an important advantage of the discussed models. In this 
case the VE damper equation of motion is the fractional differential equation. The 
fractional models of VE fluid dampers are proposed in [8, 9]. 
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An important problem, bounded with fractional models is an estimation of model 
parameters from the experimental data. In the past, many different methods have been 
tested for estimation of model parameters [2, 10, 11]. The process of parameter 
identification is an inverse problem which can be ill conditioned (see, [4, 11]). 

The aim of this paper is to describe a new method of parameters identification of the 
fractional Maxwell model. The parameters are estimated using results obtained from 
dynamical tests. Results of example calculation are further presented. 

1. Fractional Maxwell model equation of motion and their steady state solution 

In order to construct the fractional models equation of motion, we introduce the 
fractional element called also the springpot which obey the following equation: 

   )( )(~)( tqDctqDctu tt
ααα ==  ,             (1) 

where αcc ~=  and α , ( 10 ≤< α ), are the springpot parameters and )(tqDt
α  is the 

fractional derivative of order α  with respect to time t . There are a few definitions of 
fractional derivatives which coincide under certain conditions. Here, symbols like 

)(tqDt
α  means the Riemann-Liouville fractional derivatives with the lower limit −∞  

(see [12]). The considered element can be understood as an interpolation between the 
spring element ( 0=α ) and the dashpot element ( 1=α ). 

The fractional Maxwell model is build from the spring and the springpot connected in 
series as it is shown schematically on Fig 1. For the considered model we can write: 

  )( )( 1 tqktu =  ,  ))()((~)( 1 tqtqDctu t −= αα  ,            (2) 

where kckc //~~ ==≡ ααττ . 

Eliminating )(1 tq  from above relations we get the motion equation in the form: 

   )()()( tqDktu Dtu tt
αααα ττ =+  .             (3) 

The considered model has three real and positive value parameters: k , c  and α . 

 
Fig. 1 Scheme of fractional Maxwell model 

In a case of harmonically excitation, the steady state solution to motion equation of the 
Maxwell fractional model is assumed in the following form: 
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 tututu sc λλ sincos)( +=  , tqtqtq sc λλ sincos)( +=  ,           (4) 

where λ  is the excitation frequency.  

Introducing relations (4) into equation (3) we obtain that the coefficients sc qq  , , cu  and 

su  are interrelated in the following way: 

  scc uuq   21 φφ −=  ,  scs uuq   12 φφ +=  ,           (5) 
where  

 [ ] )2/cos()(
)(

1
1 απτλ

τλ
φ α

α
+=

k
 ,  )2/sin(

)(
1

2 απ
τλ

φ
αk

=  .           (6) 

2. Identification of parameters of the fractional Maxwell model 

In the proposed method, for the given frequency of excitation iλ , the experimentally 
measured damper force )(tuei  and the experimentally measured damper displacement 

)(tqei  are approximated by 

 tututu isiicii λλ sin~cos~)(~ +=  , tqtqtq isiicii λλ sin~cos~)(~ +=  ,           (7) 

where quantities ciu~ , siu~ , ciq~  and siq~  are determined using the last-square method. 
When the experimental data concerning damper force are considered the values of ciu~  
and siu~  are obtained from the following equations: 

  cusisccicc IuIuI =+ ~~  ,   susisscisc IuIuI =+ ~~  ,           (8) 
where  

          ∫=
2

1

2cos
t

t
icc tdtI λ  ,       ∫=

2

1

2sin
t

t
iss tdtI λ  ,       ∫==

2

1

cossin
t

t
iisccs tdttII λλ  ,           (9) 

     ∫=
2

1

 cos)(
t

t
ieicu dtttuI λ  ,  ∫=

2

1

 sin)(
t

t
ieisu dtttuI λ  .          (10) 

In a similar way the parameters ciq~  and siq~  are determined. 

Next, we assume that the quantities ciu~ , siu~ , ciq~  and siq~  obtained from the experimental 
data approximately fulfils equations (5) i.e. we can rewrite (5) in the form: 

  cisiicii quu ~~~
21 =−φφ  ,  sisiicii quu ~~~

12 =+φφ  ,         (11) 

where )(11 iii λφφ =  and )(22 iii λφφ = . From above equations we have 

  
221 ~~
~~~~

sici

sisicici
i uu

uquq
+
+

=φ  ,  
222 ~~
~~~~

sici

sicicisi
i uu

uquq
+
−

=φ  .         (12) 
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For a given set of excitation frequencies iλ  ( ni ,..,2,1= ), used in experiments, two sets 
of values of i1φ  and i2φ  are obtained. 

The model parameters c , k  and α  will be determined using the last-square method. 
The error functional which will be minimized is chosen in the form: 

   ∑
=

+=
n

i
ii srkcJ

1

22 )(),,( α  ,            (13) 

where kk /1= , cc /1=  and 

  iii ckr 12
 cos φπαλ α −+= −  , iii cs 22

 sin φπαλ α −= −  .          (14) 

If we assume that parameter α  is known, the stationary conditions of functional (13) 
with respect to k  and c  give us the following system of equations: 
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For particular values of α  the values of damper parameters, resulting from (15), could 
be negative. These solutions haven’t physical meaning and must be rejected. The right 
value of α  are obtained using the method of systematic searching. The values of α , k  
and c  for which (13) has a minimal value are the searched parameters of the model. 

3. Results of example identification of Maxwell model parameters 

First the method is applied to the artificially generated experimental data. The artificial 
solutions are calculated on a base of steady state solution given by relations (4) and (5). 
The following data are used: 9=n  0=cq , mqs  001.0= , 6.0=α  mkNk / 0.290= , 

mkNsc / 0.68= , Hz 5.01 =λ , Hz 0.12 =λ , Hz 0.23 =λ , Hz 0.44 =λ , Hz 0.65 =λ , 
Hz 0.86 =λ , Hz 0.107 =λ , Hz 5.128 =λ , Hz 0.159 =λ . The obtained data are modified 

applying random perturbations. After application of the identification procedure the 
following results are obtained: 61.0=α , mkNk /  543.284= , mkNsc /  096.68= , 
when 3 percent noises are randomly introduced to artificial data.  

On Fig. 2 the plot of functional (13) versus the α  parameter is shown for three levels of 
noises (3, 5 and 10%). In a range of values of α  parameter we have one minima of 
functional. Results of calculation performed for the artificial data shown that if noises 
are not too much the results obtained using suggested method of identification is not 
sensitive to noises. Errors of values of parameters obtained are of order of noises level. 
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The next step is to apply the identification procedure to real experimental data. The 
experimental data presented by Makris and Constantinou [9] are chosen and used in this 
example. Makris and Constantinou were using the damper manufactured by GERB 
Schwingungsisolierungen GmbH & Co. KG in their investigations. Similar dampers are 
often used in piping systems or in machine foundations. The following parameters of 
fractional Maxwell model are determined: 77.0=α , m/kN 503.350k = , 

m/kNs  823.13c = . On Figs. 3 and 4 the comparison of experimental and approximated 
storage modulus K ′  and loss modulus K ′′  are presented. These quantities can be 
calculated from: 

  [ ]
)2/cos() (2) (1

)2/cos() () (
2 απλτλτ

απλτλτ
αα

αα

++
+

=′
kK  ,   

)2/cos() (2) (1
)2/sin() (

2 απλτλτ
απλτ
αα

α

++
=′′

kK  .   (16) 

The three-parameter fractional Maxwell model satisfactory well describes dynamic 
properties of the considered damper.  
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Fig. 2 Error functional (13) of Maxwell model versus the α  parameter 
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4. Concluding remarks 

The presented model is working satisfactory. The identification procedure of parameters 
of the fractional Maxwell model is simply, well applicable and efficient. After few 
modifications this procedure can be used to determine parameters of other fractional 
models, for example, to determine parameters of the fractional Kelvin-Voight model. 
 However the three-parameter fractional Maxwell has some limitations. There are 
materials (used in VE dampers) to which this model cannot be fitted in satisfactory way. 
The other restriction is an impossibility to analyze very low and medium frequencies 
together. The results are going worse when experimental results for very low frequencies 
are included. 
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Abstract 
In this paper the Lyapunov equation is used to analyse random vibration of building 
structure. The structures with mass dampers are considered. The excitation forces which 
are functions of fluctuations of wind velocity are treated as random forces. Lyapunov 
equation is used to determine root mean square of displacements. Results of example 
calculation are presented and briefly discussed. 
Keywords: tuned mass damper (TMD), multiple-tuned mass damper (MTMD), Lyapunov 
equation  

Introduction 

Dynamic analysis of structure with tuned mass dampers (TMD) and multiple-tuned mass 
dampers (MTMD) have been studied for many years [1-3]. Mainly, the numerical 
integration have been used to calculate the root mean square of quantities which 
characterize the structures response.  

In this paper it will be studied the possibility of application of Lyapunov equation to 
dynamic analysis of structure loaded by forces excitated by wind pressure. Wind is 
treated as white noise random process. Some calculations were made for 20-story 
building. Results of calculations were compared with ones obtained in classical way. On 
this basis conclusions concerning effectiveness of using Lyapunov equation are 
formulated. 

1. Designing of multiple tuned mass dampers 

The parameters of tuned mass damper (or group of dampers) are chosen in such a way 
that the damper is tuned to the selected mode of vibration. It means, that  the frequency 
of the damper (or a group of dampers) dω , treated as the one degree of freedom of the 
system, is close to selected vibration mode of structure sω  ( )sd ωω ≈ . The optimal 
parameters of such damper (or group of dampers) can be determined from formulae 
given in paper [4]. The optimal frequency ratio is: 

22

2

)1(2
2

µ
µ

ω
ω

+
+

=
s

d , (1) 

where 

sd Mm=µ ,     sss MK=2ω ,     ddd mk=2ω . (2) 
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Here sM  and sK are the modal mass and modal stiffness of the structure of the s-th 
vibration mode, respectively. 

If only one damper is tuned to frequency sω , then dm  is the mass of damper, and dk  is 
the stiffness coefficient of damper. However, if the group of dampers is tuned to the 
frequency sω , then dm  and dk  denote the mass and the stiffness coefficient of selected 
damper of this group, respectively. Assuming that the mass ratio µ  is known, the 
damper frequency dω  and the stiffness coefficient dk  can be determined from above 
formulae. 

If excitation forces acting on structure have a random character and can be treated as the 
white noise process, the optimal value of non-dimensional damping coefficient of 
damper is determined from formula: 

)2)(1(8
)34(
µµ

µµγ
++

+
=opt . (3) 

The value of damping coefficient dc  can be calculated in the following way: 

ddoptd mc ωγ2= . (4) 

2. Equation of motion 

Equation of motion of the system shown on Fig. 1 can be written in the form: 
)(~)(~)(~)(~ tttt PqKqCqM =++ &&& , (5) 

where KCM ~,~,~  are the global matrices of mass, damping and stiffness of the 
system, )(tq  is vector of displacement of the system ))(),(()( ttcolt xyq = , )(ty  are 

horizontal displacements of frame, ( )tx  are horizontal displacements of dampers, ( )tP~  is 

vector of excitation forces ( )0PP ),()(~ tcolt = . 

It is assumed that the damping matrix of the structure has the form as follows: 
KMC κα += . Details concerning the mass and stiffness matrices of structure with 

multiple mass dampers are given in [7]. 

If Lyapunov equation is used to analyse random vibration of structure then it is desired 
to write the equation of motion (5) with a help of state-space variables. Introducing 
symbols 

))(),(( ttcol TT qqz &= ,  )(~)( tt Pp = , (6) 


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= −− CMKM
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A 11 , 



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


−

= −1M
0

B , (7) 

where z(t) denotes the space-state vector we can rewrite (5) in the following form 
)()()( ttt BpAzz +=& , (8) 
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Fig.1. The system with MTMD 

3.Modeling of wind load 

It is assumed that load is the random, stationary process. Thus, the wind pressure in the 
arbitrary point of structure can be described in the following form: 

( ) ( )tuΧUACtP iiAi
2ρ= , (9) 

where: AC  is the aerodynamic drag coefficient, A  is the wind-exposed area, ρ  is air 
density, Χ  is the admittance function and )(tui  are the fluctuations of wind velocity on 
the level of floors. 

Fluctuations of wind velocity are random process and, in this paper, are treated as white 
noise process. Taken into account the spatial correlation of fluctuations of wind velocity 
the matrix of spectral density of fluctuations of wind velocity )(λuS  can be calculated. 
Elements of the matrix )(λuS  are calculated from formula: 

( ) ( ) Φ−= eSSS u
kk

u
ll

u
lk λλ , (10) 

where Φ  denotes the correlation coefficient. In case of white-noise, elements )(λu
llS  

and )(λu
kkS  are independent from λ  and then == 0)( l

u
ll SS λ const, 

== 0)( k
u
kk SS λ const.  
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The relationship between the spectral density matrix of load excited by wind pressure 
and the spectral density matrix of fluctuations of wind velocity is 

uAp ΧUAC SS 22)( ρ= . (11) 

4. Solution to the equation of motion 

Solution to the equation of motion (8) has the following form (see [6]): 

( )( ) ( ) ( ) ττττ dttttttt
t

t
)()()(exp)()()(exp)()(

0

0 ppBAzzAzz −−+−−=− ∫ . (12) 

The stochastic properties of response of randomly loaded structures is fully described by 
covariance matrix )(tZ  and the mean value of response )(tz . Here, the mean value of 
structure displacements is zero because the mean value of excitation is equal zero. The 
covariance matrix is defined as follows:  

)](),([)( ttEt TzzZ = . (13) 
Using the theory presented in [6] the covariance matrix can be calculated from the 
following Lyapunov equation: 

TT tttt BPBAZAZZ )(ˆ)()()( ++=& , (14) 

where )(2)(ˆ tTt PP
(

= and )(tP
(

 is the covariance matrix of excitation forces. Moreover, 

constPt === IPP 0)(ˆ (
. Because wind forces are treated as the white noise random 

process it can be proved that constt == ZZ )(  if ∞→t . In this case the Z  matrix can 
be determined from the following linear algebraic Lyapunov equation: 

0BPBZAAZ =++ TT ˆ , (15) 
and the covariance matrix of structure response Z  is equal the correlation matrix qR . 

5. Results of calculations 

In this section the results of dynamic analysis of the structure using Lyapunov equation 
are discussed. It is considered structure with TMD and MTMD. Additionally, for 
comparison it has been made analysis in a classical way.  

Parameters of building are given in Table 1. Non-dimensional damping coefficients of 
first and second vibration mode are equal 1% of critical damping. TMD (tuned to the 
first mode of vibration) and MTMD (tuned to first three modes of vibration) were 
located on the top floor. Parameters of dampers are shown in Table 2.The mean wind 
velocity i-th floor was calculated from formula: 

( )0* /ln5,2)( zzuzU = ,     kUu )10(* = , (16) 
)10(U  is the mean wind velocity on the altitude 10m, k is the coefficient depended on 

type of area, 0z  is the roughness length and z is altitude. Moreover, the following data 

are used: 3226,1 mkg=ρ , 230)10( smU = , 3,00 =z , 31012 −⋅=k . 
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story mass [kg] stiffness [N/m] 
1 2,83 x105 3,31 x108 

2 - 4 2,76 x105 1,06 x109 
4 - 7 2,76 x105 6,79 x108 

8 - 10 2,76 x105 6,79 x108 
11 – 13 2,76 x105 5,84 x108 
14 - 16 2,76 x105 3,86 x108 
17 – 19 2,76 x105 3,47 x108 

20 2,92 x105 2,29 x108 

number of mode mass [kg] stiffness[N/m] 
TMD 

1 36214 472468 

MTMD 
1 18107 238870 

2 7956 722685 

3 8550 2182386  
          Table 1. Parameters of structure                                  Table 2. Parameters of dampers 
The root mean square of i-th displacement of the structure is calculated from formula: 

qq R=2σ , (17) 
where qR  is i-th element from diagonal of the qR  matrix. Using above formulae the 
analysis of the structure without dampers, with conventional TMD and with MTMD 
were made. The classical method of calculation of root mean square of displacement are 
described in [7] Results of calculation are shown on Fig. 1.  
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Fig. 1. Root mean square of displacements 
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It has been observed that in cases of structure without dampers and structure with TMD 
root mean square of displacements calculated using Lyapunov equation and calculated in 
a classical way are almost the same. 

6. Conclusions 

In this paper the possibility of application of Lyapunov equation to analysis of random 
vibration of structure with tuned mass dampers has been studied. The root mean square 
of displacement of structure were determined. 

The proposed method which use the Lyapunov equation to dynamic analysis of structure 
can be alternative to the classical method of analysis of random vibrations of structures. 
However, currently the proposed method can be used only when wind is treated as the 
white noise process. 
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Abstract 

The paper presents low damped vibrations of a continuous system. Such vibrations are 
present in many structures, and effective elimination method is requested. In the pa-
per, temporal stiffness modification is proposed in order to distribute the energy 
amount different modes of the system (for example to these that are better damped). 
The method is tested with a bridge span numerical model. 
Keywords: Continuous system; low damped vibrations; energy transfer 

Introduction 

The paper concentrates on continuous systems with low damped vibrations. Some alter-
native, effective elimination method is requested, as additional dampers could be techni-
cally difficult to install. Such proposition is presented in the paper. Damping modifica-
tions are discarded, and temporal stiffness fluctuations are introduced in the system. 
Some changes in system’s modal characteristic are indicated and energy transfer is pos-
sible. Energy of low damped vibrations is distributed amount all modes of the modified 
system, i.e. to some higher damped vibrations, too. The higher damped vibrations dissi-
pate their energy and the total system energy is reduced. When system’s initial parame-
ters are recovered, vibrations amplitudes are lower. Additionally, some energy elimina-
tion is associated with deformation of the attached stiffing element. This energy is elimi-
nated quickly, if stiffer vibrations appear after it is disconnected  

To verify the method, a test is performed on numerical model of a planar bridge span 
supported by a cable stay. The span stiffness is low, thus low frequency and low damped 
forms are present in the system’s vibrations. Next, the system is stiffed by addition of an 
additional cable. 

The use of the inter-modes energy transfers was proposed by Diaz and Mukherjee [4, 5]. 
In their flexible truss-like structure, nine additional cables were introduced. The struc-
ture’s modes 1 through 6 was observed, but only 1, 3 and 5 was controlled. Total energy 
in the uncontrolled modes was removed through the process of stiffness switching, i.e. 
by stiffening and releasing the tension in the cables. The other test was related to some 
small, non-structural masses added at strategic locations of the structure. 
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The actual paper is divided in three paragraphs. The first presents the considered struc-
ture as well as a method of its mathematical modelling. The second presents results of 
illustrative tests, done on the structure. The last is devoted for conclusions. 

1. CONSIDERED SYSTEM 

The physical model corresponds to a planar deformable bridge span supported by a cable 
stay (Fig 1.a). The span and the stay are modelled with finite elements (FE). Low discre-
tization is considered, as the paper focuses on physical phenomena and not on span 
modelling precision. The span is discretized by beam elements. Nine elements are used 
(Fig 1.a). The elements’ displacements/deformations are described by nodes’ motions, 
and each of the nodes has two degrees of freedom (vertical and rotational), only. The 
nodes’ longitudinal degrees are locked. The stay is modelled as a tension element. The 
stiffer is an additional tension bar present between the span and its surroundings.  
a) 
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Fig. 1. Considered system: physical model (a), finite elements model (b) 

Nodes’ vertical and angular positions are system’s generalized coordinates. They de-
scribe system’s deformations. Coordinates: 201 qq ÷  describes the span, 21137 ,, qqq de-
scribes the stays. Independent are: 192 qq ÷ . The other are fixed in zero position 
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Fig. 2. Details of the finite elements: translations of the bar element (a); transformation 
between the local and global coordinates (b); displacements of beam element (c) 

The global coordinate system is fixed to the reference body. In local (elements’) coordi-
nates of beam elements, vertical displacements are performed along y2 axis, and rotations 
are about y3 axis. For bar elements, their displacements are along axis y1. Then, if the 
element’s nodes are numbered i and j, the elements coordinates are [1-3]: 
 )()( 626211 jjiibjip qqqqcolqqcol ))))))))

,,,,, == ee qq , (1) 

where:  11, ji qq ))  - bar translation along y1 (Fig. 2a), 22 , ji qq ))  - beam translation along y2 
(Fig. 2c), 66 , ji qq ))  - beam rotation about y3 (Fig. 2c).  
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Symbol ^ denotes coordinate measured in local (element’s) system of coordinates. Sys-
tem loads could be attached in the nodes, only. Their coordinates are: 

 )()( 626211 jjiibjip PPPPcolPPcol
))))))))

,,,, == ee PP  (2) 

where: 
11, ji PP
))  - bar element’s loads (forces) collinear to y1, 22 , ji PP

))  - beam element’s 
loads (forces) collinear to y2,  66 , ji PP

)) - beam element’s loads (torque) collinear to y1. 

If an internal point of the bar element is considered (as point A in Fig. 2a) its displace-
ments are approximated by linear functions. For a beam element, a cubic function is 
imposed. Corresponding shape functions are [1-3]: 
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where: elx1
)=ζ  - point’s relative position. 

Then displacements and velocities of A are obtained if the shape functions are used: 

 eeee qNqN bbAAbbAA qqcolqqcol &))&&))
⋅=⋅= )()()()( 6262 ζζ ˆ,ˆ,ˆ,ˆ . (4) 

Next mass and elasticity matrices are calculated. They are [1-3]: 

- for beam element: 
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- for bar element: 
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Damping matrices are approximated as proportional to mass and elasticity [1-3] 

 eee CAB ˆˆˆ βα += . (7) 

Equations (1÷7) are expressed in element’s coordinate systems. They have to be trans-
formed to the global system. It is identity matrix transformation, if the systems are col-
linear. The case is valid for beam elements. Thus [1-3]: 

 ee qq bb
)

= ;        ee PP bb

)
= ;         ee AA bb

ˆ= ;        ee CC bb
ˆ= ;        ee BB bb

ˆ= . (8) 

For the bar element (Fig. 2b), the transformation matrix is [1-3] 
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And the relation between the local and the global coordinates are [1-3]: 
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ee qΘq ppep ⋅=
) ;  ee PΘP ppep ⋅=

) ;  pep
T
pep ΘAΘA ee ⋅⋅= ˆ ;  

pep
T
pep ΘCΘC ee ⋅⋅= ˆ ;  

pep
T
pep ΘBΘB ee ⋅⋅= ˆ . (10) 

The set of independent elements has to be jointed into the common construction. To 
perform it, vector of nodes’ displacements and vector of nodes’ loads are collected to: 

 )( i
*
c qq col=    ;          )( i

*
c PP col=            :             i=1,2,…,w (11) 

where:  iq  - vector of ith node’s displacements; iP  - vector of ith node’s loads. 

Next, an arrangement of the global matrices *
e

*
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*
e BCA ,,  is performed. For a given ele-

ment, crossing cells of global matrices are selected, for rows and columns with numbers 
matching to the element’s coordinates. Corresponding blocs of local eee BCA ,,  matrices 
are placed in these cells. The other elements are zero. It can be illustrated as [1-3]: 
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In the next step, global matrices of the system are obtained by summing matrices of all 
system’s elements [1-3]: 

 ∑ =
= en

e 1
*
ec AA*   ,      ∑ =

= en
e 1

*
ec CC*   ,        ∑ =

= en
e 1

*
ec BB* . (13) 

where: en - number of elements in the considered system. It equals 10 for initial system 
and 11 for the system with activated stiffer. 

Finally rows and columns corresponding to locked nodes are eliminated from the matri-
ces, and final form of dynamics equations is [1-3] 

 *******
ccccccc PqCqBqA =⋅+⋅+⋅ &&&  (14) 

2. NUMERICAL TESTS 

Presented model has been implemented in MATLAB [6]. Then, modal analyses of the 
system are performed (Table 1) and the lowest damped mode is selected (Fig 3.a). As it 
is presented in the table, the lowest mode is extremely low damped, as the vibration’s 
reduction rate is lower that 0.2 %. Some initial excitation corresponding to the form of 
the mode is introduced and numerical time integrations of the model’s motion are per-
formed. 20 seconds period of integration is proposed. Motions of its selected points are 
presented in Fig 4.a for the system without activation of the stiffer. For a comparison, a 
stiffed system is analyzed in the same conditions. Some additional cable stay is con-
nected to the span at its 7th node vertical displacement. Lowest damped form of vibra-
tions (Table 2) is selected for the stiffed system (Fig. 3.b), and 20 seconds time integra-
tion is performed for it. Motions of a selected point are presented in Fig. 4.c for the 
stiffed system.  
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When the system’s characteristics are determined, the main test is performed for elimi-
nation of the low damped vibrations. The tested period is 20 seconds, again. Twice, the 
stiffing element is connected to the system and twice is disconnected as well. The inte-
gration time points are about: 2 s (for first connection); 8 s (for disconnection); 12 s (for 
second connection); 15 s (for last disconnection). The test results are presented in Fig. 
4.b. To insure smooth transitions between the initial and the stiffed periods, additional 
conditions are set on the transition moments. To avoid any impulsive interactions, the 
stiffer may be connected only if stiffer/span relative velocity is zero. To increase energy 
dissipation, the cable is disconnected in the highest span position (the highest com-
pressed cable).  

Table 1. Lowest damped modes of the initial system 
# real part imaginary part NU(Hz) ksi(%) NU0(Hz) 
1 -6.8780e-02 -3.7075e+01 5.90 0.19 5.90 
2 -1.5377e-01 -5.5448e+01 8.82 0.28 8.82 
3 -7.9407e-01 -1.2602e+02 20.06 0.63 20.06 
4 -2.9401e+00 -2.4247e+02 38.59 1.21 38.59 
5 -7.0918e+00 -3.7654e+02 59.93 1.88 59.94 
6 -1.6434e+01 -5.7308e+02 91.21 2.87 91.25 

 
Table 2. Lowest damped modes of the stiffed system 

# real part imaginary part NU(Hz) ksi(%) NU0(Hz) 
1 -1.1531e-01 -4.8012e+01 7.64 0.24 7.64 
2 -2.1705e-01 -6.5879e+01 10.48 0.33 10.49 
3 -8.6652e-01 -1.3164e+02 20.95 0.66 20.95 
4 -2.9416e+00 -2.4253e+02 38.60 1.21 38.60 
5 -7.1046e+00 -3.7688e+02 59.98 1.88 59.99 
6 -1.6453e+01 -5.7340e+02 91.26 2.87 91.30 
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Fig. 3. Forms of vibrations: lowest damped form of the initial system (a); lowest damped 

form of the stiffed system (b); modal characteristic after recovering initial stiffness (c) 

 
As it is seen in the Fig. 4.b, effective damping was performed for the low damped mode. 
Final amplitudes are in significantly lower in compare to the initial (Fig.4.a) and to the 
locked (fig 4.c) systems. Effective inter modes energy transfers are observed. The initial 
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conditions are compatible with the first (the lowest damped) mode of vibrations. After 
the firs connecting/disconnecting action (the period between 8 s and 12 s) the inter-
modes energy transfer can be observed. Fourier transformation procedure indicated fre-
quencies of three dominant modes (Fig. 3.c). They are: f1= 5.9786 Hz; f2= 8.7684 Hz;  
f3= 20.09676 Hz. They are in closed correlation to free modes indicated by the system‘s 
modal analyses.  
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Fig. 4. System’s time evolution: initial system (a): controlled system (b); stiffed  

system (c) 

3. CONCLUSIONS 

Modal disparity method looks to be an effective active damping method for low damped 
vibrations present in continuous systems. The method can be employed, if technical 
reasons preclude installations of additional damping elements. The energy of unrequited 
vibrations could be easily distributed amount different (including these better damped) 
modes and there the energy could be dissipated. To avoid unsmooth transitions, the 
stiffer connecting and disconnecting moments have to be precisely determined. Future 
test are requires. They should concern about optimal stiffer localization and about pa-
rameters of optimal switching conditions, as well. 
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Abstract 

Multibody modelling of a combustion engine is presented in the paper. The engine’s 
vibrations are of primary interest as well as energy dissipated in the engine’s suspen-
sion. System’s excitation is proportional to engine’s rotational velocity, thus vibra-
tion’s amplitude converges to some constant, non-zero value for high rotational ve-
locities. With the amplitude being constant, suspension’s dissipated energy grows sig-
nificantly with the velocity. A method to reduce the energy is considered in the paper. 
Keywords: Vibrations of combustion engine; forced vibration; energy minimization 

Introduction 

According to significant masses and to nonlinear motions, combustion engine’s elements 
cause significant inertial effects. Neighbour constructions could be affected, and thus the 
engines have to be separated from their surrounding. Elasto-damping suspensions are 
used to fix the engines. They have to be significantly resistant to transmit the engine’s 
inertial effects and stiff to minimize engine’s displacements.  
The elasto-damping suspension and the periodic loads effect in forced vibrations. The 
excitation frequencies and the loads depend on engine’s rotational velocity. When tuning 
the suspension parameters some elementary request is to avoid from a coincidence be-
tween the engine’s rotational velocity and the frequencies of its free vibrations. As the 
engine’s rotational velocity alters within wide range of velocities, the free modes are 
arranged as lower then the lowest work rotational velocity. According to it, suspension’s 
characteristic has to be soft.  
In the engine’s suspension, damping elements prevent against its high vibrations. Their 
role becomes fundamental, if a temporal coincidence is present between the free modes 
and the rotational velocity (during engine’s acceleration). The dampers are active during 
engine’s normal work, too. In [3], the damper’s dissipated energy was evaluated and 
found as significant. As the lonely source of the system’s energy is the engine itself, the 
dissipation reduces the engine’s efficiency. A postulate to reduce the dissipation was 
formulated in [3]. The present paper investigates such elimination by use of segmented 
dampers or gap dampers, where regions of low and high damped motions are present. 
Presented problem is tested by numerical analyses and the tests are presented in the 
paper. Four parts of the presentation are indicated. The first presents multibody model of 
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the combustions engine. In the next fundaments of multibody dynamics are presented. In 
the subsequent, results of numerical test are presented for different models of the main 
damping elements at the suspension. The last part presents conclusions. 
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Fig.  1: Multibody model of the engine: bodies’ and joint’ types (a); bodies’ numbering 

(b); motion of the system (c) 

1. CONSIDERED SYSTEM 

A multibody model [1] of a four pistons, combustion engine is presented in this section 
(Fig. 1). It is composed of 19 rigid bodies. Initial five of them are fictitious, point bodies. 
Together with joints, engine’s mobility (complete) between the sixth body and the sys-
tem reference is modelled. The sixth body models the engine’s base. The used sequence 
of joint mobility is presented in Fig. 1. Translational joints are denoted by T letter. Their 
indexes indicate direction of translation. It is parallel to corresponding axis of the refer-
ence coordinate system. By analogy, rotational joints are denoted by R letter with an 
index. Seventh body models the crankshaft. A joint connecting it with the engine’s base 
is a rotational joint. Its axis is collinear to y axis of the coordinate system (in non-
displaced configuration). Bodies # 8, 11, 14, 17 model connecting-rods. They are con-
nected to the crankshaft by rotational joints. Bodies # 9, 12, 15, 18 model pistons. Re-
maining bodies # 10, 13, 16, 19 are factious, point bodies used to model translational 
motion of the pistons in respect to the engine’s base. The bodies are connected to the 
base by use of shadow-body constrains [1].  

Table 1: Inertia parameters of bodies 
 m Ixx Iyy Izz 
engine’s base 300 20 12 28 
crankshaft 100   6   1   6 
connecting-rods     2   0.007   0.01   0.002 
pistons     4   0.05   0.05   0.04 

 
For details, bodies’ and joints’ numbering is presented in Fig 1.b. Bodies’ sizes are pre-
sented in fig 2.b, and their inertia parameters are presented in Table 1. 
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Three elasto-damping elements are used to connect the reference body and the engine. 
Position of the elements is drawn in Fig. 2.b. The elements are fictitious, point-
condensed elements. In non-loaded configurations their terminal points coincide. Only 
translational deformations are considered for the elements and linear characteristic is 
assumed between the force and the deformation: 
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where: K – stiffness matrix; D – damping matrix; ub – vector of deformations; fb - vec-
tor of forces. 
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Fig. 2: Model’s parameters: positions of elasto-damping elements  

and dimensions of the engine’ base (a); dimensions of engine’s  
interior elements (b); time evolution of engine’s base (c) 

2. DYNAMICS OF MULTIBODY SYSTEM 

Multibody systems are composed of rigid bodies and massless connections (Fig. 3b). 
The system’s reference is motionless. Other bodies (with some exceptions) are mobile, 
have dimensions and inertia properties. Connections are massless, deformable. Struc-
tures resulting from body/joints contacts are called kinematical chains (Fig. 3b). Succes-
sion order is introduced for such structures. The kinematical chain can have closed struc-
ture (Fig. 3b), if the succession leads to a body being its own successor. If not ever one 
of system’s kinematical chains is closed, the system is defined as a tree structure. 
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Fig. 3: A multibody system: interactions acting on body i (a); closed system (b) 

Bodies are numbered in ascending order with zero at reference. A kinematical chain 
connecting body i with the reference exists. It is called reference chain, and its bodies are 
called preceding bodies. Connections are composed of joints and of massless, dimen-
sionless bodies called point bodies. A joint is a restricted connection of translational or 
rotational type, and if linking body i with its directly preceding body, it has number i. 
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Velocities of rotations and of translations are described for bodies’ centres of mass [1]: 

 qA i2, &
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&&&

rr
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&&&&

rr
&& +⋅= qA i1,  , (2) 

where: i2,i1, AA
rr

,  - matrices of vectors; RiRi x ,,
r
&&

r
& ,ω  - reminders free of joint’s accelerations  

For dynamics, bodies are separated by joint cutting procedure and joints are replaced by 
interactions. According to it Newton/Euler dynamics equations [1]: 
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where: m –mass, I - inertia tensor about the mass centre; 0x&&
r - acceleration of the mass 

centre; ωr  - body’s rotational speed; if
r

  - ith force acting on the body (Fig. 3.a); 0it
r  - ith 

torque acting on the body; ir
r  - position vector from the mass centre to ith force attaching. 

Combining the dynamics Eq. (2) with the kinematics Eq. (1), and separating coefficients 
in front of joint’s accelerations, the dynamics equations obtains form [1]: 
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where: q - column matrix of joint displacements; i2,i1, BB
rr

, - square matrices of vectors. 

Then, symbols of successors’ interactions are eliminated. The dynamics Eqs. (3) are 
projected into direction of preceding joint’s axis and they are collected in [1] 

 0,,,),( =++⋅ ),()( tee tfqqQqqFqqM &&&& , (4) 

where: M - mass matrix; F - vector of generalised forces set form centrifugal, gyroscopic 
and Coriolis terms; Q - vector of generalised forces stem form lele tf ,, ,

rr
 ; t - time. 

If closed kinematical chains are present, then loop cutting procedures are used. It results 
in a reference tree structure, in its dynamics equations and in algebraic constraint equa-
tions. The constraints functions are grouped in a matrix [1] and the equations’ differen-
tial part is extended with constraints interactions [2]: 
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where:  h - matrix of constraints; J – Jacobian of constraints; λ - Lagrange multipliers. 

The vector, q, consists of independent coordinates, v, and of dependent ones, u. The 
dependent and the Lagrangian multipliers are eliminated, as in [2]. The final form is: 
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3. NUMERICAL TESTS 

Presented model is implemented in MATLAB [5]. The model is used for numerical 
integrations and time evolution of system’s dissipated power is calculated. Its estimation 
is based on elasto-damping elements’ deformations and is calculated as a scalar product 
of damping forces and velocities of deformations. MATLAB’s standard procedure 
(ode15s) is used for integrations. Integration period corresponds to a singe rotation of the 
crankshaft. Maximal step of integration is limited to 1/750 of the integrations period. 

Calculated energy should correspond to system’s steady-state conditions. They are esti-
mated before the integration. Again a singe crankshaft’s rotation is considered. The 
steady state condition is formulated as identity between initial and final state coordinates 
[5]. The condition depends on 12 parameters, and it is described by 12 nonlinear func-
tions. The system is solved numerically and classical Newton-Raphson’s algorithm is 
employed. Nonlinear equations are linearized about the actual calculation point, and the 
solution of the linear system is calculated. The step is repeated until a neighbourhood of 
zero is obtained. Finite differences are used to obtain simplified numerical linearization.  

The system’s dynamic equations (6) are nonlinear in respect to system’s state coordi-
nates. The mass matrix is non-constant and the vector Q is nonlinear, too. It is confirmed 
in fig 2.c, where time evolution of the base motion is presented for crankshaft rotational 
velocity of 1.25 rot/s. The evolution differs from a harmonic function of rotation fre-
quency. Frequency domain analyses of linear system become non-useful. The system’s 
evolutions have to be obtained by numerical integration of the dynamics equations.  

A set of numerical integrations is performed for velocities from 0.5 to 200 rot/s. In the 
first test, the damping coefficient equals 600 Ns/m. Resulting base displacements are 
presented in Fig 4, where relations between the engine’s velocity and position’s maximal 
changes (conf. Fig 2.c) are presented. 
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Fig. 4: Results of integration: ranges of change in translational motion for low 

rotational velocities (a); dissipated power for low rotational velocities (b); 
ranges of change and dissipated power for high rotational velocities (c) 

Few zones of resonance are observed for low rotational velocities (Fig. 4a). It effects in 
higher dissipated power in the zones. For higher velocities, changes of vertical motions 
are stabilised about 1.19 mm. The other motions decay. The vertical motion becomes 
responsible for significant growth of the dissipated power for higher velocities. The 
power grows parabolically with the velocity and it obtains 2 kW for 200 rot/s.  
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As the dissipated power obtains significant value, the engine’s efficiency is reduced. The 
dissipated power should be reduced for higher rotational velocities. It can be done if a 
clearance is present in dampers. In the next model damping coefficient equals 5 Ns/m 
until damper’s deformations obtain 1.2 mm. Then it switches to 600 Ns/m. New integra-
tion results are presented in Fig. 5. 
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Fig. 5: Results of integration for dampers with clearance: ranges of change for 
low rotational velocities (a); dissipated power for low rotational velocities (b); 

ranges of change and dissipated power for high rotational velocities (c) 

4. CONCLUSIONS 

Multibody modelling looks to be an effective tool for modelling of engine’s vibrations. 
The tests proof that significant damping coefficients are necessary in the suspensions to 
damp vibrations during low rotational velocities. It prevents against significant ampli-
tudes in zones of resonance with the engine’s free vibrations. The damping effects in 
significant dissipated power for high rotational velocities. It reduces engine’s efficiency 
as the energy source is the engine’s power. The dissipated power can be reduced in some 
clearance is present in the dampers and the clearance size is higher that the vertical vi-
brations for high velocities. Some low damping coefficient is necessary for low veloci-
ties to damp system free vibrations (indicated by initial non-equilibrium conditions). 
Performed calculations confirm that it the dissipated power can be reduced from 2 kW to 
16 W only if the dampers with the clearance are introduced to the engine’s suspension. 
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Summary 
This work examines a comparison of acoustic attenuation performance of well known 
Helmholtz resonator and spiral element inserted into circular duct, which creates spiral 
duct. The paper consists results of numerical computations by the use of Finite Element 
Method. Here the spiral is a kind of resonant element, which can be applied in circular 
ducts, mainly for low speed velocity ducts e.g. ventilation, air-conditioning and heat 
systems. Results are presented as a transmission loss. The sound attenuation 
performances of Helmholtz resonator and spiral duct depend on their geometrical 
relationships. The most important observation is that the sound attenuation in both 
solutions are based on similar phisical phenomenon – resonance.  
Keywords: spiral duct, acoustic resonator, sound attenuation. 

1. Introduction 

There is many silencing applications described in world’s famous papers, but authors 
couldn’t find any information about acoustical properties of a spiral element inserted into 
a duct and used for attenuating sounds. That is a good basis to find out what happen 
when we do so. This solution is inspired by an Archimedes’ screw, historically used for 
transferring water from a low-lying body of water into irrigation ditches – Fig. 1. 

 

 
 

Fig.1. Archimedes' screw from Chambers's Encyclopedia  
(Philadelphia: J. B. Lippincott Company, 1875). 

