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Introduction to the Volume XXIV 

of Collected Papers on Vibrations in Physical Systems 
 
 
Vibrations, oscillations and waves as physical phenomena are omni-
present. They are the sign of life, the sign of the operation of machines 
and devices and they accompany any production processes. Their effects 
may be harmful, useful and they may also be a source of information on 
the technical condition of the supervised machines and devices. Volume 
XXIV of Vibrations in Physical Systems published every second year 
deals with these widespread phenomena. It comprises the papers 
presented by specialists from our country but also from abroad at many 
sessions of the XXIV Symposium of Vibrations in Physical Systems 
organized also every second year. The Symposium has been organized 
since 1960 in Poznan by a branch of the Polish Society of Theoretical and 
Applied Mechanics and the Institute of Applied Mechanics at Poznan 
University of Technology. 

Topics of the publications relate to a wide range of issues connected 
with modelling and identification of mechanical systems, their stability 
and dynamics of mechanical systems as well as physical phenomena such 
as propagation of acoustic waves, vibrations in solid bodies, vibrations of 
liquids and mechanical structures. 

The monograph comprises also numerously presented publications 
relating to the issues of dynamics in biological as well as biological and 
mechanical systems. They mainly concern mechanical properties of a 
human body and its organs (auditory bones) or parts. Other publications 
describe the dynamic interaction of power between human and machine 
(Human – Hand-held Powered Tool) or distribution of power and the 
energy flow in Human-Machine Systems.  

Many of the publications present the results of research carried out 
through simulation with the application of modern digital technologies 
worked out for the needs of solving linear and non-linear issues of the 
dynamics of solid bodies or physical phenomena such as propagation of 
acoustic waves or complicated structures. The publications comprise the 
results that are analysed from the point of view of the applied 
methodology or accuracy of the obtained figures. 



 

There are also quite a few publications devoted to methods of passive, 
active and semi-active minimizing of vibrations and noise and to 
modelling of vibrations damping with viscotic damper. The publications 
concerning dynamic issues also analysed the stability of the tested 
mechanical systems. 

Other significant publications concern the monitoring of technical 
facilities with the use of the propagation of elastic waves that allow us to 
detect cracks in the composite structure under the test and to specify their 
location. They also describe methods of modelling the propagation of 
waves.  

All the papers comprised in this volume have been reviewed by 
members of the Scientific Committee, and in some cases by specialists 
outside the Committee, should the issues concern problems outside the 
scope of knowledge of the Committee members. I would like to thank all 
those persons who help us review the papers and the published 
monograph and improve their quality.  
  
 
 
 

Co-editor 
Marian W. DOBRY 
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Abstract 

The main issues regarding damage detection in elements of structures are discussed. The detection is 
conducted by the use of methods based on the phenomenon of elastic wave propagation. The emphasis is 
placed on modelling the phenomenon of elastic wave propagation in composite elements of structures, along 
with issues of wave interactions with damage and problems of damage location. 
 
Keywords: elastic waves, damage detection, Structural Health Monitoring   

1. Introduction 

The scope of Structural Health Monitoring (SHM) includes constant monitoring of the 
structure's material condition (in real-time), for the elements of the structure as well as 
for the whole structure during its useful lifetime. The condition of the structure’s 
material is to remain within the limits specified by the standards of the design process. 
Those standards, regarding the material, ought to take into consideration changes caused 
by exploitation wear during the operation process, changes caused by environmental 
factors, in which the structure is being used, and coincidental situations influencing the 
condition of the material. Owing to the fact that the monitoring process is being 
conducted continuously during operation, there will be a record of the complete history 
of utilization. Such information may be used for future condition prognosis as well as 
prediction of faults and the structure's safe utilization time. 

Systems executing SHM processes ought to be structure integrated; this allows 
making modification of the structure in such a way that the probability of a failure is 
minor. It also enables minimization of the failure risk through management of the 
structure's utilization and treating it as part of a bigger system. The first layer of a SHM 
system is the monitoring layer specified by the type of physical phenomenon that is 
being monitored by the sensors. It is dependent on the damage type to be detected and 
the type of physical phenomenon that is being used by the sensors in order to generate 
the signal, mostly electrical, containing features and processable information regarding 
damage. Several connected sensors work together in a system measuring environmental 
factors influencing the condition and process of the exploitation of the structure. Data 
gathered from all the sensors along with historical data from previous structures allow 
diagnostic synthesis of information (signal fusion) regarding the condition of the 
structure. Once the above-mentioned information is linked with all the data from the 
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general system of knowledge about the phenomenon of damage and structural wear, it is 
possible to gain prognosis of condition and data defining the scope of any necessary 
repair. It is more common, that for such purposes simulation systems are used. Those 
systems enable extremely quick generation of the results, similar to those obtained from 
the chain of sensors based on familiar damage models (virtual exploitation of the 
structure). 

The motivation for applying such systems is: 
• ability to avoid failures with catastrophic consequences, 
• ability to optimize the utilization process (minimization of emergency stoppage 

time), 
• gaining essential information for designers regarding structural modification, 
• ability to minimize maintenance costs and to raise the efficiency of a device 

thanks to the use of a methodology of repair according to condition, as well as 
avoiding disassembly, and replacement of non-damaged and non-used 
elements, 

• ability to avoid operator's mistakes regarding evaluation of the condition of the 
structure. 

Many methods used in practice to build SHM systems are being adopted from 
widely-known and applied disciplines e.g. NDT. Classical NDT methods can be 
executed continuously, such as: measurement of acoustic emission, Lamb waves, 
temperature, or mechanical impedance or direct monitoring of the displacement field 
with the use of visual methods, can be examples of applying NDT techniques in SHM 
systems. 

A popular method, that can be applied passively as well as actively is the method 
based on examination of thermo-flexibility phenomena accompanying damage, 
especially its formation and propagation. Currently, interest in this method is increasing 
due to the opportunity of non-contact measurements of thermal phenomena within 
structures and intensive development in temperature measurement. Another method is 
the method of surface Lamb wave excitation within the structure. This method uses a 
grid of sensors/actuators. Registration and processing of transmitted waves as well as 
reflected waves is conducted. Evaluation of the condition of the structure takes place on 
the basis of wave profile deformations due to damage in the interrogated area of the 
structure.  

2. Lamb waves 

Elastic waves that propagate in solid media bounded by two free and parallel surfaces 
are known in the literature as Lamb waves or guided waves. Lamb waves are named 
after Horace Lamb in honour of his fundamental contribution in this area of research. He 
developed a mathematical theory that describes this kind of elastic waves, but what is 
very interesting he never managed to generate this type of waves in a real structure. 
Lamb waves propagate both as symmetric (S0, S1, S2, ...) and anti–symmetric (A0, A1, 
A2, ...) modes and the number of these modes depends on the product of the excitation 
frequency and the element thickness. Up to almost 2 MHzmm only two fundamental 
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Lamb wave modes S0 and A0 can propagate and be observed in a plate made out of 
aluminium alloy (Fig. 1–2). It has been found that just fundamental Lamb wave modes 
are most useful for damage detection purposes. 

 

 

Figure 1. Phase velocities of symmetric 
(red) and antisymmetric (blue) modes of 

Lamb waves 

 Figure 2. Group velocities of 
symmetric (red) and antisymmetric 

(blue) modes of Lamb waves 
 

It should be noted that in composite plates dispersive relations are little more 
complex than in isotropic materials and solution must satisfy Christofel’s equation for 
each layer, the continuity condition at the interfaces and the traction-free boundary 
conditions at the plate surfaces [1]. Alternatively, some approximate solution can be 
applied i.e. based on Mindlin’s plate theory and material homogenisation [2].  Such 
approach clearly shows that group velocity of the transverse wave (which approximate 
A0 Lamb wave mode) is not constant, but is a function of a relative volume fraction of 
fibres and direction of propagation (Fig. 3). 

Figure 4 show that structural discontinuity in the form of crack cause additional wave 
reflection. Hence, it is evident that changes in propagating waves carry information 
about the damage. 

 

 

 

 

Figure 3. Geometry of half-pipe with 
crack 

 Figure 4. Interaction of elastic wave 
with the crack of the length 1 cm in 

a thin plate 
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3. Wave propagation modelling 

Complexity of real structures cause that modelling of waves guided by boundaries of 
structural elements is challenging task. FFT-based Spectral Element Method proposed 
by Doyle [3] is efficient but it is not applicable for 3D geometry. Some of researchers try 
to use methods based on the Finite Element approach or the Finite Difference approach 
such as LISA [4]. These methods are more suitable for modelling of complex 
geometries. Unfortunately, both methods are inefficient and lead to errors corresponding 
to numerical dispersion. Only few commercial packages enable modelling of generation 
of elastic waves by piezoelectric transducer but they also are based on the FEM. In order 
to overcome disadvantages mentioned above, research group at IFFM have already 
implemented more accurate and efficient spectral element method [2, 4]. Recently 
developed spectral elements also take into account electromechanical coupling [6] (see 
pzt element in  Fig. 7). 

Exemplary numerical calculations have been carried out for a half-pipe structural 
element made out of aluminium alloy (Young’s modulus 71 GPa, Poisson ratio 0.33, 
mass density 2700 kg/m3). The radius of the element was R=0.2 m, length L=0.5 m and 
thickness 2 mm (figure 1). 34 piezoelectric transducers were used in which 17 for wave 
actuation. The placement of piezoelectric transducers along with the mesh of spectral 
elements is presented in Fig. 6. Each piezoelectric transducer is modelled by four 
spectral elements with 108 nodes each (3 nodes through the thickness). The detail of the 
mesh near the transducer is presented in Fig. 7. The thickness of transducers is 1 mm and 
it is assumed that it is made of PZT material type 4. The excitation was applied 
simultaneously to 17 actuators on the one side of half-pipe in the form of sine pulse of 
frequency 100 kHz modulated by Hanning window (3 cycles).  Damage in the form of 
crack was modelled by splitting appropriate nodes in neighbouring elements. The crack 
is located at distance d=0.153 m from the end of the half-pipe (Fig. 5). Simulations have 
been carried out for the crack about 24.8 mm long. 

 

 

 

Figure 5. Geometry of half-pipe with 
crack 

 Figure 6. Mesh of spectral elements 
with piezoelectric transducers 
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Figure 7. Detail of the mesh 
showing piezoelectric 

transducer composed of 4 
spectral elements 

 

Figure 8. Energy comparison calculated for signals 
registered by sensors 

 
 
 

 
Figure 9. Displacements in y direction illustrate propagating waves at selected time 

instances 
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Results of numerical simulations are presented in Fig. 9. It is easy to notice that the 
front of symmetric mode is created and next slower antisymmetric mode propagate. 
Reflections between piezoelectric transducers as well as reflections from the crack are 
clearly visible. Reflections from the crack cause that energy transmitted to sensors drops 
significantly in comparison to signals for undamaged half-pipe (Fig. 8). This energy 
drops correlate with the position and the length of the crack. Such a simple feature can 
be used for damage detection purposes. 

4. Damage imaging techniques 

Damage localisation can be achieved by various inverse techniques performed on wave 
propagation signals registered by piezoelectric transducers. However, inverse techniques 
are computationally intensive and operate on huge amounts of data. A good alternative 
can be a direct method that utilises some knowledge about the wave velocity and the 
placement of transducers. In this case it is possible to transform the signals in such a way 
that damage influence maps are created [7].  

The performance of the damage influence maps strongly depends on the placement 
of transducers and wave excitation-reception strategy [8, 9, 10]. 
The proposed in [7–9] methods are nothing more than signal tomography performed on 
the basis of some simple geometric relations. Such tomography is conducted on 
differential signals, i.e. based on differences between healthy state (reference signals) 
and damage state. The idea is to map differential signals from point locations (actuator-
sensor locations) onto the surface of the analysed structure (e.g. square plate).  Such 
mapping has been conducted for various configurations of piezoelectric transducers in 
order to obtain best damage localisation results. It has been found that configurations 
might be better suited for isotropic materials and for local inspection (focused arrays) 
and some are better suited for composite laminates (distributed arrays). 

The basic problem with imaging techniques comes from the boundary and structural 
feature reflections. Imaging technique itself looks for propagating wave packet reflected 
from damage in order to associate reflected energy with location of the damage. This 
association is performed based on the knowledge of the velocity of propagating wave 
and the time delay of wave packet. Unfortunately, some of the energy of the wave packet 
is reflected back to the sensor but the rest of energy is further transmitted. Because less 
energy behind the damage is transmitted than in the surrounding area, reflection from 
boundary is also weaker. This, in turn, lead to damage influence map differences in 
locations not associated with damage. From practical point of view the inspection area is 
limited to the area enclosed in the distance from the sensor array to the nearest structural 
edge. It is evident that for clock-like sensor array shown in Fig. 10 (right) the algorithm 
is not able to find damage near plate corners (areas marked as ‘dead zones’) [7].  

In order to overcome mentioned above difficulties triangular sensor networks were 
considered [8] with mapping performed separately in isolated triangular subspaces (Fig. 
10 (left)). In this case the crack can be found by the algorithm regardless the boundary 
reflection contribution. Nevertheless, a new problem arise, namely damage indication is 
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ambiguous, due to symmetry between triangles. For this reason algorithm was refined in 
[9] for clear damage indication by multi triangular grid utilisation. 

 

Figure 10. Damage influence maps for distributed sensor network (left) and clock–like 
sensor array (right). 

 
Experimental work [11] conducted on aluminium and carbon/epoxy plates in 

laboratory conditions confirms that developed damage localisation algorithms are valid 
and can be used for detection of about 1 cm long through-thickness crack. The crack 
location is easily interpreted thorough damage influence maps. On the other hand 
delamination also can be detected with described methods but localisation of 
delamination is possible only to some extent. 

4. Conclusions  

Developed models based on the Spectral Element Method are very helpful in designing 
effective Structural Health Monitoring systems. Exemplary simulations show capability 
of modelling and testing damage detection algorithms. 

It has been shown that in spite of the fact that elastic wave propagation is very 
complex phenomenon it can be successfully utilised for damage detection and 
localisation in structures.  

Experimental works indicates that guided wave-based methods are reliable for 
inspection of simple structures like pipes, rods or even flat plates. However, for more 
complex shell-like structures with stiffeners, bolts or rivets developed algorithms are not 
yet ready to be used in real world structures. 

Further work will focus on estimation of the damage size and prediction of remaining 
service life.  
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Monitorowanie stanu technicznego konstrukcji przy wykorzystaniu propagacji fal 
spręŜystych 

Przedyskutowano główne problem dotyczące detekcji uszkodzeń w elementach konstrukcji. Detekcja 
przeprowadzana jest poprzez metody bazujące na zjawisku propagacji fal spręŜystych. PołoŜono nacisk na 
modelowaniu zjawiska propagacji fal spręŜystych w kompozytowych elementach konstrukcji jak równieŜ na 
zagadnieniu interakcji fali z uszkodzeniami i zagadnieniach lokalizacji uszkodzeń. 
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Full professor doctor habilitatus Jarosław Stefaniak was born on 17 May, 1929 in 
Poznań. His father was a municipal clerk, his mother unemployed. During the Second 
World War he worked first as a helpmate and then as a workman in Poznań Power Plant 
on Garbary Street. He attended a non-existing now the Berger State Lower and Upper 
Secondary School (a former school building on Strzelecka Street now occupied by 
Poznań University of Technology).  In 1948 he passed examination for the secondary 
school certificate. Just then he began studying mathematics and physics at the Faculty of 
Mathematics and Science at Poznań University, later renamed as the Faculty of 
Mathematics, Physics and Chemistry at the Adam Mickiewicz University in Poznań. He 
received the diploma of Master of Science in philosophy in the field of mathematics in 
1952. Yet, as a student in 1951 he took up a job as an assistant at the Chair of 
Mathematics at the Higher School of Engineering in Poznań and since then his 
professional life was connected solely with this school. In 1956 after the Higher School 
of Engineering received the status of Poznań University of Technology, he took a post at 
the Chair of Technical Mechanics whose head in those days was prof. Edmund 
Karaśkiewicz. Then he became deeply involved in the theory of elasticity, especially 
thermoelasticity. His first papers concerned thermal stresses in elastic halfspace.  

The second half of the sixties was abounding with many events that contributed 
greatly to his career. As early as in February 1965 he defended his doctor’s thesis on: 
Propagation of Waves in a Viscoelastic Medium with Respect to Thermomechanical 
Coupling,  at the Faculty of Mechanical Engineering, PUT, thus obtaining the Doctor of 
Science degree in technical sciences in the field of mechanics. The supervisor was prof. 
Witold Nowacki, an outstanding scientist, the author of many fundamental papers and 
monographs in the field of structural mechanics, theory of elasticity and theory of fields 
coupled in deformable media, the IVth division chairman and  president of Polish 
Academy of Sciences. In his next papers from the same period he analyzed the 
phenomena of wave propagation in viscoelastic unbounded media as well as surface 
waves with respect to thermomechanical coupling. Obtaining the D.Sc. degree was a 
significant incentive for his further scientific development and for more intensive 
research on thermoelasticity of the Cosserat media. In his papers before habilitation 
thesis  Jarosław Stefaniak emphasized the possibility of presenting the loads 
concentrated by means of singular distribution and showed the method for solving the 
equations that describe the above problems. At that time special attention should be paid 
to generalization of the Galerkin function for nonsymmetric thermoelasticity.  
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From November 1967 to May 1968 J.Stefaniak ,D.Sc. served a 6 – month visiting 
professor fellowship at the Institute of Mathematics at Romanian Academy of Sciences 
in Bukarest. As a result of the studies on nonsymmetric thermoelasticity and on 
application of generalized functions in continuum mechanics he elaborated  habilitation 
thesis entitled: Concentrated Loads in Nonsymmetric Thermoelasticity. On this basis in 
May 1969 he obtained the degree of doctor habilitatus in technical sciences in the field 
of thermoelasticity by the resolution of the Board of Mechanical Technological Faculty 
at PUT. 

Following it on 1 March, 1970 the Minister of Education and Schools of Academic 
Rank  appointed dr hab. Jarosław Stefaniak to the post of Reader at the Chair of 
Technical Mechanics. Research that Reader J.Stefaniak continued after being conferred 
the title of dr hab. concerned the problems of refraction and reflection of waves in 
thermoelastic media of the Cosserat type. He also showed that in micropolar media 
during reflection and refraction new kinds of waves are generated that are unknown in 
classic elastic media. 

Due to his scientific achievements he was appointed to the post of  deputy dean of 
the Mechanical Technological Faculty in 1969. He held this position till 1971. 

At the end of September 1970 important organizational changes took place at PUT. 
The structure of institutes developed. The head of the Technical Mechanics Chair – prof. 
Edmund Karaśkiewicz retired. This Chair together with other units of Mechanical 
Technological Faculty, i.e. Division of Strength of Materials , Division of Theory of 
Mechanisms (so far included in the Chair of Machine Parts and Theory of Mechanisms), 
the Chair of Mechanics (included in the Faculty of Working Machines and Vehicles) 
formed the Institute of Technical Mechanics. Its first head was prof. Włodzimierz 
Derski, his only deputy – Reader J.Stefaniak who held this post till 1972. After 
prof.W.Derski took a post at the Institute of Fundamental Technological Research 
(Polish Academy of Sciences), Reader J.Stefaniak took over as head at the Institute of 
Technical Mechanics (for the first time) from 1973 to 1981. From 1981 to 1998 he was 
the head of the Division of Technical Mechanics at the Institute of Technical Mechanics 
(from 1984 at the Institute of Applied Mechanics). Then he developed his interests in 
magneto-thermoelasticity and diffusion in solids. With the use of distributive description 
of disturbance sources he investigated the conditions of mechanical wave generation by 
plane and linear sources in a  magnetoelastic medium. 

The intense development of research by Reader J.Stefaniak resulted in the title of 
associate professor conferred on him in 1976, at the age of 47, which was at that time 
very uncommon. Further research on magnetoelastic media led to the formulation of 
linear equations for different cases of interactions among electromagnetic, thermal, 
elastic fields and mass diffusion. Most of the results in this domain were published in his 
monograph: Influence of Electromagnetic Field on Thermodifussion in an Isotropic 
Medium, edited by Polish Scientific Publishers in 1982. At that time prof. J. Stefaniak 
began to develop another line of his research dealing with a method of controlling 
fictitious heat sources and its application in solving boundary problems of heat 
conduction. In 1989 he was conferred the title of full professor. A few months later a 
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new regulation about degrees and scientific titles became effective replacing the title of 
associate professor and full professor with one title – professor.  

Prof. J. Stefaniak carried out research both on his own and in  cooperation with 
scientific workers from the Division of Technical Mechanics run by him. He and the 
team often took part in big research programs financed by central authorities: 
interdepartmental programs and so called Central Programs for Basic Research or 
Central Programs for Development Research co-ordinated by main national scientific 
units (Institute of Fundamental Technological Research-Polish Academy of Sciences, 
Military University of Technology, etc.). He was a member of Co-ordinating Teams of 
two of them. 

After the Committee of Research was set up, prof. J. Stefaniak conducted research 
projects financed by the state budget. 

He published the results of his research not only in the form of monographs but also 
in well-known scientific journals in Poland and abroad. He is the author and co-author of 
over 100 papers of fundamental and practical character. He presented his current results 
at many national and international scientific conferences. 

As a scientific worker of a higher technical school he was also involved in a lot of 
research  for industry. He mainly focused on the problems of noise level and vibrations 
caused by different technological processes in industrial plants. 

Prof. J. Stefaniak’s high position made him an educator and tutor of many younger 
scientific workers thus initiating  Poznań school of continuum mechanics that aimed at 
investigating interactions of different physical fields in continuum media. 

So we can consider him to be the main follower of Poznań school of mechanics 
established at PUT by prof. Edmund Karaśkiewicz.  J. Stefaniak promoted 12 doctors; 4 
of them obtained later the degree of doctor habilitatus, 2 – were conferred the title of 
professor. 

He reviewed a lot of scientific articles, a considerable number of doctoral and 
habilitation thesis and gave  many opinions for conferring the title of professor. 

From 1974 he was a co-ordinator of an international symposium – Vibrations in 
Physical Systems – organized every 2 years.   

In 1984, together with prof. Dominik Rogula from the Institute of Fundamental 
Technological  Research – Polish Academy of Sciences, he organized in Poznań 
international EUROMECH Colloquium 189:  Elasticity Coupled with Thermal and 
Electromagnetic Effects. 

During his work at PUT prof. J. Stefaniak was actively engaged in the teaching 
process. He gave lectures on the mechanics of a rigid body, continuum mechanics and 
some mathematical problems to students at all kinds of studies: full-time Master of 
Science and Engineer studies, evening and extramural ones. He contributed to a lot of 
doctoral studies at the University as a co-ordinator and a lecturer.  He also co-originated 
the field – fundamental technological research and also modern specialization in the field 
of mechanical engineering – computational mechanics of constructions. He is the author 
of a handbook – Mechanics for Chemists. 
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He also used his teaching skills lecturing on mechanics and applied mathematics among 
other things at the Academy of Agriculture in Poznań, Military University of 
Automotive Vehicles in Piła and at courses organized by many scientific societies. 

Prof. J. Stefaniak always attached much importance to the organization of a didactic 
process. Besides performing the duties of the head of the division, vice-dean, deputy 
head of the institute and (from 1984 -1990 for the second time) the head of the institute, 
he held an office of a prorector of PUT (1981 – 1984), and in 1990 – during the intense 
period of political changes, academic staff trusted him with the function of president of 
the Civic Forum at PUT – the first non-union democratic organization at the university. 
From 1990 to 1993 he was Rector of Poznań University of Technology.  

Prof. J. Stefaniak was a member of many organizations and scientific societies both 
national and international, often holding high positions. He was an appointed member of 
Committee for Mechanics – Polish Academy of Sciences for many years, and during the 
last two terms of office he was one of the presiding officers. From 1975 – 1977 he was a 
member of the Committee for Acoustics – Polish Academy of Sciences. Moreover, he 
was a member of International Informatization Academy, Accademia Peloritana dei 
Pericolanti, American Mathematical Society, Gesellschaft für Angewandte  Mathematik 
und Mechanik, the Committee for  Mechanical and Building Sciences – Polish Academy 
of Sciences (Poznań branch), Poznań Society of the Friends of Sciences, Polish Society 
of Theoretical and Applied Mechanics, Polish Society of Acoustics as well as the Rotary 
Club in Poznań, which shows still another  field of prof. J. Stefaniak’s activity. He was 
an active welfare worker and a member of scientific councils of research institutions 
related to universities. 

Prof. J. Stefaniak also maintained numerous relations with other countries, apart from 
his notable activity in Poland. He received fellowships from well-known universities 
abroad (Université de Liège, Universität Stuttgart, Technische Hochschule etc.) where 
he cooperated with the authorities in the field of mechanics. He was a holder of DAAD 
scholarship – a West German institution supporting science. He maintained many 
individual relations with Italy, Sweden, Ukraine, the Czech Republic, Germany, Japan, 
Cuba, Great Britain, France, Belgium, the Netherlands, Egypt, Lithuania. 

Prof. J. Stefaniak was also a supervisor of honoris causa doctor titles of: prof. Witold 
Nowacki (1979) a former President of Polish Academy of Sciences and prof. Heinrich 
Seidl – in those days Rector of Hanover University (1995), conferred by the resolution 
of senate of PUT. Moreover, he was asked to review honorary doctorates of professors: 
Wacław Olszak (Kraków University of Technology), Witold Nowacki (Warsaw 
University), Michał śyczkowski (Kraków University of Technology) and Zenon Mróz 
(Kraków University of Technology). 

Prof. J. Stefaniak was distinguished many times for his outstanding scientific 
achievements and didactic activity. He was knight of the Knight’s Cross of Polonia 
Restituta Order (1977), he was awarded the Gold Cross of Merit (1972), the Medal of 
National Education Committee (1996), the Brown Medal for Contribution to the 
Development of Poznań Province (1972) and the Gold Badge of Honor for Contribution 
to the Development  of Piła Province (1978). 
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He was also a winner of numerous prizes of Minister of Science, Schools of Academic 
Rank and Technology: a third-degree award for postdoctoral dissertation in 1970,  an 
individual third - degree award in 1975, an individual second-degree award in 1982 and 
a collective second - degree award in 1983. 

It is necessary to mention his unceasing activity after he retired in 1999. He gave 
lectures and tested students on their knowledge till the last moments. He gave his last 
lecture on 30 August, 2008 and was scheduled to give more. He took part actively in 
international scientific conferences: Trends in Continuum Physics TRECOP’04 
organized by the Institute of Applied Mechanics, where he delivered a speech on his 
method of fictitious sources in solving problems of thermoelasticity, and Vibrations in 
Physical Systems – as a member of Organizing Committee.  Having been the head of the 
Division of Technical Mechanics for many years, he did not miss scientific seminars  at 
the Division on Monday mornings. He still reviewed applications for conferring the title 
of professor, doctoral and habilitation theses and dissertations, he published scientific 
articles and in 2008 – a handbook - Mathematical Physics. Selected problems (co-
authorship). He left an unfinished handbook on mechanics. 

Prof. J. Stefaniak was deeply engaged in educating and bringing up a few generations 
of scientists and engineers. He was a great friend of the young. He always gave advice or 
a hand. Not only did academic life of the institute and faculty where he worked centre 
around him but also many other research teams at the university and other institutions. 
He had a lot of friends in the scientific circle of Poznań, Poland and abroad. He was a 
very sociable person. If he could not persuade somebody into certain objective reasons, 
he used to say in the midst of his friends: look, this way of reasoning is the best which he 
understands and suits him most.  

He liked poetry very much and was a lover of hiking. 
We bid him farewell but he will remain in our thoughts and hearts. 
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Abstract  

The paper presents kinematic analysis of ossicles mechanism, which is part of the middle ear. Movement, 
velocity and acceleration trajectories of important points of the mechanism were determined. Influence of the 
length of the ossicles on the functioning of the mechanism was tested through calculating the relationship of  
oscillation amplitude of stapes and oscillation amplitude of incus.  
 
Keywords: vibrations, velocity, acceleration, amplitude, malleus, incus, stapes. 

1. Introduction 

The middle ear consists of an eardrum,  auditory ossicles (malleus, incus and stapes) and 
Eustachian tube. The ear bones fulfill the role of a transmission that transmits the sound 
from outer to inner ear through the means of converting the vibrations of the tympanic 
membrane, which is connected to the malleus, to vibrations of stapes footplate [1]. 

Sound propagates across the ear canal and stimulates vibrations of the eardrum. 
These vibrations bring about rotation of system of malleus – incus around the axis that 
crosses the centre of mass of the bones [2]. Mutual position of ossicles has significant 
influence on how vibrations are transmitted from outer ear to inner ear. The ossicles 
form a chain that functions as a lever. Vibrations of tympanic membrane cause 
declination of manubrium, which result in shift of incus and stapes. Oscillations of 
stapes affect the motion of fluid, which fills the inner ear, and excitement of hearing 
receptors [3 - 4].  

2. Ossicles mechanism 

Substitution model of middle ear was created based on the relationship of size of ossicles 
[1,5 - 6]. This is three elements planar mechanism. The elements of mechanism are 
malleus, incus and stapes. 

The numbers 1 – 6 in schematic of ossicles mechanism (Fig. 1) represent important 
points of mechanism: number 1 – represents point of connection between eardrum and 
bone of ear canal, 2 – umbro (a slight rounded elevation where the malleus attaches to 
the eardrum), 3 – incudo-malleolar joint, 4 – incudostapedial joint, 5 – point, that marks 
the axis of circulation of stapes, 6 – upper edge of stapes footplate [7].    
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 Figure 1. Schematic of ossicles mechanism 

The mechanism is propelled by rotation of the element that represents malleus 
connected with tympanic membrane, around point 1.  

The origin of coordinate system was set in point 1.  

3.  Results 

Analysis of mechanism’s vibration enabled determination of trajectories, velocities and 
accelerations of important points of mechanism. Kinematic parameters of points 1 and 5 
weren’t taken into consideration, because these points are stationary.  

Vibrations of eardrum are very small, therefore maximum rotation angle of 
propelling element was assumed 5 deg. That is way trajectories of points 2 and 3 that 
belong to propelling element may be approximated as straight lines. Trajectories of 
points 4 and 6 are nonlinear. 

Graphs of horizontal and vertical components of velocities and accelerations of 
points 2, 3, 4 and 6 in time function for one oscillation period were presented in figure 3. 
Time t=0 was assumed to relate to the point of the maximal swing of manubrium 
towards the ear canal and whereas time t= 0,5 T to (half of the oscillation period) relates 
to the maximal swing towards eardrum. The Graphs were normalized to the maximal 
value of velocity or acceleration respectively.  

The graphs of horizontal and vertical components of velocities in time function are 
symmetrical around the equilibrium point, that is point 0,5T, 0. Points 2, 4 and 6 move in 
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conformity with the sense of horizontal axis during oscillation of eardrum and 
manubrium in direction of ear canal, therefore horizontal components of velocity are 
positive. Sense of horizontal component of velocity of point 3 is opposite to sense of the 
x axis. Senses of vertical components of velocity of points 2, 3 and 4 are as per sense of 
y axis, however sense of Vy(6) is opposite to sense of y axis. All velocity components 
change sign at the point of greatest swing from the equilibrium. The largest value of 
horizontal component of acceleration is observed at umbro and the smallest at 
incudostapedial joint. The greatest value of vertical acceleration is observed at point 4 
and the smallest at point 6. 

 

 
Figure 2. Graphs of horizontal and vertical components of velocities in time function. 
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Figure 3. Graphs of horizontal and vertical components of accelerations in time function. 
 

Graphs of horizontal and vertical components of accelerations of analysed points in 
time function are symmetrical around an axis that represents middle of oscillation 
period. In the time points that correspond to maximum values of velocity components 
matching acceleration components change sign.  

4. Influence of ossicles size on functioning of the mechanism 

Lenghts of ossicle were reduced by 2,5; 5; 7,5; and 10%, but other mechanism 
parameters were not modifited. Vibrations of mechanism were analysed and dependence 
of relationship betwen vibration amplitude of upper edge of stapes footplate (point 6) 
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and vibration amplitude of umbro (point2) – Axs/Axm - on  lenght of malleus, incus and 
stapes was calculated. It was assumed that changing of the lenghts of ossicles does not 
affect position and motion of tympanic membrane and malleus, but only the position and 
motion of incus and stapes.   
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Figure 4. Graphs of dependance relationship betwen vibration amplitude of upper edge 
of stapes footplate and vibration amplitude of umbro – Axs/Axm - on  lenght of malleus, 

incus and stapes 

Reduced lenght of malleus entails reduced vibration amplitude of stapes footplate, 
while reducing dimensions of incus and stapes causes opposite effect: increase of 
displacement  of stapes footplate. 

Horizontal displacement of stapes footplate, under geometrical parameters assumed 
in this work, amounts to about 19 – 45% of  umbro displacement.  

Under basic dimensions of the mechanism, the As/Am relationship equals 0,24, 
which means that the vibrations of eardrum and malleus translate to fourfold less 
vibration of stapes footplate. As/Am increases to 0,32, when lenght of stapes is reduced  
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by 10% and to 0,45, when lenght of incus is reduced by 7,5%. Reducing dimensions of 
malleus by 10% results in decrease of As/Am to 0,19.     

4. Conclusions 

Performed vibrations analysis enables better understanding of properties of ossicles 
mechanism. It is very important in case of designing middle ear implants, as implant’s 
proprerities should be as simmilar as possible to those of the part of body it is replacing. 

The knowledge of impact of the ossicles length on vibration transmission from 
eardrum and malleus to stapes footplace and vistibule membrane allows for better 
foresight of the results of middle ear surgical interventions. It also gives important 
advice on sound transmission through middle ear if lengh of one of ossicles is changed  
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Analiza drgań mechanizmu kosteczek słuchowych 
Artykuł ten jest poświęcony analizie kinematycznej drgań układu kosteczek słuchowych wchodzących w 
skład ucha środkowego. Wyznaczono tory ruchu, prędkości oraz przyspieszenia istotnych punktów 
mechanizmu podczas drgań. Zbadano wpływ zmiany długości kosteczek słuchowych na działanie 
mechanizmu, poprzez wyznaczenie stosunku amplitudy drgań strzemiączka do amplitudy drgań kowadełka 
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Abstract  

The paper is devoted to a dished head of a pressure vessel subject to internal uniform pressure. A short survey 
of optimal design of a pressure vessel and its head is presented. The problem of shaping of middle surface of a 
dished head with the use of trigonometric series is depicted. As a criterion of the shaping process the continuity 
of curvatures of the surfaces in the joint of the circular cylindrical shell and the dished head is assumed. 
Results of the numerical calculation for optimal shapes of head are presented in figures.  
 
Keywords: thin-walled pressure vessel, dished head, minimal stress concentration 

1. Introduction 

Standard torispherical, ellipsoidal or hemispherical head of a pressure vessel 
significantly disturbs the membrane stress pattern arising in its cylindrical part. The 
value of the meridional principal curvature of the middle head surface is non-zero while 
in the cylindrical it takes zero level. In result the curvature becomes discontinuous. The 
problem of dished heads of the vessels has been undertaken by many investigators. 
Middleton [9] presented an optimal design problem of torispherical pressure vessel head. 
Mansfield [8] proposed the meridian shape in the form of an integral equation 
determining the optimal surface of revolution. Yushan et al [11,12] calculated stresses of 
ellipsoidal heads and noticed the stress concentration occurring there. Magnucki and 
Lewinski [4] described the stress state arising in a untypical torispherical head composed 
of circular and polynomial parts. Magnucki et al. [5] solved the problem of stress 
minimization of a vessel with ellipsoidal head. Magnucki and Lewinski [6] presented 
optimal design of an ellipsoidal head with consideration of various thickness values of 
the shell. Malinowski and Magnucki [7] minimized the stress concentration in sandwich 
ribbed flat baffle plates of a cylindrical tank. Krivoshapko [2] presented a review of 
strength and buckling problems of generalized and ellipsoidal shells of pressure vessels. 
Liu et al [3] proposed a theoretical method using finite element analysis to calculate the 
plastic collapse loads of pressure vessels under internal pressure and compared the 
analytical methods according to three criteria stated in the ASME Boiler Pressure Vessel 
Code. Błachut and Magnucki [1] delivered a review of strength, static stability, and 
structural optimization of horizontal pressure vessels. Wittembeck and Magnucki [10] 
shaped the dished head meridian in the form of clothoidal and circular parts. Ventsel and 
Krauthammer [13] delivered a monograph presenting the strength and stability problems 
of plates and shells with the edge effect of cylindrical shells.  



 

 
36

The present paper is a continuation of the strength and optimization problems and deals 
with shaping the middle surface of dished heads with the use of trigonometric functions.  

2. Mathematical description of the middle surface of the dished head 

The shape of a head closing a cylindrical pressure vessel significantly affects the pattern 
of stress arising along its generatrix. The shape of the vessel generatrix is shown in 
Fig. 1. 

 

Figure 1. Example shape of the vessel generatrix 

Since the stress depends, among others, on the generatrix curvature, its radius of 
curvature should be continuous. In order to ensure it the head profile should begin from 
infinite radius too. Such a shape of the head may be described by the following function:  

( ) ( )ζrazr ~= , (1) 
where: 

( ) ( ) ( ) ( ) ( )πζαπζαπζαπζαζ 4cos3cos2coscos~
4321 +++=r   – dimensionless 

radius, 

0b

z
=ζ   – dimensionless coordinate,  b0 – the size – a linear quantity. 

Continuity conditions of the dimensionless radius for the joint of cylindrical shell and 
the dished head have the following form: 

( ) 10~ =r ,  giving  14321 =+++ αααα . (2) 

Other conditions that should be met by the function (1) in order to ensure stepless 
variation of the radius are as follows:  

0
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giving  01694 4321 =+++ αααα  (4) 
The first of the above equations is satisfied by identity, while the other provides another 
condition for α1, α2, α3, and α4. This allows to express the coefficients α3 and α4 in 
terms of α1 and α2: 
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Thus, the function (1) may smoothly match the cylindrical part of the vessel shape but in 
order to provide satisfactory shape of the head it must be completed by a circular part. 
Since the connection between cosinusoidal and circular parts of the generatrix should be 
smooth too the circle should begin in the point for which the centre of curvature of the 
cosinusoidal curve (1) reaches the axis of vessel symmetry.  
The longitudinal-meridional curvature radius  
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and the circumferential-parallel curvature radius   
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where: 
( ) ( ) ( ) ( ) ( )πζαπζαπζαπζαζ 4sin43sin32sin2sin 43211 +++=f , 

( ) ( ) ( ) ( ) ( )πζαπζαπζαπζαζ 4cos163cos92cos4cos 43212 +++=f , 
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The following expressions determine coordinates of the centre of the generatrix 
curvature:  
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Taking into account the relationship (5) the cosinusoidal curve (1) is determined by three 
parameters: α1, α2, and b0. Therefore, once their values are assumed one is able to find 
such a point M at the cosinusoidal part of the curve from which the circular shape should 
begin.  
In consequence, selection of the sets of three parameters α1, α2, and b0 enables finding a 
family of the head shapes of various values of the relative depth β given by the formula 
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3. Equivalent stress of circular cylindrical vessel 

The longitudinal and circumferential stresses of the head are as follows:  
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where: 
p0 – uniformly distributed pressure, t – thickness of the head 
The equivalent stress (i.e. Huber-Mises stress) may be expressed as  
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An exemplary variant of the head obtained for α1=0.8, α2=0.52, α3=-0.32, α4=0 is shown 
in Fig. 2.  

 
Figure 2. Example of the head solution for α1=0.8,  α2=0.52, α3=-0.32, α4=0 and β0=2  

The centre of curvature runs along its trajectory and intersects twice the x-axis. The 
solution obtained with the use of the points M2 and C2 gives the head generatrix shown 
in the illustration, with the relative depth β=0.7356. Unfortunately, the pattern of the 
dimensionless equivalent stress of the cosinusoidal part of the head is rather 

unfavourable, as the stress exceeds the level of 23~0 =eqσ occurring in the cylindrical 

part of the vessel.  
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Therefore, final solution of the problem should consist in finding a set of α1, α2 and b0 
parameters so adjusted as to obtain possibly small β value with the equivalent stress 

level kept below the value of 23~0 =eqσ . Numerical analysis carried out with the 

Monte Carlo method has shown that such a solution exists for α1=1.417, α2=-0.499 and 
β0=1.34.  
The MES calculation carried out with the help of the ABAQUS system confirmed the 
equivalent stress pattern obtained for the central line. The computation was performed 
for an example vessel of the radius equal to 1m and shell thickness 10mm. It became 
evident that in this case the stress arising at the inner part of the head shell exceeds its 
level occurring in the cylindrical part.  
Therefore, another attempt has been undertaken with a view to find a variant so adjusted 
as to keep the maximum stress at the level below the one occurring in the cylindrical 
part. This was possible by enlarging the relative depth of the head. Finally the relative 
depth equal to β=0.807 gave satisfactory result depicted in Fig. 3  

 

Figure 3. Equivalent stresses in the middle, inner and outer surfaces of the head for the 
variant with enlarged relative depth of the head  

4. Conclusions 

Numerical study of the stress state of a cylindrical pressure vessel with convex 
cosinusoidal-spherical heads enables drawing the following conclusions: 
� Fulfillment of the condition of continuous curvature in the joint between the head 

and the cylindrical shell is not sufficient to avoid stress concentration in this place.  
� Further increase in the head depth reduces the value of the concentrated stress.  
� In result of shaping the head according to the boundary effect theory the relative 

depth β=0.7417 has been obtained for which the stress concentration should 
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disappear. Nevertheless, numerical test with the help of FEM has shown the 
opposite. 

� Increase in the relative depth up to β=0.807 eliminates the stress concentration.  
It should be noticed that the relative depth of standard elliptical heads amounts to the 
value of β=0.5 at which a remarkable stress concentration occurs.  
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Abstract  

The paper is of a purely didactic nature. We are going to focus on  a distinction  between two notions; i.e., the 
root of characteristic equation and vibration eigenfrequency of a system. The issue is well known, however,  
hardly any comments and satisfactory explanations  can be found in handbooks on vibration theory, which may 
confuse the reader, particularly a student. 
 
Keywords: Vibration thory, eigenfrequencies  

1. Model of the lateral beam vibration and the characteristic equation for specific 
boundary conditions 

Consider the simplest lateral vibration model i.e. the Euler-Bernoulli beam. Let the 
length of the beam be l. On the assumption that  the mass density µ  and bending 
stiffness EI are constant along the beam length, the equation of its free lateral vibration 
becomes 
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where c is a constant defined as 

 µEIc =  (2) 

 A solution of equation (1) can be obtained by using the variable separation technique. 
At the initial stage we assume a solution in the form 

 )()(),( tqxtxy φ=  (3) 

where φ (x) is a space-dependent function, and q(t) is a function that depends only on 
time. Equation (1) leads to 

 04 =− φηφ IV  (4) 

 02 =+ qq ω&&  (5) 

where  

 c/ωη = . (6) 
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A solution of (4) is given by 
 ( ) xAxAxAxAx ηηηηφ cossincoshsinh 4321 +++=            (7) 

while the solution of Eq. (5) takes the form 
      tBtBtq ωω cossin)( 21 +=              (8) 

The arbitrary constants A1,  A2, A3, and A4 can be determined using boundary 
conditions while the constants B1 and B2 by means of the initial conditions. It means that 
the function φ (x) called mode shape depends on specific boundary conditions.  

   
For the  given boundary conditions a further procedure comprises the following 

steps: 
a) derivation of the characteristic equation; 
b) determination of the  roots of this equation; i.e., numbers jη , and in accordance with 

    (6) - eigenfrequencies jω ; 

c) determination of the eigenmodes corresponding to the eigenfrequencies jω . 

The above procedure will be referred to as the standard one. 
In order to formulate the essence of the matter let us consider a beam with fixed ends 

(Fig.1) and then a beam with free ends (Fig.2).  

 
      Figure 1. Beam with fixed ends  Figure 2. Beam with free ends 

 
For a beam with fixed ends the boundary conditions read 

( ) 0,0 =ty ,           ( ) 0,0 =′ ty            (9a) 

( ) 0, =tly ,               ( ) 0, =′ tly            (9b) 

while for a beam with free ends  
   ( ) 0,0 =′′ ty            ( ) 0,0 =′′′ ty         (10a) 

   ( ) 0, =′′ tly           ( ) 0, =′′′ tly          (10b) 

Despite the fact that boundary conditions differ, the standard procedure leads in both 
cases to the identical characteristic equation, i.e. 
    1coshcos =ll ηη             (11) 

The first four roots of (11) are 
  00 =lη ,        73,41 =lη ,        85,72 =lη ,      99,103 =lη          (12) 

The natural frequencies of the beam with free ends correspond to successive roots (12) 
while the same frequencies for the beam with fixed ends correspond also to successive 
roots except for the zero root. Here we face the question: why for a beam with fixed ends 
in contrast to that of free ends, the  eigenfrequency ω  = 0 does not appear? 

l

x x

y

x

l

y



Vibrations in Physical Systems Vol.24 (2010) 

 
43

2. Explanation of the inconsistency 

The aforementioned apparent inconsistency may be explained basing on the definition of 
eigenvalue, i.e.,  a number λ is called an eigenvalue of a matrix A if there exists a vector 

0x ≠  such that 
           xAx λ=              (13) 
The vector x  is then called an eigenvector of the matrix A belonging to λ. 
       Now taking into account the above definition one should check the value ω  = 0 for 
the existence of a nontrivial eigenvector belonging to it. Note that for ω  = 0, equation 
(5) degenerates to the form: 

        0/ 44 =dxd φ             (14) 

to which a general solution is given by 

      ( ) 01
2

2
3

3 CxCxCxCx +++=φ            (15) 

Introducing boundary condition (9) (i.e. for a beam with fixed ends) into (15) yields 
    ( ) 00 0 == Cφ  

    ( ) 00 1 ==′ Cφ  

    ( ) 001
2

2
3

3 =+++= ClClClClφ            (16) 

         ( ) 023 12
2

3 =++=′ ClClClφ  

which  implies C0 = C1 = C2 = C3 = 0. Thus the associated mode shape is φ ( x) ≡ 0 which 
means that there is no motion associated with ω  = 0. It is the reason why this frequency 
can not be considered as the eigenfrequency of the beam with fixed ends. The first three 
mode shapes of this beam are shown in Fig.3.  
 
     
 
 
 
 

 
Figure 3. First three mode shapes of a beam with fixed ends. 

 

The natural frequencies corresponding to these modes are: 

 ,4,22 3
1 lmEJ=ω    ,6,61 3

2 lmEJ=ω    3
3 9,120 lmEJ=ω          (17) 

Let us now consider the existence of nontrivial mode shape belonging to the zero 
frequency for the beam with free ends. We will search for a function of a form (15) 
which satisfies  boundary condition (10). Introducing conditions (10a) gives 
   ( ) 020 2 ==′′ Cφ   ( ) 060 3 ==′′′ Cφ         (18a) 

which implies C2 = C3 = 0. Remaining conditions (10b) take the form 
         ( ) 026 23 =+=′′ ClClφ  ( ) 06 3 ==′′′ Clφ         (18b) 



 

 
44

and these do not impose any limits on constants the C0 and C1. Thus the constants C0 and 
C1 may be arbitrary wherefrom  the corresponding mode shape follows 
    ( ) 01 CxCx +=φ             (19) 

One can observe that the  mode-shape given by formula (19) is a combination of 
translation (constant C0) and rotation of the beam. There is no deformation of the beam 
associated with this mode and it is the reason why it is called a rigid-body mode shape of 
the beam. 
The remaining deformable mode shapes of the beam corresponding to non-zero 
eigenfrequencies are determined on basing on solution (7), and these are shown in Fig.4. 

 

 

 

Figure 4. First three deformable mode shapes of a beam with free ends. 

3. Conclusions 

Like the mathematical definition of eigenvalues, the definition of eigenfrequency should 
be associated with a nontrivial mode shape. It is the reason why even for two vibrating 
systems of the same characteristic equation the sets of  eigenfrequencies may be 
different.  
 
 

Pierwiastki równania charakterystycznego a częstości drgań własnych 
Referat ma charakter czysto dydaktyczny. Chcemy w nim zwrócić uwagę na konieczność 
rozróŜniania pojęć pierwiastek równania charakterystycznego i częstość drgań własnych układu. 
Sprawa aczkolwiek jest znana, ale niezwykle rzadko podejmowana i wyjaśniana w podręcznikach  
teorii  drgań, co moŜe być przyczyną konfuzji czytelnika, zwłaszcza studenta. 
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Abstract 

This work presents results of the numerical investigations devoted to clutch system dynamics. The general 
non-linear wear model has been presented and used during simulations. The influence of the considered wear 
model on the contact pressure distribution of the clutch discs has been investigated. Dynamics of the system is 
monitored via standard trajectories of motion in the system’s phase space and behaviour of the system around 
resonance angular velocity is studied. Presented results show interesting phenomena of the investigated 
system and a key role of the influence of the wear process on its dynamics. 
 
Keywords: Clutch, friction, wear 

1. Introduction 

Dynamic phenomena in the neighbourhood of the resonance angular velocity have the 
significant influence on the endurance of elements of the system and its dynamics. The 
mentioned phenomena can be caused by various factors like friction, wear, heat 
generation or/and impacts. In this work chosen issues of vibrations of a mechanical 
system with friction clutch are discussed and investigated. The attention is focussed on 
the investigation of influence of wear of clutch shields on its dynamics in the 
neighbourhood and far from the resonance regions. 

In many monographs [1], [2], [3], [4], [5] friction and wear essential testing methods 
and problems of the theory of wear in such systems are described. Empirical models, 
which let for better understanding occurring processes are studied. However, a general 
relation between friction and wear has not been formulated so far. 

In this work we consider general non-linear differential model of wear w  in the form 
βα

r
w VPKw )(=& , (1) 

where )(wK  is a coefficient of material wear, rV  is relative sliding velocity of surfaces 

touching each other, P  is a contact pressure, and α , β  are rates dependent on the 

model of wear, the step of lubricating and spreading on the contacting surfaces. For 
1== βα  we obtain a particular linear Archard’s wear model (see [1]). 

 
 



 

 
46

2. Model of a System with Friction Clutch 

Our investigations are concern of mechanical system with flexible-friction clutch, shown 
in Figure 1. 

 
Figure 1. The model of the considered mechanical system 

For a study we consider two-masses model of the system. The body 1 have the reduced 
moment of interia 1I , whereas the body 2 have the reduced moment of interia 2I . 

Vibrations in the system are caused by harmonic excitation from the side of the motor. 
The moment of motor is characterized by an average constant value mM  and a harmonic 

excitation part tMtM 00 cos)( Ω= . The clutch is characterized by springiness 

(susceptibility) k  and damping c  in angular direction, and friction torque )(tM fr  

moved by the clutch. The system governing equations have the form 
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)(cos)()(

121222

00212111

tMMkcI

tMtMMkcI

frm

frm

+−=−+−+

−Ω+=−+−+

ψψψψψ

ψψψψψ

&&&&

&&&&

, (2) 

where 1ψ  and 2ψ  are angles of driving shaft and driven shaft of the clutch, respectively. 

Taking 21 ψψψ −=  as the relative angular displacement of clutch shields and the 

reduced moment of interia )( 2121 IIIII r += , we obtain 
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Friction torque moved by the clutch )(tM fr  is 

∫=
2

1

),(2)( 2
R

R
fr dRtRPRtM µπ , (4) 

where µ  is a coefficient of friction, 1R  and 2R  are internal and outside  radii of contact 

surfaces, respectively, and ),( tRP  is contact pressure between shields pressed by force 

)(tQ . 
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Let us enrol equations on wear for the left shield and the right shield 

),(),(),( )(
1

)(
1 tRPtRVKtRU r

ww αβ
=& , ),(),(),( )(

2
)(

2 tRPtRVKtRU r
ww αβ

=& , and axial 

displacements ),(),( 1
)1( tRPktRU = , ),(),( 2

)2( tRPktRU =  with coefficients of stiffness 

of shields 1k  and 2k , respectively. In what follows we obtain conditions of the contact 

of shields of the clutch in the form 

)(),(),(),(),( )(
2
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1
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where )(tΕ  is a function describing distance between shields. After differentiating of 

equation (5) with respect to the time, taking 2112 kkk += , )(
2

)(
1

)( www KKK += , 
RttRV rr )(),( Ω= , ψ&=Ωr , next multiplying by RdR , integrating over interval 

],[ 21 RRR ∈ , and taking into account differentiation regarding time of the equation 
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we finally obtain 
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3. Non-Dimensional Form 

Let us introduce the following similarity coefficients: *t , *P ; non-dimensional time: 

*tt=τ ; non-dimensional radius: )()( 121 RRRRr −−= ; non-dimensional geometrical 

parameter: )( 121 RRR −=ρ ; other non-dimensional parameters: *00 tΩ=ω , 

))1(( 12
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2
* ρµπ += rfr IRPtk , and then following non-dimensional 

functions: **12 )),)(((),( PtrRRPrp τρτ +−= , rfrfr IttMF 2
** )()( ττ = , ψϕ = , 

*tψω &= , *trr ψω &= . Let us take constQtQ ==)( , kIt r=*  and 

))21(()1( 2
2

2
* ρπρ ++= RQP . Then, replacing integrals appearing in equations (4) and 

(7), after enrolling them in a non-dimensional form using method of trapezia by dividing 
the length of non-dimensional radius on m  even segments, and taking mr /1=∆ , 

ir ri ∆= , jr rj ∆= , )(),( ττ ii prp = , )(),( ττ jj prp =  (rates of the method of trapezia 
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are: 210 == maa , 1=ja ,  1,...2,1 −= mj ), we obtain the following system of 3+m  

first order ODEs 
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4. Numerical Computations 

Numerical calculations are carried out using the fourth order Runge-Kutta method with 
constant time step. We assumed the following initial non-dimensional parameters: 

2.00 =ω , 0001.0=d , 1=mF , 5.00 =F , 2.0=ρ , 5.01 =l , 1=α , 1=β , 100=m  

and 2.0)0( =frF  for initial moment. Let us study first contact pressure distribution 

(Figure 2 on the left) as the function of the non-dimensional radius r  of shields for 
different values of β  parameter. 

 
Figure 2. Contact pressures in equilibrium and changes of the friction torque moved by 

the clutch 

Before beginning of the process of wearing of shields, the contact pressure distribution 
)0,(rp  is identical on the entire contact surface. However, contact pressure distributions 

),( ∞rp  are different for various values of the β  parameter. Figure 2 (on the right) 

shows changes of the friction torque moved by the clutch for various values of the 
geometrical ρ  parameter. As can be seen, amendments of the contact pressure 

distribution during the wear causing reduction of the friction torque moved by the clutch. 
In Figure 3 we take into consideration process of wearing during vibrations of shields of 
clutch with a great coefficient of wear in order to observe changes in dynamics of the 
system. This dynamics is monitored via trajectories of motion in the system’s phase for 
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different (rather small) values of the angle velocities of excitation, possible to appear, for 
example in the set-up time of the system for the slowly acting harmonic excitation. 

 
Figure 3. Phase trajectories of the system for various angular velocities including wear 

As can be seen above, vibrations of the system depend both on angular velocity of 
harmonic excitation and friction torque moved by the clutch. 

Figure 4 shows angular characteristics for various values of ,)0( constFF frfr ==  

(without wear process -  01 =l ). 

 
Figure 4. Angular characteristics of the system for various values of frF ;                    

curve 1 - 4.0=frF , curve 2 - 42.0=frF , curve 3 - 45.0=frF  

Observe that the described resonance curves begin from the zero-dimensional vibration 
amplitude mϕ  a little below value equal to zero for 1.00 =ω , and are aspiring 
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asymptotically in the scope apart from resonance up to the nought. They have tendency 
of the gentler course in the scope apart from resonance. For smaller values of the frF  

resonance amplitudes have greater values. Besides, it should be noticed the phenomenon 
of moving of resonance on the left for more and more great values of the frF . 

5. Conclusions 

The considered in this work issues allow to model and analyse wear processes on the 
contact surface of a mechanical friction clutch and the system dynamics. Unlike many 
previous works, here friction clutch is treated as a friction connection of elastic (not 
rigid) bodies and general non-linear differential wear model is applied. Besides, 
mathematical model describing wear processes and equation of motion of the system are 
used and applied together during computer simulations. The presented in this work 
numerical analysis shows influence of wear processes in friction clutch on the system 
dynamics. 
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Drgania Układu Mechanicznego ze Sprzęgłem Ciernym 
Praca przedstawia wyniki badań numerycznych poświęconych dynamice układu mechanicznego ze sprzęgłem 
ciernym. Podczas symulacji przedstawiono i wykorzystano nieliniowy model zuŜycia. Zbadano wpływ 
rozwaŜanego modelu zuŜycia na rozkład nacisków na tarczach sprzęgłowych. Dynamikę układu 
monitorowano przy uŜyciu trajektorii ruchu w przestrzeni fazowej oraz zachowania układu wokół 
rezonansowej częstości kątowej. Przedstawione wyniki pokazują interesujące i zbliŜone do rzeczywistych 
zachowania się rozwaŜanego układu oraz wpływ procesu zuŜycia na jego dynamikę. 
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Abstract  

In this paper a stand for forearm flexor muscles examination is presented. This stand is equipped in special 
cam which theoretically should extort a constant force in biceps brachii during arm flexion. It should allow 
examining maximal force of main muscle and muscles cooperation measurements. Herein an arm geometry 
and cam calculations is also presented. 
 
Keywords: Muscle examination, upper limb. 

1. Introduction  

Muscles are biomechanical engines for animals and human beings; without them the 
movement or even some vital functions in biological organisms would not be possible. 
From biomechanical point of view, striated muscle, which are part of musculoskeletal 
system, are the most important part of muscle system. 
 Experimental examinations of muscles like measuring of damping factor, stiffness 
factor, length, force, cross-section, marking out static and dynamic characteristics of a 
muscle and so on are very important in construction mathematical models of muscles 
[1]. For instance a rheological model needs information on soft tissues properties. In 
order to build a geometrical model of muscles it is necessary to measure shape changing 
during contraction. The more parameters of muscles are precisely measured the better 
mathematical and bio-consent muscle model of actuators for artificial limbs can be built.  
The moments measuring, generated by muscle under conditions of maximum voluntary 
contraction is the most popular method for muscle strength evaluating [2]. 
 In arm flexion the following muscles take a part (Figure 1): biceps brachii (1), 
brachioradialis (2), extensor carpi radialis longus (3), brachialis (4), pronator teres, 
flexor carpi radialis, palmonaris longus, flexor digitorum superficialis.  
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 It should be emphasized that biceps brachii and brachialis muscles are the most 
important actuators during forearm flexion [3]. 

 

Figure 1. Main muscles of upper limb (1 – biceps brachii; 2 – brachioradialis; 
 3 – extensor carpi radialis longus; 4 – brachialis; 5- triceps brachii). 

In the following graph it can be observed that in the human body maximum force 
generation occurs, when muscles are slightly stretched (see Figure 2), where L0 is a 
resting length. 

 
Figure 2. Force – length relationship for different levels of muscle stimulation (from [4]) 
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A mechanism, which is presented below, is designed to extort constant force during the 
whole contraction of biceps brachii by a specially designed cam (3 in Figure 3). 

 
Figure 3. The stand for forearm flexor muscles examination (1 – arm holder,  

2 – transmission, 3 – cam assembly, 4 – counterbalance,  
5 – load, 6 – stands foundations.) 

  
This construction allows measuring of a maximum force load for biceps brachii and 

makes possible an evaluation of work and cooperation of other muscles in an elbow joint 
during forearm flexion in supinated position. The use of transmission (2) was necessary 
because the lever angle of rotation is 180°   in contrary to 360°  of can rotation. 

2. Arm Geometry and Cam Calculations 

The arm model, shown inFigure 4, is taken under consideration, where: r1 stands for arm 
length, r2 – forearm length, rm – distance from elbow to muscle attachment, l – muscle 
length, α – forearm flexion angle, β – angle between F and Fc forces, γ – angle between 
muscle and elbow – upper surface of tuberositas radii axis, F – force generated by 
biceps brachii, Fc – stands for rotational component of force F, d – high of muscle 
attachment (measured between an elbow – wrist axis and upper surface of tuberositas 
radii). 
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Figure 4. Arm geometry 

 
In calculations, the following relations are used: r2=0.93 r1, rm=0.23 r2, d=0.3 rm. The 

relations between r2, rm and d were designated experimentally in vivo and verified to 
data in [4], [5] and [6]. This model gives comparable results to human arm (see [7]). Let 
assume that a muscle generate constant force F during contraction. Then we have. 
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governess changing of arm load during movement from position 0° to 180°. 
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 Figure 5. Plot of A(α) in the Cartesian coordinate system. 

Changing the Cartesian coordinate system into the polar one, we receive the 
following function  

)()( 22 ααα Ar += , α∈(0, π). (7) 

This allows to construct the polar plot reported in Figure 6. 

 

 Figure 6. Plot of A(α) in the polar coordinate system. 

Let us point out that the shape of the curve in gray was used to design the shape of the 
cam for the stand. Because of the positive value of the high of muscle attachment (see 
the parameter d in Figure. 4), it is necessary to take into account the constant difference 
between theoretical arm (made from straight beams) and human arm (where bones do 
not have regular shapes) for the cam installation, i.e. the cam must be rotated about 15°. 
It is also possible to modify the stand for generating maximal force in biceps brachii 
during whole arm contraction as it is shown in Figure 2 (see also [7]). The new cam will 
have the shape reported in Figure 7. 

 
  Figure 7. Plot of the new calculated cam for generating maximal force in biceps 

brachii during contraction. 
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3. Conclusions  

Most of the researches are concerned to isometric or isotonic muscle characteristics, see 
for example [2] and [7]. Our presented construction is designed to measurement of 
isotonic arm flexor muscles. However, by changing load, it is easy to change force 
acting on a muscle and to examine arm behaviour. It is also possible to modify the stand 
in order to generate a constant force momentum by replacing the cam by a centrally 
mounted disc or generating maximal force in biceps brachii during whole arm 
contraction by using appropriate cam shape. For other joints examination (for example 
an ankle) it is possible to recalculate new cam geometry. 
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Stanowisko do badania zginaczy przedramienia 
Mięśnie są biomechanicznymi silnikami dla zwierząt i ludzi. Mają one ogromny wpływ na ruch, a nawet 
pewne istotne funkcje Ŝyciowe. Z biomechanicznego punktu widzenia najwaŜniejszą częścią układu 
mięśniowego są mięśnie poprzecznie prąŜkowane. 

W artykule zaprezentowano stanowisko do badania zginaczy przedramienia. Jest ono wyposaŜone w 
specjalnie zaprojektowaną krzywkę, której zadaniem jest wymuszenie stałej siły napięcia bicepsa podczas 
zginania ręki. Ma to na celu umoŜliwienie wyznaczenia maksymalnej siły, którą moŜe wygenerować ten 
mięsień oraz zbadanie współpracy mięśni przedramienia. W artykule zamieszczono równieŜ przyjętą 
geometrię ręki oraz obliczenia dotyczące konstrukcji krzywki.  
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Abstract   

In the paper problem of a room with a harmonic sound source inside and resulting acoustic field in a steady 
state is investigated. A question of a proper and optimum distribution of an acoustic absorption material on the 
room’s boundaries, to obtain desirable acoustic pressure level is considered. Below the Schroeder frequency, 
acoustic modes are perfectly separated. Under such conditions, room’s pressure distribution can be described 
using modal analysis assumptions. Thus, the acoustic pressure represents a sum over a set of room’s 
eigenfunctions and time components, i.e. the modal amplitudes. Additional assumption of enough high 
boundaries’ impedance is made, and finally the modal coupling can be neglected. By means of the analysis of 
the modal amplitude function, as the most important component of acoustic pressure, multi-objective function 
for arbitrary shaped room, with 15 different boundaries is created. Impedance values on each boundary are 
chosen as design variables. Research of the minimum objective function (non-dominated solutions), using 
genetic algorithm, is conducted. As the result, the Pareto optimal solution i.e. set of material with the specific 
impedance, properly distributed on boundaries has been found. 
 
Keywords: modal amplitudes,  multi-objective function, optimization, genetic algorithm  

1. Introduction  

The problem, how to distribute the material with specific absorption on walls, floor and 
other surface in the room, in order to obtain desirable acoustic field properties is 
commonly known. After the source of sound starts to emit a signal, losses of acoustic 
energy caused by absorption on room’s boundaries at the same time are equalized by 
energy from the source, and in an enclosure acoustical steady-state is reached. In order to 
describe acoustic field distribution inside a room, one can use modal analysis 
formulation under several restrictions [1,2,3]. Using modal analysis assumptions, 
acoustic field distribution in a room interior can be described with its normal modes 
(eigenfunctions) Ψn and corresponding eigenfrequencies ωn.  The eigenfunctions for 
sufficiently enough high sound absorption related to room’s boundaries impedance, 
approximately equals eigenfunction for the same room with Neuman boundary 
condition. Simultaneously orthogonal, normalized set of functions Ψn is required [1,2,3]. 
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According to the above assumptions, if an acoustic field distribution in a room with 
harmonic source qejωt inside describes a linear, inhomogeneous wave equation 
(q is a function describing source distribution in a room  and  its volume as well, ω is a 
source frequency), then the solution can be represented by a sum over a set of 
eigenfunctions [1]: 
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In equation (1), V is a volume of a room and Pn(t) is the time components i.e. the modal 
amplitude calculated for n-th room’s mode. For a steady-state and harmonic source, 
modal amplitudes take the form Pn(t) = An e
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In equation (2),  rn  is a room’s damping coefficient and Qn  is an acoustic source  
factor [1], which are given for n-th mode by the following relation:  

∫∫ Ψ⋅=
Ψ

⋅⋅=
V

nn
S S

n
n dVq

V

c
Qds

Z
cr

22
2

0    , 5.0 ρ  (3) 

where S describes the surface of room boundaries with the individual impedance ZS. 

2. Multi-objective function 

Under assumption mentioned above, one can state that acoustic pressure (1) in each 
enclosure, are directly depended on modal amplitudes (2). The eigenfunctions Ψn  and 
the eigenfrequencies ωn are constant and characteristic for a particular room. Therefore 
the influence on the interior acoustic field can be done by modal amplitudes 
modification. Additionally, when a constant position of the sound source is considered, 
the factor Qn in (2) is constant as well. Eventually, coefficients rn play the main role in 
room’s acoustic filed creation, through boundaries impedance value ZS and its 
distribution. The commonly desirable situation is minimum of the acoustic pressure in 
enclosure under different impedance conditions. It is obvious that this can be achieved 
applying maximum value of impedance ZS on all boundaries (3), from the assumed 
range. On the other hand, in practice higher impedance on a surface increases costs. 
Simultaneously, for some configurations of an impedance, absolute values of modal 
amplitudes are reduced, but the total sum (1) could give higher values. 
It results from signs of amplitudes and eigenfunctions. Thus, there are two opposite 
criteria, and a double criteria objective function is considered with an intention of 
searching optimal values of walls’ impedances, which give maximal reduction  
of an acoustic pressure inside enclosure. The first criterion K1 (the acoustic criterion) is: 
spatial root mean square value derived from (1) has to be minimal. 

min1 →= rms
npK  (4) 

where n is a number of modes taken into consideration. The second criterion K2  
(the cost criterion) is: values of impedances of particular walls have to be close to the 
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highest impedances from the examined range. Additionally, each separate surface, where 
the impedance could vary, is related to its weight wi. Values of the weights reflect the 
relative importance of the surface in the enclosure. Finally, the cost criterion takes the 
following form: 

∑
=

→−=
m

i
ii ZZwK

1
max min)(2  (5) 

where m  is a  number of  surfaces taken into consideration.  

3. Sample object    

As an example of optimized object, the room shown in figure 1 is taken into 
consideration. The volume of the enclosure is 45,27 m3, and total surface area S with 
varying impedance is 84,96 m2. 15 different surfaces are considered (walls, the floor, 
the ceiling, doors).   

 
Figure 1. Shape and dimensions of the examined object 

The double-objective function has been created using the relations (4) and (5). The first 
500 modes are involved which is related to the eignfrequency 480,4Hz as a limit. 
Therefore in the case of the criterion K1 (4), we have n=500.  Modal amplitudes have 
been found according to (2) and  factors Qn, ωn, rn have been obtained numerically, 
using FEM method. In the case of the criterion K2 (5) the impedance of 15 surfaces 
(m=15) varies from Zmin=104 to Zmax=106 Pa·s/m. The weights wi are defined to 
emphasise the surfaces of small area and its sum equals unity (Σwi =1).    

4. Genetic algorithm method  

In order to examine the objective function taking into account two criteria, the genetic 
algorithm method [4,5] has been used. This approach has been applied due to the 
following reasons. The genetic algorithm does not require gradient information which 
could be difficult to get in a case of a large number of design variables (15 values of 
surfaces’ impedance). The nature of the objective function is not known, the genetic 
algorithm converges to the global solution rather than to a local one. Additionally, 
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z 
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Pareto-optimal solutions are available directly. The initial population which is generated 
using the uniform distribution guarantees covering  the whole feasible design space with 
equal probability. 

5. Results 

Results were obtained for four different sound source configurations (the position and 
frequency) and the phase shifted flow out from the source 0.005 m3/s. Genetic algorithm 
options were: the population size-500, the number of iterations-100 and design variables 
tolerances 102 Pa·s/m. In figure 2 the Pareto optimal solutions normalized by maximal 
values of each criterion are shown. The quantity Costmax  is the value of the cost criterion 
(K2) in case of Zmin for all room’s surfaces. The quantity pmax  is the value of the acoustic 
criterion (K1) for Zmax on all surfaces.  
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Figure 2. Normalized Pareto optimal solutions for different positions (x,y,z)  
and frequency (f) of the sound source: a) x=4.76m, y=2.37m, z=1.26m, f=90Hz; 

 b) x=1.07m, y=2.50m, z=1.42m, f=90Hz; c)x=4.76m, y=2.37m, z=1.26m, f=81.5Hz;  
d) x=1.07m, y=2.50m, z=1.42m, f=250Hz. 

Points on the Pareto curve in figure 2 are related to specific set of design variables 
(surface’s impedances). In figure 3 the particular solutions, selected from the Pareto 
optimal solutions, by means of its distance evaluation from utopia point (i.e. solutions 
with minimal distance)[5] are shown.  In figure 3,  room’s surfaces are put in increasing  
area order. The surfaces numbered from 13 to 15 are the largest, their relative areas 

a b 

c d 
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reaches 58% of total surfaces areas. According to the cost criteria K2, their impedances 
should take values in a high range of the impedance. 
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  Figure 3. Solutions with minimal distance from utopia point for different positions 
(x,y,z) and frequency (f)  of the sound source: a) x=4.76m, y=2.37m, z=1.26m, f=90Hz;  

b) x=1.07m, y=2.50m, z=1.42m, f=90Hz; c)x=4.76m, y=2.37m, z=1.26m, f=81.5Hz; 
d) x=1.07m, y=2.50m, z=1.42m, f=250Hz. 

6. Conclusions  

The optimization process was conducted for specific room and source configurations, 
but the procedure presented in the paper can be used for other applications in room 
acoustics, especially in cases where many factors like source prosperities, position, 
impedance distribution etc., can influence on the acoustic field. Particularly, using modal 
analysis, one can define desired optimization condition, avoiding the FEM or BEM 
method to calculate acoustic variables. As the result, the set of optimal solutions 
is available (Fig. 2) and one can decide which solution is suitable one (Fig. 3). 
In the case of example considered above, only the real impedances of surfaces were 
examined but other values are possible to obtain. Likewise, room boundaries can be 
divided into smaller areas but this increases the number of design variables and the cost 
of computing as well. Extremely, each point of boundaries can receive its specific 
impedance and as the optimization result, a room with varying prosperities of surfaces 
can be considered. Additionally, the obtained results show that the optimization strongly 
depends on the position and frequency of the sound source. As follows from figure 2a 

a b 

c d 
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and 2c, for the same position but different source frequency, even close each other, 
the acoustic pressure prms reduction decreases. In the case of 90Hz in the same range of 
expenditure, one can achieve more effects (the prms reduction) than for frequency 
81,5Hz. Similar dependence appears from figure 2b and 2d. On the other hand, the same 
sound source placed in another position in the enclosure may change room’s response 
likewise possibility of pressure reduction by boundaries’ impedance.  
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Wielokryterialna optymalizacja rozkładu materiału o określonej impedancji  
w pomieszczeniu, w ustalonym stanie pola akustycznego  

Praca dotyczy zagadnienia pomieszczenia zamkniętego, w którym umieszczone zostało harmoniczne źródło 
dźwięku. Zaprezentowano problem optymalizacji rozmieszczenia na brzegach pomieszczenia materiału 
absorbującego akustycznie, o odpowiedniej impedancji. PoniŜej częstotliwości granicznej Schroedera, mody 
akustyczne pomieszczenia zamkniętego są dobrze odseparowane. W tym zakresie częstotliwości, do opisu 
rozkładu ciśnienia akustycznego w pomieszczeniu moŜna zastosować analizę modalną. Ciśnienie akustyczne 
w kaŜdym punkcie moŜe być przedstawione w postaci sumy funkcji własnych oraz składowych czasowych  
tj. amplitud modalnych. Dodatkowo załoŜenie, wystarczająco duŜej impedancji na brzegach pozwala pominąć 
sprzęŜenie między modami. Wykorzystując amplitudy modalne, jako najbardziej istotne czynniki ciśnienia 
akustycznego, stworzono wielokryterialną funkcję celu dla przykładowego pomieszczenia o nieregularnym 
kształcie i 15 powierzchniach brzegowych. Wartości impedancji na poszczególnych brzegach pomieszczenia 
stanowiły układ zmiennych decyzyjnych. Do poszukiwania minimum funkcji celu (rozwiązania 
niezdominowane) wykorzystano algorytm genetyczny. W rezultacie otrzymano zestaw rozwiązań Pareto 
optymalnych tj. układ materiału o specyficznej impedancji akustycznej, rozmieszczony odpowiednio na 
brzegach pomieszczenia.  
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Abstract   

The given work is devoted to development of theoretical bases of a new vibrating diagnostics method and 
evaluation a current condition of the anchor. The research of the pulse response of the anchor against landslide 
construction is a basis of  vibrating diagnostics of a tension condition an anchor, detection of feature of 
abatement of a tightness, and definition of character of its dependence on a changing stretching force. The 
elastic body with the distributed parameters (a string) is used as the diagnostic model of the tense and fixed 
core of an anchor.  Dependences of own frequencies changing of the pulse response of an anchor on a tightness 
changing at deformations and displacement of a place of fastening of an anchor are defined. The discrete model 
of an anchor against landslide construction is developed and researched for definition of dependences between 
parameters of an anchor condition and vibrating characteristics of a retaining wall, which is accessible to 
carrying out of measurements.  
 
Keywords: sliding processes, anchor against landslide constructions, tension of anchors, vibrating diagnostics. 

1. Introduction  

The anchor against landslide constructions are used for the protection of territories and 
the located on them buildings from distribution and catastrophic consequences of the 
sliding processes. They are installed in potentially dangerous places with retaining walls. 
Practically, their original tension is a major factor, determining density of roof-bolt 
setting. The anchor tension is necessary constant over a long period of anchor 
construction operation. However, the tension of anchors can change in due course under 
influence of sliding processes. In some cases it can lead to that the anchor will be pulled 
out from a bedrock surface and will not carry out maintaining function without any 
visible external attributes of change of its technical functional condition. Therefore, it is 
necessary to spend periodically the control of a tension of anchors, that is the important 
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information for an evaluation of a current condition of sliding processes and forecasting 
of their further development. 

The anchor against landslide construction is offered by complex system enclosed a 
retaining wall (1), a tightener (2), a rod (3) and a locking device (4) as shown on Figure 
1. A locking device serves for anchor fixation into rock, a tightener is used for stress 
making in an anchor rod for a decrease or elimination of a deformation and displacement 
of linked rocks. Practically, the steel wire rope or iron reinforcement constructions are 
used as a rod. Carried out theoretical researches of anchor constructions in the core touch 
problems of their strength and reliability for different operation phases [1]. These results 
allow to make demands to geometrical sizes and performances of used materials of 
elements of an anchor constructions, but are not sufficient for monitoring possible strains 
and offsets of rocks in a place of anchor fixation under natural excitation of land (for 
example, landslide).  

 

Figure 1. Configuration of an anchor against landslide construction: 1 - a retaining 
wall; 2 – a tightener; 3 - a rod and 4 - a locking device 

The given work is devoted to development of theoretical bases of a new vibrating 
diagnostics method and evaluation a current condition of the anchor. The research of the 
pulse response of the anchor against landslide construction is a basis of  vibration 
diagnostics of a tension condition an anchor [2], detection of feature of abatement of a 
tightness, and definition of character of its dependence on a changing stretching force. 

2. Frequencies analysis  

We use the elastic body with the distributed parameters (a string) for mathematical 
description of the tense and fixed rod of an anchor [3]. As a first approximation we’ll not 
take into account a limitation of a string flexing by walls of an open test pit. String 
flexing (a deviation of a string in a cross plain) characterizes cross vibrations of a model. 
As is known, cross vibrations of a string under a influence of axial stretching force P are 
presented by expression 
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where QPgla = ; g is gravitational acceleration; Q is string weight; l is string length; 

nn BA ,  are coefficients, which rate the amplitudes of a string oscillations on the main 

(n=1) and higher (n=2;3;...) oscillations shapes; x, y are axial  and cross displacements.   
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 The frequencies nof  of oscillations (1) are defined as:  

lQ

Pgn

l

an
fno

22
== . (2) 

Let an axial stretching force P is changed at a strain and offset of a place of anchor 
fixation:  

PPP ∆±=1 ,  
where P∆  is changing value of stretching force; the sign "+" corresponds to increasing 
of stress in an anchor rod under landslide activity and the sign "-" corresponds to a case, 
when rod is pulled from rocks. 

Let's consider coefficient of the relative tension changing PPz ∆= , therefore force 

)1(1 zPP ±= . The frequencies 1nf  in this case are: 

zf
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gPn
f non ±== 1
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1 . (3) 

 The factor R of nature frequencies changing at the tension changing can be defined 
from (3) as: 

z
f

f
R

no

n ±== 11 . (4) 

Table 1 presents dependencies of frequencies changing factor on coefficient of the 
relative tension changing at the increasing and decreasing of axial stretching force.  

Table 1.  Dependencies of  factor R on coefficient z of the relative tension changing.  

z 0,01 0,05 0,1 0,15 0,2 0,3 
R(+) 1,005 1,025 1,049 1,072 1,095 1,140 
R(-) 0,995 0,975 0,949 0,922 0,894 0,837 

Apparently from the received results, small changing of force Р ( 1,0≤z ) brings to 
changing of frequencies under all shapes of oscillations no more than 5 % both at 
increasing and at a decreasing of a tightness. The changing of axial stretching force in 
the range of  3,00 ≤< z  brings to changing of frequencies under all shapes of 
oscillations about 14-16%. Thus, changing of anchor rod frequencies can be used as 
diagnostic feature of  tension of anchors.  

3. Researches of anchor discrete model   

As it was noted above, rod of an anchor is unapproachable to monitoring its tightness or 
own frequencies. Anchor against landslide constructions are mounted in such a way that 
retaining wall only is accessible to carrying out of measurements (see Fig. 2). 

Therefore, it is necessary to determine influence of tension changing on performances 
of stress, displacements and strains of a retaining wall. 

We use Finite Element (FE) Analysis for the design discrete model of an anchor 
against landslide construction which can be representative of an actual object. For this 
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aim we consider anchor rod made from carbon steel rope with the following properties: 

Density 7850 kg/m3; Modulus of Elasticity  2,05 1110⋅  N/m2; Poison’s ratio 0,29; Shear 

Modulus 8 1010⋅  N/m2. Retaining wall is represented by concrete slab with the following 

properties: Density 2000 kg/m3; Modulus of Elasticity  2,75 1010⋅  N/m2; Poison’s ratio 
0,2. The developed discrete model consists of 8444 FE and 14572 nodes.  
 

 

Figure 2. Photograph of anchor against landslide construction, installed in Crimea  

The second goal was to understand the behavior of the vibrating characteristics of a 
retaining wall as a function of parameters of an anchor condition. For this study, rod 
rigidity value is changed (rigidity is decreased), relative rigidity changing C∆ is 
assigned of 0,15, that corresponds to R=0,97; 0,25 (R =0,87) and 0,5 (R=0,7). Figure 3 
shows the example of modeling and estimation of wall displacement at the initial value 
of rigidity ( C∆ =0). 

 

Figure 3. Example of modeling and estimation of wall displacement 
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As it is possible to see from the presented figure, the maximum displacement occurs 
on the slab and anchor rod has minimum displacement  in the area of anchor fixation. 
Values of maximum and minimum displacement are change at a rod rigidity changing 
the means specified above. These values increase at the decreasing of rod rigidity. 
Changing of minimum displacement can be interpreted as displacement of rocks and 
development of activity of landslide at the modeling and study diagnostic model of 
anchor against landslide construction. Relative rigidity changing of a rod and 
corresponding changing of frequencies are considered as parameters, which 
characterized functional condition of an anchor and its possibility to carry out 
maintaining function. Changing of maximum displacement is used in this study as a 
feature of changing of the anchor tightness or own frequencies. The relation between 
maximum and minimum values of displacement also depends on change of rod rigidity. 
The maximum value is different from minimum five times at the 0=C∆ , and these 
values do not different among themselves at the 5,0=C∆ , practically. In the latter case 
it means that the anchor against landslide construction practically does not carry out 
maintaining function. 

Table 2 presents dependencies of relative values of maximum and minimum 
displacement ( maxD∆  and minD∆ , accordingly) on  relative rigidity changing C∆ . The 

relative values are estimated by using the following expressions: 
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where )(max CD ∆  and )(min CD ∆  are displacements at the rod rigidity changing 

( 0≠C∆ ); )0(maxD  and  )0(minD  are displacements at the initial value of rod rigidity 

( 0=C∆ ). 

Table 2.  Dependencies of  maxD∆  and  minD∆  on relative rigidity changing of a rod 

C∆  0 0,15 0,25 0, 5 

maxD∆  1 1,04 2,61 28,82 

minD∆  1 1,79 9,15 143,41 

The presented results show that evaluated values of minimum displacements increase 
too much at the decreasing of a rod rigidity. But we have not any possibility to measure 
these displacements. Value of maximum displacement increases slightly at the 

15,0≤C∆ (it corresponds to 97,0≤R and 05,0≤z ). Further decreasing of a rod rigidity 
causes a large increasing of values of maximum displacements. Since the mentioned 
displacements occurs on the slab, we can to measure these characteristics by using 
mounted on the retaining wall sensor.  
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4. Conclusions  

The theoretical basis of development vibration diagnosis method is presented for 
monitoring and evaluation a current condition of the anchor against landslide 
constructions. 

The elastic body with the distributed parameters (a string) is used as the diagnostic 
model of the tense and fixed core of an anchor, that allows to define and analyse 
dependencies of frequencies changing factor on coefficient of the relative tension 
changing at the increasing and decreasing of axial stretching force.  

The discrete model of an anchor against landslide construction is developed and 
researched, that allows to understand the behavior of the vibrating characteristics of a 
retaining wall as a function of parameters of an anchor condition. The received results of 
anchor modeling and analysis show that decreasing of a rod rigidity causes increasing of 
displacements occurs on the slab and in the area of anchor fixation. Dependencies of 
relative values of displacements are researched on  relative rigidity changing.  

The received results are new and will be used for the further investigations and 
development of a new vibration method for monitoring and evaluation a current 
condition of the anchor against landslide constructions. 
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Abstract   

The work is devoted to condition monitoring and vibroacoustical diagnosis of the crack-like damages of the 
gas-turbine engines (GTE) blades at the steady-state and non-steady-state modes of GTE. The developed 
diagnostic model of GTE is presented and the influence of damage on the measured vibro- and acoustical 
signals at the steady-state and non-steady-state modes of GTE is determined. The application of the following 
signal processing methods: Polyspectral (Higher-Order Spectral) analysis, Wavelet-transformation and 
dimensionless characteristics of the vibroacoustical signals is proved. The efficiency of signal processing 
methods is demonstrated by the results of numerical simulations of the turbine stage at the steady-state and 
non-steady-state modes of vibration excitation. The fault features are detected and investigated. 
 
Keywords: gas-turbine engine, crack-like damage, vibroacoustical diagnosis, signal processing   

1. Introduction  

Statistics about aircraft gas-turbine engine (GTE) failures demonstrate that the most part 
of these failures, led to premature taking away the engine, are provoked by the damages 
of the compressor components (from 20% to 76%) and the turbine ones (from 15% to 
65%). The mentioned engine failures are caused by typical totality of damages as: nicks, 
dents, bending of compressor blades; cracks and compressor blades break; nicks and  
burning turbine blades. After scheduled inspections and repair, more then a half of 
blades are culled because of erosion, nicks, initial cracks and burning. According to 
analysis, the some of these damages (named crack-like damages) could be found out at 
initial stage of its evolution without engine disassembling if the continuous monitoring 
of the engine components condition was conducted. 

The problem of detection of the crack-like damages of blades at the steady-state and 
non-steady-state modes of GTE may be solved by using the vibration and 
vibroacoustical diagnostic methods [1]. Creation of the monitoring system is based on 
application and further development of low-frequency (0-25 kHz) vibroacoustical 
diagnostic methods which use vibrating and acoustical noise as diagnostic information. 
This noise is radiated by the turbine and compressor stages at the GTE operating. 

Generally monitoring is a continuous process of information gaining about the object 
vibrating condition, its transformation, signal processing and making decision about 
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object technical condition. The stages of the mentioned informative process depend on 
the engine operative modes. These modes define specific character of vibrating and 
acoustical excitation of the compressor and turbine blades, and consequently, they define 
the methods and algorithms of signal processing, which will allow to detect initial faults.  

Initiation and increase of a crack-like damages in the blade lead the instantaneous 
change of its stiffness. Usually the change of stiffness is modeled by the piecewise-linear 
characteristic of the restoring force [1,2]. At low a level of a useful signal in vibrating 
and acoustic noise which is radiated by the engine at its operating, use of traditional 
spectral analysis is inefficient for incipient cracks detection. In this paper we propose to 
use the Bispectrum analysis (BS), Wavelet Decomposition (WD) and Dimensionless 
Peak Characteristics (DPC) of the vibroacoustical signals for the signal processing and 
fault features extraction.  

 
2. Diagnostic model of GTE and measuring signal conditioning 

The GTE is the compound system which consisting of many subsystems, assemblages 
and devices. Deriving of full mathematical exposition of GTE behavior is hampered, 
therefore for the purpose of diagnostic, as a rule, the simplified models of GTE are used 
(for example, at the engine separation on subsystems and devices with hierarchical 
structure of connections). According to mentioned diagnostic model of GTE has been 
developed. The main prominent features of diagnostic model are: 

1. Model includes set of n stages (subsystems "disk-blades") which are rotation by a 
rotor of the engine. 

2. The basic and most important source of vibration at the engine operation is the 
rotor, therefore rotor vibration )(tP is considered as the basic entrance vibrating 

excitation on subsystems "disk- blades ".  
3.  Rotor vibration model at the steady-state mode (named m1) of GTE has been 

accepted in the form: 

( ) ( ) ( )[ ] ( )∑
=

++=
l

i
ipi tttitPtP

1

sin ξϕω , (1) 

where )(tPi  is the amplitude of a harmonic whith number i; pω is the main rotation 

frequency; )(tξ  is the broadband normal noise. 

4. Rotor vibration model at the non-steady-state modes (named m2 and m3) of GTE 
has been accepted in the form: 

( ) ( ) ( )[ ]∑
=

++±=
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1

2
0 )(5,0sin

i
ipi tttitPtP ξϕβω , (2) 

where 0pω is the initial value of rotation frequency; β is speed of frequency variation of 

the first rotor harmonic; the sign "+" corresponds to a mode m2 with the fast increase of 
the rotor rotation frequency and the sign "-" corresponds to a mode m3 with the decrease 
of the rotor rotation frequency. 
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5. In relation to described above rotor excitation set of n stages is represented in the 
form of parallel connection of n subsystems "disk- blades". Generally reaction of system 
on rotor vibration represents the following n-dimensional vector of reactions: 

)](),...,([)( 1 tRtRtR pnpp = ,  

where ( )tRPj  is the reaction of subsystem with number j on excitation )(tP , and which 

are represented by the following expression in case of elastic and dynamic independence 
of oscillations of blades and the disk:  

( ) ( ) ( )trtrtR Pjd

z

q
PjqPj

j

+= ∑
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. (3) 

 In the expression (3) following designations are used: ( )trPjq  is reaction of blade with 

number q; ( )trPjd  is reaction of disk; jz  is blades quantity at the selected stages.  

6. Unfailing blades are described by the model of an linear oscillating system with 
natural frequency ∗ω  ( =∗f 600 Hz). The impulse response of it is:  

ttg ∗
∗

∗ = ω
ω

sin
1

)( . (4) 

The model of a blade with a crack-like damage is presented by the model of an 
oscillating system with piecewise-linear (asymmetrical) characteristic of the elastic 
force. The impulse response of this system is expansion in Fourier series at harmonics of 

the cracked blade model base frequency 0ω [1]: 

( ) ∑
=

+=
K

k
k tka

a
tg

1
0

0 cos
2

ω , (5) 

where 
ςπω
ς

∗

−
=

)1(4
0a ; 

1
cos

]4)1[(]4)1[(

)1()1(4
22222

23

+−+−+

−+
=

∗ ς
π

ςςςςπω
ςς k

kk
ak ; 

ς
ςω

ω
+

= ∗

1

2
0 ; 

ϑς −= 1 ; ϑ - crack parameter, relative rigidity changing at the crack presence. 

The reaction of one blade on excitation )(tP in the form (1) or form (2) can be 

defined by Duhamel integral:  

( ) ( ) ( )∫
∞−

=
kt

jqPjq dtgPtr τττ , , (6) 

where ( )τ,tg jq  is the blade impulse response (4) or (5). 

7. Each stage oscillates vibration of an aerodynamic origin )(tQ j  on rotor frequency 

and in jz  times more. Mathematical expression of vibration similarly to (1). Other 

aerodynamic vibration )(tS j  is excited by processes in an air-gas tract of a GTE and 

described as additional random entrance effects on each blade )(ts jq . In case of not 
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correlated )(tP and )(ts jq  reaction of a blade on )(ts jq  is represented additive 

component )(trSjq  in vector of reactions by using integral (6).  Let's consider also 

acoustical noise )(tB j  directly radiated by a compressor and turbine, which model is 

similar (1), noise with continuous spectrum )(tD j  on an exit of each stage, which is 

caused by turbulent phenomena and an eddy generation, and also broadband vibration of 
low intensity )(tN  from non-power elements of GTE.  

Stated above has allowed to generate model of  measured vibroacoustical signal )(tX  

in the following form:  
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Depending on impulse response (4) or (5) model (7) reflects a state of the GTE at the 
absence or presence of blade crack-like damages, and it allows to research influence of a 

fault on behaviors of signal )(tX . 

3. Signal processing and fault features analysis  

The received model (7) is used for simulation and analysis of vibroacoustical processes 
which occur at the steady-state (m1) and non-steady-state (m2, m3) modes of GTE at 
absence and presence of small cracks in one blade of the turbine stage (the relative 
rigidity changing at the crack presence is considered ϑ=0,01;0,03;0,05;0,07;0,09). 
Parameters of vibration excitation (2) at the non-steady-state modes are selected such 
that at least the third harmonics of excitation at increase or a decrease of rotational speed 
transited through a resonance region of blades. The Fig. 1 presents examples of drawings 
of the simulated signals.  

points points points 
a) b) c) 

Figure 1. Examples of the simulated signals for modes m1 (a), m2 (b) and m3 (c) 
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Simulated signals were processed using BS, WD and DPS [2-4]. The examples of  BS 
analysis results at the steady-state (m1) mode of GTE are shown on Fig. 2 for ϑ =0 and 
ϑ=0,05 at the crack presence. They are presented in a form of three-dimensional images 
characterizing bispectrum module dependence on frequencies 1f  and 2f .  

BS module BS module 

a) b) 

Figure 2. Examples of the BS module simulated signals for steady-state (m1) mode of 
GTE at the absence (a) and the presence crack (b)  

As the results of diagnostic information processing demonstrate, appearance and 
development of a crack in the engine turbine lead to change of global and local 
extremum intensity of BS module estimators. We propose to use the ratio lgBS IID =  

as a fault features, where )(lgI  is value of intensity of global (local) BS module 

maximum. The relationships between ϑ  and BSD  for m1, m2 and m3 modes are 

illustrated in Table 1. 

Table 1.  Diagnostic features dependencies on a fault parameter. 

ϑ 0 0,01 0,03 0,05 0,07 0,09 
m1 2,10 2,23 2,55 2,82 3,02 3,30 
m2 2,31 2,34 2,38 2,43 2,61 3,05 
m3 1,82 1,83 1,85 1,91 1,98 2,01 

The following DPC are used: 3J - peak factor and 4J  - factor of background. The 

preliminary WD of signals is applied for the sensitivity increasing of DPC of the 
vibroacoustical signals as fault features. We used wavelets of Daubechies family db10 
and 5 levels of decomposition, results are used as drawings of each level for next DPC 
evaluation. Fig.3 represents the values of relative speed in percents of  the DPC changing 
(from ϑ =0 to ϑ=0,05) evaluated for initial signals and approximations (a5) and details 
(d1-d5) of their WD for m1 and m2 modes of GTE operation. Relative speed of the DPC 
changing is calculated in the following form:  
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Figure 3. Relative speed of  the DPC changing evaluated for signals and elements of   
their WD for m1(a) and m2 (b) modes of GTE   

Apparently from the presented results, DPC of approximation а5 are the most 
sensitive fault features for a mode m1, and DPC of a detail d1 are the most sensitive fault 
features for a mode m2. For a mode 3 (schedules are not presented) expediently to use 
DPC for a detail d2, their relative speed of change makes 20%. 

4. Conclusions  

Developed diagnostic model of GTE allows to form the model of measured 
vibroacoustical signals for further simulation and analysis the influence of damages on 
the vibroacoustical characteristics of GTE at the steady-state and non-steady-state 
modes.  

Application of a modern signal processing methods allows to detect fault features, 
which are sensitive to small crack-like damages. The received results can be used to 
create a vibroacoustical monitoring system for aircraft engine rotor components.  
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Abstract 

In the paper, in the discrete-continuous model, the spring constants replacing the rotational and translational 
restrained end of the Bernoulli-Euler beam have been identified on the basis experimental investigations and 
formulation of optimization problem. The mathematical model of free vibration problem of analyzed system 
has been formulated and solved according to the Lagrange multiplier formalism. Frequencies and mode 
shapes of free vibration, which have been obtained from the experimental investigations, have been used to 
formulate optimization problem. Optimization has been based on the genetic algorithm. The presented 
proceeding’s stages allow identification any parameters of discrete-continuous systems. 
 
Keywords: genetic algorithm, experimental modal analysis, free vibration, the Bernoulli-Euler beam 

1. Introduction 

The genetic algorithms were first developed by John Holland [1] in the early 1970s. At 
present the genetic algorithms [2, 3 and 4] are widely applied in a lot of field of 
knowledge. Their effective mechanism of searching the large space solution is the most 
important advantage. It allows using the genetic algorithms in optimization problems 
[5, 6].  

In this paper the applying of the genetic algorithm, experimental modal analysis and 
the Lagrange multiplier formalism [7, 8] to identify the chosen parameters of discrete-
continuous systems are presented. Identification of parameters has been carried out on 
the example of the Bernoulli-Euler beam, which has been elastically restrained at the 
end. This way restrained of the beam has been showed in the articles [9, 10]. 
Additionally in the paper [9] the concentrated mass at an arbitrary position along the 
beam length has been added, while in the paper [10] the translational spring at the 
intermediate point has been restrained.  

2. Formulation of the problem 

The vibration model of the uniform Bernoulli-Euler beam with discrete elements 
(substituting the elastically restrained end) is presented in the figure 1. The translational 
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restraint is characterized by spring constant K and the rotational restraint by the spring 
constant C.  

 

Figure 1. Scheme of the beam elastically restrained at the end: a) the whole system, 
b) the separated element system 

Acting on the Lagrange multiplier formalism [7, 8] the free vibration problem of 
analyzed system has been formulated and the solution has been reduced to matrix system 
of equations in the following form: 
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where Λ1 and Λ2 are the amplitudes of Lagrange multipliers. Coefficients Ck,r, which 
characterize beam to boundary conditions respectively, are described by relationship: 
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and coefficients:  

 
K

1
1 =ε , 

C

1
2 =ε  (3a, b) 

characterize the type of discrete elements joining to the beam.  
In the formula (2) the following relationships (according to work [8]) have been 

accepted: 

 NiALmMk
L

EI
K iiii ,...,2,1,0,,

3
=== ρ  (4a, b) 

where the symbols denote: ρ – density, E – the longitudinal modulus of elasticity, A – 
cross-sectional area, I – moment of inertia and L – length of beam, while: 
 ( )0)1,(, irki Yb == , ( )0)2,(, irki Yb ′==   (5a, b) 

represent the mode shapes of the free-free beam calculated without any influence of the 
other elements. Coefficients ki and mi occurring in formula (4a, b) can derive on the basis 
of dependences appearing among other things in work [8]. 
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The equation set (1) yields the eigenvalue equation: 

 0det
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which enables one to calculate the free vibration frequency values ωk of the system. 
When the values of free vibration frequency are known and on the basis of equation (1) 
the amplitudes of Lagrange multipliers are determined, then the mode shapes can be 
described with the use of following expression: 
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3. Experimental investigations 

The measurement system which has been used to the experimental investigations is 
presented in the figure 2. This system consists of the fixed beam (1), PC computer (2) 
with appropriate software, four-channel vibration analyzer (3), amplifier (4), exciter 
body with exciter head (5), force detector (6), one-axial piezoelectric accelerometer (7). 

 

Figure 2. Scheme of the measuring set 

The modal model (set of natural frequencies, coefficients of damping and modes of 
vibrations) of the system has been obtained as a result of the experimental investigations. 

In the figure 3 first three received natural frequencies and corresponding modes of 
vibrations are showed. 

 

Figure 3. The experimental free vibration frequencies and the modes of the beam 
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4. Genetic algorithm 

The looked values of spring constants substituting the elastically restrained end of beam 
can be determined on the basis of the derived relationships and obtained experimental 
free vibration frequencies. In order to formulate optimization problem the genetic 
algorithm has been used.  

The genetic algorithm bases on the principles of genetics and natural selection and it 
works as follows (fig. 4): first, population of chromosomes that are solution candidates 
to a problem is randomly generated; then the fitness function of each chromosomes in 
the population is calculated; next Selection, Crossover and Mutation are repeated until 
a steady number of offspring will be created or the value of solution will be satisfactory. 

 

Figure 4. Simple genetic algorithm 

The selection operator selects chromosomes in the population for reproduction. The 
fitter the chromosome, the more times it is likely to be selected to reproduce. Crossover 
and mutation are the reproduction operators, the former forms a new chromosome by 
combining parts of each of the two parental chromosomes and the latter forms a new 
chromosome by making alterations to the values of genes in a copy of a single parent 
chromosome.  

In the examined case, objective function (fitness function) has been written by the 
formula:  
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which means that relative average error between theoretical and experimental 
frequencies is optimized. 
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5. Sample results 

Based on the presented mathematical model, the experimental investigations and the 
genetic algorithm the numerical program has been worked out. This program enables to 
identify the spring constants K and C representing the elastically restrained end of beam. 

The exemplary numerical calculations have been completed for the following data: 
� the beam parameters: the length – 1 m, the dimensions of the cross section of the box 

shaped member: the external height and width – 0.04 m, the internal height and width 
– 0.036 m; the beam’s material: the density – 7850 kg/m3, the Young’s modulus – 
2.1·1011 N/m2, 

� the genetic algorithm parameters: the crossover probability – 0.5, the mutational 
probability – 0.1, and selection has been carried out according to rank selection, 

� the values of spring constants (K, C) were looked for in the range [100, 1·1010] N/m. 
On the basis of numerical calculations the spring constants modeling the elastically 

restrained end of beam have been amounted: C=9.23795⋅104 N/m, K=1.51182⋅107 N/m 
and the relative average error (8) between theoretical and experimental frequencies has 
been equal 0.23%. 

In figure 5 the theoretical natural frequencies and corresponding modes of analyzed 
system are presented with the consideration of the determined spring constants K and C. 

 

Figure 5. The theoretical free vibration frequencies and the modes of the analyzed beam 

6. Summary 

In this paper the use of genetic algorithm for identification of constants of discrete 
elements which are joined to continuous element has been presented. Identification has 
been carried out on the example of the Bernoulli-Euler beam which has been elastically 
restrained by translational and rotational springs at the end. To the formulation and 
solution of the problem has been used the Lagrange multiplier formalism and the 
experimental modal analysis, too. The mathematical formulation is completed by the 
exemplary numerical results. 
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Zastosowanie algorytmu genetycznego do identyfikacji modelu drgań na przykładzie belki 
Bernoulliego-Eulera  

W pracy na podstawie przeprowadzonych badań eksperymentalnych oraz sformułowania zadania 
optymalizacyjnego zidentyfikowano stałe spręŜystości spręŜyn rotacyjnej i translacyjnej zastępujących 
w modelu dyskretno-ciągłym zamocowanie jednostronne belki Bernoulliego-Eulera. Model matematyczny 
zagadnienia drgań swobodnych analizowanego układu został sformułowany i rozwiązany zgodnie 
z formalizmem mnoŜników Lagrange’a. Jako rezultat przeprowadzonych badań eksperymentalnych otrzymano 
częstości i postacie drgań własnych, które wykorzystano do sformułowania zagadnienia optymalizacyjnego. 
Algorytm optymalizacyjny bazował na algorytmie genetycznym. Przedstawione etapy postępowania pozwalają 
na identyfikację dowolnych parametrów układów dyskretno-ciągłych. 
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Abstract  

Modern railways, as light and classic vehicles, are designed with a new construction concept/trend. 
Expression of this thesis is the increase of safety standards and loads/performance of vehicle elements with 
simultaneous reduction of the vehicle mass. The newest constructions of trains and trams have applied many 
parts which are made of light metal alloys, aluminium and plastic profiles, ceramic, fibber and glass. 
Consequently those materials have major influence on a vehicle dynamics.  
This article presents a first approach of a structural dynamics of a tram body during a ride test. Author 
analyzed the vibration signals recorded on two different trams drive units and tram body. The vibrations are 
analyzed in ride safety category and human vibration exposure of operator/passenger aspect. Author presents 
rationales to use of ride-source vibrations as a potential excitation in OMA test technique. Paper includes a 
methodology of the experiment and first results from performed investigation. 
 
Keywords: operational excitation , tram dynamics, modal test 

1. Introduction  

Popularity of railway transport and its revival (particularly in fast railway as well as in 
trams) stem from advantages of this form of relocating. It has, including but not limited 
to, the following advantages: 

• ride safety, 
• continually rising ride speed, 
• possibility to travel in „City-to-City” system, 
• little sensitivity to weather conditions, 
• separated communication routes – minimal traffic congestion.  
The last two advantages are especially important in case of trams and specific 

conditions of their exploitation. In recent years those vehicles have experienced a revival 
connected with dynamic development of cities and rising problems in individual car 
communication. Possibility to operate big traffic steams and little urban requirements 
result in dynamical development of tram market in Europe and in the world. 

Classic and light rail vehicles undergo strict tests connected with investigation of 
construction dynamics. These tests comprise two domains: 

• ride safety, 
• ride comfort of passengers. 
In the first case, the most commonly used criterion of assessing ride safety of a 

railway vehicle is Nadal’s criterion, which is the ratio between transverse dynamic force 
and vertical dynamic force Y/Q according to UIC 518 chart [1]. Another values 
connected with vehicle ride on the rails are also acceptable, e.g. the sum of leading 
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forces affecting the rails, vertical pressure of wheels on the rails, transverse and vertical 
acceleration measured in selected points in the vehicle or stiffness of susceptible parts of 
vehicle suspension [1,2]. 

In case of the ride comfort investigation, parameters of ride characteristics of the 
vehicle or adequate dosimeter parameters according to European Union Directive 
2002/44/EC may be used. Broad numeric investigations connected with dynamics of 
vehicle move in the rails are also carried out. The aim of these investigations is to 
support, describe and explain through simulation the processes connected with wheel 
interaction on the rail in the vibro-acoustic aspect.  

In the all mentioned situations the dynamic susceptibility of the suspension as an 
element that has influence on safety and comfort of rail vehicle ride, is omitted. 

2. Structural dynamics of a tram 

In dynamic investigation of rail vehicles, because of security against derailment, 
particular attention is paid to cooperation between the wheel and the rail. The further 
step of the designer is developing a suspension system meeting the following postulates: 

• safe vehicle drive in the railway track, 
• fulfilling requirements of vehicle gauge, 
• transfer of driving and braking forces from the body to the bogie and from the 

bogie to the body, 
• possibly effective insulation (expansion) of vibrations transferred from the tram 

drive unit to the car body and further to passenger and driver seats, 
• fulfilling requirements of ride comfort with assumption that the vehicle body is 

a stiff solid. 
A bogie is a widely used solution, which constitutes a good basis for a compromise 

between safety and ride comfort. In case of trams, the bogie is a complicated riding 
structure, which enables building up two or three grades of de-springing. For the 
necessity of model testing of bogies, 

7-mass-model with nonlinear damping is commonly accepted. Unfortunately, in 
detailed investigation of tram ride dynamics, such models are not precise enough [3]. 
That is why e.g. 19-mass-models are built, which is presented schematically in Fig.1. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Scheme of tram bogie 105Na and its model [3] 
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With bogie models defined in the mentioned way, there is possibility to carry out 
broad numeric and experimental investigations to optimize construction parameters with 
accepted assessing criteria.  

In actual constructions of the tram drive unit, full mechano-acoustic separation of the 
under-carriage from the tram body is not possible. A part of energy will be transferred to 
the vehicle body, which will excite vibrations of the vehicle construction.  
It is commonly accepted that the car body constitutes a solid which joins the vehicle 
bogies. It has been suggested to verify this thesis. It is especially important that very 
often light construction materials are used for suspension elements (light metal alloy, 
composites). Enlarging glass surfaces and door-ways is also significant as it influences 
construction susceptibility to elastic deformations. Modernization of older types of trams 
is observed. The purpose of it is to increase their functionality without particular 
consideration of consequences of performed works 

Transfer of excitations from the tram drive unit to the tram body results in vibro-
acoustic effects affecting passengers and the tram driver. Taking into consideration 
structural dynamics of the tram body itself it may turn out that the mechano-acoustic 
susceptibility as well as global and local resonances of the tram body may significantly 
affect safety and ride comfort. This hypothesis be-came the basis of tram investigations 
in standard exploitation conditions. Cracks in top beam of the tram car resulting from 
dynamic interaction between vehicle and rails, serve as another argument. 

3. Investigation methodology 

The purpose of this experiment was to define prospects of using exploitation excitation 
for modal investigation of a tram car. As this investigation has a diagnosing character in 
the first step only a vertical excitation was taken into consideration. 

The excitation from the tram drive unit is a natural excitation for a certain vehicle 
and exploitation conditions. As measurement of dynamic forces affecting the car body is 
not possible, it was decided to use techniques of OMA. The priority of the investigation 
is to determine frequencies characteristic for a tram in excitation frequency from the 
tram drive unit because global and local construction resonances may occur. 

The scope of frequencies, which should be taken for the analysis, results from taking 
into ac-count frequencies characteristic for safety (kinematics and dynamics of a vehicle 
in the railway track) and ride comfort. In safety aspect a few characteristic frequencies 
may be defined [3,4]: 

• approx. 2-20 Hz connected with basic hunting oscillation of wheel sets, 
• approx. 4-10 Hz harmonics vibrations of individual bogie elements, 
• approx. 20-60 Hz vibrations caused by cooperation between a wheel and a rail 

for wheels with elastomeric inserts. 
However, in ride comfort aspect and endangering a tram driver with excessive 

vibrations, the scope of frequencies and their weight contribution in particular kinds of 
influence on human body are defined by EU Directive2002/44/EC and commonly 
acknowledged human vibration model [5]. 
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Carried analyses show that it is purposeful to carry out investigations in frequency 
scope from min. 2 to approx. 200 Hz. Such defined band of frequencies covers with its 
scope, all effects that are the subject of investigation. 

4. Experiment results 

The investigation was carried out with two types of jointed trams (from the left side: A 
and B) with significant contribution of the low floor (Fig. 2). 

Figure 2. Objects of comparative investigation; from the left side: type A and type B 

Test rides were carried out on a classic ballast track, on the same parts of the straight 
track with speed limit to 40 km/h. The signal of vibration acceleration was registered on 
the floor inside the tram car directly over the pivot. In the investigation, vibration 
transducers of Brüel & Kjær type 4504A were used. Portable data acquisition unit type 
B&K 3560C with 17 input channels constitutes the central unit of the measurement set 
[6]. Because of the character of the recorded signal and assumed estimation accuracy, 
the signal of vibration acceleration was recorded in band 3.2 kHz.  

The results of preliminary analysis are displayed in Fig. 3 and 4, where the signal 
time flow and its spectrum are presented. The analysis was carried out in band 2-200Hz 
with resolution of 0.5Hz and accuracy of amplitude estimation of 0.5dB [7]. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Signal registered in a tram type A 
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Figure 4. Signal registered in a tram type B 

As it can be concluded from the presented diagrams, obtained frequency 
characteristics of registered signals in particular types of trams are different. For a tram 
type A, characteristic frequencies are explicitly exposed in amplitude spectrum (Fig.3.) 
of 54,5Hz, 74.5Hz and 95.5Hz. At the same time attention is drawn to amplitude rising 
of the signal in band from 110 to 130Hz. For a tram type B characteristic and dominant 
spectra are 2.5Hz and 84Hz.  