 
Authors expose a different view on this well known and practical solution, presented in 
Fig.1, by using it in acoustical systems [1-4]. It still requires a lot of research work, but 
the work already done can be a great basis to formulate fundamental conclusions. The 
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most important one is that the newly discovered physical phenomenon of a specific 
sound pressure distribution achieved by inserting spiral element into a circular duct 
occurs in similar form in well-known Helmholtz resonator. Despite of fact, that 
construction of both devices is diametrically different. As it is shown in Fig.2 the spiral 
duct can be made as one spiral turn of Archimedes’ screw with a mandrel placed axially. 
Helmholtz resonator [5] is a kind of simple empty chamber (cavity) connected with duct 
by a small branch tube - called a neck.  
 

          
       a)                  b) 
 

Fig. 2. Examples of resonant elements construction as a part of  simple acoustic system 
(circular duct): a) Helmholtz resonator - outside a circular duct; b) spiral element - inside 

a circular duct. 
 
Main difference is that the spiral element is situated inside the duct, and Helmholtz 
resonator stands outside. Whatever, both solutions can be used in series in one acoustic 
system – Fig. 3. 

 
Fig.3. Possible application of Helmholtz resonator and one turn of spiral element inside 

circular duct used in series in simple acoustic system - circular duct. 

2. Simulation 

Finite Element Method (FEM) was used to compute three-dimensional (3D) numerical 
models by the use of time-harmonic analysis in a COMSOL Multiphysics - Acoustics 
Module [6] computer application. All spiral elements were solidly inserted into circular 

Empty chamber 
(cavity) 

    Neck 

Circular duct 

Mandrel 

Spiral lead of one spiral turn 

Circular duct 
Spiral profile 
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ducts and they consisted one spiral turn. The mandrel was placed in axis of each spiral 
element. The circular ducts are straight and each has the same diameter as spirals – see 
Fig. 2 b. 
Helmholtz resonators were calculated for the same resonance frequency as spirals. The 
resonance frequency of Helmholtz resonator, at which it would yield very high 
transmission loss, can be calculated using equation (1) [5]: 

ceq

n
H Vl

S
c=ω     (1) 

 where:  
 leq=ln+tw+1.7rn 
 Sn=πrn

2 
 Vc – cavity volume, 
 tw – thickness of the wall of the propagation circular duct, 
 rn – radius of the neck, 

ln – length of the neck, 
 c – sound speed (343m/s), 
 ωH =2πfH , where fH [Hz] resonance frequency of Helmholtz resonator. 

 
There isn’t such accurate equation for spiral ducts, but authors still work on it. Circular 
duct length is 6,83m and radius is 0,1839m. Geometrical dimensions of resonators are 
presented in Tab. 1. 
 

Helmholtz resonator Spiral duct 
Parameter: Value: Parameter: Value: 
Vc – cavity volume - sphere 3,3188e-4 m3 Spiral lead 0,765m 

R – radius of the sphere 0,04295 m Thickness of the 
spiral profile 0,0147m 

ln – length of the neck 0,05 m Diameter of the 
mandrel 0,0883m 

rn – radius of the neck 0,025 m   
leq=ln+tw+1.7rn 0,0925 m   
Sn=πrn

2 1,9635e-3 m2   
 

Tab.1. Geometrical parameters of Helmholtz resonator and spiral duct. 

3. Results 

The results are shown as the transmission loss (TL) [1,3,5,6]. Calculated resonance 
frequency for investigated resonators fr = 414Hz. Fig. 4 presents a sound pressure level 
(SPL) distribution inside silencing system with resonant elements applied to circular 
duct for the highest value of TL in resonance frequency. There is also shown the shape 
view of SPL distribution in the distance of 0,1m from the end of resonators. 
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a) Helmholtz resonator, 

 
 

                                          
 

b) spiral duct, 
 
 

 
 

   
 

 
Fig.4. Example views of SPL distribution caused by resonant elements in resonance 

frequency fr=414Hz with shape view at the distance of 0,1m from the end of resonators. 
 

0,1m 

0,1m 
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TL of investigated Helmholtz resonator and spiral duct is presented in Fig. 5. Higher 
level of TL in resonance frequency fr, about 65dB, is achieved by the spiral duct, and 
Helmholtz resonator reaches almost 20dB of TL.  
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Fig.5. TL of Helmholtz resonator and spiral duct inside investigated simple acoustic 

system – circular duct; resonance frequency fr = 414Hz. 
 
In this case the spiral duct seems to be better sound attenuator than Helmholtz resonator. 
It is also shown in Fig.5 that the spiral duct attenuates wider range of frequency.  This is 
the most important information for practical applications.  

4. Conclusions 

The spiral duct and Helmholtz resonator can be tuned in frequency band width. That is 
very important property for practical applications of acoustic Band Stop Filters (BSF) in 
e.g. heat, ventilation and air-conditioning systems. The best conclusion is that the new 
type of resonant element has been developed for silencing systems as an alternative 
substitution of Helmholtz resonator – well known acoustic BSF. The frequency bands of 
sound attenuation of the spiral ducts are wider than Helmholtz resonator. However, the 
spiral duct can be applied in large diameter circular ducts silencing systems when 
Helmholtz resonators do not work properly. This is the most important practical 
advantage of the spiral ducts. 
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Summary 

In the paper the problem of optimal choice of the distributed damping force suppressing 
the waves traveling along the cable is considered. For the proposed objective function – 
mean dissipation efficiency - numerical calculations were performed.    
Keywords: cable motion, optimal damping, active methods. 

Introduction  

Cables used in overhead transmission lines and cable-stayed bridges are subjected to 
large vibrations causing fatigue damages of the cable and assemblies. Long cables are 
vulnerable to the aerodynamic disturbances due to the low intrinsic damping. The 
loading process within a span is often imprecisely known through interpretation of 
displacement response. Wave motion and vibrations occur mainly due to vortex 
shedding, rivulet formation, galloping and buffeting.  
Countermeasures proposed to protect cables can be arranged into:   
• Cable surface modifications preventing from the aerodynamic forces induced by 

the air flow 
• Wave energy dissipation methods: 

a) increasing of the cable internal damping, 
b) using the special dampers, damping loops and spacers [2][3][4]. 

In the paper the problem of optimal distributed damping force necessary to suppress the 
waves traveling along the cable is considered.  

1. Waves induced by the distributed load  

CC

 x

q(x,t)

u

L

 

Fig. 1. Distributed force as a source of waves  

The equation of motion of the cable excited by load applied to the segment (Fig. 1) can 
be written in the following form: 
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where µ  is a linear mass density and T is a tension force,  
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The solution of equation (1) without the components dependent on the initial conditions 
can be written in the integral form [11]:  
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where c denotes the velocity of traveling waves equal to Tµ .   
In numerical calculations of energies of the traveling waves will be utilized the 
following expression derived from (3):   
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( , ) 1 ( ( ), ) ( ( ), )
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tu x t q x c t q x c t d
t

∂
= − − τ τ + + − τ τ τ

∂ µ ∫ % %  (4) 

2. Optimal damping distributed force 

The damping segment exerts the resisting distributed force applied to the cable which is 
a source of two secondary waves (Fig. 1): the reflected wave traveling in opposite 
direction to the original wave and the wave that adds to the original wave forming in 
result the transmitted wave.  
It was shown [8] that for the concentrated force the optimization problem can be solved 
exactly. The optimal force takes the opposite direction to the component of velocity 
vector associated with the original wave. The force magnitude is proportional to the 
magnitude of velocity component. The constant of proportionality is equal to the ratio of 
the cable tension to the wave velocity. The maximum value of the dissipated energy is 
equal to the half of the original wave energy.  
In order to increase the damping the similar strategy for the distributed damper force was 
proposed. The damping force is proportional to the component of the cable velocity 
resulting from the motion of the original wave:   

 0 ( , )
( , )

u x t
q x t

t
∂

= −α
∂

 (5) 

The original wave used in numerical simulations was assumed in the form of packet 
wave, described by the expression:  
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 (6) 

where: 0k  - wave number; σ  - packet width parameter. 
This type of wave with amplitude modulation is convenient in modeling of many 
disturbances observed in cables. The original wave at the moment before it reaches the 
damping segment is presented in Fig. 2.  

 
Fig. 2. Original wave before the damping segment 

In order to determine the energy DE  dissipated in the active segment the principle of 
energy conservation can be used: 
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∂∂ = µ + ∂ ∂ ∫  - energy of  the transmitted wave.  

The ratio of  the energy dissipated in the active segment to the energy of the original 
wave is called the dissipation efficiency:  

 D

S

E
E

η =  (8) 
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In the paper [10] the aim of calculations was to find the optimal value of αµ  which 
maximizes the energy dissipated in the active segment. Numerical calculations proved 
benefits of the distributed force damper over the concentrated force damper. When the 
segment is longer than 0.2λ  (where 

0

2
k

πλ = ) the optimal distributed force dissipates 
over 98% of energy of the original wave. With decrease of the segment width the 
maximal efficiency ratio decreases and approaches 0.5, as for the optimal concentrated 
force.  
It is apparent that the length of the active damping segment is limited due to the 
technological restrictions. For a given segment length one should adjust the damping so 
the damper might be efficient in a wide range of the wave length λ  and the packet width 
parameter σ . The optimization problem will be defined using the mean dissipation 
efficiency: 

 
( , , ) ( , )

( )
W d d

d d

η α σ λ σ λ σ λ
η α =

σ λ
∫∫

∫∫
%

%  (9) 

where: ,
L
σ

σ =
L
λ

λ = , α
α =

µ
% . 

The arbitrary weighing function W introduced to the above expression may be related to 
the probability distribution of packet wave arguments or severity of a packet wave with  
parameters given. The aim of calculation is to find the optimal value of α%  which 
maximizes the mean dissipation efficiency given by expression (9).  
 

3. Numerical results 

The Table 1 shows the optimal values of [1 / ]sα%  altogether with the maximal 
dissipation efficiency MAXη  reached for different values of σ  and λ . 

 

Table 1 
 
 1λ =  3λ =  6λ =  

1σ =  80OPTα =%

 
0.995MAXη =

 
71OPTα =% 0.876MAXη =

 
55OPTα =%

 
0.676MAXη =

 
3σ =

 
80OPTα =%

 
0.999MAXη =

 
69OPTα =%

 
0.856MAXη =

 
48OPTα =%

 
0.604MAXη =

 
6σ =

 
80OPTα =%

 
0.999MAXη =

 
68OPTα =%

 
0.854MAXη =

 
47OPTα =%

 
0.596MAXη =

 

 



 257

Assuming the weighing function  W  equal to one optimization of  the following 
function: 

 

6 6

1 1
( , , )

( )
25

d dη α σ λ σ λ
η α =

∫ ∫ %

%  (10) 

 
gave the results: 

  72[1/ ]OPT sα =% , 

  0.906MAXη = . 

 

4. Conclusions 

The active segment damper model intended to suppress the traveling waves motion in 
cables is intuitive and physically motivated. For a given damping segment length when 
the wave length increases the maximal dissipation efficiency decreases (Table 1), 
ranging from 1 (when  0→λ ) to 0.5 (when λ →∞ ).  
The target was to adjust the damper parameter [1/ ]sα%  so the damper could be effective 
in the given ranges of parameters λ  and σ . For the proposed objective function 
illustrative optimizing numerical calculations were performed.     
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Abstract 
In this paper we consider nonlinear traveling waves in a Mooney – Rivlin elastic 

layer. By the procedure of averaging the equations of motions over the width of the 
layer we obtain a system of partial differential equations in one space dimension and 
time. From analysis follows that obtained wave is a solitary wave of transverse stretch. 
 Key words: discontinuous surface, traveling waves, hyperelastic materials 

 
 
We consider the motion of a continuum represented by a set of functions [6]  

( )tXxx αii ,=      where     3,2,1, =αi  (1) 
We assume that the traveling wave is propagating in the half-infinite elastic layer, which 
occupies the material region 01 >X  in the direction of axis 1X . At the frontal area of 
layer 01 =X , the boundary conditions for deformations are given (compare [4]). We 
assume that motion described by equations (2) undergoes without imposing additional 
contact forces at the lateral planes of layer hX ±=2  [8]. 
Motion of the considered traveling wave is assumed as 

( )tXuXx ,1111 +=           ( )tXXXx ,12222 ε+=           33 Xx =  (2) 
The strain 1ε , the gradient of the transversal strain κ  and speeds of the particle of the 
medium 1ν  and 2ν  in both direction of the layer are equal, respectively   

1,11 u=ε        1,2εκ =        ( )tXux ,1111 && ==ν        ( )tXXx ,12222 εν && ==  (3) 
For the assumed motion (2), the deformation gradient and the left Cauchy-Green tensor 
have the form  
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For an incompressible material, there is identity 1det =F , then for the considered 
material ( )( ) 111 21 =++ εε . 
We assume that the layer is made of the Mooney-Rivlin material characterized by the 
strain-energy function  

( ) ( )[ ]33 2211 −+−= ICICW µ  (5) 
where 1I  and 2I  are the invariants of the left Cauchy-Green deformation tensor, 1C  and 

2C  are constitutive constants  and µ  is the shear modulus for infinitesimal deformation. 
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According to [7] or [2] the Cauchy tensor has the form 
( )1

212 −−+−= BBIT CCq µ  (6) 

where q  is an arbitrary hydrostatic pressure. 
The Piola-Kirchhoff tensor RT  may be expressed by the Caychy tensor T   

T
R

−= TFT  (7) 

For deformation gradient (4)1 the equations of motion are reduced to a system of 
equations for the plane strain deformation 

ttRRR uTT ,12,121,11 ρ=+           ttRRR XTT ,222,221,21 ερ=+           03,33 =RT  (8) 
The boundary conditions at the top and bottom surfaces of the layer have the form  

( ) ( ) 0,,,, 31223112 =±=± XhXTXhXT RR  (9) 
In pursuance of averaged procedure for equations of motion over the width of the layer, 
we obtain fundamental equations of traveling waves in Mooney-Rivlin material 
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where Ro ρµν =  is the speed of infinitesimal shear waves. 
The phase ξ  is defined by 

VtX −= 1ξ  (11) 
where V  is the speed of propagation of traveling wave with a constant profile displaced 
along the axis 1X . For the traveling wave with any profile, we express motion as a 
function of one parameter ξ  only 

( ) ( )ξ111 , utXu =           ( ) ( )ξεε 212 , =tX  (12) 
Substituting (11), integrating the equation (10) with respect to ξ , multiplying mutually 
by ξε ,1  and integrating once more we obtain 
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where 22
oV νν =  and 1d  and 2d  are integration constants.  

Multiplying the equations of motion in the form (13) by ( )124 C−ν  and including 1b , 

2b , 1D  and 2D according to [5], we obtain an approximate form  
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Now we introduce the following transformation 

ξζ
h
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(15) 

Apart from a scaling factor, ζ  is just the current configuration coordinate 1X  in terms 
of the phase ξ  and (14) takes the form 
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where 
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In the above equations (16) and (17) 2D  is an argument of F  (compare [4]).  
The phase point is the equilibrium point if 
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Eliminating 2D  and simplifying, we obtain the polynomial equation 
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According to Theorem 1 from [2] (compare[5]), we suppose that a center point for 
function ( )21, DF ε  exists for c11 εε =  (then ( ) 0, 21 =DF cε  and ( ) 0, 21 =′ DF cε ), and we 
can find 1D  and 2D  as functions of c1ε , which determines this center    

( )
( ) ( ) ( )[ ] ( )11

2
1

6
1215

1
1 111

1
1 bbbD ccc

c

+−+−++
+

= εεε
ε

 
(20) 

( ) ( ) ( )[ ]
( )

( ) ( ) ( )[ ]
( )

( )1
2

14
1

2
1

6
121

5
1

6
1

2
1211

2 1
2
1

12
11

1
11 bbbbbD c

c

cc

c

ccc ++
+

++++
+

+
+−++

= ε
ε

εε
ε

εεε

 
Substituting 1D  i 2D  according to (20) (replacing c1ε  by s1ε ), into equation (17) and 
simplifying we receive 
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where 
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1ε  variable aims to s1ε  if ±∞→ζ , the minimal value of 1ε  is 01 >nε . ζ  is just the 
current configuration in terms of the phase ξ  then ( )ζε1  represents solution of single 
traveling wave, for which 01 >sε  is the value of axial stretch in the infinity, however 

01 >nε  is the minimum value of axial stretch aims to the cusp point. If the lateral 
surface of the layer is described by equation ( )11 ε+±= hH , the wave amplitude 1h  is 
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(23) 

and is positive if ns 11 εε > . 

Taking square root, separating variables, integrating and substituting nL 1
2 ετ −=  

equation (21) takes the form 
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in (24) nζ  is the value ζ  for which n11 εε = .  
We assume that both expression (25)2,3 are positive. According to (22) n1ε  corresponds 
with sign plus, and m1ε  with sign minus, then we receive 
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Above expression fulfill condition 011 >− mn εε  if 12 <b . It means that condition 12 <b  
is the necessary condition to existing real solutions for this expression.  
Finally equation (24) after transformation takes the form 

( )

( )











 −
−−















−+

−+−
+

+






















−+

−+−
±=−

φ
β

φ
β

εεφ

εεβ

εεφ

εεβ
φ

β
ζζ

tghartghar
m

m
tghar

m

m
tghar

bm

n

n

n

n
n

11
2

1

11
2

11

11
2

1

11
2

112
2

1

1

1

 

(27) 
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In the square brackets of above expression there are four elements. From analysis 
follows that only first of element of equation (27) have the infinite value and the right 
hand side of expression (27) approach ±∞  as s11 εε → . 
In fig.1 there is a graph of expression (27). From above analysis follows that for 

44,011 −== nεε , nζζ = , however for ±∞→ζ , 5,011 == sεε  (according to 
assumption).  
The graph in fig.1 is in 5,0;44,0−  interval. The deformation values correspond to 
speed smV 5,20=  and constants 335,01 =b and 047,02 =b  (Mooney-Rivlin material). 
Then this is the graph of solitary wave of transverse stretch, which decrease from the 
cusp of wave according to tgh  function (compare [5]).    
 

 
Fig.1.  Graph of nςς −  integral according to (27) in the Mooneya – Rivlina material for OKA-1 rubber 

( 246,1 cmkG=µ , 31190 mkg=ρ ). We assumed 5,01 =sε  however n1ε  (and m1ε  except of 

figure scale) according to (22). For speed smV 5,20=  (broken line), 44,01 −=nε , 335,01 =b , 

047,02 =b  and 49,3=ν . For speed smV 5,17=  (solid line), 24,01 −=nε , 525,01 =b , 

0739,02 =b  and  545,2=ν  
 
In  fig.2.b there is profile of soliton wave corresponding to fig.1 for speed smV 5,20=  
(broken line). Assuming 5,011 == sεε  from ( )( ) 111 21 =++ εε  we have 

( )( ) 115,01 2 =++ ε      ⇒      ( ) 66,01 2 =+ ε  (28) 
if the layer high is h′ , after contraction  

( ) hhh 66,01 2 =+=′ ε      ⇒      hh 32,12 =′   (29) 
Similarly, substituting 44,011 −== nεε , in the place of transverse stretching the high of 
the layer  h′  will be equal hh 57,32 =′ . 
The range of „hump” we calculate from (15). From fig.1 follows, that the graph quickly 
disappeared out of area 10=∆ . For ξ  this is the area 

3
ζξ h

=      ⇒       hhh 77,5
3

10
3

==
∆

=∆
ζξ  

(30) 
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It will be then considerable change of wave thickness h  (comp. (23)), because the wave 
amplitude is ( ) hh 12,15,032,157,31 =⋅−=  and this changes there are in the small area 
equal h77,5 . In fig.2.c there is profile of soliton wave corresponding to fig.1 for speed 

smV 5,17=  (solid line). The layer height after contraction is hh 32,12 =′  (comp. (29)), 
however substituting 24,011 −== nεε , in the place of transverse stretch, the layer height 
is hh 63,22 =′ . The range of „hump” is h77,5=∆ξ  (comp. (30)). If the speed is smaller 
the change of wave thickness h  is smaller too, the wave amplitude is 

( ) hh 655,05,032,163,21 =⋅−= , the changes there are in the area equal h77,5 . 

 
 
Fig.2.  Profiles of solitary waves of transverse stretch for the layer, 5,01 =sε , 10=∆ , the value h′  

according to (28) and (29). (a) reference configuration, (b) for the parameters like in Fig.1 and the 
speed smV 5,20= , (c) for the parameters like in Fig.1 and the speed smV 5,17=   
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Summary 
The paper deals with free vibration analysis of frames made of thin-walled members. The 
investigations are based upon assumptions of classical theory of thin-walled beams of 
non-deformable cross-section. The warping effects are included into the consideration. It 
should be observed that in the vicinity of the nodes the stresses and deformations are in 
inconsistency with these assumptions. To take into account these inconsistencies the 
stiffness and mass matrices of nodes necessary in the finite element method applied are 
determined with aid of the superelement concept.  Some numerical examples related to 
the frame made of I-beams are presented. The frequencies and modes of free vibration 
determined by the method proposed are show and compared with results of the analysis 
carried out by the system NASTRAN and with aid of the classical frame model without 
the warping effect. 
Key words : free vibrations, thin-walled frames, finite element analysis 

Introduction 

Thin-walled frames are widely used in various civil engineering constructions, like 
industrial or shopping halls, island station (umbrella) roofs or high buildings. Such 
constructions consist of many beams, columns, lateral or wind bracings connected in 
nodes. The classical thin-walled beam theory [1] is adopted to carry out the static, 
dynamic and stability finite element analysis of these structures. The stiffness, geometric 
and mass matrices of the beam element are available in many papers (see for example 
[2], [3] and [4]). It should be observed that in vicinity of the nodes or stiffeners the 
stresses and deformations are not in accord with the classical beam theory. To take into 
account theses inconsistency the superelement concept is adopted and necessary stiffness 
and mass  matrices of the node are derived using the unit displacement method. It is 
worthy of noticing that these matrices and in results the warping distribution in the node 
depends on the frame node construction. The free vibration analysis of the frames made 
of thin-walled members of bisymmetric cross-section is presented in the paper.  

1. Node stiffness and mass matrix 

Nodes of thin-walled frames are the most significant elements, where the thin-walled 
beams are connected at different angles. In this case, within one dimensional classic 
beam theory, it is impossible to determine the warping distribution and bimoments as 
internal forces. Since the bimoment is a self-equilibrium internal force there are no 
equilibrium conditions of bimoments in nodes. Moreover, occurrence of significant 
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deformations of cross section is noted, which is in inconsistency with the assumptions of 
the thin walled beam theory – non-deformable cross section. The node  superelement is 
thus a suitable model to take all the effects mentioned into account. Figure 1 illustrate 
typical thin-walled node connecting two I-beam beams. Also the node stiffeners plays an 
important role in the warping distribution phenomena.  
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 zj,wj  xj,uj 

 yj,vj 

ϕyj

ϕzj

ϕyi
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 zi,wi 

 xi,ui  yi,vi 
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 h 

  
Fig. 1. Node superelement, 14 degrees of freedom 

The stiffness matrix of the thin-walled node superelement has been calculated according 
to the common procedure of the unit-enforced displacements where the resultant 14 
reaction forces (example shown in Fig. 2.) for each enforced unit displacement form the 
corresponding column of the stiffness matrix. Herein the axial stretching, bending and 
shearing behaviour of the thin-walled superelement node is coupled with torsional 
performance. 

 

                   
Fig. 2 Example of unit unforced state of two different node type - warping χj = 1 

Discrete displacement field inside the superelement (shell model) can be written as 
= ⋅q P D     (1) 
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where columns of the P matrix are global displacements vector (shell model) for 
fourteen unit unforcement state and can be treated as shape functions, D is the 
superelement node displacement vector. The kinetic energy of the node can be written 
also in discrete form using displacement vector inside the superelement for each unit 
unforcement displacement state 

0.5 0.5T T TT  = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ D P M P D D M D& & & &   (2) 
where M is the consistent mass matrix of the node superelement. It should be note that 
only the masses related to translation displacements are included to the diagonal mass 
matrix M .  

The collaboration length parameter a has been defined to describe the dimension of 
the node superelement (Fig. 1). An appropriate assumption of parameter a is of great 
significance in the node superelement stiffness and mass matrices generating process. A 
small value of parameter a gives over-stiffened matrix coefficients, whereas a bigger 
value of a parameter provides better results. The numerical analysis experience allows to 
recommend the collaboration length as 0.5h < a < h, where h stands for the beam height.   

2. Free vibration analysis - examples 

The free vibration numerical analysis of the frame made of thin-walled I-members 
shown in Fig. 5 is carried out for three different models: 

A) classic beam theory model, the frame is modelled by FEM elements of 12 degrees 
of freedom (6 on each node), with warping effect without node superelement 
(MSC/NASTRAN [5]), 

B) thin-walled elements with node superelement, both the beam and the node 
elements have 14 degrees of freedom with warping effects (Fig. 3.), 

C) shell model, the frame is modelled using the FEM computer system 
MSC/NASTRAN [5]. The QUAD4 four-node shell elements with 24 degrees of 
freedom are implemented (Fig. 4.). 

  node superelement

beam elements

 2 m

4 m 

2 m 

α

α

w 

 α-α θ 

200

300 t= 10 mm 

 X 

 Y 

 
Fig. 3. Frame modelled by thin-walled elements and node superelement 
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X

 Z

 Y

 
Fig. 4. Shell model of the frame, MSC/NASTRAN, QUAD4 elements 

  
Fig. 5. Second eigenmode of the frame n2=32.88 Hz     

Figures 5 shows the second eigenmode of the frame obtained for the model C. 
Comparison of the free vibration frequencies and third eigenmode for three different 
numerical models under consideration is shown in Table 1 and on Fig. 6, 7 and 8. 
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Table 1. First three free vibrations frequencies – comparison of model A and model C 

Model A  Model C 

n1A =7.77 Hz n1C =7.68 Hz 

n2A =17.13 Hz n2C =32.88 

n3A=17.14 Hz n3C =35.79 

 

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.96 

1 

1.04 

1.08 

1.12 

1.16 

 1 
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 2 

 3

    
Fig. 6. First three free vibration relative frequency values vs. relative collaboration length 

parameter a/h (Fig.1.) – comparison of model B and model C 
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 Fig. 7. Third eigenmode - distribution of displacement w along the horizontal beam – comparison 

of three different models 
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Fig. 8. Third eigenmode - distribution of torsion angle θ  along the horizontal beam - comparison 

of three different models 

3. Final conclusions 

The numerical free vibration analysis of the simple frame made of thin-walled  
I-members carried out allows to draw conclusions that the FEM model of the frame 
consisting of the thin-walled members with the node superelements offers the accuracy 
comparable with the most exact detailed FEM model. It should be emphasised that the 
model size of the former is hardly a fraction of the size of the latter. It is worthy noticing 
considerable effect of the warping on the frequencies and eigenmodes of the frame (see 
Table 1 and Figs. 7, 8). Additional numerical analysis, not presented here with respect to 
limited scope of the paper, points out that the bimoment distribution in the node and in 
result the frame behaviour is very sensitive to the node construction.  
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Abstract 
The work presents an analysis of dynamic buckling of a sandwich bar compressed by 
a periodically variable force. In order to determine the stability of the bar transverse 
motion, equations of its transverse vibration were formulated. From the equations of 
motion, differential equations interrelating of the bar dynamic deflection with space 
and time were derived. The partial differential equations were solved using the 
method of separation of variables (Fourier’s method). Then an ordinary differential 
equation (Hill’s equation) describing the bar vibration was solved. An analysis of the 
solution became the basis for determining the regions of sandwich bar motion instabil-
ity. Finally, the critical damping coefficient values at which parametric resonance oc-
curs have been calculated. 
Key words: sandwich bar, stability 

 
Introduction 
 
Sandwich constructions are characterized by light weight and high strength. Such fea-
tures are highly valuable in aviation, building engineering and automotive applications. 
The primary aim of using sandwich constructions is to obtain properly strong and rigid 
structures with vibration damping capacity and good insulating properties. Figure 1 
shows a scheme of a sandwich construction which is composed of two thin facing plates 
and a relatively thick core [4,5]. The core, made of plastic and metal sheet or foil, trans-
fers transverse forces and maintains a constant distance between the plates. Sandwich 
constructions are classified into bars, plates and beams. A major problem in the design of 
sandwich constructions is the assessment of their stability under axial loads causing their 
buckling or folding. The existing methods of calculating such structures are limited to 
the assessment of their stability under loads constant in time [3,5].  
 

There are no studies dealing with the analysis of parametric vibration and dynamic sta-
bility (dynamic buckling). This paper presents a dynamic analysis of a sandwich bar 
compressed by a periodically variable force, assuming that the core is linearly viscoelas-
tic. Differential equations describing the dynamic flexural buckling of bars are derived 
and regions of instability are identified. The dynamic analysis of sandwich constructions 
is of great importance for automotive vehicles and aeroplanes, since most of the loads 
which occur in them have the form of time-dependent forces. 
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Fig. 1. Scheme of sandwich construction 1 – plates, 2 – core. 
 

Dynamic buckling of  a sandwich bar  
 

A simply-supported sandwich bar compressed by time-dependent force F is shown in 
Fig. 2. Force F can be expressed as follows 
 
                                                         ptFFF cos21 +=                                                  (1) 
 
where F1 – constant component of the compressive force, F2 – amplitude of the variable 
component of the compressive force, p –  frequency of variable component F2, t – time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. sandwich bar compressed by force F. 
 

 The cross section of the sandwich bar is shown in Fig. 3. The basis for describing the 
dynamic buckling of the sandwich bar is the differential equation of the sandwich beam 
centre line. The equation can be written as 
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where B –  flexural rigidity of the bar, q – load intensity, k – a coefficient representing 
the influence of the transverse force on the deflection of the bar, S – transverse rigidity 
of the bar. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Cross section of sandwich bar. 
 

In sandwich constructions the core is merely sheared and does not transfer normal 
stresses whereby coefficient k is equal to one (k = 1). 
 

cbcGS 2=                                                       (3) 
 
where b, c – dimensions of the core (Fig. 3), Gc – modulus of rigidity of the core mate-
rial. 
 

Load intensity  q  can be written in the form: 
 

                                       321 qqqq ++=                                                  (4) 
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where µ – unit mass of the sandwich bar, ηr – damping coefficient of the core material. 
 

After substituting equations (5) into differential equation (2) the following differential 
equation is obtained: 
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The above equation is a fourth-order homogeneous equation with time-dependent coeffi-
cients. It was solved by the method of separation of variables (Fourier`s method). The 
solution can be presented in the form of an infinite series: 
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Eigenfunctions Xn(x), satisfying the boundary conditions at the supports of the bar at its 
ends, have the following form: 
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Having substituted equations (7) and (8) into the differential equation (6), one gets the 
following ordinary differential equation describing functions )(tTn : 
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The square of frequency ωon can be expressed as follows: 
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where 

ωo – the natural frequency of vibration of the bar when F1=0, F2= 0, ηr =0. 
 
The square of frequency ωo can be expressed as follows: 
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Differential equation (9) is Hill’s equation in the form [1,2]: 
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( )[ ] .012 2 =−Ω++
•••

nnnn TtfThT                                  (13) 
 

If there is no damping in the core (h=0) and assuming f(t)= 2ψcospt, one gets the follow-
ing classical Mathieu equation: 

( ) 0cos212 =−+
••

nnonn TptT ψω                                         (14) 
 

In order to solve equation (13), a change of variable was made and the solution was 
expressed in the form: 
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In this way a new differential equation for function φn(t) was obtained: 
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Equation (16) is the Mathieu equation without damping. Therefore for the analysis of 
this equation one can use the solution of equation (14), substituting f1(t) for f(t) and Ωn

2-
h2 for ωn

2. 
 

Let us now analyze the stability of the solutions of the differential equation (16), limiting 
the analysis to the first (most important) region of instability.  
By solving of equation (9) the boundary lines of the first region of instability has been 
obtained (Fig. 4.). 
 

In a similar way as in the case without damping the following relations for the boundary 
lines of the first region of instability are obtained: 
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Hence the ‘wedge’ of the first region of instability has the coordinates: 

222 nnwn ξξψ −=  , nwn ξγ 312 −=                               (22) 
Relations (19) and (20) describe the upper and lower boundary line, respectively. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Fig. 4. First region of instability ( 0=nξ , without damping, 0≠nξ , with damping). 

From formula (22) the boundary value of coefficient wnψ  at which parametric resonance 
occurs has been obtained. 
If wnn ψψ < , no parametric resonance arises. It follows from the above that there exist 
compressive force components  F1 and F2  at which the bar does not lose stability. 
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Abstract 
The analysis of dynamic stability of shaft loaded with magnetic tension and axial 
compression has been presented. In order to estimate the stability of radial motion of 
the shaft, the equations of its transverse vibration have been formulated. On the basis 
of equations of motion the differential equations, connecting the dynamic deflection of 
shaft with space and time, have been obtained. Partial differential equations were 
solved by using the method of separation of variables (Fourier’s method). Then the 
ordinary differential equation, describing the vibration of shaft in time, has been 
solved and the characteristic equation has been drawn. The analysis of solution of this 
equation becames the basis for estimating the free vibrations frequency of the shaft. 
Subsequently the critical values of magnetic tension and of axial load have been de-
termined. 
Key words: shaft, stability 

 
Introduction 
 
The problem of estimating the stability of shafts loaded with magnetic tension and axial 
compression is important for example in electrical machines. These machines have small 
values of the air gaps. For that reason, the basis problem occurring in phase of construc-
tion of such machines is to estimate the stability of rotors. The problem of stability of 
shafts bears a relation to their vibrations. It is especially important in case of long shafts 
loaded with axial compression, for example for rotors of motors of deep-well pumps. 
Such pumps operate in deep waters. The rotors of such motors are loaded with large 
forces. 
 

Problems of estimation of stability of transverse motion of rotors are presented in the 
papers [3-6] but the influence of axial compression is not considered there. The theories 
presented in the papers [1] and [2] are based on too much simplified models of rotors 
without taking into consideration a continuous load distribution on the surface of shaft. 
 

Influence of axial compression and magnetic tension on the free vibration frequency has 
been determined in the paper. Solution of this problem allows us to determine the critical 
parameters of magnetic tension or compressive force for which the loss of stability of 
transverse motion of shaft occurs.  
 
1. Dynamic stability of shaft 
 
In order to estimate the dynamic stability of the shaft, it is necessary to arrange the dif-
ferential equations connecting the dynamic deflections of the shaft with space and time. 



 278 

These equations have been derived as in [3]. The force of magnetic tension is continuous 
load on the surface of shaft and is acting in direction of a shaft’s centre deflection.         
A load intensity of the magnetic tension (Fig. 1.) can be described by following        
formula [2]: 
 
                                                            )()( xCyxq =                                                  (1.1) 

 
where: C – coefficient of the magnetic tension, y(x) – deflection of the shaft 
 

The shaft shown in Fig. 1 is loaded with magnetic tension and axial compression. In 
order to simplify the considerations a vertical position of the shaft has been assumed 
(elimination of a dead weight). It agrees with a reality (position of shafts in deep-well 
pumps). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The shaft loaded by magnetic tension and axial compression. 
 
The differential equations of dynamic deflections of the shaft can be obtained on the 
basis of the differential equation of a centre line of a beam. This equation can be intro-
duced in the form: 

                                                                                                
                                         (1.2) 
                                          
 

where: S – flexural rigidity of the shaft, xq – load intensity 

The load intensity xq  can be introduced in the form: 
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  where: xq1 – load intensity taking into account influence of a compressive force F, 

xq2 – load intensity taking into account influence of forces of inertia, xq3 – load inten-
sity taking into account influence of the magnetic tension. 
 
The equation (1.2) can be then introduced in the form: 
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where: 
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                        µ  – unit mass (per unit length) of the shaft section, t – time 
 
Equation (1.4) is a partial differential equation with constant coefficients. It can be 
solved by means of separation of variables method and presented in form of infinite 
series: 
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After a separation of variables and definition of parameter nk  the following equations 
have been obtained: 
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where: nω  denotes the n-order frequency of free vibrations of shaft. 
On the basis of above equations the following formula has been obtained: 
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The equation (1.4) can be introduced in the form: 
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The solution of last equation can be introduced in the form: 
 
          nxCnxCchmxCshmxCX nnnnn cossin 4321 +++=     (1.11) 
 
where: 
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The constants nC1 , nC2 , nC3 , nC4  can be determined on the basis of the boundary 
conditions. On the basis of above conditions the following characteristic equation has 
been obtained: 
 
                                                 0sin)( 22 =+ nlshmlnm                             (1.14) 
 
A solution of above equation can be introduced in the following form: 
 
                                                               πsnl =                                                 (1.15) 
 
where: s is an integer number 
On the basis of above equations the frequency nω  has been expressed: 
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The critical value of the force F can be found as a solution of the following equation 
 

                                                              0=nω                                                       (1.17) 
in the form 
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2. Example of calculations 
 
Calculations of the shaft loaded with a magnetic tension and axial force (Fig. 1) has been 
performed for the following data assumed: 

Frequency nω  has been determined according to formula (16). Figure 2 shows the dia-

gram of frequency nω  against the axial force F, for different values of magnetic tension 
coefficients C. The conclusion which can be drawn from these curves is that the axial 
force has a considerable influence on free vibrations. The increase of this force causes a 
decrease of free vibrations frequency. The influence of the force is stronger for greater 
values of the magnetic tension coefficient C. The point of intersection of the curve with 
the axis of abscissae determines the value of so-called critical force. In the presence of 
this force instability of the shaft occurs. 
 
 
 
 
 
 
 
 
       
 
 
 
 
 
 
 

 
 

Fig. 2. The diagram of natural frequency 1ω  versus axial force F: 1 – C=9,81 MPa, 
2 – C=14,715 MPa, 3 – C=19,62 MPa, 4 – C=24,525 MPa 

 
All the curves shown in Fig. 2 prove that the greatest decrease of the free vibrations 
frequency takes places in the region where the compression forces occur and approach 
the critical value. The diagrams shown in Fig. 2 demonstrate that there exist such a mag-

mlmdMPaE 225 1070105100601.2 −− ×=×=×=
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netic tension called the critical one, at which the frequency of free vibrations of the shaft 
is equal to zero. According to the data from the above example, the critical magnetic 
tension has a value of MPaCcr 57,25= . 
Summarising the considerations, it is necessary to state that the shaft can lose the stabil-
ity of transverse motion when magnetic tension and the compression force take certain 
values. These values are called the critical ones. 
It has to be mentioned that the presented analysis is valid for the case of the shaft with 
undeformable stator. The deformability of the stator will certainly have an influence on 
the decrease of the value of the critical force, due to increase of the load introduced by 
the magnetic forces. 
 
3. Conclusions 
 
The magnetic field (described by the coefficient of magnetic tension C) and the axial 
compression have a great influence on the free vibrations frequency of the shaft. The 
increase of magnetic tension as well as the increase of the axial compression causes the 
decrease of the frequency of free vibrations of the shaft. 
The formula defining the dependence of free vibrations frequency of the shaft on the 
axial compression is a decreasing function. The diagram of this function is a parabola, 
whose axis of symmetry is horizontal. 
There exist a critical magnetic tension and a critical force of compression at which the 
shaft loses stability of the transverse motion. This critical force is relative to the coeffi-
cient tension C. The increase of the coefficient of magnetic tension causes the decrease 
of the critical force. The relation between the critical force and the magnetic tension is 
non-linear. The non-linearity is very significant when the magnetic tension approaches 
its critical value. 
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Abstract 

In the paper, transversal vibration of an annular membrane is studied using analytical 
methods and numerical simulation. The two mathematical models are analysed. The 
first model is treated as a continuous system. The general solution of the free 
vibrations are derived by the Bernoulli-Fourier method and the boundary problem is 
solved. The second model is formulated by using finite element representations. The 
natural frequencies and natural mode shapes of vibration of membrane are determined. 
The FE model is manually tuned to reduce the difference between the natural 
frequencies of the tuned and continuous models, respectively. It is important to note 
that the data presented in the paper is brought the practical advice to design engineers. 
Keywords: annular membrane, transverse vibration, natural frequencies, mode shapes 

Introduction 

The problem of free transverse vibration of isotropic membrane systems is a well –
known problem in structural dynamics. The majority of previous works in the field 
presents solutions for the vibration frequencies of the circular, annular and rectangular 
membrane systems. Fundamental theory of single membrane system is developed in [4]. 
Free transverse vibrations of double – membrane compound system are studied 
analytically in the work [7]. In the paper [5] exact solution for free vibrations of circular 
and annular composite membranes is given by using theory of membrane. The transverse 
vibrations of the non – homogeneous circular and annular membranes have been 
investigated in work [3]. In this paper the free transverse vibrations of an annular 
isotropic membrane system are analyzed using membrane theory and finite element 
technique. The analytical solution is utilized to manual tuning the finite element model 
of the system. This work continues the recent author’s investigations concerning 
transverse vibrations of structures [6]. 

1. Formulation of the problem 

The objective of this work is formulation of a dynamic model of an annular membrane. 
It is assumed that the membrane is thin, homogeneous and perfectly elastic and it has 
constant thickness. The membrane is uniformly tense by adequate constant tensions 
applied at the edges (see Fig. 1). The small vibrations with no damping are considered. 
The partial differential equation of motion for the free transversal vibrations may be 
written in the form [4] 
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Fig. 1. The physical model of an annular membrane 

where ( )trww ,,ϕ=  is the transverse membrane displacement, tr ,,ϕ  are the polar 
coordinates and the time, hba ,, 11  are the membrane dimensions, ρ  is the mass density, 

S  is the uniform constant tension per unit length and hSa2 ρ= . The boundary 
conditions are 

 ( ) ( ) ( ) ( )t2rwtrw0tbw0taw 11 ,,,,,,,,,, πϕϕϕϕ +===  ( 2a, b, c) 

The two mathematical models of a membrane have been analysed.  

2. Free vibration analysis 

2.1. The continuous model 

The first model of the membrane is treated as a continuous system. The Bernoulli – 
Fourier method (separation of variables) is employed to solve the free vibration problem. 
The general solution of equation (1) takes the form [4] 

 ( ) ( ) ( ) tMtLtTtTrWtrw ωωϕϕ sincos,),(,, +==  ( 3a, b) 

where ω  is the natural frequency of the system. Introducing solutions (3) into (1) yields 
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Assuming the solution of equation (4) in the form [4] 
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and introducing it into (4) yields 
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The boundary conditions (2) take the form 
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 ( ) ( ) ( ) ( )πϕϕ 2UU0bR0aR 11 +=== ,,  ( 7a, b, c) 

The general solutions of equations (6) may be written as 

 ( ) ( ) ( ) ( ) ( ) ( )ϕϕϕωω nDnCUarYBarJArR nnnnnnnn cossin, +=+=  ( 8a, b) 

where nJ  and nY  are the Bessel functions of the first and second kinds, respectively. 
The constants nn BA ,  are determined from the boundary conditions. Substituting (8a) 
into the boundary conditions (7) gives 

 ( ) ( ) ( ) ( ) 0abYBabJA0aaYBaaJA 1nn1nn1nn1nn =+=+ ωωωω ,  ( 9a, b) 

For non – trivial solutions of equations (9), the cardinal determinant ot the system 
coefficient matrix must vanish. This gives the following frequency equation 

 ( ) ( ) ( ) ( ) 0aaYabJabYaaJ 1n1n1n1n =− ωωωω  ( 10 ) 

where the roots of equation (10) mnωω =  ( ...,,, 321m = ) are the free frequencies of the 
membrane. The general solution of the free vibrations of an annular membrane may be 
written in the following form  
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are a two linear – independent mode shapes, and 

 ( ) ( )aaJaaYe 1mnn1mnnmn ωω−=  ( 13 ) 

2.2. The finite element model 

The second model is formulated by using the finite element representations. Introducing 
the finite element assumption, it leads to the equations of motion of the membrane that 
may be written in the following form [1] 

 0uKuM =+&&  ( 14 ) 

where M  and K  are, the global mass and global stiffness matrices (made up by proper 
assembly of the element matrices); u&&  and u  are the nodal acceleration and nodal 
displacement vector, respectively. The global mass and stiffness matrices are assembled 
from the element matrices that are given by [1] 
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 ( ) ( ) ( )
( )

( ) ( )
( )∫∫ ==
ee V

eTe

V

eTee dVdV BEBKNNM ,ρ  ( 15 ) 

where ( )eρ  is the mass density coefficient for an element e ; ( )eV is the volume of the 
element e ; N  is the matrix of the element shape functions; B  and E  are, the element 
shape function derivatives, and the elasticity matrices, respectively. The natural 
frequencies of the system may be obtained by solving the eigenvalue problem 

 ( ) 0uMK =− 2ω  ( 16 ) 

where ω  is the natural frequency and u  is the corresponding mode shape vector which 
can be obtained from equation (16). The number of eigenpairs ( ii u,ω ) corresponds the 
number of degree of freedom of the system. The block Lanczos method is employed to 
solve the eigenvalue problem (16) [1]. 

3. Numerical analysis 

Numerical analysis results of the annular membrane free vibration are obtained using the 
models suggested earlier. For each approach, only the first ten natural frequencies and 
mode shapes are discussed and compared for these two models. The parameters 
characterizing the system used in calculations are shown in Table 1. 

Table 1. Parameters characterizing the annular membrane 
a1 [m] b1 [m] h [m] ρ [kg/m3] E [Pa] ν S [N/m] 

0.5 0.1 0.001 7.85⋅103 2.05⋅1011 0.29 1000 

In the table, E  and ν  are, the Young’s modulus of elasticity and Poisson ratio, 
respectively. In this paper the continuous model is considered as exact, compared to the 
finite element model, which is treated as approximation of the precise model. 

3.1. The continuous model 

The natural frequencies are determined from numerical solution of the equation (10). 
The results of the calculation of the natural frequencies are shown in Table 2. 

Table 2. Natural frequencies of the annular membrane system ωmn [Hz] 
 n 

 0 1 2 3 4 5 6 
1 13.7092 15.2172 18.76 22.9736 27.2692 31.5139 35.6973 m 
2 27.9711 28.9403 31.6293     

3.2. The finite element model 

Numerical solution results are presented using the finite element representation. Like 
mentioned earlier, the FE model is treated as approximation of the exact system. The 
quality of the approximation model depends on, the type and density of the mesh, and 
the manner of the apply a distributed tension force. In this work the impact of the apply 
the distributed force manner in the FE models on the quality of the accurate model 
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approximation is analysed. In order to make a comparison of the continuous system 
analysis results with the FE model solution, two finite element models are prepared and 
discussed. 

(a) The first model 

The model consists of the annular membrane divided into 9540 finite elements. The four 
node quadrilateral element (shell63) with six degree of freedom in each node, and with 
the element stiffness option “ Membrane only ” is used to solve the problem. The 
prepared model is shown in Fig. 2. The uniform constant tension per unit length is apply 
to the outer edge by using the FE code system standard procedure. 

   
Fig. 2. Finite element model 

Table 3. Natural frequencies of the system ωmn [Hz] 
 n 

 0 1 2 3 4 5 6 
1 14.331 15.563 18.637 22.542 26.678 30.825 34.928 m 
2 29.138 29.882 32.006     

Table 4. Frequency error εmn [%] 
 n 

 0 1 2 3 4 5 6 
1 4.5356 2.2724 -0.6556 -1.8786 -2.1680 -2.1860 -2.155 m 
2 4.1718 3.2539 1.1909     

The frequency error is expressed as [2] 

 ( ) %100c
mn

c
mn

f
mnmn ⋅−= ωωωε  ( 17 ) 

where f
mnω  and c

mnω  are the natural frequencies of the FE and exact models, 
respectively. The results of the calculation are presented in Tables 3 and 4. The biggest 
difference between the analytical results and FE solution can be visible for the 
frequencies 10ω , 20ω , and 21ω , respectively. 
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(b) The second model 

This dynamic model of the annular membrane is the same as in section 3.2a but the 
constant tension applying is different. To each node lying on the outer edge is imposed a 
concentrated tension force iS . The proper value of the force are selected experimentally 
to minimize the relation defined by the equation (16). The results of the calculation are 
shown in Tables 5 and 6, respectively. The results presented in Table 6 are achieved for 

[ ]N9.6=iS . 

Table 5. Natural frequencies of the system ωmn [Hz] 
 n 

 0 1 2 3 4 5 6 
1 14.26 15.486 18.545 22.43 26.546 30.672 34.755 m 
2 28.994 29.734 31.848     

Table 6. Frequency error εmn [%] 
 n 

 0 1 2 3 4 5 6 
1 4.0177 1.7664 -1.1406 -2.3661 -2.652 -2.6715 -2.6397 m 
2 3.6569 2.7425 0.6914     

The smaller difference between the models are observed for the frequencies 10ω , 20ω  
and 21ω . For the frequencies 12ω , 13ω , 14ω , 15ω  and 16ω , respectively, the frequency 
error grew slight. The biggest frequency error is observed for the frequency 10ω . 
4. Conclusions 
This work deals with the transverse vibrations of an annular isotropic membrane. The free 
vibrations are determined by using the Bernoulli – Fourier and finite element methods. Due to 
space limitation the mode shapes are not presented. The analytical solution is utilized to manual 
tuning the FE model. Such approach permits to determine the proper value of the radial 
concentrated tension force imposed to a nodes lying on the outer edge instead of using the 
distributed constant tension force applied to the edge. To achieve the better fit between the tuned 
FE model and the continuous system, the further research concerning the type and density of the 
mesh are needed. 
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Abstract 

Dynamics of a ball moving in gravitational field and colliding with a moving table is 
considered. The motion of the limiter is assumed as periodic with piecewise constant 
velocity. It is assumed that the table moves up with a constant velocity and then goes 
down with another constant velocity. The Poincaré map describing evolution from an 
impact to the next impact, is derived. Several classes of solutions were computed in 
analytical form. 

Key words: non-smooth dynamics, bouncing ball 

Introduction 

Vibro-impacting systems are very interesting examples of non-smooth and non-linear 
dynamical systems with important technological applications [1]. Dynamics of such 
systems can be extremely complicated due to velocity discontinuity arising upon 
impacts. A very characteristic feature of impacting systems is presence of non-standard 
bifurcations such as border-collisions and grazing impacts appearing in the case of 
motion with low velocity after impact, which often leads to complex chaotic motion [1]. 

The main difficulty with investigating impacting systems is in gluing pre-impact and 
post-impact solutions. More exactly, the problem consists in finding instant of the next 
impact. The Poincaré map, describing evolution from an impact to the next impact, is a 
natural tool to study such systems. In the present paper we investigate motion of a 
material point in a gravitational field colliding with a moving motion-limiting stop. 
Typical example of such dynamical system, related to the Fermi model, is a small ball 
bouncing vertically on a vibrating table. Since evolution between impacts is expressed 
by a very simple formula the motion in this system is easier to analyze than dynamics of 
impact oscillators. It is possible to simplify the problem further assuming a special 
motion of the limiter.  

The paper is organized as follows. In the first Section of this article a one-dimensional 
dynamics of a ball moving in a gravitational field and colliding with a table is 
considered. It is assumed that velocity of the table is piecewise linear. In Section 2 
results of numerical simulations are described while in Section 3 analytical results are 
presented. We discuss our results in the last Section. 
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1. Motion with impacts: a simple motion of the limiter 

We consider motion of a small ball moving vertically in a gravitational field and 
colliding with a moving table, representing unilateral constraints. We shall assume that 
the limiter’s mass is so large that its motion is not affected at impacts. Motion of the ball 
between impacts is described by equation:  

 ,mgxm −=&&  (1) 

where dtdxx /=&  and motion of the limiter is adopted as:  

 ( ) ,tyy =  (2) 

with a known function y . We shall also assume that y  is a continuous function of time. 
Impacts are modeled as follows: 

 ( ) ( ) ,ii yx ττ =  (3a) 

 ( ) ( ) ( ) ( )( ) ,iiii yxRyx ττττ &&&& −−=− −+  (3b) 

where duration of an impact is neglected with respect to time of motion between impacts 
and impacting bodies are considered perfectly rigid. In Eqs. (3) iτ  stands for time of the 

i -th impact while −
ix& , +

ix& are left-sided and right-sided limits of ( )txi&  for it τ→ , res-
pectively, and R  is the coefficient of restitution, 10 <≤ R  [2]. 

Let us consider Eq. (1) for ( )+
+

+∈ 1, iit ττ . General solution of this equation reads: 

 ( ) .
2
1

21
2 ii ctcgttx ++−=  (4) 

Applying to Eq. (4) impact conditions (3) the Poincaré map is obtained [3]: 

 ( ) ( ) ( ) ( ) iiiiiii VTTTTTYTY −+−−= +++ 1
2

11 γγ , (5a) 

 ( ) ( ) ( )111 12 +++ ++−+−= iiiii TYRTTRRVV &γ , (5b) 

where iT , ( )iTY , iV  and γ  are non-dimensional time, position, velocity and 
acceleration, respectively:  

 ( ) ( ) ( ) ( ) ./2,/2,/, 2 gaxgVayTYT iiiiii ωγτωτωτ ==== +&  (6) 

and ω  and a  determine time and length scales. Let us note that in non-dimensional 
units velocity of the table is equal to Y&γ . 

In our previous paper we have assumed limiter’s motion in form ( ) ( )TTY sin=  [3]. This 
choice leads to serious difficulties in solving Eq. (5a) thus making analytical 
investigations of dynamics hardly possible. Accordingly, we have decided to choose the 
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limiter’s periodic motion as simple as possible. Very recently we have adopted a very 
simple motion of the table with piecewise constant velocity: 

 ( ) ( ),1modTTY =  (7) 

and we have performed numerical and analytical computations [4]. This motion of the 
table implies that while the table moves up with a constant velocity, it goes down 
infinitely fast and hence the model is not physical.  

We have decided to investigate dynamics of a ball with a more realistic motion of the 
table. Let us thus assume that the table moves up with a finite constant velocity 1Y&γ  and 
then goes down with a finite constant velocity 2Y&γ . Therefore, displacement of the table 
is the following periodic function of time: 

 ( )
 ( )  

 ( )  
( )10

,
1

1
1

1

,1

<<










−<
−

+−
−
−

<−−
= h

TThfor
h

TT
h

hTTforTT
hTY

 (8) 

with hY 11 =& , ( )hY −−= 112
& , where  x  is the floor function – the largest integer less 

than or equal to x , see Fig. 1 where 8.0=h : 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.5

1.0

                                       T

Y(T)

 
Fig. 1 

2. Computational and analytical results 

Our model consists of Eqs. (5), (8) with control parameters hR ,, γ . Since period of 
motion of the limiter is equal one the map (5), (8) is invariant under the translation 

1+→ ii TT . Accordingly, all impact times iT  are reduced to the unit interval [ ]1,0 . 
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Let us observe first that if all impacts occur at times ( )hTi ,0∈  then all our results 
obtained for the model described by equations (5), (7) [3] are valid with only small 
changes. We only have to take into account that fixed points in the present model have to  

fulfill condition hT <*  and that velocity of the table for hT <<0  is hY γ=1
& . For 

example, there is a manifold of fixed points with one impact per k  periods: 

 ( ) ( ) ( ) ( ) ,,0,,2,1,
1
1, 1/

*
1/1/

* hTk
R
RhkkV kk

cr
k ∈=

+
−

== Kγ  (9) 

and a manifold of fixed points with m  impacts per one period: 

 ( ) ( ) ( )
( ) ( )

( ) ( ) ( )[ ]
( ) ( )

( ) ( ) ,,0,
11

1211,
11
11 /1

1*2

2
/1

1*2

2
/1

m
m

m

m
m

m

m
m

cr T
RR

RRRRRV
RR
RRh τγ ∈

−+
−+++−

=
−+
+−

=  (10) 

with 

 ( )( )
( )( ) .

11
11

m

m

m RR
RRh

−+
+−

=τ  (11) 

Furthermore, condition for initial velocity 1V  and initial time 1T  such that the ball 
chatters – impacts infinite number of times in time interval ( )h,0  – and grazes reads: 

 .
1 1
1 Th

R
hV

−<
−
− γ  (12) 

Analogous condition for infinite number of impacts in time interval ( )1,h  is 

 .
1 1
1 hT

R
hV

−<
−
+ γ  (12) 

It turns out, however, that dynamics is radically different when some impacts occur at 
times ( )hTi ,0∈  and some at times ( )1,hTi ∈ , yet it is still possible to obtain analytical 
results. Let us first consider the case of two impacts with ( )hT ,01 ∈  and ( )1,2 hT ∈ . 
These means also the following conditions must be fulfilled: 1*3* VV = , 11*3* += TT . 
Substituting all these conditions into Eqs.(5), (8) we obtain the set of equations: 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )





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
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γ
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 (13) 
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Since all nonlinear terms in Eq.(13) depend on 12 TT −  only it is useful to introduce new 
variables, namely 1T  and 12 TTX −= . Equations (13), after being expressed in new 
variables, can be simplified resulting in one quadratic equation only in variable X : 

 ( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )2222

2

2

1
1221

1112
0

RRhhhRhhhC
RhhRB

RRhhA
CBXAX

−−−+++−+=

−−−+=

−+−=
=++

γγγγγ

γγ

γ  (14a) 

where 12 TTX −=  and 121 ,, TVV  are expressed by X  
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 (14b) 

Solutions of Eqs.(14) must meet several physical conditions. Variable 1T  must fulfill 
inequality hT << 10  while XTT += 12  must obey 12 << Th . In Fig.2 below 
acceptable values of parameters γ,h  are shown for 85.0=R  

 
Fig. 2 

Blue, black, green and red lines correspond to conditions 01 =T , hT =1 , hT =2  and 
12 =T , respectively. The shaded region in Fig. 2 shows physically acceptable values of 

variables 1T  and 2T . This is, however, only a necessary condition and stability of these 
solutions must be investigated. 
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3. Discussion 

In the present paper we have investigated dynamics of a ball moving vertically in 
gravitational field and colliding with a moving table. Motion of the table has been 
assumed as simple as possible, i.e. periodic with piecewise constant velocity. Motion of 
the table was assumed in a more realistic form than in our previous work [3]: it is 
assumed that the table moves up with a finite constant velocity 1Y&γ  in time interval 
( )h,0  and then goes down with a finite constant velocity 2Y&γ  in time interval ( )1,h .  

The improved model is still simple and we were able to compute several classes of 
solutions in analytical form. In the present paper we have found solutions in analytical 
form for the following modes of dynamics: (1a) one impact per k  periods, (1b) m  
impacts per one period, (1c) infinite number of impacts ending with graze – all in time 
interval ( )h,0 ; (2) infinite number of impacts ending with graze in time interval ( )1,h ; 
(3) one impact in time interval ( )h,0  and one impact in time interval ( )1,h .  

It follows from our results that dynamics is radically different when some impacts occur 
at times ( )hTi ,0∈  and some at times ( )1,hT j ∈  and we are going to study this problem 
in the future. 
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Abstract 
The purpose of the present paper is to consider theoretically damped forced transverse vibrations of an 
elastically connected rectangular double-membrane system. The system is treated as two viscoelastic 
membranes joined by a Kelvin-Voigt viscoelastic layer. Applying the modal expansion method, exact 
analytical solutions of damped forced responses for a simplified model of this system subjected to 
arbitrarily distributed transverse continuous loads are determined in the case of arbitrary magnitude of 
linear viscous damping. Nine possible different solutions obtained are described by the combinations of 
time functions expressing the damped motions for undercritical, critical and overcritical damping cases, 
according to the mutual relations between physical parameters of the system. 

Keywords: double-membrane system, damped vibrations, modal expansion method. 
 
1. Introduction 
 

Paper [1] deals with the damped free transverse vibrations of an elastically connected 
rectangular double-membrane system. In the present paper, the damped forced vibration 
theory of this system subjected to arbitrarily distributed continuous loads is developed, and 
exact analytical general solutions of the problem in the case of arbitrary value of viscous 
damping are formulated [2]. The damped forced vibration analysis for such a system with 
light damping is carried out in work [3]. Next a number of papers [4-12] by Oniszczuk [4-
7], Nizioł [8,9], Kucuk [10,11], and Liu et al. [12] have been devoted to different aspects of 
undamped responses of a double-membrane system. Articles [3-6,8,9,12] have shown an 
interesting feature of the system considered, which allows a double-membrane system to be 
applied as a continuous dynamic vibration absorber (CDVA). In Refs. [13-18], an analysis 
similar to this made here, has been performed for arbitrarily damped analogous complex 
continuous systems of two rectangular plates [13,14], two strings [15,16] and two beams 
[17,18]. Publications [19-20] referring to the vibration theory of a two-degree-of-freedom 
(TDOF) discrete system with viscous damping can also be helpful in present considerations 
because of evident analogy existing between the title system and TDOF one [3,4]. 
 

2. Formulation of the problem       
 
The transverse vibration problem of an elastically connected double-membrane system 
with viscous damping has been exactly formulated in Refs. [1-3]. The investigated 
vibratory system shown in Fig. 1 constitutes a complex two-dimensional continuous 
system modelled as a rectangular three-layered structure which is composed of two 
parallel, homogeneous, uniform, viscoelastic membranes separated by a continuously 
distributed homogeneous Kelvin-Voigt viscoelastic massless layer. As is well known this 
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foundation model being a generalized Winkler one is characterized by two parameters: 
stiffness modulus k and viscous damping coefficient c [3]. Both membranes governed by 
simply supported boundary conditions are uniformly tight by suitable constant tensions 
applied at the edges and subjected to arbitrarily distributed transversal continuous loads.  

 

 
Fig. 1. The physical model of an elastically connected complex rectangular double-membrane system. 

 
According to the Kelvin-Voigt foundation model, the small damped transverse motion of 
an elastically connected double-membrane system due to general loadings is described 
by the following set of two non-homogeneous partial differential equations [1-3]                             

1 1 1 1 1 2 1 1 1 2 1

2 2 2 2 2 1 2 2 2 1 2

( ) ( ) ( , , ),
( ) ( ) ( , , ),

m w c w c w w N w k w w f x y t
m w c w c w w N w k w w f x y t

+ + − − ∆ + − =
+ + − − ∆ + − =

&& & & &

&& & & &
                  (1) 

where ( , , )i iw w x y t=  is the transverse membrane displacement; , ,x y t  are the spatial 
co-ordinates and the time; ( , , )i if f x y t=  is the exciting distributed load; ic  is the 
viscous damping coefficient for the membrane; c, k are the viscous damping coefficient 
and the stiffness modulus of a Kelvin-Voigt viscoelastic layer, respectively; , , ia b h are 
the membrane dimensions; iN  is the uniform constant tension per unit length; iρ is the 
mass density; ,i i im hρ=  2 2 2 2/ / ,i i iw w x w y∆ = ∂ ∂ + ∂ ∂   / ,i iw w t= ∂ ∂&   1, 2.i =  
Simply supported boundary conditions for membranes may be written as  

                       (0, , ) ( , , ) ( ,0, ) ( , , ) 0, 1,2,i i i iw y t w a y t w x t w x b t i= = = = =                (2)  
and initial conditions are presented in the homogeneous form 

( , ,0) 0, ( , ,0) 0, 1,2.i iw x y w x y i= = =&                                (3)  
Eqs. (1) constitute a coupled system of two differential equations, which is difficult to 
solve in a general form. Making certain simplifying assumptions, this system can be 
easily decoupled, which considerably facilitates finding the solutions. Therefore, the 
analysis of this problem is performed for a simplified system variant when the physical 
parameters, namely, the viscous damping coefficients ic , the unit masses im , and the 
tension forces iN  are the same and assumed to be 

, , , 1, 2.i i i i ic C m h m N N iρ= = = = =                               (4) 
It is seen that the membrane parameters ih  and iρ  satisfying the corresponding relation 
(4) can be arbitrary to a certain degree. In the light of the above assumptions, Eqs. (1) 
can be rewritten in the form  
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1 1 1 2 1 1 2 1

2 2 2 1 2 2 1 2

( ) ( ) ( , , ),
( ) ( ) ( , , ).

mw Cw c w w N w k w w f x y t
mw Cw c w w N w k w w f x y t

+ + − − ∆ + − =
+ + − − ∆ + − =

&& & & &

&& & & &
                    (5) 

Introducing the new variables being the principal co-ordinates defined as 
2 2

1 2 1 2
1 1

( , , ) ( , , ), ( , , ) ( , , ), 1,i i i
i i

u x y t w x y t u x y t a w x y t a a
= =

= = = − =∑ ∑           (6) 

allows the decoupling Eqs. (5).The following differential equations are obtained  
1 1 1 1 2 2 2 2 2( , , ), ( 2 ) 2 ( , , ),mu Cu N u F x y t mu C c u N u ku F x y t+ − ∆ = + + − ∆ + =&& & && &     (7) 

where        

 
2 2

1 2 1 2
1 1

( , , ) ( , , ), ( , , ) ( , , ), 1.i i i
i i

F x y t f x y t F x y t a f x y t a a
= =

= = = − =∑ ∑           (8) 

The equations of motion (7) are now uncoupled, and each of them represents the damped 
transverse vibrations of a single membrane. Moreove, the second equation describes the 
oscillations of a membrane resting on viscoelastic foundation. Eqs. (7) are accompanied 
by appropriate transformed boundary conditions (2)  

(0, , ) ( , , ) ( ,0, ) ( , , ) 0, 1,2,i i i iu y t u a y t u x t u x b t i= = = = =                      (9) 
and can be solved independently of each other to find the principal co-ordinates.  
Finally, the unknown solutions of Eqs. (5) can be determined from the relations 

2 2

1 2 1 2
1 1

( , , ) 0,5 ( , , ), ( , , ) 0,5 ( , , ), 1.i i i
i i

w x y t u x y t w x y t a u x y t a a
= =

= = = − =∑ ∑      (10) 
 

3. Solution of the damped forced vibration problem  
 

Damped forced responses of the system due to arbitrarily distributed transverse 
continuous loads are represented by the particular solutions of the governing non-
homogeneous partial differential equations (1). These solutions are formulated after 
solving a derived auxiliary uncoupled set of equations (3). Applying the modal 
expansion method [2,3], their solutions are assumed to be in the form: 

1 1 1 1 1
, 1 , 1 , 1

2 2 2 2 2
, 1 , 1 , 1

( , , ) ( , ) ( ) ( , ) ( ) sin( )sin( ) ( ),

( , , ) ( , ) ( ) ( , ) ( ) sin( )sin( ) ( ),

mn mn mn mn m n mn
m n m n m n

mn mn mn mn m n mn
m n m n m n

u x y t W x y P t W x y P t a x b y P t

u x y t W x y P t W x y P t a x b y P t

∞ ∞ ∞

= = =

∞ ∞ ∞

= = =

= = =

= = =

∑ ∑ ∑

∑ ∑ ∑
(11) 

where 1 ( )mnP t  and 2 ( )mnP t  are the unknown time functions to be determined; 

1 2( , ) ( , ) ( , ) sin( )sin( ),mn mn mn m nW x y W x y W x y a x b y= = =                   (12) 
1 1, ,m na a m b b nπ π− −= =   2 2 2 2 1 2 1 2[( ) ( ) ], , 1, 2,3,...m n m nk a b a m b n m nπ − −= + = + = (13) 

Substituting solutions (11) into Eqs. (7) leads to the following relationships: 
2 1 2 1

1 1 1 1 1 1 2 2 2 2 2 2
, 1 , 1

[ 2 ] , [ 2 ] .mn mn mn mn mn mn mn mn mn mn
m n m n

P h P P W m F P h P P W m Fω ω
∞ ∞

− −

= =

+ + = + + =∑ ∑&& & && &  

Multiplying the above relations by the eigenfunction klW , then integrating them over the 
membrane surface and applying the corresponding orthogonality condition [1-3]  
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0 0 0 0
sin( )sin( ) sin( )sin( ) ,

a b a b

kl mn k m l n klmnW W dxdy a x a x dx b y b y dy dδ= =∫ ∫ ∫ ∫         (14) 

2 2 2

0 0 0 0
sin ( ) sin ( ) 0,25 ,

a b a b

mn m nd W dxdy a x dx b y dy ab= = =∫ ∫ ∫ ∫  

where klmnδ  is the Kronecker delta function: 0klmnδ =  for k m≠ or l n≠ , and 1klmnδ =  
for k m=  and l n= ; one gets the differential equations for unknown time functions  

22 ( ), 1,2, , 1,2,3,...,imn i imn imn imn imnP h P P K t i m nω+ + = = =&& &               (15) 
where    1 1 1

1 2 1 0 00,5 , 0,5( 2 ) , ,h Cm h C c m h h h c m− − −= = + = + =    ,M abm=  
2 2 1 2 2 1 2 2 2 1

1 2 1 0 0, ( 2 ) , 2 ,mn mn mn mn mnNk m Nk k m kmω ω ω ω ω− − −= = + = + =  
1 1

0 0 0 0
( ) ( ) 4 ( , , ) sin( )sin( ) .

a b a b

i m n i m n i m nK t dm F W dx dy M F x y t a x b y dx dy− −= =∫ ∫ ∫ ∫  

Searching for their solutions, three possible cases [2] depending on the values of 
damping coefficients should be considered: 
(1)  Undercritical damping:   i imnh ω< ,  

( )1

0
( ) ( ) sin[ ( )] , 1,2,i

t h t
imn imn imn imnP t K e t d iττ τ τ− −−= Ω Ω − =∫                 (16) 

where            2 2 1/ 2( ) ,imn imn ihωΩ = −  
2 1 2 2 1/ 2

1 ( 0,25 )mn mnNk m C m− −Ω = − ,   2 1 2 2 1/ 2
2 [( 2 ) 0,25( 2 ) ]mn mnNk k m C c m− −Ω = + − + . 

(2)  Critical damping:   i imnh ω= ,  
( )

0
( ) ( ) ( ) , 1, 2.i

t h t
imn imnP t K e t d iττ τ τ− −= − =∫                               (17) 

(3)  Overcritical damping:   i imnh ω> , 
( )1

0
( ) ( ) sinh[ ( )] , 1,2,i

t h t
imn imn imn imnP t K e t d iττ τ τ− −−= Ψ Ψ − =∫                   (18) 

where            2 2 1/ 2( ) ,imn i imnh ωΨ = −  
2 2 2 1 1/ 2

1 (0, 25 )mn mnC m Nk m− −Ψ = − ,   2 2 2 1 1/ 2
2 [0, 25( 2 ) ( 2 ) ]mn mnC c m Nk k m− −Ψ = + − + . 

Setting solutions (10) for the damped forced vibrations of the system                          (19) 
2 2

1
, 1 , 1 1 , 1 1

2 2

2
, 1 , 1 1 , 1 1

( , , ) 0,5 0,5 ( , ) ( ) 0,5 sin( )sin( ) ( ),

( , , ) 0,5 0,5 ( ) 0,5 sin( )sin( ) ( ),

i mn imn m n imn
m n m n i m n i

i i mn imn imn m n imn imn
m n m n i m n i

w x y t u W x y P t a x b y P t

w x y t a u W a P t a x b y a P t

∞ ∞ ∞

= = = = =

∞ ∞ ∞

= = = = =

= = =

= = =

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
 

where 1 1 2 2 1,mn mna a a a= = − = − = the following nine possible cases have to be shown: 
{1} 1 1 2 2, ,kl rsh hω ω< <  when 2 1/ 2 2 1/ 22( ) , [( 2 ) ] 0,5 ,kl rsC Nk m c Nk k m C< < + −       

  
{

}
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1 1
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( )1
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= Ψ Ψ −

+ Ω Ω −
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   (20) 
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{
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   (20) 

{2} 1 1 2 2, ,kl rsh hω ω< =  when 2 1/ 2 2 1/ 22( ) , [( 2 ) ] 0,5 ,kl rsC Nk m c Nk k m C< = + −      
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{3} 1 1 2 2, ,kl rsh hω ω< >  when  2 1/ 2 2 1/ 22( ) , [( 2 ) ] 0,5 ,kl rsC Nk m c Nk k m C< > + −     
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   (22) 

{4} 1 1 2 2, ,kl rsh hω ω= <  when  2 1/ 2 2 1/ 2 2 1/ 22( ) , [( 2 ) ] ( ) ,kl rs klC Nk m c Nk k m Nk m= < + −      
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   (23) 

{5} 1 1 2 2, ,kl rsh hω ω= =  when  2 1/ 2 2 1/ 2 2 1/ 22( ) , [( 2 ) ] ( ) ,kl rs klC Nk m c Nk k m Nk m= = + −    
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1 1
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{6} 1 1 2 2, ,kl rsh hω ω= >  when  2 1/ 2 2 1/ 2 2 1/ 22( ) , [( 2 ) ] ( ) ,kl rs klC Nk m c Nk k m Nk m= > + −       
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{7} 1 1 2 2, ,kl rsh hω ω> <  when  2 1/ 2 2 1/ 22( ) , [( 2 ) ] 0,5 ,kl rsC Nk m c Nk k m C> < + −       
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{8} 1 1 2 2, ,kl rsh hω ω> = when   2 1/ 2 2 1/ 22( ) , [( 2 ) ] 0,5 ,kl rsC Nk m c Nk k m C> = + −   
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{9} 1 1 2 2, ,kl rsh hω ω> >  when  2 1/ 2 2 1/ 22( ) , [( 2 ) ] 0,5 ,kl rsC Nk m c Nk k m C> > + −    
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where  k, l, m, n, r, s =1,2,3,. . In those cases where k, l, r, s =1, the corresponding 

expressions 
1 1

1 1

(...), (...),
k l

m n

− −

= =
∑ ∑  

1 1

1 1

(...), (...)
r s

m n

− −

= =
∑ ∑ must be assumed equal to zero. 

 
4. Conclusions 
 
The paper is concerned with the theoretical analysis of damped forced transverse 
vibrations for a system of two viscoelastic rectangular membranes connected by a 
Kelvin-Voigt viscoelastic layer. This analysis is performed for a certain simplified model 
of the system. Assumed simplifications permit to decouple the governing equations of 
motion, which can be solved by application of the classical modal expansion method. 
Exact analytical solutions for damped forced responses of membranes subjected to 
arbitrarily distributed continuous loads and due to arbitrary viscous damping are 
formulated. It is relevant to note that coefficients shaping the solutions are explicitly 
expressed in terms of the physical parameters characterizing the system. Nine forms of 
solutions obtained are described by the combinations of time functions relating to three 
possible cases resulting from magnitude of damping, which are undercritical, critical and 
overcritical damping. Investigation of all possible solutions of the problem allows a 
better understanding of the vibration phenomena occurring in damped complex 
continuous systems. The forced vibration analysis is of great importance in consideration 
of the possibility of wide engineering applications of a double-membrane system as a 
continuous dynamic vibration absorber (CDVA) [2-5,8,9,12]. 
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Abstract 
In this article, a theoretical undamped torsional vibration analysis of an elastically 
connected double-shaft system is presented. The double-shaft system is one of the 
simplest model of a complex continuous system, which is composed of two 
concentric, cylindrical circular elastic shafts attached together by a Winkler elastic 
layer. The free transverse vibration problem of this system is considered by using the 
separation of variables method. The boundary value and initial-value problems are 
solved. The natural frequencies and natural mode shapes of vibration are determined. 
The free vibrations of an elastically connected double-shaft system are realized by 
synchronous and asynchronous angular displacements.  
Keywords: double-shaft system, torsional vibrations, separation of variables method 

 
1. Introduction 
 
In linear vibration theory of simple continuous systems, an analysis of longitudinal 
vibrations of a straight rod, an analysis of transverse vibrations of a stretched string, and 
an analysis of torsional vibrations of a uniform shaft are all analogous [1-4]. For this 
reason, the partial differential equations of motion describing these three vibration 
problems are similar, and the same mathematical procedures can be used to solve them 
effectively to find free and forced vibrations. In the present paper, the similarity between 
the vibrations of mentioned three simple continuous systems is applied to adopt the 
vibration analysis of an elastically connected complex double-string system [4-7] and 
double-rod system [8-11] for the formulation and solution of the torsional vibration 
problem of an elastically connected double-shaft system [12-18]. The undamped free 
vibrations of this system are analyzed and the complete exact theoretical solutions are 
formulated. It seems that Refs. [19,20] can be helpful in dynamic analysis of the system.  
 
2. Formulation of the problem 
 
The physical model of an elastically connected double-shaft system shown in Fig. 1 
interpreted as a sandwich or layered shaft is represented by a three-layered structure 
consisting of two concentric, cylindrical circular elastic shafts, in which the middle 
cylindrical layer is modelled as a Winkler massless elastic foundation [1,4,5,8]. The both 
shafts of the same length are uniform, homogeneous, isotropic and perfectly elastic. As a 
whole this layered shaft is governed by corresponding fixed-free boundary conditions. 
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The shafts are subjected to external exciting loadings in the form of arbitrarily 
distributed torsional moments. Small undamped vibrations of the system are considered.  

 
 

Fig. 1. The physical model of an elastically connected complex double-shaft system. 
 
The torsional vibrations of a generally loaded double-shaft system are governed by the 
following partial differential equations [4-11]: 

1 1 1 1 1 2 1 2 2 2 2 2 1 2( ) ( , ), ( ) ( , ),I K k m x t I K k m x tϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ′′ ′′− + − = − + − =&& &&    (1)                                                
where  ( , )i i x tϕ ϕ=  is the torsional (angular) displacement of the shaft; ( , )i im m x t=  is 
the external exciting distributed torsional moment applied along the shaft; x, t are the 
spatial co-ordinate and the time; iG  is the Kirchhoff’s shear modulus of elasticity; iJ  is 
the area polar moment of inertia of the shaft cross-section; iK  is the torsional rigidity of 
the shaft;  k is the stiffness modulus of a Winkler elastic layer; l is the shaft length; iρ  is 
the mass density; ,i i iI Jρ= ,i i iK G J=  ,i i tϕ ∂ϕ ∂=&  ,i i xϕ ∂ϕ ∂′ =  1, 2.i =  
The torsional vibrations of shafts are usually analyzed under fundamental homogeneous 
geometrical boundary conditions for clamped (C) and free (F) ends  

1 2 1 2(0, ) (0, ) ( , ) ( , ) 0t t l t l tϕ ϕ ϕ ϕ′ ′= = = =                                  (2) 
Initial conditions for this vibratory system are taken in the general form: 

0 0( ,0) ( ), ( ,0) ( ), 1,2.i i i ix x x x iϕ ϕ ϕ ω= = =&                             (3) 
 

3. Solution of the free vibration problem 
 
The governing equations for undamped free vibrations of the system are the following: 

1 1 1 1 1 2 2 2 2 2 2 1( ) 0, ( ) 0.I K k I K kϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ′′ ′′− + − = − + − =&& &&               (4)                                                
These homogeneous partial differential equations may be solved by the Fourier method 
of separation of variables, for which the general solutions of Eqs (4) are decomposed 
into products of functions of x and t: 

1 1 2 2( , ) ( ) ( ), ( , ) ( ) ( ),x t x T t x t x T tϕ ϕ= Φ = Φ                              (5) 
where 1 ( )xΦ and 2 ( )xΦ  are the unknown functions of the spatial co-ordinate x 
representing natural mode shapes of vibration for shafts, and ( )T t  is the unknown time 
function. By substituting expressions (5) into Eqs. (4), as a result of separation of 
variables, one obtains a set of three ordinary differential equations of second order 

2 2
1 1 1 1 2 2 2 2 2 1( ) 0, ( ) 0K I k k K I k kω ω′′ ′′Φ + − Φ + Φ = Φ + − Φ + Φ = ,          (6) 
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      2 0T Tω+ =&& ,                                                        (7) 
where ω  is the separation constant denoting the natural frequency of the vibrating 
system; ' / , / , 1,2.i id dx T dT dt iΦ = Φ = =&  
It is seen that Eq. (7) is independent of two Eqs. (6), and can be solved without any 
difficulty. Since this equation describes a simple harmonic motion, then its solution has 
the known form 

( ) sin( ) cos ( ).T t A t B tω ω= +                                          (8) 
Eqs. (6) constitute a coupled system of two linear homogeneous differential equations 
with constant coefficients, which can be solved by using the classical method [1,3-5] 
supposing solutions in the form of exponential functions as follows: 

1/ 2
1 2( ) , ( ) , ( 1)ir x ir xx Ce x D e iΦ = Φ = = − ,                          (9) 

where C and D are the arbitrary constants. 
 