Analyzing the distribution of vibration energy of registered signals, it was observed 
that for a tram type B vibration energy is comprised in band 2.5 to 110Hz, whereas for a 
tram type A, vibro-acoustic activity is shifted to higher frequencies 14-190Hz. This may 
stem from the fact that a tram type B has a more elastic structure and more modern set of 
the suspension over four times lowering the level of registered vibrations in comparison 
to type A (respectively for type B and A: 178mm/s2 and 813mm/s2 on the investigated 
part of the railway track). 

5. Conclusion 

Presented investigation results have cognitive character and refer to prospects of using 
the test ride in investigations of structural dynamics of a tram car.  

This article presents the genesis of the subject and analyses referring to methodology 
assumptions of the experiment. The effects connected with tram move and influencing 
vibration generation were systematized. The author suggested accepting a scope of 
frequencies for the analysis in safety aspect and ride comfort aspect. Preliminary 
investigation results of two types of joint trams confirmed that the assumed analysis 
band was correct. At the same time possible origin of changes in amplitude structure of 
spectra of recorded signals was indicated. 

The further step in the investigation of prospects of using the ride test for structure 
modal analysis will be an analysis in three directions. 
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Wymuszenie eksploatacyjne w eksperymentalnych badaniach dynamiki lekkich pojazdów 
szynowych 

Nowoczesne pojazdy szynowe, tak lekkie jak i klasyczne, podlegają najnowszym tendencjom panującym w 
projektowaniu i konstruowaniu pojazdów. Wyrazem tego jest maksymalizowanie współczynnika wysilenia 
konstrukcji, co przekłada się na obniŜanie masy własnej pojazdu. Coraz częściej do budowy pojazdów 
wykorzystuje się materiały ze stopów metali lekkich, szkła oraz kompozytów. Rodzaj uŜytych materiałów ma 
jednak bezpośredni wpływ na własności dynamiczne konstrukcji pojazdów. 

W artykule przedstawiono koncepcję wykorzystania wymuszenia eksploatacyjnego tramwaju w 
badaniach dynamiki strukturalnej jego pudła. Przeanalizowano moŜliwości i ograniczenia w metodologii 
estymacji własności modalnych pojazdu z wykorzystaniem techniki Operacyjnej Analizy Modalnej w 
zastosowaniu do pudła tramwaju.  
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Abstract 

The paper deals with the problem of modeling of the moving mass particle in numerical computation by using 
the finite element method in one dimensional wave problems in which both the displacement and angle of the 
pure bending are described by linear shape functions. The analysis is based on the Timoshenko beam theory. 
We consider the simply supported beam, in a range of small deflections with zero initial conditions. 
 
Keywords: numerical method, moving mass, moving inertial load, vibrations 

1. Introduction 

Rail and road transport development needs a closer understanding of phenomena 
accompanying travelling load. Most applications can be found in the interaction between 
railway wheels and rail or track, the effect of a moving vehicle on a bridge, interaction 
between rail power collector and traction power network, as well as magnetic rail, 
aerospace technology, automotive industry, and robotics. Despite of the wide interest in 
moving loads for more than a century, still many issues remain unresolved. In the case of 
non-inertial loads, for example the gravitational force or forces described by harmonic 
functions, complete analytical solutions in the series are known [1, 2]. Solutions differ in 
the case of inertial loads. A moving inertial load problem can not be solved fully 
analyticaly, except special cases such as the massless string [3]. There are semi-
analytical solutions [4, 5, 6] which take into account the influence of a mass particle 
moving along the structure. 
 
 
 
 
 
 
 
 

Figure 1. Ad hoc mass lumping in nodes 
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Modelling of the moving forces does not take into account the inertia of a moving 
point and is relatively simple. In practice it reduces to the modification of the right-hand-
side vector at each time step. Inclusion of the inertia of a moving load requires the 
modification of the inertia, damping and stiffness matrices at every time step. A simple 
modification of the diagonal of the inertia matrix (Fig.1) is incorrect and results in 
divergence of the solution. Errors, due to incorrect modeling, increase with increasing 
speed of a moving inertial load. According to the Renaudot formula [7] the acceleration 
of the material point moving with a constant speed v, is composed of three elements: 

 
  (1) 

 
We can show the components corresponding to transverse acceleration, Coriolis 
acceleration and centrifugal acceleration. 

There are numerous publications on numerical modelling of inertial moving load 
using the finite element method [8, 9, 10]. In most of them displacements and rotations 
are approximated as cubic functions. They can be applied to all the terms of the 
equation (1). In the case of wave problems in a string or the Timoshenko beam we have 
to use linear shape functions to describe independently displacements and rotations in 
pure bending. It entails mathematical consequences. We can not compute the second 
derivative of the displacement x. In such a case we should have to neglect the effect of 
centrifugal acceleration of the moving material point in the formula (1). It leads to 
incorrect solution. 

Below we present recent results which enables us to solve the problem of a moving 
mass travelling on the Timoshenko beam with an arbitrary velocity. Numerical examples 
prove the efficiency of the proposed method. 

2. Timoshenko beam theory 

Let us consider the Timoshenko beam with the length l, mass density ρ , cross-sectional 
area A and moment of inertia I, subjected to the mass particle m accompanied by the 
force P, moving with the constant speed v. Denoting the transverse displacement by 
w(x,t) and the pure bending angles by ψ(x,t), the kinetic energy of the Timoshenko beam 
and moving material point with mass m is expressed by the equation 
 
 
 

  (2) 
The potential energy of the Timoshenko beam and a moving gravitational force is 
described as follows 
 
 
 

  (3) 
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E is the elastic modulus, G is the shear modulus and k is the cross-section shape ratio. 
Based on the second kind Lagrange equation, we determine two coupled equations 
describing the motion of the Timoshenko beam subjected to a moving load 
 
 
 
 

  (4) 
The equations (4) can be transformed into one equation of motion. It depends only on 
displacements or rotations. Let us consider displacements first 
 
 

  (5) 
 
 
where the external load is given by the formula 
 

  (6) 

)/(1 ρkGc = is the shear wave speed and ρ/1 Ec =  is the bending wave speed. 

We assume a simply supported beam 
 

  (7) 
 
with zero initial conditions 
 

  (8) 
 
Equation (5) is a partial differential equation of the fourth order with respect to time. Its 
solution requires additional initial conditions 

 
  (9) 

 

3. Semi-analytical solution 

We can develop displacements of the beam into the sine Fourier series in a finite 
interval, which fulfil boundary conditions (7) 
 

  (10) 
 
By substituting the series (10) to the equation (5) we obtain a set of ordinary differential 
equations of the form 
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  (11) 
 
 
 
This method lead us to the system of differential equation of variable coefficients (11) 
solved by the Runge-Kutta 4 order method. We compute numerically the vector Q and 
then insert it to the resulting series (10). 

4. Numerical solution by the finite element method 

Let us consider the finite element of the length b of the Timoshenko beam. The element 
carries the inertial particle of the mass m, travelling with a constant velocity v. The 
equation of the virtual work which describes the influence of the inertial particle can be 
written in the following form 
 

  (12) 
 
We impose the linear shape function describing the transversal displacement in finite 
element nodes 
 

  (13) 
 
Equation (1) describes the acceleration of a moving material point. It can be expressed in 
the form 
 

  (14) 
 
The third term of (14) is developed into the Taylor series in terms of the time increment 

ht =∆  
 
 
 
 
 
 

  (15) 
Upper indices indicate time in which respective terms are defined. We assume the 
backward difference formula ).1( =α  In this case we have 

 
  (16) 
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The energy (12), with respect to (14) and (16) allows us to write the results in the matrix 
equation, after classical minimisation 

  (17) 

where 
 
 
 
 
 

  (18) 
 
with the coefficient bvhx /)( 0 +=κ , 10 ≤< κ . It determines the force equilibrium of 

the mass travelling over the finite element of a Timoshenko beam. Matrix factors Mm, 
Cm and Km can be called mass, damping, and stiffness matrices, since they have similar 
forms to matrices derived for pure finite element of the Timoshenko beam. The last term 
em describes nodal forces at the beginning of the time interval [0; h]. We must emphasise 
here that matrices (18) and the vector e contribute only the moving inertial particle 
effect. Pure classical matrices of the finite element of a string must be added to the 
global system of equations. 

5. Examples 

We choose the steel beam of the rectangular cross-section A=0.015 m2 and the length 
l=2 m. We assume other data: ρ=7860 kg/m3, I=0.0000281 m4, m=200 kg, P=mg, 
g=9.81 m/s2, E=2.1·105 MPa, G=8.1·104 MPa, k=1.2. Fig.2 shows a comparison of the 
results obtained by semi-analytical method presented earlier, and the finite element 
method using matrices describing the moving material point of mass m. The obtained 
results confirm the correct way of modelling a moving mass particle. 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Trajectories of a mass particle travelling along the Timoshenko beam 
at the speed smv /30=  (left picture) and smv /60= (right picture) 
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6. Conclusions 

The paper deals with the problem of vibrations of the Timoshenko beam subjected to a 
moving inertial particle. The presented approach allows accurate modeling of a mass 
particle travelling with a constant velocity in numerical computation by using finite 
element method. These matrices can be applied to every wave problem, where the 
displacement and rotations of the pure bending are described by linear shape functions. 

References 

1. L. Frỳba. Vibrations of solids and structures under moving loads. Thomas Telford 
House, 1999. 

2. W. Szcześniak. Inertial moving loads on beams (in Polish). Scientific Reports, 
Warsaw University of Technology, Civil Engineering 112, 1990. 

3. C.E. Smith. Motion of a stretched string carrying a moving mass particle. J. Appl. 
Mech., 31(1)(1964) 29-37. 

4. B. Dyniewicz and C.I. Bajer. Paradox of the particle’s trajectory moving on a 
string. Arch. Appl. Mech., 79(3)(2009) 213-223. 

5. E.C. Ting, J. Genin and J.H. Ginsberg. A general algorithm for moving mass 
problems. J. Sound Vib., 33(1)(1974) 49-58. 

6. G.T. Michaltsos. Dynamic behaviour of a single-span beam subjected to loads 
moving with variable speeds. J. Sound Vibr., 258(2)(2002) 359-372. 

7. A. Renaudot. Etude de l’influence des charges en mouvement sur la resistance, des 
ponts metallique a poutres droites. Annales des Ponts et Chausses, 1(1861) 145-
204. 

8. C.I. Bajer and B. Dyniewicz. Numerical modelling of structure vibrations under 
inertial moving load. Arch. Appl. Mech., 79(6-7)(2009) 499-508. 

9. F.V. Filho. Finite element analysis of structures under moving loads. The Shock and 
Vibration Digest, 10(8)( 1978) 27-35. 

10. T. Borowicz. Strength of beams under moving load (in Polish). Archives of Civil 
Engineering, 24(2)(1978) 219-235. 

 
 

Metody numeryczne analizy drgań belki Timoshenki pod inercyjnym obciąŜeniem 
ruchomym 

Praca omawia problem modelowania numerycznego poruszającej się cząstki masowej metodą elementów 
skończonych w zadaniu jednowymiarowym. Przemieszczenia i obroty opisano liniowymi funkcjami kształtu. 
Analizę oparto na teorii belki Timoshenki. 
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Abstract  

Motion of a hanging rope is considered and a discrete model of the body is discussed. The system consists of 
identical members which are connected by rotational joints. Various character of both the elements and joints 
is considered, and equations of motion are presented. Consequently, there are several options: an extensible or 
non-extensible model, whose joints are ideal, elastic, dissipative or elastic-dissipative. Nevertheless, a concise 
generalized mathematical model is presented which is suitable for all the variants. 
 
Keywords: rope, modelling, elastic-dissipative joints 

1. Introduction 

Already in 19th century D. Bernoulli (1732) and Euler (1781) considered and solved the 
problem of small vibrations of a perfectly flexible, uniform rope which is fixed at one 
end [1]. However, even now it is a non-trivial task to mathematically describe motion of 
the rope in a general case and to perform computer simulations of such a phenomenon.  

Usually research on dynamics of such bodies as ropes, chains, whips or fly lines 
involves continuous models [5, 6, 7]. Although the approach seems to be very natural, 
we consider a discrete model of the rope. The main advantage of this conception is 
relatively simple description of the problem by means of analytical mechanics. On the 
basis of the works [1, 2, 3, 4] we present equations of motion of the system and 
concentrate on the included features: longitudinal elasticity, transverse elasticity and 
damping.  

2. Basic mathematical models 

Let us consider planar motion of a discrete system consisting of n identical members that 
are connected by rotational joints. One end of the body is attached to a point P0. 
Generally, we treat the point as non-stationary, so that its position is specified by the pair 
of time dependent functions: x0=x0(t), y0=y0(t). The motion takes place in a gravitational 
field, but air resistance is neglected.  

The simplest model of the rope can be represented by a multiple physical 
pendulum [1], which is shown in Fig. 1a. It is assumed that every element is a rigid 
prismatic rod of length l and mass m, the joints, in turn, are ideal (frictionless). Using the 
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angular generalized coordinates φi (i=1, 2, …, n), one can derive the following equations 
of motion:  
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where i=1, 2, …, n and the coefficients ℜ∈iij ba , .  

This system is modified in paper [2] by a simple longitudinal elasticity conception. 
As in Fig. 1b, each of the rods is attached to a linear spring, thus, every segment has two 
parts with a common longitudinal axis. The springs are assumed to be identical – their 
free length is denoted by ls and stiffness by kL. If we introduce the additional variables zi 
(i=1, 2, …, n) expressing elongations of the springs, then the mathematical model takes 
the form: 
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where i=1, 2, …, n and ℜ∈z
ij

z
ijijij BABA ,,, ϕϕ . 

 
a)  b) 

 
Figure 1. Basic models of a rope: a) model of an inelastic rope, b) model of an 

extensible rope 
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3.  Elastic-dissipative joints 

It should be noted that the ideal joints enable to bend the rope freely, which is far from 
its real behaviour. Hence, we try to modify the character of the joints within the discrete 
approach.  

Let us recall the bending stiffness idea discussed in [3]. Schematically, every joint is 
enriched with a torsional spring whose constant is denoted by kT (see Fig. 2). To 
determine a characteristics of the springs, we consider a fragment of the rope shown in 
Fig. 3. According to the classical formula:  

 
K

M

r
=

1
, (3) 

where M is the bending moment  and K is the flexural rigidity of a beam. Moreover, the 
radius of a plane curve parameterized by the functions x(s) and y(s) may be expressed as 
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Figure 2. Model of a rope with elastic joints 

If we assume that s is the curvilinear coordinate along the rope, it is easy to approximate 
the above derivatives by central difference schemes, which are based on the discrete 
representation of the rope. Consequently, one can obtain 
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Figure 3. Fragment of a rope 

where θi denotes the relative generalized coordinate: 
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Finally, inserting (6) into (3) gives 
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As it can be seen in Fig. 4, the nonlinear characteristics of the springs is specific – as the 
relative coordinate θ  tends to π± , value of the elastic moment M increases infinitely.  
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Figure 4. Characteristics of the springs 
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Since the formulas (6) and (8) have been derived for the model of inelastic rope (1), 
let us consider the other case. A length of the ith segment, consisting of a rod and spring, 
can be denoted by li=l0+zi, where the component l0=l+ls is constant. Assuming that 
zi/l0<<1 for i=1, 2, …, n, each of the products zizj  for i, j=1, 2, …, n can be treated as 
negligible. Then (6) and (8) take the forms: 
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In case of both the systems shown in Fig. 1, the generalized elastic forces can be 
written as follows: 
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At last, let us introduce dissipation into the mathematical description. In this work we 
apply simply the viscous damping model [4]. Beside the torsional spring, we can place a 
damper in every joint. Denoting a damping coefficient by c, one can specify the 
Rayleigh dissipation function as 
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Hence, the generalized dissipative forces have the form: 

 
( )





=−

=−
=

∂
∂

−= +

nic

n-,,,icR
Q

i

ii

i

D
i

for

121for1

θ
θθ

ϕ &

K&&

&
 (14) 

A combination of the forces (12) and (14) produces elastic-dissipative joints. 
Typically for the Lagrange equations, it is easy to introduce Qi

T and/or Qi
D to the 

model (1) and (2). Thus, the generalized forces can be put in the right-hand side of the 
equations related to the rotational degrees of freedom. For instance, a model of an 
inextensible rope with the elastic-dissipative joints has the form: 
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4. Generalized mathematical model 

In a general case, a system of the dynamics equations can be written as follows: 
 ( ) ( )qqfqqM &&& ,,t= , (16) 
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where q denotes the generalized coordinates vector. Obviously, the following initial 
conditions must be satisfied: 
 00 )0(,)0( uqqq == &  (17) 

It should be emphasized that, in the given problem, M is a full, non-symmetric and time-
dependent matrix, which complicates solution procedures in a numerical sense.  

3. Conclusions  

The presented mathematical model is suitable for all various combinations of the 
discussed model properties. It allows to generalize consideration on numerical 
integration of the dynamics equations. Moreover, many simulations based on this model 
provide interesting results [1, 2, 3, 4], however, their presentation is beyond the scope of 
this work.   

The elastic-dissipative joints seem to be useful in modelling other multi-body 
systems which may take a form of closed-loop mechanisms and play a practical role in 
mechanical engineering.  
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Dyskretny spręŜysto-dyssypatywny układ jako model liny 
W pracy rozwaŜono ruch liny zawieszonej jednym końcem i omówiono jej dyskretny model. Układ złoŜony 
jest z jednakowych członów połączonych przegubowo. RozwaŜono róŜny charakter zarówno elementów, jak i 
połączeń oraz zaprezentowano równania ruchu. W konsekwencji istnieje kilka moŜliwości: model rozciągliwy 
lub nierozciągliwy, których przeguby są idealne, spręŜyste, dyssypatywne lub spręŜysto-dyssypatywne. 
Niemniej jednak pokazano zwięzły, uogólniony model matematyczny, właściwy dla kaŜdego z wariantów. 
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Abstract  

Plane motion of a rope fixed at one end is considered. The body is modelled as a discrete system including 
transverse elasticity and dissipation. Mathematical model is presented and some numerical aspects are 
outlined. In simulations of dynamics vibrations of the system are excited by non-stationary constraints. It is 
shown that appropriate model properties and the excitation parameters can lead to quasi-periodic motion of 
the rope. 
 
Keywords: rope, nonlinear dynamics, numerical simulation  

1. Introduction 

Usually forced vibrations are considered in the context of an external harmonic force 
acting on a system. However, rheonomic constraints can lead to similar effects, although 
the nature of such an excitation is kinematic. As with the external force, the time 
dependent constraints make the system non-autonomous. Moreover, due to the variable 
inertial terms resulting from the excitation, the motion may be treated as parametric 
vibrations. All in all, kinematically driven  systems can be very interesting subjects of 
study in the area of nonlinear dynamics.  

In this work forced vibrations of a hanging rope are considered. To simulate 
dynamics of the system, a discrete model of the rope is used. As an extension of papers 
[3, 4] we present equations of motion of the rope with transverse elasticity and viscous 
damping. In several numerical examples the discrete system with multiple degrees of 
freedom is analysed, whose vibrations are excited by non-stationary constraints. It is 
shown that selection of appropriate model properties (damping coefficient and bending 
stiffness) and the excitation parameters can produce quasi-periodic motion. 

2. Mathematical and numerical model 

Let us consider planar motion of the rope presented in Fig. 1a. One end of the body is 
attached to a point P0, whose position is specified by the pair of time dependent 
functions:  
 )(),( 0000 tyytxx == .  (1) 
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The system consists of n simple elements – rigid prismatic rods of length l and mass m, 
which are connected by rotational joints. However, character of the joints is not idealized 
– they involve both elasticity and damping. In a schematic manner, a torsional spring and 
viscous damper is placed in each of the joints (see Fig. 1b). We assume that all the 
springs have identical stiffness kT; similarly, one damping coefficient c is associated to 
all the dampers. 

 a) b) 

 

Figure 1. Discrete model of a rope: a) general conception, b) system with transverse 
elasticity and damping 

In view of the above assumptions, the rope is modelled by a multiple physical 
pendulum with joints which are both flexible and dissipative. Such a discrete system can 
be described with use of the angular generalized coordinates φi (i=1, 2, …, n). Taking 
into account the mathematical models discussed in [3] and [4], equations of motion of 
the given system can be written as follows 
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and the generalized forces are determined below: 

a) potential forces resulting from gravity 

 ii
G
i bmglQ ϕsin−= ; (4) 

b) potential elastic forces 
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where the elastic moment 
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is expressed in terms of the relative generalized coordinate:  
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c) dissipative (viscous) forces 
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The system of second order differential equations (2) may be written in the following 
concise form: 
 ( ) ( )qqfqqM &&& ,,t= , (9) 

where q denotes the generalized coordinates vector. Additionally, the initial conditions 
must be fulfilled: 
 00 )0(,)0( uqqq == &  (10) 

After reformulation, the initial value problem has a form convenient for numerical 
computation: 

 ( ) ( )XfXXM ,ˆˆ t=&  (11) 
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where: 
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and I denotes the identity matrix.  
It should be noted that, due to the matrix M which couples the equations of motion, 

the system (11) is classified as an implicit ordinary differential equation (IODE) system. 
What is more, the matrix is time dependent, hence, the given problem is numerically 
much more demanding than the standard explicit ordinary differential equation (ODE)  
systems. In our simulations we use the MEBDFV solver written by Abdulla and Cash 
(Imperial College, London); the code is based on the modified extended backward 
differentiation formulae (MEBDF) of Cash (1980) [1, 2]. 
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3. Numerical experiments 

Let us turn now to some examples which show regular motion of the system. We 
consider a rope of a total length 1 [m] and total mass 0.5 [kg]. The supposed number of 
elements n=20 and the parameters: kT=10-3 [Nm2], c=10-3 [Nms]. Initially, the rope hangs 
down, so that q0= 0 and u0= 0. Vibration of the system are enforced by horizontal motion 
of the point P0 according to the function: 

 ( )BtAtx π2
0 sin)( = , (14) 

where A and B are constants. Is it possible to find such values of A and B which ensure 
periodic or quasi-periodic motion of the discrete system? Is there any method to generate 
regular motion of such a complex system, which actually is not a mechanism? 

Let us take into account a system which is simpler than the given one – a multiple 
physical pendulum whose motion is governed by the equations (2) as Qi

T=Qi
D=0 for 

i=1, 2, …, n. If we linearize this system and solve the related eigenvalue problem, we 
obtain the following natural frequencies: 
 ]/1[127.186,,]/1[667.8,]/1[766.3 2021 sss ≈≈≈ ωωω K  (15)  

It turns out that applying the kinematic excitation (14) with small amplitude A and the 
value 2πB nearby ω1 can produce regular vibrations. In the examples below we take 
A=0.05 [m] and:  
a) ]/1[519.32]/1[56.0 sBsB =⇒= π , 

b) ]/1[581.32]/1[57.0 sBsB =⇒= π . 

Figure 2 illustrates the generalized coordinate φ20 as a function of time in the first 
case. As it can be seen, the quasi-periodic motion exhibit two non-commensurable 
frequencies: the higher frequency refers to the motion itself, whereas the other one is 
connected to the amplitude modulation. The angular velocity versus time graph indicates 
similar effect. Consequently, the phase trajectory densely fill the plane ),( 2020 ϕϕ &  in a 

quite regular manner (see Fig. 3). 
 

 

Figure 2. The last generalized coordinate for A=0.05 and B=0.56 
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Figure 3. Phase portrait for A=0.05 and B=0.56 

 

Figure 4. The last generalized coordinate for A=0.05 and B=0.57 

There are many values of B which give similar effects but weaker amplitude 
modulation. An extreme case is presented in Fig. 4. After some period of transient 
motion, when higher harmonics appear, the vibrations become regular and their 
amplitude hardly changes. 

3. Conclusions  

On the basis of our previous papers, the discrete model of a rope with transverse 
elasticity and dissipation has been presented. Numerically, the problem leads to implicit 
ordinary differential equations. 
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Although the hanging rope is not a mechanism and the discrete model has multiple 
degrees of freedom, the performed numerical simulations show that the system can 
experience regular motion. Coupling the two features, bending stiffness and damping, 
plays a key role, since it affects the transverse vibrations of the system. Appropriate 
values of the parameters kT and c in conjunction with specific rheonomic constraints can 
ensure rough equilibrium between the energy provided and dissipated, which produces 
quasi-periodic behaviour. We feel that the work may be useful for further analysis of the 
discrete model, other complex chain-like mechanical systems and their regular motion.  
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Ruch regularny wiszącej liny 
W pracy rozwaŜa się ruch płaski liny zawieszonej jednym końcem. Ciało jest zamodelowane jako układ 
dyskretny, ujmujący spręŜystość poprzeczną i dyssypację energii. Zaprezentowano model matematyczny 
i zarysowano pewne aspekty numeryczne. W symulacjach dynamiki drgania układu zostają wymuszone za 
pomocą więzów niestacjonarnych. Pokazano, Ŝe odpowiednie własności modelu, jak i parametry wymuszenia 
mogą prowadzić do prawie okresowego ruchu liny. 
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Abstract 

We study parametric oscillations of a torsional pendulum excited by means of varying a moment of inertia of 
the rotating body. Motion of the system is determined by the second order differential equation with periodic 
coefficients. We have studied stability of this equation and proved that parametric resonance in the system can 
occur only if the excitation frequency Ω is sufficiently close to the value 2ω0/N (N=1,2,3,…), where ω0 is a 
natural frequency of the pendulum, and the damping coefficient β0 is sufficiently small. Moreover, for any 
positive β0 parametric resonance can occur only if the excitation amplitude ε is greater than some threshold 
value. Using the infinite determinant method, we have found analytically the boundaries of the resonance 
domains in the parameter space for N=1,2,3.  
 
Keywords: Parametric oscillations, characteristic multipliers, stability, parametric resonance. 

1. Introduction 

External influence on a vibrating system is often reduced to varying parameters of the 
system with time. In such a case vibrations of the system are called the parametric 
oscillations. As a physical example we consider a torsional pendulum excited by means 
of alternating its moment of inertia. The pendulum may be realized as a massive disk 
mounted on an elastic shaft and two point bodies of equal masses m being placed on its 
surface symmetrically with respect to the axis of the shaft. If a distance of each body 
from the axis of the shaft oscillates near some equilibrium value r0 according to the law 

))cos(1()( 0 trtr Ω+= ε ,  

where Ω and 1|| <ε  are the excitation frequency and amplitude, respectively, then 

moment of inertia of the pendulum alternates as 
22

00
2

0 ))cos(1(22)( tmrImrItI Ω++=+= ε , (1) 

where I0 is a moment of inertia of the disk. Denoting a twist angle of the disk by ϑ, we 
can write equation of motion of the system in the form 

ϑ
ϑ

γ
ϑ

c
dt

d

dt

d
tI

dt

d
−−=








)( , (2) 

where γ is a coefficient of viscous friction and c is a stiffness of the shaft. Taking into 
account expression (1) and introducing the following notations 
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we can rewrite equation (2) in the form  
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In the case of 0=ε  equation (3) reduces to differential equation with constant 
coefficients determining damped oscillations of the pendulum. But for 0>ε  there may 
exist such values of the excitation frequency Ω and amplitude ε for which the solution 

)(tϑ  increases unboundedly with time. This phenomenon is known as a parametric 

resonance. From mathematical point of view parametric resonance corresponds to 
instability of equilibrium position of the pendulum. Therefore, seeking the conditions 
under which parametric resonance can occur is equivalent to studying the stability of a 
trivial solution of equation (3).  

It should be noted that equation (3) is a differential equation with periodic 
coefficients and general theory of such equations has been developed quite well (see, for 
example, [1]). The most general method for studying behaviour of their solutions is the 
classic Floquet method which is based on calculation of a monodromy matrix and 
analysis of its eigenvalues. Just such approach was realized in paper [2], where a 
monodromy matrix was found in the form of power series in terms of ε accurate up to 
the second order. But if we are looking for such values of the system parameters for 
which a trivial solution of equation (3) is unstable the method of infinite determinant 
turns out to be more effective [3].  

The main purpose of the present paper is to find the domains of instability of 
equation (3) in the parameter space and to calculate their boundaries assuming that 
excitation frequency Ω is given while the amplitude ε and the system parameters 0β  and 

0ω  can be changed. As the corresponding calculations are rather bulky we use the 

computer algebra system Mathematica [4] for doing necessary analytical calculations. 

2. Characteristic multipliers of the system 

Behaviour of solutions of equation (3) is determined by its characteristic multipliers ρ 
which are the eigenvalues of a monodromy matrix )(TX  and, hence, are determined as 

roots of the characteristic equation 
0))(det( 2 =− ETX ρ , (4) 

where 2E  is the 22×  identity matrix and Ω= /2πT . Here )(tX  is a principal 

fundamental matrix for the equation (3) which is defined as 
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where )(1 tϑ  and )(2 tϑ  are two linearly independent solutions of equation (3) satisfying 

the following initial conditions 
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1)0(1 =ϑ , 0)0('1 =ϑ , 0)0(2 =ϑ , 1)0('2 =ϑ . (5) 
Calculation shows that characteristic equation (5) can be represented in the form 

022 =+− BAρρ , (6) 

where A and B are real-valued parameters given by 

( ))(')(
2

1
21 TTA ϑϑ += , )()(')(')( 2121 TTTTB ϑϑϑϑ −= .  

Obviously, equation (6) has two roots 

BAA −±= 2
2,1ρ . (7) 

Therefore, characteristic multipliers (7) are either two complex conjugate numbers with 

absolute values being equal to B  (if 2AB > ) or two real numbers of the same sign 

satisfying the conditions B≥|| 1ρ , B≤< ||0 2ρ  (when 2AB < ). As functions )(1 tϑ , 

)(2 tϑ  satisfy equation (3) and initial conditions (5), one can readily show that parameter 

B is bounded by the inequality 
10 ≤< B . (8) 

It means that in the case of 1|| 1 <ρ  a trivial solution of equation (3) is stable and it 

becomes unstable when 1|| 1 >ρ . The case 1|| 1 =ρ  corresponds to the boundary between 

stable and unstable behaviour. 

3. Determination of the stability boundaries 

In order to simplify calculations let us rewrite equation (3) in the form 
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where Ω= /0ββ , Ω= /0ωω , tΩ=τ . The boundaries between stable and unstable 

behaviour of solutions of equation (3) in the parameter space are determined from the 
condition 11 −=ρ  or 11 =ρ  what means that equation (9) must have periodic solution 

with a period π4  or π2 , respectively. Hence, we can attempt to determine these 
boundaries directly by seeking a solution of equation (9) in the form of Fourier series 

( ) ( )( )∑
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kk kbkaa ττϑ . (10) 

Note that Fourier series (10) corresponding to π4 -periodic function )(τϑ  can be also 

used to obtain π2 -periodic solution by setting to zero odd coefficients 12 −ka , 12 −kb .  

Substituting solution (10) into equation (9) and setting coefficients of )2/cos( τk  and 

)2/sin( τk  to zero, we obtain two infinite sequences of linear algebraic equations 

determining coefficients ka  and kb  of the Fourier series (10). The first sequence of 

equations determines odd coefficients 12 −ka , 12 −kb  and is given by 
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The second sequence of equations determines even coefficients ka2 , kb2  and has a form 
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For a solution of the systems (11), (12) to exist, determinants of their matrices must 
vanish, thus giving equations for determination of the stability boundaries. 

Note that matrices of the systems (11), (12) have infinite dimensions and, of course, 
we can not calculate their determinants exactly. So we have to truncate the infinite 
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sequences of equations (11), (12) after the nth term, where n is a suitably large number, 
and to calculate the corresponding finite determinant analytically.  

Calculation shows that in the case of 0=ε  determinants of the systems (11), (12) 
reduce to the product of terms of the form 

( ) 22222 4/ βω kk +− ,  

which are equal to zero only if 
2/k=ω , 0=β , ,...3,2,1,0=k  (13) 

As determinants are analytic functions of the parameter ε we can conclude that the 
domains of parametric resonance in the εβω −−  space may exist only in the 

neighbourhood of the points (13). Therefore, for sufficiently small ε we can seek the 
boundaries of these domains in the form 

..2/ 2
21 +++= εωεωω N , ..2

21 ++= εβεββ , ,...3,2,1=N , (14) 

where coefficients kω , kβ  should be found from the condition that the corresponding 

determinants of the systems (11), (12) are equal to zero. To find these coefficients we 
substitute (14) into the expressions for determinants and expand them in powers series in 

terms of ε. Equating coefficients of kε  ( ,...3,2,1=k ) to zero, we obtain a system of 

algebraic equations giving the coefficients kω , kβ  in the neighbourhood of each point 

(13). In the case of 1=N , for example, the first two equations are given by 
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Eliminating coefficients 1ω , 2ω , 1β , 2β from the expressions (14), (15), we obtain an 

equation determining the stability boundary in the neighbourhood of the point 2/1=ω  
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where an error term is )( 4εO . The cross-sections of this surface by the planes 

const=β  and const=ε  are shown in Figure 1. 

Doing similar calculations in the cases of 2=N  and 3=N  we obtain the 
corresponding stability boundaries in the form 
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4. Conclusions  

In the present paper we have studied parametric oscillations of the torsional pendulum 
with damping which are described by the second order differential equation with 
periodic coefficients. We have shown that parametric resonance in the system can occur 
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only if excitation frequency Ω is sufficiently close to the value N/2 0ω  ( ,..2,1=N ), 

damping coefficient 0β  is sufficiently small, and for any 00 >β  excitation amplitude ε 

is greater than some threshold value. Using the infinite determinant method and taking 
into account more equations from the sequences (11), (12), one can easily increase 
accuracy of calculation of the stability boundaries (16)-(18). 

 

Figure 1. Cross-sections of the boundary surface by the planes )1(0005.0 −= kβ  and 

k05.0=ε  for 1=N , 1.0=p , 5,4,3,2,1=k  
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Drgania parametryczne wahadła skrętnego 
W pracy rozwaŜane są drgania parametryczne wahadła skrętnego pobudzanego przez zmienny moment 
bezwładności obracającego się ciała. Ruch układu opisany jest przez równanie róŜniczkowe rzędu drugiego ze 
współczynnikami okresowymi. Zbadano stabilność tego równania i udowodniono, Ŝe rezonans parametryczny 
tego układu moŜe wystąpić tylko wtedy, gdy częstotliwość pobudzania Ω  jest wystarczająco bliska wartości 
2ω0/N (N=1,2,3,…), gdzie ω0 jest naturalną częstością drgań wahadła a współczynnik tłumienia β0 jest 
dostatecznie mały. Ponadto wykazano, dla dowolnej dodatniej wartości β0 rezonans parametryczny moŜe 
wystąpić tylko wówczas, gdy amplituda pobudzenia ε jest większa niŜ pewna wartość progowa. Stosując 
metodę nieskończonych wyznaczników znalezione zostały, w sposób analityczny, granice obszarów 
rezonansowych w przestrzeni parametrów dla N=1,2,3. 
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Abstract  

This work is devoted to results of research wave solid-state gyroscope (WSG) with a metallic cylinder 
resonator and piezoelectric systems of excitation and pickup information, which works in the mode of 
compensation angular velocity sensor. This type of device becomes more and more attractive thanks to its low 
cost, considerable vibrostability, shockproof and enough high precision characteristics. In the work there are 
results of design the power balancing channel, which provides functioning of gyroscope in the compensative 
mode in the environment of MatLAB-Simulink. Numerical parameters, namely basic mode frequencies of 
vibration, which are used in model, were got by means of finite element analysis of real resonator model in the 
environment of ANSYS. It is shown that application of integral-position control law gives the desired dynamic 
characteristics both to the action of permanent angular speed and to the change of it by harmonic law. 

 
Keywords: resonator, standing wave, vibration loop, vibration node, Coriolis’s force, power balancing channel. 

1. Introduction 

Wave solid-state gyroscopes (WSG) are perspective information sensors about object 
angular motion in many application fields – from navigation systems of middle precision 
class, to orientation’s control system for microsatellites. This type of device becomes 
more and more attractive thanks to its low cost, considerable vibrostability, shockproof 
and enough high precision characteristics.  

Principle of WSG’s operation is based on inertial properties of resilient waves, which 
are generated in resonator with acoustical frequencies. In the resonator a standing wave 
is generated by the second resonance mode of vibration (basic wave), which is 
characterized by four loops and nodes of vibration. During the rotation of resonator at a 
angular velocity of Ω the Coriolis’s forces are affecting and generating additional wave 
in the direction of resulting force action. This additional wave is oriented at an angle of 
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ψ to the basic wave. There can be two types of WSG’s resonators – cylindrical and 
hemispherical forms. 

WSG can work in two modes – in mode of angular velocity sensor (AVS) and in the 
integrating mode. The object of research of this work is WSG with cylindrical resonator 
in the mode of AVS. There are two methods of such WSG’s construction – method of 
the direct measuring and compensative.  

Compensative chart in comparison with the method of the direct measuring has some 
advantages. Using direct measuring leads to necessity of compromise between frequency 
band width and sensitivity. Because increase of mode distributing on frequency and 
increase of damping lead to lower values of a long-term response on this angular 
velocity. This compromise is removed by realization of compensative method, which is 
more precisely. Therefore exactly compensative method was chosen for research. 

2. Mathematical Model 

The construction of WSG with a metallic cylinder resonator is presented on figure 1. A 
basic element is a metallic cylinder resonator with diameter from 20 to 42 mm. The 
piezoelectric systems of excitation and pickup information are placed on its diaphragm. 

A resonator with a diameter of 42 mm was selected for research (figure 2). 

 

Figure 1. Chart of WSG with position excitation      Figure 2. Resonator of WSG 

There are three channels in the base construction chart of compensative WSG [1] – 
following the resonator’s eigenfrequency channel, maintenance the vibration’s basic 
mode amplitude channel and the wave’s power balancing channel. The last one retains 
the turning angle of standing wave on the specified value. 

Then it is considered the wave’s power balancing chart (figure 3). Amplitude of 
additional wave, generated by Coriolis’s forces, is measured by piezoelectric, which is 
set in one of the basic wave vibration node. This signal through power balancing channel 
shall be applied to another node of basic wave. 

In the capacity of resonator’s model there were used equations in toroidal coordinates 
[2] at mathematical simulation. These equations are presented below: 

1. Foundation 
2. Bush 
3. Electrode 
4. Resonator 
5. Bearing 
6. Cover 
7. Stem 
8. Screw 
9. Spring washer 
10. Washer 
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where х and y – movement of resonator’s nodes and loops, respectively;  
gx, gy – forces, putted by piezoelectric drive, respectively to the nodes and loops axes 

of sensing element, and besides gy=F(y); 
τ1 and τ2 – time constant of main axes good quality;  
ω1 and ω2 – eigenfrequencies of main axes;  
θτ and θω– parameters which are determined the defects of WSG’s making resonator. 

 

Figure 3. The wave’s power balancing chart 

Equations (1) describe the operation of WSG in the compensative mode. The first of 
them characterizes motion in the resonator’s nodes, the second one characterizes motion 
in the loops. It is obvious from these equations, that equation of nodes carries 
information about angular velocity, which is affecting a gyroscope. Thus in this case 
signals gx, and gy are created by piezoelectric (7), located on the bottom of resonator (4) 
(see figure 1). 

The eigenfrequency vibration value of investigated resonator, used in equations, was 
gained as a result of resonator’s model research in the environment of ANSYS. Models 
from the environment of ANSYS are presented on figure 4. The sensing element 
frequency, which was found is equal to ω1=2106,5 Hertz. 
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Figure 4. ANSYS models of resonator: 
a – eigenfrequency of the second mode of vibration; b –deformation under 

piezoelectric. 

3. Simulation Data 

In the environment of Matlab there was created WSG’s model with taking into account 
invariability of resonator’s parameters. It is presented on figure 5. It is necessary to 
notice that channel of following the resonator’s eigenfrequency and channel of 
maintenance the vibration’s basic mode amplitude are ignored, so long as ideal 
resonator’s model was used. For forming supporting signals of phase detectors and 
modulators with phases shift 0° and 90° on the additional wave were used output signal x 
and its derivative x'. 

 

Figure 5. Simulink model 

а b 
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Simulation results are presented on figures 6, 7 and 8. They represent the system 
behavior with two types of correction in the feedback channel – proportional and 
integral-positional. Also there was analyzed the system behavior when angular velocity 
is constant and when it changes according to harmonic law. 

 

Figure 6. Diagram of WSG’s output signal with proportional correction 

 

Figure 7. Diagram of WSG’s output signal with integral- positional correction 
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Figure 8. Diagram of WSG’s output signal with integral- positional correction and 
change of entrance signal according to harmonic law  

(  output signal;  measured velocity) 

4. Conclusions  

The power balancing system with the proportional correction does not provide the 
required quality of the transient. In this case overshoot reaches 74%.  

For ensuring acceptable characteristics integral-positional correction should be used. 
Its use leads to increasing the fast-acting of the system. In this case, the overshoot is 
reduced approximately 4-fold to a value of 17,5%.  

Question of reducing the dynamic errors requires further consideration. 

References 

1. D. Lynch Coriolis Vibratory Gyros Symposium Gyro Technology, Stuttgart, 
Germany 1998. 

2. D. Lynch Vibrating Gyro Analysis by the Method of Averaging 2nd St. Petersburg 
International Conference on Gyroscopic Technology and Navigation, St. Petersburg, 
Russia, May 24-25, 1995 – р. 26-34. 

 



XXIV Symposium Vibrations in Physical Systems, Poznan – Bedlewo, May 12-15, 2010 

Application of an oscillating flap to improve glider aerodynamical 
characteristics 

Dominik GŁOWACKI 
Warsaw University of Technology, The Institute of Aeronautics and Applied Mechanics 

dglowacki@meil.pw.edu.pl 

Jakub GŁOWACKI 
Warsaw University of Technology, The Faculty of Power and Aeronautical Engineering 

yaqb3@wp.pl 

 Michał KAWALEC 

Warsaw University of Technology, The Faculty of Power and Aeronautical Engineering 
 michal.kawalec@gmail.com 

Józef PIETRUCHA 
Warsaw University of Technology, The Institute of Aeronautics and Applied Mechanics 

japietru@meil.pw.edu.pl 

Abstract 

This  paper summarizes the results of the first stage of the project tilted “Multifunctional two person 
motoglider driven by an electrical motor” conducted at The Institute of Aeronautics and Applied Mechanics at 
Warsaw Technical University, Warsaw, Poland.. The goal of this stage was to build a flying laboratory 
including a mechanism with an oscillating flap. According to on the previously published results of research 
done by Boldyriev the average drag of a wing with an oscillating flap is much lower than the drag of the fix 
wing. The results were so good that we decided to verify them by repeating some of his tests. Discussion of our 
experiments, test results and supporting numerical calculations are also presented in this paper. 
 
Key words:  oscillating flap, experimental model, numerical simulation. 

1. Introduction 

The goal that all aeronautical designers want to achieve is enhancement of the highest 
gilder  glide ratio. Traditional approach, which includes application of different laminar 
shapes in the wing design requires huge money investment and the results are still 
deceiving. Further increase of the already high glide ratio is possible only with the use of 
unconventional methods. Multiple flying techniques observed in nature suggest use of a 
flapping wing. One implementation of this flying technique is described in a very 
interesting, but not commonly known work describing an oscillating flap [1] by 
Aleksander Iwanowicz Boldyriev (Department of Aerodynamics of Moscow 
Aeronautical Institute – MAI) in early thirties of the twenty century. At that time the 
book “Hydro- und Aerodynamik” [2], was published. In this book an interesting 
phenomena was investigated: The top surface of a wing was subjected to an intensive 
flow rate, which significantly increased the lift force and decreased the take-off distance 
of an aircraft. Multiple experiments with models of this type of wing were conducted in 
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1940 and beyond. Flying models and tests in a wind tunnel suggested a new 
aerodynamical phenomena: the thrust force appeared and the lift force increased when 
the flap which was inserted just above and ahead of the leading edge was brought to 
oscillations with the ±15°amplitude  (Fig.1a).  
 A model in the 1:2 scale was built and tested by Boldyriev in a wind tunnel. 
Published results were surprisingly good (Fig. 1b) so good that we decided to verify 
them.  Moreover, even thou that Boldyriev built an experimental aircraft, his work has 
never been commercially implemented and the records related to the plane tests have 
been lost. It may suggest that Boldyriev met some technical difficulties that we are not 
aware about. 
a)                b) 

 
Figure 1. Experimental results achieved by Bołdyriew 

2. Experimental model  

To check experimental results made in MAI and to verify numerical simulation, a model 
of the oscillating flap was built (fig.2). Technical details of this model are presented 
below:  
 - wing span – 530 mm  
 - wing chord – 150 mm (with the 200 mm flap) 
 - angle of flapping movement oscillation - ±15deg 
 - frequency 40Hz (for a short period of time 60Hz)  
 - wing airfoil NACA23020 
Composite structure was chosen for the model. It consisted of a mobile platform with the 
vertically fastened object in a wing shape having a movable front flap and a driving 
mechanism. 
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Figure 2. Experimental model of the oscillating flap: a), on mobile platform, b) in wind 
tunnel 

All elements were made from polymer composites which were strengthen with carbon 
fibers. The driving mechanism consisted of an electrical motor, gear and crank 
mechanisms and a connection rod. This driving mechanism allowed oscillation of the 
flap with designed amplitude and frequency. 

3. Experiments in the wind tunnel 

Experimental investigation was conducted in The Institute of Aeronautics and Applied 
Mechanics’ wind tunnel. The tested element was fixed to the wind tunnel weight using 8 
ties (Fig. 3)  
 

 
Figure 3. The wind tunnel weight 

 
All the measurement were conducted for the angles of attack ranging from -5 to +20° 
with the stream velocity equal to 6m/s. Experiments were conducted using the  Reynolds 
and Strouhal  numbers defined as follow:  
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where: 
ρ – air density = 1.225kg/m3 
u – free stream velocity = 6m/s 
l – linear dimension =150mm 
µ – dynamical viscosity = 17,08·10-6 Pa·s 
f – frequency of the oscillations. 
As the result of the experiment two diagrams showing dependence between the lift force 
and the drag force in the function of the angle of attack for different frequencies of the 
oscillating flap were obtained (Fig.4 ). 
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Figure 4. Aerodynamical characteristics of the oscillating flap  
 

An increase of frequency of the flap oscillations on the wing drag is evident according to 
the Fig.4. It causes increase of the glade ratio. However we have never achieved a 
negative value of that force contrary to the results that were obtained at MAI. It may be 
at least two reasons for it. Firstly, we couldn’t reach any higher frequency than 60Hz. A 
further increase of the frequency caused the resonance of the tested element with the 
wind tunnel weight leading to destruction of the test sample. Secondly, small dimensions 
of our model prevented us from obtaining higher Reynolds and Strouhal numbers.  
What is also worth to mention is the dependency between the lift coefficient and the 
angle of attack. It can be easily observed that lift coefficient is lower when the oscillating 
flap is used. This observation is quite contrary to what it was obtained in MAI. 
 Comparing our results with the results that are presented on Fig 1, we came into 
conclusion that Bołdyriev results are too optimistic. 
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4. Comparison of the numerical and experimental simulations.  

All the numerical simulations were made using commercial software FLUENT. The 
results showing pressure and velocity distribution near the airfoil is presented below. 

   
Figure 6. Pressure distribution around the airfoil with the oscillating flap 

 

 
Figure 7.Velocity vectors around the airfoil with the oscillating flap 

 
Dependency between the drag force and the lift force in a function of time are shown on 
Fig.8 
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Figure 8. The drag and lift forces showing mean values in a function of time  

The mean values of the drag and lift forces characteristics Cx(α), Cz(α) were obtained,  
and compared with the tunnel experimental results (Fig. 9). 
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Figure 9. The lift coefficient and the drag coefficient in function of time 

Numerical simulation made in FLUENT and the experimental results are comparable. It 
proves  that the results gained with the finite volume method are correct and very close 
to those observed in the experiment. 
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 Further simulations for different cases were also conducted. We decided to rerun our 
simulation for higher Reynolds and Strouhal numbers. To do it, we changed following 
inputs of the simulation: 
chord = 465mm 
Free stream velocity = 6m/s 
Frequency of oscillation =60Hz and 120Hz 
Received results are presented on Fig. 10. 
 

 
Figure 10. Dependency between the lift coefficient and the drag coefficient for different 

frequency of the oscillating flap 

5. Conclusions  

Both the wind tunnel and the numerical simulations results are very promising. They 
show the reduction of the drag force and increase of the lift force due to the use of the 
flapping wing.. However, we couldn’t obtain as good results as those claimed by 
Boldyriev in his publications. In spite of that, the application of the oscillating flap 
represents a huge potential for further  improvements in the construction of gliders. 
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It is also worth to mention that a  high frequency of oscillations is essential to obtain a 
visible drag reduction and a substantial lift generation. This frequency may lead to an 
 unwanted transmission of the generated vibrations into different parts of an aircraft. We 
think that  it is at least a partial explanation to the mechanical failure of the first 
prototype that was built and tested in the 40’s. 
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Zastosowanie wibroklapy do polepszania charakterystyk aerodynamicznych szybowców 
Celem pracy podjętej w ramach projektu „wielofunkcyjny dwumiejscowy motoszybowiec z 
napędem elektrycznym AOS-71”, a której wybrane wyniki są przedmiotem zgłaszanego referatu, 
jest zbudowanie latającego laboratorium, które m.in. będzie zawierało urządzenie z wibroklapy. 

Dotąd okazało się, Ŝe średni opór skrzydła z wibroklapą jest mniejszy od oporu skrzydła 
nieruchomego, co juŜ daje , zwiększenie  doskonałości. Jednym z głównych problemów, które się 
pojawiały był  dobór najodpowiedniejszej częstości i amplitudy drgań wibroklapy. Zagadnieniu 
temu, jak i samej metodzie obliczeń oraz weryfikacji doświadczalnej, poświęcony będzie nin. 
referat.  
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Abstract 

The paper presents a rheological model of a body, which properties are described by means of a fractional 
derivative of its deformation. Such a model of a body was used to describe the coupling between a protected 
object and vibration eliminator. Then differential equations of motion were solved and effectiveness of 
vibration elimination was determined. 

 
Keywords: vibration eliminators, models of rheological bodies, fractional derivatives 

1. Introduction 

In the task of vibration elimination the forces of reaction of an eliminator on a protected 
object may be described as a continuum, which properties are described as follows: 

 ( ) 0t,,R =σε , (1) 

where ε is deformation, σ is stress and t is time. 
Basic rheological models of bodies can be described for different forms of Equation 

(1). Selected rheolgical models of bodies are shown in Table 1 [1]. 

Table 1. Basic rheological models of bodies 

Model name Model schema  Constitutive equation 

Hook model 
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Taking a simple discrete two-degree-of-freedom model of a protected system with an 
eliminator (rys.1) into consideration, the force interaction S between the protected object  

 
K 

C 

( ) ( )tsinFtF 0 ω=  

M m 

x y 

? 

 

Figure 1. Physical model of a protected system with a vibration eliminator 

M and the eliminator m is a function of deformation ( )yx −  and deformation velocity 

( )yx && −  of a coupling object: 

 ( ) ( )[ ]yx,yxSS && −−=  (2) 

Hence, for the first two models one can write that force S is proportional: 
- in the Hook model – to the zero derivative of deformation with respect to time - 

( )yx~S − , 

- in the Newton model – to the first derivative of deformation - ( )yx
dt

d
~S − . 

The first case concerns a dynamic eliminator, and the second case – a viscous one. 
Properties of both eliminator types may be compared with the assumption that the force 
of interaction between the eliminator and the protected system is proportional to the 
fractional derivative of coupling element deformation with respect to time 

( ) 10  ,yx
dt

d
~S ≤≤− α

α

α

 [2]. 

2. Physical model of a protected system with an eliminator described using a 
fractional derivative 

Let us consider a simple model of a system protected by a vibration eliminator. The 
protected system has been assumed as a linear single-degree-of-freedom system of mass 
M, stiffness K and damping C, which is moved by a harmonic force of constant 
amplitude (Fig. 2). The eliminator has also one degree of freedom, and the coupling 
between the two masses is described as follows:  

 ( ) 10     ,yxDkS t ≤≤−= αα
α , (3) 

where the operator ( ) ( )•≡•
α

α
α

dt

d
Dt  
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Figure 2. Diagram of a protected system with an eliminator with coupling described by 

means of a fractional derivative 

At present it is difficult to find a physical interpretation of coefficient kα. It describes 
some elastic-lossy properties of the coupling of the two subsystems. For boundary values 
of quantity α  it has the following interpretation: 

• kk0 =→= αα  - stiffness coefficient, 

• ck1 =→= αα  - damping coefficient. 

Equations of motion of the system shown in Fig. 2 for any value of α ( 10 ≤≤ α ) may 
be written as:  
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where the fractional derivative of function f(t) is defined as follows [2]: 
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The exact solution can be found using Laplace integral transform. The Laplace form of 
solutions to Equations (5) may be written: 
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The solution to equations (5) obtained using inverse Fourier transform is rather 
complicated. The paper presents an approximate solution. 
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3. Approximate solution to the equations of motion of the system 

For limiting values of ( )1k  i  0k  k == ααα  and harmonic forcing ( ) ( )tsinFtF 0 ω=  the 

stationary solution to Equations (5) are harmonic: 
 ( ) ( ) ( ) ( )21 tsinBty     ,tsinAtx ϕωϕω −=−=  (7) 

Taking the above into consideration it has been assumed, that the solution to Equations 

(5) for any value of coefficient kα from interval 1,0  will be approximately harmonic: 

 ( ) ( ) ( ) ( ).tsinBtcosBy,tsinAtcosAx scsc ωωωω +=+=  (8) 

If we substitute the assumed solution (8) in Equations (5), then the unknowns 

(amplitude-frequency characteristics) scsc B,B,A,A  must satisfy the system of 

algebraic equations: 
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The following dimensionless parameters were introduced in Equation (9): 
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Hence, the dimensionless solution to the system of differential equations (5) assumes the 

form: 

 ( ) ( ) ( ) ( )γπδτδβπδτδ +=+= 2sinBy  ,2sinAx 1111  (11) 
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where  
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Fig. 3 shows examples of computed dimensionless vibration amplitudes for a protected 
object with an eliminator A1 and without an eliminator A01 for given parameter values.  
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Figure 3. Dimensionless vibration amplitudes for a protected object with an eliminator 
A1 –solid curve, and without an eliminator A01 – dotted curve as a function of 

dimensionless frequency of forcing for parameter values 
05.0k,1.0,01.0 1 === αµξ  and various α values 

From the presented curses of vibration amplitudes for a protected object it can be 
stated that the presented model of coupling between the protected system and the 
eliminator enables to observe the change of curve A1 as a two-modal curve (two-degree-
of freedom system with elastic coupling) into a one-modal one (two-degree-of freedom 
system with lossy coupling), 
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4. Effectiveness of vibration elimination of an eliminator 

Effectiveness of vibration reduction in the task of vibration elimination has been 
assessed based on the function of effectiveness of vibration elimination defined here as a 
ratio of a vibration amplitude for the protected system without an eliminator to the one 
for the system with such an eliminator: 

 ( ) ( )
( )δ
δ

δ
1

01

A

A
E =  (12) 

If the value is greater than one, E > 1, then the eliminator fulfils its task and we can 
observe reduction of the vibration amplitude of the protected system. Comparing curves 
A1 and A01 from Fig. 3 one can easily find out that in some ranges of forcing frequency δ 
vibration reduction can be observed, A1 < A01, (the paper does not present any results of 
computation of effectiveness of vibration elimination for an eliminator described using 
fractional derivatives). 