Substituting them into Eqs. (6) results in the following system of homogeneous algebraic 
equations:   

2 2 2 2
1 1 2 2[ ( )] 0, [ ( )] 0,K r k I C kD kC K r k I Dω ω+ − − = − + − =         (10) 

for which non-trivial solutions exist in the case when the cardinal determinant of the 
system coefficient matrix is equal to zero. Expanding this determinant yields the 
following characteristic equation: 

4 2 1 2 1 2 2 2 1
1 1 2 2 1 2 1 2 1 2[( ) ( ) ] [ ( )]( ) 0.r I k K I k K r I I k I I K Kω ω ω ω− − −− − + − + − + =    (11) 

 

Since the discriminant of the above biquadratic algebraic equation is positive, then it has 
two distinct real roots 

2 2 1 2 1 2 1 2 1 2
1, 2 1 1 2 2 1 1 2 2

2 1 2 1 2
1 2 1 2 1 2

0,5{[( ) ( ) ] ([( ) ( ) ]

4 ( ) [ ( )]) }.

r I k K I k K I k K I k K

K K I I k I I

ω ω ω ω

ω ω

− − − −

−

= − + − ± − + −

− − +
     (12) 

The roots 2
1r  and 2

2r  are both positive, when 2 2
0ω ω>  ( 2 1 1

0 1 2( )k I Iω − −= + ). Eq. (11) has 
the following four real roots as two pairs of distinct opposite numbers: 

                        1 1 2 2, , , ,sr k k k k= + − + −                                             (13) 
where                

  
2 1 2 1 2 1 2 1 2

1,2 1 1 2 2 1 1 2 2

2 1 2 1 2 1/ 2
1 2 1 2 1 2

{0,5[( ) ( ) ] 0,5([( ) ( ) ]

4 ( ) [ ( )]) } .

k I k K I k K I k K I k K

K K I I k I I

ω ω ω ω

ω ω

− − − −

−

= − + − ± − + −

− − +
 (14) 

 

In view of roots (14), the solutions (9) can be rearranged to a more useful alternative 
form by introducing the trigonometric functions instead of exponential ones.  
 

Finally, the general mode shapes of vibration for shafts can be presented as follows 
4 2 2

1 1
1 1 1

4 2 2 2

2 2 1
1 1 1 1

( ) ( ) [ sin( ) cos( )],

( ) ( ) ( ) [ sin( ) cos( )] ,

s

s

ir x
s i i i i i

s i i

ir x
s i i i i i i i i

s i i i

x C e x A k x B k x

x D e x a x a A k x B k x

= = =

= = = =

Φ = = Φ = +

Φ = = Φ = Φ = +

∑ ∑ ∑

∑ ∑ ∑ ∑
  (15) 
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where         
2 2 1 2 2 1

1 1 2 2 1 2( ) ( ) , 0, 0,i i ia K k k I k k K k k I a aω ω− −= + − = + − > <          (16) 

1 2 1( ) sin( ) cos( ), ( ) ( ) [ sin( ) cos( )].i i i i i i i i i i i i ix A k x B k x x a x a A k x B k xΦ = + Φ = Φ = + (17)    
 

Then the free vibrations (5) of a double-shaft system are described by the expressions  
2 2

1 1
1 1

2 2

2 2
1 1

( , ) ( ) ( ) [ sin( ) cos ( )] [ sin( ) cos( )],

( , ) ( ) ( ) [ sin( ) cos ( )] [ sin( ) cos( )] .

i i i i i
i i

i i i i i i
i i

x t T t x A t B t A k x B k x

x t T t x A t B t a A k x B k x

ϕ ω ω

ϕ ω ω

= =

= =

= Φ = + +

= Φ = + +

∑ ∑

∑ ∑
(18) 

Solving the boundary value problem the unknown constants ,i iA B  are determined. 
Substituting the mode shape functions ( )1 xΦ  and ( )2 xΦ (15) into the transformed 
boundary conditions (2)  

1 2 1 2(0) (0) ( ) ( ) 0l l′ ′Φ = Φ = Φ = Φ =  
gives a set of four homogeneous algebraic equations for the unknown constants 

1 2 1 1 2 20, 0,B B a B a B+ = + =  

1 1 1 2 2 2 1 1 1 1 2 2 2 2cos( ) cos( ) 0, cos( ) cos( ) 0.k A k l k A k l a k A k l a k A k l+ = + =  
For the existence of its non-trivial solutions the cardinal determinant of the coefficient 
matrix of equations must vanish. This necessary condition leads to the following 
characteristic equation: 

cos( ) 0, 1,2.ik l i= =                                                   (19) 
From the above relation the unknown eigenvalues ik  can be calculated as 

1( 0,5) , 1, 2,3,...i in nk k k n l nπ−= = = − =                                (20) 
The frequency equation of a vibration problem considered is obtained by transforming 
the relationship (14) and taking into account (20) 

4 2 1 2 1 2 2 2 1
1 1 2 2 1 2 1 2 1 2[( ) ( ) ] [ ( )]( ) 0.n n n nK k k I K k k I k K K k k K K I Iω ω− − −− + + + + + + =  (21)  

This equation can be presented as     
4 2 2 2 2 2 4

1 2 1 2 0( ) ( ) 0n n n nω ω− Ω +Ω + Ω Ω −Ω = ,                                 (22)  
where 2 2 1( ) ,in i n iK k k I −Ω = +    4 2 2 2 1 2 1

0 10 20 1 2 0( ) , , 1, 2.i ik I I kI i− −Ω = Ω Ω = Ω = =  
Since the discriminant of this biquadratic algebraic equation is positive, then the 
frequency equation (22) has two different, real, positive roots 2

1, 2 nω : 
2 2 2 2 2 2 4 1 2

1,2 1 2 1 2 00,5{( ) [( ) 4 ] },n n n n nω = Ω +Ω Ω −Ω + Ωm      1 2 .n nω ω<              (23) 
Finally, the two infinite sequences of natural frequencies of the system are obtained 

2 2 1 2 1 2 1
1, 2 1 1 2 2 1 1

2 1 2 2 1 2 1/ 2
2 2 1 2 1 2 1 2

0,5{[( ) ( ) ] ([( )

( ) ] 4 ( ) [ ( )]) }.
n n n n

n n n

K k k I K k k I K k k I

K k k I k I I K K k k K K

ω − − −

− −

= + + + +

+ + − + +

m
          (24) 

One can now formulate the time functions (8) and the natural mode shapes (17) 
corresponding to the two sequences of the natural frequencies inω  
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1 2( ) ( ) sin( ), ( ) ( ) sin( ),i n n n i n i n n i n nx x k x x a x a k xΦ = Φ = Φ = Φ =             (25) 
( ) sin ( ) cos( ),in in in in inT t A t B tω ω= +                                        (26) 

where   
2 2 1 2 2 1 2 2 2 2 2 2 1

1 1 2 2 10 1 20 2( ) ( ) ( ) ( ) ,in n in n in n in n ina K k k I k k K k k Iω ω ω ω− − − −= + − = + − = Ω Ω − = Ω Ω − (27)          
1( 0,5) , ( ) sin( ), 1,2, 1,2,3,.... .n n nk n l x k x i nπ−= − Φ = = =  

The mode shapes coefficients  ina  (27) can be presented as follows 

{ }2 2 2 2 2 2 4 1 2
1, 2 10 1 2 1 2 00,5 ( ) [( ) 4 ] ,n n n n na −= Ω Ω −Ω ± Ω −Ω + Ω                       (28) 

1 2 2
1 2 1 2 1 2 10 200, 0, .n n n na a a a I I − −> < = − = −Ω Ω  

It is proved that the coefficient 1na , dependent on lower natural frequency 1nω , is always 
positive while 2na , dependent on higher frequency 2nω , is always negative. 
Finally, the free vibrations of the system considered are described by the following 
formulae:  

2 2

1
1 1 1 1

2 2

2
1 1 1 1

( , ) ( ) ( ) sin( ) [ sin( ) cos ( )],

( , ) ( ) ( ) sin( ) [ sin( ) cos ( )].

n i n n i n i n i n i n
n i n i

n i n i n n i n i n i n i n i n
n i n i

x t x T t k x A t B t

x t x a T t k x a A t B t

ϕ ω ω

ϕ ω ω

∞ ∞

= = = =

∞ ∞

= = = =

= Φ = +

= Φ = +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 (29)                                                

The unknown constants inA  and inB  are determined from the assumed initial conditions 
(3) using the classical orthogonality condition of mode shapes of vibration [1-5] 

0 0
( ) ( ) sin( )sin( ) ,

l l

m n m n mnx x dx k x k x dx cδΦ Φ = =∫ ∫  2 2

0 0
( ) sin ( ) 0,5 ,

l l

n nc x dx k x dx l= Φ = =∫ ∫    

where mnδ  is the Kronecker delta function: 0mnδ =  for m n≠ , and 1mnδ =  for m n= . 
Solving the initial-value problem yields the following formulas making it possible to 
calculate the unknown constants [4,5,8]: 

1
1 1 1 2 10 200

1
2 2 2 1 10 200

1
1 1 2 10 200

1
2 2 1 10 200

( ) [ ( ) ( )]sin( ) ,

( ) [ ( ) ( )] sin( ) ,

[ ( ) ( )] sin( ) ,

[ ( ) ( )] sin( ) ,

l

n n n n n

l

n n n n n

l

n n n n

l

n n n n

A c a x x k x dx

A c a x x k x dx

B c a x x k x dx

B c a x x k x dx

ω ω ω

ω ω ω

ϕ ϕ

ϕ ϕ

−

−

−

−

= −

= −

= −

= −

∫

∫

∫

∫

                       (30) 

where                             1 2 2 1 2 1( ) 0,5( ) .n n n n n nc c a a c a a l= − = − = −  
Free vibration problem of an elastically connected double-shaft system is finally solved. 

 
4. Conclusions 
 
The torsional vibration theory of an elastically connected complex double-shaft system 
is developed. This system is represented by a three-layered structure consisting of two 
concentric, cylindrical, circular, elastic shafts, in which the middle cylindrical layer is 
modelled as a Winkler elastic foundation. The motion of the system is described by a 
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coupled set of two non-homogeneous partial differential equations. The solutions of the 
free vibrations are formulated by the Fourier method of separation of variables. Solving 
the boundary value and initial-value problems the natural frequencies and natural mode 
shapes of vibration are found. The free vibrations of a double-shaft system are realized 
by two kinds of motions: synchronous vibrations ( 1 0na > ) with lower frequencies 1nω  
and asynchronous vibrations ( 2 0na < ) with higher frequencies 2nω  1 2( )n nω ω< . 
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Abstract 
The problem of Lagrange stability of an elastic background excited by undetermined 
variable loads is considered. A discrete model of the background with bounded 
excitations is studied. Applying optimal Lyapunov functions, upper bounds on the 
dynamic response of the background are estimated and interpreted in terms of rough 
sets. The described approach is useful to estimate vibration transmission in ground as 
well as to analyze vibration of a road surface or rail-track loaded by moving vehicles. 
Keywords: dynamic response, elastic background, Lagrange stability, differential 
inclusion, rough set 

 
Introduction 
In road and rail-track engineering it is important to estimate the dynamic response of a 
background on variable loads due to moving vehicles. This enables to optimize the 
structural parameters at the design stage, in order to minimize undesired vibration of 
ground, road surface or rail tracks. To achieve this goal appropriate models of the 
background have to be applied.  In modeling vehicle dynamics usually a simplified static 
background model composed of independent mass-less Winkler springs is applied as a 
functional part of the extended dynamical model of a vehicle suspension. The Winkler 
spring model is convenient but adequate to represent only soil support. More accurate 
description of a background composed of various materials such as sand or stones 
requires a dynamical model of the background.  
Another drawback of a typical approach to the dynamical response of a background is 
that the response is usually calculated numerically for a particular excitation e.g. caused 
by a vehicle of a determined mass and velocity. However, since real loads are rarely 
uniquely determined, computer simulations are ineffective for studying such a model. To 
describe the system dynamics, undetermined excitations have to be included into the 
model and differential inclusions have to be applied instead of differential equations.  
The main aim of this work is to solve the problem of Lagrange stability of a dynamical 
model of the background composed of interacting linear oscillators excited by 
undetermined bounded forces. There are some algebraic methods of theoretical 
qualitative analysis of such models [1]. In this work the analytical method of optimal 
Lyapunov functions is applied [2]. Assuming different types of non-stationary loads and 
applying appropriate differential inequalities, upper bounds on the dynamic response of 
the background are estimated and interpreted in terms of rough sets [2]. The described 
approach is useful to predict vibration of ground, road surface or rail-tracks loaded by 
moving road vehicles or trains.  
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1. A discrete model of the elastic background 
A background as a physical object is usually a continuous dynamical system that can be 
modeled by partial differential equations. To build such a model it is necessary to have   
a detailed physical description of the background. However, in concrete situations we 
usually want only to estimate the dynamical response of the background on a class of 
exciting loads. Therefore it is convenient both from the theoretical and practical point of 
view to apply a discrete simplified phenomenological model that is independent on 
details of the physical nature of the background. In such a case parameters of the model 
have to be empirically identified. 
In the physical model considered in this work, a horizontal background (e.g. a segment 
of the road surface or rail track) is divided into finite elements of the same length d and 
mass m. Each element, interacting with a rigid base and with fixed neighboring elements, 
can oscillate vertically. This means that the elastic background is modeled by the set of 
linear oscillators (representing subsequent finite elements of mass m) with attenuation P 
and stiffness coefficients Q, R, as is shown in Fig.1.  

 
Fig.1. The block scheme of the normalized model of the background 

It follows from the above assumptions that the dynamics of the background can be 
described by the following set of normalized equations:  

            ),()(2 121111 tzxxrqxxpx =−+++ &&&  
              ),()()(2 21232222 tzxxrxxrqxxpx =−+−+++ &&&  

……………....……………………………………………….                         (1) 
              ),()()(2 1211111 tzxxrxxrqxxpx nnnnnnnn −−−−−−− =−+−+++ &&&  
              )()(2 1 tzxxrqxxpx nnnnnn =−+++ −&&& , 

where p = P/m, q = Q/m, r = R/m and the time dependent excitations  zi = Zi/m, i=1,…,n  
of the corresponding oscillators represent non-stationary loads of the background. Since 
the loads are usually due to moving vehicles, it is rational to assume that the excitations 
are bounded i.e. there is an upper bound α > 0 such that ,)(  )( 0 α≤>∀ tztt i for 

ni ,...,2,1= . In other words the following relation should be satisfied. 

m mm 
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R R RR
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≥ 444 3444 21 L αααz .            (2) 

Furthermore, since the excitations are usually unpredictable or undetermined exactly, the 
model (1) is in fact described by the corresponding set of differential inclusions that can 
be represented by the following more convenient matrix form [2]: 

)},(),...,(:{ 111 αZzzzz nnn ∈=+++∈ zBBAxx L&                         (3) 

where T
11 ],,...,,[ nn yyyy &&=x is the state vector of the system and the matrix A and 

linearly independent vectors Bi, i = 1,…, n  are given by the following formulas:  
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           .,...,2,1,],0,...,,0,,0[ T
21 niniiii == δδδB                                (5) 

The main aim of this work is to deduce certain dynamical properties of the model and 
particularly estimate its response to undetermined excitations z. 
 
2. Stability analysis of the model 

Let us consider the problem of Lagrange stability of the model (3). Since the matrix A of 
the model is stable, there exist a positive definite matrix S such that the stability index  

][sup  sup)( T

1
T

T
0 SAxx

Sxx
SAxxS

Sx0x =≠
−=












−=γ                                (6) 

is positive. Appropriate matrices S can be taken as solutions of the matrix Lyapunov 
equation QSASA −=+T  for any positive definite matrix Q. The condition 

0)(0 >Sγ  means that the norm Sxxx S
T= of any solution x(t) of the equation 
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Axx =& decreases exponentially with the index )(0 Sγ . This obviously means that the 
system (3) without excitations is globally asymptotically (exponentially) stable. 

However, once the excitations are included into the model, it loses asymptotical stability. 
In such a case one can expect convergence of all system trajectories to a neighborhood X 
of the origin. In particular, any trajectory starting from X remains in X for any time i.e. X 
is the region of Lagrange stability of the system. It is clear that X can be interpreted as an 
estimate of the system response to the undetermined excitations z. 

In order to justify the above hypothesis and provide an estimate of the region X let us 
apply the second method of Lyapunov of stability analysis. It is easy to deduce that the 
stability index of the non-stationary system (3) should be calculated as follows [1], [2]: 
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Let us reformulate the above optimality principle to the more convenient form, namely: 
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where ,,...,1  ,2/ nizw ii =−= α  [ ] },...,1  ,2/  :...,{)( 1 niwwwW in =≤== αα w . 
If all the transformed excitations wi are assumed to be independent, then it follows from 
the above optimality criterion that the anti-optimal excitations are of the form: 

 ( ) ][2)(ˆ TSxBx ii signw ⋅= α .                                                  (9) 

Putting (9) into (8) one can obtain the following final formula for the stability index  
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It can be noticed that the index (10) is a continuous and non-increasing function of the 
parameter ε = α/2c (see e.g. [1]). It is also clear that 0)()( 0 >→ SS γεγ ,  as 

0→ε  (and −∞→)( εγ ,S  as +∞→ε ). Therefore, there is a unique critical value 
)(crcr Sεε = such that ,0)0( =,Sγ and 0)( >εγ ,S (<0) for all crεε < ( crεε > ). It is 

clear that the critical parameter c determines the radius of the stability ellipsoid 
}{)( ccX <= SS x  in the state space. Indeed, it follows from the necessary and 

sufficient stability condition )(cr Sεε < that the maximal radius c is equal to  
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)(2
)(

cr
max S

S
ε

α
=c .                                                     (11) 

This means that any trajectory x(t) of the system starting from the point 
)( max0 cXSx ∉ (or )( max0 cXSx ∈ ) converges to (remains in) )( maxcXS . Thus the 

ellipsoid )( maxcXS  is the estimate of the Lagrange stability region of the system.  

In order to obtain a useful estimate of the stability region let us apply the following 
estimate of the stability index (10) 
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The sufficient condition of stability 0),(~ >cSγ  leads to the following estimate 
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The system (3) is stable (in the sense of Lagrange) in the ellipsoid )~( maxcXS .  

Example Let us apply to the analysis the regular Lyapunov function of the matrix 
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satisfying the following (Malkin) equation [2]: 
SSASA p2T −=+ .                                                  (15) 

In the sub-critical case q>p2 and sufficiently small parameter r the matrix (14) is positive 
definite and represents a regular Lyapunov function of the system (3). Then the stability 
condition 0),(~ >cSγ  gives the following estimate of the Lagrange stability region 
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It is important to note that estimate (16) is valid for independent (uncorrelated) 
excitations z = [z1,…, zn ]. If the correlation (usually observed in the case of long railway 
vehicles) is taken into account, then better estimate can be obtained, namely: 

                   n
pp

c n
ααα =++=≤ )...(),( 1max SS BBSx .                        (17) 

Moreover, it is clear that estimate (16) is also applicable when only j<n excitations are 
active (≠0) at each time instant. This is usually the case for railway vehicles or relatively 
small car traffic. Then the discrete function  f(j) = j/n for  ),,[ 1 jj cc −∈Sx  

)0( ,,...,1 0 == cnj  is simply the membership function representing the rough 
boundary of the Lagrange stability region of the system [2]. 
 
Conclusions 
The results obtained in this work enable to estimate dynamical response of an elastic 
background excited by any undetermined and bounded loads e.g. those induced by 
moving vehicles. Moreover, the estimates (16), (17) can be easily generalized to the case 
of different bounds nαα ,...,1 for the corresponding excitations .,...,1 , nizi =  It is also 
easy to take into account square geometric nonlinearities of the ground reaction. 

It is interesting to continue the presented qualitative approach to study resonance 
conditions for the elastic background loaded by moving vehicles. Since anti-optimal 
excitations (9) are bang-bang, the system (3) is a piece-wise linear system. It is easy to 
see that if the system (background) vibrates with an eigen-frequency ωl, then the 
excitations (9) vibrate with the same frequency i.e. they ensure the resonance conditions.  
Such excitations can be induced for example by a multi-axis long (e.g. railway) vehicle 
moving with a critical speed. Indeed, if the distance between subsequent wheels of the 
vehicle coincides with the length of k finite elements in the model, then the critical speed 
of the vehicle coinciding with the ωl – resonance is equal to vl = kdωl/2π.  

There is the question of identification of the parameters p, q, r. It can be carried out 
independently or together with verification of the vehicle models in real circumstances.  
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Abstract 
Pneumatic suspensions, because of their significant advantages in comparison to 
classical suspension systems containing mechanical springs and hydraulic attenuators, 
are widely applied in road and railway vehicles. They also seem to be applicable in 
airplanes due to their advantageous impact properties. 
In this paper a simple one-wheel dynamical model of the pneumatic suspension is 
described. Impact properties of the model are studied in the context of the application 
in airplanes. Results of theoretical analysis and computer simulations are presented 
and compared with experimental data. 
Keywords: impact response, pneumatic suspension 

 
Introduction 
Pneumatic suspensions of vehicles have significant advantages in comparison to 
classical suspension systems containing steel strings and hydraulic attenuators. Easily 
adjusted pneumatic devices make it possible to adopt a vehicle suspension to various 
loads, changing external conditions or user’s specific expectations. That is why 
pneumatic suspensions have been widely applied in lorries and railway vehicles since 
many years [1], [2]. Recently, pneumatic suspension systems with control are installed in 
modern cars. They also seem to be applicable in airplanes. However, there are no 
detailed descriptions of models, theories and experimental data in this subject in the 
available literature. 

Modern pneumatic suspensions are usually complex systems composed of air springs, 
controlled valves and a compressor. An appropriate control algorithm ensures effective 
reduction of vibration caused by stationary excitations and enables to achieve optimal 
compromise between the vehicle stability and the user’s comfort. However, one of the 
important features of pneumatic devices is that a single pneumatic component without 
control can play the role of a spring and an attenuator simultaneously. This can be 
achieved for example in an open–cylinder–pneumatic (OCP) device. The typical OCP 
device is composed of a cylinder, piston and nozzle, as is shown in Fig.1. The working 
gas (air) compressed by the moving piston causes a nonlinear relation between the 
displacement of the piston and the reaction force due to the changing gas pressure while 
the gas flow through the nozzle ensures energy dissipation.  

It is clear that an OCP device alone, without a compressor and controlled valves, cannot 
be applied in suspensions of road vehicles or trains. However, simplicity, reliability and 
relatively small weight of OCP devices as well as their specific dynamical properties 
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(e.g. hardening stiffness characteristics) cause that they are an attractive alternative for 
steel springs and hydraulic attenuators as the main components of airplane suspensions. 

In this paper a simple one-wheel dynamical model of the pneumatic suspension with an 
OCP device is described. Impact properties of the model are studied in the context of the 
application in airplanes. Results of theoretical analysis and computer simulations are 
presented and compared with experimental data. 
 
1. A model of a one-wheel OCP suspension 

Let us consider the open-cylinder-pneumatic device composed of a cylinder, piston and 
nozzle as is shown in figure 1. In order to study impulse properties of the device as the 
main component of the pneumatic suspension of an airplane, we assume that a mass m 
(representing the half body of the landing airplane) fall down with the speed v0 on the 
piston leader. This initializes compression of the working gas (air) in the cylinder and 
gas flow through the nozzle. Since the gas compression is rapid and the impulse 
response of the device is of our interest, it is justified to assume the adiabatic (or in 
general polytropic) process in the physical model of the described device. 

         
Fig.1. The setup of the open-cylinder-pneumatic device 

To describe the dynamics of the device let us also introduce the following notations: 

V0, V – initial and actual cylinder volume, S – section area of the cylinder, 
n0, n –  initial and actual mol gas contents in the cylinder, h, y – initial and actual 
position of the piston (V0=hS, V= yS), x – piston displacement (x = h – y), v0, v = y&  – 
initial and actual velocity of the piston, p0, p – atmospheric pressure and actual gas 
pressure in the cylinder, T0, T – ambient temperature and temperature in the cylinder 
(0K), η – fixed conductance coefficient of the gas flow through the nozzle. 
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The system dynamics can be described in terms of the four time dependent functions, 
namely: x, p, n, T. Appropriate equations (algebraic and differential) deduced directly 
from the assumptions and physical reasons are listed below. 

The equations of motion of the falling mass:  
                  ,)( 0 Sppmgxm −−=&&                                                 (1) 

The equation of the gas flow 
                        dn/dt =  −η⋅(p – p0)                                                            (2) 

The state equation for the ideal gas 
                              pV = nRT,                                                                   (3) 

The equation of polytropy (with the exponent κ >1) 
                            const=κpV ,                                                               (4) 

Equation (1), describing the motion of the mass m, is a consequence of the second 
Newton’s dynamical principle.  The two main forces are taken into account, namely: 
gravitation and the force caused by the gas pressure. Equation (2) is based on the 
assumption that of the gas flow is proportional to the difference between the  pressure in 
the cylinder and the atmospheric pressure. This means that nonlinear effects (e.g. 
turbulences of the gas flow) are neglected in this model. Moreover, air is assumed to be 
the ideal gas (Equation (3)) and the general polytorpic process of the gas compression 
with the exponent κ > 1 is assumed (Equation (4)).  

Taking into account the gas flow one can easily obtain the following equations 
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The above equations can be finally simplified to the following dynamical model: 
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The non-linear system of differential equations (7), uniquely determined by four 
parameters (8), is the dynamical model of the pneumatic suspension under consideration. 
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2. Qualitative analysis of the model 

The system of differential equations (7) is interesting from the theoretical viewpoint but 
difficult to solve and analyze because of the transcendent non-linearity with the 
exponent )2,1(∈κ . In particular solutions of (7) cannot be found exactly. However, it is 
possible to prove certain basic features of the model without solving (7) coinciding with 
rational predictions based on physical considerations. 

First of all, let us notice that the initial acceleration of the piston )0(y&& is equal to  –g. 
However, since the gas pressure p tends to infinity as 0→y and η=0, there must exist a 
minimal piston position ymin>0 at which the sign of the piston speed changes. Similarly, 
there must exist the maximal piston position ymax achievable after the piston reverse. 

Rational and physical reasons indicate three types of impulse responses of the pneumatic 
suspension based on the OCP device for different flow conductance η of the nozzle, as is 
shown in Fig.2.  

 
Fig.2. Typical impact responses of the pneumatic suspension 

 
For higher nozzle conductance (η  = η1 ) the pressure of the compressed gas in the 
cylinder cannot increase significantly (too soft reaction), to ensure a considerable inverse 
response. Therefore the piston tends monotonically to its lowest position (x=h or y=0). 
Conversely, for lower conductance (η  = η3 ) the gas flow is too small to change 
significantly the qualitative properties of the impulse process of the OCP device in 
comparison to a closed cylinder pneumatic device (CPD) (i.e. air spring). This results in 
an undesired inverse response (due to the quickly hardening characteristics of the device) 
exciding the height h representing the initial piston position (too hard reaction).  

It is clear that there is a catastrophic change (bifurcation) of qualitative properties of the 
impulse response (of the type 1 and 2) for certain critical value ),(* 21 ηηη ∈ . In order 
to satisfy basic requirements ymin >0,  ymax < h and achieve significant energy dissipation, 
certain optimal intermediate value of the conductance η > η∗ has to be chosen.  
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3. Mathematical analysis of the model 
The impact response of the model can be studied without the knowledge of general 
solution to (7). Indeed, it is easy to derive from (7) the following approximate form of 
the impact response of the system: 
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The higher order terms in (9) with the coefficients D, E (that are due to the mechanical 
reaction of compressed air in the cylinder) are sufficient to describe basic qualitative 
properties of the pneumatic device under study.   
It is obvious that for sufficiently small values of the parameter η, namely for  
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the coefficient E is negative and the response of the system is of the form 3 in Fig.2. 
Similarly, for sufficiently largeη the response (9) is of form (1) in Fig.2. The occurrence 
of the wavy response of form 2 is dependent on the existence of positive squares of the 
following third order equation: 

0
6
1

2
1)( 32

0 =−+−−= EtDtgtvty& .                                    (13) 

It is clear that the two positive squares of (13) correspond to ymin, ymax and can be 
analytically derived. Similarly, the catastrophic value *η  (for which the qualitative 
change 1 => 2 occurs) can be determined from the condition ymin= ymax. 

Having in mind practical applications of the described device, it is also important to 
determine maximal acceleration of the falling mass m. Since the transient acceleration is 
given by the following formula: 
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it reaches its maximal value 0
2

2
max >+−=

E
Dgy&&  for 

E
Dt = . It is clear that the 

maximal acceleration should be as small as possible. Therefore, in designing of OCP 
devices and their parametric optimizations it can be applied the criterion of minimizing 
the acceleration peak with constraints ymin >0 and ymax<h.  
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4. Experiments and Computer simulation of the impact response 

In order to verify results of qualitative and theoretical analysis the model of a real OCP 
device with the parameters: h=0.25[m], S=π (0.065[m])2/4, the nozzle of adjusted 
conductance η > 0 and the mass m=15 [kg] falling from the height of 0.5[m] has been 
considered.  On this basis the parameters a, b, c, d of the model have been calculated.   

Computer simulations have been carried out. It has been proved that an appropriate 
choice of the parameters κ, η enables to obtain the results of simulations coinciding with 
empirical data (for example about 0.2m maximal piston displacement reached in 0.15s 
after the beginning of the impact) obtained from laboratory experiments with the real 
OCP device. In particular, the thermodynamic parameters κ = 1.4, corresponding 
to adiabatic gas process, has proved to be optimal. 
 
5. Conclusions 

The described mathematical model of the OCP device renders with an acceptable 
accuracy the impact response of the real pneumatic device with respect to its quantitative 
properties while qualitative properties of the device have proved to be suitable for 
application in modern airplane pneumatic suspensions. In particular, it has been shown 
that satisfactory energy dissipation can be achieved for a properly adjusted conductance 
of the nozzle.  

The optimal exponent κ of the assumed polytrophic gas process has proved to be about 
the adiabatic value 1.4. However, this result is valid only for relatively short time in 
comparison to thermal inertness of the pneumatic device.  Thus the described model 
should be improved in order to describe the process of multi-impact landing. Namely, 
the heat flow through the cylinder body should be taken into account. 

It is possible to generalize the presented studies to the pneumatic suspension with a 
controlled valve (instead of the nozzle) in order to improve attenuation of vibration 
induced by the impact excitation. It would be also valuable to study stability of an 
extended dynamical model of the landing airplane with two independent wheel-sets.  
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Abstract 
This study details the investigation of the non-linear vibrations of a column 
consisted of two rods, one of which is made of piezoceramic material. The actuator, 
possessing its flexural stiffness is discretely attached to the main carrying rod. The 
role of the piezoelectric force generated by the actuator is to moderate the flexural 
displacement of the column which arises due to an unintensional eccentricity of the 
external load. The piezoelectric force influences also the natural frequency of the 
system, which tends to zero for the growing values of the external load.  
Keywords: piezoceramic actuator, non-linear system, perturbation method, 
vibration frequency 

 

Introduction 
Piezoelectric materials are widely used in the manufacture of elements responsible for 
controlling the dynamic or static responses of structures. This development is a direct 
result of the applied research done in many academic and industrial development 
centres. The majority of studies have concentrated on the active vibration control of 
beams and columns, and the shape control of such structures. The problem of buckling 
enhancement and the flutter capacity of columns has been studied less extensively. 
Thompson and Loughlan [1] examined experimentally the flexural buckling control of 
composite cantilever column strips using piezoceramic actuators surface bonded at their 
mid-heights on both sides of a column. By applying a controlled voltage to the 
piezoactuators, the lateral deflection caused by the external load was removed, and the 
column was forced to behave in a straight manner. This could be done because the 
actuators received an equal but opposite electric field producing tensile and compressive 
strains. An alternative way of increasing the critical load capacity for columns with 
different boundary conditions and identically mounted piezoelectrics was considered 
theoretically by Wang [2]. Here the actuators received an equal field, in both magnitude 
and sign, to induce the tensile force. It was shown that proper localisation of the 
piezoelectric layers and an optimal applied voltage could enhance the buckling capacity 
effectively. Attaching two piezoelectric layers to both sides of a structure not only 
increases the flexural stiffness locally but also affects the distribution of the mass per 
unit length along the system, which in turn influences the respective governing lateral 
vibration equation. In a lot of investigations, the actuators are assumed to be perfectly 
bonded which means that the bonding layer is so thin that the shear of the layer can be 
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neglected. The effect of through-width delamination on the vibration characteristics of 
laminated beams with piezoactuators was studied by Tylikowski [3]. 

Piezoelectric ceramic linear actuators are produced in a great variety of shapes like bars, 
tubes, plates, rings as well as different dimensions and possible load range, which 
reaches 100 kN and even more. Their mechanical properties, especially high Young’s 
modulus, density comparable to constructional materials and maximum compression 
strength, qualify such actuators to be separate independent parts of engineering 
structures. This idea was popularised by Chaudhry and Rogers [4] who implemented the 
concept when considered the flexural and shape control of a simply supported beam with 
an induced strain actuator attached at two discrete points. It was shown theoretically and 
experimentally in the paper that the increase in actuator authority achieved by offsetting 
actuator depended on the beam-actuator thickness and modulus of elasticity ratio.  
 

1. Problem formulation 
Most engineering structures are characterised by geometrical imperfections of shapes as 
a result of inaccurate assembling or quality of manufacturing. It is also practically 
impossible to achieve precise axial loading of any structure. It is assumed in this work 
that the main carrying rod of the column is unintentionally eccentrically loaded with 
eccentricities e1 and e2 as it is shown in Fig. 1. This results in initialising the flexural 
displacements going to large values with the increase the external load. As a 
counteracting remedy it is proposed an application of an additional piezoceramic rod 
generating the piezoceramic force and discretely attached with an offset distance denoted 
by d. The natural vibrations of the system in relation to its static curvilinear shape are 
influenced by the induced piezoforce also. 

Fig. 1. Scheme of the column
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1.1. Piezoelectric force 

To formulate the problem of the natural vibrations of the structure, the internal axial 
forces resulting from the external force P and the piezoelectric force F must be derived. 
The governing equations for establishing the internal force distribution are obtained by 
taking the first variation of the total potential energy of the system and setting it to zero. 
The potential energy of the system can be presented as follows: 
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- the non-linear von Karman strain-displacement relations are as follows 
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and 3331     , ξe  stand for the piezoelectric and permittivity coefficients, respectively, Ep 
and Eb are the Young’s modulus of piezo and main rod materials, U(x) and W(x) are the 
longitudinal and lateral displacements, respectively. 

Performing necessary variational and integration operations one obtains the set of two 
differential equations and associated boundary conditions describing the discussed 
problem. 
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The boundary conditions are: 
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On the basis of the performed solution a computer code was prepared for calculation the 
relation between the axial internal forces in both rods resulting from the external load P 
and the piezoelectric force F. 

 
1.2. Natural vibrations 

The problem of the natural vibrations of the system is described by two pairs of 
equations having the following non-dimensional form: 
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To solve the problem, by using the perturbation method, the transversal ( ),(~ τξiw ) and 
axial ( ),( τξiu ) displacements, the non-dimensional axial force ( )(τik ) and the natural 
frequency (ωi) are expanded into exponential series with respect to the amplitude 
parameter ε: 
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By introducing equations (8) into equations of motion and axial force and then equating 
the terms of respective ε exponents to zero, one obtains an infinite set of equations of 
motion and longitudinal force. Those equations are associated by the sets of boundary 
conditions adequate to each power of the amplitude parameter ε. The solution of two 
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first pair of equations (for ε0 and ε1) gives the opportunity to study the influence of the 
piezoelectric force on the vibration frequency. 
 
2. Results of numerical calculation  
Exemplary numerical results, presented in Fig. 2, for columns with different 
configurations and ways of loading, show courses of the non-dimensional longitudinal 
forces ki0 for ascending values of the external force p up to point C where divergence 
instability takes place.  In Fig. 2a, the courses concern the case without piezoforce and in 
Fig. 2b they are drawn for two opposite values of the non-dimensional force f. The 
curves, on which points A and C are placed, are called the buckling envelops. For 
buckling envelopes drawn in the dimensionless coordinate system as in Fig. 2, the 
critical points C are placed along the straight line inclined at an angle of 4/π . At these 
points the following relation holds  k10 = k20 = pc . Buckling phenomenon of two-rod 
columns is also determined by the axial rigidity ratio E1A1/E2A2. This ratio sets the 
location of point A, because they are placed on the straight line OA inclined at an angle 
α  = arc ctg(µ E1A1/E2A2). Between points A and C the system even when axially loaded 
applies curvilinear equilibrium shape. Any load eccentricity or the piezoforce disturbs 
the courses of the internal axial forces as it is shown in Fig.2.  
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Fig. 2. Change of longitudinal forces for differently loaded and supported two-rod 
column without piezoforce (a) and with the action of piezoforce (b) 

 

Fig. 3 shows the natural frequency curves obtained for an eccentrically loaded column 
with and without the participation of the piezoforce. As it is shown, the piezoforce 
affects the natural frequency but does not modify the value of the critical force. The 
critical force is established at the level at which the frequency curve crosses the p-axis. 
In Fig. 4 the influence of the piezoelectric force on the column deflection for the 
established value of the external load is presented. The column vibrates in regard to 
those curvilinear static shapes. Induction of the force f = 2.72 diminishes the maximal 
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deflection of the main rod about three times in regard to the case when f = 0. The change 
in frequency is not so significant and not greater then 11%. 
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Fig. 3. Effect of the piezoelectric force on the 
natural vibration curves  ( d* = 0.001, e*

1 = 
e*

2 = 0.01, µ=0.3) 

 

Fig. 4. Transversal rods displacement for the 
external load p = 4 and different piezoelectric 
force (d* = 0.0001,  e*1 = e*2 = 0.01, µ=0.3) 

 

3. Conclusions 
A formulation based on the variational principle for the analysis of the role of the 
piezoelectric force for the static and dynamic responses of a column with an additional 
piezoceramic rod was presented. It was demonstrated that a piezoceramic rod could be 
applied to tune the natural frequencies and the transversal displacement of an 
eccentrically loaded column. 
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Summary 

The influence of step changes in cross-section of beams with different boundary condi-
tions on their dynamic stability was investigated in the paper. The change in the cross-
sections took place in an optional location along the beam length. The investigated beams 
were axially loaded by a force in the form P(t)= P0+Scosνt. The problem of dynamic sta-
bility was solved by applying the mode summation method. The obtained Mathieu equa-
tion allowed the dynamic stability of tested systems to be analysed. The analysis relied on 
testing the influence of step changes in beam cross-sections and their locations on the 
value of coefficient b in the Mathieu equation. The considered beams were treated as 
Euler- Bernoulli beams. 
keywords : dynamic stability, Mathieu equation, eigenfunctions, beams. 

1. Introduction 

The research on beam or column dynamics with step changes in cross-sections have 
been carried out for many years finding justification in their application as parts of ma-
chines and equipment. The detailed analysis of fundamental frequency and higher modal 
frequencies was carried out by Jang and Bert [1,2]. They investigated the influence of 
step changes in beam sections on their natural frequency for different types of boundary 
conditions. Naguleswaran  [3] presented the results of research on the frequency of an 
elastically supported Euler-Bernoulli beam with up to three step changes in cross-
section. Kukla and Zamojska [4] gave the solution to natural frequency of axially loaded 
beam with step changes in cross-section. The frequency equation was obtained applying 
the Green function. Repeated research on the dynamic stability of the beam was mostly 
applied to the beams with a uniform cross-section. The authors considered an influence 
of boundary conditions as well as various type of input function on the stability of the 
systems. Iwatsubo et al.[5] analysed the stability regions for the columns loaded by peri-
odical axial force for four typical cases of the boundary conditions. Only a few papers 
paid attention to an analysis of beams with step changes in the cross-sections taking into 
account dynamic stability of the beams. For example, Aldraihem and Baz [6] considered 
dynamic stability of the beams with step changes in the cross-sections under moving 
loads. 

This paper takes into account beams with step changes in the cross-sections at different 
types of boundary conditions (pinned-pinned P-P and clamped-pinned C-P). Change in 
the cross-sections took place in an optional place on the beam length. The beams were 
loaded by P(t) = P0+Scosνt force. The considered beams were treated as Bernoulli – 
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Euler beams. The problem of dynamic stability was solved using the mode summation 
method. Applied research procedure allowed to describe the dynamics of tested systems 
with the use of the Mathieu equation. The influence of step changes in the cross-sections 
of the beams and its position along the beam length on the value of coefficient b in the 
Mathieu equation was investigated. In this way the possibility of a loss in dynamic sta-
bility by the investigated systems was determined.  

2. Mathematical model of beam vibrations 

A scheme of the considered beams is presented in Fig. 1. Analysis of the solution was 
carried out for the pinned-pinned beam (P-P Fig. 1.). The vibration equation for two 
parts of a beam is known and has the following form: 
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where  : P(t)  = P0+Scosνt , ν - forcing frequency,  
ρi – density, Ai – cross-section area, i = 1,2 i-th part of the beam 
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Fig. 1. Models of the beams with step changes in the cross-sections and various 
boundary conditions: P-P pinned-pinned, C-P clamped-pinned. 

 
 
Equation (1) is accompanied by the following boundary conditions: 

( ) 0,01 =tw ,     ( ) 0,22 =tlw ,       ( ) 0,01 =twII ,     ( ) 0,22 =tlwII                   (2a-d) 

( ) ( ) ( ) ( ) 0,0)(,0,)(, 2222111111 =−−+ twtPtwJEtlwtPtlwJE IIIIIIII                       (2e)  

( ) ( )twtlw ,0, 211 = ,     ( ) ( )twtlw II ,0, 211 = ,     ( ) ( )twJEtlwJE IIII ,0, 2221111 =          (2f-h) 
where: the Roman numerals denote differentiation with respect to x. 
The solution of equation (1a,b) is assumed to be in the form of eigenfunction series [7].  
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where: ( )tTn  are unknown time functions and ( )iin xW  are normalized eigenfunctions of 
free frequencies of i-th parts of the beams which satisfies 
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Variables in equation (1) and conditions (2a-h) were separated to determine ( )iin xW  by 
substituting: 

( ) )(cos),( txWtxw niiniin ω= ,  (i = 1,2)                                    (5)    

where: nω  is n-th natural frequency of the beam with step changes in the cross-section. 
Substituting (5) into equations (1a,b) and into conditions (2a-h) one can obtain (for S=0)  
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The general solution to equations (6a,b) takes the form: 
)cos()sin()cosh()sinh()( 4321 iiniiiniiiniiiniiin xCxCxCxCxW ββαα +++=  (8a,b) 

where Cik are integration constants (k = 1, 2, 3, 4) and: 
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The equations of vibrations (6a,b) together with the boundary conditions (7a-h) made the 
formulation of the boundary value problem of the investigated beam. The natural fre-
quency ωn and eigenfunctions of the beam Win(xi) are determined by solving the bound-
ary value problem. Analogical procedure in case of remaining beam C-P after introduc-
ing the appropriate boundary conditions, leads to determination of the natural frequency 
and eigenfunction of this beam. 

3. The solution to the problem of the dynamic stability of the beam 

The determined eigenfunctions Win(xi) allowed to solve the problem of the dynamic 
stability of the considered beams.  
Substituting solution (3a,b) into equation (1a,b) one can obtain: 
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After multiplying by ( )iim xW , one can receive from equation (10): 
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By analogy, from equations (6a,b), after multiplying by ( )iim xW , one can obtain:  
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then (11) takes the following form: 
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As only basic parametric resonance with the first natural frequency of the beam is taken 
into account in this paper, further analysis considers the first term of the sum from equa-
tion (13). Hence, after integrating equations (13), the following form was obtained for 
the whole beam and the first term: 
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Appropriate transformations of equation (14) and the substitution of t by a new variable 
τ = νt lead to the following form of Mathieu equation (the subscripts i and 1 were omit-
ted).  

 ( ) ( ) ( ) 0cos =++ τττ TbaT&&                                             (15) 
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The periodical solutions to the Mathieu equation (15) are known (e.g. [8]). These solu-
tions allow us to determine the stable and unstable regions of solutions (Fig.2). The 
numerical values of a and b each time decide the position of solution in the stable or 
unstable region. However, it must be stated that the probability of obtaining stable solu-
tion is higher in case of lower value of coefficient b, at the determined value of a.  In this 
paper the analysis of changes in coefficient b was carried out assuming bb −= . 
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Fig. 2. Stable and unstable regions of solutions for the Mathieu equation  [8]. 

 

4. The results of numerical computations and discussion 

Computations were carried out assuming the following dimensionless quantities: 

ccc P
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P
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l
ll

J
J

J ==== ,,, 01

1

2                                 (17) 

where: Pc– the critical load of the tested beam with constant cross-section  
 p = 0 and s = 0.05 was assumed for computations. 
          a)                                                                 b) 
                                                                      
 
 
 
 
 
 
 
 
  

Fig.3. The influence of relation between moments of inertia J for the beams:  
a) P-P and b) C-P on the values of coefficient b in the Mathieu equation  

 for l = 0.2               , l = 0.5               ,  l = 0.8                . 
 
The solution to the problem of dynamic stability of the tested beams allowed to deter-
mine the values of coefficient b in the Mathieu equation at changeable values of mo  
ments of inertia J1 and J2 for two parts of the beam. In Fig. 3 solutions for both J >1 and  
J<1 are presented (for J>1 J2 is constant – beam diameter d2=0.05 m, for  J<1 J1 is con-
stant – beam diameter d1=0.05 m). The shapes of beams for considered relationship of J 
are presented in Fig. 3 in the shape of simple schemes of the beams. Logarithmic scale 
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was applied in Fig. 3 to compare the obtained results of research into relation of J for 
two parts of the beams, when J<1 and when J>1. The values of J were changed from 
J=0.05 to J=20 for the chosen values of l.  

The values of coefficient b were also determined for different positions of changeable 
cross-sections of the beam denoted by l. In Fig. 4 (a-b) the changes in coefficient b in 
dependence on the position of beam cross-sections for chosen relations J=0.2, 0.5, 2, i 5. 

The following conclusions can be drawn from the analysis of the presented results: 
• for the beam P-P symmetrical change in J (e.g. from J = 0.2 to J = 5) and symmetrical 

change in l in relation to the middle of the beam have no influence on the stability of 
such systems (curves l=0.2 and l=0.8 in Fig. 3 are symmetrical in relation to J=1 while 
curves J=0.2 and J=5 in Figs. 4a are symmetrical towards l=0.5) 

• similar change in relations between moments of inertia J and similar change in posi-
tion of cross-section l for beam with different boundary conditions (beam C-P) have 
influence on their stability, changing courses of coefficient b dependent on J (curves in 
Figs. 3 are not symmetrical towards J = 1) and courses of b dependent on l  (curves in 
Figs. 4b are not symmetrical towards l = 0.5) 

 
          a)                                                                 b) 

 
 
 
 
 
 
 

 
 
 

Fig.4. The influence of location of changes in the cross-section l of the beams: a) P-P 
and b) C-P on the value of coefficient b in Mathieu equation for J = 0.2                     , 

 J = 0.5                    , J = 2                  , J = 5                 . 
 

• the less difference between J1 and J2 (higher J for 0<J≤ 1 and less J for 1≤ J≤ 20) 
causes that tested systems could easier loose dynamic stability (higher b) 

• an increase in the beam lengths with a higher moment of inertia leads to stabilization 
of the tested systems (lowers b) 

• C-P beam is more stable when J <1 (values of coefficient b for determined positions of 
changes in the cross-section l are lower for most of the tested case). 
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Abstract 
The paper concerns analysis of nonlinear vibration of smooth autoparametrical 
non-autonomous systems of two-degree-of-freedom. A multiple scales method 
of investigation of small vibrations is applied to the analysis of resonance. The 
obtained results have been confirmed numerically. Analytical calculation was 
made with the use of Mathematica. 
Keywords: nonlinear dynamics, parametrical resonance, asymptotic method 

1. Introduction 

Autoparametric resonance occurs when a mechanical system consist of two or more 
coupled vibrating components. In such a case the vibration of one of the component 
subsystems may destabilize the motion of the other. The investigated problem is very 
important from engineering point of view. In applications, it is important to understand 
where the autoparametric resonance occurs. Large vibrations in structures are usually 
undesirable since they often cause structural failure. 
The pendulum of changing length is an example of such a system. 
There are many technical applications of the systems containing various types of 
pendulums. Discussion on such models with a view to damping vibrations may be found 
in [2,4,5]. 
In such systems one can observe an auto-parametric resonance phenomena, because of 
the coupling occurring in the equation of motion. The phenomenon of energy transfer 
from one of the mode of vibration to the other was widely discussed in [3]. 
Dynamical analysis of nonlinear vibrations of spring pendulum (Figure 1) was presented 
in the paper using the multiple scales method. The program in the computer algebra 
system Mathematica was elaborated. It enables automatizing many transformations in 
the perturbation method use for this purpose [6]. 

2. Spring pendulum 

The kinetic and potential energy of the examined system has the form: 
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where m – mass of the pendulum, l – the length, k and k1 – spring stiffness linear and 
nonlinear parameters, g Earth’s acceleration, and x and θ – generalized co-ordinates 
admitted according to Fig.1.  

 

 
Figure 1. Spring pendulum. 

 

Let us introduce dimensionless generalized co-ordinates (with tilde) x
l
x ~ε= , θεθ

~
=  

and the forcing amplitude in the form ff
~2ε= . Applying Lagrangian equation and 

taking into account external excitation as a force acting on the mass along the pendulum, 
the equation of motion are obtained in the form: 
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where 
lm
fF
~

≡ , 
m
k

≡2
1ω , 

l
g

≡2
2ω , 

l
gG
21 ≡ ,  c1, c2 are damping coefficients 1<<ε , is 

a so-called small parameter. 

Expansion of trigonometric functions 3

!3
1sin θθθ −≅  and 2

2
11cos θθ −≅ , are 

admitted, assuming that vibrations are small. 
In order to simplify the notation, the sign ~ (tilde) is omitted below. 
The solution of (2) is sought in the following form  
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where tT =0 , tT ε=1  is a scale of time of slowly changing processes. 
The original set of equations is transformed to the set of partial differential equations.  
Substitution of  (3) into (2) leads to the equations of the zero and first order, according to 
the exponent of ε : 

 
0

0

0
2
22

0

0
2

0
2
12

0

0
2

=+
∂
∂

=+
∂
∂

θωθ

ω

T

x
T
x

  (4) 

 
( )

0222

0cos2

0

0

0

0
2

0

0
2

0
10

0
2

0

0
1

2
22

0

1
2

0
0

0
1

2

0

02
01

10

0
2

1
2
12

0

1
2

=
∂
∂

∂
∂

++
∂
∂

+
∂∂

∂
+

∂
∂

++
∂
∂

=Ω−+
∂
∂

+







∂
∂

−+
∂∂

∂
++

∂
∂

TT
x

T
x

TTT
c

T

TF
T
x

c
T

G
TT

x
x

T
x

θθθθ
θω

θ

θ
θω

 (5) 

 
The solution of zero order equation (4) can be written as follows 
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and the first order equation takes the form 
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where c.c. represents the complex conjugates. 
 
In the above equations the arguments of A and B are omitted in order to shorten the 
notation. 
After removal of secular terms in equations (7),  its solution has the form 
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The above solution becomes singular when the primary or internal resonances occurs i.e. 
when Ω=1ω  and/or 21 2ωω = . In order to consider this resonances case, we can 
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introduce the detuning parameters 1σ  and 2σ  according to: 
 11 σεω +=Ω , 2122 εσωω += . (9) 
 
The equations (7) can be written now as follows: 
 

( )( ) ..2

..2
2
122

1
2

2
2212

2
2212

3
122

0

1
2

1
1

22
2

2
1

2
21

2
1

2
12

0

1
2

21202120

21211110

cc
dT
dBiBABAGeeGABee

t

cc
dT
dAiBeBGeFeeBBBBGx

t
x

iTiTiTiT

iTiTiTiT

+







+−++=+

∂
∂

+







+++−+−=+

∂
∂

−− ωωωωωωωθω
θ

ωωωω

σωσω

σσσω

  (10) 

 
Removal of secular terms from (10) requires: 
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In order to present the solution of (11) in more familiar form: 
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the following substitution can be made [1]: 
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The introduced amplitudes a and b and phases α and β are functions of T1. 
With the use of the above substitution (13), the equations (11) lead to expressions of 
derivatives of the sought functions: 
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where 
 )( 111 TT ασξ −= and ( )1121 2)( TTT βαση +−= .  (16) 
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Solving the above equations lets to obtain the information about modulations of 
amplitudes a(T1) and b(T1),  and phases ( )1Tα  and ( )1Tβ  respectively. 

 
Chaotic motion near resonance 

Due to nonlinearities amplitudes and phases are not constant during the motion. Fig.2 
presents modulations of amplitudes a and b versus slow time T1, for simultaneous main 
and internal resonance: 0,2,4,1.0,1.0,4 2121 =======Ω ccF ωωε . 
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Fig.2 Modulations of amplitudes a and b 
 

The time history of motion of the pendulum for the same numerical data as in the Fig.2 
is presented in Fig. 3. For comparison there are shown the results obtained by MS 
Method and by numerical Runge-Kutta method. 
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Fig. 3 Time history of motion of pendulum;               x,               θ . 

. 
Graph in Fig. 3 suggests that the movement is of chaotic type. Let us to drive the largest 
Lapunov coefficient λ versus frequency of the exciting force (Fig. 4). Fig. 5 presents a 
chosen Poincare map for the parameter giving negative and positive lambda.  
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Fig. 5 The largest Lapunov exponent 
λ  

 

Fig.6  Poincare map of a chosen phase plane 
for non damped at the main and parametrical 

resonance 2,4,4 21 ===Ω ωω . 
 

 
 
Conclusions 

The method allow to recognize the parameters of the system with respect to the 
occurring resonance. The simultaneous main and internal resonance causes chaotic 
behavior of the system to chaotic behavior. It was confirmed by the largest Lapunov 
exponent. The results show that both quantitative and qualitative analyses of nonlinear 
dynamical systems can be made by the multi-scale-method in time domain.  
The transformations within the multiple-scale-method were carried out automatically 
with the use of a procedure written in Mathematica. 
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Summary 

In the paper active control of transient torsional vibrations induced by the 
electric motor during run-ups of the radial compressor drive system is 
performed by means of couplings with the magneto-rheological fluid. The 
main purpose of these studies is a minimisation of vibration amplitudes in 
order to increase the fatigue durability of the most responsible elements. 
The theoretical investigations are based on a hybrid structural model of the 
vibrating mechanical system and sensitivity analysis of the response with 
respect to the damping characteristics of the control couplings.  

Keywords: active control, transient vibrations, drive system, electric 
motor  

Introduction 

Transient torsional vibrations due to start-ups of drive trains driven by electric motors are very 
dangerous for material fatigue of the most heavily affected and responsible elements of these 
mechanical systems. Thus, this problem has been considered for many years by many authors, 
e.g. by [1-3]. But till present majority of these studies reduced to standard transient vibration 
analyses taking into consideration additional dynamic effects caused by elastic couplings, dry 
friction in clutches, properties of the gear stage meshings, e.g. backlash, electro-mechanical 
couplings and others.  

Active control of torsional vibrations occurring in the drive systems could effectively minimise 
material fatigue and in this way it would enable us to increase their operational reliability and 
durability, e.g. in the form of greater number of admissible safe run-ups and run-outs. 
Unfortunately, one can find not so many published results of research in this field, beyond some 
attempts performed by active control of shaft torsional vibrations using piezo-electric actuators, 
[4]. But in such cases relatively small values of control torques can be generated and thus an 
application of the piezo-electric actuators has to be reduced to low-power drive systems. In this 
paper active control is going to be realised by couplings with the magneto-rheological fluid 
(MRF) applied to attenuate transient torsional vibrations excited during start-ups of the large 
radial compressor drive system driven by the asynchronous motor.  

1.  Assumptions for the simulation model and formulation of the problem  

In the considered drive system of the radial compressor power is transmitted form the  
asynchronous motor to the impeller by means of the low-speed and high-speed rigid couplings, 
multiplication single-stage gear and shaft segments, as shown in Fig. 1.  
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Fig. 1  Mechanical model of the compressor drive system 

In order to perform the theoretical investigation of the active control concept applied for this 
mechanical system a reliable and computationally efficient simulation model is required. In this 
paper dynamic investigations of the entire drive system are performed by means of the one-
dimensional hybrid structural model consisting of continuous visco-elastic macro-elements and 
rigid bodies. This model is employed here for eigenvalue analyses as well as for numerical 
simulations of torsional vibrations of the drive train. In this model successive cylindrical 
segments of the stepped rotor-shaft are substituted by torsionally deformable cylindrical macro-
elements of continuously distributed inertial-visco-elastic properties. Since in the drive system of 
the real compressor the electric motor coils and gears are attached along some rotor-shaft 
segments by means of shrink-fit connections, the entire inertia of such fragments is increased, 
whereas usually the shaft cross-sections only are affected by elastic deformations due to 
transmitted loadings. Thus, the corresponding visco-elastic macro-elements in the hybrid model 
must be characterized by the geometric cross-sectional polar moments of inertia JEi responsible 
for their elastic and inertial properties as well as by the separate layers of the polar moments of 
inertia JIi responsible for their inertial properties only, i=1,2,…,n, where n is the total number of 
macro-elements in the considered hybrid model. Moreover, on the actual operation temperature 
Ti can depend values of Kirchhhoff’s moduli Gi of the rotor-shaft material of density ρ for each 
i-th macro-element representing given rotor-shaft segment. In the proposed hybrid model of the 
compressor drive system with a reasonable accuracy for practical purposes inertias of the 
impeller and gears can be represented by rigid bodies attached to the appropriate macro-element 
extreme cross-sections.  

Torsional motion of cross-sections of each visco-elastic macro-element is governed by the 
hyperbolic partial differential equations of the wave type  
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where θi(x,t) is the angular displacement with respect to the shaft rotation with the average 
angular velocity Ω and τ denotes the retardation time in the Voigt model of material damping. 
The external active, passive and control torques are continuously distributed along the respective 
macro-elements of the lengths li. These torques are described by the two-argument function 
qi(x,t), where x is the spatial co-ordinate and t denotes time. 

Mutual connections of the successive macro-elements creating the stepped shaft as well as their 
interactions with the rigid bodies are described by equations of boundary conditions. These 
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equations contain geometrical conditions of conformity for rotational displacements of the 
extreme cross sections for x=Li=l1+l2+...+li-1 of the adjacent (i-1)-th and the i-th elastic macro-
elements:  
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The second group of boundary conditions are dynamic ones, which contain linear equations of 
equilibrium for external torques Mi(t) as well as for inertial, elastic and external damping 
moments. For example, the dynamic boundary condition describing a simple connection of the 
mentioned adjacent (i-1)-th and the i-th elastic macro-elements has the following form:  
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where Di are the external damping coefficients and I0i denotes the mass polar moment of inertia 
of the rigid body.  

In order to perform an analysis of natural elastic vibrations, all the forcing and viscous terms in 
the motion equations (1) and boundary conditions (2b) have been omitted. An application of the 
solution of variable separation for Eqs. (1) leads to the following characteristic equation for the 
considered eigenvalue problem: 

C(ω)⋅D=0,                                                                   (3)  

where C(ω) is the real characteristic matrix and D denotes the vector of unknown constant 
coefficients in the analytical local eigenfuctions of each i-th macroelement. Thus, the 
determination of natural frequencies reduces to the search for values of ω, for which the 
characteristic determinant of matrix C is equal to zero. Then, the torsional eigenmode functions 
are obtained by solving equation (3).  

The solution for forced vibration analysis has been obtained using the analytical -computational 
approach. Solving the differential eigenvalue problem (1)÷(3) and an application of the Fourier 
solution in the form of series in the orthogonal eigenfunctions lead to the set of uncoupled modal 
equations for time coordinates ξm(t):  

)4(,,...2,1),()(2)(2)( ==ξω+ξτω+ξ mtmQtmmtmmtm &&&  
where ωm are the successive natural frequencies of the drive system and Qm(t) denote the modal 
external excitations. Although each Eq. (4) has its analytical solution, it can be also solved 
numerically using a direct integration in order to obtain transient torsional response for the 
passive and actively controlled system.  
 
2.  Control of the transient torsional vibrations 

The magneto-rheological fluids are functional fluids, whose effective viscosity depends on 
externally provided magnetic field. This feature makes them perfectly suitable for large 
couplings with controllable damping characteristic. Besides the ability to generate large damping 
torques, an important advantage of the MRF-based devices is a low power consumption. 
External power is needed to supply the electromagnetic coils only, i.e. to modify the dynamic 
characteristics of the mechanical system, which is the distinguishing feature of the semi-active 
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control. Moreover, the semi-active damping-based approach eliminates a risk of causing 
instability, which is intrinsically related to the active control paradigm and can occur in the case 
of an electrical failure, control time delays or in the case of an inaccurate modelling. 

Assume there are N controllable couplings, each with the damping coefficient cj k(t), j=1,2,…,N, 
where k(t) is the collective control variable and cj are the coupling-specific multipliers. Each 
coupling generates the damping torque 
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where xj is the location of the j-th coupling. The damping torques Mj
D(t) modify Eqs. (4) by 

coupling them with each other and with the equation of the rigid body shaft motion. However, 
by proper determination of the multipliers cj, the most resonant mode can be decoupled from the 
influence of the average angular velocity Ω(t).  

The optimum open-loop control k(t) can be determined with respect to the two following 
objectives: 

(1) Maximization of the effectiveness of the damping, which is quantified here as the mean 
square torque above a given safe level. In practice, this objective can be related to the most 
resonant eigenvibration mode: 
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(2) Minimization of the energy dissipated due to the damping  
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Provided the time history of the control variable k(t) depends on a finite number of parameters, 
the compound objective function, composed of the weighted objectives (5) and (6), can be 
minimized using standard numerical approaches. In this paper it is assumed that k(t) is a linear 
combination of a finite set of base functions, 
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i ii
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=
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K parameters îk  and thus suitable for a constrained numerical optimization. A proper choice of 
the constraints and of the base functions allows also the MRF-specific damping rise and decay 
rate restrictions to be satisfied. Note that in this way the optimum open-loop control is obtained, 
which can serve as the best-case reference for possible closed-loop control laws. Moreover, in 
the case of the asynchronous motor, as the computational example illustrates below, the 
optimum control is a simple hold-and-release strategy, which can be easily realized using an 
open-loop control.  

3.  Computational example and conclusion  

In the computational example the start-up of the large radial compressor driven by the  5 MW 
asynchronous motor is investigated. This system presented schematically in Fig. 1 is accelerated 
from a standstill to the nominal operating conditions characterized by the rated retarding torque 
31831 Nm at the constant rotational speed 1500 rpm. The values of these quantities are reduced 
to the motor shaft, where the impeller rotational speed is 4.932 times multiplied by the gear 
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stage. The electromagnetic torque generated by the asynchronous motor has been ‘a priori’ 
assumed according to the respective relations contained in [5]. The retarding aerodynamic torque 
produced by the compressor is described by the parabolic function as proportional to the square 
of the impeller angular velocity. The time history plots of these torques during run-up are 
illustrated in Fig. 2a by the black and grey lines, respectively.  
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Fig. 2  Time histories of the motor and retarding torques (a) and elastic torques (b) 

The passive system transient dynamic response due to the start-up is presented in Fig. 2b in the 
form of time histories of elastic torques transmitted by the shafts in the vicinity of the low-speed 
coupling (black line) and the high-speed coupling (grey line). From these plots it follows that the 
transient component of the asynchronous motor torque in the form of attenuated sinusoid of the 
network frequency 50 Hz and initial amplitude ca. 3.5 times greater than the rated torque value, 
Fig. 2a, induces very severe resonance with the first system eigenvibration mode of frequency 
47.4 Hz. The maximum amplitudes of the most heavily affected shaft close to the low-speed 
coupling are almost 16 times greater than the rated torque, Fig. 2b, which is very dangerous for 
its fatigue durability. Thus, active control of transient torsional vibrations occurring in this drive 
system during start-ups is very required.  
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Fig. 3  Time histories of the elastic torques in the actively controlled system 

In the same way as above, in Fig. 3 there are depicted plots of the analogous time histories of the 
elastic torques transmitted by the mentioned shafts and excited due to run-up of the actively 
controlled system. From these plots it follows that the corresponding extreme values of the 
elastic torques have been minimised more than 5 times in comparison with these in Fig. 2b. 
Here, these reduced amplitudes do not exceed dangerously the transmitted nominal torsional 
moment, where the exact reduction ratio depends on the technological bounds imposed on the 
control damping coefficient. Nevertheless, it is to remark that the computed optimum active 
control is a simple hold-and-release strategy and it results in some breaking of the rigid body 
motion of the system, which leads to a slight run-up retardation in time.  
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Summary 
This report shows the purpose of research undertaken to define occurrences of Vertical 
Axis Wind Turbines (VAWT). A true threat for natural energy resources depletion, legal 
requirement for obtaining 7.5% electric energy from renewable sources till 2010, easy 
installation of vertical axis wind turbines, resistance to high wind speeds, level of 
knowledge on determining wind energy efficiency factors using two-dimensional 
discussion (Betz’s law – one-dimensional discussion) and likelihood low-frequency 
characteristics of acoustic spectral of turbine in operation have all become a motive for 
starting identification research and its accompanying occurrences of VAWT in operation. 
 
Key words: wind turbine, noise, acoustic climate. 
 

Introduction 
 
Relatively good wind conditions to our region (Poland) have caused significant interest 
for obtaining ‘green energy’ just from wind turbines. The level of knowledge about the 
use of most common horizontal axis wind turbines (HAWT) is quite extensive. The 
vertical axis wind turbines on the other hand have low torque moment (possibility of 
running in wind speed of only 2m/s) easy installation, lack of requirements to building 
high masts and resistance to strong wind gusts are all interesting alternatives to 
households requiring little demand for electric energy (3 – 5 kW ). The most probable 
use of VAWT wind turbines can be considered to be urban and rural areas where the 
distance between the turbines installed can only be few meters. It is because of that it is 
worth learning all WA climate characteristics of VAWT in operation. 
 
1. Environment protection 
 
The most important reason for building wind turbine farms is the desire for obtaining 
electric energy from renewable resources, in other words ‘green energy’. European 
Directive 2001/77/WE about supporting production of electric energy from renewable 
resources on internal markets (Dz. Urz. WE L 283 z 27.10.2001), which came into effect 
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in Poland on 4th March 2005 assumes that 7.5% of overall demand for electric energy 
will come from renewable resources till 2010 in Poland. 

 
Figure 1. ECO-STATISTICS [source unknown] 

 
 

2. Why wind farms? 

Wind as renewable solar energy source is a movement of air caused by different 
thickness air masses climbing up. Energetic potential of winds blowing over lands 
suitable to accept wind power plants (including losses) amounts to 40WT. To compare, 
inland water energetic potential does not exceed 4WT [Lewandowski 2006]. In Western 

European countries (Germany, Holland, Denmark) wind 
energy industry developments have been received with 
great success, and this is why obtaining the required 7.5% 
of unconventional sources energy from wind may be a 
good idea in Poland.  

Figure 2. Wind energy zones 
[http://energiazwiatru.w.interia.pl/walory.htm] 

Also tests on winds over the area of country are favorable, 
for so called wind energetic areas. They show that 
profitability for building them, especially for northern 
areas may be economically interesting 
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3. Wind energy 
 
Wind energy is proportional to wind speed raised to the power cubed, additionally wind 
speed rise with height and atmospheric pressure and depends on topography. 
 

3

2
1 vPA ρ=  (1)   where: 

  ρ – air thickness, [kg/m3] 
  v – air speed, [m/s] 

 
At terrain surface wind speed is equal to zero, what is caused by friction forces. Those 
forces cause that only one quarter of wind kinetic energy fall on winds blowing on 
heights of 100 m and remaining three quarters on winds blowing higher than 100 m. 
The passage of air stream through 
aero-generator turbine is presented 
in the following way: initial velocity 
of wind v0 as a result of it going 
through the turbine blades slows 
down to velocity vs so to achieve 
decreased velocity vk behind the 
turbine. Decreased velocity vo before 
the turbine and vk behind the turbine  Figure 3. A passage of air stream through HAWT 
and pressures p’s before the turbine  
and p’’s behind the turbine are causing moment of perimeter forces acting on the 
turbine’s blades which is then transferred on the rotor shaft by gear transmission of the 
generator. 
The value of the largest factor of theoretical efficiency of energy use equates to ξt max = 
16/27 = 0,593 and that has been named Betz’s law after the name of German’s physicist 
Albert BETZ. The efficiency of wind energy conversion of  vertical axis wind turbine 
(VAWT) according to present knowledge is approximately ξt max = 0,18 considering 
Savonius rotor and approximately ξt max = 0,4 considering Dariuss’s type of rotor taking 
into account high-speed parameters z. 
Considerations which were conducted by Betz were based on wind flow in one-
dimensional arrangement. 
Currently there are circumstances which lead to believe that the value of efficiency 
factors of wind energy may be higher, due to the wind flow through wind generators 
being embraced by two-dimensional arrangement [Agren, Berg, Leijon 2005]. Authors 
suggest that vertical axis wind turbines have much greater potential of theoretical value 
of wind energy efficiency. 
 
4. Acoustic characteristics of wind turbines 
 
Source of noise made by wind turbines during exploitation is of mechanical (gearbox, 
gear transmission, generator) and aero-dynamical origins (movement of propellers 
causing turbulence in resilient (elastic) medium). 
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Composition of acoustic spectrum 
of wind turbine noise not corrected 
by any frequency characteristics is 
an example of typical low-
frequency and sometimes even 
infrasound noise. The shape of 
frequency spectral depends on 
turbine rotational speed which 
ranges between 9.0 to 15.0 
 
 
Figure 4. Sound spectrum Vestas V-80 
[Golec2005] 
 
revolutions per minute for horizontal axis wind turbines. Each pass of rotating blades 
relating to the turbine mast are causing characteristic repeatable hum which in noise 

spectrum shows at infrasound’s level. 
Mechanically moving part mainly generates 
noise in hearing range and the 
elements that influence the level of noise are 
specific mechanical parts in operation. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Level of acoustic efficiency of HAWT elements [Wagner1996] 

 
5. Motives for taking up the researches on VAWT by WA 
 
Relatively good wind conditions in our region along with a need for producing 
renewable energy are causing more interests around wind energy. In a situation when 
horizontal axis wind turbines were manufactured in a shape of aero-generators with 
capacities over 4MW, it became necessary to implement smaller capacity wind turbines 
yet more mobile. Those capabilities can be provided by vertical axis wind turbines, for 
which wind speed and wind direction are not causing technical and exploitation 
disturbances. 
Sadly, when considering issues on amounts of vibroacoustic emissions of vertical axis 
wind turbines (VAWT) there is little completed study or even those still in progress. 
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Taking into consideration the need for describing the occurrences and identification of 
acoustic climate factors the writers related to basic problems which included: 

a) small distance from the place VAWT is being installed to acoustically protected 
areas 

b) infrasound or low-frequency noise generation in respect of jeopardizing people 
living in urban areas 

c) methods for marking levels of acoustic dangers 
 

 
Figure 6. An attempt for defining Acoustic Climate Wind Turbine 

 
Vertical axis wind turbines are being considered as mobile, easy to install and resistant 
to changing weather condition. It is also being predicted that majority of mini-sized 
vertical axis wind turbines will be installed in the very urban area, where the distance to 
potential neighbor can outcome to even few meters. It is though important, that 
elemental acoustic climate factors are defined for the direct exploitation area. 
It is also vital to be able to describe and name factors which are responsible for noise 
generation process at its source, its ways of propagation and impact on potential receiver 
in acoustically protected area. Below a proposal for defining Acoustic Climate Wind 
Turbines (CAWT) has been described (Figure 6.) 
The proposal for defining CAWT is the writers’ first approximation in describing what 
happens and what the parameters are during wind turbine operation. 
Another important aspect is time a person is being subjected to that work (accidental 
recipient or even a person that directly uses energy from renewable source of VAWT). 
In the least favorable model of the working turbine, that is from the low-frequency or 
infrasound noise influence point of view, a recipient can be subject to 24 hours a day 365 
days a year exposition. There are no guidelines in national standards describing levels of 
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allowable exposition to infrasound or low-frequency noise comparing to constant 
exposition. 
It would also be worth mentioning the economic aspect which could lead to wind 
efficiencies increase (W/m2) by applying appropriate terrain and building planning. 
There have already been proposed such plans so to cause the wind speeds increase and to 
gain improved wind turbines efficiencies [Boczar 2007, p.130]. 
 
6. Conclusion 
 
It this study environmental aspects, energy zones and basic relationship describing wind 
energy have been introduced. It has been noted that considering efficiencies for 
processing wind energy to electric energy by vertical axis wind turbines based on Betz’s 
law may not be completely correct. It has also been presented what are the sources of 
noise generated by wind engines in operation and also the need for undertaking 
vibroacoustic research to identify the behavior of working wind turbine. As an effect a 
proposal for Acoustic Climate Wind Turbine definition has been introduced which was 
the writers’ first attempt to define behavior and parameters occurring during wind 
turbine exploitation. 
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Abstract 
The use of vibroacoustic methods in technical state assessment of mechanical objects is 
very popular. This fact can be explain by inexpensive acquisition and data collection 
devices, modern and most efficient signal analysis algorithms, faster computers and 
signal processing, etc. But in spite of technological advance, the signal selection problem 
is still permanently unsolved. The paper includes a methodology of vibration signal 
selection for diesel engine elementary process diagnostics based on OFRA (Operational 
Frequency Response Analysis) algorithm and auto-excitation of tested machine. Authors 
propose a new diagnostics method for assessment engine technical state, which is 
distinguished by high efficiency, fast and easy to use in normal engine operation. 
Key words: signal selection, vibrodiagnostic, diesel engine 

Introduction 

The development of conventional combustion engines is determined by environmental 
and pro-ecological aspects. Special emphasis is putting on dynamic control of critical 
engine processes, e.g.: fuel burning, exhaust gas exchanging. The modern engines are 
equipped with sensors, transducers and computation unit (computer), which are 
supervisors of loading and running engine parameters. Information about processes 
occurring during the work-cycle and current engine’s technical state are apply to 
optimization its performance. This information can be use to active prediction of the next 
term and range of engine maintenance. 
However, many boats, heavy vehicles and stationary receivers of previous generation are 
use to present-day. The reasons of this situation are: very high purchase costs of it, very 
long life cycle, or others extra-economically cause (e.g.: monumental values). Polish 
diesel locomotives were made in the 70’s and 80’s previous century. Mounted diesel 
engines are without On-Board Diagnostic system (OBD). It is a situation, where 
unrecognized local defects of engine units have an influence on the reliability and 
durability of locomotive. Therefore, a modern, fast and easy to application diagnostics 
method is needed, especially to fault detection of engine critical unit (e.g. in- and outlet 
valves unit, fuel injector,…). The most critical engine’s process is complex fuel burning. 
The right execution of it determines an efficient chemical to mechanical energy 
conversion and minimal financial and ecological costs engine operation. 
The positive validated idea of diagnostics method, based on Operational Frequency 
Response Analysis (OFRA), is presented below.  
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1. Assumptions to OFRA methodology  

The phenomenon occurring during the work-cycle of a diesel engine can be described by 
vibration signal parameters. It is a superposition of dynamic interaction between an 
engine structures and engine processes connected with fuel injection, preparing a 
burning mixture, burning of it and exhaust. The vibration effects are manifested in wide 
frequency range (from 3-5 Hz to 20-30 kHz) [1, 9, 10]. The lowest frequency (half of 
first rotary crankshaft speed) correspond with valves and injector triggering. And the 
highest frequency signal component correspond with non-stationary fuel flow in 
injection moment, and effects of fuel disintegration (Kármán’s swirl). Into this very wide 
range of frequency are included a modal frequency (natural frequency), which are 
specific for engine structure. It is the reason of complex frequency and amplitude signal 
modulation, and many troubles with a processing and post-processing of engines’ 
vibration signal. The elaborate a signal decomposition method for separation modal and 
excitation frequency, was necessary. 
Mine assumption to create a diagnostics method was a possibility to use it in the diesel 
locomotive engines in normal utilization regime. The OFRA (Operation Frequency 
Response Analysis), basis on Operational Modal Analysis (OMA) and Frequency 
Response Analysis (FRA). First one can be use to describing the unscalable modal 
vectors of technical object in situation, where excitation is results of normal object work. 
Fundamentals of FRA technique are approximation of modal parameters by calculation 
the Frequency Response Function as a structure answer for appropriate excitation. The 
excitation force signal, which can be use in individual modal test, is sinus sweep, white 
noise, chirp sequence signal, Dirrac Delta or pulse (impact) [6]. The OFRA method use a 
normal work of engine’s cam valves, as a self-excitation of compression-ignition engines 
head. It is a cyclic, dynamic process and can be taken to the analysis, as an impact 
excitation [5, 8]. Acquisition of vibration signal was preceded by optimization of 
accelerometer mounting place.  

2. Experiment and analysis  

The experimental research was done in Institute of Combustion Engines and Transport 
Laboratory, Poznan University of Technology. Vibration tests were done on a 
dynamometric stand with one-piston laboratory diesel engine type SB3.1.  
Dynamometric stand was adapted to vibroacoustics tests of diesel engine. Main devices 
of measurement set were:  
– accelerometer Brüel & Kjær type 4391, 
– transducer of in-chamber pressure AVL type 8QP 505c connected to conditioning 
amplifier type AVL 3057-A01, 
– photoelectric crankshaft rotation marker AMX 210 connected to conditioning 
amplifier type AVL 3065-A01, 
– measurement amplifier Brüel & Kjær type NEXUS 2692. 

An appearance of test dynamometric stand are presented on figure 1. 
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Fig. 1. Dynamometric stand for SB3.1 a) and accelerometers mounted to the SB3.1 engine head b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Diagram of signal acquisition system used in experiment 
 
Acquisition and on-line monitoring system was prepared on PC computer equipped with 
Dynamic Acquisition Card type NI DAQ PC–4472 and LabView® software made by 
National Instruments. Schema of acquisition system is shown on figure 2. 
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In a recorded vibration signal, all engine processes were recognized as a specific signal 
components, e.g. shutting of cam valves, fuel injection, aggregation of self-ignition and 
kinetic burning of fuel [3,4,10]. After phase-time selection procedure the vibration 
effects of cam valves shutting were separated. These parts of signal were synchronous 
averaged. After this operation a base spectrum was calculated. Comparison of base 
spectrum and autospectrum of combustion effects provide information about 
characteristic frequency band, witch are coincide to burning process. Post-processing 
effects are graphically presents on figure 3. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Signal selection method and analysis of engine head excitation; 
1. burning, 2. shut down of outlet valve; engine loading: n=700 RPM, Mt=0 Nm 

Typical frequency band of combustion process occurring during work-cycle of SB3.1 
type engine, is from 800Hz to 1500Hz approximately. The level of vibration signal 
energy in this frequency band is a most sensitive to change of engine technical state and 
its control parameters. Magnitude value for frequency 980 Hz component of vibration 
signal was accepted as an estimator of engine performance and loading parameter. 
Validation of loading estimation based on magnitude selected vibration signal was done 
in wide range of crankshaft rotation speed and load. Developing an engine’s loading 
tests permit to create a vibration engine load map (fig. 4). The prepared Load-Vibration 
Map can be use for example, to fault detection of fuel injector and detection of misfire 
process. A misfire process reduces magnitude value from 50% to 80% [1,7]. 
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Fig. 4. The Load-Vibration Map of engine type SB3.1 

That map is unique, individual description of vibroacoustic activity of engine (here 
SB3.1 type). The Load-Vibration Map (LVM) can be use as a template for fast technical 
state diagnostics. In other hand it can be use as a several engine model for load 
monitoring, control, optimization and fast fault detection, especially critical emission 
elements – fuel injector [1]. 

3. Summary 

The use of OFRA method to vibration signal selection is very easy to use in normal 
operation of technical objects. The Load-Vibration Map is a non-invasive, very easy to 
use diagnostics method and gives new possibilities in engine technical state monitoring 
and optimal operation. Acquisition of vibration signal doesn’t demand especially engine 
unit preparing and can be executed as an on-line procedure. Spectrum analyzer of engine 
head vibration signal is useful and can be built-in to OBD/E-OBD systems as a real time 
monitor, if exist. Possibility of use vibroacoustic activity engine’s map to misfire 
detection was ascertained and confirm at tests, executed on diesel locomotive engine 
type 2112SSF [2,7]. This method is most sensitive and efficient then organoleptic and 
experts method used in normal operation. The biggest advantage of LVM is a possibility 
of using it to technical state monitoring of older engines. This process can be executed as 
on- or off-line monitoring system. 
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Abstract 
Scientific achievements of stability and free vibrations of slender systems subjected to 
specific load are presented in the paper. Schematic diagrams of heads realising the 
specific load and boundary conditions in the case of two fundamental types of specific 
load (generalised load by a force directed towards the positive pole and load by the 
follower force directed towards the pole) are shown.  
Keywords: column, stability, free vibrations  

1. Specific load 

The specific load was presented for the first time by L.Tomski et al. in [7] in 1994. The 
specific load is a conservative load, where the static stability criterion is sufficient 
enough to determine the value of a critical force. It combines in itself features of general-
ised load [4] or load by the follower force [1] with load by the force directed towards the 
positive pole (compare [3]) or negative pole (compare [3]). The origin of the nomencla-
ture related to the specific load is presented by means of the diagram given in Figure 1. 