5. Conclusions 

Based on the conducted numerical research the following conclusions may be drawn: 

• Description of dynamic properties of mechanical systems using fractional 
derivatives makes possible a generalized description of dynamics of classical 
vibration eliminators. 

• For 0 ≤ α ≤ 1 we can freely take elastic-lossy properties of the coupling between a 
protected system and an eliminator into consideration, and therefore we can freely 
model the effectiveness of vibration elimination. 
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Właściwości rezonansowych i dynamicznych eliminatorów drgań 
W pracy przedstawiono model reologiczny ciała, którego własności opisano niecałkowitą pochodną jego 
deformacji. Taki model ciała wykorzystano w opisie sprzęŜenia obiektu chronionego z eliminatorem drgań. 
Rozwiązano róŜniczkowe równania ruchu i określono skuteczność eliminacji drgań mechanicznych. 
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Abstract  

In the paper some aspects of die throw dynamics are presented. Free fall of die as well as their collisions with 
table are analysed. Two models of collision are compared: first based on Newton's hypothesis and the second 
on Poisson's hypothesis. It is shown that from the point of view of dynamical systems dynamics of die is 
predictable. 
 
Keywords: dice throw, collisions, predictability  

1. Introduction  

The dynamics of popular randomizer based on throw of a die is considered. The 
dynamics of this type of gambling can be described in the terms of the Newtonian 
mechanics so one can expect that the outcome can be predicted. However, due to high 
sensitivity to initial conditions, very precise devices are necessary to predict the 
outcome. Therefore, the result is practically pseudorandom. Evidence that the 
pseudorandomness in mechanical systems can be fully understood in terms of nonlinear 
dynamics as temporal sensitivity to the initial conditions generated by nonsmooth 
properties of the randomizers is given in [1]. 

A throw of a fair die is commonly considered as a paradigm for chance. The die is 
usually a cube of a homogeneous material. The symmetry suggests that such a die has 
the same chance of landing on each of its six faces after a vigorous roll so it is 
considered to be fair. Generally, a die with a shape of convex polyhedron is fair by 
symmetry if and only if it is symmetric with respect to all its faces [2]. The polyhedra 
with this property are called the isohedra. The commonly known examples of isohedra 
are: tetrahedron, hexahedron (cube), octahedron, dodecahedron and icosahedron which 
are also used as the shapes for dice. Typical isohedra are shown in Fig. 1. 

Two models of collision are used in the analysis: first based on Newton's hypothesis 
and the second on Poisson's hypothesis. In Newton's model of an impact tangential 
impulses cannot influence on normal impulses whereas Poisson's hypothesis allows an 
energy transfer between tangential and normal directions.  
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Figure 1. Isohedral dice: a) tetrahedron, b) hexahedron (cube), c) octahedron, 
d) dodecahedron, e) icosahedron 

2. Dynamics of coin toss and die throw 

Rigid body dynamics equations can be expressed as two equations in matrix form that 
describe:  
– motion of the body mass centre 

( ) frΩΩrΩaM =++ CCB
&

, 
(1) 

– spatial orientation of the body  

BBCBB maMRωJΩωJ =++& . 
(2) 

In mentioned equations M is the mass matrix of the coin or the die, aB denotes 
absolute acceleration of the point B, rC and RC include coordinates of the vector rC, 
describing the position of centre mass (C) relative to the origin B, JB is the body moment 
of inertia matrix (determined with respect to the body embedded frame ξBηBζB – parallel 
to the ξηζ  and with origin B), and mB is the body force moment with respect to the B, ω 
and Ω are the body angular velocity vectors in the form of column and antisymmetric 
matrices. In general case, for nonsymmetric or nonhomogenous coin, the matrix JB is not 
diagonal, because the axes ξB, ηB, ζB are not principal axes (some nonzero inertia 
products in JB appear).  

The column matrices aB and f are expressed by vector components with respect to the 
fixed frame (xyz). On the other hand, it is more convenient to describe rotations of the 
body by their components with respect to the body embedded frame (ξηζ ). 

The equations (1) and (2) are coupled equations even though free fall of a coin or a 
die is considered, i.e. even if the air resistance is neglected. 

3. Modelling of a collision 

In the analysis of die–table collision impact hypothesis, the laws of linear momentum 
and angular momentum of rigid body as well as  constraint equations are employed. To 
describe a collision of the body with a table we assume that: (i) the table is modelled as 
flat, horizontal, elastic body (fixed), (ii) a friction force between the table and the die is 
included, (iii) only one point of the die is in contact with the table during each collision.  

In most of papers ([1], [3], [4]) the coin collision with the table are analysed using 
Newton’s hypothesis. With those assumptions one gets  
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AyAy vv ′−=′′ χ . 
(3) 

where χ is the coefficient of restitution, A stands for the coin point that is in contact with 

the floor at the instant of impact, Ayv′  and Ayv ′′  are projections of the velocity of point A 
on the direction (y) normal to the impact surface respectively before and after the impact.  
Such an idealization can be used if the energy balance allows it. 

Kane [5] shown, that Newton’s hypothesis used in collision of bodies including 
friction leads – for certain values of friction coefficient µ and restitution coefficient χ – 
to erroneous results. The illustration of such situations is presented in Fig. 2, where the 
mechanical energy loss during the collision is shown. For some regions (coloured in 
green and yellow) the mechanical energy after the collision is bigger than before. 
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Figure 2. Energy loss and energy growth after collision (Newton’s hypothesis) 

Using Poisson's hypothesis [6], i.e. assuming that the normal components of impulse 
vectors in compression phase (S') and expansion phase (S'') are proportional we avoid 
such difficulties as the energy increase after a collision.  

The normal and tangent impulses for the compression phase can be expressed as: 

dtNS
C

A
AC

t

t
tt

N ∫ ′=′
→

lim ,  dtTS
C

A
AC

t

t
tt

T ∫ ′=′
→

lim , 

 
(4) 

and Poisson’s impact law in the normal direction for the compression phase is 
characterized by: 

0≥′NS ,  0≥′Ayv  . (5) 

The impact law for the phase of expansion is described by 

NN SS ′=′′ χ ,  
0≥′′Ayv

. (6) 

From Coulomb's hypothesis of friction we get 

NT SS ′≤′ µ
,  NT SS ′′≤′′ µ

. 
(7) 
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(More details on impacts with friction analysis by Poisson's law can be found in the book 
of Pfeiffer and Glocker [6].) 

Results shown in Fig. 3 were obtained for the same parameters as used in the cases 
presented in Fig. 2. It can be observed that there are no regions where the energy after 
the collision is bigger than before. 
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Figure 3. Energy loss after collision (Poisson’s hypothesis) 

3. Simulation results  

In Figures 4–6 we present some exemplary results of dice throw simulation. The 
trajectory of dice vertices as well as the dice position and orientation during the 
collisions are shown. (For numerical simulations we used Mathematica package [7].) 
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Figure 4. Die throw simulation: a) tetrahedron die, b) hexahedron (cube) die,  
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Figure 5. Die throw simulation – icosahedron die 

In Figure 6 the outcome results of perfect homogenous cube die throw are compared 
with results obtained for imperfect (nonhomogenous) cube die. Simulations were 
performed for the same parameters (except of the mass centre position coordinate ζd) and 
initial conditions for i=30 throws of the dice. Final results of the die throw is depicted by 
the colour corresponding of bottom die face. Obviously the imperfection change the 
result of die throw. The number of analysed collisions was n=20 and we point out that 
there are not changes in outcome results after n>12 collisions (for the assumed 
coefficient of restitution and the die parameters). Bar charts illustrate probability of 
outcome result for each face (f ) of the die.  
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Figure 6. Die throw final results for: a) perfect cube die,  
b) imperfect (unfair) cube die 
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4. Conclusions  

To avoid the mechanical energy increase due to collisions of the die and the table 
Poisson's hypothesis, based on the assumption that the normal components of impulse 
vectors in compression phase and expansion phase are proportional, is used. Poisson's 
hypothesis allows an energy transfer between tangential and normal directions. It can be 
observed that for this model there are no regions where the energy after the collision is 
bigger than before.  

Die throw simulation results presented in the paper show that there are no changes in 
the results after n collisions and that the outcome of the die throw is predictable. The 
final result strongly depends on the initial conditions. 
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Dynamika rzutu kostki do gry z uwzględnieniem zderzeń  
Przedmiotem opisanych badań jest analiza zderzeń kostki do gry ze stołem.  

Przeprowadzone obliczenia numeryczne i analiza równań wykazały, Ŝe uŜycie hipotezy Newtona do opisu 
zderzeń dla niektórych wartości współczynnika restytucji moŜe prowadzić do błędnych rozwiązań. W takich 
przypadkach obserwuje się wzrost wartości energii mechanicznej ciała po uderzeniu w stosunku do jej 
wartości przed uderzeniem. Wykorzystanie hipotezy Poissona pozwala na uniknięcie takich niespodzianek.  

Na podstawie otrzymanych wyników obliczeń numerycznych stwierdzono, Ŝe wynik rzutu jest 
zdeterminowany przez warunki początkowe, Ŝe kolejne zderzenia powodują zmiany wyniku rzutu kostką, ale 
od pewnej liczby zderzeń rezultat rzutu nie ulega zmianie. 
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Abstract 

The article presents energetic experimental method of verification dynamical model of human under whole 
body vibration. There are two phases of this method. Base of the first one is laboratory measurements of 
strength stimulation power and energy flow. Measurement is made in point of connection actuator and seat 
loaded sitting operator for slow turn of standard frequency band for whole body vibration. 

The second phase its digital simulation of power distribution and energy flow in biodynamical structure of 
physical model human seated also at this some frequency. 

Compare e.g. two energy flow curves into biodynamical structure of human body and energy dose, which 
passed in this time to man, allows to assess the correctness of the structure and dynamical parameters of 
physical models. 

 
Keywords: Human body model, whole body vibration, energy flow, power distribution 

1. Introduction 

The average man seems to be safety at work place. Man might think that there are no 
more possibilities to improve conditions and safety of work. Nowadays very important is 
ergonomic of work environmental. Using its principles man can design places of work 
significantly less harmful effects on health workers. 
 Appreciated are also other areas of technical sciences, a team of specialists invite 
medicine doctors of work, anthropologist, constructors, mechanics, mechatronics, 
acoustics, etc. 
 Modern work stations are first tested not by humans, but using dummies and human 
models. These stations must compliance with requirements  European directives and ISO 
standards. Correctness of biodynamical structure, mapping the human body and its 
parameters depends on the final success of teem construct equipment work stations. In 
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this article proposed energy method of verification physical models of human under 
whole body vibrations used in ergonomics. 

2. Enerty experimental method of verification dynamical models of human 

Energy experimental verification methods of  human models based on comparison 
energy flow domain at a specific point of experimental stand and point reduction 
biomechanical model in time and frequency range. The energy modeling process has 
already been widely described in the literature [1-6]. It consists of three phases and the 
most important is the real object transformation, which is the subject of research in the 
field of power distribution and energy flow in test pattern. In the case of research it was 
biological subsystem a human-operator, taking a sitting position of their work (fig 1a). 
The real object transformation is to describe the phenomena of the energy in object 
biodynamical structure by physical and mathematical energy model. In Figure (1. b) 
shows the verified energy physical model of human D-G-HB 2005 seated, an effect of 
research. The substitute dynamic parameters as masses, elastic deformation and damping 
of 28 degrees of freedom model have been establish in research.  
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Figure 1. a) The real object – man – operator seated, b) physical model of human D-G-

HB 2005 [6] 

Physical model was the basis for elaborate a mathematical model using Lagrange 
equations II type. Solve mathematical model constituting layout 28 differential equations 
of motion has been done by digital simulation method using special programme 
MATLAB/silumink.  

The energy model of investigate object is obtained by use of elementary Energy 
Processor MWD for each degree of freedom by extending dynamics digital simulation 
program. Those Processors enable pass from analysis of the amplitude acceleration, 
velocity and displacement to areas: power distribution and energy flow in an investigated 
structure. Dynamic and energy analysis synchronously during various dynamic tests. 
Selection of dynamic parameters elastic deformation and damping were based on the 
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acceleration transmitance module Seat-Head. Its known course of experimental – fig. 
4.a,  let determine correctness changes values in amplitude and frequency scale.     

Known from literature physical model HBMN-3 [8] showed large differences in 
dynamic parameters, and its transfer function acceleration (fig. 4. b) significantly differ 
from experimental (average 25 measurements): 36% frequency characteristic domain 
and 1400% as regards maximum amplitude. 

 Experimental studies had been done in the Laboratory of  Dynamic and Ergonomics 
Metasystem: Man – Technical Object – Environment. Figure 2 shows the test site for 
dynamic and ergonomic research involving people. It’s the most important element was  
electromagnetic inductor DVC 48 from LDS. On the inductor table was piezoelectric 
sensor acceleration vibrations fasten as reference sensor join return stabilization 
amplitude acceleration the frequency band.  

  
Figure. 2. View of the test stand to test the influence of whole body vibrations on a man 

in a sitting position; 1-a two-point security belt, 2-button Stop Energy, 3- amplifier 
LDS, 4-seat's Ster company, 5 – sensor force CL 16, 6 – inductor LDS, 7 – mount 

vibration sensor head [6]. 

Scheme of the measuring system, built for experimental research of identification and 
allocation of power distribution and energy flow in the human biodynamic structure, 
shown in figure. 3. 

Dynamic studies had enabled construction of a new physical model of human called 
in short D-G-HB 2005 seated (fig 1b). 

Constructed structure and its new dynamic parameters were subjected to dynamic 
simulation investigation. The values of the acceleration transmittance model of seat-
Seat-Head assistance for D-G-HB 2005 model in a sitting position are presented below 
in the frequency range 4 to 80 [Hz] (fig 5). 
Comparison of the percentage difference in the values of characteristic frequency and 
maximum values of the acceleration transmittance module of Seat-Head assistance 
experiment with tests on D-G-HB 2005 model rendered similar results. This mainly 
concerned the frequency of vibrations, where both types of transmittance reached 
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maximum values. The error here was only 3,64 %. The difference between the maximum 
values reached in both cases was also within the error range, it amounted to 12 %. It was 
the first successful attempt to adjust the model to the real life object.  

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3. The scheme of measuring system built for experimental power distribution and 

energy flow in the biodynamic structure of human [6]: 1 – LDS amplifier power 2 – 
compressor, 3 – solenoid inducer, 4- digital driver system DVC 48, 5-tensometric 

receptor force CL 16, 6 – amplifier CAX 1304, 7- vibration sensor acceleration, 8 - 4391 
B&K 4322 acceleration sensor vibrations, 9 – preamplifier NEXUS 2692, 10 – digital 

recorder TEAC RD135 , 11-100 MHz Digital oscilloscope 5501 U. 
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Figure 4a. Mean value of acceleration 

transmittance module Seat-Head 
assistance. Experiment [5] 

Figure 4b. Mean value of acceleration 
transmittance module Head-Seat 
assistance HBMN-3 model [5] 
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To definitely confirm the compliance of D-G-HB 2005 model with the real life object, 
flow of input energy applied to the tested object in the two cases was calculated within 
the tested range of frequency. Fig. 6 present the functions of the energy increase in case 
of the experiment and D-G-HB 2005 model respectively. 
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Figure. 5. The acceleration transmittance module Seat-Head performed for model  
D-G-HB 2005 for seated at frequencies 4 ÷ 80 [Hz] [6]. 
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Figure. 6a. Dose of the input energy flow 
at the tested object: Experiment [6]. 

Figure. 6b. Dose of the input energy flow 
at the tested object: D-G-HB 2005[6]. 

 
Comparing the two functions, it may be observed that their courses are similar. 

Detailed analysis of both flow performance graphs of the energy flow (energy dose) has 
shown slight deviations with regard to the input energy dose applied to the tested object 
e.g. in both flow performance graphs in the frequencies of 10 and 80 [Hz]. Difference in 
the energy dose in the experiment and in case of D-G-HB 2005 model is ~ 3% for the 
frequency of 10 [Hz] and ~ 4,5 % for the frequency 80 [Hz]. The results confirmed the 
correctness of the new human body model D-G-HB 2005 in a sitting position as the 
input energy depends on the entire dynamic structure of the tested subsystem of man. 
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On the basis of the carried out analyses, it was assumed that the structure and 
dynamic parameters of the new model are correct. Therefore, we could continue the 
research on power distribution and energy flow in the biodynamic structure of man 
exposed to whole body vibrations. 

3. Summary 

Presented in this article energy experimental method verification of human physical 
models  allows clearly validates the biodynamical structure of  new model MWD-MG-
HB 2005 man seated. This method allegations of occupational literature that science has 
not yet sufficiently far away to explore energy passing through the human body [7]. 
Except this, proposed energy propagation method allows to test power distribution and 
energy flow in all structural elements: masses, elastic deformation and damping. So far 
in studies of the effect of whole body vibrations and its assessment on human overlooked 
resilient and damping biodynamical structure, therefore their results may differ from 
reality.  
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Abstract  

The paper introduces an alternative method of modelling and modal reduction of continuous systems. 
Presented method is a hybrid one. It combines the advantages of modal decomposition method  and the rigid 
finite element method.  In the proposed  method continuous structure is divided into one-dimensional 
continuous elements. For each 1D element modal decomposition and reduction is applied. Interactions between 
substructures are described by lumping techniques. Presented method enables to obtain reduced, low order 
modal model of considered system. The proposed approach is illustrated by selected examples. 
 
Keywords: modelling, model reduction, modal analysis, mechanical system, dynamic systems, vibration. 

1. Introduction 

In the static and dynamic analysis of the elastic bodies the Finite Element Method (FEM) 
is widely used. The conventional discretization (Fig. 1a,c) yields to a set of ordinary 
differential equations. However, to obtain accurate results it is necessary to apply a great 
number of finite elements and to solve high order model (a big number of the second 
order differential equations). To avoid such problem, different methods of model order 
reduction can be applied. Modal decomposition and reduction is one of them [1]. 
However, in standard approach to obtain modal reduced order model it is necessary to 
derive and consider high order model by FEM. 
 In the paper a new, alternative method of model order reduction is described. It is a 
hybrid one and combines two well known approaches: modal decomposition method and 
the rigid finite element method. 
 In the proposed method the body is divided into strips (for 2D system - Fig. 1b) and 
prism (for 3D system - Fig. 1c). Each strip or prism represents one-dimensional 
distributed system and it is described by appropriate second order partial differential 
equation. However, these equations have also terms related to interactions between 
strip/prism. Hence, the given system can be described by set of a couplet second order 
partial differential equations. For each 1D element modal decomposition and reduction is 
applied whereas interactions between elements are described by lumping technique. In 
this case no complex FEM model is considered for modal decomposition. 
 Appropriate mathematical description of 2D system is presented below. 
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Figure 1. Spatial discretization of 2D and 3D body: a), c) conventional finite element 
method, b), d) proposed hybrid method 

3. Hybride model of 2D body 

Applying Rigid Final Element Method to 2D body divided into nx×ny finite elements one 
obtains appropriate system of ordinary differential equations (nx×ny second order 
equations) [1]. Such FEM model can be transformed to the continuum representation by 
letting dx→0. In that way small differences divided by dx become derivatives. 

 

 

 
             

Figure 2. Discrete model of the hybrid 2D structure: a) continuous body, b) elementary  

Thus, 2D body can be described by the following, ny partial differential equations (after 
Laplace transform with respect to time): 
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where: E – Young’s modulus, G – shear modulus, I – area moment of inertia,  
A – cross section area, κ – numerical shape factor of cross section,  
ρ – mass per unit volume, ξ, η – transverse displacements, φ – rotation (angular 
displacement), f – distributed force (excitation), τ – distributed torque moment 
(excitation), i=1,2,…,nx, j=1,2,…,ny. 

Solution of these equations with appropriate boundary conditions gives accurate 
prediction of static and dynamic response (displacement, strain, stresses etc.) for many 
2D elastic body. Applying modal decomposition for underlined parts of equations (1, 2, 
3) and applying FEM for remained parts one can obtain discrete model of the considered 
system written in the form: 
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wheras: q – modal coordinates, m – modal coefficients of inertia, k – modal coefficients 
of stiffness, Y – eigenfunction, n – number of retained modes, nx – number of ports for 
lumped interactions, j=1,…, ny, ny – number of strips, f – generalized external force, 

dxd /ΦΦ =′ , subscripts x, y, φ are related to translations in x, y directions and rotation 
respectively. 

It is very easy to construct the modal models because eigenvalues and 
eigenfunctions related to one-dimensional second order systems are known.  
Fig.3 presents general concept of developed hybrid model. Proposed approach can be 
applied for modeling of 2D, 3D and 1D continuous systems. Of course, in the case of 1D 
system, there are not interactions between strips/prisms. In this case the method can be 
applied for modelling of discrete-distributed systems with non-self-adjoined components 
– see illustrative example 2 and [2, 3, 4]. 

 
Figure 3. General block diagram of hybrid model 

3.1. Illustrative Example 1 

As an simple example let us consider one-strip system - the Timoshenko beam model 
(Fig. 4) which is described by the following equations (they can be obtain as the special 
case of equations (1÷3)): 
 ηκηρηκ ′′−==′− AGAsFAGf 2 , (7) 

 ϕϕρηκϕκτ ′′−==′+− EJIsTAGAG 2 . (8) 

FEM model of interaction 
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Figure 4. Simply supported beam with the following parameters: 11102 ⋅=E , 
101093.7 ⋅=G , 8000=ρ , b=0.05, h=0.1, 2.1=κ , l=1. 

The results are presented in Fig. 5. Frequency characteristics of the beam are obtained 
for the hybrid models with 6 retained modes and with 12 finite elements. From these one 
can see that in the range of frequency related to a number of retained modes frequency 
responses for reduced models have the same shape as for the reference continuous one. 
 

 

Figure 5. Verification of the reduced Timoshenko beam model 

3.2. Illustrative Example 2 

As the second example let us consider the rotor presented in Fig. 6a. 
The difficulties in modal analysis of rotor system arise from the non-self-adjointness. To 
avoid that problem the following approach is proposed. Modal reduced model is built up 
for the system without gyroscopic effect. 
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Gyroscopic moments are then modeled by application of rigid finite element method. 
Because of above reduced modal model must contain an appropriate number of inputs 
and outputs needed to connect lumped elements related to gyroscopic interactions 
between beams vibrating in X-Z and Y-Z planes. 
Frequency characteristics of the rotor (Fig. 8) are obtained for the unit step force input 
signal acting at the left disk (Fig. 6) and the displacement output signal observed at the 
same point. From these one can see that in the range of frequency related to a number of 
retained modes frequency responses for reduced models have the same shape as for the 
reference model. 

4. Conclusions 

In this paper model reduction of continuous systems is presented. Two techniques: 
modal decomposition and finite element approach are applied simultaneously. The final 
reduced model consists of two parts - the reduced modal model and the finite element 
model. General idea of such approach has been presented in simple illustrative examples. 
The proposed approach enables to obtain accurate low order lumped parameter model 
representation of considered system. Computer simulations and numerical calculations 
proved that the proposed method is efficient and can be applied for others, more 
complex systems. 
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Hybrydowe modele zredukowane układów ciągłych 
W artykule przedstawiono alternatywną metodę modelowania i modalnej redukcji układów ciągłych. 
Zaprezentowana metoda jest metodą hybrydową. Łączy zalety metod dekompozycji modalnej i sztywnych 
elementów skończonych. W proponowanej metodzie układ ciągły dzielony jest na jednowymiarowe 
podukłady ciągłe. Dla kaŜdego podukładu jednowymiarowego budowany jest modalny model zredukowany. 
Poszczególne modele zredukowane wiąŜe się ze sobą poprzez oddziaływania między nimi modelowane za 
pomocą metody sztywnych elementów skończonych. Zaprezentowana metoda umoŜliwia otrzymanie 
zredukowanego modelu modalnego niskiego rzędu. Proponowane podejście jest zilustrowane prostymi 
przykładami. 
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Abstract 

The trial of the mechanic’s description of material point with variable mass where the classical position vector 
was replaced with the static moment vector was presented. In this way, the present position and the current 
mass were bound into a single quantity. The description contains: the dynamic motion formulae, the 
momentum and the impulse of force, work, kinetic energy, the equivalence of the work and of the kinetic 
energy as well as the conservation law of mechanical energy. The example of the fall of the evaporating drop 
in the gravitational field was shown.  
 
Keywords: system with changing mass, dynamic system, static moment 

1. Introduction  

Mechanics with variable mass as classically defined contains the following cases: 
- changes in mass in the system, 
- changes in mass distribution in the system, 
- the changes of mass as well as of its distribution. 

History and achievements in the examinations of systems with variable mass are 
described in literature [1], [2]. 

In the paper, the material point in which the change in mass occurs is analyzed. The 
vector of static moment joining the position of the point with its present mass is used 
instead of the position vector. Such an attitude in authors’ conception constitutes  
a formal experiment.  

2. The vector of static moment 

If the material point has a mass m  and the position described with the coordinates 
ix  in 

the given system of coordinates, then the vector of static moment is defined with the 
following formula: 
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ii mxs = . (1) 

The derivative of this vector is calculated:  
.iii mdxdmxds +=  (2) 

It is easy to notice that the above derivative is a vector created from the addition of the 
two components:  

- dmxi
– with the direction of the position vector, 

- 
imdx  – with direction tangent to the trajectory of the point in the given point (in 

kinematical understanding). 

3. Momentum and the dynamic equations of the motion 

Based on the definition (1) the momentum of material point can be calculated in the 
form:  

iii xmsxm &&& −= . (3) 

The time derivative of the momentum (3) is given with the following expression: 
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The above result allows to write the dynamic equation of motion: 
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where 
if  is a given external force.  

The equation (5) is the quadratic ordinary differential equation relative to the time with 
the variable coefficients. The equation (5) must be completed with the initial conditions 
put on the searched function and its first time derivative. It is also necessary to assume 
the open form of the mass evolution. 

4. Kinetic energy and differentiated work 

Momentum (3) can be depicted in the new form using (1):  

iii s
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then kinetic energy 
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so the kinetic energy is the function of variables 

),,,( ii ssmmTT &&= . (9) 

The differentiated work is described with the commonly-known expression: 
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ii dxfdL = . (10) 

Thanks to the equation (2) the following can be obtained:  

dms
m

ds
m

dx iii 2

11
−= , (11) 

hence the differentiated work (10) gets a new form:  

dmsf
m

dsf
m

dL iiii 2

11
−= . (12) 

It seems that the equivalence of work and kinetic energy should occur, however, the 
authors were not able to show it. 

5. Free fall of the drop evaporating in the gravitational field 

In case of evaporating drop, in accordance with literature [1], the open form of the 
evolution of mass is taken into account:  

temtm λ−= 0)( , (13) 

where 
0m  – the initial mass, λ  – the constant parameter of vaporization. 

In such case, the dynamic equation of motion (5) is simplified to the form: 

iii fss =+ &&& λ . (14) 

It is assumed that fall is carried out along vertical axis with the direction of 
gravitational force. The equation of this matter of contention has a form: 

mgss =+ &&& λ , (15) 

where g  - gravity acceleration. 

Using the homogenous initial conditions:  
0=t , 0)0( =s& , 0)0( =s , (16) 

the solutions is obtained:  

( )
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20

. (17) 

The equation (15) and the solution (17) in the formal form refer to the issues of fall in 
the medium constituting resistance.  

6. Conclusions 

The presentation of the benefit of application in the description of the static moment is 
difficult to point out at the current phase of the research. However, it seems that this 
formal experiment opens new scientific fields. In the continuous systems, mass could 
take tensor’s properties what would broaden significantly the theoretical horizons.  
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Prawo Newtona dla punktu materialnego o zmiennej masie w opisie momentu statycznego 
Przedstawiona została próba opisu mechaniki punktu materialnego o zmiennej masie w której zastąpiono 
klasyczny wektor połoŜenia wektorem momentu statycznego. W ten sposób połączono w jednej wielkości 
aktualne połoŜenie z aktualną masą. W tym opisie przedstawiono : dynamiczne równania ruchu, pęd i popęd, 
pracę, energię kinetyczną, równowaŜność pracy i energii kinetycznej oraz zasadę zachowania energii 
mechanicznej. Przedstawiono przykład spadku kropli parującej w polu siły cięŜkości. 
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Abstract 

In practical applications of vision systems to mechanical systems vibration measurements, the problem of 
image reconstruction on the basis of registered noisy image is frequently encountered [6]. Such problem is an 
inverse, ill-posed problem, which means that even small disturbances of the registered image have significant 
influence on the accuracy of its reconstruction. For the purposes of image noise reduction, regularization 
methods were used. In the current paper (part I), noise reduction of the test image was carried out by means of 
the algorithm requiring decomposing matrix modelling noise into singular values, which, in case of images of 
significant dimensions, requires significant computational effort. Therefore, for the purposes of regularization 
of images of significant dimensions, in the second paper (part II) the iterative approximate method formulated 
by the author was used. Obtained results proved that formulated and implemented methods find application to 
noise reduction of images, the reconstruction of which is impossible to carry out by means of other methods 
because of the excessive loss of information resulting from imposed noise. 
 
Keywords: noise reduction, image reconstruction, regularization 

1. Introduction 

The problem of image reconstruction on the basis of registered noisy image is an inverse 
ill posed-problem [1, 7] (Fig. 1), which means that even small disturbances of registered 
image have significant influence on the accuracy of its reconstruction. Therefore, in this 
paper, for the purposes of the analysed images noise reduction, regularization methods 
were used [1, 2, 7]. Images burdened with noise were filtered by means of the Tikhonov 
regularization method, Truncated SVD (TSVD), Damped SVD (DSVD) and Maximal 
Entropy (ME) methods [2, 4]. Algorithm of direct image regularization (Fig. 2) 
formulated by the author consists in: 
1. Transformation of matrix describing registered noisy image {bsz}N×N  into column 

vector {b1 sz}N×1 by writing consecutive columns one below the other. 
2. Estimation of noise matrix [A]N

2
×N

2 modelling disturbances appearing in the process 
of image registration. 

3. Computing vector describing filtered image {x1reg} by regularization of problem: 
[A]N

2
xN

2{x1reg}Nx1={b1sz}Nx1 by means of the selected regularization method. 
4. Computing matrix describing regularized image [Xreg] N×N by transformation of 

vector {x1reg}N×1. 

 At the present stage of development of commonly available PC computers, the 
proposed algorithm of noise reduction with the use of regularization methods (Fig. 2) 
can not be applied to filtration of images of significant dimensions. Image regularization 
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according to that algorithm requires decomposition of matrix modelling noise into 
singular values, which in case of matrices of significant dimensions, requires great 
computational effort. Matrix modelling noise of image of dimensions N×N is of 
dimensions N2×N2. 
 

 

 

 

 

Figure 1. Image reconstruction on the basis of registered noisy image. 

Figure 2. Algorithm of direct image regularization. 
 
Therefore for the purposes of regularization of images of significant dimensions 
(e.g. 512×512 pixels) the iterative approximate method formulated by author was used 
(Fig. 3). The idea of the method consists in application of the selected method to 
regularization of the following issue: 
 [ ] { } { }

1

)(
11

)(
1

)(
1 22

××× =
M

k
szM

k
MM

k bxA  (1) 

where [A1
(k)] is a matrix consisted of elements lying in the vicinity of matrix [A] main 

diagonal, corresponding to the kth fragment of image written in the form of vector. 
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Figure 3. Proposed algorithm of regularization of images of significant dimensions. 

 The issue of image reconstruction on the basis of registered noisy image (Fig. 4) can 
be also described by means of the Fredholm integral equation of the first kind [3] in the 
following form: 

 ( ){ } ( ){ } ( ){ } ( ){ }tsgdxdyyxftyksxk ,,,, 2

1

0

1

0
1 =⋅⋅∫ ∫  (2) 

where: {k1(x, s)}, {k2(y, t)} integrands (known), defined for horizontal ({k1(x, s)}) and 
vertical {k2(y, t)} directions, {g(s, t)}: right side of the equation (known function), 
{f(x, y)}: solution. 
Mathematical proof of the fact that the Fredholm integral equation of the first kind is 
always ill-conditioned can be found in [5]. 
 
 
 
 
 
 
 
 
Figure 4. Description of the image noise reduction issue by means of the Fredholm 
differential equation of the first kind. 
Such a description is valid for images burdened with noise distributed uniformly, for 
which disturbances in vertical and horizontal directions are independent [3]. As a result 
of discretization of relation (2), equation describing the problem of registered image 
noise reduction has the following form: 
 ( )[ ] ( )[ ]( ) ( ){ } ( ){ }tsGyxFtyKsxK ,,,, 21 =⋅⊗  (3) 

where ⊗ : Kronecker product, defined for matrices [A] and [B] as [3]: 

· = 

= · 

= · 
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 Description of the issue of image reconstruction on the basis of registered noisy 
image by the use of the Fredholm integral equation of the first kind was implemented in 
the software package MOORe TOOLs (ang. Modular Object Oriented Regularization 
Tools) [5] dedicated for MATLAB environment. 

1.1. Matrix modelling noise 

Reduction of image disturbances by the use of the presented algorithms of image 
regularization requires identification of character of disturbances influencing image 
registration process. Below there are presented relations making it possible to formulate 
matrix [K] modelling frequently encountered disturbances of image registration process 
[3, 5]: 
 [ ] [ ] [ ]21 KKK ⊗=  (5) 

where [K1], [K2]: matrices modelling noise in horizontal ([K1]) and vertical ([K2]) 
directions. 

 In the literature [5], under the term of atmospheric blur, the phenomena of blurring 
remote objects contours by vibrating air masses is understood. Elements of matrix [K] 
modelling noise of that type is described by the following relation [5]: 

 ( ) ( ) ( )









 −+−
−⋅=

2

22

exp
1

σπσ
tysx

K ij
 (6) 

where σ: standard deviation of noise. 

2. Filtration of test image burdened with noise of known statistical properties 

Test image of dimensions 16 × 16 pixels (Fig. 5a) was burdened with the atmospheric 
Gaussian blur of zero mean value and σ = 0,7. Regularization of noisy image (Fig. 5b) 
was carried out by means of the software realizing the algorithm presented in the Fig. 2 
with the use of functions implemented in the Regularization Tools package. Results of 
the filtration of the considered test image carried out with the use of different 
regularization methods are presented in the Fig. 5c, d, e, f [4]. 
 In order to assess quality of the obtained results, the differences between the 
noiseless and noisy image (Fig. 6a) as well as between the noiseless image and images 
reconstructed by means of the considered regularization methods were computed 
(Fig. 6b, c, d, e). The smallest differences between the noiseless and regularized image 
were observed for the Tikhonov (Fig. 6b) and ME (Fig. 6e) methods, the most 
significant differences for the TSVD method (Fig. 6c). 
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Figure 5. Image of dimensions 16×16 pixels: a) noiseless, b) burdened with Gaussian 
noise of zero mean value and σ = 0,7 and regularized by means of the c) Tikhonov, 

d) TSVD, e) DSVD and f) ME methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Differences between noiseless image and image a) burdened with Gaussian 
noise of σ = 0,7, and filtered by means of the b) Tikhonov method, c) TSVD, d) DSVD, 

e) ME methods and f) assumed intensity scale. 

 In the Fig. 7 there are presented histograms illustrating the number of points of 
different intensity values in the noiseless image (Fig. 5a), image burdened with an 
atmospheric Gaussian blur of considered statistical properties (Fig. 5b) and noisy image 
filtered with the use of the considered regularization methods (Fig. 5c, d, e, f). 
 Histograms obtained for images filtered by means of the Tikhonov regularization 
method (Fig. 7c) and maximal entropy method ME (Fig. 7f) bear most resemblance to 
the histogram of noiseless image (Fig. 7a) and are characterized by a slight broadening 
of main peaks of noiseless image into side peaks. 

a) b) c) 

d) e) f) 

b) c) 

d) e) 

f) 

a) 
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Figure 7. Histograms for a) noiseless image, b) image burdened with Gaussian noise of 
σ = 0,7 and filtered by means of the c) Tikhonov regularization method, d) TSVD, 

c) DSVD and d) ME methods. 

3. Conclusions and final remarks 

Obtained results proved suitability of the algorithm of direct image regularization  
(Fig. 2) formulated and implemented in the Matlab environment by the author for 
filtration of small noisy images [4]. Results of reconstruction of images of significant 
dimensions carried out by means of the elaborated iterative approximate method are 
presented in the paper under the same title (part II) that stands for the continuation of this 
paper. 
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Zastosowanie metod regularyzacji do redukcji zakłóceń rejestrowanych obrazów – część I 
Praca dotyczy zagadnienia redukcji szumów pomiarowych obrazów z zastosowaniem metody regularyzacji 
Tichonowa, TSVD, DSVD oraz ME. Rekonstrukcję obrazów przeprowadzono z zastosowaniem 
sformułowanych i zaimplementowanych przez autorkę algorytmów. Wykazano przydatność sformułowanych 
metod w przypadku obrazów, których rekonstrukcja nie jest moŜliwa do przeprowadzenia innymi metodami ze 
względu na zbyt duŜą utratę informacji spowodowaną nałoŜeniem szumów. 
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Abstract 

In practical applications of vision systems to mechanical systems vibration measurements, the problem of 
image reconstruction on the basis of registered noisy image is frequently encountered [6]. Such problem is an 
inverse [1], ill-posed problem [2, 7], which means that even small disturbances of the registered image have 
significant influence on the accuracy of its reconstruction. The first paper, denoted as part I, concerns the issue 
of the test image noise reduction carried out by means of the direct image regularization method. The main step 
of the method algorithm consists in decomposing matrix modelling noise into singular values, which, in case of 
images of significant dimensions, requires significant computational effort. Therefore, for the purposes of 
regularization of images of significant dimensions, in the current paper (part II), the iterative approximate 
method formulated by the author was used. Obtained results proved that formulated and implemented methods 
find application to noise reduction of images, the reconstruction of which is impossible to carry out by means 
of other methods because of the excessive loss of information resulting from imposed noise. 
 
Keywords: noise reduction, image reconstruction, regularization 

1. Introduction 

The research presented in the paper stands for the continuation of the research presented 
in the first paper (denoted as part I) and concerns reconstruction of the image of 
dimensions 512 × 512 pixels (Fig. 1a), depicting man eating an orange. The image was 
burdened with the atmospheric Gaussian blur of zero mean value, magnitude A = 1 and σ 
= 2 (Fig. 1b) and regularized [2, 4, 7] by means of the Tikhonov regularization method 
(Fig. 1c), Truncated SVD (TSVD, Fig. 1d), Damped SVD (DSVD, Fig. 1e) and 
Maximum Entropy (ME, Fig. 1f) methods. Taking into account significant dimensions of 
the considered image, for the purposes of noise reduction, the iterative approximated 
method formulated by the author was applied. Detailed description of the method 
algorithm is provided in the paper under the same title denoted as part I. In spite of the 
fact that the image filtration was carried out by means of the approximate method, the 
overall time of computations carried out in the MATLAB 5.3 environment (for PC 
computer equipped with the 2 [GHz] processor and dual 512 MB) amounted to 7 hours. 

2. Results of filtration of image of dimensions 512 × 512 pixels burdened with noise 
of known statistical properties 

In order to assess the quality of images reconstructed with the use of the considered 
regularization methods, the differences between the noiseless image and noisy deblurred 
images were computed (Fig. 2a, b, c, d). 
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Figure 1. Image a) noiseless, b) burdened with the atmospheric Gaussian blur and 

filtered with the use of the c) Tikhonov regularisation method, d) TSVD, e) DSVD and 
f) ME methods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Differences between noiseless image and noisy images filtered with the use of 

the a) Tikhonov regularization method, b) TSVD, c) DSVD and d) ME methods, 
e) assumed intensity scale. 

The smallest differences were observed for images reconstructed by means of the 
Tikhonov regularization and ME methods. 
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In the Fig. 3 there are presented histograms illustrating the number of pixels of a 
given intensity value for noiseless image (Fig. 3a), image burdened with the atmospheric 
Gaussian blur of given statistical properties (Fig. 3b) and noisy images reconstructed by 
means of the considered regularization methods (Fig. 3c, d, e, f). 
 

Figure 3. Histogram of images presented in the Figure 2. 
 
 The noise imposed on the considered image resulted in the information loss in 
the 0,55 ÷ 1 range of the intensity scale. As the result of application of the elaborated 
approximate image regularization method most of the previously lost information was 
retrieved. 
 Cutting out of the histograms values from the 0 ÷ 0,3 range of the intensity scale 
results from the specific properties of the applied iterative approximate method 
dedicated to regularization of pictures of significant dimensions, the essence of which 
consists in analyzing only the fragments lying in the vicinity of the image main diagonal. 
Therefore obtained regularized images (Fig. 1c, d, e, f) are brighter than the original 
noiseless image. 
 The further research concerned the image of man eating an orange (Fig. 4a), 
burdened with the atmospheric Gaussian blur of the zero mean value, magnitude A = 3 
and σ = 2 (Fig. 4b). Introduction of noise of discussed properties resulted in the loss of 
image sharpness in such a degree that, on the basis of noisy image, it is difficult to figure 
out what was depicted in the original image. In order to reduce the introduced noise, the 
consecutive image fragments were regularized with use of the Tikhonov regularization 
method (Fig. 4c), TSVD (Fig. 4d), DSVD (Fig. 4e) and maximal entropy (Fig. 4f) 
methods. Histograms of images presented in the Fig. 4 are shown in the Fig. 5. 
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a) b) 

c) d) 

e) f) 

Figure 4. Image a) noiseless, b) burdened with the atmospheric Gaussian blur of zero 
mean value, A = 3 and σ = 2 and filtered with the use of the c) Tikhonov regularization 

 d) TSVD, e) DSVD, f) ME methods. 
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Figure 5. Histograms of images presented in the Figure 4. 

Application of the elaborated iterative approximate method made it possible to retrieve 
information in the 0,3 ÷ 1 range of the intensity scale, lost as the result of imposing the 
atmospheric Gaussian blur on the original noiseless image. In the considered case the 
classical image filtration methods fail. Therefore, the possibility of image reconstruction 
compensates for inconveniences related to application of the elaborated method, such as 
long computational time and characteristic brightening of the filtered image with respect 
to the original image. 

2. Conclusions and final remarks 

The paper concerns noise reduction of images of significant dimensions carried out by 
means of the elaborated iterative approximate method based on the regularization 
method. The paper stands for the continuation of the paper under the same title denoted 
as part I, in which the issue of small images filtering with the use of direct application of 
the regularization methods was discussed. 
 On the basis of the obtained results it can be stated that elaborated image filtration 
algorithms based on the regularization methods, due to their specific properties such as 
e.g. required great computational effort and long time of computations, should not be 
applied in cases when application of ‘conventional’ image processing methods leads to 
obtaining results of satisfactory accuracy. Their application becomes indispensable in 
case of images, the reconstruction of which is impossible to carry out by means of other 
methods because of the excessive loss of information resulting from imposed noise. 
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Zastosowanie metod regularyzacji do redukcji zakłóceń rejestrowanych obrazów – część II 

Często spotykanym w praktyce problemem przetwarzania sygnałów jest rekonstrukcja obrazu na podstawie 
zarejestrowanego obrazu zaszumianego. Problem ten jest zagadnieniem odwrotnym źle zdefiniowanym, co 
oznacza, Ŝe niewielkie zakłócenia rejestrowanego obrazu mają znaczący wpływ na dokładność rekonstrukcji 
obrazu. W pierwszym artykule (oznaczonym jako „część I”) przedstawiono rezultaty redukcji zakłóceń obrazu 
testowego uzyskane z zastosowaniem sformułowanego przez autorkę algorytmu opartego o metody 
regularyzacji Tichonowa, TSVD, DSVD oraz ME. Przeprowadzenie regularyzacji obrazu zgodnie z tym 
algorytmem wymaga dokonania rozkładu macierzy modelującej szum na wartości szczególne, co w przypadku 
macierzy o duŜym rozmiarze wymaga bardzo duŜych nakładów obliczeniowych. Z tego względu w niniejszym 
artykule (oznaczonym jako „część II”), do redukcji obrazów o znacznych rozmiarach, zastosowano 
sformułowaną przez autorkę iteracyjną metodę przybliŜoną. Na podstawie analizy rezultatów 
przeprowadzonych badań nasuwa się wniosek, Ŝe metody regularyzacji nie powinny być stosowane w 
przypadkach gdy zastosowanie „konwencjonalnych” metod analizy prowadzi do uzyskania rezultatów o 
zadawalającej dokładności. Ich zastosowanie staje się konieczne w przypadku obrazów, których rekonstrukcja 
nie jest moŜliwa do przeprowadzenia innymi metodami ze względu na zbyt duŜą utratę informacji 
spowodowaną nałoŜeniem szumów. 
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Abstract   

The article describes the voice control system. It is based on comparing feature vector sequence, which 
represents spoken word, with patters. For this purpose Dynamic Time Warping algorithm was implemented. 
Features extracted from voice record are Mel cepstral coefficients. Delta and delta-delta parameters were also 
tested. Important part of system is algorithm detecting word boundaries. It uses fundamental frequency and 
energy.  
 
Keywords: voice control, Dynamic Time Warping, speech recognition 

1. Introduction 

For a human the most intuitive way of communication is speech. Meanwhile, in the case 
of control, voice commands are seldom used. This is because the developers of such 
systems are facing with many problems like noise reduction or speaker independence. 
However, there is no shortage of ideas on the use of this type of control. The article [4] 
describes a robot control system with a mobile phone. Commands are described in 
simple grammar. In [10] such a system is used to control the wheelchair. 

An important issue is the selection of appropriate signal features which reflect 
differences between words. In this work Mel-frequency cepstral coefficients and their 
derivatives are used. Detected word is divided into frames for which the coefficients are 
calculated. Other solutions can be found in the literature. In [4] author used vectors with 
26 elements: mean power, mean zero crossing and 24 frequency features. 

Separate issue is the selection of a classifier which decides, on the basis of features, 
what was spoken. In this work a Dynamic Time Warping algorithm was described and 
implemented. It calculates the similarity between the data series. These data may be 
either single or multidimensional. Series may be of different length and can be shifted in 
phase relative to each other. These are very desirable features for speech recognition 
because nobody can say the same word twice in the same way.  

Undoubted advantage of the algorithm is its simplicity. Currently more advanced 
systems can be used such as neural networks or hidden Markov models. 
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2. Word segmentation and representation 

Extremely important issue in speech recognition is detection of word beginning and end 
(word segmentation). In this work a solution based on signal energy and fundamental 
frequency has been used.  

Fundamental frequency is associated with vibration of vocal folds [7]. It is 
characteristic of voiced sounds and it lies in the range between 80Hz and 350Hz [3]. 
Thus by measuring the fundamental frequency for parts of record we can conclude 
which contains a human voice. But the problem remains with voiceless sounds which are 
not detected and with some noise that may by recognized as the voice. Therefore a 
second parameter was introduces, the signal energy. 

The figure below shows the word ‘dziewięć’ with a part determined by the 
fundamental frequency (upper chart, marked in red).  At the bottom graph the signal 
energy is presented. Energy lower than 10% of the maximum is removed. 

Combination of these two parameters allows the better word boundaries detection. 

 

Figure 1. Word ‘dziewiec’ boundaries set by using the fundamental frequency and signal 
energy. 

Mel cepstral coefficients are commonly used is speech recognition. The counting 
procedure is as follows [9]: 
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1. Signal is cut into overlapping frames (20-30 ms length) which are multiplied by 
the Hamming window. 

2. FFT is computed for each frame. 
3. Spectrum power (for each frame) is mapped to set of bands using Mel scale 

triangular overlapping windows. 
4. Discrete cosine transform (DCT) is computed for logarithm of each band. 
The first (delta parameter) and the second derivative (delta-delta parameter) in time 

of Mel cepstral coefficient are also used in speech recognition. 

3. Dynamic Time Warping algorithm 

Algorithm is used to compare the time series which may be of different lengths and 
shifted in phase relative to each other. Having two series: 

ℵ∈ℜ∈

ℵ∈=

ℵ∈=

kba

mbbbB

naaaA

k

m

n

,

,,

,,

21

21

K

K

 (1) 

it is necessary to specify the distance function: 

ℜ→ℜ×ℜ kkd :  (2) 

  
Most commonly used is the Euclidean distance. 

First step of algorithm is to calculate the n-by-m matrix. The (i,j)-element of the 
matrix has a value equal to d(ai,bj). Next the warping (alignment) path is determined. It 
consists of matrix elements: 

1),max(,, 21 ++≤≤= nmqnmpppP qK  (3) 

This path must meet several conditions [8]. First concerns the beginning and end of 
the path i.e. p1=(1,1) and pq=(m,n). The second ensures the continuity and monotonicity 
of the path. For two consecutive elements pi=(x,y) and pi-1=(x’,y’) the following relation 
is satisfied:  

1'0

1'0

≤−≤

≤−≤

yy

xx
 (4) 

There may be more than one such path. Algorithm selects the path with the least 
warping cost: 



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
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=
∑
=
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q

i
i

1min),(  (5) 

The figure below show a cost matrix with a sample path satisfying the above 
conditions. 
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Figure 2. Cost matrix with warping path. 

4. Grammar 

In order to man-machine communication it is necessary to agree not only vocabulary but 
also grammar.  For a testing purposes a simple grammar was written. Vocabulary 
consists of 16 polish words (in brackets are the English meanings of words): jeden (one), 
dwa (two), trzy (trzy), cztery (four), pięć (five), sześć (six), siedem (seven), osiem 
(eight), dziewięć (nine), dziesięć (ten), zero, stop, prawo (right), lewo (left), góra (up), 
dół (down), kropka (point). These words form the following grammar: 

 
<digit> = zero | jeden | dwa | trzy | cztery | pięć | 

sześć | siedem | osiem | dziewięć 
<integer> = {<digit>}+ 

<float> = {<digit>}+ kropka {<digit>}* 
<keyword> = prawo | lewo | góra | dół   

<command> = <keyword> <digit>  
| <keyword> <integer>  
| <keyword> <float>  
| <keyword> stop  
| <command> stop 
| stop 

 

Such a grammar can be used to control a simple robot. It allows to run commands 
consisting of direction and distance. The word ‘stop’ can be used in case of operator or 
system confusion. It cause  the entering of the command is not continued.  

5. Results 

All calculation were carried out in MATLAB.   
Recognition effectiveness of 16 word was tested. In the first experiment feature 

vector consisted of 12 Mel cepstral coefficients per frame. In pattern database there was 
one representative for each word. Word recognition is based on vector sequence 
comparison with patterns using DTW. Next the shortest warping path is chosen. Mean 
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efficiency was 95.9%. After redoubling the amount of patterns in database 98.7% 
efficiency was obtained. Recognition effectiveness of individual words is presented in 
figure 3.  

 
Figure 3. Recognition effectiveness for system with one pattern for each word (blue bar) 

and two patterns for each word (red bar). 

Next the delta and delta-delta parameters were added to feature vector in order to 
verify whether this will improve the efficiency. Unfortunately it turned out that the 
efficiency decreased to 76.5% (figure 4). 

 

 

Figure 4. Recognition effectiveness for individual words. Feature vector with Mel 
cepstral coefficient (blue bar). Feature vector with Mel cepstral coefficient, delta and 

delta-delta parameters (red bar). 
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6. Conclusions 

DTW algorithm is very simple and well known. As was shown by experiments it gives 
good results (98.7%) in recognizing words from a small vocabulary. 

It was found that delta and delta-delta parameters deteriorated the effectiveness. 
Problem may occur with bigger vocabulary as it involves comparing each word with 

all patterns from database. It can lead to system deceleration (what was observed when 
number of patterns was doubled). 
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Sterowanie głosowe 
W artykule opisano system sterowania głosowego. Opiera się on na porównywaniu sekwencji wektorów cech, 
która reprezentuje wypowiedziane słowo, z bazą wzorców. W tym celu zaimplementowano algorytm Dynamic 
Time Warping. Jako cech ekstrahowanych z nagrań uŜyto współczynników Mel cepstrum. Przetestowano 
takŜe parametry delta oraz delta-delta. W skład systemu wchodzi równieŜ algorytm wykrywający granice 
wypowiedzianego słowa, działający w oparciu o częstotliwość podstawową oraz energię. 
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Abstract 

In the paper we compare the explicit and implicit interval multistep methods of Adams type on some 
dynamical systems. The methods considered can be used for solving the initial value problem (IVP) for 
ordinary differential equations (ODEs). As a results we obtain the interval solution that include the exact 
solution of the IVP. The interval methods are examined on efficiency and numerical precision of the results. 
 
Keywords: initial value problem, ordinary differential equations, interval floating-point arithmetic, 
interval multistep methods of Adams type 

1. Introduction 

The development of interval methods for solving the IVP for ODEs started with methods 
based on Taylor series. Such methods were introduced by Moore [26]-[27], Krückberg 
[17], Eijgenraam [3], Lohner [18], Corliss and Rihm [2]. Explicit interval methods of 
Runge-Kutta type and explicit interval multistep methods of Adams-Bashforth type have 
been given by Kalmykov, Šokin and Juldašev [16], [28]. Another approach is 
represented by a method based on high-order Taylor series proposed by Berz and 
Makino [1], [19]. The research stared by Makino has been continued by Hoefkens [7]-
[8]. An implicit interval Hermite-Obreschkoff (IHO) method for solving the IVP with 
predictor and corrector phases has been constructed by Jackson and Nedialkov [23]-[24]. 

Studies on the explicit interval one-step methods of Runge-Kutta type and the 
interval multistep methods of Adams type for the IVP introduced by Šokin [16], [28] 
have been going on in Poznan University of Technology since the 1990s. Let us mention 
one- and two-stage implicit interval methods of Runge-Kutta type (see Marciniak and 
Szyszka [5], [20], [22]) and three- and four-stage implicit interval methods of Runge-
Kutta type (see Marciniak, Gajda and Szyszka [4]-[5], [20]). The explicit and implicit 
interval multistep methods of Adams type have been proposed by Marciniak and 
Jankowska (see e.g. [5], [9], [13]-[15], [20]). Finally, the explicit interval multistep 
methods of Nyström type and the implicit interval methods of Milne-Simpson type have 
been developed by Marciniak [20]. 