 

Fig. 1. Diagram illustrating the origin of the nomenclature relating to the specific  
load [18] 

In case of the specific load two variants are distinguished: 

− generalised load by a force directed towards the pole (positive or negative). The load 
by a concentrated force directed towards fixed point (the pole) placed on non-deformed 
axis of the column. The action of this force does not cause linearly dependent bending 
moment;  
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− load by the follower force directed towards the pole (positive or negative). It is realised 
by the follower force which direction coincides with the tangent to deflection at the free 
end of the column. The direction of the force passes through the constant point (pole) on 
non-deformed axis. 

The method of formation of the specific load by the follower force directed towards the 
positive pole (compare [12]) is presented in Fig.2.  

 
Fig. 2. The method of formation of the load by the follower force directed towards the 
positive pole: (a) system subjected to the follower force (non-conservative system) [1], 
(b) system subjected to the force directed towards the positive pole (conservative sys-
tem) [3], (c) system subjected to the follower force directed towards the positive pole 
(conservative system) [12]. 

 
Fig. 3. Load (P) − free vibration frequency (ω) plane curves 

Two possible courses of characteristic curves, in dependence on load parameters in the 
plane: load – natural frequency, are obtained: 

− course of the curve presented in Fig. 3a corresponds to divergence system . Column 
looses its stability due to buckling at the value of the force designated as Pcd, which 
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corresponds to zero first natural frequency. The first form of natural frequency is present 
along the first curve, 

− course of the curve presented in Fig. 3b corresponds to the pseudo-flutter divergence 
system. Column looses its stability due to buckling at the value of the force designated in 
the picture as Pcd. In this case the change of the first form of natural frequency into the 
second form takes place along the first characteristic curve. The name of “pseudo-flutter 
divergence system” was given by L.Tomski and R.Bogacz in [2]. In Figure 3, the pres-
ence of the first and the second form of natural frequency along characteristic curves 
were denoted by M1 and M2, respectively.. 

2. Systems subjected to the specific load (schematic diagrams, boundary conditions) 

The considered specific load is realised by application of suitably constructed loading 
heads (compare [8]). The heads are built from linear or circular elements. The specific 
load can be realised as active load (loading system) or passive load (bearing system). 

Schematic diagrams of the systems realising the specific load are presented in Figure 4. 
Vertical position of the system axis proves that given construction can realise only active 
load. Horizontal position of the system axis proves that both active and passive load 
(bearing) can be realised. In Figure 4 denotation WK( ) is given to every constructional 
variant. Letter D or U denotes appropriate pole, towards which the loading force is direc-
ted (D – positive pole, U – negative pole). 

Boundary conditions are given exemplary for constructional variants (WK1D) and 
(WK6D), whose detailed diagrams are presented in Fig.5: 

• generalised load by a force directed towards the positive pole (WK1D): 
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• load by the follower force directed towards the positive pole (WK6D): 
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EJ − bending rigidity of the column rod, P − loading force, W(x,t) − transverse dis-
placement of the column corresponding to coordinate x, t − time, R − radius of forcing 
head, r − radius of receiving head, l0 − length of rigid bolt.   
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Fig. 4. Realisation of the active and passive specific loads: a) generalised load by a force 
directed towards the pole, b) load by the follower force directed towards the pole [6] 

Important publications dealing with research into the columns subjected to the specific 
load considering suitable constructional versions are presented in Fig. 4. Theoretical, 
numerical and experimental research is taken into account in these publications.  
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Fig. 5. Schemes of heads realising the specific load in case of constructional variants:  
a) WK1D [5, 13, 17, 21], b) WK6D [8, 12, 13, 15, 19, 22]. 

The study has been carried out within the framework of Work BS-1-101-302-99/P of the 
Czestochowa University of Technology. 
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Abstract 

The formulation and solution to stability problem and free vibrations of the geometri-
cally non-linear system loaded by the follower force directed towards the positive pole 
is presented in the paper. The system is supported at the loaded end by a spring with 
linear characteristics. The boundary problem was formulated on the basis of Hamil-
ton’s principle and, owing to its non-linearity, on the use of the straightforward expan-
sion method. Bifurcation force and characteristic curves (in the plane: load − free vi-
bration frequency) have been determined on the basis solution of boundary value 
problem. Calculations have been carried out at difference physical and geometrical pa-
rameters of considered systems. 
Keywords: column, stability, free vibrations 

1. Introduction 

The considered geometrically non-linear column is built as a planar frame constructed  
of four rods with symmetrical distribution of flexural and torsional rigidity  
(Fig. 1b – compare  [1, 6]). These systems are characterised by local and global instabil-
ity [4, 5, 6] and by presence of rectilinear and curvilinear static equilibrium [1, 6]. The 
considered system is loaded by follower force directed towards the positive pole. This 
load is the one from a group of specific loads. For the first time the specific load was 
described and examined (theoretically, numerically and experimentally) by L.Tomski. 
Formulation of stability problem and free vibrations of column supported at he loaded 
end by a spring with linear characteristics was the aim of the paper. Supported spring is 
commonly used as a discrete element by many authors in research into stability and free 
vibrations of the column (compare [2, 3, 5]). Rigidity of the supported spring has influ-
ence – among other things – on change in critical force [2, 3, 5], on change in method of 
stability loss [3, 5] (flutter or divergence when applying non-conservative load, e.g. 
Beck’s generalised load) and also on the change in characteristic curves in the plane: 
load – natural frequency [2, 3, 5].  

2. Formulation of the boundary problem 

Schematic diagram of the considered system is presented in Fig. 1a. The load by follo-
wer force directed towards the positive pole is realised by the loading heads constructed 
of linear elements. The load (Fig. 1a) is developed by infinitely rigid element (bolt) with 
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lC in length, directed tangentially to the loaded end. End of the bolt is located on non-
deformed axis of the column at point O. Point O determines a direction of the concentra-
ted force P action. The ends of all rods are connected with each other and with the bolt 
through element with mass m. Spring supported the system is linear , and force recalled 
by the spring is dependent on deflection of loaded end of the system W(l,t). In the con-
sidered case, the boundary problem is formulated on the basis of Hamilton’s principle: 
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Potential energy V  and kinetic energy T are defined as follows: 
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where: Wi(x,t), Ui(x,t) – transversal and longitudinal displacement of the i-th rod, respec-
tively, (EJ)i − flexural rigidity of the i-th rod, (EA)i − compressive rigidity of the  
i-th rod, (ρ0A)i − mass per unit length of the i-th rod, C − spring constant. 

     

Fig.1. The considered slender system: a) schematic diagram, b) physical model of geo-
metrically non-linear column 
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Deformation εi(x,t) and axial force of the i-th rod, taking into account the theory of mod-
erately large deflections, is written as: 
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Dimensionless quantities are introduced:  
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where, ω is the natural frequency of the system [rad/s]. 

Geometrical boundary conditions of the considered column with the use of dimen-
sionless quantities are defined by the following expression: 
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By substituting potential and kinetic energy into Hamilton’s principle and carried out 
appropriate transformation one can obtain: 

• differential equation of motion in the transversal direction: 
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• differential equation of the longitudinal displacements: 
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• the natural boundary conditions: 
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Equations (8) and (9) and boundary conditions (10) are written in dimensionless form 
after applying equations (5). The equation of longitudinal displacements (9), after having 
been integrated twice and after considering condition of axial force (4b), takes the form: 
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The boundary problem presented above is non-linear (non-linearity occurs in relation-
ship (11) − the element of integration). The straightforward expansion method is used to 
final formulation of the boundary problem. This method relies on expansion of all non-
linear expressions wi(ξ,τ), ui(ξ,τ), ki2(τ) and Ωi

2 into power series of small parameter. 
The considered geometrically non-linear system is characterised by rectilinear and curvi-
linear form of static equilibrium. The expansions into power series of small parameter at 
rectilinear and curvilinear static form are as follows: 

• rectilinear form of static equilibrium: 
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• curvilinear form of static equilibrium 
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The expansions into series of small parameter are substituted into the differential equ-
ations (8) and (11) and the terms with identical powers of small parameter are being 
grouped. Thus, the infinite sequence of differential equations of motion in transversal 
direction and equations of longitudinal displacement have been obtained: 

• rectilinear form of static equilibrium 
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• curvilinear form of static equilibrium 
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Required equations in case of rectilinear and curvilinear form of static equilibrium, con-
nected to the small parameter in zero and first power, are presented in the paper. The 
solutions to the equations, connected to small parameter in a power higher than one, are 
difficult for determination and their influence on total solution is low (small parameter 
has the value much lower than one (ε << 1)). To solve correctly the boundary problem, 
the expansions into series of small parameter ((12) – at rectilinear and (14) – at curvilin-
ear form of static equilibrium) should be substituted into the boundary conditions given 
by equations 6), (7) and (10), and should be grouped according to identical powers of 
small parameter. 

3. Solution to the boundary problem 
Equation (16a) with the boundary conditions related to longitudinal displacements de-
termines the relationship between internal forces in the rods at rectilinear form of static 
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equilibrium. Substitution of the solution to equation (16b) into the boundary conditions 
related to transversal displacement leads into the system of equations, whose determinant 
of the matrix of coefficients is transcendental equation for free vibration frequency at 
rectilinear form of static equilibrium. The distribution of internal forces, obtained accor-
ding to equation (16a), should be considered. 

By substituting the solution to equation (17a) into the boundary conditions related to 
transversal displacements, the system of equations is obtained. Determinant of the matrix 
of system coefficients is transcendental equation, from which the distribution of internal 
forces in column rods at curvilinear form of static equilibrium is assigned. The curviline-
ar form of static equilibrium is present between the bifurcation and critical load. The 
bifurcation load is computed on the basis on equation (16a) if transcendental equation 
for internal forces in the rods at the curvilinear form of static equilibrium is fulfilled 
simultaneously. Free vibration frequency is determined taking into account equation 
(17c) in case of the curvilinear form of static equilibrium. Equation (17b) is used for a 
computation of unknown present in the solution to equation (17a).                

The study has been carried out within the framework of Work BS-1-101-302-99/P of the 
Czestochowa University of Technology and Research Project No. 4T07C04427 awarded 
by the Ministry of Science and Computer Science, Warsaw, Poland. 
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Abstract 
For multihull watercraft, general differential equations of motion were formulated 
taking into account possible movements of the oceanotechnic construction. These 
movements are connected with freedom degrees of the construction floating on the 
undulated sea surface. General formulas given for possible construction movements 
describe the external loads connected with hydrodynamic reactions, damping forces 
and hydrostatic reactions. The generalised excitation forces can refer to the case of 
regular undulation and for this case general formulas are given. Irregular sea 
undulation, which is a  stochastic process, requires using linear filters developed based 
on parametric wave excitations relating to one of spectra collected in Table 1. 

 
1. Introduction  
 
The stochastic model is the basic model used in analysing sea watercraft subject to water 
undulation. It is assumed in this case that the sea condition is represented by the 
superposition of a large number of regular gravitational waves with small progressive 
amplitudes, for which random variables can be only phases, or both phases and 
amplitudes. The superposition based solutions obtained for the linear waves can be used 
for describing irregular undulation. In short time intervals and small areas the stochastic 
process of undulation can be considered stationary and  homogeneous. For large water 
regions and long time intervals the assumption about homogeneity of the undulation 
process is not valid.  
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Fig.1. Scheme of the physical model of a multihull - trimaran 
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2. Equations of motion for the construction  
 
The multihull (Fig.1) is a complex ocean going construction in both strength and 
hydrodynamic terms. In a general case it is treated as a watercraft consisting of a deck 
and a number of floats. The mathematical representation of this physical model has the 
form of six differential equations of motion: 
                                         ( ) ( ) ( ) ( )mk k mk k mk k mA t B t C t F tη η η+ + =&& &                                 (1) 
for , 1, 2,3..6k m =  
where:  
                                                        mk mk mkA M H= +                                                    (2) 

mkM - elements of matrix of generalised construction masses, 

mkH - elements of matrix of generalised hydrodynamic masses, 

mkB - elements of matrix of damping coefficients, 

mkC - elements of matrix of hydrostatic elasticity, 
( )mF t - generalised excitation forces, 
( )k tη - vector of generalised displacements. 

 
When analysing the matrix equation (1) we can separate six equations of motion into two 
mutually decoupled groups, equal to each other with respect to the number of equations. 
These two internally coupled groups include: symmetric movements kη for 1,3,5k =  
and antisymmetric movements kη for 2,4,6k = . 
 
3. External forces acting of the watercraft  
 
The form of equation (1) and the type of matrix coefficients depend on the external 
forces acting on the watercraft. The external forces exerted by water can be divided into 
hydrodynamic reaction forces and excitation forces, taken into account by matrix 
coefficients and the free term vector in equation (1).  
The generalised external forces acting on the construction are given by relation: 
                                                     ( )m o m

S

P p p n dS= − −∫                                                 (3) 

where: 
S  - wetted surface area, 

mP - orthogonal projections of external forces for 1,2,3m =  and orthogonal 
projections of moments of external forces for 4,5,6m = , 

mn - unit vectors in the direction normal to surface S for 1,2...6m = , 
p - pressure at the wetted surface. 
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If ( , )X tφ φ= is the water velocity potential induced by watercraft movements and  water 
undulation, then based on the Cauchy-Lagrange integral we can write: 

                                             2
3

1[ ( ) ]
2o tp p gXρ φ φ− = − + ∇ +                                        (4) 

Substituting (4) into (3) we get: 
                                      3 4 2 5 1[ ( ) ]m t m

S

P g x x n dSρ φ η η η= − + + −∫                                  (5) 

We search for the velocity potential in the class of additive functions as: 
                                                       1 2( ) ( , )x x tφ φ φ= +                                                     (6) 
where: 

1φ -stationary potential induced by floating movement, 

2φ -total potential including water undulation and local movements. 
The potential 2φ is given in the following form: 
                                                        2 W D Lφ φ φ φ= + +                                                      (7) 
where: 

Wφ -potential of water undulation velocity, 

Dφ -diffraction potential, 

Lφ - velocity potential from local movements. 
 

4. Hydrodynamic and hydrostatic coefficients  
 
General formulas for hydrodynamic coefficients from added masses: 
                                                        Re[ ]mk mkA K=                                                         (8) 
and for damping coefficients  
                                                     Im[ ]mk mkB Kω= −                                                      (9) 
where: 
                                                  mk m k

S

K i n dSωρ ϕ= − ∫                                                  (10) 

for , 2,3, 4,5,6m k = . 
 
The hydrostatic elasticity coefficients are determined from formula: 
                                        3 4 2 5 1( )mk m

S

C g n x x dSρ η η η= − + −∫                                     (11) 

The symmetry of the construction with respect to the vertical longitudinal plane is the 
reason why the majority of coefficients mkC  are equal to zero. The only non-zero 
coefficients are the following: 33 44 55 35 53, , ,C C C C C= . 
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5. Excitation forces 
 
The excitation forces are generated by water undulation and diffraction of waves. That 
means that they can be presented as functions of the undulation velocity potential 

Wφ and the diffraction potential Dφ in the form: 

                                              ( )m m W D
S

F i n dSρω φ φ= − +∫                                            (12) 

for 6,..3,2=m . 
Instead of (12) we can write another relation for mF  

                                                   m m W
S

F A dSρ φ= − ∫                                                      (13) 

where: 

                                         2 3
2 3

( )m m mA i n n n
x x

ω ϕ ∂ ∂
= − +

∂ ∂
                                        (14) 

for 6,..3,2=m . 
When we have to deal with a stochastic process of undulation in long time intervals, then 
linear filters can be applied to the irregular undulation. 
These filters are to be developed in such a way that the parametric excitations from the 
wave can be described by basic spectra (see Table 1), i.e. Pierson-Moskowitz, ISSC, 
Jonswap, Striekałow-Massel, and Paszkiewicz spectra.  
The most frequently used undulation spectra in the dimensionless form (after  
parametrisation) are given by the following formula:  

                                                          2
1/ 3

( )

k

S
F

h T
η ω

=                                                            (15) 

where: 
( )Sη ω - one-dimensional energy spectrum function, kT -time periods (see Table 2), h  - 

wave height. 
 
The source of information on undulation of seas and oceans are the observations and 
measurements of the undulation itself, of measurements of the wind that generates the 
undulation. In stochastic modelling of high importance is proper selection of parameters 
which describe the phenomenon and finding unique relations between the wind and 
undulation parameters. When studying the effect of water undulation, the mathematical 
models of sea watercraft make use of distribution functions of various quantities, 
obtained from identification carried out by various research centres.  



 375 

Table 1. Types of undulation spectra  
Type of undulation 

spectrum  
Spectral density functions and relations for characteristic 

time periods  
 

 
Pierson-Moskowitz 

spectrum 

5 4
2 2

2 2
2 1/3

( ) 1 1exp
2 28

S T TF
T h
η ω ω ω

π π ππ

− −     = = −        
 

2 1 1 0 2 00,92 , 0,771 , 0,71T T T T T T= = =  
 
 
 
 
 
 

ISSC (International 
Ship Structures 

Congress) spectrum 

 
5 4

1 1
2

1 1/3

( ) 0,11 exp 0, 44
2 2 2

S T TF
T h
η ω ω ω

π π π

− −     = = −        
 

2 1 1 0 10,92 , 0,771 , 1,11T T T T T T−= = =  

for Northern Atlantic 4 1
1
1,18

T Tε−=  

ε (spectrum width)-calculated from data obtained during  

undulation observation  
2

2

max
1 VN

N
ε

 
= −  

 
 

VN - number of observed waves 

maxN - number of observed wave maxima  
 
 
 
 
 
 
 
 

JONSWAP (The Joint 
North Sea Wave 
Project) spectrum  

2

2
2

1exp 1
21

5 4( ) exp
s

AB BS F

ω
ωσ

η ω γ
ω ω

   −   −   = − 
 

 

where: ( )2
1/ 30,25A h= ,

4

2

20,32B
T
π 

=  
 

, 

2,049F = , 
2

2
T
πω = .  For 1,406s = , 3,3γ =  

2

2

0,07 0,711

0,09 0,711

dla

dla

ω
ωσ ω
ω

 <= 
 >


 the undulation model is so-

called average JONSWAP spectrum. In the parametrised 

form:  2
1 1/3

0,5 ISSC
S

F AF
T h

η= = , where: ISSCF - ISSC  

spectrum, 
( )( )2,5

1exp 80 0,2069 1
3,3

T
A

ω− −
=   
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Table 2. Averaged wave time periods  

 
References  
 
[1] Chakrabarti S.K., Offshore Engineering, Offshore Structure Analysis, Inc., 
Plainfield, Illinois, USA, Vol.1, 2005.  
[2] Druet Cz., Sea dynamics, Gdansk University Publishing House, Gdańsk 2000 (in 
Polish). 
[3] Kang D., Hasegawa K., Prediction method of hydrodynamic forces acting on the hull 
of a blunt-body ship in the even keel condition, Journal of Marine Science and 
Technology, Vol.12, Number 1, 1-14, 2007. 
[4] Królicka A., Stochastic approach to the dynamics of a linear floating object, Marine 
Technology Transactions-Vol.17, pp.121-130, Gdańsk 2006. 
[5] Rumianowski A., Investigating the dynamics of selected marine floating objects, 
Gdańsk 2003 (in Polish). 
[6] Rumianowski A., Dynamics of free weight-displacement rigid offshore float 
constructions, Shipbuilding XXXIX, Gdańsk 1984 (in Polish). 
[7] Sobczyk K., Stochastic differential equations, Warszawa 1996 (in Polish). 
[8] Sobczyk K, Spencer Jr.,B.F., Stochastic models of material fatigue, Wydawnictwa 
Naukowo-Techniczne, Warsaw 1996 (in Polish). 

 
Paszkiewicz spectrum 

5 4
3 1 1

2
1 1/ 3

( )
0,812 10 exp 0,723

2 2
S T TF
T h
η ω ω ω

π π

− −
−

     = = ⋅ −        
 

 
 
 

Striekałow-Massel 
spectrum 

2
2 1

2
1 1/3

5 8
2 1 1

( )
2,36 10 exp 35 0,8

2

1,37 10 exp 1,34
2 2

S TF
T h

T T

η ω ω
π

ω ω
π π

−

− −
−

   = = ⋅ − − +    
     + ⋅ −        

 

Averaged energy period  1 1 02 /T m mπ− −= ⋅  
Period connected with the frequency corresponding to 
spectrum maximum 0mω ω=  

0 2 /m mT T π ω= =  

Average undulation period (characteristic) 1 0 12 /T m mπ= ⋅  
Average period of zero places of the undulation process 

2 0 2 02 /T m m Tπ += =  
Average period of successive local maxima  

4 2 42 / mT m m Tπ= =  
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Abstract 

The stability analysis method is developed for a thin-walled rotating shaft with relaxed 
assumptions imposed on solutions. The problem is motivated by structural vibrations 
with external time-dependent parametric excitations which are controlled using surface 
mounted or embedded actuators and sensors. The commonly used strong form of 
dynamics equations involves irregularities which lead to computational difficulties for 
estimation and control problems. In order to avoid irregular terms resulting from 
differentiation of torques the dynamics equations are written in a weak form. The study 
of stability analysis is based on examining properties of Liapunov functional along a 
weak solution.   Solving the problem is presented for an arbitrary combination of  
simply supported and clamped boundary conditions. Formulas defining  dynamic 
stability regions are written explicitly.  
Key words: weak form, thin-walled shaft, dynamic stability, different boundary 
conditions. 

 

1. Introduction  

Thin-walled, usually angle-ply laminated shafts relatively easy meet requirements of 
torsional strength and stiffness but are more flexible to bending and have specific elastic 
and damping properties which depend on the system geometry, physical properties of 
plies and on the laminate arrangement. Such systems are also sensitive to a lateral 
buckling. The dynamic stability of rotating composite shaft described by partial 
differential equations [5] was investigated using the direct Liapunov method.  Another 
important problem of this paper is the description of the global damping of a laminated 
shaft. Despite the fact  that in case of viscoelastic orthotropic plies the resulting 
constitutive equation is of higher order, the simple Voigt-Kelvin model is assumed. 
Thin-walled shalls reveal a considerable deformation of cross-section contour during 
bending. One of the first studies taking into account Brazier’s effect was a rotating shaft 
stability analysis [6] in which the closed form analytical criteria were derived. The 
influence of thermal activation of hybrid composite shafts on stability domains was 
examined [7]. Recently, the dynamic stability criterion of rotating viscoelastic shafts 
with the effect of transverse inertia subjected to a random axial force was determined 
[4].  

In our dynamics study the rotating laminated circular cylindrical shell will be treated 
as a beam-like structure. The reduction is justified by a symmetric plies arrangement and 
negligible circumferential stresses in the shaft. The shaft is assumed to be compressed by 
an axial force. The stability analysis problem of dynamic equations  in a weak form is 
motivated by structural vibrations with external time-dependent parametric excitations 
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which are controlled using surface mounted or embedded actuators and sensors. The 
commonly used strong form of dynamics equations involves irregularities which lead to 
computational difficulties for estimation and control problems. In order to avoid 
irregular terms resulting from differentiation of torques the dynamics equations are 
written in a weak form. The direct Liapunov method is used to analyse the uniform 
stochastic stability of the equilibrium state. Special attention is paid to a positive-
definiteness of the appropriate energy-like Liapunov functional. Analysing the positive-
definiteness leads to sufficient stability conditions, expressed in terms of the rotation 
speed, the damping coefficients, the bending stiffness. 
 
2. Weak formulation of shaft dynamics equations   

Let us consider a geometrically perfect long cylindrical shell of radius R, length l 
and total thickness h (l>>R>>h). The shaft, treated as a symmetrically laminated shell, 
contains the conventional (e.g. graphite or glass) fibers oriented at Θ and Θ to the shell 
axis. The shaft rotates with the constant angular velocity ω and  arbitrary combinations 
of the simply supported and clamped edges is assumed. The shaft is assumed to have a 
constant circular cross section without initial geometrical imperfections. The mean 
density is denoted by  ρh and the area and the geometrical moment of inertia of the shaft 
cross-section are denoted by A and J, respectively. The beam-like approach due to 
Bauchau [2] is used in order to derive the global elastic constant EJ of the shaft. It is 
assumed that the rotating shaft is loaded by uniformly distributed time-independent 
centrifugal forces. Displacements of the center shaft line in movable rotating coordinates 
are denoted by   u, v.  In order to derive dynamics equations in a weak form we apply 
Hamilton’s principle. Starting from the rotating shaft without damping and axial loading 
we write an action integral as the time integral of difference of kinetic energy and 
bending energy   

 

        ( ) ( ) ( ) ( )[ ] dtdxvueuvvuu t
t

l
xx,xx,t,t,

o
∫ ∫ +−−++= 0

2222
2
1 ωωΑ           (1) 

 

where [ ] ( )( )22 0 l,HWv,uu b
T =∈= , the index  b  denotes the set of functions satisfying 

the essential boundary conditions, the time interval  ( )t,to  is arbitrarily chosen.  
Consider  
 

    
( )
( )

( ) ( )
( ) ( )






+








=+=

xt
xt

x,tv
x,tu

uû
Ψη
Φη

εΘε
2

1              (2) 

 
where ( ) ( )tto 21 ηη = , W∈Θ . According to Hamilton’s principle the shaft motion must 
have a stationary value to the action integral , therefore 
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      ( ) 0
0
=+

=ε
Θε

ε
uA

d
d              (3) 

 
Using equation (2) in equation (3) and integrating by part with respect to time the time-
derivatives of functions 1η and 2η we obtain the dynamics equations of shaft in a weak 
form 
 
     ( )[ ] 020

2 =+−+∀ ∫ dxeuuvul
xx,xx,t,tt, ΦΦωω

Φ
        (4) 

 
 
      ( )[ ] 020

2 =+−−∀ ∫ dxevvuvl
xx,xx,t,tt, ΨΨωω

Ψ
        (5) 

 
Adding the internal viscous damping with coefficient βi ,  the external viscous 

damping with coefficient βe and the axial force as external works the shaft dynamic 
equations  can be written in the  weak form as follows 
 

( ) ( )[ ] 020
2 =+++++−+∀ ∫ dxufeuuvuuvul

xx,oxx,xx,t,it,et,tt, ΦΦΦβΦωβΦωω
Φ

   (6) 

 
( ) ( )[ ] 020

2 =+++−+−−∀ ∫ dxvfevuuvvuvl
xx,oxx,xx,t,it,et,tt, ΨΨΨβΨωβΨωω

Ψ
   (7) 

 
where  Φ, Ψ  are sufficiently smooth test functions satisfying essential boundary 
conditions. There is no demand of  the existence of higher derivatives than the second 
order. As detailed in [1], the usual integration by parts terms containing  derivatives of 
test functions with respect to the variable x and the assumption of  sufficient smoothness 
of the components of shaft displacements lead  to the commonly used strong 
formulation. 

The shaft is assumed to be simply supported or clamped on both ends. Therefore the 
essential boundary conditions have following form at its ends 

 
                                 ( ) ( ) ( ) ( ) 0,,0,,0 ==== tlvtvtlutu                                  

 
3. Stability analysis 

In order to determine conditions of smooth shaft motion corresponding to the Liapunov 
stability of of trivial solution u = v =0 we choose the positive-definite Liapunov 
functional in the energy-like form [5 ] 
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( ) ( )[ ( )

( ) ( ) ( )]dxvufvueuv

vuvvuuvuV

xxoxxxxt

t
l

tt

2
,

2
,

2
,,

2
,

2
,

2
,

2

0 ,
2

,

22

2
1

+−++ω−+

+β+ω−+ω++β+ω+= ∫

     (8) 

where ei βββ += .          
The functional is positive-definite if the constant axial force fo fulfils a static 

buckling condition, i.e. is sufficiently small. Therefore, the  measure of distance  of 
solutions with nontrivial initial conditions from the trivial one needed in stability 
analysis can be chosen as a square root of the functional. As trajectories of the solution 
of equations (6) and (7) are physically realizable the classical calculus is applied to 
calculation of the time-derivative of functional (8). Its time-derivative is given by 

  

  

( )( ) ( )[ ( )

( )( ) ( )( )

( ) ( )]dxvvuufvvuue

uvuvvuvvuv

vuvuuvuuvu
dt
dV

tx,x,tx,x,otxx,xx,txx,xx,

t,tt,t,t,t,tt,t,

t,tt,
l

t,t,t,tt,t,

+−++

+−−++−+−+

++++++++= ∫

22

0

ωωβωβω

ωωβωβω

    (9)  

 

In order to avoid a integration by parts in equations (9) and generation the third and 
the fourth partial derivatives of displacements we substitute   u,v,u t, βω22 as the   test  
functions in equation (6). Therefore, we have three identities, respectively 

 
( )[ ] 02222220

22 =++++−+∫ dxuufueuvuuuuvul
t,xx,oxxt,xx,t,et,t,t,tt, ωββωω  

 
( )[ ] 02222220

222 =++++−+∫ dxvufuuevvuvuvul
xx,oxxt,xx,et,t,tt, ωωωββωωωω  (10) 

 
( )[ ] 0220

222 =++++−+∫ dxuufeuuvuuuuvul
xx,oxx,et,t,tt, ββωβββωωβ  

 
In a similar way we substitute v,u,v t, βω22 as the test functions in equation (7)  
 
( )[ ] 02222220

22 =++−+−−∫ dxvvfvevuvvvvuvl
t,xx,oxxt,xx,t,et,t,t,tt, ωββωω  

 
( )[ ] 02222220

2 =++−+−−∫ dxuvfuveuvuvuvuvl
xx,oxx,xx,t,et,t,tt, ωωωββωωωω   (11) 
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( )[ ] 0220
222 =++−+−−∫ dxvvfevuvvvvvuvl

xx,oxx,et,t,tt, ββωβββωωβ  
 
Subtracting identities (10), (11) from the functional time-derivative (9) we obtain the 

following form  
 

  
( )[ ( )( ) ( )

( ) ( )]dxvufvue

uvvuvuvu
dt
dV

x,x,oxx,xx,

t,t,eie
l

t,t,

2222

22
0

222 2

+−++

+−++−++−= ∫

ββ

ωβββωβ

    (12) 

 
It should be noticed that the way to obtain equation  (12) is purely algebraic contrary 

to systems described by strong equations, where the derivation of stability conditions is 
based on integrations by parts and manipulations with higher order partial derivatives. 
Usually the Liapunov stability analysis of shafts was performed for both edges simply 
supported, cf. [4]. In order to extend the field of possible applications let assume the 
following combinations of boundary conditions: a)  s-s, b) c-s, c) c-c, where s denotes 
the simply supported edge, and c  denotes the clamped edge. 

Let assume the following expansions of shaft displacements  
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( ) ( ) ( )
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
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


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


∑
∞
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tS

xW
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n

n
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n

21
         (13) 

 
where functions Wn(x) are the beam functions [ 3]  depending on the assumed set of 
boundary conditions. Integrating we have the following equality [8] 
 
     ( ) ( )dxxWdxxW l

x,nnn
l

xx,n ∫∫ = 0
22

0
2 ακ          (14) 

and  

     ( ) ( )dxxWdxxW l
n

n

nl
xn ∫∫ κ

α
= 0

2
2

0
2
,           (15) 

where  αn   is an eigen-value of boundary problem. Applying equalities (14) and (15) in 
equation (12) we have the following upper estimation of the functional time-derivative 
 

    ( )∫ +

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



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e
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22
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2
1

2
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 In Table 1 are given values of κn  and   αn for the given boundary conditions. 
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Table 1.  
 s-s s-c c-c 
       α1 π 3.927 4.730 
       κ1 1 1.3396 1.8185 

 
Finally, the critical angular velocity is defined as   

    







κ

−αα







β
β

+=ω
1

2
1

2
1

2
2 1 o

i

e
cr

f
e       (17) 

4. Conclusions 

A method has been presented for analysing the stability of rotating thin-walled  
composite shafts described by equations in a weak form. The problem is simplified as 
compared with the strong equations due to the elimination of integration by parts 
demanding existence of higher order partial derivatives of solutions. The critical rotation 
speed depends on material parameters and damping coefficients.  
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Abstract 
In this paper, a meshless method for solving the natural vibration of plates problem is 
proposed. For this particular problem the method of fundamental solutions has been 
implemented. due to its features, the final resolving system can be solved with the 
classical approaches by using standard numerical procedures. To asses the formulation, 
the free vibration of some plates were calculated and the results compared with those 
obtained using other solution techniques. The present results are in good agreement with 
those found in the literature showing the accuracy and effectiveness of the proposed 
approach.  
keywords: natural frequencies, free vibrations, method of fundamental solutions  

Introduction 

In numerical methods, mesh generation of a complicated geometry is always time 
consuming in the stage of model creation for engineers in dealing with the engineering 
problems by employing the finite difference method, finite element method and 
boundary element method. In the last decade, researchers have paid attention to the 
meshless method without employing the concept of element. The initial idea of meshless 
method dates back to the smooth particle hydrodynamics method for modeling 
astrophysical phenomena [1]. Several meshless methods have also been reported in the 
literature, for example, the domain-based method including the element-free Galerkin 
method [2], the reproducing kernel method [3], boundary-based method including the 
boundary node method [4], the meshless local Petrov-Galerkin approach [5], the local 
boundary integral equation method [6], the radial basis function approach [7], 
fundamental solution method [8]. These methods are implemented for static, dynamic 
problems, and natural vibrations as well [9]. The present paper shows the solution of  the 
natural vibration problem of a plate by the method of fundamental solutions. 

1.  Problem description 

A flat plate of thickness h, referred to a Cartesian system of co-ordinates with x1 and x2 
axes laying on its middle surface and x3 axis perpendicular to that plane, is considered. 
The plate domain is denoted by Ω, while its boundary is represented by Γ.  The 
equilibrium equation governing the plate motion is written as 

( ) ( ) ( )tqtwhtwD ,,,4 xxx =+∇ &&ρ  for Ω∈x   (1) 
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where w(x,t) is the plate deflection, 4∇  is biharmonic operator, ρ  is the mass density of 
the plate material, D is rigidity of the plate and is given as D= Eh3/(12(1-ν2)), where E 
and ν are material constants, respectively, young modulus and Poisson ratio. Moreover, 
q(x) is applied pressure. The boundary conditions for every boundary points are as 
follows. For the clamped boundary both the deflection and slope of the plate are equal to 
zero: 

( ) 0, =tw x  ( ) 0, =
∂
∂ t

n
w x  for Γ∈x   

For simply supported edge of the plate the deflection and bending moment equal zero: 
( ) 0, =tw x  ( ) 0, =tM x  for Γ∈x   

If the edge of the plate is free, the bending moment and transverse force are equal to 
zero. So the boundary conditions are: 

( ) 0, =tM x  ( ) 0, =tV x   for Γ∈x   
The analysis of the free vibrations of the plate is based on the assumption that the 
deflection function can be rewritten in the following form: 

( ) ( ) ( ) ( ) tieWtTWtw ωxxx ==,  
where ω  is the natural frequency of the plate. Using the formula (5) in the equation (1) 
gives the free vibration equation: 

( ) ( ) 044 =−∇ xx WW λ  

where Dhρωλ 24 = . The boundary conditions (2)-(4) are written in a general form and 
for the equation (6) have the form: 

( ) 01 =xWB  ( ) 02 =xWB   for Γ∈x  
To solve the problem of free vibration the method of fundamental solutions is applied. 

2. The method of fundamental solutions 

The method of fundamental solutions has been implemented for solving the boundary 
value problem given by (6) and (7). To write the approximated form of the solutions the 
set of grid points { }Ng

i
g
i 1=x  is introduced. The grid points are the points of the region Ω and 

are shown in Figure 1. The set of boundary points { }Nb
i

b
i 1=x  is defined and presented in 

Figure 2. Moreover, the auxiliary boundary so-called source contour (see Figure 2), 
outside the considered region is introduced. The points laying on the outer contour are 
called source points and are noted as { }Ns

i
s
i 1=x . 

The solution is assumed to be in form of the sum of linear combination of radial basis 
functions and linear combination of fundamental solution as: 

( ) ( ) ( ) ( ) ( )∑∑∑∑
===

+
=

++=
Np

i
ii

Ng

i

g
ii

Ns

i

s
iSiNs

Ns

i

s
iSi brarfcrfcW

111
2

1
1 xx ψφ  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

 (8) 
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In the formula (8) functions 1Sf , 2Sf  are fundamental solutions of the equation with 

biharmonic operator. Quantity s
ir  is a distance between arbitrary point of Ω and ith 

source point, therefore s
i

s
ir xx −=  for i = 1,..., sN . 

 
 
 
 
 
 
          Ω    Γ  

 
punkty aproksymacji 

 
 
 
 
 
 

Figure 1. The grid points in the region Ω  and on the boundary Γ . 
 
The functions φ , iψ  (for i = 1,..., pN ) are the particular solutions of the homogeneous 
equations: 

( ) ( )rr φϕ =∇ 4  ( ) ( )xx ii p=∇ ψ4  for i = 1,..., pN  
The function φ  is called Radial Basis Function (RBF), iψ  (for i = 1,..., pN ) are 
monomials of x. The argument of RBF is a distance between any point of Ω and ith grid 
point, therefore g

i
g

ir xx −=  for i = 1,..., gN . Real numbers coefficients ic  (for i = 

1,...,2 sN ), ia  (for i = 1,..., gN ) and ib  (for i = 1,..., pN ) are to be calculated. Moreover, 
the parameter λ , related to natural frequencies,  is unknown and is to be calculated. 
The equation (6) is written using formula (8) for each grid point. It gives gN  linear 
equations in the form: 
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 ( ) 0
1

=∑
=

Ng

i

g
iji pa x  for  for j=1,..., pN , 

(9, 10) 

(11) 

 (12) 
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where g
i

s
j

gs
jir xx −=  for i=1,..., gN , j=1,..., sN , and g

i
g
j

g
jir xx −=  for i,j=1,..., gN . 

Next equations are obtained by writing  the boundary conditions, described by (7), using 
form (8) of solution for each of boundary points: 
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for j=1,..., bN , where s
i

b
j

bs
jir xx −=  for i=1,..., sN , j=1,..., bN , and g

i
b
j

bg
jir xx −=  

for i=1,..., gN , j=1,..., bN . 
 
 
 
 
    Ω  
 
          Γ  
 

        boundary point 
 

             s             source point 
 
 
 

 
Figure 2. The boundary and source points for the considered region 

 
The equations (11)-(14) form the system of pgs NNN ++2  linear equations with 

pgs NNN ++2  unknowns. Moreover the parameter λ  is to be obtained. The system of 
equations (11)-(14) is written in matrix form: 

( ) 0=cA λ  
where ( )λA  is a matrix with some elements dependent on unknown parameter λ . This 
matrix has the form: 
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( ) ( ) ( ) ( )
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and elements of matrix ( )λA  are:  

( ) ( )[ ]
NsNg

gs
jis rf

×
= 1

4
11 λλA , ( ) ( )[ ]

NsNg
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jis rf

×
= 2

4
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g
ji rr

×
−= ϕφλλ 4
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( ) ( ) ( )[ ]
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g
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−= xxA ψλλ 4

14 , [ ] NsNp×= 021A , [ ] NsNp×= 022A , ( )[ ]
NgNp

g
ij xp

×
=23A , 

[ ] NpNp×= 024A , ( )[ ]
NsNb
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jis rfB

×
= 1131A , ( )[ ]

NsNb
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jis rfB

×
= 2132A , ( )[ ]

NgNb
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jirB

×
= φ133A , 

( )[ ]
NpNb

b
jiB
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= xA ψ134 , ( )[ ]

NsNb
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jis rfB

×
= 1241A , ( )[ ]
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( )[ ]
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= φ243A , ( )[ ]

NpNb
b
jiB

×
= xA ψ244 . 

The vector of unknown coefficients is: [ ]TNpNgNs bbaacc ,,,,,,,, 1121 KKK=c  
The general notation has been chosen that the subscript j corresponds to the rows, the 
subscript i indicates the columns. The system of equations (11)-(14) in homogeneous 
one and the determinant of the matrix given by formula (16) is to be equal to zero. 
Therefore, the nonlinear algebraic equation  

( )[ ] 0det =λA  
is solved. The solution of (17) is the parameter λ  related to the natural frequencies by 
formula Dhρωλ 24 = . To find the mode shapes the system of equations (15) is solved 
with λ  calculated by solving (17). The system (15) has infinite number of solutions, 
therefore one of the unknown numbers in c is treated as parameter and the real value is 
chosen for this parameter. So, the system (15) is reduced and has 12 −++ pgs NNN  
unknowns and 12 −++ pgs NNN  equations.  

3. Numerical example 

The natural frequencies and mode shapes of the simply supported plate of thickness h = 
0.01 m are calculated. The plate material parameters are: E = 2⋅1011 Pa, ν = 0.3. The 
plate is of trapezoid shape, shown in Figure 3.  
The numerical experiment has been performed for different values of ∆x. The natural 
frequencies of the plate versus some values of ∆x are included in Table 1.  
 
 
 
        1 
 
 
 
            ∆x 
             1 

Figure 3. The geometry of the considered plate 

(17) 
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The results show that the natural frequency of the plate increases with increasing 
parameter ∆x. The extended discussion about received results will be presented during 
the Symposium presentation. 
 

∆x 0.0 0.05 0.1 0.15 0.2 0.25 

ω  303.137 319.724 339.906 364.005 393.651 429.644 

Table 1. Natural frequencies of the simply supported plate. 

3. Conclusions 

In this paper the method of fundamental solutions has been implemented to find the 
natural frequencies and mode shapes of the plate. The procedure is prepared for the plate 
of arbitrary shape and for the arbitrary boundary conditions. The results obtained by 
numerical experiment  show the accuracy and effectiveness of the proposed algorithm 
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Abstract 
The paper presents the method of determining the stresses in cervical spine vertebrae. It 
is based on techniques known from strength of materials – the theory of strongly curved 
beams. It allows to determine normal stresses in vertebrae of cervical part of spine with 
known characteristic dimensions. The method was tested on three different cases of 
cervical spine conformation: one properly and two improperly curved spinal line. 
Obtained information about influence of spine geometry on character and value of  
stresses could be useful in clinical practice.     

  

Introduction 

Degeneration disease of cervical spine touches everybody. It results in change of 
geometry of cervical vertebrae and intervertebral foramen and also may lead to the 
dysfunction of the spine and nervous system. Information about intervertebral loads 
could be very useful, to anticipate the character of disease changes. The paper presents 
the mechanical model of the cervical spine deformed as a result of degeneration disease. 
The model allows to determine the normal stresses produced by incorrect loads, which 
are effects of incorrect curvature of spine line. The main aim of the paper is to find shape 
of spine line influence on vertebral stresses. The three most common cervical spine  
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Fig. 1. Three different conformation of cervical spine lines:  a) lordosis – properly curved line, b) 
kyphosis, c) kyphosis in upper segment and lordosis i lower. 

conformations are presented in Fig. 1. The lordosis presented in 1a) is properly curved 
cervical spine line, while the kyphosis in 1b) and S-shape with kyphosis in upper 
segment of cervical spine and lordosis in lower 1c) are typical spine conformations in 
degeneration disease [8].  

 

1. Mechanical model of cervical spines 

The cervical spine includes seven vertebrae (called from C1 to C7), which six of them 
(C2-C7) have similar structure. In classical approach the vertebral endplates are shaped 
like two-layer ellipses, where inside layer is trabecular bone and outside layer is cortical 
bone [1,2]. The basic assumption for mechanical model is that each of the vertebral body 
of C2-C7 has an elliptical shell model of cross-section with only cortical bone layer. It 
involve that cervical spine can be treated as strongly curved elliptical beam with 
elliptical whole. The loads acting on each vertebra are presented in Fig. 2. Load of the 
cervical spine becomes from weight of the head Q and vertical component of the 
extensor muscles S. The resulting axial load applied at C1 is sum of Q and S forces:     

SQF +=      (1) 
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Fig. 2. The Scheme of the loads of cervical spine: Q – the weight of head, S – vertical component 

of the extensor muscles, li – coordinate y of Ci vertebral body center. 

The bending moment of each vertebra can be determined as: 

( ) 7,...,2, =+= iSQlM ii .   (2) 

The bending moment (2) acting on C1 is equal to zero. The line of spine y(x) might be 
approximated by spline-function [7] interpolation on seven vertebral body centers. In 
next step we can determine the radius of curvature:        

( )
2

2

2
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1

dx
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dx
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xr

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




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




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

+

= .    (3) 

Then, the placement of neutral axis (the axis, where the normal stresses are equal to 
zero) we can derive as: 

( ) ( )

( )∫
−=

i

i

i

A
xr

dA
Axrxe 0 ,    (4) 
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where Ai is the area of cross-section of vertebral body Ci. Both parameters r0(x) and e(x) 
are illustrated on Fig. 3. 

 

 

 

 

 

 

Fig. 3. Basic geometric parameters in sagittal section. 

Finally we can determine normal stresses in cross-section of i-th vertebra in the distance 
of s from the neutral axis: 

r
s

eA
M

A
F

i

i

i
i +−=σ ,    (5) 

where r=r0-e+s is a distance between research fibre and center of curvature  y(x) [3].  

 

2. Results 

The normal stresses of three basic shapes of cervical spine (Fig. 1.)  where determined 
on the anterior and posterior vertebral margins. Interpolated functions y(x) are presented 
on Fig. 4.  

a) 

 

 

r0

s
e

axis of spine: y(x)   research fibre  neutral axis  

center of curvature  
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b) 

 

c) 

 

Fig. 4. Interpolated cervical spine lines:  a) lordosis b) kyphosis, c) kyphosis in upper segment and 
lordosis i lower. 

To make comparison between all of these cases the calculations where done for the same 
geometrical parameters of vertebrae and loads. The force Q was assumed as 70N and the 
force S was derived from literature data [4,5,6]. The results are presented in Tab. 1. 

Tab. 1. Normal stresses determined for anterior and posterior C2-C7 vertebral margins. 

 Normal stresses σi [MPa] 
cervical 

spine 
line 

place of 
stresses 

determining 

 
C2 

 
C3 

 
C4 

 
C5 

 
C6 

 
C7 

anterior body 
margin  

-0.47 0.93 0.98 1.46 0.37 -2.09 lordosis 
(proper 
line)  posterior 

body margin  
-1.69 -2.84 -3.10 -3.04 -2.07 -0.04 

anterior body 
margin 

-2.90 -4.84 -5.67 -6.00 -5.94 -7.40  
kyphosis 

posterior 
body margin 

0.85 2.63 3.81 3.99 4.21 5.33 

anterior body 
margin 

-2.28 -2.64 -2.76 -2.63 -2.59 -3.16 kyphosis 
- 
lordosis  posterior 

body margin 
0.21 0.73 0.64 0.23 0.39 1.03 
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We can observe that the largest normal stresses appears in kyphosis shape. Stresses 
determined on anterior margins (minus stress value means tension) and posterior 
margins are bigger than in other shapes. For anterior margins the smallest stresses acting 
on C2 and C3 vertebrae and the largest for C7. For posterior margins the largest normal 
stresses we can observe in lordosis shape is on C4 and C5 vertebrae. It is compatible 
with clinical practice, because most of the deformations and degeneration disease’s 
changes touch C4 and C5 vertebrae.  

Acknowledgment: The paper was supported by the Project 21-288/2008 DS. 
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Abstract 
The dynamic analysis of three-dimensional coupled shear wall structures in tall buildings 
has been studied. A hybrid approach, based on the analysis of an equivalent continuous 
medium and a discrete lumped mass system has been used. The algorithm of flexibility 
matrix computation is presented in this approach. It has been observed that the results of 
this method are a good match with those obtained using the finite element method. 
Keywords: Tall buildings; Dynamic analysis; Coupled shear walls; Continuous 
connection method 

Introduction 

The design of multistorey buildings subjected to earthquake ground motion involves the 
dynamic analysis of the structure. For the dynamic analysis of shear wall tall buildings it 
is convenient to use a continuous–discrete approach [1], [3], [6], [7]. In this approach the 
structure mass matrix is found with the lumped mass assumption. To find the flexibility 
matrix each lumped mass is loaded subsequently with a unit horizontal generalized force 
and the corresponding horizontal displacement vector to the whole structure is found by 
the continuous connection method. This paper presents effective algorithm of flexibility 
matrix computation in the continuous-discrete approach. 

1. Governing differential equations 

The flexibility matrix is generated from the exact solution of the governing differential 
equations for three-dimensional continuous model of the shear wall structure [5]. In the 
case of structures subjected to horizontal concentrated loads, applied at the arbitrary 
height, the governing differential equations can be stated as follows: 

0)()(,(
),()()(,0

=−′′>∈
=−′′>∈<

zNzNHhz
zfzNzNhz

NGNG

NDND

AB
AB      (1) 

B  - nw x nw diagonal matrix, containing continuous connection flexibilities, 
A  - nw x nw  symmetric, positive semi-definite matrix, dependent on a structure, 
nw   -  number of continuous connections, which substitute connecting beam bands and 

vertical joints, 
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)(zN ND   -  vector containing unknown functions of the shear force intensity  
in continuous connections below the concentrated load, 

)(zNNG   - vector containing unknown functions of the shear force intensity in continuous 
connections above the concentrated load, 

)(zf       -  vector formed on the basis of unit concentrated loads SYX MPP ,, :  
],1,1,1[],,[)()( ,

1 === − T
SYXKKZ

TT
N MPPTTLKLLCzf

 

ZN KLC ,,   - matrices, dependent on a structure [5], [6], 
h   -  the ordinate of point of concentrated loads application, 
H   -  structure height. 

 

The boundary conditions have the following form: 

.0)(
),()(),()(

,0)0(

=′
′=′=

=

HN
hNhNhNhN

N

NG

NGNDNGND

ND
   (2) 

After determining unknown functions of shear force intensity in continuous connections 
it is possible to obtain the functions of horizontal displacements of the structure as well 
as its derivatives using the following equations: 

)()()(,,0

)()(,,(
1 zNVTLKLzVhz

zNVzVHhz

NDNKZ
T

D
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−=′′′>∈<

−=′′′>∈
−

    (3) 

where:  

)(zVG    - vector containing the functions of the horizontal displacements of the structure 
above the concentrated load,  

)(zVD   - vector containing the functions of the horizontal displacements of the structure 
below the concentrated load,  

.)( 1
N

T
Z

T
N CLLKLV −=  

Boundary conditions have the following form: 

.0)(
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hVhVhVhVhVhV

VV
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    (4) 

2. Method of solution 

In the proposed algorithm the equation systems, described in Eqn (1), are uncoupled by 
orthogonal eigenvectors of  P = B -1/2 A B 1/2  matrix into  nw  sets of two second-order 
differential equations.  Integration constants are determined for each set from the system 
of four linear equations resulting from boundary conditions. Also, there has been taken 
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into account the case of zero eigenvalues of  P  matrix, allowing for the analysis of the 
structure with an arbitrary plan. 

In order to uncouple differential equation systems auxiliary functions ),(),( zgzg GD  
satisfying these relations have been introduced:  

)()(),()( // zgzNzgzN GNGDND YBYB 2121 −− ==    (5) 

where:  Y - nw x nw    matrix columns of which are eigenvectors of symmetric P matrix.  

One has obtained  nw  sets of two second-order differential equations in the following 
form: 
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    (6) 

where:  

iλ - i-th eigenvalue of P matrix,  

),(/ zfYF T
iBi

21B−=  

iY - eigenvector corresponding to the i-th eigenvalue, 
 

with boundary conditions as follows:  

.0)( ),()(),()( ,0)0( =′′=′== Hghghghghgg GiGiDiGiDiDi    (7) 

Because A  matrix is positive semi-definite, thus P matrix can also have zero 
eigenvalues. The solutions of Eqn (6) with boundary conditions (7) in the case of zero 
eigenvalues have a simple form: 
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The form of the solutions corresponding to non-zero eigenvalue iλ  is as follows: 
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Integration constants are determined from the linear equation system resulting from 
boundary conditions (7), in the following form: 
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where: 
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Values of unknown functions )(,)( zNzN NGND  of the shear force intensity in continuous 
connections throughout the building height are obtained after computing all elements of 
solutions )(),( zgzg GD  of Eqn (6) and retransforming according to Eqn (5). 

3. Horizontal displacement expressions 

The next step is to determine functions of horizontal displacements of the system and 
their derivatives necessary to calculate internal forces and stresses. As a result of 
integration of Eqn (3) with appropriate boundary conditions (4) the following solution is 
obtained: 
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   (11) 

During the computation of the above-mentioned function values uncoupling of equation 
systems is used consistently. Equation (3) after introducing auxiliary functions (5) has 
the following form: 
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As a result of integration of Eqn (12) according to Eqn (11) the following form of the 
horizontal displacements function above the concentrated load is obtained: 
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Where  CG(z) – matrix containing integrals of solutions of uncoupled differential 
equations. 
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Integrals of solutions corresponding to non-zero eigenvalues (9) have the following 
form: 
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The form of analogous integrals in the case of zero eigenvalues is as follows: 
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The presented algorithm has been applied to obtain the flexibility matrix used in 
dynamic analysis for the tall building model in the form of the discrete lumped mass 
system. The values of the i-th three columns of elements in flexibility matrix for the 
shear wall structure represent the horizontal displacements (Vx, Vy, Φ) of the system at 
all levels where lumped masses are located, induced by unit generalized forces (PX, PY, 
MS) applied horizontally at the location of the i-th lumped mass. Because of the 
symmetry only the lower triangular part with a leading diagonal of the flexibility matrix 
is computed. 
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Natural frequencies computed using of this method correlate well with the results given 
in literature, both in the case without connecting beams  [4], and with beams [2]. The 
examples of seismic analysis of shear wall tall buildings based on response spectrum 
technique were presented in [6], [7], [8]. 

4. Conclusions 

The paper presents effective algorithm of flexibility matrix computation in the 
continuous-discrete approach applied in dynamic analysis of tall buildings. In the 
proposed algorithm the equation systems are uncoupled consistently by orthogonal 
eigenvectors. Also, there has been taken into account the case of zero eigenvalues, 
allowing for the analysis of the structure with an arbitrary plan. After designing and 
developing software based on the proposed algorithm a series of tests has been carried 
out. The conducted tests have confirmed correctness of the algorithm realization. The 
two advantages of proposed method are the simplicity of data and short computation 
time. 
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Abstract  

In the presentation epoch-making achievement’s Leonhard Euler mainly in the range of   
classic mechanics were presented and  were discussed . The biographical note  presents 
the important aspects with academic  Euler’s life. Next, it was discussed also certain  
aspects: mechanics of material point, variational calculus, mechanics of  rigid bodies, 
statics and mechanics of liquids. Besides this it  referred to the historical   graph of Euler 
of seven Królewiec bridges on the river Pregole. 
Keywords: Biographical note, Euler Publisher the Word, Law of the extremum 

 
 

1.Introduction 
In  2007 year it passes 300 – Anniversary of  Birthday of the great  scientist Leonhard 

Euler, whose  portraits show with  different periods of  his life. 
 

   
 

 Euler’s portrait were painted by: 
Johanna Georga Brückera  Emanuela Handmanna (1753) 

 
Leonhard Euler was  one from   five the  greatest mathematicians  of  all  times. 
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He was born  in Basel, but he spent  most part of  life  in Berlin and in  Petersburg. 
When it looks at  scientific works of Euler in field of mathematics and  mechanics, his 
rank, wealth, and also on quality of these achievements, it result is imposing. Euler 
published about 50 books and above 800 research works. What more, this is worthy of 
attention, so that  Euler practically established independently basic equations related to 
rigid, liquid and also  deformed bodies. In this  article it will be considered  problem 
related to theory  of rigid, liquid and also deformed bodies. 

Euler together with other scientists such as e.g.  d’Alembert, Daniel Bernoulli, Johann 
Bernoulli, Alexis Clairaut, Condorcet, Laplace, Lagrange  was typical mathematician for 
the epoch  Enlightenment. Therefore achievements of  Euler it  should became analyzed 
in relation to development  mechanics and mathematics  in this  period. Nevertheless, 
contribution of Euler in the field of science is still considered for fundamental. 
Creator of modern  mathematics, to  which he introduced many  used at present  signs 
such as e.g.  symbols:  Σ  e  π  and  f(x). 
Born: 15th  April, 1707. 
Wedding with  Katherine Gsell: 7th  January of 1734 year. They had 13 sons, childhood 
survived 8. 
He spent in : Switzerland 1707-1727;  Berlin 19.06. 1741- 1766; Russia  17.05.1727–
1741, 1766-1783;  Poland 10 days in 1766 (at Stanisław August Poniatowski). 
Nationality: Swiss. 
The fields of researches: mathematics, physics and astronomy. 
Institutions: Russian Academy of  Sciences, Berlin Academy of  Science. 
University: Basel. 
Religion: Calvinism. 
  
2. Euler- Biographical note 

Undoubtedly Leonhard Euler is the greatest mathematician of XVIII century. He was 
born  15th April of 1707 year near Basel, in north Switzerland, not far of border  
with France. He was son of Paul Euler and  Margaret Bruchner. At the beginning Euler’s 
father  was responsible for his science. Next   in  age of 13 years  he entered      the 
university, where he showed  rare talents in field of  mathematics. Euler studied together 
with Johan Bernoulli, however direct influence on Euler, especially in field of 
mathematics and  philosophy had Leibniz (1646-1716) and also Descartes (1596-1650), 
however  works of  Newton(1642-1727), capture coherent arrangement of laws, and 
giving themselves to apply to significant range of physical  phenomena, made the 
strongest  influence  on production of Euler  in field of mechanics.  
Euler applied and used mathematic theory of Leibniz to finite and infinite of small 
numbers, as well as he accepted the idea of Newton’s force, so that  yet later  to go away  
from  idea of  absolute space.  

Having thirteen years   Euler  entered the university in Basel, and in time of studies   he 
showed  mathematical talents. 
 In age of 17 years, he wrote  article  on subject „ Physical performance of 
sound”. It was first worthy of attention work of Euler, which had  unusual  influence on 
researches from the range of  acoustics.  



 403 

In age of  21 years Euler was nominated by Daniel Bernoulli to  Petersburg Academy of 
Sciences. In 1733 year Euler took over post of  manager of cathedral mathematics in 
Academy after Daniel Bernoulli, where he improved integral calculus, developed  theory 
of   logarithmic and trigonometric functions In this time he worked unceasingly on 
simplifying  of analytic expressions in mathematics. 
 Probably because of this intensive effort, in 1735 year Euler stayed  partly blind. 
In 1741 Fryderyk Wielki invited Euler to Berlin Academy. In this year he  left Russia  
and he set out  to Berlin, in which he stayed by 25 years. In this period  Euler created  
imposing  count of  research works.  
In 1748 year in article „Introduction to analysis of boundary of infinity” he developed 
conception of function, which nowadays we know. 
In 1755 year he wrote „Differential Calculus”, two volumes and also  „Integral 
Calculus”, three volumes, from which  latest was published  in Sankt Petersburg(1768-
1770). These all books, by many years were used  for guide-book for mathematicians. 
Therefore it is possible to say, that  all front representatives of mathematics of end of 
XVIII century and also beginning of XIX century were  schoolboys of Euler.  

In 1766 year Euler returned to Sankt Petersburg on court Katherine II(1729-1796). In 
this time he was already  almost  entirely blind. Besides this inconvenience, Euler used 
his unusual memory to keep this same, superb level of work. Besides this in organization 
of articles  and also  manuscripts  assistants of Euler helped him. Nevertheless he did not 
stop  his activity, what  more, in this time it  created  much more of his works than 
whenever.  In order to, Euler performed him assistants exact explanations of new tasks. 
Thanks to  this knowledge assistants could start new tasks, which Euler analyzed, and  at 
last  these tasks to  confirm. In years 1766-1783 created above 400 articles. Above forty 
years after death of Euler, Russian  Academy of  Sciences still published  his works in  
yearly  remembrance. 
Leonhard Euler 7th January of 1734 year married with  Katherine Gsell. They had  
thirteen sons, from what only eight sons survived childhood. One with sons of Euler, 
Johann Albrecht (1734-1800) analyzed, and next continued works of his father in field of  
rigid bodies. However one with offspring of Euler, Hans Karl August von Euler-Chelpin 
(1873-1964) in 1929 year got Nobel’s Price in field of chemistry. 
 

Achievements of Euler in field of mathematics are public known. He studied 
elementary geometry, trigonometric functions. Euler proved, so that every  compound 
number has infinite count of logarithms. He proved  formula: 
   

eiΘ= cos Θ + i sin Θ, 
   
from which, after  substitution Θ = π  it results  good  known formula: 
 

ei π + 1 = 0. 
It is possible to notice, so that   the most magnificent  numbers appear.  
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Euler introduced modern terminology known in present mathematics. It were  symbols,  
Σ for summing and also basis of  neperian logarithm: 
 

e = 2.71828 18284 59045 23536... 
 

He introduced note f(x) describes function of  independent variable x and also i 
represents compound numbers. Euler was first person, who used derivative of 
differentiated function as  boundary of  relation between two values of variables.  
Euler in moment of death  18 September of 1783 year  remained on his   desk 
manuscripts and also  computations  concerned problems of aerostatic balloons. It was  
his latest scientific work.  
 
3. Euler  and also  Dynamics of Elementary Particles   
  

Essential conclusion of Euler in field of Dynamics of  Elementary Particles it is 
possible to find in his work entitled „Mechanics of move of bodies-exposition of 
scientific analysis” (”Mechanica sive motus scientia analitice exposita”), published in 
1736 year.  
In reality, this work is  kind of  investigative program. After reading of works of creators 
of mechanics especially Huyghens (1629-1695) and also Newton (1642-1727), Euler 
made efforts to transform  mechanics into rational science, again to estimate definitions 
with field of mechanics and also  by means of modifications of her theorems. This is 
necessary to mention, so that idea of force  in  Euler’s mechanics comes from in principle 
from Galileusz. Besides this Euler distinguished absolute force   from forces of heaviness 
and these, which depends on  relative speeds between  bodies. 
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4. Graph of  Królewiec Bridges 
 
(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b)      (c) 

        
Fig.  Bridges on the  river Pregole (a); Scheme of these bridges and graph (b); Additional 
bridge is indispensable  to creation of  Euler’s chain (c). 
 
Seven Królewiec bridges on the river Pregole (fig. a)  established puzzle for walking for 
them  inhabitants of Królewiec. They established themselves because question, or wanted 
walker  to pass by all  bridges can pass every bridge exactly only first time. This problem 
was inspiration for Euler  in order to  construct chain with  representing districts of city 
peaks and with edges or lines, which they were  subordinated bridges (fig. b).This 
discussed of situations,  multigraph represents graphically, which all peaks have odd 
degree. Euler in work “Solutio problematis ad geometriam situs pertinentis, Comment 
Academiae Sci. I. Petropolitane 8”, streets 128-140 in work published in 1736 year 
formulated theorem. Graph is euler if only and  only number of peaks about odd degree is 
equal  0 or 2. We can say either, that in such graph it is possible to  separate Euler’s 
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chain. In graph of seven Królewiec bridges it is not possible  to distinguish Euler’s chain. 
In moment of addition of eighth bridge in new graph  Euler’s chain will be made (fig. c). 
Graph of Królewiec bridges  opens history of graphs, at the same time so predominant in 
scientific papers different disciplines. Euler either ran notation at present known as  
characteristics of  graph under name cyclomatic number, which contains relations 
between count of edges E, peaks V and walls F. This relation is  either for polygons and 
usually is  in form:  
 

V – E + F =2. 
 
5. Dynamics of material point in  conception of  Euler 
 

From times of  Newton, Leibniz and Euler to description of liquids, and in essence 
either all others mechanical  systems mathematicians and physicists applies differential 
equations. Euler in his work published in 1749 year in Berlin „Memoires de l’Academie 
des Sciences” we find for  first time  differential equations of move of material point  in 
following form: 
 

 . 
 
Later Euler uses note these equations in form used to present times or: 
 

xF
dt

xdm =2

2

  ,  yF
dt

ydm =2

2

  ,  zF
dt

zdm =2

2

. 

 
 
Researches carried out by Euler gradually showed fertility of mechanics of Newton. At 
the beginning he investigated no continuous systems, and next state and liquid systems. 
In 1750 year he discovered, so that  principle of  linear speed can be applied to all 
mechanical  systems, independently from their  form. Other words, independently or are 
discreet or continuous. In his work  entitled „Discovering a New Mechanical Principle”, 
published in 1752 year, he performed equations: where mass M  can be finite or infinite 
small. Next Euler named these equations „ first principles of mechanics”. Of course these 
equations are second  law of Newton, therefore we able  to name it equations of  Newton-
Euler. 
 
6. Euler and Law  of   Extremum 
  

In 1744 year Euler published work entitled „Methodus inveniendi lineas curves maximi 
minime proprietate gandentes”. In enclosure II (appendix) entitled „De motu projectorum 
in medio non resistente per methodum maximorum ac minimorum determinando” Euler 
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stated: „If all activities apply to certain laws maximum or minimum, it does not deny, so 
that trajectories of  flight of  bullets being  under influence of forces  will be  follow 
according to properties minimum or maximum”.  
 Euler had essential  contribution in development differential calculus, which was 
finished by  J.L. Lagrange’a (1736-1813). In  his preliminary formulating generalized 
analytic method  was not  destination of Euler. Proposed method  by Euler is similar to 
this established by Bernoulli (1700 –1782).  
In addition, principle of the smallest of activity was introduced in this times. Author of 
her was president of  Berlin  Academy of  Sciences  French mathematician  Maupertuis, 
who  formulated her in sentence: 
 „When  some change follows in nature, this  necessary for her achievement of count of 
work   is possible  the smallest ”. 
Euler by remaining principle her name and  glory of discovery for Maupertuis, he 
formulated her new form, practically to application. In his treatise with  1744 year about 
isoperimetries: entitled „Methodus inveniendi lineas curvas maximi minimive proprietate 
gaudendes”, Euler contains main idea of principle, that in  move of body along curve 
under working of  central forces integral of speed multiplied by element of curve always  
gives maximum or minimum.  This means, that  in principle  body  on given surface will 
run shortest path. 
In this manner Euler postulated expression for principle of the smallest working  
in form:  

∫  mvds, it obtains extremum, 

where: 
m is mass,  v  velocity, and  ds  infinite small element of trajectory. 

Lagrange in his work : „Mecanique analytique” published in 1788 year and 
referred   to contribution of Euler, he summed up importance of principle of the smallest  
activity. 
 
7. Euler and  Dynamics of  State Bodies 
 In 1760 year, Euler published ”Teoria motus corporum solidorum seu 
rigidorum”. This work  later was improved  by Johanna Albrechta, son of Euler (1790 
year). In introduction of original work Euler confirms principles, which he performed in 
1736 year, defined main characteristic of rigid bodies by means of invariability distance 
between  two points belonging to body. Besides this for every body Euler defined center 
of mass, what over he underlined, that center of mass every rigid body implies problem 
more restrictive than center of mass. Two latest  conceptions were defined more correctly 
by myself   in  itself inertia, when to system of working forces on state bodies  is 
neglected. 

Euler introduced idea of moment of inertia of rigid body, thanks to he simplified 
analysis of rotatory and spherical move and also  solution of problems from this range. 
Besides this he computed moments of inertia of some bodies. In addition, Euler admitted 
system of co-ordinates  attributed to  rigid bodies, and also  he discovered main ax of 
inertia. Next step was investigation of dynamics of rigid bodies by means of 
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transformation of move to his analysis in two  elements: translation of center of mass and 
also rotation of body around him. 
To description of spherical move  he introduces angles of rotation, precession and 
nutation. In this case motivation were  considerations on precession move of Earth. 
In addition, Euler dedicates in his works many places astronomy and in particularly  
move of  Moon and Earth. 
 
8. Equations of  move of rigid body around state point 
 

Such case  takes place in earthly conditions  only then when established point 0 is  his 
center of mass. It applies Cardan suspension of rigid body to experimental researches , 
which enables rotations about every axis  passing through  chosen in investigated body 
state point. By means of principle of turning it is possible to obtain equations in analytic 
form. Euler wrote it as follows: 
 

( ) 322 ωωω CBA −=
•

, 

( ) 132 ωωω ACB −=
•

, 

( ) 213 ωωω BAC −=
•

, 
 
where: A,B,C are mass  moments of inertia. 
This system of three differential equations called equations of Euler, enables to determine 
three co-ordinates of angular speed ω1, ω2, ω3 as function of time  and by means of given 
starting conditions describes exactly considered spherical move of  rigid body. 
In  general case when external forces work  on body  and are described by  pair of forces  
about moment  M= iM1+jM2+kM3, then equations 

( ) 1322 MCBA +−=
•

ωωω , 

( ) 2132 MACB +−=
•

ωωω , 

( ) 3213 MBAC +−=
•

ωωω , 
are general euler differential equations and describe  move of rigid body, or move of rigid 
body around   state point. 
These equations are  basic in investigation of machine used to realisation of spherical 
move. 
In 1744 year Euler formulates problem of deformation measured by means of analysis of 
thin resilient rod under working  of pressed force P (fig. d) and establishes formula on  

critical value of force  PE  at which system is  unstable: P>PE> 2L
B π

 where B is rigidity 

of bending. 
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9. Euler and  Equilibrium of Liquids 
 
 In 1755 year Euler made for Berlin Academy work ”Principes généraux de 
d’équilibre des fluidem”, in which he referred to problem of equilibrium of liquids . Euler 
distinguished two types of liquids: compressible and also incompressible, both depends 
on system of forces. Taken into consideration  mass of  liquid is contained  three-
dimensional parallelepiped about co-ordinates dx, dy, dz. If component of working 
forces  on body are P, Q, R and thickness of body  is equal ρ then   on element of liquid 
about capacity dxdydz component forces  works Pρdxdydz, Qρdxdydz and also 
Rρdxdydz.  
 
On basis of above  considerations Euler formulated generalized equation of  equilibrium:
  
 
 
 
 
Forces P, Q, R should be such, so that differential form    
 

Pdx+Qdy+Rdz, 
 
stood integral, thickness will be constant, or  unambiguously dependent from resilience, 
or it will stay integral number, when will be multiplied by given function.  
 
9.1. Euler’s equations  in modern form  
 

Basic equations of dynamics of no sticky liquids  Euler took out in 1775 year. The 
starting point is second principle of dynamics, in idea which derivative of  speed of  
system in relation to time is equal of  main vector of   external forces, working on this 
system. It supposes that  liquid in certain limited area V establishes our system. 
Elementary mass  ρdV, distinguished in environment any point in this  area, has  
momentum  ρ v dV 
             
 
 
 
 
 
 
 
And next after substitution: 

Fx=P, Fy=Q and  Fz=R , 
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we get: 
 
 
 
 
10. Euler and Main Equations of  Hydrodynamics 
 Beginning from  higher mentioned document, published in 1755 year, Euler  
accepted primarily state of liquid for  configuration of elementary particles and their 
speeds. It supposes , that this state, and also forces influenced for this body are known in 
given time. In order to solve  task it is necessary to compute pressure in   every point of 
liquid, thickness as well as speed of crossing elements of liquids  by  this point. In order 
to investigate of present state of  liquid, Euler applied components of acceleration P, Q, 
R, which are function coming from  x, y, z and t. Thickness ρ, pressure p and also 
components of speed of element  liquid u, v, w, which find in point Z, are unknown 
values in function time  t.  
 In article  entitled ”Principia motus fluidorum”, Euler explains problem of 
kinematics of continuous centre.  
 
About work of Euler referred to liquids  Lagrange wrote: „Thanks to discovery of Euler 
mechanics of liquids was reduced to analytic form and if  values of  equations contain 
problems with field of mechanics of liquids  are integers, in all cases of convenience of 
move and also behaviour of liquids  being in move by means of forces, they would be 
determined. Unfortunately they are  such difficult, that  to present day it was possible 
achievement of success  in special cases”.  
Euler proved simplicity, which it  takes place, if  equation  
   

udx + vdy + wdz 
  
is complete differential. Much later, case, in which is potential of speed, or case of move 
without of circulation.  
It is worthy of emphasis that  in 1775 year  Euler performed first mathematical 
formulation of flow of blood in aorta. His work  was published    posthumously in 1788 
year. 
In addition, so that  with attention on analytic difficulties, Euler could not  understand of 
weight partly-experimental considerations, partly  theoretical applied in hydraulics. This 
is necessary to adding, that in 1752 year Euler undertook researches concerned of water 
machines, and for  verifying of his theoretical results he built  in 1754 year  carried his 
name turbine. This was  characteristic period for constructing and improvement of 
machines. 
 
11. The more important  works of Euler 
 
-Dissertatio physica de song (Basel, 1727),  
-Mechanica sive motus scientia analytice exposita (St. Petersburg, 1736, 2 Vols),  

.RdzQdyPdxdp
++=

ρ
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-Ennleitung in die arithmetik ( 1738 r. 2 Scientia navalis seu tractatus de construendis as 
dirigendis navibus (St. Petersburg 1749 , 2 Vols), 
-Theoria motus lunae (Berlin, 1753), 
-Disseratio de principio miniminae actionis uma cum examine objectionum cl. Prof. 
Koenigii (1753), 
-Institutiones calculi differentialis cum ejus usu in analysi intuitorum ac doctrina 
serierum (1755), 
-Constructio lentium objectivarum (St. Petersburg 1762), 
-Theoria motus corporum solidorum seu rigidorum (1765), 
-Institutiones calculi integralis (St. Petersburg, 1768- 1770, 3 Vols), 
-Lettres à une princesse d’ Allemagne sur quelques sujects de physique et de philosophie 
(St. Petersburg,1768-1772, 3 Vols), 
-Introduction to algebra (1770), 
-Dioptrica (1767- 1771, 3 Vols), 
-Opuscula analytica (St. Petersburg, 1783- 1785, 2 Vols), 
-Solutio problematis ad geometriam situs pertinentis, Comment Academiae Sci. I. 
Petropolitane 8, (1736), p. 128- 140,  
-Tentamen novae theoriae musicae ( 1739), 
  -Methodus inveniendi lineas curves maximi minimine proprictate gaudentes  
(Lausanne1744),  
-Theoria motuum planetarum et cometarum (Berlin, 1744), 
-Opuscula varii argumanti ( 1745- 1751, 3 Vols ), 
-Novae et carrectae tabulae ad loco lunae computanda (1746),  
-Tabulae astronomicae solis et lunae (ibid), 
-Introductio it analysin infinitorum (Lausanne 1746, 2 Vols),  
-Scientia navalis seu tractatus de construendis as dirigendis navi bus 
(St. Petersburg 1749, 2 Vols), 
-Theoria motus lunae (Berlin, 1753), 
-Disseratio de principio miniminae actionis uma cum examine objectionum cl. Prof. 
Koenigii  
(1753), 
-Institutiones calculi differentialis cum ejus usu in analysi intuitorum ac doctrina 
serierum  
(1755), 
-Constructio lentium objectivarum (St. Petersburg 1762), 
-Theoria motus corporum solidorum seu rigidorum (1765), 
Institutiones calculi integralis (St. Petersburg, 1768- 1770, 3 Vols, 
-Lettres à une princesse d’ Allemagne sur quelques sujects de physique et de philosophie 
(St. Petersburg, 1768- 1772, 3 Vols), 
-Introduction to algebra (1770), 
-Dioptrica (1767- 1771, 3 Vols), 
-Opuscula analytica (St. Petersburg, 1783- 1785, Vols). 
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12. Conclusion 
 

Euler as first wrote second law of Newton in differential form, used this same 
conception of Newton of force, which describes equations for  given systems. This fact 
connected with effective applications of these equations for many different problems 
associated with move of points, system of material points and rigid bodies, had 
fundamental importance in  development of mechanics. Mechanics of Newton called 
philosophy of nature  survived intact till until  beginning of  XX century.  

Euler generalized mechanics for point, for rigid body and mechanics of liquids.  His 
mathematical researches directed his to  development of variation calculus, which 
enabled to solve series of unknown problems. This new mathematical tool was  further  
foundation for analytic studies  made by Lagrange.  
Thus analytic studies of Euler it is possible to accept as one’s kind  passage between 
mechanics of d’Alembert and analytic mechanics of  Lagrange. In addition we should 
mention, so that great effort of Euler in development of  mechanics of  rigid body and 
among others  these studies directed on some new conceptions such as move of center 
mass, principle of speed and turning. In this   equations of Euler for rigid body are the 
simplest  and the most elegant equations in mechanics. 
On account of limitation of size of article, force of fact it was necessary to give up  
with development of  some interesting reasoning and papers which are  in rich scientific 
works of Euler. Certainly readers will be can to suspect  many lacks and even inaccuracy, 
therefore it should to treat considerations of  author as encouragement  to deeper 
meditation on rich production  and it takes into consideration, that scientific works of  
Euler  is  worth of it. 
 
13. The place of eternal rest of Euler 
 

Leonhard Euler died in 18 September of 1783 year  in St Petersburg, in Russia. 
He was buried on the cemetery Alexander Newski (in neighbourhood  of orthodox church   
A. Newski ). 
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Abstract 
The paper presents the  monitoring and measurement process for the remote object 
vibration in the plain space. Wireless, RF communication in Tx/Rx  duplex mode 
provides transfer of data with ZigBee  transceivers. Presented ZigBee technology 
operates in many various modes on frequency  2,4 GHz  allowing the coordinator 
node to select certain path and data. Zig Bee technology can be alternative for other 
vibration research techniques. The vibration displacement is processed further by DSP 
Digital Signal Processing made with the microcontroller. 

Keywords – Microcontroller, Acceleration, Duty Cycle, Accelerometer  

Introducion      

Contemporary industrial world often creates requirements for microcontroller 
applications with the measurements of  vibrations. Accelerometer applications due to 
embedded control and I/O digital signal processor DSP play the crucial role in 
determining vibration and machines fatigue strength testing. It registers, among other, 
the temporary industrial parameters and monitors plant system parameters such as 
vibration and/or pressure. Our research, controlled by ZigBee technology can be 
alternative for other techniques of vibration research.  

The paper presents diagnostic procedure and measurements process of the vibration in 
the plain space. Role of the node play  ZigBee  transceivers.  The vibration monitoring 
system is gathering information from space through transceivers. The vibration 
displacement is processed further by DSP Digital Signal Processing made with the 
microcontroller. 

The ZigBee technology are global standard under the IEEE 802.15 working group. IEEE 
802.15.4 this is the standard applicable to low-rate wireless Personal Area Networks. 
ZigBee is the wireless networking standard targeted at low power sensor applications.  

1. The acceleration sensor 

We use for measurement the dual-axis acceleration measurement system ADXL202E, 
manufactured by Analog Devices.   It has build in the polysilicon surface-
micromachined sensor.  The polysilicon springs suspend the structure over the surface of 
the wafer and provide the resistance against acceleration force. Deflection of the 
structure is measured using the differential capacitor. The acceleration will deflect the 
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beam and unbalance the differential capacitor, resulting in an output square wave, whose 
amplitude is proportional to acceleration. For determining the direction of the 
acceleration the Phase demodulation techniques are used.    

The system can measure both dynamic acceleration like vibration  and static acceleration  
e.g., gravity.   The output is digital signal whose  pulse is a Duty Cycle modulator. This 
pulse equals:      

2
1

T
TP =      (1) 

where:    T1 denotes  pulse width,  T2 is a period.  
The acceleration is directly proportional to the ratio of P.  Subsequently the duty cycle 
can be directly measured with a counter on board of the microcontroller ds PIC33F256. 

The architecture of the integrated circuit also includes the signal conditioning circuitry to 
implement an open loop acceleration. For each axis an output circuit converts the analog 
signal to a duty cycle 
modulated digital signal 
DCM. Finally, the signal 
DCM can be decoded by 
the stand alone 
microprocessor. In our 
case we applied the 16 bit 
microcontroller 
manufactured by 
Microchip, dsPIC33FJ256 
GP710, operating as the 
digital signal processor 
DSP. It is preprogrammed 
with the firmware to fulfill 
its function as the digital 
signal processor for the 
incoming DCM signal 
from the sensor. The 
functional block diagram 
of the accelerometer is 
presented on the figure1. 

Fig.1. Functional block diagram of the accelerometer 

2. Duty Cycle decoding 

Acceleration is proportional to the ratio  T1/T2. The nominal output of the circuit  is: 

0 g = 50% Duty Cycle. Scale factor = 12,5%  Duty Cycle Change per g. 
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The time period T2  does not have to be measured for every measurement cycle. It need 
only to be updated to account for changes due to ambient temperature. Since the T2 time 
period is shared by the X and Y channels, it is necessary only to measure it on one 
channel.  The decoding algorithm for the microcontroller dsPIC33F256GP710 was burnt 
on firmware.   

3. Interfacing the Accelerometer with the  microcontroller dsPIC 

Acceleration circuit is designed especially to work with microcontroller.  For the 
appropriate design of the parameters measured in the object which is endless bandsaw,  
some preconditions should be observed in the system in term of: 

• resolution       
• bandwidth  
• acquisition time on axis x and y. 