Computer implementation of the methods considered in the floating-point interval 
arithmetic (see [6], [10]-[12], [25]), together with the representation of initial data in the 
form of machine intervals, let us achieve interval solutions that contain all possible 
errors (i.e. the errors of inexact input data that is often obtained through the experiment, 
the errors caused by the representation of real numbers in computer, the rounding errors 
and the errors of the approximate methods). 
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The paper deals with a comparison of the interval multistep methods of Adams type. 
Their formulas are not mentioned but can be found in e.g. [9]. Essential notations and 
assumptions are given in Section 2. In Section 3 we solve some example dynamical 
systems. The results in the form of interval solutions obtained with the interval methods 
considered and the widths of such interval solutions are presented and compared. 
Comments on the efficiency of the methods and the numerical precision of the results 
obtained bring this paper to the end. 

2. Notations and Assumptions 

Let us consider the initial value problem for ordinary differential equations of the form 

( ) ( ) ,0,, 0yyytfy ==′  (1) 

where [ ]ξ,0∈t , ∈ξ R, ( )∈= tyy RN, [ ] ×ξ,0:f RN → RN. 

We choose a positive integer m and select the mesh points mttt ,,, 10 K , where nhtn =  

for each mn ,,1,0 K=  and mh /ξ= . Moreover, we denote by t∆  and y∆  the sets in 

which the function ( )ytf ,  of the IVP (1) is defined as follows: 

{ },R,0:R ∈≤≤∈=∆ ξξttt  

( ){ }.,,2,1,R,,:R,,, 21 Nibbbybyyyy iiiii
NT

Ny KK =∈≤≤∈==∆  

Furthermore, if we denote by ( )ity , ,,,1,0 mi K= the exact value of the function y at it , 

then ( )itY  is an interval solution such that ( ) ( )ii tYty ∈ . Note that for any interval 

[ ]xxA ,=  we define its width (diameter) in the following way ( ) .xxAd −=  

The interval methods considered are interval multistep methods. Hence, before we 
start the method, we have to know k previous interval solutions obtained with some one 
step interval methods. The parameter k is known as the number of method steps. 

We introduce some abbreviations of the names of the interval methods considered. 
Namely, the IMA methods for any interval multistep method of Adams type, the EIAB 
methods for the explicit interval methods of Adams-Bashforth type, the IIAM methods 
for the implicit interval methods of Adams-Moulton type, the IIAPC1 methods for the 
implicit interval P(EC)sE predictor-corrector methods of Adams type, and the IIAPC2 
methods for the implicit interval P(EC)s predictor-corrector methods of Adams type. For 
the interval predictor-corrector methods of Adams type the number k of method steps in 
the predictor formula is denoted by pk , and in the corrector formula by ck . 

3. Numerical experiments 

3.1. The Simple Pendulum Problem 

We consider the motion of a simple pendulum given by the equation of the form 

,0sin2 =+ ϕϕ u&&  (2) 
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where ( ),tϕϕ = ,/ Lgu = g is the gravitational acceleration at Earth’s surface and L 

denotes the pendulum length. Under the assumption of small angles, the above equation 
reduces to the equation of simple harmonic motion 

.02 =+ ϕϕ u&&  (3) 

The simple harmonic solution is ( ) ( ),cos0 utt ϕϕ = where 0ϕ  is an initial angle. 

Denoting ,1 ϕ&=y  ,2 ϕ=y  where ( ),11 tyy =  ( ),22 tyy =  we transform (2) and (3) 

with the initial conditions ( ) ,00 =ϕ& ( ) 00 ϕϕ =  into the following systems of first order 

differential equations 

,,sin 122
2

1 yyyuy =−= &&  (4) 

and 

,, 122
2

1 yyyuy =−= &&  (5) 

with the initial conditions 

( ) ( ) .0,00 021 ϕ== yy  (6) 

Let us integrate (5) with (6) for [ ],2.7,0∈t where 60/0 πϕ =  [rad]. Hence, 

[ ]2.7,0=∆ t  and we take 

( ) [ ],0,001 =Y  ( ) [ ].7559829890.05235987 755982987,0.0523598702 =Y  

Finally, we specify y∆ depending on the stepsize h and the number k of method steps 

such that the computations could be finished successfully at least for the implicit interval 
methods of Adams type. Then, the results of computations are given as follows. 

Table 1. Widths of the interval solution ( )tY1  obtained from the integration of (5) with 

(6) by the IMA methods for 1=== cp kkk , where h = 1E-4, 1E-5, 1E-6. 

( )( )tYd 1
 

t h 
EIAB IIAM IIAPC1 IIAPC2 

1E-4 6.779460E-07 3.527207E-11 3.527207E-11 3.527207E-11 

1E-5 2.135499E-09 1.745521E-14 1.745571E-14 1.745637E-14 0.8 

1E-6 2.141428E-11 5.907261E-14 5.909413E-14 5.911725E-14 
 

1E-4 1.660386E-02 8.669055E-07 8.669056E-07 8.669057E-07 

1E-5 5.252683E-05 4.233049E-10 4.233187E-10 4.233339E-10 4.0 

1E-6 5.266869E-07 1.413396E-09 1.413917E-09 1.414477E-09 
 

1E-4 - 1.953324E-02 1.953324E-02 1.953324E-02 

1E-5 - 9.537963E-06 9.538273E-06 9.538617E-06 7.2 

1E-6 1.186738E-02 3.184684E-05 3.185857E-05 3.187119E-05 
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Table 2. Widths of the interval solution ( )tY1  obtained from the integration of (5) with 

(6) by the IMA methods for 2=== cp kkk , where h = 1E-4, 1E-5, 1E-6. 

( )( )tYd 1
 

t h 
EIAB IIAM IIAPC1 IIAPC2 

1E-4 1.166908E-09 1.623019E-14 1.623432E-14 1.624167E-14 

1E-5 4.108713E-13 8.329776E-15 8.331098E-15 8.333341E-15 0.8 

1E-6 3.622299E-13 7.783052E-14 7.783177E-14 7.783194E-14 
 

1E-4 5.909160E-01 2.044427E-09 2.044964E-09 2.045867E-09 

1E-5 2.097162E-04 1.034466E-09 1.034675E-09 1.035003E-09 4.0 

1E-6 1.848350E-04 9.688477E-09 9.688654E-09 9.688734E-09 
 

1E-4 - 2.445918E-04 2.446560E-04 2.447641E-04 

1E-5 - 1.238637E-04 1.238887E-04 1.239281E-04 7.2 

1E-6 - 1.160164E-03 1.160185E-03 1.160195E-03 

Table 3. Widths of the interval solution ( )tY1  obtained from the integration of (5) with 

(6) by the IMA methods for 3=== cp kkk , where h = 1E-4, 1E-5, 1E-6. 

( )( )tYd 1
 

t h 
EIAB IIAM IIAPC1 IIAPC2 

1E-4 2.370461E-11 2.341904E-15 2.364767E-15 2.423415E-15 

1E-5 1.483387E-12 1.307405E-14 1.307453E-14 1.307554E-14 0.8 

1E-6 1.196633E-11 1.204806E-13 1.204787E-13 1.204800E-13 
 

1E-4 - 3.464933E-09 3.500707E-09 3.590804E-09 

1E-5 - 1.954756E-08 1.954903E-08 1.955274E-08 4.0 

1E-6 - 1.804542E-07 1.804522E-07 1.804563E-07 
 

1E-4 - 5.069395E-03 5.121734E-03 5.253552E-03 

1E-5 - 2.867079E-02 2.867294E-02 2.867839E-02 7.2 

1E-6 - 2.647419E-01 2.647390E-01 2.647451E-01 

Now, let us integrate (4) with (6) for [ ],1,0∈t where 60/0 πϕ =  [rad]. We get the 

following comparison of the widths of the interval solutions 
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Figure 1. Widths of the interval solution ( )11Y  obtained from the integration of (4) with 

(6) by the IIAM for k = 1,2,3, vs. the stepsize h. 

 

Figure 2. Widths of the interval solution ( )12Y  obtained from the integration of (4) with 

(6) by the IIAM for k = 1,2,3, vs. the stepsize h. 
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3.2. The Two-Body Problem 

Let us consider the system of two material points with the masses 1m  and 2m . We put 

the origin of the rectangular coordinate system at the material point with the mass 2m . 

Such a frame is an uninertial one and can be considered as an inertial frame if the mass 

2m  is significantly larger then the mass 1m . 

The equations of relative motion of material point with the mass 1m  with respect to 

the material point with the mass 2m  are of the form 

( ) ( ) ( ) ,,,
321321321

r

z
mmGz

r

y
mmGy

r

x
mmGx +−=+−=+−= &&&&&&  (7) 

where ( ),txx = ( ),tyy = ( ),tzz = 222 zyxr ++=  and G is the gravitational constant. 

We assume that the material points are located in the plane, i.e. 0=z . Denoting 
,1 xu =  ,2 yu =  ,3 xu &=  ,4 yu &= where ( ),11 tuu =  ( ),22 tuu =  ( ),33 tuu =  ( ),44 tuu =  

,2
2

2
1 uur +=  we transform (7) with the initial conditions ( ) ,0 0xx =  ( ) ,0 0yy =  

( ) ,0 0xvx =&  ( ) ,0 0yvy =&  into the system of differential equations of the first order as 

follows 

( ) ( ) ,,,,
3
2

2143
1

2134231
r

u
mmGu

r

u
mmGuuuuu +−=+−=== &&&&  (8) 

with the initial conditions 

( ) ( ) ( ) ( ) .0,0,0,0 04030201 yx vuvuyuxu ====  (9) 

Now, let us take the mass of the Earth as the mass unit, the astronomical unit as the 
length unit, and the sideral year as the time unit. For these units we have the gravitational 
constant G = 1.185684121E-4. Now, we assume that the material points with the masses 

11 =m  and 3329582 =m , where 2m  is the mass of the Sun in the given mass unit, fulfil 

at the initial moment t = 0 the following conditions 

( ) ( ) ( ) ( ) ( ) .0,00,00,10 214321 mmGuuuu +====  (10) 

The analytical solution of (8) with (10) has the form (see also [21]) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),cos,sin,sin,cos 4321 MtMtuMtMtuMttuMttu =−===  

where ( )21 mmGM += . 

We integrate (8) with (10) for [ ]1,0∈t . Hence, [ ]1,0=∆ t  and we take 

( ) [ ] ( ) [ ] ( ) [ ]
( ) [ ] .1803015376.28318549180301535,6.283185490

,0,00,0,00,1,10

4

321

=

===

U

UUU
 

Then, we get the following results. 
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Table 4. Values of the exact solution and the interval solutions ( ) ,4,3,2,1, =itU i  obtained 

from the integration of (8) with (10) by the IIAM method for k = 2, where h = 1E-5. 

t ( )tu1
 ( )tU1

 

0.2  3.09016959257484E-1 [ 3.0901695925747969E-1, 3.0901695925748894E-1] 

0.4 -8.09017037782516E-1 [-8.0901703778257027E-1,-8.0901703778246288E-1] 

0.6 -8.09016929263585E-1 [-8.0901692926487735E-1,-8.0901692926229403E-1] 

0.8  3.09017134844796E-1 [ 3.0901713483060309E-1, 3.0901713485898777E-1] 

1.0  9.99999999999982E-1 [ 9.9999999974702492E-1, 1.0000000002529414E+0] 
 

t ( )tu2
 ( )tU2

 

0.2  9.51056527705508E-1 [ 9.5105652770550377E-1, 9.5105652770551289E-1] 

0.4  5.87785192547074E-1 [ 5.8778519254698043E-1, 5.8778519254717017E-1] 

0.6 -5.87785341910564E-1 [-5.8778534191141762E-1,-5.8778534190971036E-1] 

0.8 -9.51056470653721E-1 [-9.5105647067212342E-1,-9.5105647063532045E-1] 

1.0  1.84623428883101E-7 [ 1.8435716556183061E-7, 1.8488969007326329E-7] 
 

t ( )tu3
 ( )tU3

 

0.2 -5.97566457676380E+0 [-5.9756645767638517E+0,-5.9756645767637525E+0] 

0.4 -3,69316339410842E+0 [-3.6931633941091693E+0,-3.6931633941076792E+0] 

0.6  3.69316433258693E+0 [ 3.6931643325702719E+0, 3.6931643326035890E+0] 

0.8  5.97566421829684E+0 [ 5.9756642181779058E+0, 5.9756642184157832E+0] 

1.0 -1.16002324980522E-6 [-1.1633906352060689E-6,-1.1566558509050039E-6] 
 

t ( )tu4
 ( )tU4

 

0.2  1.94161087512770E+0 [ 1.9416108751276484E+0, 1.9416108751277690E+0] 

0.4 -5.08320411441656E+0 [-5.0832041144176589E+0,-5.0832041144154596E+0] 

0.6 -5.08320343257198E+0 [-5.0832034325811353E+0,-5.0832034325628382E+0] 

0.8  1.94161197837535E+0 [ 1.9416119781338048E+0, 1.9416119786169041E+0] 

1.0  6.28318549180290E+0 [ 6.2831854895478384E+0, 6.2831854940579771E+0] 

 

 

Figure 3. Widths of the interval solution U1(t) obtained from the integration of (8) with 
(10) by the EIAB methods for k = 1,2,3, and the IIAM methods for k = 1,2,3, 

where h = 1E-5. 
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Figure 4. Widths of the interval solution U1(t) obtained from the integration of (8) with 
(10) by the EIAB methods for k = 1,2,3, and the IIAM methods for k = 1,2,3, 

where h = 1E-6. 

3.3. Hill Equations 

Finally, we consider the equations of motion of the Moon given by Hill (see e.g. [21]). 
We assume that the origin of the frame is placed in the center of the Earth, the plane xy is 
in line with the Sun’s orbit plane and the frame rotates with the constant angular velocity 
ν ′ , where ν ′  denotes the mean motion of the Sun. Moreover, we assume that in the 
considered frame of reference the axis x goes across the center of the Sun and the Sun 
revolves around the Earth along the circular orbit. The equations of motion of the Moon 
(called the Hill equations) are of the form 

,,2,32 2
32

2

32

2
2

32

2

zM
rd

zd
y

rd

dx
M

d

yd
xM

rd

dy
M

d

xd







 +−=−−=






 −−=
κ

τ
κ

ττ
κ

ττ
 (11) 

where ( ),τxx = ( ),τyy = ( ),τzz = ( )( ),0tt −′−= νντ 222 zyxr ++= . Moreover, the 

parameters M and κ  in (11) are introduced as follows 

( )
,,

2
10

νν
κ

νν
ν

′−

+
=

′−

′
=

mm
GM  (12) 

where ν  is the mean motion of the Moon, G is the gravitational constant, and ,0m 1m  

denote the masses of the Earth and the Moon, respectively. 
Taking into account a small inclination of the Moon’s orbit to the ecliptic, we can 

also assume 0=z . Finally, denoting ,1 xu = ,2 yu = ,/3 τddxu = ,/4 τddyu = where 

( ),11 τuu = ( ),22 τuu = ( ),33 τuu = ( ),44 τuu = we transform (11) with the initial condi-

tions ( ) ,0 0xx = ( ) ,0 0yy = ( ) ,0/ 0xvddx =τ ( ) 00/ yvddy =τ  into the following system of 

differential equations of the first order 
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,2,32,, 233
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d
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u

d

du κ
τ

κ
τττ

−−=
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
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

 −−===  (13) 

with the initial conditions 

( ) ( ) ( ) ( ) ,0,0,0,0 04030201 yx vuvuyuxu ====  (14) 

where 2
2

2
1 uur += . 

In order to test the methods considered we determine the initial conditions (14) as 
follows 

( ) ( ) ( ) ( ) ,10,00,00,10 4321 ==== uuuu  (15) 

and 

( ) ( )
( ) ( ) .0.95005940,0.32869690

,0.26739990,0.94477820

43

21

−==

−=−=

uu

uu
 (16) 

Finally, we specify the parameters M and κ  in (13) as  

� M = 0, 1=κ , and  

� M = 0.080848933808312, 91845161.17141845=κ , respectively. 

Then, we get the following results. 

 

Figure 5. Widths of the interval solution ( )τ1U  obtained from the integration of the Hill 

equations (13) with (15), with M = 0, κ = 1, by the EIAB methods for k = 1,2,3, and the 
IIAPC1 methods for ,3,2,1=== cp kkk  where h = 1E-5. 
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Figure 6. Widths of the interval solution ( )τ1U  obtained from the integration of the Hill 

equations (13) with (16), with M ≈  0.08, κ ≈  1.17, by the EIAB methods for k = 1,2,3, 
and the IIAPC1 methods for ,3,2,1=== cp kkk  where h = 1E-5. 

4. Conclusions 

Comparison of the numerical results obtained with the explicit and implicit interval 
methods of Adams type let us formulate the following conclusions: 

� The implicit interval methods of Adams type yield better results, i.e. interval 
solutions of a smaller width, than the explicit ones applied with the same number k 
of method steps and the same stepsize h. 

� For the explicit and implicit interval methods of Adams type the increase in the 
number k of method steps for the same stepsize h contributes to the decrease in the 
widths of the interval solutions. A similar effect can be observed if we reduce the 
stepsize h for the same value of parameter k. Such a behavior of these methods is 
true mainly for short integration intervals. Otherwise for each particular IVP the 
suitable interval multistep method with the appropriate number k of method steps 
and the stepsize h should be chosen to get the best acceptable result. 

� For a given stepsize there exists an optimal number of method steps, and for a given 
number of method steps the optimal stepsize can be found. 

� The widths of the interval solutions obtained by the implicit interval methods of 
Adams type and both kinds of interval predictor-corrector methods of Adams type 
are of the same order. We recommend applying the interval predictor-corrector 
methods due to a significant reduction in the number of iterations involved. The 
number of iterations is usually reduced by half in comparison to the interval 
methods of Adams-Moulton type. Hence, computation time is saved. 

� The implicit interval P(EC)sE predictor-corrector methods of Adams type yield 
interval solutions of somewhat smaller widths then the P(EC)s ones. On the other 
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hand the additional computation of ( ) ( )nn
s

n YTFF ,=  performed in each step of the 

method makes them a little bit more laborious than the P(EC)s ones. 

� As numerical tests show, the interval solutions of the smallest widths are mostly 
produced by the interval methods of Adams type for k > 1. For this reason, just the 
interval multistep methods of Adams type rather than the interval one-step ones 
should be taken into account before the integration of the given IVP starts. 
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Porównanie przedziałowych metod wielokrokowych typu Adamsa na przykładzie 
wybranych układów dynamicznych 

W pracy porównane zostały jawne i niejawne przedziałowe metody typu Adamsa na przykładzie wybranych 
układów dynamicznych. RozwaŜane metody mogą być wykorzystane do rozwiązywania zagadnienia 
początkowego dla równań róŜniczkowych zwyczajnych. W wyniku zastosowania wspomnianych metod 
otrzymujemy przedział rozwiązanie, które zawiera w sobie rozwiązanie dokładne danego zagadnienia 
początkowego. Metody przedziałowe zostały zbadane ze względu na efektywność ich działania oraz 
dokładność otrzymanego rozwiązania. 
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Abstract 

In the paper we propose the interval multistep predictor-corrector methods of Adams type for solving the 
initial value problem (IVP) for ordinary differential equations (ODEs). These methods are based on the 
explicit interval methods of Adams-Bashforth type and the implicit interval methods of Adams-Moulton type. 
The interval methods considered belong to a class of algorithms that allow to obtain the guaranteed result, i.e. 
the interval solution that contain the exact solution of the problem. 
 
Keywords: initial value problem, ordinary differential equations, floating-point interval arithmetic, 
interval methods, interval predictor-corrector methods of Adams type 

1. Introduction 

Interval methods have been first proposed for verified computing by Sunaga (see [14]) 
and Moore (see e.g. [12]-[13]). Growing interest in such algorithms (see e.g. [2], [11]) 
results from the fact that interval solutions obtained by theses methods include the exact 
solution of the problem. Computer implementation of the methods considered in the 
floating-point interval arithmetic (for some information on the C++ libraries for floating-
point conversion and interval arithmetic see [4]-[6]), together with the representation of 
initial data in the form of machine intervals, let us achieve interval solutions that contain 
all possible errors (i.e. the errors of inexact input data that is often obtained through the 
experiment, the errors caused by the representation of real numbers in computer, the 
rounding errors and the errors of the approximate methods). 

The development of the interval methods for solving the IVP for ODEs started with 
methods based on Taylor series (the detailed bibliography concerned with all verified 
methods devoted for the IVP is available in e.g. [3] and [10]). The interval multistep 
predictor-corrector methods of Adams type introduced in the paper are based on the 
explicit interval multistep methods of Adams-Bashforth type (see [1], [3], [8], [10]) and 
the implicit interval multistep methods of Adams-Moulton type (see [1], [3], [7], [9]-
[10]). In the paper we give the detailed theoretical description of the interval predictor-
corrector methods (the results of numerical experiments can be found in [3]). 

The interval methods presented in the paper can be used for solving the IVP that 
occurs very frequently in physics and other sciences. For example in the area of 
dynamical systems the differential equation is an evolution equation that specifies how, 
with a given initial condition, the system will evolve in time. 
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2. Initial Value Problem and Interval Explicit and Implicit Multistep Methods of 
Adams Type 

Let us consider the initial value problem for ordinary differential equations of the form 

( ) ( ) ,0,, 0yyytfy ==′  (1) 

where [ ]ξ,0∈t , ∈ξ R, ( )∈= tyy RN, [ ] ×ξ,0:f RN → RN. 

Now, let us choose a positive integer m and select the mesh points mttt ,,, 10 K , where 

nhtn =  for each mn ,,1,0 K=  and mh /ξ= . Moreover, we denote by t∆  and y∆  the 

sets in which the function ( )ytf ,  of the IVP (1) is defined as follows: 

{ },R,0:R ∈≤≤∈=∆ ξξttt  

( ){ }.,,2,1,R,,:R,,, 21 Nibbbybyyyy iiiii
NT

Ny KK =∈≤≤∈==∆  

Let ( )YTF ,  be an interval extension of ( )ytf , , and ( )YT ,Ψ , ( )YT ,Ψ  be interval 

extensions of functions ( )yt,ψ  and ( )yt,ψ  (for details see [3]) determined as follows: 

( )( ) ( ) ( )( ) ( )( ) [ ] ,,,,, 1
nkn

kk ttyyfy −
+ ∈≡≡ ηηηηηηψ  

( )( ) ( ) ( )( ) ( )( ) [ ] .,,,, 21
nkn

kk ttyyfy −
++ ∈≡≡ ηηηηηηψ  

We also assume that 

� ( )YTF ,  is defined and continuous for all tT ∆⊂  and yY ∆⊂ , 

� ( )YTF ,  is monotonic with respect to inclusion, i.e. 

( ) ( ) ,,, 22112121 YTFYTFYYTT ⊂⇒⊂∧⊂  

� for each tT ∆⊂  and for each yY ∆⊂  there exists a constant 0>L  such that 

( )( ) ( ) ( )( ) ,, YdTdLYTFd +≤  

       where ( )Ad  denotes the width (diameter) of A; if [ ]xxA ,=  then ( ) xxAd −= ; if 

( ) T
NAAAA ,,, 21 K=  then ( )Ad  is defined by ( ) ( )i

Ni
AdAd

,,2,1
max

K=
= , 

� ( )YT ,Ψ , ( )YT ,Ψ  are defined for all tT ∆⊂  and yY ∆⊂ , 

� ( )YT ,Ψ , ( )YT ,Ψ  are monotonic with respect to inclusion. 

2.1. Explicit Interval Methods of Adams-Bashforth Type  

Let us assume that ( ) ,0 0Yy ∈ yY ∆⊂0  and the intervals ,yiY ∆⊂ such that ( ) ,ii Yty ∈  

,1,,2,1 −= ki K are known. An integer K,2,1=k  states how many interval-solutions iY  

are required to apply the k-step multistep method and it is referred to as the number of 
method steps. We obtain 1,,2,1, −= kiYi K  by  applying an interval one-step method 

(e.g. an explicit interval method of Runge-Kutta type (see e.g. [10]) or an explicit 
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interval method of Adams-Bashforth type with 1=k ). Then the explicit interval method 
of Adams-Bashforth type (see also [3]) can be given in the form 

( )

( )[ ] ( )[ ] ( )( )
,,,1,for

,,,1,,1

,

11
1

1

0
111

mkkn

FhhkYhhkTh

YTFhYY

ytnnk
k

k

j
nn

j
jnn

K+=

∆∆−−+−−+Ψ+

∇+=

−−
+

−

=
−−− ∑

γ

γ

 
(2) 

where ,ii Tiht ∈= mi ,,1,0 K= , ,jγ kj ,,1,0 K= and ( )11 , −−∇ nn
j YTF  are given by 

( ) ( ) ,,,2,1,11
!

1
,1

1

00 kjdsjsss
jj KL =−++== ∫γγ  
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−−−−−− 
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j
YTF
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1111 .,1,  

(3) 

The formula of the explicit interval methods of Adams-Bashforth type equivalent to (2) 
can be written as follows 

( )

( )[ ] ( )[ ] ( )( )
,,,1,for

,,,1,,1

,
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1
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(4) 

where kjβ are defined as follows 

( ) ∑
−

−=

− =







−

−=
1

1

1 .,,2,1,
1

1
k

jm
m

j
kj kj

j

m
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2.2. Implicit Interval Methods of Adams-Moulton Type 

Let the assumptions about iY , ,1,,1,0 −= ki K be the same as in Sec. 2.1. Then the 

implicit interval method of Adams-Moulton type (see also [3]) can be given in the form 

( )

[ ] [ ] ( )( )
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,,0,,0,
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(6) 

where ,ii Tiht ∈= mi ,,1,0 K= , ,jγ 1,,1,0 += kj K  and ( )nn
j YTF ,∇  are given by 
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The equation (6) can be written in the equivalent form 
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Another kind of the implicit interval methods of Adams-Moulton type (which are not 
equivalent to (6) and (8)) are of the following form 

( ) ( )

[ ] [ ] ( )( )
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where kjβ  are defined as follows 
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Let us note that (6) (or (8)) and (9) are both nonlinear interval equations with respect 
to ,nY  mkkn ,,1, K+= . It implies that in each step of these methods we have to solve 

an interval equation of the form  

( ),,YTGY =  (11) 

where 

( ) ( ) ( ) ( ) ( ) ,:,,,,, 21
N

yt
N

y
T

Nt IRIIGIRIYYYYIRIT →∆×∆⊂∆∈=⊂∆∈ K  

IR denotes the set of real intervals and ( )tI ∆ , ( )yI ∆  – the sets of intervals which are 

contained in t∆ and y∆ (or the sets of subintervals of t∆ and y∆ ), respectively. 

If we assume that G is a contraction mapping, then the fixed-point theorem implies 
that the iteration process 

( ) ( )( ) ,,1,0,,1
K==+ lYTGY ll  (12) 

is convergent to an unique element *Y , i.e. ( ) ,lim *YY l
l =∞→ for an arbitrary choice of 

( ) ( ).0
yIY ∆∈  
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For the interval methods of Adams-Moulton type given by (6) (or (8)), the iteration 
process (12) is of the form 
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Similarly, for the methods described by (9) we have 
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Note that for the above iteration processes we usually choose ( )
1

0
−= nn YY . 

3. Interval Predictor-Corrector Multistep Methods of Adams Type 

The implicit interval methods of Adams-Moulton type described in Sec. 2.2 can be 
realized in another way. Let us assume that the iteration processes (12) is initiated by the 
interval solution obtained by applying the explicit interval k-step method of Adams-
Bashforth type, instead of 1−nY , as we proposed in Sec. 2.2. Such an initialization is 

characteristic of predictor-corrector methods. Hence, we define the interval predictor-
corrector methods of Adams type in the following way. 

Let the assumptions about ,iY ,1,,1,0 −= ki K be the same as in Sec. 2.1. Consider 

the explicit interval k-step method of Adams-Bashforth type as a predictor and the 
implicit interval k-step method of Adams-Moulton type as a corrector. We assume that 
both predictor and corrector formulas describe the interval multistep methods such that 
the number k of method steps is the same. Moreover, we denote by s ( 1≥s ) the number 
of iterations that are performed in each step of the method. 

The assumptions about k and s have been made to simplify the notation of the 
interval predictor-corrector methods of Adams type and can be neglected while 
developing the specific predictor-corrector formulas. 

For the interval methods of Adams-Moulton type given by (6) (or (8)), the interval 
P(EC)sE predictor-corrector methods of Adams type are of the following form: 
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( ) ( )( ) ,,: l
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l
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( ) ( )( ) ,,then,if: s
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s
n YTFFmnE =<  (16) 

.,,1,for mkkn K+=   

Similarly, for the interval methods determined by (9) we have 
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( ) ( )( ),,then,if: s
nn

s
n YTFFmnE =<  (20) 

.,,1,for mkkn K+=   

For the interval methods of Adams-Moulton type given by (6) (or (8)), the interval 
P(EC)s predictor-corrector methods of Adams type are of the form 

( ) ( ) ( )( )

( )[ ] ( ) ( )[ ] ( )( ) ,,,1,,1
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( ) ( )( ) ,,: l
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l
n YTFFE =  (22) 
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( ) ( ) ( )
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.,,1,for mkkn K+=   

Similarly, for the interval methods determined by (9) we have 
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( ) ( )( ) ,,: l
nn

l
n YTFFE =  (25) 

( ) ( ) ( ) ( )( )

[ ] ( ) [ ] ( )( )
,1,,1,0for

,,0,,0,

,:

1
2

1

1
01

1

−=

∆∆−+−+Ψ+

++=

+
+

−
−−

=
−

+ ∑

sl

FkhYkhTh

YTFhFhYYC

yt
l

nnk
k

s
jnjn

k

j
kj

l
nk

s
n

l
n

K

γ

ββ

 
(26) 

.,,1,for mkkn K+=   

Let us note that the symbol P denotes a prediction that determines the initial interval 

solution ( )0
nY  by the explicit interval k-step method of Adams-Bashforth type. The 

symbol C means a correction that performs several iterations using the implicit interval 
k-step method of Adams-Moulton type, and E – an evaluation that computes 

( ) ( )( )l
nn

l
n YTFF ,=  for 1,,1,0 −= sl K . Furthermore, for the methods of P(EC)sE type, 

after computing the last iteration, the additional evaluation of ( ) ( )( )s
nn

s
n YTFF ,=  is 

required and used in the next step. Hence, these methods require more work than the 
P(EC)s ones. 

Remark 1 

For the above algorithms of interval P(EC)sE and P(EC)s predictor-corrector methods of 
Adams type, given by (13)-(16), (17)-(20) and (21)-(23), (24)-(26) the following issues 
should be taken into account: 

1. Since ykY ∆⊂−1 , then before applying the method we only have to check that  

( )[ ] ( ) .,,11 yytk FhhkY ∆⊂∆∆−−+−  
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2. From the assumption made on the function F the interval solution ( )l
nY obtained at nt , 

,,,1, mkkn K+=  is acceptable if for each sl K,1,0=  we have 
( ) .y
l

nY ∆⊂  

3. Suppose that the interval solution ( )l
nY  for a given l is such that the above condition is 

satisfied. Then, from the assumption made on the function Ψ , the computation of ( )1+l
nY  

is allowed if 
( ) [ ] ( ) .,0, yyt
l

n FkhY ∆⊂∆∆−+  

4. Suppose that ( )
y

s
nY ∆⊂ . Then, from the assumption made on the function Ψ , the 

computation of ( )0
1+nY  is allowed if 

( ) ( )[ ] ( ) .,,1 yyt
s

n FhhkkY ∆⊂∆∆−−+  

Note that in each step of the method it is necessary to check that the above conditions 
hold. If one of them is not satisfied then the computation should be aborted. 

Remark 2 

Note that from the assumptions made in Sec. 2.2. the iteration processes (13)-(16), (17)-

(20) and (21)-(23), (24)-(26) are convergent to nY , i.e. ( )
n

s
ns YY =∞→lim , where nY , 

mkkn ,,1, K+= , are obtained from (6) (or (8)) and (9), respectively. Hence, for ∞→s  

the predictor-corrector methods considered turn into the interval methods of Adams-
Moulton type given by (6) (or (8)) and (9). 

3. Conclusions 

Comparison of the numerical results (see [3]) obtained with the implicit interval methods 
of Adams-Moulton type and the interval predictor-corrector methods of Adams type let 
us formulate the following remarks: 

� The widths of the interval solutions obtained by the implicit interval methods of 
Adams type and both kinds of interval predictor-corrector methods of Adams type 
are of the same order. 

� We recommend applying the interval predictor-corrector methods due to a 
significant reduction in the number of iterations involved. The number of iterations 
is usually reduced by half in comparison to the interval methods of Adams-Moulton 
type. Hence, computation time is saved. 

� The implicit interval P(EC)sE predictor-corrector methods of Adams type yield 
interval solutions of somewhat smaller widths then the P(EC)s ones. On the other 

hand the additional computation of ( ) ( )nn
s

n YTFF ,=  performed in each step of the 

method makes them a little bit more laborious than the P(EC)s ones. 
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Przedziałowe metody wielokrokowe predyktor-korektor typu Adamsa rozwiązywania 
zagadnienia początkowego dla równań róŜniczkowych zwyczajnych 

W pracy zaproponowane zostały przedziałowe metody wielokrokowe predyktor-korektor typu Adamsa 
rozwiązywania zagadnienia początkowego dla równań róŜniczkowych zwyczajnych. Metody te oparte są na 
jawnych przedziałowych metodach typu Adamsa-Bashfortha oraz niejawnych przedziałowych metodach typu 
Adamsa-Moultona. Metody przedziałowe naleŜą do klasy algorytmów, które pozwalają otrzymać rozwiązanie 
danego problemu w postaci przedziału-rozwiązania, który zawiera w sobie rozwiązanie dokładne. 
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Abstract 

The kinematical problem of a two rigid body general motion is treated. Introduced in the paper the stiffness 
condition method for to appoint the relative rigid body motion is based on the absolute rigid body motion 
formulae. It allows us to derive the velocity and acceleration distributions in the way by analogy to rigid body 
kinematics. Emphasis is placed on the investigation of the stiffness condition in the general motion. In one 
place only we have to use the ordinary formulae for the absolute, drift or Coriolis components Examples are 
given to illustrate the practical applications to the mechanisms. 
 
Keywords: relativity, drift, Coriolis, stiffness 

1. Introduction 

The principles of conservations i the Newton dynamics suggest that the description of 
the physical phenomena should be of global nature [1]. But the velocity is locally 
defined and its relative character means that the every result is of the same importance. 
Hence, the physical meaning of the velocity may concern to the fraction of the body only 
(locality) and its derivation is acceptable with respect to other bodies only (relativity). 
The conception of local-relative velocity, which is with respect to chosen reference 
system defined, was named in mechanics absolute velocity. But the subjectivity of the 
choice of the reference system question the sense of existence of the conception. Only 
the appointment of absolute motion in the same reference system for another fraction, 
named observer, allows to receive the results that are comparable for the both bodies. 
The difference of this both absolute motions we are called the relative motion. 

2. Absolute motion 

Let the body model takes the region Ω  in 3D Euclidean space. Element Ω∈A  of the 
region is called the place. Similarly, the interval ),0( ∞  of the real numbers in 1D space 

is called the time, and its element ),0( ∞∈t  is called the instant. 

The location r  of a place Ω∈A  in the space may be expressed by a position vector xA  
in the reference frame with a set of orthogonal axes eee 321O  named Cartesian 

coordinate system: 
),0(),()( ∞∈= ttA xAr  (1) 

The absolute linear velocity )(Avb  of a place Ω∈A  is the time derivative of the 

position vector: 
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),0(),()( ∞∈= tt
dt

d
A xAvb  (2) 

But the absolute linear velocity does not determined unambiguously the motion of the 
place Ω∈A  [2]. Following Chasles theorem [3] rotation of a rigid body can be 
described by a temporary rotation axe where the absolute angular velocity vector 

)(Abω  of the place Ω∈A  is being. Hence, the absolute motion of the rigid body is 

locally determined be the two vector functions of time: 
),0(),()(),()( ∞∈== ttAtA hbgvb ω  (3) 

Global properties of absolute motion gives the so called stiffness condition: 
Ω∈=−×+= BAABABAAB ,),()()),()(()()()( bbrrbvbvb ωωω  (4) 

The formulae (3-4) describe the absolute motion of a rigid body. Note that according to 
the formula (4) there can be change the place Ω∈B  in the region. It gives a possibility 
of determining the absolute motion of the rigid body treated as the set of all the places in 
the region. Remaining in that way results allows to define the fields of the absolute linear 
velocity and the absolute angular velocity vectors in the region of the considered body. 
The graphical representation of this fields are called the velocity time-tables in the 
theory of mechanisms. 
The derivatives with respect to time of the velocity vectors are called the absolute linear 
and angular accelerations of the place Ω∈A : 

),0(),()(),()( ∞∈== ttAtA hbgab && ε  (5) 

The absolute acceleration time-tables we can receive if we will differentiate the formula 
(4) with respect to time: 

Ω∈=

−××+−×+=

BAAB

ABAAABAAB

,),()(

))]()(()([)())()(()()()(

bb

rrbbrrbabab

εε
ωωε

 (6) 

The double vector product follows from the formula (2). 

3. Drift motion 

The absolute motion of the observer it is adopt to call the drift motion. Let the model of 
the observer body occupies in the space the region Θ , which elements Θ∈C  we will 
call the points. The location q  of a point Θ∈C  in the space may be expressed by a 

position vector y  in the same reference frame with a set of orthogonal axes eee 321O : 

),0(),()( ∞∈= ttC yCq  (7) 
The drift linear velocity )(Cvu  of a point Θ∈C  is the time derivative of the 

position vector yC . The drift motion of the observer is locally determined by the vector 

functions of time: 

),0(),(ˆ)(),(ˆ)( ∞∈== ttCtC hugvu ω  (8) 

Global properties of the drift motion gives kinematical stiffness condition: 
Θ∈=−×+= DCCDCDCCD ,),()()),()(()()()( uurruvuvu ωωω  (9) 
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The formulae (8-9) describe the drift motion of an observer. The derivatives with respect 
to time of the velocity vectors (8) are called the drift linear and angular accelerations of 
the point: 

),0(),()(),()( ∞∈== ttCtC hugau && ε  (10) 

Drift linear and angular accelerations we can receive if we will differentiate the formula 
(9) with respect to time: 

Θ∈=

−××+−×+=

DCCD

CDCCCDACD

,),()(

))]()(()([)())()(()()()(

uu

rruurruauau

εε
ωωε

 (11) 

The formula (9) can be of use as the definition of a new set of points in the space. 
The points of this set have some kinematical properties like the points belonging to the 

observer. The set we marked Ω̂  and called the kinematical region. Hence, the point 

Ω∈ ˆE  is deriving by the formula: 

Ω∈Θ∈=−×+= ˆ,),()()),()(()()()( ECCECECCE uurruvuvu ωωω  (12) 

Note that the point Ω∈ ˆE  is unlimited in the space. Hence we can accept that its 
position vector is covered with the position vector of a place in the region: 

),0(),()( ∞∈= ttt yExE  (13) 
Hence in every place of the region occupied by the considered body in the space we 

can define both absolute and drift velocity vectors. 
The global properties of the drift motion are valid in the original version in the 

kinematical region. It allows to write the kinematical drift stiffness condition: 

Ω∈=−×+= ˆ,),()()),()(()()()( FEEFEFEEF uurruvuvu ωωω  (14) 

Note that the formula (14) allows to replace the choice of a point Ω∈ ˆF  in the 
kinematical region. It gives a possibility to derive the drift motion for a whole the 

kinematical region as the set of all the points Ω∈ ˆF . The results that are receiving in 
that way allows to determine the drift linear and angular velocity time-tables in the 
region occupies in the space by the considered body. 
The drift acceleration time-tables we can receive if we will differentiate the formula (14) 
with respect to time: 

Ω∈=

−××+−×+=

FEEF

EFEEEFEEF

,),()(

))]()(()([)())()(()()()(

uu

rruurruauau

εε
ωωε

 (15) 

Here the drift accelerations are deriving in all the places of the region occupies in the 
space by the considered body on the base of points in the region of the observer. 

4. Relative motion 

Relative motion is comprehended in mechanics as the motion of some places occupies in 
the space by the considered body that is determined with respect to the points of the 
observer region, which is treated as the motionless reference frame. Relative linear 
velocity )(Avw  and relative angular velocity )(Awω  of the place Ω∈B  in the region 
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of the body are defined as the corrections to the drift velocities that are necessary to 
receive some suitable absolute velocities: 

Ω∈+≡+≡ AAAAAAA ),()()(),()()( wubvwvuvb ωωω  (16) 
It is worth to notice that the formula is valid locally in the region of the body. Hence, 

the definition (16) is inconsistent because of the place Ω∈B  is not the point of the 
observer region Θ , in which the drift velocity is defined. That is why the drift motion 
seems impossible to derive. But the observer region Θ  can be extend to the kinematical 

region Ω̂ , in order to exist the inclusion: Ω⊂Ω ˆ . Then the definition (16) contains only 
the vectors correctly specified. It allows for the symbolical notation: 

Ω∈+= ABwvwBuvuBbvb ),(,)(,)(, ωωω  (17) 

Inserting the stiffness conditions (4) and (14) into formula (17) one can obtain the 
relative linear and angular velocity distributions: 

Ω∈=−×+= BAABABAAB ,),()()),()(()()()( wwrrwvwvw ωωω  (18) 
For the accelerations the symbolical notation (17) should be develop: 

Ω∈++= BBcacBwawBuauBbab ),(,)(,)(,)(, εεεε  (19) 

because of the Coriolis acceleration presence: 
Ω∈×=×= AAAAAAA ),()()(),()(2)( wucvwuac ωωεω  (20) 

Then the relative linear acceleration )(Baw  and relative angular acceleration )(Awε  

of the place Ω∈B  are locally defined as the corrections to the drift and Coriolis 
accelerations that are necessary to receive some suitable absolute accelerations: 

Ω∈++≡++≡ AAAAAAAAA ),()()()(),()()()( wcubawacauab εεεε  (21) 
The formula (21) is inserting to the absolute linear acceleration time-table  

))]()(()}()([{)]()([

))()(()]()()([

)()()()()()(

ABAAAA

ABAAA

AAABBB

rrwuwu

rrwcu

awacauawacau

−×+×++

−×+++

++=++

ωωωω
εεε  (22) 

We use the formulae (14-15) for the drift motion: 

))]()(()([)(

))]()(()}()([{)]()([

))()(()]()([)()()()(

BAAA

ABAAAA

ABAAAABB

rruu

rrwuwu

rrwcawacawac

−××+

−×+×++

−×+++=+

ωω
ωωωω

εε
 (23) 

Comparing the formulae for the linear and angular Coriolis accelerations and 
Equation (18) for the relative linear velocity we observe a simplification: 

Ω∈−××+

−×+=

BAABAA

ABCAB

,))],()(()([)(

))()(()()()(

rrww

rrwawaw

ωω
ε

 (24) 

Similarly for the relative angular acceleration time-table in the region: 

Ω∈= BAAB ,),()( ww εε  (25) 

Changing the place B  in the formulae (24-25) we can derive relative linear and angular 
accelerations without any determination of absolute, drift and Coriolis accelerations. 
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5. Rigid beam supported to moving cylinder 

Let’s find velocity and acceleration of the end A of the rod (Rys. 2). Angles depend on 
time. 
 

Figure. 1. The rod connecting with the moving drum by the cylindrical pin 

We note that the kinematical region have to have a larger radius db +  than the 
moving drum. Here the relative velocities of the place B are: 

)0,0,()(,)( αβω && −== BB w0vw  (26) 

The stiffness condition (18) for the relative velocities leads to the result: 

)sin,cos,0)(()()( ββαβω && −⋅=×= dBA dwvw  (27) 

Similarly, the relative accelerations of the place B have a shape: 

)0,0,()(,)( αβε &&&& −== BB w0aw  (28) 

and the formulae (24-25) allow us to determine the relative accelerations of the place 
A: 

)0,0,()(

)()[(])([)()()( 2

αβε

αβαβωωε

&&&&

&&&&&&

−=

−+−=××+×=

A

BBBA

w

fedwwdwaw
 (29) 

where )sin,cos,0( ββ=e , )cos,sin,0( ββ−=f . 

6. Concluding remarks  

The purpose of this paper is to extend the stiffness condition to be in force for the rigid 
body to the case of the relative motion. Consequently, the relative motion can easily be 

α 

β 

b 

d 

C 

B 

A 
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solved for all the places of the rigid body without any absolute, drift or Coriolis 
components. The applications of the condition to calculate the velocities and 
accelerations in the relative motion similarly as for absolute motion is suggested. The 
elaborated model is applied to vibrations of rigid beam supported to moving cylinder. 
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project 21-339/2010 DS 

References 

1. D. J. McGill, W. W. King, Engineering Mechanics: Statics and an Introduction to 
Dynamics, PWS Engineering, Boston, 1985 

2. J. Jankowski, The equations of impulse and momentum for the rigid body, Proc. XXI 
Symp. Vibrations in Physical Systems, Poznań-Kiekrz, 2004 

3. S. Banach, Mechanika, PWN, Warszawa, 1956. 
 
 

Plany prędkości i przyspieszeń w ruchu względnym 
RozwaŜane jest zagadnienie kinematyczne w ruchu ogólnym dwu ciał sztywnych względem siebie. 

Przedstawiona w pracy metoda warunku sztywności dla wyznaczania ruchów względnych bryły opiera się na 
wzorach stosowanych w ruchu bezwzględnym. Pozwala to wyznaczać plany prędkości i przyspieszeń w 
sposób analogiczny jak w kinematyce bryły. Jedynie w jednym miejscu bryły naleŜy zastosować znane wzory 
dla ruchów bezwzględnych, unoszenia i Coriolisa. Daje to duŜe moŜliwości zastosowań w analizie 
mechanizmów. 
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Abstract 

The main contribution of this paper is to find the friction moments appear during the bar motion. The 
considerations are based on momentum and moment of momentum principles. The introduced friction is 
separated into rotating and sliding parts, where the rotating part is divided into rolling and whirling, as well. 
 
Keywords: momentum; moment of momentum; friction; reductions pole 

1. Introduction 

To express the laws of rigid body dynamics with respect to both possible independence 
motions: translations and rotations it is necessary to connect the effect of a moment of 
momentum on the mathematical representation of forces and moments appearing to the 
motion equations. This is actually the role of an axiom stating that momentum and 
moment of momentum are quantities on equal terms and, in a consistent theory, the 
motion equations must concern the same reduction pole for the principles of momentum 
and moment of momentum. Note that the addition of the reduction pole to these 
principles leads to correct description of the rigid body motion. 

2. Momentum and moment of momentum principles 

Let the body model takes the region Ω  in 3D Euclidean space Z  with the place Ω∈A  
as an element. Absolute motion of the body in a frame of reference [2, p. 7] with the 

Cartesian coordinate system O1e2e3e  can be described with two mathematical objects: 

rotation matrix ℜ  and position vector x  connecting point O with the place A . Absolute 

linear velocity ( )Av  of the place Ω∈A  is the time derivative of position vector. 

Following Chasles theorem [3, p. 329] rotation of a rigid body can be described by an 

absolute angular velocity ( )Aω . Finally, the motion can be determined locally: 

),0(),;()(),;()( ∞∈== ttAtA xhxgv ω  (1) 
Global properties of motion are described by the stiffness condition:  

Ω∈=×+= BAABAAB ,),()(),()()()( ωωω ABvv  (2) 
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Inertial properties are based on the momentum-velocity relationship [4, p. 207]: 

),0(,);()();( ∞∈= ∫
Ω

tdtt xxgx0p ρ  (3) 

),0(,);()();( ∞∈×= ∫
Ω

tdtt xxgxx0k ρ  (4) 

where: p momentum, k  moment of momentum, ρ  mass density. Dynamics can be 

characterized globally by the influence of all of the forces and the moments acting in an 
active and passive way. The definition of equipollent force systems correctly suggests 

that we may replace any system, by a total force W and a total moment M  at any place 

O named the reductions pole. The force-couple pair, W and M  is called a resultant of 
the load. The influence of all the passive and active loads on the movement is 
characterized by a momentum and a moment of momentum changes: 

pp

Wp
~);0(

),0(),;();(

=

∞∈=

O

tOtOt&
 (5) 

kk

Mk
~

);0(

),0(),;();(

=

∞∈=

O

tOtOt&
 (6) 

Here p~  an initial momentum, k
~

 an initial moment of momentum and the dot means the 

time derivative. The motion is specified here in the place O Ordinary differential 
equations, with unknown vector functions, appear as a side effect. A primary aim of the 
rigid body dynamics is to find the solutions for the initial value problems (5,6). 

The set of points in the space Z  connected with the region Ω  by the stiffness condition 

will be denoted by Ω̂  and called kinematical domain. 
To avoid the procedure of solving integral equations (3,4) we can use the relation (2). 

Thus, we can rewrite momentum-velocity relationship in the reduction pole Ω∈ ˆC : 
),0(),()~;()~;();( ∞∈×+= tCttmCt Sxhxgp  (7) 

),0(),~;()()~;()();( ∞∈ℑ+×= ttCtCCt xhxgSk o  (8) 
where x~  is the position vector at Ω∈ ˆC . We have introduced the following 
denotations: 

∫
Ω

⋅= xx dm )(ρ  (9) 

∫
Ω

−= xxxxS dC )~)(()( ρ  (10) 

∫
Ω

−××−=ℑ xxxhxxxh dC )]~([)~)(()( ρo  (11) 
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The formulae (9,10,11) define a mass m , a static moment )(CS , and a moment of 

inertia )(Cℑ  according to the reduction pole Ω∈ ˆC . It allows us to rewrite the initial 

value problems (5,6) into the coupled system of ordinary differential equations: 

pSxhxg

WSxhxg

~)()~;0()~;0(

),0(),;()]()~;([)~;(

=×+

∞∈=×+⋅
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tCtCt
dt

d
t

dt

d
m  (12) 

kxhxgS

MxhxgS

~
)~;0()()~;0()(

),0(),;()]~;()()~;()([

=ℑ+×

∞∈=ℑ+×

o

o

CC

tCttCtC
dt

d
 (13) 

We now fix the axes of the frame to body region so that the inertia properties become 
constant. It permits us to calculate the derivative of a vector by adding the cross product: 

( )
( )[ ]

( ) )(~)ˆ;0()ˆ;0(~
),0(),;()ˆ;()ˆ;(~)ˆ;(

)ˆ;(')ˆ;(~

CCm

tCtCttmt

Cttm
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∞∈=×+×+

×+′
 (14) 
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)ˆ;()()ˆ;('
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kxhJxgS
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o
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 (15) 

It is clear that the initial value problems system is lengthy and complicated. 
Alternatively, we have to calculate the derivative of both the static moment and moment 
of inertia with respect to time. 

3. Friction 

The equations (5,6) relate to all of the external forces acting on the body in an inertial 
frame of reference. Some of external forces are known before any analysis is carried out; 
we refer to these as loads. The external forces exerted by attaching or supporting bodies 
are called reactions. The free-body diagram is a figure where we show, by arrows, all of 
the external forces and moments of couples that act on the body. It is important to realize 
that each force appearing on the free-body diagram is in fact the resultant of a distributed 
force system. The same resultant is also transmitted when the body is in contact with a 
surface of surroundings, there being friction at the contact surface. We shall examine the 
Coulomb`s law of dry friction between a pair of surfaces. For a body in contact with 

surroundings the sliding friction T is the component of the resultant reaction force R  

that lies in the tangent plane of contact. The other (perpendicular ) component N , is 

called the normal force. Similarly, the rolling friction V is the component of the 

resultant fixed moment of couple U that lies in the tangent plane of contact. The other 

component, perpendicular to this tangent plane, is called the whirling friction W. The 
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parallelogram law allows us to decompose both the resultant force and the resultant 
moment of couple into two mutually perpendicular parts: 

WVUNTR +=+= ,  (16) 
The friction will continue to balance the loads for as long as it is able: 

NWNfVNT ⋅≤⋅≤⋅≤ νµ ,,  (17) 
where the constants νµ ,, f  are the coefficients of static friction, which depend upon 

the types of materials in contact and upon the roughness of their surfaces. When the 
surfaces slide, or roll, or whirl reciprocally, the reduced values of friction coefficients 

νµ kkk f ,,  called the coefficients of kinetic friction fulfil the kinetic Coulomb's law of 

dry friction: 

NWNfVNT kkk ⋅=⋅=⋅= νµ ,,  (18) 
We should remember that usually only one, or two of relative motions may happen. 

4. Rolling friction in the socket 

The cantilever bar of a length b  with a rectangular cross-section dc ×  shown in Fig. 1 

supports a load G in the end B. The second end is hitched to the cylindrical socket. The 
distribution of mass in moving frames of reference is given by the function  

( ) ( )[ ]ccxzyx /3/6/sin,, 0 +⋅= πρρ  (19) 

where 0ρ  is density coefficient. The total mass of the bar reads 

∫ ∫ ∫− −
=

2/

2/ 0

2/

2/

d

d

b c

c
dxdydzm ρ  (20) 

Q

G

B

C

A

 
Figure. 1. Moving frame of reference 

The force gQ m=  (g  - gravity) acts through ( )zyxC kCC ,, . We are going to find 

the differential equation governing the bar motion including the rolling friction moment. 
Firstly, we get the equation of momentum for the bar. We find that the momentum has 
the following form in moving coordinate system 

( ) ( ) ( ) ( )γγ && ⋅=×= ymyxmAt CCC ,0,00,,0,0,;p  (21) 
According to the formula [1, p. 1165] 
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ppp ×+= ω'&  (22) 
and the balance of momentum 

0p

Wp

=

∞∈=

);0(

),0(),;();(

A

tAtAt&
 (23) 

we obtain the initial value problem 

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) 00,
6

0

,0,sin,cos,0,,0 2

==

∞∈++=⋅⋅−

γ
π

γ

γγγγ

&

&&& tttGQtytym CC S
 (24) 

where S  is the reaction force of the socket. The angular moment reads 

( ) ( )γ&3121 ,,; IIIAt 11=k  (25) 
Similarly, as for momentum, we have 

( )2
2131

2
312111 ,,' γγγγγω &&&&&&&&& ⋅+⋅⋅−⋅⋅=×+= IIIIIkkk  (26) 

Hence, we obtain the initial value problem 

( ) ( ) ( )( )
( )( ) ( )

( ) ( ) 00,
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312111
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γγγγγ

&

&&&&&&&&

tGlQy

ItIItItI

C U  
(27) 

There U is the couple of the socket. Let us take the rolling friction moment as 

( )γ&sgn21 ⋅⋅= SfU  (28) 
Finally we have 

( ) ( )( ) ( )( ) ( )

( ) ( ) 00,
6

0

,0,sgn0,0,1 211

==

∞∈⋅⋅+−⋅+⋅−=⋅

γ
π

γ

γγ

&

&&& ttSfGlQytI C

 (29) 

The initial value problem is not linear so we propose the following solving algorithm: 

1) Set he first approximation for U1  with 

( )( ) 0sgn =tγ&  (30) 

2) Solve (28) to interpolate U1  from (27). 