These requirements will help to determine the accelerometer bandwidth, the speed of the 
microcontroller clock  and the appropriate Duty Cycle. While the accelerometer is  very 
accurate,  it has a wide tolerance for initial offset. The simplest way to clear this offset is 
with a calibration factor saved on the microcontroller, or by a user calibration for zero g. 
When the offset is calibrated during manufacturing process, the one time programmable 
microcontroller  can be used.  

4. Setting the Bandwidth while adjusting the values of  Cx   and  Cy capacitors              

Accelerometer has provisions for band limiting the  X FILT   and Y FILT  outputs. Capacitors 
must be added to the output pins to implement Low-Pass filtering for antialiasing and 
noise reduction.  The equation for the 3 dB bandwidth is  

 
( ) ( )( )yxCk

F dB ,322
1

3 ⋅Ω
=− π

  (2) 

simplifying:                  
( )YX

dB C
FF
,

3
5µ

=−
    (3) 

A minimum capacitance equals 1000 pF  for C(X, Y). The Filter capacitor selection Cx and 
Cy are shown below 

Table 1  Selection Filter Capacitor 

 Bandwidth [Hz] Cx, Cy [µF] rms noise [mg] Peak-to-Peak Noise [mg] 
10 0,47 0,8 0,47 
50 0,10 1,8 0,10 
100 0,05 2,5 0,05 
200 0,027 3,6 0,027 
500 0,01 5,7 0,01 
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5. Seting the DCM Period with R set 

The analog signal is converted for duty cycle modulated DCM  output which is shown 
on fig.2.  Further  more impulses of DCM can be decoded by counter/timer included on 
microcontroller  dsPIC33FJ256GP710. 

U max

U śr

T 2

Borowik 2008

T 1

 
Fig.2.  Output of the Duty Cycle 

 
The period of the DCM output is set for both channels by a single resistors from R SET  to 
ground. The  equation for the period is: 
 

( )
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0 g =  50 % Duty  Cycle  

A 125 kΩ resistor will set the duty cycle repetition rate to approximately 1 kHz, or 1 ms. 
The device is designed to operate at duty cycle periods between 0,5 ms – 10 ms.  

6. Selection the accelerometer  NOISE/BW 

In the accelerometer the filtering can be used to lower the noise floor and improve the 
accelerometer resolution.  Resolution is dependent on  both  the analog filter bandwidth 
at  X FILT  and Y FILT and the speed on the microcontroller counter, that can be attained. 
The analog output of the ADXL202E has a typical bandwidth of 5 kHz while the Duty 
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Cycle modulator has bandwidth  of 500 Hz.  In such case the aliasing error appear. Then 
the signal must be filtered. To minimize DCM errors the analog bandwidth should be 
less than 1/10  of the DCM frequency. Analog bandwidth may be increased to up to  1/2 
the DCM freque 

+ncy  in most applications. In such cases this will result in greater dynamic error 
generated at the DCM.   

The analog bandwidth may be further decreased to reduce noise and improve resolution.  
It is recommended to limit bandwidth to the lowest frequency  needed by the application 
to maximize the resolution and dynamic range of the accelerometer. With the single pole 
roll-off characteristic the typical noise of the mentioned accelerometer is determined by 
the following equation: 

( ) ( )6,1200
⋅⋅










= BW

Hz
gNoise rms

µ   (6) 

   then at 100 Hz the noise will be: 

( ) ( ) mg
Hz

gNoise rms 53,26,1100200
=⋅⋅










=

µ

 (7)

 

Very often the peak value of the noise is desired. Peak-to-peak noise can only be 
estimated by statistical methods. Table 2   shows estimating the probabilities of 
exceeding various peak-to-peak values  for various rms values.  

Table 2 
EEstimation of Peak-to-Peak noise 

Nominal 
 Peak-to-Peak Value 

% of Time 
that Noise will Exceed 

Nominal  Peak-to-Peak Value 
2.0 x rms 32% 
4.0 x rms 4.6% 
6.0 x rms 0.27% 
8.0 x rms 0.006% 

7. Mounting the acceleration sensor on the bandsaw. 

During the normal operation of the bandsaw there are arousing accompanying vibrations 
of the chassis, of its sub-assembly and of the bandsaw itself. Because of the teeth 
geometry those vibrations have the pulse waveform.  

In the surveillance as a x, y sensor, the  ADXL 202 E accelerometer was used  The 
accelerometer sensor  was placed on the passive wheel of the bandsaw (se figure 3). 

During the process of cutting metals, the blades of the teeth receive the impulse burden.  
It applies as well to the endless band saw. The severity of this burden depends on several 
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factors, such as the clamp between the saw and the stock, thickness of the material, to be 
cut, or the number of saw's teeth being in contact with the work piece. Especially the 
clamp of the work piece to the saw has the crucial meaning. It is difficult to protect the 
teeth of the saw against overloading, when cutting the profiled material, tubes, pipes or 
contours. 
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Fig 3. Identification of Basic Cutting Bandsaw Parts during operations 

1. Blade tightening screw 
2. Stretching wheel 
3. Assembling clamping block  
4. Stationery blade guard 
5. Blade 
6. Support of blade guard 
7. Material to be cut 
8. Hydraulic linear motor 
9. Head frame pulley 
10. Active wheel 
11. Frame of cutting bandsaw 
12. Head of cutting bandsaw 
13. Accelerometer sensor gathering the impulse burden 
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In the assumed bandsaw vibration model the oscillations caused by the movement of the 
mass ms. are described. The upper constrain of the exploitation speed equals: 

eo

eo

lkr ν

ν
ν
ν

νβ
+

==
1,

0
0   (8) 

 

The critical speed for the parametric resonance equals: 
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The equation of the vibration of mass m s of the stretching wheel is equal: 
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After applying the no-dimensional time:   t0ωτ =  ,  
0
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(10) as follows: 
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The border cycle plot for the bandsaw speed of: v0 =  0,5 m/s  and the tension of the 
band S equal 400 N is shown on the figure 4. 
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Fig. 4. The border cycle plot (0,5 m/s, 400 N) 
 

The unstable phase portrait for the band saw speed of  4.7 m/s is presented on figure 5. 
 

V  [m/s]X

V  [m.]X

 
 

Fig. 5. The unstable phase portrait for the band saw speed  v0 = 4.7 m/s 

8. Data acquisition and data transfer by means of the ZigBee solution 

Zigbee with inherent firmware provides a wireless personal area networking PAN of  
data from the sensor to microcontroller  PIC18F4455. The base of  Zigbee hybrid 
module  is IC ZDMAI128-B0. It provides point-to- point  communication.  A serial port 
is used to communicate with a host device through an AT command interface, as shown 
bellow on schematic fig. 6.  
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Fig.6. The  Zigbee module used for data transfer from the accelerometer sensor 

9. Conclusion 

The aim of present investigation was to considerer the possibilities of measure  the 
detachable parts oscillation. The ADXL 202 E accelerometer sensor has been chosen 
because of its possibility of the dual axis operation. This way the data was acquired 
during the normal work of the cutting bandsaw. The Aim was achieved by employing 
the powerful microcontroller PIC18F4455.  
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Abstract 
The paper presents the influence of parameter change of a bio-mechanical Human 
Being – Machine model on energy quantities. The energy analysis concerned 
instantaneous power, average power and an energy dose directed into a human 
operator. The model used consisted of a biological part made up of a hand-arm system 
(both upper limbs) and a mechanical part made up of a tool (e.g. a demolition 
hammer). The analysis showed that asymmetric arrangement of upper limbs in the 
system causes an increase in all measured quantities. 
Słowa kluczowe: models, bio-mechanics, energy analysis 

Introduction 

Among many types of tools commonly used in building engineering there are, for 
example, demolition hammers, which often are heavier than 10 kg. Such tools are called 
Big Power-Driven Hand Tools. Their design is closely dependent on the task they are 
intended to perform. Depending on the type of the grip (Figure 1) the upper limbs may 
be positioned symmetrically or asymmetrically. 

 
 

a) b) 
Figure 1. Types of tool grips  
a) symmetric b) asymmetric 

 
If the limbs are positioned symmetrically, energy transmission takes place in the same 
way for each limb. Both the right and the left hands are subjected to the same load, so 
the levels of acceleration at the point of contact with the tool are the same. This is also 
true for energy quantities, such as instantaneous power, average power or energy doses 
determined for the whole system and for the respective points of reduction (hand, elbow, 
shoulder). 
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The aim of the investigations was to check how the change of such parameters as 
rigidity, damping or mass influences the energy quantities at different positioning of 
arms and whether and how these quantities change for asymmetric positions of arms. 
Such an analysis enables answering the questions which arrangement of grips should be 
used at big power driven tools and whether it has a significant influence on energy load 
of both the whole system and the limbs. Energy values were determined by means of the 
Principles of Power Distribution and Energy Flow by Dobry [1].  

The parameter change was performed by assuming rigidity, damping and mass for two 
different positions of upper limbs. It was assumed that the elbow joint inclination angle 
equals 50° for one arm and 120° for the other. 

1. Research object 

The research object was a bio-mechanical Human Being – Machine system [2,6]. For the 
selected system a physical model was developed, which assumes a standing, vertically 
erect operator’s working position. As simplifying assumptions the ‘z’ direction (Figure 
2) was assumed to be the main direction of motion of the working tool, and the ‘x’ and 
‘y’ directions were assumed to be negligible, because of low levels of accelerations in 
these directions. It was assumed that with symmetrical arm positioning the average 
elbow joint inclination angle for the population of people working with the tools 
characterized by the given parameters and having standing, vertically erect posture 
during work equals 120°. By asymmetrical arrangement of arms it was assumed, that one 
arm is bent at an angle of 120°, and the other one at an angle of 50°. 

2.1. Physical and mathematical models of a Human Being – Machine system 
To investigate the influence of arms positioning on energy phenomena a five-degrees-of-
freedom model of a bio-mechanical Human Being – Machine system was used – see 
Figure 2. 
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Figure 2. Physical model of a Human Being – Machine system 
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This model is a synthesis of the model of a human being for hand-arm vibrations 
developed by Meltzer [3, 4], a model of a human being from the ISO 10068 standard [5], 
and a model of a tool with mass of 20.3 kg. 

In the bio-mechanical model shown in Figure 2 one may distinguish the following points 
of reduction (from the bottom): Body-Hands (K-D), Forearm-Elbow (P-Ł), Arm-
Shoulder (R-B). In the point K-D the substitute mass equals the sum of the mass of the 
tool and the mass of both hands. 

The motion of the structure is described by means of Lagrange equations. In the 
mathematical model the force Fz(t) is the sum of impulse forces of the ram and the 
sinusoidal force generated in the chamber over the ram acting the tool body. 

2.2. Identification of parameters  
Asymmetric arrangement of upper limbs was realized by using the substitute dynamic 
parameters of the physical model developed by Meltzer in 1979 for the Hand-Arm 
system. The tool parameters were obtained during identification investigations for a 
demolition hammer with a mass of 20.3 kg. 

Table 1: Values of dynamic parameters of the model given by Meltzer 
Substitute dynamic parameters Meltzer model (elbow joint 

inclination angle:  120°) 
Meltzer model (elbow joint 

inclination angle:  50°) 

m3 [kg] 
m2 [kg] 
m1 [kg] 

k3 [N/m] 
k2 [N/m] 
k1 [N/m] 
c3 [Ns/m] 
c2 [Ns/m] 
c1 [Ns/m] 

1,4 
1,0 
0,13 

4,1 * 103 

7,2 * 104 

2,1 * 105 

145 
100 
245 

2,0 
0,87 
0,15 

4,0 * 103 

9,7 * 104 

2,7 * 105 

205 
150 
160 

2. Influence of hand positioning on global maximum power directed into a 
human-operator 

All the results were obtained by using the PEC-DZNR 2001(Meltzer-1) program written 
in Matlab/Simulink® environment. 

Figure 3 illustrates global (in the whole system) maximum instantaneous power directed 
into a human-operator by symmetric (both elbow angles equal 120°)  and asymmetric 
(120° and 50°) positioning of arms as a function of time. 

 



 426 

  
Figure 3. Global instantaneous power directed into a human-operator for asymmetric 

and symmetric positioning of upper limbs with reference to the whole system 
 

By symmetric positioning of arms during work with the investigated tool both limbs are 
equally energy loaded. The sum of these loads equals approximately 2900 W of the 
maximum instantaneous power. When interpreting the results of carried out simulations 
it was observed that in case of asymmetry of the investigated system all the measuring 
values increase, including energy quantities (the instantaneous power equals approx. 
3000 W).  

The determined quantities concern the whole investigated system. Thus, it became 
important to check, which limb is more energy loaded and whether distribution of these 
loads is significant for an operator. As a simulation result two graphs of instantaneous 
power were obtained (Figure 4) for each arm separately by both their symmetric and 
asymmetric positioning.  

 

  
Figure 4. Global instantaneous power directed into a human-operator for asymmetric 
and symmetric positioning of upper limbs with reference to each limb (•50°, —120°) 
 

The graph shows values of the instantaneous power for an arm bent at an angle of 50°, 
for which the maximum instantaneous power equals 1550 W, and for an arm bent at an 
angle of 120°, for which the maximum instantaneous power equals 1450 W. The 



 427 

difference between the results obtained for symmetric and asymmetric arrangement of 
arms equals approximately 100 W. 

The research concerned also the differences resulting from asymmetric arrangement of 
limbs for individual points of reduction – Figure 5. 

 

   
Figure 5. Influence of asymmetry of upper limbs positioning on instantaneous power for the 

assumed points of reduction 
 

The following values were obtained for the point of reduction K-D (hand): for 50° – 
1500 W, and for 120° – 1400 W. The difference between limbs for the point of reduction 
P-L equals 50 W, with 150 W for 50° and 100 W for 120°. For the point of reduction  R-
B, for 500 were obtained 35 W, and for 120° – 28 W.  

The used simulation program enabled also determination of an energy dose for 
symmetric arrangement of limbs, which equals D = 4 040 J for the simulation time t of 
10 s, and a mean value of global power directed into a human-operator Nsr(t) = 404 W. 
The simulation for asymmetric arrangement of limbs enabled to obtain an energy dose 
D = 4 580 J and Nsr(t) = 458 W. The results are shown in Table 2. 

Table 2: Values of global maximum power directed into a human-operator, an energy 
dose and  average power for different positions of upper limbs (Meltzer model) 

Position of upper limbs  
(elbow joint inclination angle) 

Maximum 
instantaneous 

power [W] 

Energy 
dose [J] 

Average 
power [W] 

symmetric 

asymmetric 
limb 120°  
limb 50°  

2900 
3000 
1450 
1550 

4040 
4580 
2020 
2560 

404 
458 
202 
256 

3. Conclusions 

The carried out analysis shows that the energy quantities depend on the positions of 
upper limbs during work, for example, with a demolition hammer. Asymmetry of the 
system causes an increase in all measured quantities. Hence, the energy load of a human-
operator also increases. 
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This may suggest to design the big power-driven hand-held tools with such handles, 
which force symmetric positioning of operator’s arms. An operator should be limited 
only to supporting the tool and holding it down to the ground. 

References 

1. Dobry M. W.; Optymalizacja przepływu energii w systemie Człowiek - Narzędzie - Podłoże 
(CNP), Rozprawa habilitacyjna, Seria „Rozprawy” nr 330. ISSN 0551-6528, Wyd. 
Politechniki Poznańskiej, Poznań, marzec 1998. 

2. Dobry M. W., Wojsznis (Miszczak) M., Dynamiczny model systemu człowiek- maszyna w 
przypadku  posługiwania się dużymi narzędziami zmechanizowanymi, Acta of Bioengineering 
and Biomechanics, Vol. 2, Supplement 1, Oficyna Wydawnicza Politechniki Wrocławskiej, 
Wrocław, pp. 125-130, 2000 

3. Meltzer G., Vibrational Model for Human Hand-Arm  System, International CISM- IFToMM 
Symposium: Man under Vibration, Suffering and Protection, April 3-6, Udine, Italy, pp. 210-
221, 1979 

4. Meltzer G., Melzig- Thiel R., Schatte M., Ein Mathematiches Schwingungsmodell fur das 
menschliche Hand-Arm System, Maschinenbautechnik, 29, 2, pp. 54-58, 1980 

5. ISO/FDIS 10068, Mechanical vibrations and shock – Free, mechanical impedance of human 
hand- arm system at the driving point, 1998 

6. Wojsznis M, „Dynamika przepływu energii w systemie biomechanicznym Człowiek – Duże 
Zmechanizowane Narzędzie Ręczne (C–DZNR)”, Praca Doktorska, Wydział Budowy Maszyn, 
Politechnika Poznańska, 2006 

 

 



 

k5

Fz(t) 

z4(t) 

z2(t) 

z1(t) 

c4

k4 

c3
k3 c2

k2 

c1
k1 c0

k0 

z3(t)

m 1

m 2 m 3

z5(t)

m 5

c5

m 4 

x

y 

z

XXIII SYMPOSIUM – VIBRATIONS IN PHYSICAL SYSTEMS – Poznań – Będlewo 2008 
 

SPATIAL MODEL OF A HUMAN BEING -  
DEMOLITION HAMMER SYSTEM 

Małgorzata WOJSZNIS, Marian Witalis DOBRY 
Institute of Applied Mechanics 
Poznań University of Technology 
3 Piotrowo Street, 60-965 Poznań, 

e-mail: Malgorzat.Wojsznis@put.poznan.pl , Marian.Dobry@put.poznan.pl 
 

Abstract 
The paper presents a model of a Human being – Demolition Hammer system (C-MW) 
taking into account the motion of the system in three directions x, y, z.. The following 
models were used to create the model: Meltzer model from 1980, the model from the 
ISO 10068 standard and authors’ own Human Being – Big Power Driven Hand Tool 
(C-DZNR) model  developed in 2000. Dynamic parameters were taken from the ISO 
10068 standard for each direction of motion. Identification of tool parameters still 
needs accurate verification. 
Keywords: bio-mechanical models, dynamics of systems 

Introduction 

For over forty years we found in literature the papers concerning modeling of a hand –
arm system. In spite of technological progress and fast growth of numerical methods the 
problem of modeling of biological, mechanical and bio-mechanical structures still needs 
investigation. 
Taking in mind the need for further investigations in the field of modeling of bio-
mechanical systems the authors tried to develop dynamic and energy models of a Human 
Being – Demolition Hammer (C-MW) system without vibro-isolation. They worked out 
presumptions concerning dynamic and functional properties. It was assumed that that the 
system can move in all three directions x, y, z. Models existing in literature were used to 
create a new physical model. For this purpose the following models were used: Meltzer 
model from 1980 [2,3], the model from the ISO 10068 standard [4] and the Human 
Being – Big Power Driven Hand Tool (C-DZNR) unidirectional model developed in 
2000 [1, 5] - (Figure 1).  

a) b) c) 

Figure 1. a) Meltzer model b) the model from the ISO 10068 standard  
c) the C-DZNR model 
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The tool which was used may be numbered among so called big power driven hand tools 
heavier than 10 kg, and which must be operated with two hands.  

1. Physical model of the Human Being – Demolition Hammer system 

As an object of investigation a system consisting of two subsystems was used: a 
biological one (a human being)  and a mechanical one (a demolition hammer) [2, 6]. It 
was assumed in the chosen system that the motion is possible in all three directions x, y, 
z. The z direction is assumed to be the main direction of motion of the working tool, the 
y axis is along the handle, and the x axis is perpendicular to the handle.  

The physical model (Fig. 2) assumes standing, vertically erect operator’s working 
position. For the tools with the given parameters, it was assumed, that with symmetric 
position of operator’s hands the average elbow joint inclination angle equals 120°.  
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Figure 2. Physical model of a Human Being – Demolition Hammer system [7] 

In the physical model of the structure shown in Figure 2, going from the bottom, one can 
distinguish the following points of reduction for right and left hands, separately: Engine 
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body with handles – Hands (K-D), Forearm – Elbow (P-L), Arm – Shoulder (R-B). For 
the K-D point the substitute mass equals the sum of the masses of the tool and both 
hands for each direction separately. 

2. Mathematical model  

The motion of the structure was described by means of differential equations, with the 
use of Lagrange equations for this purpose [6, 7]:  

jRjpj
j

QQQ
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q
E

dt
d
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
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    [1] 

where: 

j = 1, 2... s, s – the number of degrees of freedom, 
E – kinetic energy of the investigated system, 
qj – generalized coordinates\, 

jq& - generalized velocities, 
Qj – generalized external forces, 
Qjp – generalized potential forces, 
 QjR – generalized non-potential forces. 

Table 1 shows symbols assumed for each direction of motion.  

Table 1 Symbols describing displacement of the hammer body and individual points of 
reduction for directions x, y, z [7] 
Direction x 
xks(t) – displacement of the hammer engine body in the x direction, 
x2Lx(t) – displacement of the P-L point of reduction for the left hand in the x direction, 
x3Lx(t) – displacement of the R-B point of reduction for the left hand in the x direction, 
x2Px(t) – displacement of the P-L point of reduction for the right hand in the x direction, 
x3Px(t) – displacement of the R-B point of reduction for the right hand in the x 
direction, 
Direction y 
yks(t) – displacement of the hammer engine body in the y direction, 
y2Ly(t) – displacement of the P-L point of reduction for the left hand in the y direction, 
y3Ly(t) – displacement of the R-B point of reduction for the left hand in the y direction, 
y2Py(t) – displacement of the P-L point of reduction for the right hand in the y direction, 
y3Py(t) – displacement of the R-B point of reduction for the right hand in the y direction, 
Direction z 
zks(t) – displacement of the hammer engine body in the z direction, 
z2Lz(t) – displacement of the P-L point of reduction for the left hand in the z direction, 
z3Lz(t) – displacement of the R-B point of reduction for the left hand in the z direction, 
z2Pz(t) – displacement of the P-L point of reduction for the right hand in the z direction, 
z3Pz(t) – displacement of the R-B point of reduction for the right hand in the z direction, 
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Differential equations of motion for the investigated system have the following forms 
[7]: 

1. Direction x 
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3. Direction z 
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where: 
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Fksx(t), Fksy(t), Fksz(t), - are components of the sum of the forces actuating the engine and 
reactive forces of the foundation during work acting the tool body in the x, y, 
and z directions. 

3. Identification of parameters 

Substitute values of dynamic parameters of the model of a human being were taken from 
literature basing on the ISO 10068 standard [5]. The values are shown in Table 2.  
 

Table 2 Values of dynamic parameters of a physical model of a human operator for 
three directions x, y and z according to the ISO 10068 standard [5] 

Reduced dynamic parameters of a model of a human being 
Direction of vibrations Unit 

X Y Z 
 kg m1Lx = m1Px = 0.0267 m1Ly = m1Py = 0.0086 m1Lz = m1Pz = 0.0299 
 kg m2Lx = m2Px = 0.486 M2Ly = m2Py = 0.3565 M2Lz = m2Pz = 0.6623 
 kg m3Lx = m3Px = 3.0952 M3Ly = m3Py = 3.2462 M3Lz = m3Pz = 2.9023 

N/m k1Lx = k1Px = 4368 K1Ly = k1Py = 27090 k1Ly = k1Py = 5335 
N/m k2Lx = k2Px = 132 k2Ly = k2Py = 300 k2Lz = k2Pz = 299400 
N/m k3Lx = k3Px = 1565 k3Ly = k3Py = 6415 k3Lz = k3Pz = 2495 
Ns/m c1Lx = c1Px = 207,5 c1Ly = c1Py = 68 c1Lz = c1Pz = 227,5 
Ns/m c2Lx = c2Px = 18,93 c2Ly = c2Py = 51,75 c2Lz = c2Pz = 380,6 
Ns/m c3Lx = c3Px = 9,10 c3Ly = c3Py = 30,78 c3Lz = c3Pz = 30,30 

 
They have been obtained experimentally and they concern hand-arm vibrations of a 
human being modeled by means of a discrete model with nine degrees of freedom.  

Identification of the remaining parameters of the tool being an element of the 
investigated system still needs final verification [7].  

4. Conclusions 

The obtained new spatial model of a Human Being – Demolition Hammer system is a 
synthesis of two models: a human-operator model and a dynamic model of a tool – a 
demolition hammer in this case. A physical model of a human being with nine degrees of 
freedom, described in the ISO 10068 standard, into which vibrations come through one 
limb was used to develop this model. The novelty of the developed model is that it takes 
into account two ways of propagation of tool vibrations into a human being through both 
limbs, spatial motion of these limbs and spatial motion of a demolition hammer [7].  

Exact matching of the dynamic model of a C-MW system without vibro-isolation with a 
real object needs further analytical and experimental investigations, including 
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identification of  substitute parameters of a demolition hammer when operated with two 
hands. A method of digital simulation of dynamics of the investigated system with use of 
Matlab/Simulink® software will be used for dynamic analysis. Finally, the developed 
model will be verified basing on the energy criterion of similarity between a real object 
and a model [7, 8]. 
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Abstract 
The study covers the case of driving the loader straight and a symmetric impact of a 
bucket against a fixed and non-deformable obstacle. The values of impulses of forces that 
appear in hydraulic servers of a joint-wheel loader’s working equipment during an impact 
were determined. Attention was put on the load of a bucket’s server. Numerical 
calculations were made for geometric units characterizing the working equipment of the 
loader 560 E (HSW), and the results of the impulses of forces that are transformed by the 
bucket’s hydraulic server have been presented in diagrams.  
Key words: joint-wheel loader, hydraulic servers, impact load.  

Introduction 

Among the many dynamic loads that influence the loader’s working equipment there is 
an emergency load resulting from the impact of a bucket against an obstacle in the 
gathered load. It is a large momentary load having a disadvantageous influence on the 
survivability of the equipment’s construction elements and the elements of hydraulic 
system. The elements under the largest load during such uncontrolled impact are the 
servers of the loader’s working system (equipment), especially the bucket’s power 
server. 

1. Physical dynamical model of the system 

Dynamical description assumed a physical model of a joint-wheel single-bucket loader 
(pic.1). The following masses were separated in this model: back element mass – m1, 
front element mass – m2, masses of left and right extension arms – m3 = m4 and bucket’s 
mass – m5. The model’s elements were connected with joints and treated as a system of 
rigid, non-deformable masses. Hydraulic servers were modeled as discreet rheologic 
elements of Kelvin – Voit and characterized with substitute susceptibility coefficients 
K1, K2, K3, and damping C1, C2, C3, respectively for the system of turn, extension arm 
and bucket. Apart from the masses of the studied system, there were distinguished mass 
moments of inertia, geometric lengths and angles characterizing the configuration of the 
working equipment setting. Angular position of the loader’s elements resulting from 
working configuration was defined with angles: α1 – position of back element in relation 
to the front one, α3 – position of extension arms in relation to the level, α4 – position of 
the bucket in relation to the level, as presented in pictures 1 and 2. 
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Pic. 1. Model of studied system 

 
The assumed model accepted the power moment imposed to the loader’s front wheels as 
the input function. It did not consider vertical susceptibility of drive wheels and it 
omitted ‘self-alignment’ of back axis and ground rheologies. Ground was treated as 
being non-deformable. 

2. Results of numeric calculations 

The studied system has six degrees of freedom, however, for the analysis of determining 
the impulse of force in the servers of equipment in driving the loader straight, the system 
is reduced to three degrees of freedom. 
Dynamic description of the analyzed system was divided into three stages. The first 
stage concerns the dynamics of the system’s movement before the impact, described  
by the dynamic equations of Lagrange II type; the second one concerns the phenomenon 
of impact itself and it results from the change of the system’s momentum and the 
restitution coefficient  in the place of impact; whereas the third stage describes dynamic 
behaviour of the studied system after the impact. 
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Calculations were made for the loader’s track speed (model 560 E, producer HSW)  
v = 1.79 [m/s] against a fixed obstacle and for the restitution coefficient k = 0.4.  
The case of driving the loader straight and a symmetric impact of a bucket were studied. 
Angular position of the loader’s elements resulting from the configuration of working 
setting was the following: 
 

 
Pic. 2. Model of the loader’s working equipment 

 
I II III 

�1 = 0 [rad] �1 = 0 [rad] �1 = 0 [rad] 
�3 = 0,7 [rad] �3 = 0,25 [rad] �3 = -0,7 [rad] 
�4 = 1,2 [rad] �4 = 1,2 [rad] �4 = 1,2 [rad] 

 
Calculations were made for the following numerical data, where rigidity and damping 
were assumed from own experimental studies [2], [3]: 
 

I II III 
K1=1,8·108 [N/m] K1=1,8·108 [N/m] K1=1,8·108 [N/m] 
K2=3·108 [N/m] K2=1,2·108 [N/m] K2=0,51·108 [N/m] 

K3=3,6·108 [N/m] K3=2,7·108 [N/m] K3=2,1·108 [N/m] 
C1=1,2·106 [Ns/m] C1=1,2·106 [Ns/m] C1=1,2·106 [Ns/m] 
C2=2·106 [Ns/m] C2=0,8·106 [Ns/m] C2=0,34·106 [Ns/m] 

C3=2,4·106 [Ns/m] C3=1,8·106 [Ns/m] C3=1,4·106 [Ns/m] 
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where: 
K1 – substitute coefficient of rigidity of the turn system server, 
K2 – substitute coefficient of rigidity of the extension arm server, 
K3 - substitute coefficient of rigidity of the bucket server, 
C1 - substitute coefficient of damping of the turn system server, 
C2 - substitute coefficient of damping of the extension arm server, 
C3 - substitute coefficient of damping of the bucket server. 
 
For the restitution coefficient from the range 0<k<1 the loader’s bucket is several times 
bounced against an obstacle, then the bucket constantly presses on the obstacle, and then 
the bucket with the loader bounces off the obstacle. Below are presented values of the 
loads that the bucket’s server of the joint-wheel loader experiences, for different angular 
positions of the extension arms. Three values of angular position of the extension arms 
in relation to the level were assumed, and one, unchanged angular position of the bucket. 
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Pic. 3. Force value in the bucket’s server for extension arm position: 1 – �3 = 0.7 [rad],  

2 – �3 = 0.25 [rad], 3 – �3 = -0.7 [rad] 
 
The diagram presented below illustrates the change of maximum dynamic load  
of a bucket’s hydraulic server in the working system of the joint-wheel loader (data for 
calculation based on the wheel loader model 560 E) in the function of position change  
of the extension arms during the drive on a fixed and non-deformable obstacle. 
 

1
2
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Pic. 4. Force value in the bucket’s server in the function of position change of the 

extension arms 

3. Conclusions 

It is worth noticing the maximum values of forces generated in the hydraulic server  
of the loader’s bucket during the bucket’s impact against a fixed and non-deformable 
obstacle, for different values of the angular position of extension arms. The difference  
in the values of force impulse appearing in the loader’s bucket server results from the 
fact that for different settings of the extension arm, there are different lengths of the 
servers, so there are different values of substitute coefficients of rigidity and damping. 
Others for a system with lowered extension arm ” I ”, in comparison to the lifted one “ II 
” and maximally lifted “ III ”. Substitute rigidity and damping of the hydraulic server 
depends on the amount of working liquid in the cylinder, that is on the line feed on the 
piston [2], [3]. The values of those coefficients decrease with the increasing of the 
amount of hydraulic oil under the piston in the server’s cylinder. Substitute susceptibility 
of server influences also the duration of force impulse. With its increase, the time  
of impulse duration increases and maximum momentary force value decreases. It means 
that in the system with lifted extension arm, a considerable part of the force impulse that 
appears during the impact, is transformed on the bucket’s server. This case is most 
disadvantageous because longer duration of force impulse may lead to a failure of the 
server and a breakdown of the loader.     
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Summary 

The paper presents a method of initial analysis of the modal parameter change (e.g. modal 
frequency shift) due to progressive integrity loss for prestressed concrete beams 
(sensitivity analysis). A global rescaling method of the numerical modal frequency set was 
proposed in order to fit the real vibration components determined experimentally. The aim 
of simulation is numerical determination of frequency modal components and modes for 
specific boundary conditions, determined by the tested element support system. On the 
basis of static and dynamic FEM simulation results the optimal location of excitation 
points, location of transducers recording structure vibration response can be determined. 
The presented methodology can be helpful and is necessary for determination of 
possibilities of application of VA methods for testing the prestressed concrete structures. 

Keywords : structure testing, FEM analysis, prestressed concrete, fault detection 

Introduction 

Prestressed concrete structural elements are commonly used in civil and mechanical 
engineering. Actually, the new Non Destructive Testing (NDT) methods, based on 
vibroacoustical (VA) signal analysis [1-6] are developed in order to quick assess the 
structure condition. These methods are usually used at first stage of the structure testing 
and allow for initial classification of the elements to the next, more detailed, but more 
time consuming testing standard techniques. 

Elaborated VA methods are based on vibration signal analysis, usually free vibration 
analysis of the investigated structure, to be the response of the structure on the pulse 
force excitation. As a result of such excitation the elements respond by their 
eigenfrequencies and corresponding modes. In the case of VA techniques application, 
the evaluation of technical condition change of prestressed concrete elements, caused 
e.g. by structural integrity loss, initial stress loss, microcracks, can be based on: modal 
frequency shift analysis, vibration mode changes, nonlinearity analysis change [1-4].  
If we consider elaboration of VA testing procedure for specific structural element a 
useful is the initial simulation using the Finite Element Method (FEM). The aim of such 
simulation is numerical determination of frequency modal components and modes for 
specific boundary condition (determined by the element support system). On the basis of 
static and dynamic FEM simulation results one can determine: optimal location of 
excitation points, location of transducers recording structure vibration response. 
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Moreover, we can assess the sensitivity of modal parameters caused by destruction of 
prestressed concrete structure. However, it is to note that FEM simulation results are 
approximate ones. Differences between numerical and experimental results can be 
explained by the introduction into calculations the material constants and coefficients not 
fully verified in the practice, and simplifications in the FEM model. Initially evaluated 
modal parameters (frequencies and modes) by the FEM method should be verified 
experimentally. However, it happens in practice that it is difficult to fit the real and 
numerical modal parameters. The paper presents an example of initial analysis of the 
modal parameter change due to progressive integrity loss for prestressed concrete beam 
(sensitivity analysis). A global rescaling method of the numerical modal frequency set 
was proposed in order to fit the real vibration components determined experimentally.  

1. FEM model of prestressed concrete beam 

This section describes the application of the FEM method to sensitivity analysis of the 
modal frequency shift that is developed by the structure disintegrity. We considered the 
beams with imperfections only 
(cracks). The observation of 
the change in the modal 
parameters provides potential 
possibilities of their appli-
cation in the VA evaluation 
procedures (mentioned in the 
introduction). Also, we can 
determine the change of modal 
parameters (modes and 
frequencies) caused by 
imperfections introduced in 
prestressed beams. 
Moreover, the vibration signal 
transducer location can be 
fixed on the structure with 
nonzero amplitudes in order not to use the nodal points for diagnostic observation. 
Figure 2 presents the model overall view (with dimensions) of the considered prestressed 
beam. 

 
Fig. 2. The model of the considered prestressed beam 
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Artificially introduced structure disintegrity - crack steel tendons

 
Fig. 1. The FEM mesh model of the considered 

prestressed beam 
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The beam was modeled according to the FEM requirements using brick and truss finite 
elements. The 3D brick elements were used to model the concrete structure, and the truss 
finite elements were used to model the tendons. The material of the matrix is concrete, 
type C 40/50. The material of tendons is very low relaxation steel C256G grade 270K, 
with very high ultimate stress equal to about 1900 MPa.  
The elaborated FEM model (see Fig.1) consists of 14807 nodes, 12672 brick elements, 
and 264 truss elements. The mesh nodes associated with the left hand side support have 
all three translational degrees of freedom fixed and the right hand side support nodes are 
fixed against vertical Z displacement only. The effect of the ‘prestressing’ was simulated 
in FEM calculations by introducing a negative initial temperature in the respective nodes 
associated with tendons FEM mesh. 

 
2. Modal frequency shift analysis 

 
The FEM calculation were performed for the first 25 mode shapes for the two cases of 
the beam. The first case responds to the beam without imperfections and the second case 
is related with the beam having two vertical imperfections (cracks) introduced artificially 
into the model. The cracks are assumed to have a different depth, equal to 0%, 27%, and 
73 % of the total height of the beam, respectively. The results of numerical simulation 
are as follows. Table 1 presents percentage values of frequency decrease of beams with 
imperfection when compared with beams without imperfections. 
 

Table 1. Decrease of modal frequencies for the beam developed by imperfections 

mode No. 
(selected) 

percent change of modal frequency related to beam with/without 
imperfections 

 imperfection depth 27 % imperfection depth 73 % 
2 13.6 28.9 
4 0.9 5.1 
7 2.1 9.1 
8 1.2 12.4 

10 9.1 21.0 
13 2.0 14.3 
14 6.7 20.1 

Table 2 presents the selected mode shapes of prestressed concrete beams without and 
with imperfections. In addition, the natural frequencies related with the mode shapes are 
given in the table. We can observe a noticeable decrease in natural frequencies for all 
modes; also including the modes not presented in the table. 

We can conclude that there are possibilities, from practical point of view, to use this 
phenomenon for detection of disintegration degree of the prestressed structures. 
Theoretically, the one of most sensitive modal component can be taken in the inspection 
procedures. However, some difficulties can be expected in a’ priori determination which 
modal component is suitable. 
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Table 2. Selected mode shapes and corresponding modal frequencies of prestressed 
concrete beams without and with imperfections [7] 

Mode 
No. No imperfection Imperfection  

depth 27 % 
Imperfection  
depth 73 % 

2 

 
172 [Hz] 151[Hz] 

 
122 [Hz] 

4 

 
491[Hz] 487 [Hz] 

 
466 [Hz] 

8 

 
1108 [Hz] 

 
1095 [Hz] 

 
971 [Hz] 

10 

 
1377 [Hz] 

 
1263 [Hz]  

1088 [Hz] 

Thus, the global frequency shift analysis of all modal components would be easier to 
realize in the practice. This was confirmed also during experimental tests carried out on 
the same types of beams. 

3. The rescaling problem of modal frequencies 
Not all of the modal components determined experimentally in the VA signal are 
noticeable. This is caused by the influence of boundary conditions, location of force 
excitation and vibration transducers and other factors. In most cases one can see several 
modes only  
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transversal vibration of the beam amplitude spectrum of  the beam vibration response 
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Fig. 3  Experimentally determined vibration modes of prestressed concrete beam  
 (on the left) and corresponding spectral components. 

Table 3. Experimental and numerical modal frequencies and results of rescaling  
modal frequency [Hz] mode 

number simulation FEM rescaling 
nearest experimental modal 

frequency [Hz] 
relative error 

[%] 
1 32.9 38.9 199.7 80.5 
2 172.7 204.2 199.7 2.3 
3 223.3 264.0 199.7 32.2 
4 491.7 581.4   
5 594.9 703.4   
6 709.0 838.3   
7 761.4 900.3   
8 1109 1311   
9 1341 1586 1628 2.6 

10 1377 1628 1628 0.0 
11 1743 2061 1628 26.6 
12 1782 2107   
13 2002 2367 2652 10.7 
14 2194 2594 2652 2.2 
15 2477 2929 2652 10.4 
16 2676 3164 3231 2.1 
17 2752 3254 3231 0.7 
18 2819 3333 3231 3.2 
19 3060 3619   
20 3225 3813   
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(usually amplitude dominant, see Fig. 3). For the considered beam in the analyzed 
frequency band, up to 5 kHz, only four dominant components were good visible. A great 
care should be taken during assigning the experimental and numerical modal 
components. Intuitive association is related with those numerical and experimental 
components that are closest each other, what is not always correct. It results from the 
fact that creation of the FEM model is an iterative process. It frequently happens that in 
the first approach we have not full compatibility between numerical and experimental 
modal frequencies. Table 3 shows differences between numerical and experimental 
modal frequencies for the beam under consideration, what results from various factors 
that are not always easy to explain. The proposed rescaling method can be very useful to 
identify and assign the modal components (numerical and experimental). The first step 
in rescaling procedure can be pointing out the amplitude predominant components (so 
called – base mode) and experimental determination of the mode shape for the base 
mode (see Fig. 3). The second criterion of the base mode chose is physical possibility for 
mapping the base mode shape. Four transducers were fixed on the considered beam. This 
configuration allowed for the experimental mapping of the tenth mode shape 
(corresponding to 1628 Hz). The same mode shape was related with 1366.9 Hz in the 
FEM analysis. Thus, the global rescaling coefficient equal to about 1.18 could be taken. 
It is to note that the rescaling process could not always be linear one. Table 3 presents 
the rescaling results for the first twenty mode frequencies. The components were marked 
bold for which association of numerical and experimental modal components was 
possible after rescaling. 
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