3) If the difference between U1  in two successive iterations is smaller than a given 

value, then algorithm is finished. In other case go to Step  2 . 
the couple of the socket is derived from (26). Rolling friction is presented in Fig. 2. 
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Figure. 2. The rolling friction moment acting in the socket 

5. Concluding remarks  

The main contribution of this study is to characterize the dynamical behaviour of the 
rigid body on a base of momentum- moment of momentum balance principles. These 
principles depend on the reduction pole. In the paper the kinematical domain was 
introduced. When the reduction pole is bounded with the kinematical domain of the rigid 
body, then it is easy to rewrite the principles into a coupled system of ordinary 
differential equations with coupled initial conditions. The mass moments are the 
coefficients in these equations and they are multiplied by the velocities (linear and 
angular). The introduced friction was separated into sliding and rotating parts. 
Additionally, the rotating friction was divided into rolling and whirling parts, as well. 
There are two different kinds of friction laws in both static and kinematic cases. The 
final part of this paper is an application of all above mathematical models to the motion 
of the bar hitched into a cylindrical socket. 
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Wpływ obrotu na ruch wahadła 
W pracy wyznaczany jest moment tarcia podczas ruchu belki. RozwaŜania są oparte na zasadach pędu i krętu. 
RozwaŜane tarcie jest rozłoŜone na część obrotową i część postępową, przy czy w tarciu obrotowym 
wydzielono składniki wirowe i toczne. 
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Abstract  

In the paper we consider plates reinforced by ribs. Assuming a periodic distribution of the ribs in the plate, an 
averaged model is being constructed. The method used here is not asymptotic. In the modelling equations a 
microstructure parameter remains (basic cell size). To test out the model, a case of free vibrations is being 
analyzed. 
 
Keywords: ribbed plate, elastodynamics of plates, methods of homogenization, vibrations of plates.  

1. Introductory concepts 

The object of considerations are rectangular elastic plates reinforced by periodically 
spaced ribs, (Fig. 1). A configuration of the plate will be a region ×−= ),( 11 LLΩ  

),(),( 3322 LLLL −×−× , Ω∈),,( 321 xxx . If ∞→1L we will deal with a plate-band. By Ι 

we denote a known time interval, I, 10 ≡∈ ttt . 

The plate will be reinforced by the ribs of thickness l′ and l ′′ , spaced alternately and 
parallel to 2x -axis. A distances between the ribs are equal.  

Let 2l be a length of a basic cell which we denote by ),( ll−=∆ . In this case the 

distances between the ribs are equal 
2

ll
l

′′−′
− . It will be assumed that lll 2<<′′+′  and  

12 Ll << . 

We denote by ),,( ,321 txxxww kk = , 3,2,1=k , Ω∈),,( 321 xxx , Ι∈t , components of 

the displacement vector field. 
Let )( 1xρ , )1(xCklmn , ),( 111 LLx −∈  be a mass density and the components of the 

plate elastic tensor, respectively. These quantities do not depend on remaining spatial 
variables. 

The elastodynamic equations of the described plate, treated as three-dimensional 
body, has the form: 
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 [ ] 0),,,()(),,,()(
,321,13211 =−
lnmklmnk txxxwxCtxxxwx &&ρ  (1) 

where  3,2,1,,, =nmlk  and for an arbitrary function f  we denote 2

2

t

f
f

∂
∂

=&& , 
k

k x

f
f

∂
∂

=, . 

In this work a summation convention holds. 
  

 
Figure 1. 

 

The functions )(⋅ρ , )(⋅klmnC  occurring in the equation (1) are 2l-periodic functions, 

discontinuous on junction surface between the plate and the ribs. Moreover mρ , ρ′ , ρ ′′  

and mC , C′ , C ′′  have to be jump values of  )(⋅ρ ,  )(⋅klmnC  for the plate and the ribs, 

respectively. 
If we define a functional L  as 

)(
2

1
,, nmlkklmnkk wwCwwL +−= &&&&ρ                                        (2) 

we can rewrite the equation (1) in the form 

0
',

=
∂
∂

−
∂
∂

−










∂
∂

kkllk w

L

w

L

w

L
&&

                                          (3) 

Coefficients occurring in equations (1), (3) are functions. Our aim is to average them. 
A method which we will use here is the tolerance averaging technique, [1-3]. 
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2. Modeling procedure 

We assume the decomposition of displacement fields in a form: 

),,,()(),,,(),,,( 3211321321 txxxvxhtxxxutxxxw kkk +=                             (4) 

where ku  and kv , are slowly-varying functions and the functions h  are known 

fluctuation shape function. 

According to the tolerance averaging technique, to obtain an equations for the 

functions ku  and kv , at first we must substitute the displacement fields (4) to the 

functional (2). Then, averaging this functional, we obtain:  

[ +>′<+><+><+><−>=< nmlkklmnnmlkklmnkkkk vuhCuuCvvhuuL 1,,,
2 2

2

1
δρρ &&&&&&&&  

nmlkklmn vvhC ,,
2 ><+ ]])( 11

2
lnmkklmn vvhC δδ>′<+    (5) 

where 1/ xhh ∂∂=′  and the averaging operator is defined as: 

∫−
>≡<

l

l
dxxf

l
f 11)(

2

1
. 

Equations for the functions ku  and kv  have the form: 
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∂
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kk
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&&

                                     (6) 

 
where 3,2=α . 

Substituting the functional (5) into equations (6), we obtain 

0,1, =>′<+><−>< lmklmnlmklmnk vhCuCu&&ρ , 

+>′<+><−>< nmmnkaamamakk uhCvhCvh ,1,
22 &&ρ 0)( 2

11 =>′< mmk vhC            (7) 

If the plate and the ribs are isotropic, we have: 

)( lmknlnkmmnklklmnC δδδδµδλδ ++=  

where )( 1xλ , )( 1xµ  are the functions. 

In this case the equations (7) have the form: 

0)( ,1,1,11,1 =>′<+>′+<+><−>+<−>< kkkkkk vhvhuuu µµλµµλρ &&  
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01,,1,, =>′<+>′<−><−>+<−>< ααααα µλµµλρ vhvhuuu mmmm&&  

+>′+<+><−>+<−>< 1,1,1
2

1,
2

1
2 )()( uhvhvhvh aaaa µλµµλρ &&  

0))(2( 1
2

, =>′+<+>′<+ vhuh kk µλµ  

a
hvh

ββα µλρ
,

22 )( >+<−>< && +>′<+><− αββα
µµ ,1,

2 uhuh  

0)( 2
1, =>′<+>′<+ αα µµ vhuh                (8) 

where 3,2, =βα . 

4. Example 

The set of equations (7) or (8) for the unknown functions ku  and kv  will be useful only 

when we determine the fluctuation shape functions h . We postulate 2l – periodic, 
fluctuation shape function )( 1xh  in the form given in Fig. 2, where a is an arbitrary 

constant. 
 

x2

x1

al

l-l

-al

 
      Fig. 2. 

 
Hence all the external loads are applied only in 21, xOx - plane. The plate material is 

homogeneous and isotropic with Lamé module λ , µ  and mass density mρ . Under the 

plane stress assumption instead of modulus λ  we introduce with the reduced modulus 

µ

µ
λλ

21

2
0 +

≡ . The ribs are assumed to be slender in 21, xOx - plane and carried out only 

axial stress. Hence their properties are determined by Young modulus E and mass 
density m=′′=′ ρρ . 

Denoting a Dirac function of argument Rx ∈1  by )(⋅δ , the functional (2) in the 

isotropic case take the form: 
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),,(),,()(
2

1

2

1
221 txnlwtxnlwnlxMwwL αααα δρ &&&&&&&& ++= [ ++− βδαγγδαβ δδµδδλ (

2

1
0  

] ),,(,)(
2

1
,,) 2221 txnlwnlxEww +−+ δδδ δγβαβγαδ                       (9) 

It will be shown that the analysis of the problem being under consideration can be 
carried out under some additional assumptions   

),( 111 txuu = , ),( 111 txvv = , ],[ 111 LLx −∈ , 

 ),( 222 txuu = , ),( 222 txvv = , ],[ 222 LLx −∈                              (10) 

The dynamic equations of the plates after averaging the functional (9) will be as 
follows: 

0,)2( 11101 =+− uum µλ&& , 

0)2(4 101
2 =+− vvml µλ&&                                              (11) 

and two independent equations for ),( 22 txu , ),( 22 txv , ],[ 222 LLx −∈   

0,)2( 22202 =++− uEum µλ&& ,                                               

04,)2(
3 22220

2

2
2 =+++− vvE

l
vml µµλ&&                            (12) 

where mm m += ρ . 

Now let us pass to analysis of the equation (12) 2 . This equation can be rewrite in the 

form 
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Setting )()(),( 222 txtxv ξψ=  (where  tt ωξ cos)( = ) we obtain 
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We shall consider the following special cases. 

If 2
2

4
ω

µ
>

ml
, than 02 =−′′ ψκψ , where )
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3 2
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2 ω
µ

µλ
κ −
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mlE

m
. Hence 

2xAe κψ −=  .  

If 2
2

4
ω

µ
<

ml
, than denoting )

4
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3
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mlE

m µ
ω

µλ
κ −

++
=  we obtain 
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02 =+′′ ψκψ  

It follows that 2221 sincos xAxA κκψ +=  and  

0)()( 22 ==− LL ψψ  

0)()( 2222 ==− LvLv . 

Since 212112 hvww ∂=∂+∂ , we get 0)( 2 =±Lψ . Taking solution of  02 =+′′ ψκψ  

in form 2cos xA κψ = , where π
π

κ nL +=
23 , we obtain txAtxv nn ωκ coscos),( 222 = ,  

where 
332 L

n

Ln

ππ
κ += . 

5. Conclusions 

The above considerations have shown that the tolerance averaging approach constitutes 
an appropriate analytical tool for analyzing the dynamic problems of elastic plates 
reinforced by periodically spaced ribs.  

The numerical analysis and selected applications of the approach proposed in this 
paper will be presented in the Conference. 
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Modelowanie nieasymptoytyczne płyt wzmocnionych periodycznym układem Ŝeber 
W pracy rozwaŜa się płyty wzmocnione Ŝebrami. Zakładając periodyczne rozmieszczenie Ŝeber w płycie, 
konstruuje się model uśredniony. Metoda jaką tu zastosowano nie jest metodą asymptotyczną. W równaniach 
modelujących pozostaje parametr mikrostruktury (wymiar komórki periodyczności). W celu przetestowania 
modelu analizuje się przypadek drgań własnych. 
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Abstract  

This article presents results analysis of the structural degradation of technical materials samples. The results 
have been determined by the analysis of the distribution under dynamic load (a discrete model of structure 
dynamic load). The aim of this research is to describe the process of structural degradation of the basic 
technical materials. The structural changes of the constructional material samples subjected to impulsive loads 
have been measured. Information about the technical condition of the individual material samples have been 
obtained on the basis of the energy characteristics of power spectral density under degrading dynamic load. 
The results were presented in the form of power amplitude estimation of the dynamic stiffness forces and 
damping forces, changing with the ongoing samples degradation process. 
 Research conducted at the work station by the method of impulsive test helped to determine the initial 
load causing the damage in the material structure. Further analysis of the material structural changes allowed 
determining the limits of load, which will initiate the process of structural degradation (in. ex. cracking).  
 
Keywords: Energetic characteristic, degradation, impulsive test, dynamic stiffness forces.   

1. Introduction 

This paper presents the concept of testing structural material fatigue by the method of 
determining spectral characteristics describing structural changes in mechanical objects.  
Structural changes of a mechanical object are determined by synergy of various 
processes (e.g. load types and amplitudes, spatial and time characteristics of such loads, 
corrosion and aging processes, mechanics of materials and other properties). 
Characteristics of structural parameter changes in materials have been determined by the 
powers of damping forces (internal friction) and the powers of inertial forces and 
dynamic stiffness forces as well as the work of forces causing degradation of material 
samples. 
 The effects of structural degradation processes taking place in an object include 
changes in macroscopic mechanical properties of the material caused by changes in 
material structure and microcracks inside the material, as well as by alteration of its 
structure (material ageing). 
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Very dangerous phenomena in the operation of machines and buildings include crack 
propagation within the constructional material, which usually leads to a total, 
catastrophic loss of structure functionality and the triggering of further degradation 
processes. 
 Cracks are accompanied by increased damping of vibration as well as changes in 
their spectrum composition. Cracking problem escalates together with the application of 
structures that are exposed to higher load and constructional materials of higher strength; 
their plasticity is naturally lower and so is their resistance against cracking. 

In the function of time, the condition of a machine undergoes the process of 
evolutional degradation due to excessive load on and fatigue of constructional 
components, wear resulting from friction (play) etc. 

2. Energy characteristics of structural degradation of a mechanical object 

Assessment of constructional material efforts which amounts to analysis of their 
degradation process is based on the energy processor model. The concept of energy 
processor is the basis for identification of the degradation trend and assessment of 
residual durability. The method of analyzing the characteristics of constructional 
material efforts by hybrid, energetic method of analyzing spectral characteristics of 
degradation processes, as presented in this study, makes it possible to determine spectral 
components of structural degradation of materials. It allows for the assessment of impact 
of individual power spectral components of degradation forces on material life 
characteristics. These characteristics will facilitate the choice of materials used in 
building machine components exposed to intensive (including impulsing) dynamic loads. 
The total sum of density of dissipation energy and density of elastic strain energy 
causing the initiation and growth of fatigue crack has been adopted as a parameter of 
material destruction [16]. 
 The work of mechanical object structural degradation forces is the sum of damping 
forces work (energy dissipation) and the work of forces changing dynamic rigidity of the 
object: 

 

(1) 

 This formula permits the estimation of boundary values of the work of technical 
structural degradation forces in mechanical objects. 
In the research of degradation process and in the assessment of technical condition of 
objects the method of analysis of dynamic load power distribution was used [6]. The 
method takes into account spatial power change in individual subsystems and the flow of 
energy between the subsystems. The main idea of this method is the fact that the object 
load condition can be represented by accumulated, dissipated and transferred energy.  

The holistic model of machine load condition is described by the matrix of power 
spectral density of the dynamic load power in a mechanical system [6]:  
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where: ( )Θω ,j
ikVH  – mobility matrix of machine, 

( )Θω ,j
kk FFG  –spectral density matrix of excitation forces. 

The elements of the matrix of dynamic characteristics [6]: 
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are the functions of spatial degradation measure D of the mechanical system. 

3. Energetic modes in description of structural degradation of mechanical objects 

Changes in the dynamic condition of a mechanical object, described by energetic 
characteristics of vibration loads on nodes of a machine, are an important indicator of 
differences or changes occurring in its structure.  
 Research into imaginary parts and real parts of the testing force powers in the 
frequency function, permit determination of changes (maxima) in these functions. 
The shift of characteristics maxima and the occurrence of minima (anti-resonance) in 
energetic characteristics of dynamic rigidity constitutes key information about 
preliminary tentions applied to the object or information on degradation state of a 
mechanical object which manifests itself in dynamic rigidity changes. A growth in 
component frequency of testing signal power amplitude along the change in preliminary 
tension marks a change in the structural model of an object. Energetic modes analysis 
makes it possible to determine differences or changes in internal tensions in a 
mechanical object. 

4. Structural degradation of constructional materials 

Information about the technical condition and changes in structural properties of an 
object are obtained on the basis of energetic characteristics of power spectral densities of 
test dynamic loads. They are presented as the estimates of changes in dynamic stiffness 
and inertia forces, which change along the progressive process of object degradation. 
The method allows for establishing the values of changes in stiffness and inertia as a 
result of structural degradation. Analyses run by means of the impulse test method make 
it possible to determine the loads which initiate the process of structural damage of a 
construction. 
 Below are energetic characteristics of impulse loads causing structural degradation of 
a standard-dimension sample of constructional material. The key element of the test 
station was electric impact hammer (Fig. 1). 
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Fig. 1. The scheme of test stand to analyze dynamic degradation of constructional    
material samples 

 Torsional moment of force was applied to samples of various constructional 
materials (e.g. steel, cast iron) of standard measurements.  The state of degradation of the 
presented sample manifested itself with a torsional deflexion of 9.5 degrees and changes 
in the frequency of energetic modes of degradation loads. Reduction of vibration 
frequency of the sample occured due to the reduction of its dynamic rigidity and as a 
result of changes in internally dissipated energy. High loads maxima characterised the 
process of sample cracking and breaking. The shift of characteristics extremes (Fig.2) 
and the occurrence of reduction (or growth) of minima frequency (anti-resonance) in 
energetic characteristics, serve as a confirmation of the degradation state of a mechanical 
object. Cracked samples are shown in Fig. 3.  Based on an analysis of changes in 
energetic mode extremes, relative changes (reduction or growth) in dynamic rigidity of 
material samples were determined. 
 Technical degradation process of the sample resulted in either growth of mode 
frequency (greater rigidity) or a reduction of mode frequency. Relative change in 
dynamic rigidity of a mechanical object due to its structural degradation: 

[ ]%
i

r

i

ri
2
0

2
0

1
k

kk

ω

ω
−≈

−  (4) 

Based on an analysis of changes in energetic modes, relative changes (reduction or 
growth) were determined in dynamic rigidity of the samples due to structural changes 
(Fig.3). 
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Fig. 2. The real parts of the power spectral density of the impulse loads power. 
Real changes in material samples due to degrading dynamic load application 

 

 

Fig. 3. The imaginary parts of the power spectral density of the impulse loads power 
Rigidity changes in material samples due to degrading dynamic load application 



 
 
218

 The maximum growth of sample dynamic rigidity reached the value of approx. 4.5% 
while the lowering of dynamic rigidity was 1 – 10% (Fig. 3). 
Reduction of vibration frequency of the sample occurred due to the reduction of its 
dynamic rigidity and as a result of changes in internally dissipated energy. High loads 
maxima characterised the process of sample cracking and breaking.  

 

 

Fig. 4. Crossection of fatigue scrap 

 As a result of the load impact, after the completion of the work of degrading forces 
stepwise reduction in torsional rigidity of the sample occurred, a growth in the power of 
internal friction forces and periodic changes in the power of degradation forces in the 
analyzed sample. In the final phase of the experiment, torsional rigidity of the sample 
was virtually reduced to naught.  
A picture of fatigue scrap is shown in Figure 4. 

5. Conclusions  

1. Information about the technical condition of a mechanical object is obtained on the 
basis of energetic characteristics of power spectral densities of dynamic loads and 
amplitude estimates of dynamic rigidity force power and inertia forces which 
change together with the progressive process of its structural changes.  

2. Vibration damping, being a factor which determines mechanical energy dissipation, 
is a measure of the initial phase of structural degradation of a mechanical object. 
Changes in dynamic rigidity manifesting themselves in sample cracking, ocurr in 
the second, final phase of technical degradation of a mechanical object. An analysis 
of those changes makes it possible to determine boundary values of load powers 
which trigger the initiation of structural degradation processes (e.g. cracking) in a 
mechanical object component. 
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Nowa metoda opisu procesu degradacji strukturalnej materiałów konstrukcyjnych 
Artykuł przedstawia analizę wyników badań procesu degradacji strukturalnej próbek materiałów technicznych, 
wyznaczonych metodą analizy rozkładu mocy obciąŜeń dynamicznych (model dyskretny obciąŜeń 
dynamicznych struktury). Celem tych badań jest opis procesu degradacji strukturalnej podstawowych 
materiałów technicznych. Wyznaczono miary zmian strukturalnych próbek materiałów konstrukcyjnych przy 
poddawaniu ich obciąŜeniom impulsowym. Informacje o stanie technicznym poszczególnych próbek 
materiałów uzyskiwane były na podstawie energetycznych charakterystyk gęstości widmowych mocy mocy 
degradujących obciąŜeń dynamicznych i przedstawione w formie estymat amplitudowych mocy sił sztywności 
dynamicznej i mocy sił tłumienia, zmieniających się wraz z postępującym procesem degradowania tych 
próbek. Badania stanowiskowe metodą testu impulsowego pozwoliły wyznaczyć obciąŜenia inicjujące proces 
uszkadzania struktury tych materiałów. Analiza zmian strukturalnych pozwala ustalić wartości graniczne mocy 
obciąŜeń, powodujących inicjację procesów degradacji strukturalnej (np. pękania) wybranych materiałów.  
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Abstract   

The purpose of this study is to use recurrence plots to investigate the dynamics of an autoparametric system 
with an attached pendulum. Recurrence is a fundamental property of dynamical systems, which can be 
exploited to characterise the system’s behaviour in phase space. The Recurrence Plots method (RPs) and 
Recurrence Quantification Analysis (RQA) is used for analysis of relatively short time series for detection 
different types of behaviour including  chaotic motions of the considered nonlinear system.  
 
Keywords: Autoparametric vibrations, Chaos, Recurrence Plot, Pendulum-like System 

1. Introduction 

The autoparametric system represents a special class of nonlinear dynamical 
construction. Such a system is composed of at least two subsystems (primary and 
secondary), i.e. at least a two degrees of freedom model has to be considered. The 
secondary subsystem is coupled to the primary system in a nonlinear way, and moreover 
it may become a source of internal parametric excitation. However, under certain 
conditions the attached secondary subsystem may play a role of a dynamical absorber, as 
well. In a large number of problems we want to reduce vibration amplitude of the 
primary system and therefore, to avoid dangerous instability regions, a proper system's 
parameter selection is needed. 
 Dynamical systems with attached pendulums play significant role in many 
applications and posing interesting mathematical challenges. The pendulum-like 
structures appear in cranes, robots etc. or they can be used for vibration absorption. 
 Our aim is to propose an efficient method which could identify the type of motion by 
time history analysis and on this basis to select regions of various system's  behaviours. 
We assumed that the time series received from an experimental set used identification 
are relatively short, what it is very important from control point of view. It is worth 
adding, that the experimental results analyzed by standard nonlinear method have been 
presented in the earlier work of authors [1]. Analytical  and numerical verification  of 
these results have been done there, too.  
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2. Equations of Motion and Experimental System 

The experiment, of the two degree of freedom model presented schematically in Fig. 1a, 
has been performed on an especially prepared experimental test stand. A photo Fig. 1b 
shows a main components of real mechanical system. The pendulum which may realize 
full rotation is attached to an oscillator mounted to a base by a spring and a 
magnetorheological damper. Motion of the system is generated by a motor, and a 
mechanism which changes rotation of the motor into translational motion. The frequency 
of the vertical oscillations is controlled by inverter. Amplitude of the kinematical 
excitation is fixed by a pitch of a drive shaft. Detailed description and more information 
about experimental setup and measures apparatus are presented in [2]. 
 

       
Figure 1. The autoparametric system; model with pendulum (a) and main parts of 

experimental system (b). 

The governing equations of motions of the autoparametric system are given by non- 
dimensionless equations: 

 3 2
1 3

tanh( ) ( sin cos ) cosX X eX X X qα α γ µλ ϕ ϕ ϕ ϕ ϑτ+ + + + + + =&& & & && &  (1) 

 ( )2 1 sin 0Xϕ α ϕ λ ϕ+ + + =&&&& &  (2) 

Definitions of the dimensionless parameters α1, α2, α3, µ, λ, q, ϑ  and  analytical 
solutions of equations of motions (1) and (2) received by  the Harmonic Balance Method 
(HBM) are  presented in [1]. 

3. Recurrence Plot and Quantification Analysis  

The standard procedure to perform nonlinear analysis is the phase space reconstruction. 
A single coordinate in nonlinear time series can be substituted by a specific vector. The 
corresponding vector elements are defined by the same coordinate with a certain time 
delay. For the scalar series xi we construct the delay vectors 

 ( )2 ( 1), , ,...,i i d i d i m dx x x x+ + + −=is  (3) 

where parameter m is the embedding dimension and parameter d is the time delay. Each 
unknown point of the phase space at time i is reconstructed by the delayed vector si in an 
m-dimensional space called ‘’the reconstructed phase space’’. This vectors (3) is useful 
only if parameters m and d are properly chosen by using appropriate methods. Usually 



Vibrations in Physical Systems Vol.24 (2010) 

 
223

the time delay and embedding dimension can be estimated by applied average mutual 
information (AMI) [3] and false nearest neighbour  method (FNN) [4].  

The recurrence analysis is a graphical method designed to locate hidden recurring 
patterns, nonstationarity and structural changes, introduced in Eckmann et al. [5] in 
1987. A recurrence plot (RPs) is a graph which shows all those time instants at which a 
state of the dynamical system recurs. In other words, the RPs method reveals all the 
times when the phase space trajectory visits roughly the same area in the phase space. A 
recurrence plot can be described by computing the matrix [6] 

 ( )ijM θ ε= − −
i j

s s  (4) 

where θ is the Heaviside step function, ε is a tolerance parameter (threshold), to be 
chosen, si  is a delay vector of the embedding dimension. This matrix is symmetric by 
construction. If the trajectory in the reconstructed phase space returns at time i into the 
neighbourhood of ε where it was j then Mij=1, otherwise Mij=0. This results are can plot 
black and white dots respectively. Value of chosen parameter ε is very important. If ε is 
chosen too small, there may be almost no recurrence points and we cannot learn 
anything about the recurrence structure of the considered system. On the other hand, if ε 
is chosen too large, almost every point is a neighbour of every other point, which leads 
to a lot of artefacts. A too large ε includes effect called tangential motion.  

In the Fig. 2a-4a we can see different types of responses of an autoparametric 
systems and it’s recurrence plots. The results have been done for data: α1=0.261354, 
α2=0.1, α3=0, µ=17.2278, λ=0.127213, q=2.45094, γ=0 and e=10. All examples presented in 
this work were studied numerically, analytically and then verified experimentally by 
other methods of nonlinear dynamics [1]. 

  

Figure 2. Time history (a) and its recurrence plot (b) of  a swinging pendulum. The time 
delay  d=25, the embedding dimension m=3 and the threshold ε=0.1. 

In the example the recurrence for swinging of the pendulum with periodic motion for 
ϑ=0.55, (Fig. 2) can be observed. The patterns of the plot are reflected by long and non-
interrupted diagonals. The vertical distance between these lines corresponds to the period 
of the oscillation. Recurrence analysis of the rotation of the pendulum, based on the 
signal of angular velocity is presented in Fig. 3a, ϑ=0.9. For RPs analysis 2000 data 
points and angular displacement of the pendulum are used. This choice of signal makes 
the analysis easier because in the velocity domain the rotation of the pendulum is 
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eliminated. The diagonals long line are observed, but the distance between individual 
line is different compare to swinging of the pendulum (Fig. 2b). It means that the period 
of the pendulum during rotation is smaller comparing to swinging. 

 

Figure 3. Time history (a) and its recurrence plot (b) of rotation of the pendulum.       
The time delay d=8, embedding dimension m=4 and threshold ε=0.1 

  

Figure 4. Time history (a) and it’s recurrence plot (b) of chaotic signal.                        
The time delay d=15, embedding dimension m=4 and threshold ε=0.1 

Next type of analyzed response is chaotic motion which consists of both swinging 
and rotating of the pendulum. The type of behaviour (chaotic) was established on the 
basis of the positive value of Lyapunov exponent and attractor reconstruction [1]. The 
recurrence plots of chaotic time history (ϑ=0.7) is presented in Fig. 4b. The diagram 
shows different line, much more shorter and dashed. The distance between diagonal lines  
is various because this motion include components of rotation and oscillation. In Fig. 5 
we observe the recurrence plot constructed from angular displacement of pendulum (the 
same experiment test as Fig. 4a, but another signal). In this example we used much more 
data points -10 000, therefore the time delay is changed d=53. We can see that time 
history consist of swinging, next one rotation and again swinging of the pendulum, it is 
clearly visible in Fig. 5a. This effect is observed in recurrence pattern, where areas 
(paths) with different length of diagonals but similar distance between them exist. The 
paths corresponds to ‘’chaotic oscillation’’ of the pendulum.   
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Figure 5. Time history (a) and it’s recurrence plot (b) of chaotic signal of the pendulum. 
The time delay d=53, embedding dimension m=4 and threshold ε=0.8 

In order to go beyond the visual impression yielded by RPs, several measures of 
complexity which are know as ‘’Recurrence Quantification Analysis’’ (RQA) [7]. These 
measures are based on the recurrence point density and the diagonal and vertical line of 
RPs. The most important RQA measurements are: Recurence Rate (RR), Determinism 
(DET), Laminarity (LAM), Trapping Time (TT), Horizontal and Vertical Diagonal Line 
(Lmax, Vmax), Entropy of Horizontal and Vertical Line Distribution (LENT, VENT). The 
detailed definition and method of their calculations and  more parameter quantifications 
one can find in papers [6, 7]. In paper [8] RQA method is used for classical parametric 
pendulum analysis. Results of calculation of recurrence quantification are presented in 
Table 1.   

Table 1. Results of  quantification analysis (RQA) for ε=0.1 and 2000 data points. 

 RR DET LAM TT LENTR VENTR Vmax Lmax 

Fig. 2b  0.0128 0.9999 0.9996 2.9273 4.5220 1.1571 5 1949 

Fig. 3b 0.0334 0.9992 0.9154 2.7569 3.5358 1.0626 6 1856 

Fig. 4b 0.0126 0.9994 0.9989 9.7378 3.5900 2.8793 40 1954 

Different line structures can be associated with different value of parameter RR. 
Note, that parameter RR indicates the fraction of recurrence for the oscillating pendulum 
is about three times smaller comparing with rotation. However, the DET and LAM for all 
types of motions are very similar. The diagonal and vertical line distribution, measured 
entropy (referred to the Shannon entropies) are closely the same (especially for diagonal 
line length distribution LENTR for rotation and chaotic response). Parameters Lmax stay 
also similar for all types of motions, but Vmax and TT for chaotic motions are completely 
different comparing to other dynamic responses. This suggests that, these recurrence 
quantifications can be used to analyze the chaotic behaviour. 
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4. Conclusions  

Results received from RP method agreed with results obtained from classical approaches 
to nonlinear dynamic analysis (see paper [1]). Very important advantage of this method 
is a possibility for a short time series application. But in a case of a rotation of the 
pendulum, longer time series give more precise results. 

Our main objective in this work was to use RPs and RQA statistics to detect 
transitions to chaotic motions and to confirm their effectiveness in a real autoparametric 
system. RQA analysis showed that the best parameters to classify of kind of motion are: 
VENTR, Vmax and TT. In future work we would like to confirmed RQA results for much 
longer time series and introduce own original quantifications. 
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Analiza ruchu regularnego i chaotycznego układu autoparametryczego za pomocą metody 
wykresów rekurencyjnych. 

W pracy przedstawiono analizę dynamiki układu autoparametrycznego z wahadłem za pomocą metody 
wykresów rekurencyjnych (RPs) i ich analizy ilościowej (RQA). Rekurencja jest jedną z podstawowych 
własności układów dynamicznych i moŜe być wykorzystywana w celu scharakteryzowania zachowania 
układu w przestrzeni fazowej. Metodą wykresów analizowano "stosunkowo" krótkie przebiegi czasowe dla 
róŜnych przebiegów czasowych. Na tej podstawie wykryto róŜnorodne odpowiedzi układu 
autoparametrycznego w tym zachowania chaotycznego. 
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Abstract  

Using thermodynamical approach the complete set of equations of local gradient model is obtained for 
description of coupled mechanical, thermal and electromagnetic fields in nonferromagnetic dielectrics taking 
into account the local mass displacement and polarization inertia. For linear isothermal approximation the key 
set of equations is written for scalar and vector potentials of displacement vector and electromagnetic fields. 
In this case the generalization of Lorentz calibration is proposed. On this base the plane harmonic waves of 
displacement, electromagnetic fields and local displacement of mass in media are studied. It is shown that the 
process of the local mass displacement is related to the change of volume and scalar electric potential only. 
It is shown that the proposed model describes the dispersion of modified elastic wave in the region of high 
frequency. 
 
Keywords: nonlocal model, local mass displacement, polarization inertia, mechanic and electromagnetic waves 

1. Introduction  

Some approaches to the construction of the gradient theory of dielectrics are known. 
Such theories are based on the extension of the state parameters space by gradients of the 
strain tensor or the polarization vector, and by gradients of the electric field vector or 
electric multipoles of higher order (see reviews [1, 2]). Recently the local gradient theory 
of dielectrics which takes into account the process of local mass displacement has been 
proposed [2, 3]. This work is devoted to the development of the aforementioned theory 
with account of polarization inertia [4]. On this base the interaction of the mechano-
electromagnetic wave fields are investigated.  

2. Basic set of model description    

Let us consider an isotropic thermoelastic polarized nonferromagnetic solid that occupies 
a region ( )V  of Euclidean space and is bounded by a closed smooth surface ( )Σ . The 

thermomechanical and electromagnetic processes as well as the process of local mass 
displacement [3] proceed in the solids due to external loads of thermal, mechanical, and 
electromagnetic origins. The process of local mass displacement is related to the structu-
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ral changes of a physically small element of a body. The mechanical and polarization 
processes and the process of local mass displacement are reversible.  

With account of the process of local mass displacement the velocity vector v of the 
center of mass is presented as the sum of convective part *v  of mass transport and term 

1
m t− ∂ ∂ρ ΠΠΠΠ  caused by structure changes of a physically small element of a solid. Here 

mΠΠΠΠ  is the vector of local mass displacement [3], ρ  is the mass density, t is the time. 

Then the equation of mass balance has a typical form: ( ) 0
t

∂
+ ⋅ =

∂
v∇∇∇∇

ρ
ρ  [3].  

Let us assume that total energy of the system “solid-electromagnetic field” is the sum 

of internal energy uρ , kinetic 2 2vρ  energy, the energy of the electromagnetic field 

eU  and polarization kinetic energy 
2

1

2 E
d

d
dt

 
 
 

p
ρ  [4]. The total energy change is the 

result of the convective energy transport through the surface, the work of surface forces 
ˆ ⋅σ v , the heat flux qJ , the electromagnetic energy flux eS , the work mJµ  related to the 

mass transport relative to the centre of the body mass, the work m t∂ ∂ΠΠΠΠπµ  related with 

structure change, and the action of mass forces F  and distributed heat sources ℜ : 
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dt dt dt

      + + + = − + + −               
∫ ∫

p p
v v v�

Σ

ρ ρ ρ ρ  

 ( )
( )

ˆ m
e q m

V

d dV
t

∂ 
− ⋅ + + + + ⋅ + ⋅ + ℜ∂ 

∫σ v S J J n F v
ΠΠΠΠ

πµ µ Σ ρ ρ .  (1) 

Here ( )2 2
0 0 2eU = +E Hε µ ; e = ×S E H ; E  and H  are the electric and magnetic 

fields in the laboratory frame; =p P ρ , P  is the polarization vector; σ̂σσσ  is the Cauchy’s 

stress tensor; 0 0,ε µ  are the electric and magnetic constants; ( )m ∗= −J v vρ ; µ  is the 

chemical potential; πµ  is the energy measure of the influence of the mass displacement 

on the internal energy [3]; Ed  is the scalar related with inertia of the polarization process 

[4]; n  is the unit outward normal vector to the surface ( )Σ ; / /d d t t= ∂ ∂ + ⋅v ∇∇∇∇ .  

Taking into account the formula m m t= −∂ ∂J ΠΠΠΠ  and the balance equations of 

electromagnetic field energy [3], mass and entropy [3, 5] from integral equation (1) we 
obtain the following local form of balance equation for the internal energy:  

2

* 2

ˆ
ˆ : m m

E
d ddu ds d d d d

T d
dt dt dt dt dt dt dtdt

∗ ′ ′= + + ⋅ + − ⋅ − ⋅ +
e p p p

E
ππππ

σ ∇σ ∇σ ∇σ ∇π π
ρ

ρ ρ ρ ρµ ρ µ ρ  
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 *ˆe q s e
T d

T
T dt∗ ∗ ∗

 + ⋅ − ⋅ − + ⋅ − + ⋅ + + 
 

v
J E J v σ F Fσ ρ ρ

∇∇∇∇
∇∇∇∇ .  (2) 

Here s is the specific entropy; T is the absolute temperature; sσ  is the strength of the 

entropy source; ′ = −π πµ µ µ ; ê  is the strain tensor, m mπ = Ππ = Ππ = Ππ = Π ρ ; ( )m m= − ⋅∇ Π∇ Π∇ Π∇ Πρ ρ is 

the specific value of density of induced mass [3]; ∗E  and e∗J  are the vectors of the 

electric field and density of electric current in the reference frame of the centre of mass 
moving with speed v relatively to the laboratory reference frame ( ∗ = + ×E E v B , 

e e e∗ = −J J vρ  [6]); B and eJ  are the vectors of magnetic induction and the density of 

electric current in the laboratory frame; eρ  is the density of free electric charge; ˆ ∗ =σσσσ  

( ) ˆˆ m m∗ ′ ′= − ⋅ − − ⋅E p π Iπ πρ ρ µ µσ ∇σ ∇σ ∇σ ∇ ; * m m′ ′= + − ⋅F F π∇ ∇∇∇ ∇∇∇ ∇∇∇ ∇∇π πρ µ µ , (e e e∗ ∗= + +F E Jρ  

( )( )

t ∗
∂ + × + ⋅∂ 

p
B E p

ρ
ρ ∇∇∇∇ , Î  is the unit tensor. For nonferromagnetic medium 

0=B Hµ . 

Now let us assume that the body state depends on a local electric field vector LE  [4]. 

Introduce the generalized Helmholtz free energy L
m mf u Ts ′ ′= − − ⋅ + ⋅ −E p ππ πµ µ ρ∇∇∇∇  

and rewrite formula (2) as:  

(ˆ
ˆ :

L
L

m m
d ddf dT d d

s
dt dt dt d t dt dt∗ ∗

′ ′
= − + − ⋅ − + ⋅ + − −

e E
σ p π E E

∇∇∇∇π πµ µ
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d T

dt T dtdt
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p p v
J E J v σ F Fσ ρ ρ

∇∇∇∇
∇∇∇∇ .  (3) 

From the requirement that equation (3) is invariant with respect to translations [7] and 

assuming that ( )ˆ, , , ,Lf f T ′ ′= E e∇∇∇∇π πµ µ  (all of these parameters are independent), we 

obtain the generalized Gibbs equation, the conservation law of momentum, a relation for 
the entropy production and a balance relation for polarization vector   

1 ˆˆ : L
m mdf sdT d d d d−

∗ ′ ′= − + − ⋅ − + ⋅σ e p E π ∇∇∇∇π πρ ρ µ µ ,    *ˆ e
d

dt ∗= ⋅ + +
v

σ F F∇∇∇∇ρ ρ , 

 
2s e q
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T T
∗

∗= ⋅ − ⋅
E

J J
∇∇∇∇

σ ,            
2

2
L

E
d

d
dt

∗ − =
p

E E . (4) 

The Gibbs equation and relation for the entropy production are the base for the 
formulation of constitutive equations. In particular, from (41) we obtain the next state 
equations:  
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f

s
T

∂
= −

∂
,   ˆ

ˆ

f
∗

∂
=

∂e
σσσσ ρ ,   m

f∂
= −

′∂ π
ρ

µ
,   

L

f∂
= −

∂
p

E
,   

( )m
f∂

=
′∂

π
∇∇∇∇ πµ

.  (5) 

Taking into account the equation (44) the last two formulas in (5) in linear 
approximation can be written as  

 
2

2E E E Em
d

d
dt

∗ ′+ = −
p

p E %∇∇∇∇ πχ χ χ µ ,    
2

2m Em E m Em
d

d
dt

∗′+ = − +
p

π E%∇∇∇∇ πχ χ µ χ . (6) 

Here 0′ ′ ′= −%π π πµ µ µ , 0′πµ  is the reduced potential ′πµ  in the reference state; Eχ , Emχ  

and mχ  are the material constants. Note that the occurrence in these relations of the 

value πµ~′∇∇∇∇  exhibits the space non-locality of the state equations.  

Assuming that thermodynamic fluxes are the linear functions of thermodynamic 
forces and using the Onsager principle from equation (43) for the entropy production, 
one finds such kinematic relations [3] 

 e e e T∗ ∗= +J Eσ σ η∇∇∇∇ ,         q t eT ∗= − +J Jλ π∇∇∇∇ . (7) 

Here ,eσ λ ,η  and tπ  are kinetic coefficients [3].  

The obtained here constitutive relations (5) and (7), equation (44), the conservation 
laws of momentum, masses, and entropy, the equations of electrodynamics, geometrical 

relations ( )ˆ 2
T = +

 
e u u∇ ∇∇ ∇∇ ∇∇ ∇  and formula ( )m m= − ⋅∇ Π∇ Π∇ Π∇ Πρ ρ  form a complete set of 

equations of electromagneto-thermo-mechanics of the polarized nonferromagnetic iso-
tropic solids taking into account the local displacement of the mass and polarization 
inertia. Note that since for determination of the vectors of polarization and local mass 
displacement the differential equations, which contain the second time derivative of the 
polarization vector were found, the equations obtained here can be effective for study of 
acceleration waves, high-frequency processes and behaviour of solids under the impact 
loading.  

3. The interaction of mechanic and electromagnetic fields  

Using the model equations let us investigate the interaction of mechanic and 
electromagnetic fields in dielectric isotropic medium. Further for simplicity let us 
neglect the polarization inertia ( 0Ed = ) and accept the isothermal approximation.  

Represent the displacement vector u, electric field E, magnetic induction B and body 

force vector F by scalar and vector potentials: m= + ×u ∇ ∇ ψ∇ ∇ ψ∇ ∇ ψ∇ ∇ ψϕ , e t

∂
= − −

∂
A

E ∇∇∇∇ϕ , 

= ×B A∇∇∇∇ , = ×F ∇ + ∇ Ψ∇ + ∇ Ψ∇ + ∇ Ψ∇ + ∇ ΨΦ , ( )⋅ ⋅ ⋅ Α∇ ψ = 0, ∇ Ψ = 0, ∇ = 0∇ ψ = 0, ∇ Ψ = 0, ∇ = 0∇ ψ = 0, ∇ Ψ = 0, ∇ = 0∇ ψ = 0, ∇ Ψ = 0, ∇ = 0 . Introduce also the 

general scalar potential 1
0e e Em

− ′= + %µ πϕ ϕ ρ χ ε µ  [8], where 0 0 E= +ε ε ρ χ  is the electric 

permittivity of the medium. Then the key set of equations with respect to potentials mϕ , 

eµϕ , ′%πµ , ψψψψ  and A  can be written in the following form  
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Here newly introduced values are the material constants [3]. Note that for obtaining 

equation (92) we used a condition  0 0e

t

∂
⋅ =

∂
µϕ

µ ε∇ Α +∇ Α +∇ Α +∇ Α + , which generalized the known 

condition of Lorentz calibration in case of account of the process of local displacement 
of mass. From equations (8) it is obvious that within the framework of the considered 
model in the linearized approximation the fields of scalar potentials mϕ , eϕ  and value 

′%πµ  are coupled. From equations (9) it is clear that the fields of vector potentials ψψψψ  and 

A  are related neither between themselves nor with the scalar fields. Thus the process of 
the local mass displacement is related to the change of the volume and scalar electric 
potential only. In particular, the modification of parameters of longitudinal elastic wave 
manifests such coupling. A velocity of such a wave propagation becomes dependent on 
the frequency (see figure).  
 

Figure. The dependence of the normalized velocity of modify longitudinal elastic wave 

on the normalized frequency Ω  [8]  
 
It is noted that similar results have been obtained also in [9] where the Mindlin’s gra-
dient theory of piezoelectrics has been used.    

4. Conclusions  

The complete set of equations of local gradient theory of electro-magneto-thermo-
mechanics of nonferromagnetic dielectrics has been obtained with account of the local 
displacements of mass and polarization inertia. It is shown that for the polarization 
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vector and vector of local mass displacement the non-stationary and non-local state 
equations which contain the second time derivative of the polarization vector have been 
obtained due to the polarization inertia accounting. Such a set of equations can be 
effective for investigation of quick-change processes. The coupling of mechanical and 
electromagnetic fields in isotropic solids has been analyzed. It has been shown that the 
model describes the dispersion of the modified elastic longitudinal wave in the high 
frequency range. These results agree well with those obtained using the gradient theories 
of piezoelectrics. 
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Mechano-elektromagnetyczne falowe oddziaływanie w liniowych izotropowych 

dielektrykach uwzględniające lokalne przemieszczenie masy oraz bezwładność polaryzacji 
Korzystanie termodynamicznego podejścia otrzymano kompletny układ równań gradientnego modelu dla 
opisu pól mechanotermoelektromagnetycznych w nieferromagnetycznych dielektrycznych ośrodkach, biorąc 
pod uwagę proces lokalnego przemieszczenia masy i bezwładności polaryzacji. W aproksymacji liniowej 
izotermicznej system podstawowych równań modelu przedstawiony stosunkowo potencjałów wektorowych i 
skalarnych wektora przemieszczeń i pola elektromagnetycznego. Zaproponovana uogólniona kalibracja 
Lorentza. Na tej podstawie prowadzono badania oddziaływania płaskich fal harmonicznych przemieszczenia, 
pola elektromagnetycznego i lokalnego przemieszczenia masy w ośrodku nieskończonym. Wykazano, Ŝe 
proces lokalnego przemeszczenia masy związane tylko ze zmianą objętości i skalarnego potencjału elektrycz-
nego. Wykazano tez, Ŝe zaproponowany model opisuje rozpraszanie spręŜystej fali, zmodyfikowanej oddzia-
ływaniem mechanoelektrycznym i lokalnym przemieszczeniem masy w zakresie wysokich częstotliwości, 
zgodnie z wynikami znanych z literatury. 
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Abstract   

The paper is concerned with the effect of pre-stress on the propagation of Love waves in incompressible 
nonlinear  rubberlike  materials with the representation for the strain energy function derived by Yeoh. The 
special initial deformations in the form of the large static homogeneous pure strains  are  assumed in the half-
space and in the layer of the waveguide. It is considered the wave propagation  along  a  principal axis and the 
dispersion equation for Love waves along a principal axis of the underlying deformation in respect of a 
selected strain energy function is analyzed in details. For two types of   homogeneous equibiaxial deformations 
the numerical results are obtained. They are quite different as in linear theory, because the equibiaxial static 
deformations can lead to reduction or increase of the cut-off frequency of the waveguide. The standard 
procedure for the linearization of equations of motion was used. This approach bases on the assumption that, 
small time depending motions are superimposed on large static deformation. 
 
Keywords: Love waves, Yeoh material, small motion superimposed on large elastic deformations  

1. Basic equations 

We consider a layer and a half-space referred to a Cartesian coordinate system. Both the 
layer and the supporting half-space are made of different pre-stressed incompressible 
nonlinear rubberlike materials and they are rigidly coupled along the plane X2 = 0. The 
half-space is defined by X2 < 0 and the layer of thickness h, has boundaries X2 = 0 and  
X2 = h. The initial static deformations in both material regions, the layer and the half-
space are the same. Here and below all quantities with the mark “-“are valid for the half-
space. It is assumed that the material has been subjected to an initial static homogeneous 
deformation with constant principal stretches and to a different superimposed small 
motions ),,( 2133 tXXuu =  and ),,( 2133 tXXuu =  characterized by a small 

displacement field which is time dependent: 

 
),,(,,

),,,(,,

213333222111

213333222111

tXXuXxXxXx

tXXuXxXxXx

+===

+===

λλλ

λλλ
, (1) 

where the incompressibility condition imposes the constraint 1321 =λλλ . For an 

incompressible isotropic hyperelastic material there exists a strain energy function 
denoted  ( )FWW = , defined on the space of deformation gradients such that, the 

nominal stress tensor S (the transpose of the first Piola-Kirchhoff tensor)  is defined as 

 [ ] ( ) 1
121 I22/))(( −−−+=∂∂= FCFFFFFS πTTT WWW , (2) 
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where F is the deformation gradient, Ii  are invariants of the deformation tensor 

FFC T= , ii IWW ∂∂= / ,  i= 1, 2, and  π is the hydrostatic pressure. The linearization of 

the constitutive relations gives the following result 

                                            SSS ˆ~ 0 += ,   πππ ˆ~ 0 += ,                                                (3) 
where  the first term in both equations is connected  with the static deformation and the 
second one with the small wave motion ),,( 2133 tXXuu = . Substitution of (1) and (4) 

into the differential equations of motion of finite elasticity gives two nontrivial systems  
of equations of motion for the superimposed infinitesimal displacement in the layer 

3u and in the half-space 3u : 
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where ( ) )/( βα
αβ

kiik FSA ∂∂=F and by ( )0Fαβ
ikA  are denoted the values of these 

derivatives  calculated at  F=F0, and ππ ˆ,ˆ  are the corresponding increments in ππ ,  . 

Assuming now the solutions for infinitesimal motions in both parts of the waveguide in 
the form  
             ),()(),,( 12213 tXuXwtXXu = ,   ),()(),,( 12213 tXuXwtXXu = .               (5) 
The nontrivial equation of motion in the layer takes the form 

                ( ) ( )[ ] ( ) ( )[ ] ( ) ( )tXuXwXwtXuctXuXwc TT ,,,,, 122221
2

1112
2

// &&=+ ⊥  ,                 (6) 
where  ( ) RT WWc ρλ /2 2

221
2

//

((
+=  and  ( ) RT WWc ρλ /2 2

121
2

((
+=⊥  can be interpreted as 

propagation speed of the shear plane waves in initially deformed layer in the direction 
parallel and normal to the interface X2 = 0  and 2,1),( 0 == iWW ii F

(
. 

Suppose now that the displacements in the layer and in the half-space are given by 

                       ( ) ( )[ ] ( ) ( )[ ]tXkiXwutkXiXwu ωω −=−= 123123 exp,exp .                    (7) 
 

where ϖω, are the frequencies and kk , the wave numbers. 

Substituting of (7)1,2 into (6) gives two equations for two unknown functions 
( ) ( )22 , XwXw  

                    ( )[ ] ( ) 0, 2
22

222 =+ XwpkXw  , ( )[ ] ( ) 0, 2
22

222 =+ XwpkXw  ,                 (8) 

where ( )( )2
//

2222 /)/( ⊥⊥ −= TTT ccckp ω , ( )( )2
//

2222 /)/( ⊥⊥ −= TTT ccckp ω , and the 

displacements (7) take the forms 

              ( )[ ] ( )[ ]213213 exp,exp XpktXkiukpXtkXiu ±−=±−= ωω .                 (9) 

2. Love waves 

Combining the four basic solutions (9) obtained earlier, we are able to compose all wave 
configurations characteristic for the Love waves. It is easy to see that in the case when 
the propagation speed of Love waves c = ω/k satisfied the condition ),( //2//2 ccc > , 
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both pp,  are real. The wave motion characteristic for the Love waves is practically 

confined to the thin layer h adjacent to the boundary. The solution 3u  in the half-space 

02 ≤X  should decreases rapidly with the distance from the interface, when  

−∞→2X  . The last condition can be satisfied when we assume that p  is an 

imaginary number i.e. 

                    ⇒< //2cc  νip −= ,     ( )( ) 2/1222
// // ⊥⊥ −= TTT ccccν ,                      (10) 

The linearized solution of the Love waves problem can be found immediately when the 
expressions for the displacements in the layer and in the half-space will become 

completed with boundary conditions at the interface 02 =X  2323
ˆˆ SS = , 33 uu = and at 

the free surface hX =2 , 0ˆ
23 =S . The possible combination of solutions (9) and the 

boundary conditions determine the dispersion relation for Love waves (comp. [1]) 
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It is easy to see that in the case when the initial deformations vanish, the equation (11) is 
the same as in the linear theory. 

The strain energy function ),( 21 IIWW = for many models of nonlinear elastic 

incompressible materials is independent on the second strain invariant I2 of the 

deformation tensor i.e. )( 1IWW = , 022 == WW  and the expressions for both 

propagation speeds (6) in the layer and in the half-space and also the dispersion relation 
(11) take the simple forms 
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where the function  p  has now the form 1/ 222 −= Tccp  and TT ccM /= . The right 

hand side of (13) must be real, it should be also satisfied the condition known from the 

linear theory i. e. 222
TT ccc << .  

3. Yeoh constitutive model 

The constitutive modeling of incompressible hyperelastic materials such as vulcanized 
rubbers, carbon filled reinforced rubber, polymers and human arterial wall tissues 
involves strain energy functions that depend on the first two invariants of the 
deformation tensor. The most well known of these is the Mooney-Rivlin model and its 
special form the neo-Hookean. In recent years, several constitutive models that capture 
the effects of limiting  chain extensibility and crystallization have been proposed. The 
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Yeoh hyperelastic material is a cubic in I1 and involves three material parameters. 
Conceptually, the strain energy function proposed by Yeoh is a material model with a 
shear modulus that varies with deformation and for this reason the proposed model is 
applicable over a wide range of strain. Assuming that 0/ 2 =∂∂ IW and that 1/ IW ∂∂  is 

independent on I2 we obtain now strain energy function (comp.[2]) 

                              ( ) ( ) ( )3
130

2
1201101 333)( −+−+−= ICICICIW   ,                (14) 

which is cubic equation in ( )31 −I  and 302010 ,, CCC  are material parameters. The 

ratio TT ccM /= < 1 (comp. (13)) of the propagation speeds of transverse waves is the 

basic variable parameter in our analysis. Assuming, that the half-space and overlying 
layer are filled with different Yeoh materials and for the assumed initial deformation (1) 
which is identical in both material regions we obtain the following condition for the 
parameter M 

                         
( ) ( )
( ) ( )

1
33321

33321
2/1

2

1
1

10301
1

1020

2
1

1
10301

1
1020 <















−+−+

−+−+
==

−−

−−

IccIcc

IccIcc
m

c

c
M

T

T         (15) 

where 2/11
10

1
1000 )))(((/ −−== RRTT ccccm ρρ  and  if 1=λ  then mM = . 

4. Numerical analysis 

The dispersion relation for Love waves (13) discussed in the previous section is now 
examined numerically. Some experimental results for three kinds of silicon rubber (soft, 
medium, hard) by utilizing Yeoh constitutive relation were presented in [3]. The greatest 
differences for the values of the ratio M(λ) occur in the case when the layer of soft 
silicone rubber is supporting by the half-space made of hard silicone rubber (m=0.629) 
and only this case is presented on both figures below. 

Table 1. Yeoh material parameters 

Silicone rubber C10 [MPa] C20 [MPa] C30 [MPa] 
Soft 0.0231 - 0.0000314 0.000195 

Medium 0.0335 - 0.0019100 0.000937 
Hard 0.0583 - 0.0036600 0.001780 

 

Three kinds of initial static deformation are considered: 

a) 42
1

2
231 2,, −− +==== λλλλλλλ aI  

b) 2
12

2/1
31 2,, λλλλλλλ +==== − bI                                               (16) 

c) 22
12

1
31 1,,,1 −− ++==== λλλλλλλ cI . 

 

Fig. 1 presents  the ratios M(λ) of the speeds of propagation as functions of the initial 
deformation parameter λ for three kinds of initial deformations (16). The function M(λ) 
in every case has one local minimum Mmin(1) = m and two local maximums M1,2 max > m. 
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The dispersion equation for the value m = 0.629  and for deformations (16)a,b is solved 
graphically on Fig 2. The right hand side of (13) depends only on the ratio M(λ) and on 
the density ratio. The solid  lines on this Fig. 1 describe the function on the right hand 
side of (13) for two values of the deformation parameter λ=2 and λ=0.5 and for two 

kinds of initial deformations described with invariants aI1  and bI1 .  The dropped line 

represents the solution known from the linear theory. 

 

Figure 1. The speeds ratio M  as function of the  parameter λ  

The branches of the function tan(khp) for the value kh=1.76 are described with 
hatches lines. The function of the right hand side of (13) takes the value zero for 

012* >−= −Mp . All coordinates p(i) of the points of intersection of this curve with 

the n branches of the function tan(1.76p) > 0 belong to the interval 0< p(i) < p*. 
Assuming now that the wave number k can change and that the sequence of n values p(i) 
in the interval (0, p*) exists, then n particular modes of propagation of the waves in the 
layer to a given wave number are possible.  
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Figure 2. Solutions of the dispersion equation 

There are intervals of the values of λ for which the graphs on Fig. 1 for aI1  and bI1  

differ considerable and run away from m = 0.629. This means that the adequate functions 

on the right hand side of (13) for aI1  diverge also remarkable in shapes and contrast with  

the standard shape for λ =1. Opposite  for  the invariant bI1 and the in same range of 

values of λ these functions deviate negligibly from the shape for λ =1.  
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Fale Love’a we wstępnie odkształconym materiale Yeoha 
W pracy rozpatrzono zlinearyzowane zagadnienie brzegowe dla fal Love’a. ZałoŜono, Ŝe półprzestrzeń 

spręŜysta i spoczywająca na niej cienka warstwa o grubości h wykonane są z róŜnych  materiałów  Yeoha i 

poddane są jednorodnej statycznej deformacji wstępnej, identycznej w obu obszarach. Dla materiału Yeoha  

funkcja energii odkształcenia  W zaleŜy jedynie od  pierwszego niezmiennika tensora deformacji  tj. 
)( 1IWW = . Ta szczególna zaleŜność moŜe  powodować w zaleŜności od  typu deformacji wstępnej 

występowanie duŜych lub nieistotnych  róŜnic jakościowych między liniowym i zlinearyzowanym podejściem 

do propagacji fal Love’a w nieściśliwych materiałach spręŜystych 
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Abstract  

The paper presents an efficient way of the application of the spline-based differential quadrature method for 
solving equations of chosen vibrating systems. The efficiency relies on the implementation of some types of 
boundary conditions at the stage of the determination of weighting coefficients that approximate the 
derivatives in the governing equation. The weights determined in such a way contain information about the 
boundary conditions and the discretization of these conditions is not further carried out. In the paper, the spline 
interpolation applied to differential quadrature method as well as the procedure for the determination of the 
weighting coefficients with built-in boundary conditions are described. The accuracy and the convergence of 
the approach is studied on the example of the free vibration of the conical shell.     
 
Keywords: spline interpolation, differential quadrature, free vibration analysis, conical shells   

1. Introduction 

Many works [1] that use the differential quadrature method (DQM) to solve problems 
with computational mechanics have been appeared in recent years. The increase of 
interest in the method is caused by its simple formulation, high rate of convergence and 
high accuracy. These advantages follows from the way of the approximation of the 
solution. The solution is approximated by the interpolation polynomial which uses all the 
nodes from the entire domain with respect to appropriate coordinate. On this basis the 
weighting coefficients that approximate spatial derivatives are determined. Using these 
coefficients the differential equation is reduced to the system of algebraic equations. 
This system is completed by the equations arising from boundary conditions.     

This approach allows to obtain very accurate results using few sampling points, 
however DQM has some limitations. Due to its formulation the method requires a 
regular node distribution and therefore it cannot be easily applied to problems with 
irregular domains. Further, the method is sensitive to the number of nodes, distribution 
pattern and in some applications shows computational instability. To overcome some of 
mentioned drawbacks, the spline interpolation has been used to approximate the solution 
[2]. The method is referred to spline-based differential quadrature (SDQM) or symbolic 
spline-based differential quadrature. The SDQM has been successfully applied to chosen 
problems of linear and nonlinear mechanics [2,3]. It turns out that the idea presented in 
[2] allows to introduce some types of boundary conditions at the stage when the 
weighting coefficients for derivatives appearing in the equation are determined. This 
approach facilitates the discretization of boundary-value problem. The details are 
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presented in section 3, while the practical application is shown on the example of free 
vibration of conical shell demonstrated in section 4. 

2. Spline-based differential quadrature method 

The idea of the DQM relies on the approximation of the derivatives in the governing 
equation by the linear weighted sum of unknown function values from entire domain, 
what can be put as   

( ) ( )

1 1

( )
| ( ) ( ) 1,...,

i

r N N
r r

x x j i j ij jr
j j

d f x
a x f x a f i N

dx
=

= =

= = =∑ ∑                       (1) 

where N denotes the number of grid points and ( )r
ija  are the weighting coefficients for the 

rth order derivative. The key stage of the method is to determine these weights. The 
values of ( )r

ija depend on the approximation of the sought function f(x) and influence the 

accuracy, convergence and stability of the method.  
According to [2], the function f(x) is approximated using spline interpolation. If 

spline degree is assumed to be odd then the interpolation has the form  

  [ ]{ }1( ) ( ), , , 1,.., 1i i if x s x x x x i N+≈ ∈ = −                              (2) 

where the ith spline section is defined as n degree polynomial 

∑
=

=
n

j

j
iji xcxs

0

)(                                                       (3) 

The coefficients cij in Eq. (3) are determined from the interpolation conditions, the 
derivative continuity conditions and the so-called natural end conditions [2]. Since the 
latter are important for further studies they are listed below  

( ) ( )
1 1 1

1
( ) 0, ( ) 0, ,.., 1

2
k k

N N

n
s x s x k n−

+
= = = −                                (4) 

The unknown function values fi in the interpolation conditions are marked by symbols. 
With the aid of symbolic-numeric computations the coefficients cij can be obtained. They 
depend on nodes distribution and unknown function values, what can be generally 
written as   

njNifxxCc
N

k
kNijkij ...,,0,1...,,1,)...,,(

1
1 =−== ∑

=

                          (5) 

Using the values of (5) in Eq. (3) and calculating appropriate derivatives of polynomial 
piecewise function (2) at the nodes, one can determine the weighting coefficients ( )r

ija by 

separating the numbers standing next to appropriate symbols fi. The weighting 
coefficients are described by the following formulas    
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If the spline degree is assumed to be even the auxiliary knots are imposed in order to 
meet conditions for the spline interpolation and the further procedure for determining the 
weighting coefficients is similar. The details are described in [2].  

3. Implementation of boundary conditions in SDQM 

General way to introduce derivative boundary conditions in the DQM is based on the 
discretization of these conditions using rules of the method. The obtained equations are 
used to calculate function values at the boundary points. In higher order equation, when 
more than one condition is defined at a boundary, remaining conditions are used to 
determine function values at the points adjacent to the boundary. This approach is 
described in [4] and is referred to the general approach. It has been also applied in the 
SDQM [2].  

It turns out that in the SDQM some types of derivative boundary conditions can be 
introduce during computing the weighting coefficients. To this end a part of natural end 
conditions (4) is replaced with these boundary conditions. For the sake of one-
dimensional approximation of the sought function in the method, such boundary 
conditions have to fulfill some criterions. They have to be homogeneous with respect to 
the considered function and should contain derivatives with respect to only one 
independent variable. It means that the boundary conditions should have the general 
form       

{ ( )} 0
bx xG f x = =                                                      (7) 

where G is linear differential operator of the form 
1

0

rR

r r
r

d
G b

dx

−

=

= ∑ , imposed on the 

function at a boundary point bx x= , where, in turn R denotes the order of the governing 

equation and br are the constant coefficients but one at least of these coefficients for 
0r >  must not be equal zero.   

Assuming that L
BN  is the number of the boundary conditions in the form of (7), 

imposed at one edge and R
BN  is their number at the other edge, the modified end 

conditions (4) take the form    
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where ( )i
rb  and ( )i

rb  denote the constants standing next to appropriate derivatives at the 

ith boundary condition defined at one and the opposite edge, respectively.  
Using the algorithm described in previous section, where Eqs. (8a) and (8b) are used 

instead of Eq. (4), one obtains weights ( )r
ija  with the built-in boundary conditions. 

Further discretization of boundary-value problem is carried out without these conditions, 
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what facilitates the discretization procedure and sometimes reduces it to discretizing 
governing equation only.  
The presented idea is shown on the example of free vibration of isotropic conical shell.   

4. Free vibration of the truncated conical shell 

Conical shells are construction elements that are widely used in civil, mechanical and 
aeronautical engineering. Therefore the free vibration analysis of these elements has 
been the subject of many works, e.g. [5,6]. To solve this problem several approximate 
methods have been used. Among them the DQM has been also applied [5]. In the present 
work, the method described in previous sections is used to solve free vibration problem 
of thin, truncated conical shell. The aim of the work is to examine the possibility of 
using the presented approach in the application to this construction elements and some 
boundary conditions encountered in the problem. The special attention is focused on the 
accuracy and the rate of convergence of the method.   

In Fig. 1 the analyzed conical shell with the reference coordinate system (x, θ, z) and 
the components of the displacement field in appropriate directions (u, v, w) are shown.  
 

z w, 

z w, 

L

R1

R2

R x( )

x u, 

ϑ, vα
ϑ

 
 

Figure 1. Geometry of truncated conical shell 
 
General relations for displacements in the case of free vibration of the system are 
assumed as [5] 

( )cos( ) cos( ), ( ) sin( ) cos( ), ( ) cos( ) cos( )u U x m t v V x m t w W x m tθ ω θ ω θ ω= = =   (9) 

where m is the wave number in the circumferential direction and ω is the circular 
frequency.  

Thus, the equation of motion based on Love’s first approximation theory can be 
written as  

11 12 13

2
21 22 23

31 32 33

L L L U U

L L L V h V

W WL L L

ρ ω

     
     = −     
          

                                   (10) 

where Lij are differential operators, e.g. 
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2 22

11 22 66
11 11 2 2

sin( ) sin ( )A A A md d
L A

R dxdx R

α α +
= + − , that contain the extensional (Aij) 

and bending (Dij) stiffnesses. The details can be found in [5].  
For the isotropic conical shell the boundary conditions are given by the formulas  

(1) (1) (2)12 12
11 11

sin( ) sin( )
0, 0, 0, 0

A D
V W U A U W A W

R R

α α
= = + = + =       (11) 

for simply supported edge and 

 (1)0, 0, 0, 0U V W W= = = =                                        (12) 

for clamped edge. 
Derivative conditions in (11) or (12) fulfill the requirements described in section 3, 

what allows to introduce this conditions during determining the weighting coefficients. 
For example, when both edges of the shell are simply supported, Eqs. (8a) and (8b), 
written for function U, take the form   
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Similarly the derivative conditions for function W are implemented and appropriate 
weights are determined. As a result Eq. (10) is reduced to algebraic eigenvalue problem 
in the following form 
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where e.g. elements of matrix P11 are as follows 
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A A A m
P A a a i j N

R R

α α +
= + − = , ( )r

u i ja  denote the 

weighting coefficients for rth order derivative of function U. Vectors U, V, W contain 
node function values. The system (14) is modified by deleting appropriate rows and 
columns in order to meet remaining boundary conditions. The solution of eigenproblem 
(14) is displayed in Table 1 by the non-dimensional frequency parameter 

2 11/R h Aλ ω ρ= . The computations are carried out using several numbers of nodes N, 

assuming 9n =  spline degree. For the comparison, the table contains also results 
obtained with the use of general approach to implement boundary conditions as well as 
the results from another work. 

The results show that the presented method leads to rapid convergence. Great 
accuracy is achieved using fewer nodes than for the general approach.  
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5. Conclusions  

The paper shows the possibility of the implementation of some boundary conditions at 
the stage of the determination of the weighting coefficients in the SDQM. The approach 
has been tested in the vibration analysis of the conical shell. The results show that the 
method has higher rate of convergence and higher accuracy comparing with the general 
approach in implementation of boundary conditions. Furthermore, due to the buit-in 
method, the discretization procedure is simplified.  

Table 1. Frequency parameter λ for axisymmetric vibration (m = 0) of conical shell 
(h/R2=0.01, ν =0.3, α=60°, 2sin( ) / 0.25L Rα = ) 

simply supported at both edges simply supported R1 and clamped R2  
 built-in approach general approach built-in approach general approach 

N  = 7 0.3630 0.3858 0.7853 0.7674 
N = 10 0.3629 0.3721 0.7853 0.7798 
N = 13 0.3628 0.3671 0.7853 0.7831 
N = 16 0.3628 0.3651 0.7853 0.7842 

[5] 0.3628 0.7853 
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Wbudowany sposób wprowadzenia pewnych warunków brzegowych dla układów 
drgających w metodzie SDQ 

W pracy przedstawiono efektywny sposób uŜycia metody kwadratur róŜniczkowych opartej na funkcjach 
sklejanych do rozwiązywania równań opisujących drgania wybranych układów. Wspomniana efektywność 
polega na wprowadzeniu niektórych typów warunków brzegowych na etapie wyznaczania współczynników 
wagowych, które przybliŜają pochodne funkcji w równaniu. Wagi wyznaczone w ten sposób zawierają 
informacje o warunkach brzegowych i warunki te nie są brane pod uwagę w dalszej części procesu 
dyskretyzacji zagadnienia. W pracy przedstawiono zastosowanie interpolacji typu spline w metodzie kwadratur 
róŜniczkowych, jak równieŜ sposób wyznaczania współczynników wagowych z wbudowanymi warunkami 
brzegowymi. Dokładność i zbieŜność metody zbadano na przykładzie drgań własnych powłoki stoŜkowej.
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Abstract  

A wobblestone  also known as the Celtic stone or rattleback is usually a semi-ellipsoidal solid with the special 
asymmetry in the mass distribution. For most celts, when it lays on a flat horizontal surface, it rotates around 
its horizontal axis in a preferred direction, i.e. if it spins in the opposite direction, it becomes unstable,  and 
reverses its spin to the preferred direction. In this paper we try to model wobblestone as realistically as possible 
taking into account the frictional coupling between the translational and rotational motion of the contact patch 
and the rolling resistance as well but with simplifying assumption of circular contact patch. The Coulomb-
Contensou-Zhuravlev model of friction is used with the use of the first order Padé approximants. 
 
Keywords: wobblestone, celt, friction modelling, rolling resistance, Coulomb-Contensou friction model, Padé 
approximation.  

1. Introduction 

Since the times of ancient culture of Celts there is known some kind of solid (stone) 
which exhibits (seemingly) curious dynamic behaviour. The Celtic stone also known as 
wobblestone or rattleback is usually a semi-ellipsoidal solid (or a other kind of body with 
smoothly curved oblong lower surface) with the special mass distribution. Most celts 
lied on a flat horizontal surface and set in rotational motion about the vertical axis can 
rotate in only one direction. The imposition of an initial spin in the opposite direction 
leads to transverse wobbling and then to spinning in the “preferred” direction. The Celtic 
stone with its special dynamical properties was an object of investigation of many 
researchers and the first scientific publication on this subject appeared in the end of the 
19th century [1]. 

One of the widely used assumptions in modelling of the celt is that of dissipation-free 
rolling without slip [1-4]. In the work [1] the non-coincidence of the principal axes of 
inertia and the principal directions of curvature at the equilibrium contact point was 
pointed out as essential in explanation of the wobblestone properties.  

In work [5] an attempt of analysis of the linearized equations of the model assuming 
continuous slipping (quasi-viscous relation between the friction force and the velocity of 
the contact point) is performed. Another model taking into account dissipation but being 
far from reality is analyzed by the use of asymptotic perturbation theory [6]. The model 
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assuming rolling without slip and viscous damping (torque about all three axes) is 
proposed in paper [7]. More realistic modelling with aerodynamic dissipation and slip 
with dry friction force, with addition of experimental validation of the model are 
presented in work [8]. In the other paper [9] the perturbation analysis of local dynamics 
around the equilibrium points of the model assuming absence of friction as well as the 
experimental verification are performed. The closest to reality modelling of the celt is 
proposed in work [10], where the possibility of the slip is assumed, but in contrast to all 
the earlier works, the Coulomb-Contensou-Zhuravlev (CCZ) friction model is applied, 
that is the frictional coupling between the translational and rotational motion of the 
contact patch is taken into account. However, since the friction force is the only way of 
dissipation in the proposed model, the time of the wobblestone motion (until rest) is 
unrealistically long.  

In the present work we extend the model [10] by adding the rolling resistance as well 
as the friction torque. The coupled  model of sliding and rolling friction proposed in the 
work [11] is applied to the celt with simplifying assumption of circular contact patch 
between bodies. Additionally a constant radius of the contact area is assumed. We also 
propose the method of smoothing the governing equations, allowing to avoid numerical 
problems.  

2. Celt modelling and numerical example 

The wobblestone as a semi-ellipsoid rigid body with the mass centre at the point C, 
touching a rigid, flat and immovable horizontal surface π (parallel to the XY plane of the 
global immovable co-ordinate system X1X2X3)  at point A is presented in Fig. 1. 

 

Figure 1. The wobblestone on a horizontal plane π. 

The equations of motion in the movable co-ordinate system 0x1x2x3 (with axes parallel to 
the central principal axes of inertia – we assume that geometrical axis x3e of the ellipsoid 
is parallel to one of them) are as follows 

 ( )dm m mg N
dt

+ × = − + +v ω v n n T ,  
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 ( ) ( ) ( ) t r
d N
dt

+ × = − × + + +ωB ω Bv r k n T M M , (1) 

 0d
dt

+ × =n ω n , 

where m is the mass of the celt, B=diag(B1,B2,B3) is the tensor of inertia of the solid, v is 
the absolute velocity of the mass centre C, ω is the absolute angular velocity of the body, 
N is the value of the  normal reaction of the horizontal plane, n is the unit vector normal 
to the plane XY, T (ignored in Fig. 1) is the sliding friction force in the point of contact 
A, Mt and Mr (ignored in Fig. 1) are the dry friction and the rolling resistance torques 
applied to the body respectively. Vector r indicates the actual contact point position and 
the vector k determines the mass centre position. 

The reaction of the horizontal plane due to the dry friction and the rolling resistance 
is given by 
 βπ rr TTTT ++= 0
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where µ is the dry friction coefficient, ρ is the radius of the contact patch (with 
simplifying assumption of the constant-size circular contact patch between bodies),  
fr=ρkr/5 is the rolling resistance coefficient (where 0≤kr≤1 is the coefficient describing 
the asymmetry in the normal stress distribution due to the rolling resistance),  vA is the 
velocity of the body point being in contact with the horizontal surface, ω0 is the 
component of angular velocity parallel to the X3 axis, ωπ is the component of angular 
velocity lying in the π plane, ωβ is the vector lying in the π plane of the same length as 
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ωπ but perpendicular to ωπ , cβ and sβ are approximated sine and cosine functions of the 
angle β (angle between the sliding and rolling direction):  

 ( )krωvv −×+=A
  , ( )nnωω ⋅=0

,  0ωωω −=π , nωω ×= πβ ,  (3) 
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 The T and Mt vectors in Eqs (2) follow the CCZ friction model with assumption of 
normal stresses (in the contact domain) satisfying the Hertz law and applying the Padé 
approximation in calculating some kind of integrals [11]. The Mr vector is constructed 
with assumption that the rolling resistance torque opposes the angular velocity 
component lying in the π plane (it is equivalent to assumption of rigid π plane and 
deformable wobblestone). The parameter ε is introduced in order to smooth the 
equations and avoid numerical problems around some singularities. 

The differential equations of motion (1) are supplemented with the following 
algebraic equation 

 ( )( ) 0=⋅−×+ nkrωv , (4) 

which follows the fact that the velocity vA lies in the plane π. Equations (1) and (3) form 
now the differential-algebraic equation set. One way to solve them is to differentiate the 
condition (3) with respect to time and then treat it as an additional equation during 
solving the governing equations algebraically with respect to the corresponding 
derivatives and the normal reaction N. 

To complete the model the relation between the vectors r and n should be given. 
Taking the ellipsoid equation 
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2
2

2

2
1 =++
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a

r eee , (5) 

(where a, b and c are the semi-axes of the ellipsoid) and the condition of tangent 
contact between the ellipsoid and the horizontal plane 
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we can find the relation between the components of vectors r and n in the 0x1ex2ex3e co-
ordinate system. Since the 0x1x2x3 co-ordinate system is obtained by rotation of the 
0x1ex2ex3e system around the x3e axis by the angle α, the corresponding relation in the 
0x1x2x3 co-ordinate system can be found easily. 
The results presented in Figs 2-3 correspond to the typical behaviour of the celt and have 
been obtained for the following parameters and initial conditions: m = 0.25 kg, g = 10 
m/s2, α =  ̶ 0.3 rad, B1 = 10-4 kg·m2, B2 = 8·10-4 kg·m2, B3 = 10-3 kg·m2, a = 0.08 m, b 
= 0.016 m, c = 0.012 m, k1 = k2 = 0, k3 =  ̶ 0.002 m, µ = 0.5,  ρ = 6·10-4 m,  kr = 1, ε 
=10-3 rad/s, v10 = v20 = v30 = 0 m/s, n10 = n20 = 0, n30 = 1.  
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Figure 2. The wobblestone response with initial conditions ω10=0, ω20=1, ω30=5 (rad/s). 

  

Figure 3. The wobblestone response with initial conditions ω10=0, ω20=1, ω30=-5 (rad/s). 

4. Concluding remarks  

In the paper the extension of the model introduced in the work [10] is proposed. Both 
presented model and its simulations are very realistic, when compared with most earlier 
works on the celt, since the correct friction models for both  the translational and 
rotational motion of the contact patch as well as the rolling resistance torque have been 
taken into account. The most significant simplification assumed in the presented 
modeling is probably that of circular constant-radius contact patch between bodies. 

More systematic research of the presented model of the celt is required as well as the 
careful experimental validation of the model should be performed. The proposed 
smoothing of the governing equations should be treated as temporary and substitute 
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method of avoiding numerical problems, but certain extension of the model should be 
made in order to join different modes of dynamics (for example stick and slip). In the 
next future we are also going to extend presented modeling to elliptical shapes of the 
contact patch. 
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Modelowanie dynamiki kamienia celtyckiego ze sprzęŜonym modelem tarcia poślizgowego i 
oporu toczenia 

Kamień celtycki jest przedmiotem o kształcie zazwyczaj zbliŜonym do półelipsoidy ze specjalnym 
asymetrycznym rozkładem masy. PołoŜony na poziomej płaszczyźnie łatwo moŜe zostać wprawiony w ruch 
obrotowy dokoła swojej pionowej osi w jedną, ściśle określoną stronę. Wprawiony w ruch obrotowy w 
przeciwną stronę staje się niestabilny, wpada w poprzeczne drgania i zmienia zwrot obrotu na przeciwny. W 
pracy podjęta została próba modelowania dynamiki kamienia celtyckiego w sposób moŜliwie najbardziej  
realistyczny ze szczególnym uwzględnieniem modelu tarcia, gdzie uwzględniono sprzęŜenie cierne pomiędzy 
ruchem postępowym i obrotowym obszary styku ciał oraz oporem toczenia. Przyjęto załoŜenie upraszczające 
kołowego obszaru styku o stałym w czasie promieniu pomiędzy kamieniem i podłoŜem oraz zastosowano 
model tarcia CZZ z aproksymacją Padé’go pierwszego rzędu.  
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Abstract  

In this paper authors include the most important information about piezoelectric effect and streaming potential 
occurring in bone. In their opinion these phenomena play important role during bone remodeling, so that model 
binding them together was proposed. Model describes mechanisms responsible for “sensing” by osteocytes 
local changes in stresses and strains and for signal transmissions from sensors to effectors i.e. osteoblasts.  
 
Keywords: bone remodelling; piezoelectric effect in bone; streaming potential in bone 

1. Introduction  

These days one can notice very fast technological progress, which to a large extent, 
facilitates the   development of a wide range disciplines of science. In bioengineering, 
which is quite relatively young field of science, this rapid progress is exceptionally 
noticeable. Scientists and engineers have possibilities to use reach selection of tools and 
methods in order to improve already existing solutions or to invent other.  However, lots 
of phenomena that occur in human organism have not been yet recognized.  Those 
hinder and in certain cases prevent the process of modeling the mechanisms that regulate 
human body functions. For example a remodeling of bone structure, that actuates when 
bone experiences stresses and strains. Implantation brings changes to a stress and strain 
distribution, which accordingly entails the necessity of adjustment to diversified 
conditions of load applied along with the stress distribution. Therefore, a suitable theory 
describing bone remodeling with respect to phenomena occurring during this process is 
crucial. Otherwise, the process of designing an appropriate shape and properties implant, 
of which load actions are transmitted similarly to a healthy bone, becomes complex. 
Previous theories do not bring a full explanation to that mechanism and many questions 
remain unanswered e.g. how does bone “sense” different types of stress such as bending, 
compression or torsion. Authors of the following work introduce the approach, 
according to which mechanisms responsible for bone remodeling can be explained. 

2. Piezoelectric effect inducing in bone. 

Fukada and Yasuda, who in 1957 published the results of their investigations in the 
article titled: “On the piezoelectric effect of bone” are treated as the discoverers of the 
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piezoelectric effect occurring in bone. They demonstrated that in a dry bone under the 
proper load applied, charges are induced on the surface of a sample. Basset and Becker 
continued their research and in 1962 claimed that charges inducing on the surface of the 
specimen during bending are proportional to stresses produced [9]. They stuck when 
returning to its normal shape. Moreover, they showed that the polarization sign is 
dependent on the type of stresses produced, i.e. negative in case of compression charges 
generated on the surfaces and positive in case of tension. 
 In 1964 Becker proposed a theory that nature of piezoelectric effects induced in bone 
does not resemble a classic piezoelectric effect [8]. He claimed that bone is a double-
element consisting of hydroxyapatite crystals and highly directional collagen fibrils. 
According to Becker it was similar to P-N junction known from semiconductors and 
used in diodes. In subsequent researches he demonstrated that bone has such properties 
as e.g. photoconductivity, thus he could claim that apatite-collagen junction has 
properties of semiconducting diode.  
 Becker theory was questioned by Shamos, who declared that he was unable to 
observe photoconductivity in bone [7]. The hypothesis he propounded says that induced 
charges have influence on the collagen fibrils orientation and ions or polarized molecules 
deposition. Its magnitude might depend on the direction of force applied. It was 
supposed to identify, that piezoelectric effect occurs only due to presence of directional 
collagen fibrils while generated electric field linearly correlates with the stresses 
produced. 
 Subsequent investigations were conducted in an environment highly saturated with 
moisture (as it naturally occurs in a human organism). Unfortunately, it did not bring 
optimistic results like those obtained of dry specimens. However, hydroxyapatite in spite 
of the important role of transmitting external loads also, to a large extent, limits the 
access of water to collagen fibrils.  These in turn, as first experiments demonstrated 
exhibit piezoelectric properties. With respect to piezoelectric effect in moist 
environment, stress generated voltage is expressed by the following equations [13]:








 ⋅

⋅⋅






 ⋅
= ε

σ

ε

t

eB
Lijkd

V  (1)

where: 
dijk – third rank piezoelectric tensor, 
L – sample thickness, 
ε - dielectric permittivity, 
B – load applied to the sample,  
t – time  
σ - solution conductivity. 
Looking on hydroxyapatite-collagen structure one can notice, that under forces applied 
externally, collagen fibrils exhibit more strains because they are more compliant. That 
causes charge generation on their surfaces. 
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3. Presence of the streaming potential in porous media. 

In porous media when saturated with fluid, a forced fluid streaming potential is created 
as a result. The negative charge capillary surface affects the opposite charge ions and in 
consequence becomes covered with layer of counter ions. This layer is composed of two 
parts: absorptive and diffusive and is called the electrical double layer (EDL) (Fig 1.). 
The potential between two contiguous layers (absorptive and diffusive) is called the 
electro kinetic potential or zeta potential. In that area also a shear plane exists. Its role is 
to separate the movement of ions bound through to the solid surface from other ions that 
show normal viscous behavior under the applied pressure. Ions located the closest to the 
charged surface remain immovable, and in turn bulk the ions flow laminarly with 
parabolic profile. It results in the streaming potential occurring in capillary which is 
dependent on electro kinetic potential zeta. It can be mathematically expressed as [12]: 

ησ
εζ

⋅
∆⋅⋅

=
 P

V  (2)

Where: 
ζ - zeta potential, 
ε - dielectric permittivity , 
∆P – pressure gradient acting on sample, 
σ - solution conductivity, 
η - solution viscosity. 
Fluid flow or in this case ions flow is stated as the streaming current, whereas potential 
made in such manner is stated as the streaming potential. It affects directly the hydraulic 
permeability and conditions the ion transports within porous media. 

 

Figure 1. Double layer view and corresponding zeta potential. 
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4. Bone structure in microscopic picture. 

The following three types of cells take part in remodeling process i.e. osteoblasts, 
osteocytes and osteoclasts. Osteocytes are the most frequent group of cells in bone 
tissue. They are located inside of bone tissue precisely inside of osteocytic lacuna, and 
have numerous cytoplasmic extensions placed in canaliculus used to exchange nutrients 
and waste. (Fig. 2). Scientists suppose that osteocytes play significant role in the process 
of bone remodeling for the fact they have the ability of communicating each other due to 
gap junctions. Hence the received information concerning the stress level is transmitted 
through the three-dimensional network on to the second group of cells – osteoblasts. 
These are responsible for the bone formation, synthesizing collagen and controlling its 
calcification. They receive signals from osteocytes, and by that means, are able to 
manage the deposition of successive collagen layers. Placed on internal surfaces of bone 
they create a consistent barrier, which limits the access for the third cells group i.e. 
osteoclasts. That type of cells is responsible for removing the bone tissue by purging 
mineralized matrix and breaking up the organic bone. When the signals from osteocytes 
are too weak to activate mineralization, the osteoclasts start resorption processes in bone 
tissue. 

 

Figure 2. Osteocytes Network (OC) placed in osteocytic lacuna (LF), and cytoplasmic 
extension located inside canaliculus (BF). Bone surface is lined with longitudal 

osteoblasts and one big osteoclast. 

5. Relation piezoelectric effect with streaming potential. 

The two co-existing phenomena, suspected by scientists to play an important role in the 
state of stress information transmission should, in a way, influence each other. If so, 
signals could be differentiated with respect to stress and strain distribution. In 1984, 
Pollack conducted and developed investigations which showed that strain-generated 
potential (SGP) present in bone has a twofold nature (Fig. 3). In the Fig. 3B one can 
notice that the relaxation time is significantly shorter than in the other cases while spikes 
can be observed only in the Fig. 3B and C. These spikes probably can be ascribed to 
piezoelectric properties of bone, where relaxation time is smaller approximately of order 
of magnitude than in case of electrokinetic phenomena. In Fig. 3 B the absence of 
waveform typical for streaming potential can be explained by recording electrode placed 
off the axis of fluid flow (normally fluid flow occurs along the axis of osteons). In such 
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way streaming potential activity can be easily missed and recorded measurement is 
attributed only to piezoelectric effect. 

 

Figure 3. Different forms of bone SGP as a function of KCL concentration. [11] 

Higher magnitude of stress results in higher surface polarization and that basically has 
influence on the magnitude of zeta potential. It entails more ionic concentration in the 
bone-fluid interface. In effect, it decreases the amount of available agents in fluid, which 
are used to transmit information between adjacent osteocytes (Fig. 4). Taking into 
account, that canaliculus are turned to many different directions (each osteocyte has 
approximately 40 cytoplasmic extensions), charges induced on solid surfaces vary since 
piezoelectric properties of bone are determined by piezoelectric coefficient dij describing 
generated charges to an external force applied.  
 Researches show that bone remodeling starts when loads applied to the osseous 
system are dynamic. Following this idea one can conclude that osteoblasts are activated 
by signals changed in time which emanate from osteocytes. However, they must exceed 
some threshold activation which can be achieved by accumulating appropriate ions in 
osteoblasts.  
 Another case to be considered is  how the structure of bone adjusts to different states 
of stress e.g. torsion, compression, bending etc. It can be achieved again by certain 
threshold activation i.e. accumulation of proper ions by which synthesized collagen 
fibrils are directed in some specific manner, so that structure of bone tissue corresponds 
to the actual state of stress.  In effect, successive collagen lamellae will be oriented 
parallel to the osteon axis (Type L),  alternating (Type A) and perpendicular to the 
osteon axis (Type T) (Fig.5). 
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Figure 4. Theoretical relation between piezoelectric effect and streaking potential. 

 

Figure 5. Types of collage fibrils orientations in successive lamellae [1]. 

6. Model based on cell interactions. 

Having defined a signal induced by externally applied force, it has to be considered on 
how a signal sensed by osteocytes is being transmitted to cells that are responsible for 
bone formation or resorption. It is known, that during the process of forming subsequent 
lamellae, part of the osteoblasts are converted into osteocytes. In this way the newly-
born “cell-sensors” are connected to each other by means of cytoplasmic extensions, 
which form three-dimensional network. As a result, it allows transmitting signals 
towards executive cells. It is also highly probable, that osteoblastic cells receive signals 
from group of osteocytes which are located in its neighborhood. (Fig. 6). Eventually, the 
transmitted signal is decayed in correlation to distance between osteocyte and target cell 
– osteoblast.  
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Figure 6. Chart showing singal transmittance from osteocytes with different coordinates 
to osteoblast. 

In overview, these mathematical relationships illustrating the influence function advance 
as follows: 

( )
)(

)(
xr

D
xr

n
n =φ  

Where: 

rn(x) – distance from n osteocyte located in x, 
D – characteristic dimension. 

Therefore, the signal received by osteoblasts will be correlated with the 
influence function, i.e.: 

(3)

( ) ( )[ ] ( ))(,,xx,S 0n xrStxSt nnn φ−=  (4)

where: 

Sn(xn,t) – signal value, which is received by n osteocyte which has xn coordinate, 
S0 – value of the reference signal, which determines threshold activation, 
t – time. 

Signals developed from N located osteocytes reach the osteoblast where they are 
summed up. In other words, transmitted ions are accumulated. Thus, when signals 
exceed defined threshold that determines the state of biological equilibrium S0, cells 
responsible for the bone formation are activated, and processes of bone matrix synthesis 
are started.  

7. Conclusions. 

The aim of the discussed article was to explain the principles of mechanisms responsible 
for the stress state signal transmission back from osteocytes to osteoblasts. 
Unfortunately, many processes that occur in bone have not been yet revealed, hence the 
hypothesis remains full of gaps until further development. This model is based on 
specialized cells interactions whereby remodeling of bone structure is local process 
based on signals received from osteocytes located in the specified region. Such system of 
signal transmission and reception more closely corresponds to the real biological system.  
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The conception introduced in this work provides a solid foundation for a bigger and 
more complex system of liaison which is to be developed in future works. This approach 
is going to be correlated with the hypothesis of Bone adaptation based on the optimal 
response proposed by Lekszycki [1] in order to perform numeric simulations. This will 
help to verify the current of thoughts and to move on by extending the model to suit best 
in real processes occurring during bone remodeling. 
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Znaczenie zjawisk: piezoelektrycznego oraz potencjału przepływu podczas przebudowy 
struktur kostnych. 

W pracy tej zawarto najwaŜniejsze informacje dotyczące występowania efektu piezoelektrycznego oraz 
potencjału przepływu w strukturach kostnych, które zdaniem autorów tego tekstu, ma odgrywa waŜną rolę 
przy przebudowie tkanki kostnej. Dlatego został zaproponowany model odbierania sygnałów o stanie 
mechanicznym kości przez osteocyty i powiązany z modelem oddziaływań międzykomórkowych opisującym 
przekazywanie informacji z osteocytów do osteoblastów.   



XXIV Symposium Vibrations in Physical Systems, Poznan – Bedlewo, May 12-15, 2010 

Identification of parameters of the fractional rheological model 
of viscoelastic dampers 

Roman LEWANDOWSKI 
Poznan University of Technology, 60-965 Poznan, ul. Piotrowo 5 

roman.lewandowski@put.poznan.pl 

Bartosz CHORĄśYCZEWSKI 
Poznan University of Technology, 60-965 Poznan, ul. Piotrowo 5 

bartosz.chorazyczewski@prometplast.com.pl 

Abstract  

An identification method for determination of parameters of the rheological model of damper made of 
viscoelastic material is presented in this paper. The rheological model of damper has four parameters and the 
model equation of motion contains derivatives of the fractional order. The identification procedure has two 
main parts. Results of dynamical experiments are approximated using the trigonometric function in the first 
part of the procedure while the model parameters are determined in the second part of the procedure as the 
solution to an optimization problem. The particle swarm optimization method is used to solve the optimization 
problem. Efficiency and accuracy of the proposed method are proof on an example where the parameters of the 
rheological model are determined on the basis of artificially generated experimental data with measured noises. 
 
Keywords: viscoelastic dampers, fractional rheological model, identification procedure 

1. Introduction 

Fractional rheological models of viscoelastic (VE) dampers are becoming more and 
more popular. The reason is their ability to correctly describe the behavior of VE 
dampers using a small number of parameters. A single equation is enough to describe the 
VE damper dynamics. An important problem, connected with the fractional models, is 
the estimation of model parameters using experimental data. The process of parameter 
identification is an inverse problem which can be ill conditioned. The identification 
procedures for the three parameters fractional Kelvin-Voigt model and the fractional 
Maxwell model are proposed in [1]. The problem of parameters identification of 
rheological models with fractional derivatives is also discussed by Pritz in [2]. 

A new method for identification of the parameters of the fractional model of VE 
dampers with four parameters is presented in this paper. The results of static and 
dynamical test are used to identify the parameters of a damper model. The identification 
procedure comprises two main steps. The experimental results are approximated by a 
simple harmonic function in the time domain in the first step while model parameters are 
determined in the second stage of the identification procedure. The validity, accuracy 
and effectiveness of the procedures have been tested using artificial experimental data. 

2. Description of the rheological model and a steady state vibration of the model 

The equation of motion of the considered rheological model is in the following form: 
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)()()()( 0 tqDktqktuDtu tt
αααα ττ ∞+=+  (1) 

where )(tu  denotes the dampers force, )(tq  is the dampers displacement, 0k , ∞k , τ  

and α  are models parameters. Moreover, a symbol such as )(tqDt
α , is the Riemann-

Liouville fractional derivative of the order α  of consecutive function, here )(tq , with 

respect to time t  (please, consult [3] for details concerning fractional derivatives). 
Based on the results presented by Lion in [4], it can be demonstrated that this model 

fulfils the second law of thermodynamics for 10 ≤≤ α , 0 >τ  and 00 >>∞ kk . 

Equation (1) can be understood as the equation of motion of two mechanical models 
shown in Figures 1 and 2. These models consists of springs and springpot elements 
connected in parallel or in series. The springpot element can be seen as an interpolation 
between the spring ( 0=α ) and the dashpot ( 1=α ). The springpot element satisfies the 
following constitutive equation (see [1] for details): 

)( )( tqDctu t
α=  . (3) 

The parameters of mechanical models are related to parameters of the considered 
fractional model in the following way: 

                         10 kk =  ,      21 kkk +=∞  ,      22 / kc=ατ  , (3) 

                  )/( 21210 kkkkk +=  ,      1kk =∞  ,      )/( 212 kkc +=ατ  , (4) 

for the first and the second mechanical model, respectively. 

  

Figure 1. The first mechanical models of 
VE dampers 

Figure 2. The second mechanical models 
of VE dampers 

 
If the damper executes harmonic oscillations then the damper’s steady state vibration 

is described by  

tututu sc λλ sincos)( +=  ,      tqtqtq sc λλ sincos)( +=  , (5) 

and the parameters shown above fulfil the following relationships 

scc qzqzu 21 +=  ,      scs qzqzu 12 +−=  , (6) 
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3. Description of identification method 

The identification procedure consists of two main steps. In the first step the experimental 
results are approximated by a simple harmonic function in the time domain while the 
model parameters are determined in the second stage of the identification procedure. 

In the first step, experimentally measured displacements )(tqe  of the damper are 

approximated using the function: 
tqtqtq sc λλ sin~cos~)(~ +=  , (9) 

The least-square method is used to determine parameters cq~  and sq~  of function (9). 

This method requires minimization of the following functional: 

[ ]∫ −
−

=
2

1

2

12
1 )(~)(

1
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t

t
esc dttqtq

tt
qqJ  , (10) 

where the symbols 1t  and 2t  denote the beginning and the end of the time range in 

which the damper’s displacements were measured. Part of the measuring results relating 
to a steady state vibration is used as data in this step. From the stationary conditions of 
the functional (10), the following system of equations is obtained:  

cqsscccc IqIqI =+ ~~  ,      sqssscsc IqIqI =+ ~~  (11) 

from which the parameters cq~  and sq~ are obtained and where: 
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t
esq dtttqI λ  . (13) 

Similarly, the experimentally measured dampers force )(tue  is approximated by 

tututu sc λλ sin~cos~)(~ +=  . (14) 

Proceeding to a description of the second step of identification method, it is assumed 
that a set of results of the above-described first step of procedure given by )(~ tu i , ciu~ , 

siu~  )(~ tqi , ciq~  and siq~  and relating to the different excitation frequencies iλ  

),...,2,1( ni =  is known. If the considered rheological model is able to correctly simulate 

the VE damper behavior then the relationships (6) must approximately be fulfilled by the 
above-mentioned results of the first step identification procedure, i.e.:  

siiciici qzqzu ~~~~~
21 +=  ,      siiciisi qzqzu ~~~~~

12 +−=  ,     ni ,...,2,1=  . (15) 

Solving Equations (15) with respect to iz1
~  and iz2

~  the following is obtained: 
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If the rheological model perfectly fits the experimental data then 0~
11 =− ii zz  and 

0~
22 =− ii zz  for ni ,...,2,1= , where )(11 ii zz λ= , )(22 ii zz λ=  are calculated using 

formulas (7) and (8). In practice some differences usually exist and parameters, 0k , ∞k , 

τ  and α of the rheological model are determined as the solution of the appropriately 
defined optimization problem. However, here it is assumed that the parameter 0k is 

known and determined previously using the experimental data taken from the static tests.  
In the paper the optimization problem mentioned above is formulated as follows. 
Find the values of ∞k , τ  and α  which minimize the functional 

[ ] [ ]{ }∑
=

∞∞∞ −+−=
n

i
iiii zkzzkzkJ

1

2
22

2
11

~),,(~),,(),,( ατατατ  ,  (17) 

and fulfil the following constraints: 

10 ≤< α  ,    0 >τ  ,      00 >>∞ kk  .  (18) 

The above optimization problem is solved with the help of the particle swarm 
optimization method described, for example in [5] and briefly in the following Section. 

4. Description of the adopted version of the particle swarm optimization method 

The particle swarm optimization (PSO) method is a population based optimization 
technique inspired by the social behaviour of animals. The populations consist of 
possible solutions (referred to as particles) and the search for optimal solutions is 
performed by updating the subsequent positions of particles. Each particle explores the 
problem space being drawn to current optimal solutions. Moreover, each particle keeps 
its best values of functional (17) achieved so far (along with the associated solution 

))(),(),(()( )(
3

)(
2

)(
1

)( kpkpkpcolk jjjj =p , where k  is the number of the current time 

instance, the superscript j  is the number of the current particle; ( mj ,...,2,1= )) and the 

best fitness and corresponding solution achieved in the particle’s neighbourhood 

))(),(),(()( )(
3

)(
2

)(
1

)( kpkpkpcolk bbbb =p . It was shown that using global neighbourhood 

(all particles are fully aware of other particles’ fitness) minimizes the median number of 
iterations needed to converge. On the other hand, the neighbourhood of size 2 gives the 
highest resistance to local minima.  

At each time instances k  of the PSO, the velocities of the particles are changed 

(accelerated) towards the )()( kjp  and the )()( kbp  and the particles are moved to new 

positions according to the following formulas: 
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where 1=∆t , )()( kv j
i vj and )()( kx j

i  are the i-th element of the velocity and the 

position vectors of the j-th particle, respectively; )1( +kw  is the inertia factor providing 

balance between exploration and exploitation, 1c  is the individuality constant, and 2c  is 

the sociality constant. To speed up convergence, the inertia weight was linearly reduced 
from 9.0max =w  to 1.0min =w . In our experiments we have used 10=m  particles, a 

maximum number of iterations 400max =i  and 0.221 == cc . A size 4 neighbourhood 

was used as a tradeoff between fast convergence and resistance to local minima. 

Moreover, )(
1

j
ir  and )(

2
j

ir  are random numbers taken from the range from 0 to 1. More 

information on the selection of the algorithm parameters, constraints handling and 

selecting the starting vectors )0()( jx  and )0()( jv  can be found in [5].  

5. Results of demonstration applications of identification method 

A typical calculation is performed using the artificially generated data. At the beginning, 
the artificial data without noises for the second mechanical model are calculated using 
formulas (3) and (6) and assuming that: 14=n , kN/m 0.6001 =k , kN/m 0.4002 =k , 

kNs/m 0.150=c , m 01.0=siq , m 005.0=ciq  and 6.0=α . The chosen values of the 

excitation frequency are taken from the range Hz 5.135.0 −  with the frequency 
increment Hz 0.1=∆λ . After applying the identification procedure and assuming that 

kN/m 0.2400 =k  is known from the static test, the following results, very close to the 

exact ones, are obtained: kN/m 5.601,1 =idenk , kN/m 3.399,2 =idenk , 

kNs/m 9.149=idenc , 6859.0=idenα .  

Moreover, the random noises are added to the artificial data using the formulas: 

ciici uru ~ )~1(ˆ 1 ε+=  ,  siisi uru ~ )~1(ˆ 2 ε+=  ,  ciici qrq ~ )~1(ˆ 3 ε+=  ,  siisi qrq ~ )~1(ˆ 4 ε+=   (20) 

where ε  is the noise level, ir1
~ , ir2

~ , ir3
~  and ir4

~  are random numbers taken from the 

range from 0 to 1. 
The calculation is made for 02.0=ε . After several runs of the identification 

procedure the following median solution is obtained: kN/m 7.608,1 =idenk , 
kN/m 2.396,2 =idenk , kNs/m 6.151=idenc  and 6658.0=idenα . It is easy to find that the 

accuracy of the obtained values of model parameters is of the order of noises introduced.  
A comparison of the storage modulus resulting from the artificially generated data 

with noises (small crosses) and from the rheological model (solid curve) is presented in 
Fig. 3. It is evident that both approaches are in good agreement. 

6. Concluding remarks 

The proposed identification method can be effectively used to determine parameters of 
the rheological model with the fractional derivatives. The mentioned rheological model 
can be used to modelling the dynamic behaviour of VE dampers. The identification 
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problem is reduced to the nonlinear optimization problem which is solved by means of 
the particle swarm optimization method. Based on the demonstration calculation, it was 
found that the proposed method is not sensitive to any noises introduced during the 
measurements.  
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Figure 3. Comparison of the storage modulus 
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Identyfikacja parametrów ułamkowego modelu reologicznego modelującego zachowanie 
tłumika lepkospręŜystego 

W pracy omawia się metodę identyfikacji parametrów modelu reologicznego tłumika wykonanego z materiału 
o właściwościach lepkospręŜystych. Model reologiczny tłumika ma cztery parametry, a równanie ruchu 
modelu zawiera pochodne ułamkowego rzędu. Procedura identyfikacji składa się z dwóch części. W pierwszej 
części aproksymuje się wyniki badań doświadczalnych za pomocą funkcji trygonometrycznych, a w drugiej 
części wyznacza się parametry modelu jako rozwiązanie pewnego zadania optymalizacji. Do rozwiązania 
zadania optymalizacji uŜyto metody roju cząstek. Efektywność i dokładność zaproponowanej metody 
identyfikacji wykazano wyznaczając parametry ułamkowego modelu reologicznego na podstawie sztucznie 
wygenerowanych danych doświadczalnych z szumami pomiarowymi.  
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Abstract  

An analytical and computational characteristics of transmission losses of the helicoidal resonator are 
compared in this paper. The substitutional transmittance function of helicoidal resonator was proposed based 
on amplitude characteristic of electrical band-stop filter. At first approach the analytical model can be 
considered as valid for practical silencing systems design calculations in ducted systems. 
 
Keywords: helicoidal resonator, spiral duct, transmittance, acoustical filter, sound attenuation. 

1. Introduction  

There are several papers about spiral ducts [2-8] where are developed theirs acoustic 
attenuation properties in ducted acoustical systems. There is also developed that the 
acoustic attenuation for spiral (helicoidal) ducts exists in consequence of an acoustical 
resonance [2-7]. Hence, in this paper a helicoidal resonator is considered.  

Acoustical properties, mainly attenuation of sound due to an acoustical resonance, of 
helicoidal resonators can be modified by doing a change in relations between its basic 
geometrical parameters [3], which are shown in Figure 1.   

 
Figure 1. Basic geometrical parameters of helicoidal resonator. 

Very important parameter of helicoidal resonator is the number of helicoidal turns n, 
which strongly determines the character of acoustical resonance [3]. This work describes 

lTz - outer length of 
helicoidal profile  

lTw - inner length of 
helicoidal profile  
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a substitutional transmittance function of helicoidal resonator as a first approach for this 
question based on computational results in COMSOL Multiphysics [3]. 

2. Determination of a resonance frequency based on geometrical relationships 

To define the substitutional transmittance function of helicoidal resonator placed inside 
an infinite long cylindrical duct (Figure 2) of diameter d, there was chosen a case of 
helicoidal resonator,  

 
Figure 2. Cylindrical duct with helicoidal resonator. 

where predominates only one component of transmission loss (TL) [2, 3, 5, 6, 10] in the 
resonance frequency and remaining components are almost symmetrically distributed in 
the frequency domain, as it is shown in Figure 3.  
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Figure 3. Transmission loss of helicoidal resonator with only one resonance frequency 
fr=1281Hz and almost symmetrically distributed other attenuated frequencies in the 

range from 1200Hz to 1365Hz – TL characteristic obtained computationally [3]. 

In that case there are satisfied relations (1) between basic geometrical parameters of 
investigated helicoidal resonator, according to Figure 1, as follows [3]: 

976,1=
d

s , 24,0=
d

d t , 04,0=
d

g , n=1.            (1) 

It is the case of full spread of helicoidal surface of one helicoidal turn, where attenuated 
components of a sound in a frequency domain are almost symmetrically distributed in 
relation to the resonance frequency of the helicoidal resonator.  
To write the equation for a resonance frequency fr of that helicoidal resonator, there was 
used undermentioned relation (2) to obtain frequency f [Hz], which depends on the 
length of a sound wave λ [m] and a speed of sound in air ca (343m/s), in form: 

Cylindrical duct  

Helicoidal resonator 
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][, Hz
c

f a

λ
=               (2) 

By making precise numerical computations (calculation step 0,01Hz) there was 
determined exact resonance frequency, which equals fr=1281,17Hz, of the helicoidal 
resonator with ratio s/d=1,976, and other dimensions: thickness of the helicoidal profile 
g=0,005m, diameter of the mandrel dt=0,03m placed inside infinite long cylindrical duct 
(as it is presented in Figure 2.) of diameter d=0,125m. On this basis there can be written 
a relation (3) between diameter of a cylindrical duct d and the length of a sound wave in 
resonance frequency λr of helicoidal resonator with one full spread of the helicoidal turn, 
in form:  

        141792268,2=
d

rλ .                       (3) 

Which means, that the diameter of the cylindrical duct represents a 46,69% of a 
resonance wavelength of the helicoidal resonator. 
Substituting the previously obtained dimensional relationship s/d=1,976 to the model (3) 
we obtain the wavelength dependence for the acoustic resonance frequency of the 
helicoidal resonator based on its turn s, in form: 

].[08390297,1 msr ⋅=λ              (4) 

So in this case optimal dimensions of the helicoidal resonator in terms of a sound 
attenuation performance is that for which the helicoidal turn s is slightly larger than the 
resonant wavelength. Relations (3) and (4) can be expressed in conjunction with the 
following dependences [1]: 

- to calculate the outer length of the helicoidal profile: 
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 - to calculate the inner length of the helicoidal profile: 
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On the basis of dependences (5) and (6) we learn that the angle of the helicoid lift lines 
(inner and outer) ψT in this case is constant and independent of the dimensions, and it 
equals as follows: 

o11464814,69=
wTψ , o16908553,32=

zTψ             

37256069 ′′′′′′°=
wTψ , 07800132 ′′′′′′°=

wTψ  
(7) 

Next, we can specify the inner and outer lengths of the helicoidal profile, as below:  
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Taking under attention above mentioned relationship (4), it can be assumed that the inner 
length of helicoid profile corresponds to the resonance wavelength: 
           

wTr l≅λ .               (9) 

The formula for the resonant frequency fr of the helicoidal resonator shown in relations 
(1) by taking into account relations (9) has the form: 

][, Hz
c

f
r

r λ
= .                   (10) 

2. Substitutional transmittance function 

To obtain a substitutional transmittance function of the helicoidal resonator there have 
been made an analysis of different equations of the transfer functions and amplitude 
characteristics Ku of different band-stop filter [9]. The greatest similarity of the 
analytical characteristics and the simulation is obtained as a result of the transformation 
for the amplitude characteristics of a band-stop filter of second order [3, 9] in the form: 
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(11) 

where Ω = f/fr is an normalized pulsation, ku0=1 is an excitation signal, and Q=1/∆f is a 
quality factor, whereas ∆f [Hz] is a frequency range, in which the sound is attenuated. 
To determine the substitutional transmittance function of the helicoidal resonator the 
resonant frequency formula (10) was placed into the formula (11). Then, by squaring  
such formula (11) we obtain the most similar to simulation the substitutional 
transmittance function TS,hr of the helicoidal resonator, in the form: 
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Based on transmittance function (12) below can be shown the transmission loss 
characteristic of the helicoidal resonator with determined relationships (1), by the use of 
equation [10, p. 462]: 
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A graphical interpretation of the formula (13) together with the simulation results in a 
COMSOL Multiphysics computational environment in accordance to the dimensional 
relationships (1) and the quality factor Q=8 and difference between these two 
characteristics are shown in Figure 4. 
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Figure 4.  Transmission loss characteristics of: (C) helicoidal resonator computed by the 

use of  finite element method (FEM) in COMSOL Multiphysics, (A) band-stop filter 
from equation (13) of quality factor Q=8 and (C-A) difference between these two 

characteristics. 

As shown in Figure 4 the TL characteristics of the helicoidal resonator calculated 
analytically using the formula (13) and computed by the use of finite element method 
(FEM) in the COMSOL Multiphysics environment is quite similar. Maximum TL 
differences occur near the resonant frequency, which reach a value of less than 3.5 dB. 
The range of attenuated frequencies is closely identical for both characteristics (A and 
C), when we look on 3dB level of TL.  

3. Conclusions  

An analytical model of the substitutional transmittance function of helicoidal resonator 
was proposed in this paper. The inner length of helicoidal profile corresponds to the 
resonance wavelength and it can be used to calculate the resonance frequency of this 
acoustical filter. Transmission loss characteristics of the helicoidal resonator calculated 
analytically and computed by the use of the finite element method (FEM) in the 
COMSOL Multiphysics environment are quite similar. Maximum TL differences occur 
near the resonance frequency. However, at first approach of transmittance function of 
helicoidal resonator, the analytical model can be considered as valid for practical 
silencing systems design calculations in ducted systems. 
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Zastępcza funkcja transmitancji rezonatora helikoidalnego 
W niniejszym artykule dokonano porównania charakterystyk tłumienia przenoszenia rezonatora 
helikoidalnego uzyskanych na drodze obliczeń analitycznych i numerycznych. Zaproponowana została 
zastępcza funkcja transmitancji rezonatora helikoidalnego na podstawie charakterystyki amplitudowej 
elektrycznego filtru pasmowo-zaporowego. Tak wykonany analityczny model transmitancji w pierwszym 
przybliŜeniu moŜe być uznany za poprawny dla celów obliczeniowych praktycznego projektowania systemów 
wyciszeniowych w instalacjach kanałowych. 
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Abstract 

The paper deals with modelling and control of a semi-active seat suspension with magneto-rheological 
damper. In order to protect the working machines operators against harmful vibration, the vibro-isolation 
properties of conventional seat suspension are improved by using the magneto-rheological damper. In this 
paper the vibration isolation characteristics of semi-active damping control strategy are studied, that are based 
on the inverse dynamics of magneto-rheological damper and the primary controller. The dynamic behaviour 
of passive and semi-active seat suspension is compared on the basis of a seat effective amplitude 
transmissibility factor and suspension travel. As results of computer simulation, the power spectral densities 
of seat acceleration and the transmissibility functions are presented for random excitation. 
 
Keywords: vibration damping, semi-active system, seat suspension, magneto-rheological damper 

1. Introduction 

Full active suspensions require large power supply and this is the main disadvantage of 
using such the systems extensively in practice. Semi-active suspensions consume much 
less power than active suspensions, therefore they have received much attention in the 
literature [1]. The desirable performance of suspension systems can be achieved using 
semi-active control, especially when some controllable dampers: electro- rheological 
(ER) or magneto-rheological (MR) are utilized. In particular, MR dampers are often used 
in vibration reduction of the seat suspensions, vehicle suspensions, vibration isolators, 
etc. Many control strategies such as sky-hook, ground-hook or hybrid control, H-inf 
control and model-following sliding mode control have been evaluated in terms of their 
applicability in practice. However, the practical use of the MR dampers for control is 
relatively difficult by its inherently hysteretic and highly non-linear dynamics. This 
makes the modelling of MR dampers very important for its application. In order to 
characterize the performance of MR dampers, several models have been proposed to 
describe their behaviour [2], [3], [4]. Active and semi-active suspension systems provide 
more effective vibration isolation performance, but their control systems have to be 
formulated. The ongoing development of control algorithms indicates that improved 
methods of controlling active and semi-active suspension systems is an effective way to 
deal with the suspension system performance problem [3]. 

2. Physical and mathematical model of the semi-active seat suspension 

In Fig. 1 a physical model of the semi-active seat suspension system containing a passive 
air-spring and a controllable magneto-rheological damper is shown. The magneto-
rheological fluid inside a damper changes its properties (mainly its viscosity) with the 
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application of a magnetic field [4]. A magnetic filed is produced by the solenoids which 
are placed around the orifices between chambers of the damper. A controllable current, 
that supplies solenoids, changes the properties of a fluid flow and in consequence force 
of the damper is regulated. 

 
Figure 1. Physical model of the semi-active seat suspension  

with magneto-rheological damper 

Equation of motion of the semi-active seat suspension takes a similar form as in the 
case of the passive seat suspension model, that have been presented in the paper [5]. The 
mathematical models of basic forces in the system: the air-spring force Fas, the forces 
from end-stop buffers: bottom Fbd and top Fbu, the overall friction force of suspension 
system Fff and the gravity force of suspended mass Fg are adequate to the models of 
forces in the passive system. However, a description of the damping force Fmr is 
different from the passive seat suspension model (Fd), because the conventional shock-
absorber has been replaced in the magneto-rheological damper (Fmr). The damping force 
is controlled by the electric input signal i. 

The Bingham model described in the paper [2] is adopted in this study for the 
magneto-rheological damper using the obtained experimental data. In this simplified 
model, the hysteresis loop of the MR damper is neglected and a description of the MR 
damper force contains components from the viscous damper and friction only (c.f. Fig. 
2). The force equation is given by: 
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where: dmr is the viscous damping coefficients, αmr is the scale factor of the damper 
friction. 
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Figure 2. Bingham model of the magneto-rheological damper (a), force of the magneto-

rheological damper (b): simulation (solid line), measurement (dashed line) 

Based on the experimental data, a least-square approximation method is employed to 
determine the appropriate parameters dmr and αmr for the analytical model: 

mrmrmrmrmrmrmr gifiebiad ++=+= 2     , α  (2) 

where: amr, bmr, emr, fmr and gmr are the polynominal coefficients expressed with respect 
to the input current. These coefficients are evaluated based on additional MR damper 
measurements that have been presented in the paper [6]. 

3. Reverse model of the magneto-rheological damper 

If the Bingham model is determined than the desirable force Fa can be realized by 
injecting an appropriate current into the MR damper in accordance with actual piston 
velocity of the damper ),( sa xxFfi && −= . This input current i is calculated from Eqs. (1), 

(2) with measurable velocity sxx && −  and is given by: 
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with function ∆ that is calculated as: 
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Graphical representation of the MR damper reverse model is shown in Fig. 3. It 
should be noted that the MR damper is a passive device and the desired force Fa can be 
realized only if this force and damper velocity have the same sign. Than the calculated 
input current of the MR damper varies in the range of 0 A (minimum value) and 1 A 
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(maximum value) and depends on the actual value of desired MR damper force and its 
actual velocity (c.f. 3). If the desired force and damper velocity have opposite sign than 
the input current is settled to zero. 

 
Figure 3. Reverse model of the magneto-rheological damper ),( sa xxFfi && −=  

4. Desired damper force 

A proper design of the vibration isolation systems implies a lot of difficulties for the 
designers, because conflicted objectives are involved in this case [3]. Forces transmitted 
to the isolated body should be reduced by the suspension system, but this is only the first 
objective of a system evaluation. The second objective is that the suspension travel has 
to be minimized as well. 

On the one hand, the suspended mass velocity x&  should approach zero, in order to 
protect the isolated body against a harmful vibration. On the other hand, the relative 
displacement of suspension system sxx −  should approach zero as well, in order to 

minimize the suspension travel. The desired damper force that deals with conflicted 
objectives can be defined as follows: 

( )sxxxa xxKxKF
s

−+= −&
&  (5) 

where: xK & is the proportionality factor of absolute velocity feedback loop and 
sxxK − is 

the proportionality factor of relative displacement feedback loop. A different selection of 
the controller settings allows decreasing the forces transmitted to suspended mass at the 
simultaneous increase of suspension travel and vice versa. 

In order to check the elaborated control system, the desired active force and the 
predicted MR damper force obtained from the reverse model are compared as shown in 
Fig. 4. To check the effectiveness of the reverse model under various operating 
conditions, the excitation signal has the random wave form within the frequency range 1-
5 Hz. The results are obtained at first estimation of the controller settings xK & = 2 x 103 

Ns/m and 
sxxK − = 20 x 103 N/m. In the Fig. 4 is clearly observed that the desired force is 

well predicted by the reverse model. Highest discrepancy between the desired force and 
the predicted MR damper force are shown while these forces are in opposite signs. In 
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this situation the MR damper cannot generate such desired force therefore the input 
current is settled to zero and minimum MR damper force is provided into the system. 

 
Figure 4. Desired damper force Fa (solid line)  

and realized MR damper force Fmr (dashed line) 

5. Simulation results 

The MR damper control is realized by algorithm presented in Eqs. (3), (4) and (5). In 
Fig. 5 the simulation results obtained for the semi-active seat suspension (variable input) 
in comparison with the passive system (constant input i = 0,3 A) are presented. 

 

Figure 5. Simulated power spectral densities (a) and transmissibility curves (b)  
of the semi-active suspension with MR damper control (dash-dotted line) and of the 

passive suspension (solid line), power spectral density of excitation signal (dotted line) 

The advantage of the semi-active suspension system with continuous damping 
control is the attenuation of resonant frequency vibration without the amplification of 
high frequency vibration. Simulated Seat Effective Amplitude Transmissibility factors 
(SEAT) [7] of the passive and semi-active suspension systems are: 0,618 and 0,462, 
respectively. The maximum relative displacements of the passive and semi-active 
suspension systems are: 112 mm and 86 mm, respectively. 

6. Conclusions  

The semi-active seat suspension with magneto-rheological damper effectively reduces 
vibration amplitudes in whole frequency range considered. The amplification of 
vibration amplitudes for the low frequency range is achieved by means of damping 
control using the MR damper device. The reduction of vibration amplitudes is also 
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obtained for the higher frequency range. Such effect of vibration isolation is required in 
order to improve the seat suspension performance. 
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Modelowanie i sterowanie semi-aktywnym systemem zawieszenia siedziska  
z tłumikiem magneto-reologicznym 

W pracy zawarto zagadnienia związane z modelowaniem i sterowaniem semi-aktywnego układu zawieszenia 
siedziska z tłumikiem magneto-reologicznym. W celu zwiększenia ochrony operatorów maszyn roboczych 
przed szkodliwym działaniem drgań mechanicznych, właściwości wibroizolacyjne konwencjonalnego 
systemu zawieszenia siedziska zostały poprawione poprzez zastosowanie tłumika magneto-reologicznego. W 
pracy analizowano charakterystyki wibroizolacyjne semi-aktywnego układu tłumienia drgań, dla którego 
opracowano algorytm sterowania bazujący na modelu odwrotnym tłumika magneto-reologicznego i 
kontrolerze głównym. Właściwości dynamiczne układu pasywnego oraz semi-aktywnego porównano 
wykorzystując współczynnik przenoszenia drgań siedziska oraz maksymalne przemieszczenia względne 
systemu zawieszenia. Jako wyniki symulacji komputerowej zaprezentowano gęstości widmowe 
przyspieszenia drgań na siedzisku oraz funkcje przenoszenia systemu zawieszenia dla wymuszenia jego ruchu 
sygnałem losowym. 
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Abstract  

In the paper the transversal vibrations of a system of composite annular membrane is studied using analytical 
methods and numerical simulation. The two mathematical models are analyzed. At first the motion of the 
system is described by two homogeneous partial differential equations. The general solution of the free 
vibrations are derived by the Bernoulli – Fourier method and the boundary problem is solved. The second 
model is formulated by using finite element representations. The natural frequencies and natural mode shapes 
of vibration of the system are determined. The FE model is manually tuned to reduce the difference between 
the natural frequencies of the analytical solution and the natural frequencies of the FE model calculations, 
respectively. It is important to note that the data presented in the paper have the practical meaning for design 
engineers. 
 
Keywords: composite annular membranes, transverse vibration, natural frequencies, mode shapes 

1. Introduction 

The free transverse vibration analysis of membranes with discontinuously varying 
material properties is the subject of many recent investigations. The majority of previous 
work in the field present solutions for the free vibrations of the circular, annular and 
rectangular membrane systems. Fundamental theory of vibration of simple two – 
dimensional continuous systems is elaborated in [3]. Free transverse vibrations of 
composite rectangular membranes are studied in the work [1]. In the paper [4] exact 
solution for the vibration frequencies of a composite annular membranes with 
discontinuously varying density is given by using theory of membrane. In this paper the 
free transverse vibrations of a composite annular membrane system with discontinuously 
varying density and thickness are analyzed using classical membrane theory and finite 
element technique. The analytical solution is used to manual tuning the finite element 
model of the system. This work continues the recent author’s investigations concerning 
vibrations of membrane systems [2]. 
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2. Formulation of the problem 

The objective of this work is formulation of a dynamic model of an annular composite 
membrane. It is assumed that the membrane is thin and it is composed of two concentric 
portion of the homogeneous regions. Each region has the constant thickness. The 
membrane is uniformly tense by adequate constant tensions applied at the edges. Making 
use of the classical theory of vibrating membranes, the partial differential equations of 
motion for the free transversal vibrations are 
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Figure 1. Vibrating system under study 

where ( )trww ii ,,ϕ=  is the transverse membrane displacement, tr ,,ϕ  are the polar 

coordinates and the time, 21111 ,,,, hhdcb  are the membrane dimensions, iρ  is the mass 

density, S  is the uniform constant tension per unit length and 
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3. Free vibration analysis 

Now using the separation of variables method, one writes [3, 4] 

( ) ( ) ( ) ( ) ( ) 2,1,sincos,,, =+== itMtLtTtTUrRtrw ii ωωϕϕ  (4a, b) 

where ω  is the natural frequency of the system. The boundary and compatibility 
conditions in terms of ( )rRi  become 
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Substituting solution (4a) into (1) yields 

( ) ( ) ( ) ( ) ( ) ( ) 2,1,cossin, =+=+= inDnCUarYBarJArR nnninniinnini ϕϕϕωω  (6) 

where nJ  and nY  are the Bessel functions of the first and second kinds, respectively. 

The constants nini BA ,  are determined from the boundary and compatibility conditions. 

Conditions (5) yields a system of four linear, homogeneous equations in the constants 

nn AA 21 ,  and nn BB 21 , , respectively. Finally, a determinantal equation in the natural 

frequencies is obtained from the non – triviality condition. It yields the secular 
determinant 
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where the roots of the determinantal equation (7) ( )K,3,2,1== mmnωω  are the free 

frequencies of the membrane and 
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The general solution of equation (1) takes the form 
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are the eigenfunctions and 
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( ) ( ) ( ) ( )2121211111 , adJadYeabJabYe nmnnmnnmnmnnmnnm ωωωω −=−=  (11) 

Each natural frequency nmω  correspond two linear – independent mode shapes which 

may be plotted from relations 
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4. The finite element representations 

In this section the finite element  (FE) models are formulated to discretize the continuous 
models given by the equations (1). To find the eigenpairs (eigenvalue, eigenvector) 
connected with the natural frequencies and natural mode shapes of the system, the block 
Lanczos method is employed [5]. As mentioned earlier, the FE models are treated as an 
approximation of the exact systems. In this work the impact of the manner of the 
membranes tensile forces application in the FE models on the quality of the accurate 
model approximation is analysed. In order to make a comparison of the continuous 
system analysis results with the FE models solutions, two finite element models are 
prepared and discussed. 

The first FE model consists of the composite annular membrane divided into 8964 
finite elements. The four node quadrilateral membrane element with six degree of 
freedom in each node is used to solve the problem. The uniform constant tension per unit 
length is applied to the outer edge by using the ANSYS code system standard procedure. 
The prepared model is shown in Fig. 2. 

 
 

Figure 2. Finite element model 

The second FE model of the system taken into consideration is the same as the first, 
but the application of the constant tension is different. To each node lying on the outer 
edge is imposed a concentrated tensile force jS  in the radial direction. The proper value 

of the force is selected experimentally to minimize the frequency error [5] 

( ) %100⋅−= c
nm

c
nm

f
nmnm ωωωε  (13) 

where f
nmω  and c

nmω  are the natural frequencies of the FE and exact models, 

respectively. 
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5. Numerical analysis 

Numerical analysis results of the composite annular membrane free vibration are 
obtained using the models suggested earlier. For each approach, only the first ten natural 
frequencies and mode shapes are discussed and compared for these two models. The 
parameters characterizing the system used in calculations are shown in Table 1. 

Table 1. Parameters characterizing the composite membrane 

b1 
[m] 

c1 
[m] 

d1 
[m] 

h1 
[m] 

h2 
[m] 

ρ1 
[kg/m3] 

ρ2 
[kg/m3] 

E1 
[Pa] 

E2 
[Pa] ν1 ν2 

S 
[N/m] 

0.1 0.3 0.5 0.001 0.002 7.85⋅103 2.7⋅103 2.05⋅1011 7⋅1010 0.29 0.32 1000 
 

In the table, iE  and ( )2,1=iiν  are, the Young’s modulus of elasticity and Poisson 

ratio, respectively. In this paper the continuous model is considered as exact, compared 
to the FE models, which are treated as approximation of the precise model. 

For the continuous model the natural frequencies are determined from numerical 
solution of the equation (7). The results of the calculation of the natural frequencies are 
shown in Table 2. 

Table 2. Natural frequencies of the composite membrane system ωmn [Hz] (exact model) 

 n 
 0 1 2 3 4 5 

1 14.8413 16.5576 20.6931 25.7996 31.1661 36.553 m 
2 30.8524 31.8401 34.5752 38.5114   

 

The natural frequencies and the frequency errors (see eq. (13)) obtained by using the first 
FE model of the system under investigation are presented in Tables 3 – 4, respectively. 

 Table 3. Natural frequencies of the composite membrane system ωmn [Hz]  

 n 
 0 1 2 3 4 5 

1 15.849 17.227 20.717 25.247 30.141 35.099 m 
2 32.751 33.498 35.636 38.898   

 

Table 4. Frequency error εmn [%] 

 n 
 0 1 2 3 4 5 

1 6.7898 4.0429 0.1155 -2.1419 -3.2892 -3.9778 m 
2 6.1538 5.207 3.068 1.0039   

In the second FE model case the results presented in Tables 5 – 6 are achieved for 
[ ]NS j 7.8= . 
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Table 5. Natural frequencies of the composite membrane system ωmn [Hz] 

 n 
 0 1 2 3 4 5 

1 15.825 17.201 20.686 25.21 30.096 35.046 m 
2 32.702 33.448 35.583 38.839   

Table 6. Frequency error εmn [%] 

 n 
 0 1 2 3 4 5 

1 6.6281 3.8858 -0.0343 -2.2853 -3.4335 -4.1227 m 
2 5.995 5.0499 2.9148 0.8507   

 

For both FE model cases the largest difference between the analytical results and the FE 
solutions can be visible for the frequencies ω10, ω20 and ω21, respectively. In the second 
FE model case only for the frequencies ω13, ω14 and ω15, the frequency error increased. 

6. Conclusions  

The present work deals with the transverse vibrations of a composite annular membrane. 
The free vibrations are determined by using the separation of variables method and finite 
element technique. Due to space limitation the mode shapes are not presented. The exact 
solution is utilized to manually tune the FE model. At this stage of search it seems that 
the second FE model would be better to simulate the analyzed system. The main 
advantage of using the second FE model is the knowledge regarding the value of the 
concentrated tensile force applied to all the nodes lying on the outer edge. 
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Częstości własne i postacie drgań własnych kompozytowej membrany pierścieniowej 
Przedmiotem rozwaŜań niniejszej pracy jest analiza drgań poprzecznych kompozytowej membrany 
pierścieniowej. Omawiane w pracy modele matematyczne układu opracowano wykorzystując klasyczną teorię 
drgań poprzecznych membran oraz metodę elementów skończonych. Ścisłe rozwiązanie drgań układu 
otrzymano stosując metodę rozdzielenia zmiennych (metodę Bernoulliego – Fouriera). W oparciu o uzyskane 
rozwiązanie, wyznaczono częstości własne i odpowiadające im postacie drgań własnych układu. Wyniki 
rozwiązania analitycznego wykorzystano do dostrajania zaproponowanych modeli elementów skończonych 
układu.
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Abstract 

Purpose of research work represented in the said paper consisted in fulfilment of analysis of dynamic stability 
of a rotor of asynchronous motor. The rotor model of continuous mass distribution and variable rigidity was 
assumed for analysis. On the ground of motion equations differential equations binding dynamic deflections of 
the rotor with space and time have been obtained. Finally, there have been obtained partial differential 
equations, heterogeneous and of variable coefficients which have been solved by application of the variables 
separation method. Then the ordinary differential equation describing the vibration of the rotor in time function 
have been solved. On the basis of the above mentioned, the characteristic equation have been derived. The 
critical values of magnetic tension and axial force have been determined. 
 
Keywords: rotor, dynamic stability, deflection, vibration 

1. Introduction 

Among in electric machines, the squirrel-cage asynchronous motors occupy a particular 
space. These motors have small value of the magnetic gap. For this reason, the basic 
problem encountered in the phase of construction of such machines is to estimate the 
stability of the rotors. The problem of stability rotors is in relation to the problem of 
vibration. On certain values of some quantities, such as rotational speed, magnetic 
tension rigidity etc., the effect of unstability can take place. The assesment of the 
stability is of particular importance in the case of long rotors loaded by axial force, for 
example rotors of motors of deep-well pumps. Such pumps works in deep waters. It 
follows that the rotors of such motors are loaded by large forces. In this paper the 
influence of axial force and magnetic tension on the frequency of free vibration has been 
determined. Estimation, of the stability of transverse motion of rotors is presented in 
works [3]÷[5]. In these works, the influence of the axial force was not considered. After 
analyzing a number of positions of the professional literature (for example [1], [2]) 
relative to this problem, one can state that the considerations presented there are based 
on a simple model of the rotor, reduced to a point mass with spring. The force of 
magnetic tension is (assumptioned) as a concentrationed force. This assumption is not 
consistent with the reality, because the force is continuously distributed on the surface of 
the packet. Influence of axial force and magnetic tension on the free vibration frequency 
has been determined in the paper. 

2. The dynamic stability of the rotor 

In order to estimate the dynamic stability of the rotor, it is necessary to formulate 
differential equations, expressing the relation between the dynamic deflections of the 
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rotor with space and time. These equations have been derived in a similar way as in the 
paper [3]. The force of magnetic tension is continuous load on the surface of rotor and is 
acting in direction of a rotor's centre deflection. A load intensity of the magnetic tension 
(Fig.1) can be described by following formula [2]: 

 )()( xCyxq =  (1) 

where: C – coefficient of the magnetic tension, y(x) – deflection of the rotor 
The rotor shown in Fig. 1 is loaded with magnetic tension and axial force. In order to 

simplify the considerations a vertical position of the rotor has been assumed (position of 
rotors in deep-well pumps). 

 
Fig. 1. The rotor loaded by magnetic tension and axial force 

 The differential equations of dynamic deflections of the rotor can be obtained on the 
basic of the differential equation of a centre line of a beam. 
This equation can be introduced in the form: 

 M
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y
S −=

∂

∂
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 (2) 

where: S – flexural rigidity of the section on which acts the magnetic tension (section 2), 
M – bending moment. 
The bending moment M can be expressed as M = Fy and equation (2) in the form: 
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 (3) 

where qx is load intensity in the section 2 which can be introduced in the form: 
 xxxx qqqq 321 ++=  (4) 

where: q1x – load intensity taking into account influence of a compressive force F, q2x – 
load intensity taking into account influence of forces of inertia, q3x - load intensity taking 
into account influence of the magnetic tension. 

The equation (3) can be then introduced in the form: 
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where: 

 
µ

β
S

=2       
µ

α
F

=        
µ

γ
C

=  (6) 

µ – unit mass (per unit length) of the section 2, t - time 

Equation (5) is a partial differential equation with constant coefficients. It can be solved 
by means of Fourier’s method and presented in form of infinite series 

 ∑
∞

=

=
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)()(
n

nn tTxXy  (7) 

After a separation of variables and definion of parameter kn the following equations have 
been obtained: 

 042 =−+ nn

II

n

IV

n XkXX αβ  (8) 

 02 =+
••

nnn TT ω  (9) 

where ωn denotes the n – order frequency of free vibrations of rotor. 
On the basis of above equations the following formula has been obtained: 

 γω −= 42
nn k  (10) 

The equation (8) can be introduced in the form 
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The solution of the equation (11) can be introduced in the form 
 nxCnxCchmxCshmxCX nnnnn cossin 4321 +++=  (12) 

where 
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The constants in solution (12) can be determined on the basis of the boundary 
conditions. The equations describing the boundary conditions can be written in the 
following form: 

 0)( =nkf  (14) 

Is results from the above considerations that equation (14) has an infinite quantity of 
solutions. This way, the next frequency of the rotor can be determined. The equation 
(14) was solved with an microcomputer. 

3. Example of calculations 

This chapter presents calculations of a rotor for following data: L=0,7m , l=0,375m , 
d=0,05m ,D=0,08m. Calculations were done for different values of the coefficient of the 
magnetic tension C. Fig. 2 shows the diagram of the frequency ωn (the formula 10) 
against the axial force F, with different values of magnetic  tension coefficients C.  

The point of intersection of the curve with the axis of abscissae determines the value 
of the so-called critical force. In the presence of this force instability of the rotor occurs. 
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Fig. 2. The relations between rotor's natural frequency ω1 and axial force F: 1 – C=19,62 

MPa, 2 – C=29,43 MPa, 3 – C=31,39 MPa 

 On the basis of the diagram shown in Fig. 2 one can state that with the value of the 
coefficient C=19,62 MPa, the critical force has a value of about F=5,4·10-5 N. If 
C=29,43 MPa, the critical force has a value of about F=105 N. However, if C=31.39 
MPa, F has a value of about 0,23·105 N. The diagram shown in Fig. 2 demonstrate that 
there exist such a magnetic tension called the critical one, at which the frequency of free 
vibrations of the rotor is equal to zero. On the basic of the above example of 
calculations, the critical magnetic tension has a value of Ccr=31,98 MPa. 

4. Conclusions 

The increase of magnetic tension as well as the increase of the axial force causes the 
decrease of the frequency of free vibrations of the rotor. The diagram describing the 
dependence of the free vibrations frequency of the rotor on the axial force is a decreasing 
function. The diagram of this function remind a parabola with horizontal axis of 
symmetry. There exist a critical magnetic tension and a critical force at which the rotor 
loses stability of the transverse motion. 
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Dynamika wirnika silnika asynchronicznego obciąŜonego naciągiem magnetycznym i siłą osiową 
Celem pracy przedstawionej w artykule było dokonanie analizy stateczności dynamicznej wirnika silnika 
asynchronicznego. Do analizy przyjęto model wirnika o ciągłym rozłoŜeniu masy i zmiennej sztywności. Na 
podstawie równań ruchu otrzymano równania róŜniczkowe wiąŜące ugięcia dynamiczne wirnika z przestrzenią 
i czasem. Ostatecznie otrzymano równania róŜniczkowe, cząstkowe niejednorodne i o zmiennych 
współczynnikach, które rozwiązano stosując metodę rozdzielenia zmiennych. Następnie rozwiązano równanie 
zwyczajne opisujące drgania wirnika w funkcji czasu. 

Na podstawie powyŜszego rozwiązano równanie charakterystyczne. Wyznaczono krytyczne wartości 
naciągu magnetycznego i siły osiowej. 
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Abstract 

The paper presents an analysis of dynamic stability of a rotor in two-pole asynchronous motor. A model of the 
rotor with continuous mass distribution, with changeable rigidity and with damping have been applied in the 
analysis. In order to determine the stability of the rotor transverse motion equations of its transverse vibration 
have been formulated. From the equations of motion, differential equations interrelating of the rotor dynamic 
deflection with space and time have been derived. Eventually, homogeneous, partial, differential equations 
have been obtained and solved by the Fourier’s method. Then an ordinary differential equation (Hill’s 
equation) describing the rotor vibration have been solved. An analysis of the solution became the basis for 
determining the regions of rotor motion instability. Finally, the critical damping coefficient values at which 
parametric resonance occurs have been determined. 
 
Keywords: rotor, dynamic stability, deflection, damping coefficient, vibration 

1. Introduction 

Among in electric machines, the two-pole asynchronous motors occupy a particular 
space. These motors have small value of the magnetic gap. For this reason, the basic 
problem encountered in the phase of construction of such machines is to estimate the 
stability of the rotors. The problem of stability of rotors is in relation to the problem of 
vibration. On certain values of some quantities, such a rotational speed, magnetic 
tension, rigidity, etc. the  effect of unstability can take place. The assessment of the 
stability is of particular importance in the case of long rotors, for example rotors of 
motors of deep-well pumps. 
 Problem of estimation  of stability of transverse motion of rotors without damping 
are presented in the works [4,6,7]. In this paper the influence of damping in rotors on the 
dynamic stability of its rotors in two-pole asynchronous motors have been determined. 

2. Dynamic stability of  rotor 

The model of rotor accepted for calculations is shown in Fig.1. 
In order to simplify the considerations a vertical position of the rotor have been assumed. 
The basis for describing the dynamic stability of the rotor is the differential equation of 
the centre line of the beam. The equation can be written as: 

 xq
x

y
S −=

∂

∂
4

4

 (1) 

where: S – flexural rigidity of the section 2  
            y – deflection of the rotor  
            qx – load intensity 
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Fig.1. The model of rotor accepted for calculations 

The load intensity qx can be introduced in the form: 
 xxxx qqqq 321 ++=  (2) 

where: q1x – load intensity related to the influence of the forces of inertia,  
            q2x – load intensity related to the influence of the magnetic tension,  
            q3x – load intensity related to the influence of the damping. 
The load intensity q1x can be expressed as: 
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q x
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where: µ – mass of the unit of length of the section 2 
            t – time 
The load intensity q2x can be expressed as [1,2]: 

 yptAAq x )cos( 212 +=  (4) 

where: A1, A2, p – parameters of magnetic tension [2,6,7]. 
The load intensity q3x can be expressed as: 
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where: rη  – damping coefficient on the rotor 

After substituting (2) in (1), the following differential equation in obtained: 
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where: 
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The above equation is a fourth – order homogeneous equation with time – dependent 
coefficients. It was solved by the Fourier’s method. The solution can be presented in the 
form of an infinite series: 
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After a separation of variables and definion of parameter kn the following equations have 
been obtained: 
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where: nω denotes the n – order frequency of free vibrations of rotor when 0=ϑ ,         

0=rη  
The equation (10) can be expressed as follows: 
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where: 
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Differential equation (11) is Hill’s equation in the form [3,5]: 

 0)](1[2 2 =−Ω++
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nnnn TtfThT  (13) 

If there is no damping in the rotor (h=0) and assuming pttf n cos2)( ψ= , one gets the 

following classical Mathieu equation: 

 0)cos21(2 =−+
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nnonn TptT ψω  (14) 

Let us now analyse the stability solutions of the differential equation (13) limiting the 
analysis to the first (most important) region of instability. By solving of this equation the 
boundary lines of the first region of instability has been obtained (Fig.2.). 
The relations for the first region of instability are obtained: 
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Fig.2. First region of instability ( 01 =ξ , without damping, 01 ≠ξ , with damping) 

Vertex of the first region instability has the coordinates: 

 2
111 22 ξξψ −=gr ,  1

1

312 ξ−=
Ω
P

 (18) 

Relation (15) and (16) describe the upper and lower boundary line, respectively. From 
formula (18) the boundary value of coefficient ψ1 at which parametric resonance occurs 
has been obtained. If ψ1< ψ1gr, no parametric resonance arises. It follows from the above 
that there exist coefficient A2 of magnetic tension and coefficient of damping ξ1 at which 
the rotor does not lose stability. 

3. Conclusions 

The magnetic field (described by the coefficients A1, A2 and frequency p) in two – pole 
asynchronous motor and damping in rotor have a great influence on the rotor stability. 
Damping reduces the areas of instability of rotor. Owing to damping, there are certain 
values of coefficients of magnetic field at which the rotor does not stability. 
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Dynamika wirnika silnika asynchronicznego, dwubiegunowego z tłumieniem. 
Artykuł przedstawia analizę stateczności dynamicznej wirnika dwubiegunowego silnika asynchronicznego. 
Przyjęto model wirnika z ciągłym rozłoŜeniem masy, o zmiennej sztywności z tłumieniem. W celu określenia 
stateczności wirnika ułoŜono równania opisujące jego drgania gięte. Na podstawie równań ruchu otrzymano 
równania róŜniczkowe opisujące ugięcia dynamiczne wirnika w funkcji przestrzeni i czasu. Ostatecznie 
otrzymano równanie róŜniczkowe cząstkowe, które rozwiązano metodą Fouriera. Następnie rozwiązano 
równania róŜniczkowe Hilla opisujące drgania poprzeczne wirnika. Analiza rozwiązania powyŜszego równania 
była podstawą do wyznaczenia obszarów niestateczności wirnika. 
 Ostatecznie wyznaczono krytyczną wartość współczynnika tłumienia przy której ma miejsce rezonans 
parametryczny. 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



XXIV Symposium Vibrations in Physical Systems, Poznan – Bedlewo, May 12-15, 2010 

Free Vibrations of an Annular Membrane Attached to Winkler 
Foundation 

Stanisław NOGA 
Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology 

ul. W. Pola 2, 35 – 959 Rzeszów, Poland 
noga@prz.edu.pl 

Abstract 

In this study the free transverse vibration analysis of the annular membrane resting on elastic foundation with 
fixed boundary conditions at the inner and outer edges of the annular membrane is presented on the basis of 
the analytical method and numerical simulation. The elastic foundation is described by the Winkler model. At 
first the general solution of the free vibrations are derived by the Bernoulli – Fourier method. The natural 
frequencies and natural mode shapes of vibrations of system under consideration are determined. Then the 
model of the system formulated by using finite element representations is prepared and eigenvalue problem is 
solved. Obtained results of calculation are discussed and compared for these two models. It is important to 
note that the data presented in the paper is brought the practical advice to design engineers. 
 
Keywords: annular membrane, transverse vibration, natural frequencies, Winkler foundation  

1. Introduction 

Annular membranes have wide applications in various fields of engineering [3]. 
Sometimes, they are used as structural elements attached to foundations, such as parts of 
pharmaceutical, chemical and biomedical devices [3, 4]. Firstly, the fundamental 
vibration theory of two – dimensional continuous systems resting on foundation are 
mainly investigated for plates attached to elastic foundation. In work [1] a three –
 dimensional free vibration analysis of thick annular plates resting on elastic foundation 
of a Pasternak type is presented on the basis of the polynominals – Ritz method. Paper 
[5] describes a study of the three – dimensional vibration characteristics of thick circular 
plates resting on Pasternak foundation. This paper describes an investigation of the free 
vibration of annular membrane resting on Winkler foundation. The complete analytical 
solution of undamped free vibrations of this system is derived by using the Bernoulli –
 Fourier method. Then the studies focused on the preparation of the appropriate FE 
models of the system under study are provided. Some results known for the first time are 
reported. 

2. Theoretical formulation 

Mechanical model of the system taking into account consists of annular membrane 
resting on massless, linear, elastic foundation of a Winkler type. It is assumed that the 
membrane is thin, homogeneous and perfectly elastic, and it has constant thickness. The 
membrane is uniformly tense by adequate constant tensions applied at the edges of 
membrane (see Fig. 1). The small vibrations with no damping are considered. The partial 
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differential equation of motion for the free transversal vibrations can be written in the 
form [2, 3] 

00 =+− wkwSwm ∆&&  (1) 
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Figure 1. Physical model of the system 

where ( )trww ,,ϕ=  is the transverse membrane displacement, tr ,,ϕ  are the polar 

coordinates and the time, hrr ,, 21  are the membrane dimensions, ρ  is the mass density, 

S  is the uniform constant tension per unit length, k  is the stiffness modulus of a 
Winkler elastic foundation and 
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The boundary and periodicity conditions are 

( ) ( ) ( ) ( )trwtrwtrwtrw ,2,,,,0,,,, 21 πϕϕϕϕ +===  (3) 

Making use of the classical method of separation of variables [2] one writes 

( ) ( ) ( ) ( ) ( ) ( )tDtCtTtTrWtrw ωωϕϕ cossin,,,, +==  (4a, b) 

where ω  is the circular frequency of the system. Introducing solutions (4) into (1) gives 
the following expression 

02
1 =+ WkW∆  (5) 

where 

( ) Skmk −= 22
1 ω  (6) 
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The coefficient 2
1k  is positive when mk>2ω . This condition guarantees the harmonic 

type of free vibrations [3]. Assuming the solution of equation (5) in the form 
 ( ) ( ) ( )ϕϕ UrRrW =,  (7) 

and introducing it into (5) yields 
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The boundary and periodicity conditions takes the form 

( ) ( ) ( ) ( )πϕϕ 2,021 +=== UUrRrR  (9) 

The general solutions of equations (8) can be easily obtained as 

( ) ( ) ( ) ( ) ( ) ( ) K,2,1,0,cossin,11 =+=+= nnMnLUrkYBrkJArR nnnnnnnn ϕϕϕ  (10) 

where nnnn MLBA ,,,  are unknown coefficient and ( )⋅nJ , and ( )⋅Y  are the first and 

second kinds of Bessel functions of order n . Conditions (9) yields a system of two 
linear, homogeneous equations in the constants nn BA , . Finally, a determinantal equation 

in the natural frequencies is obtained from the non – triviality condition. It leads to the 
following secular equation 

( ) ( ) ( ) ( ) 011212111 =− rkYrkJrkYrkJ nnnn  (11) 

From the relation (11) it is shown that ( )K,3,2,11 == mkk nm  are the roots of the above 

equation. Then taking into account equation (6), the natural frequencies of the system 
under study are determined from the relation 

 ( ) 0
222 mkSk nmnm +== ωω  (12) 

Finally the general solution of the free vibrations of the system under consideration can 
be written in the following form 
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are a two linear – independent mode shapes, and 

( ) ( )11 rkJrkYe nmnnmnnm −=  (15) 
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3. The finite element formulation 

The discrete models of the system under investigation are formulated using the finite 
element technique (ANSYS code). These FE models are treated as an approximation of 
the analytical solution of the continuous system given by the equations (12), (13) and 
(14), respectively. To find the natural frequencies and natural mode shapes, the block 
Lanczos method is employed [4]. The essential problem of this section is built the FE 
model of the elastic foundation. 

The first FE model is realized as follows. The foundation is modeled by a finite 
number of parallel massless springs. The stiffness modulus Sk  of each spring can be 

obtained from the relation [3] 

( ) bpkkS 0=  (16) 

where 0p  is the area of the membrane large face and b  is the number of the springs. 

The spring – damper (combin) element defined by two nodes is used to realize the elastic 
layer. The damping capability of the element are neglected. The four – node 
quadrilateral (shell) element is used to realize the membrane. Application of the constant 
tension is realized as follows. To each node lying on the outer edge is imposed a 
concentrated tensile force 0S  in the radial direction. The proper value of the force is 

selected experimentally by numerical simulation [3]. The prepared model consists of 
9540 shell elements, and 9324 combin elements, respectively. 

   
Figure 2. Finite element model 

The second FE model is the same as the first, but the realization of the Wikler elastic 
foundation is different. Each massless spring is modeled by using bar (link) element. The 
values of the bar dimension parameters are fixed a priori. The proper value of the 
Young’s modulus fE  of each bar is selected experimentally to minimize the frequency 

error defined by [4] 

( ) %100⋅−= c
nm

c
nm

f
nmnm ωωωε  (17) 

where f
nmω  and c

nmω  are the natural frequencies of the FE and analytical models, 

respectively. 
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4. Numerical computations 

Numerical solutions for free vibration analysis of the annular membrane resting on 
elastic foundation models suggested earlier, are computed. For all results presented here, 
only the first ten natural frequencies and mode shapes are discussed. Table 1 
demonstrates the parameters characterizing the system under study. 

Table 1. Parameters characterizing the annular membrane 

r1 [m] r2 [m] h [m] ρ [kg/m3] E [Pa] ν S [N/m] 
0.5 0.1 0.002 2.7⋅103 7⋅1010 0.32 500 

 

 In the table, E  and ν  are, the Young’s modulus and Poisson ratio, respectively. In 
this work the analytical solution is considered as exact, compared to the finite element 
results, which are treated as approximation of the precise solution. 

For the analytical model the natural frequencies are determined from numerical 
solution of the equations (11) and (12). The results of the calculation are shown in 
Table 2. 

Table 2. Natural frequencies of the system under study ωmn [Hz] (analytical solution) 

 n 
 0 1 2 3 4 5 

1 12.0828 13.3304 16.2846 19.8242 23.4497 27.0413 m 
2 24.0425 24.8625 27.1393 30.3978   

 
Results presented in Tables 3 – 4 are connected with the first FE model and are obtained 
for [ ]NS 8.40 = . 

Table 3. Natural frequencies of the system under study ωmn [Hz] 

 n 
 0 1 2 3 4 5 

1 12.486 13.516 16.094 19.377 22.861 26.359 m 
2 24.85 25.486 27.302 30.046   

 

Table 4. Frequency error εmn [%] 

 n 
 0 1 2 3 4 5 

1 3.337 1.3923 -1.1704 -2.2558 -2.5105 -2.5232 m 
2 3.3586 2.5078 0.5995 -1.1573   

 

Tables 5 – 6 show the results connected with the second FE model and are achieved for 
[ ]NS 8.40 =  and [ ]PaE f 265= . 
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Table 5. Natural frequencies of the system under study ωmn [Hz] 

 n 
 0 1 2 3 4 5 

1 12.485 13.515 16.093 19.376 22.86 26.358 m 
2 24.849 25.485 27.301 30.045   

Table 6. Frequency error εmn [%] 

 n 
 0 1 2 3 4 5 

1 3.3287 1.3848 -1.1766 -2.2609 -2.5147 -2.5269 m 
2 3.3545 2.5038 0.5958 -1.1606   

 
For both FE model cases the biggest difference between the analytical computations and 
the FE solutions may be visible for the frequencies ω10 and ω20, respectively. 

3. Conclusions  

Based on the classical theory of membranes, a comprehensive study of the vibration 
analysis of annular membranes resting on Winkler elastic foundation is investigated. The 
separation of variables method is applied to derive the eigenvalue problem. Two FE 
models of the system under study are investigated. The numerical solution results 
demonstrated that the second FE model would be better to simulate the free vibration of 
the system under investigation. 
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Analiza drgań własnych membrany pierścieniowej osadzonej na podłoŜu typu Winklera 
W pracy analizowane są drgania własne poprzeczne membrany pierścieniowej osadzonej na podłoŜu 
spręŜystym typu Winklera. Prezentowane modele matematyczne układu opracowano w oparciu o klasyczną 
teorię drgań membran pierścieniowych oraz metodę elementów skończonych. Rozwiązanie ścisłe drgań 
własnych układu wyprowadzono stosując metodę Bernoulliego – Fouriera (metoda rozdzielenia zmiennych). 
Uzyskane z rozwiązania ścisłego wyniki (częstości własne i odpowiadające im formy własne) porównano z 
rezultatami otrzymanymi z metody elementów skończonych. 
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Abstract 

Development in the direction of future applications of fast and accurate position control systems used in 
optoelectronics, computer hardware, precision machining, robotics and automobile industry stimulates high 
engagement in creation of non-conventional implementations [1, 2]. The work presents a numerical analysis 
devoted to that domain basing on a non-contact (frictionless) fixing of some cylindrical-shape’s mass in an 
alternating magnetic field. These considerations precede identification of electromagnet parameter and created 
by it magnetic field in the real experimental realisation of the problem shown on a photo in Fig 1. The mass 
levitates in field generated by the electromagnet’s system sourced by voltage of 12V. Next to the numerical 
algorithm of voltage feedback there has been even used a modified PID control [2] of transition state’s 
oscillations of the levitated light mass that are recorded until it reaches the stable equilibrium position. Results 
of the experiments have been presented on time-history charts of h(t) displacement measured between 
themselves faced surfaces of the electromagnet’s core and surface of the levitated mass. 
 
Keywords: decaying vibrations, magnetic levitation, numerical control, experimental rig 

1. Introduction 

Magnetic levitation is a known topic and can be realised in some ways [3, 4] but the 
most visual effects can be observed after utilization of an electromagnet made of 
superconductor.  

 
 
 
 
 
 
 
 
 
 

Figure 1. A schematic block diagram of the hardware, signal connections and 
the levitating solid body. 
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In a simpler way of creation of a system for examination of levitation’s phenomenon one 
can use a system with infrared light’s sensor that traces position of the levitated mass 
(barrier) placed in the magnetic field generated by the electromagnet. 

For the purpose of the experiment presented here the role of sensor is played by the 
infrared light barrier that monitors actual position of the cylindrical mass. A schematic 
view of the experiment is shown in Fig. 1. 

2. The Analysed System 

Electronic part of the system uses two light-sensitive resistors of which the first one acts 
together with infrared light-emitting diode as a simple barrier tracing the cylindrical 
solid body’s position. Because of existence, in the surrounding space, of many infrared 
light emitting sources like sun or light bulbs (producing disturbance signals to the 
barrier) the second one measures the amount of light coming into the system from 
surrounding space. When the barrier’s sensor is partially illuminated (a result of  
covering of it by the levitating body) then a voltage difference appears and is inputted to 
the differential amplifier for generation of another value of voltage sourcing the 
electromagnet’s circuit. Experimental realisation of the diagram presented in Fig. 1 has 
been shown in Fig. 2. 

 

Figure 2. Experimental setup of the control system of the levitating cylindrical light mass 
(constructed by Piotr Jędrzejczyk, student of the second degree studies 

at the Faculty of Mechanical Engineering). 

The system shown in Fig. 2 can be modelled (in a simplified dimension) by the 
dynamical system of three first-order differential equations (1) describing motion of the 
mass levitating in magnetic and gravitational fields and the voltage equation for the 
electric circuit with alternating current. One distinguishes the following meaning of the 
system state’s vector x: x1→h displacement of the levitating mass measured downward 
from the electromagnet’s surface, x2→dh/dt corresponding velocity of the displacement, 
x3→i electric current in the electromagnet’s electric circuit. 
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(1) 

where electrical and physical constants are as follows: L =0.002H is the coefficient of 
inductance, R =0.29 Ω – the coefficient of resistance, k =10-4 kg⋅m2/C2, C – the magnetic 
flux, m = 0.0226 kg – mass of the levitating body. 

3. Two Cases of the Numerical Control 

Voltage v(t) and force excitation u(t) are the two control signals. They are considered in 
two separate cases, namely: 1) u(t) is a feedback from position h  in the system with PID 
controller having the transfer function PID(s) = kP+(s+kI)/s+kDs inserted to the first axis 
of the block diagram shown in Fig. 3, while v(t), a voltage source remaining constant at 
12V; 2) the time-dependent control input voltage in Laplace representation V(s) = 
−((k1+k2s+k3s

2)H(s) − k1h0) to the analysed dynamical system working as the plant in the 
closed-loop control system with feedback from full state-vector (numerical model of the 
control strategy has been shown in Fig. 4). Disturbances coming from any external light 
sources have been neglected. 

Both presented numerical models include characteristics of operation of the infrared 
light barrier IRR(t) = 1−bIRRh(t)−2. This approximation with bIRR dumping (sensitivity) 
constant measures the amount of the infrared light transferred from the emitting diode to 
the light-sensitive resistor with presence of the levitating body working as the barrier. 
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Figure 3. Feedback from displacement of the levitating mass in PID control 
for kP = 250, kI = 800, kD = 13.  
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Figure 4. Closed-loop input voltage control with a usage of full state-vector feedback for 
k1 = 103, k2 = 20, k3 = {0.0, 0.2} in a model made in Simulink. 

 

 
Figure 5. Time-histories of h(t) obtained from the diagram shown in Fig. 3 for different 
values of the infrared light’s barrier factor bIRR{1,2,3} = {IRR off, 0.7⋅10-4, 0.4⋅10-4} in the 

closed-loop position feedback control and for h0 = 3cm. 

In Fig. 5 there is visible a well-founded effect of introduction of the infrared light 
barrier. The case, for a short interval of values of the IRR factor has been described as 
the correct one being more realistic in relation to the motion of mass m observed on the 
experimental rig. Conducting this experiment one tries to hang the mass at height hf = 
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1cm with the initial condition h0 = 3cm. It is visible that the mass is quickly attracted to 
the steady-state position but it is achieved in a different manner.  

 
Figure 6. Time-histories of h(t) evaluated from the diagram visible in Fig. 4 for different 
values bIRR{1,2,3} = {7, 0.7, 22.2}⋅10−4 corresponding to h{1,2,3} (for k3 = 0), respectively. 

Infrared light’s sensitivity factor bIRR{4} = bIRR{3} (for k3 = 0.2), and h0 = 2cm. 
Frictionless oscillations in the transition to stable position can be pretty damped (see 

Fig. 6) with the use of the second case of the control strategy that bases on a feedback 
from the full state’s vector as it has been shown in Fig. 4. For a different initial position 
(h0 = 2cm) of mass m there is visible a quicker (because of voltage but not external force 
feedback as examined in the first approach) and better dumped attraction of the mass to 
the steady-state position. With respect to application of a different method of control 
(with a control with feedback to the voltage time variable input v) the whole system is 
characterized by a slightly different dynamics so the position of convergence changes 
with assumption of bigger values of bIRR{1,2,3} ={7, 0.7, 22.2}⋅10−4.  Factor bIRR{3} is the 
highest available here and the control nicely fixes the levitating mass at h3 = 1.67cm. At 
this position the stabilized voltage sourcing the electromagnet equals 13.66V. Time-
history of h4 in Fig. 6 is the unnatural effect of the non-zero coefficient of feedback from 
acceleration (k3 = 0.2, see Fig. 4). Desired position is achieved in about 1.2 sec., and it 
confirms, the vector component of feedback from acceleration is not necessary in this 
application. 

4. Conclusions 

Dependently on the presence of IRR light’s barrier and values of its sensitivity factor 
(bIRR) there can be distinguished various shapes of the step response. The convergence is 
quite fast and well-damped when the IRR light’s correction exists, and moreover, takes a 
correct value of its significance. A choice of the incorrect value of bIRR reflects in 
bringing the mass into a small-amplitude weakly-dumped oscillations around its desired 
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steady-state position. At some conditions such effect of oscillations is observable on the 
real laboratory rig and is undesirable when one needs to fix the levitating mass at a 
constant height. Therefore, the introduced feedback from the infrared light barrier with 
mass m working as the armature of the electromagnet makes sense. Better shapes of 
characteristics of the transition to steady-state responses have been confirmed by the 
second strategy. They are faster, more stable, and no oscillations have been reported 
after examination of system parameters. Magnetic field has allowed for elimination of 
any kinds of friction that are usually necessary in various realisations of fixings. Our 
experimental investigations will turn to identification of electro-magnetic parameters of 
the whole mechatronic system and the associated magnetic field. It should help in 
improvement of numerical adequateness of the presented approach as well as 
improvement of the tested strategy of control. 
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Lewitacja Magnetyczna Lekkiej Masy o Kształcie Cylindrycznym z Kontrolą Tłumienia 
Oscylacji Stanu Przejściowego 

Rozwój w kierunku przyszłych aplikacji szybkich i dokładnych układów pozycjonujących stosowanych w 
optoelektronice, sprzęcie komputerowym, obróbce precyzyjnej, robotyce czy teŜ przemyśle samochodowym 
wzmaga wysokie zaangaŜowanie w tworzenie implementacji niekonwencjonalnych. Praca przedstawia analizę 
numeryczną dotyczącą tego obszaru zastosowań bazującą na bezkontaktowym podwieszeniu pewnej 
przewodzącej masy o kształcie cylindrycznym w zmiennym polu magnetycznym. RozwaŜania te poprzedzają 
identyfikację parametrów elektromagnesu oraz wytworzonego przez niego pola elektromagnetycznego na 
rzeczywistym stanowisku doświadczalnym pokazanym na fotografii na rysunku 1. Masa lewituje w polu 
magnetycznym generowanym przez układ elektromagnesu zasilany napięciem 12V. Algorytm numeryczny 
obok sprzęŜenia napięciowego zawiera takŜe zmodyfikowaną kontrolę typu PID oscylacji w stanie 
przejściowym lewitującej masy o mały cięŜarze poprzedzającym osiągnięcie przez nią stabilnego połoŜenia 
równowagi. Wyniki tych doświadczeń pokazano na wykresach czasowych przemieszczenia h(t) zmierzonego 
pomiędzy skierowanymi do siebie powierzchnią rdzenia elektromagnesu i powierzchnią lewitującej masy. 
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Abstract 

The paper deals with the eigenvalue problem related with discrete systems, consisting of n identical masses 
connected with springs in such a way that the stiffness matrix has  the form of a multiband symmetric matrix. 
The eigenvalue problem formulated for such systems is characterized by repeated eigenvalues to which linearly 
independent eigenvectors correspond. The solution of the eigenvalue problem has been found for an arbitrary, 
finite number of degrees of freedom for the fully coupled systems and the systems in which masses are 
connected exclusively with the nearest neighbours. 
 
Keywords: repeated eigenvalues, linearly independent eigenvectors  

1. Introduction 

For undamped natural systems possessing distinct eigenvalues, to every eigenvalue 
corresponds one unique eigenvector. The eigenvalues determine, by a suitable formula, 
natural frequencies while the eigenvectors determine directly the modes of vibration. 
Repeated eigenvalues can appear in discreet systems, consisting of identical masses and 
springs – arranged in such a way that every mass is constrained in the same manner. It 
turns out, that depending on the degree of coupling, the number of frequencies and their 
multiplicity may be different. The eigenvalue problem formulated for such systems is 
characterized by repeated eigenvalues to which linearly independent eigenvectors 
correspond. Since such systems have regular structure, there is a possibility of deriving 
analytical formulae for natural frequencies and modes of vibration for an arbitrary, finite 
number of degrees of freedom. 

2. System with double frequency 

One of the simplest system which possesses natural frequency with multiplicity 2 
consists of three identical masses, connected with one another with the use of identical 
springs. The schematic diagram of such a system is presented in Fig.1. 
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Figure 1. Schematic diagram of the system possessing a double frequency 
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The mass matrix M and the stiffness matrix K of the system have the following form 
 

 

0 0 2

0 0 , 2

0 0 2

m k k k

m k k k

m k k k

− −   
   = = − −   
   − −   

M K  (1) 

 
Seeking the solution of equation + =Mq Kq 0&&  in trigonometrical form sin t= ωq u  we 

obtain the eigenvalue problem in the standard form 
 = αAu u  (2) 

where 
 

 1 2

2 1 1

1 2 1 ,

1 1 2

k

m
−

− − 
 = = − − α = ω 
 − − 
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The eigenvalues and eigenvectors of A are as follows 
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T
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u
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 (4) 

 
The second eigenvalue has multiplicity 2. The eigenvectors u2 and u3 are linearly 
independent and any linear combination of them is also an eigenvector corresponding to 
the double eigenvalue so, the system presented in Fig.1 can perform vibration with 
double frequency in infinite ways. 

3. Multi-degree-of-freedom system with double frequencies 

The system presented in Fig.1 is a special case of the system composed of identical 
masses connected exclusively with the nearest neighbours where the first mass is 
connected with the second one and the last one.  The schematic diagram of such a 
system is presented in Fig.2. 
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Figure 2. Schematic diagram of regular system possessing double frequencies  

Now, matrix A has the following form 
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2 1 0 0 0 1

1 2 1 0 0 0

0 1 2 0 0 0

0 0 0 2 1 0

0 0 0 1 2 1

1 0 0 0 1 2
n n
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×
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 (5) 

The location of the eigenvalues of A can be done making use of Gerschgorin’s theorem 
which states in this case that all eigenvalues lies within the segment on real axis with 
center at 2 k

m  and of length 4 k
m . To compute their exact values, natural frequencies of 

the regular system will be calculated first. The system shown in Fig. 2 has its continuous 
counterpart in the form of unrestrained prismatic bar with the ends connected with each 
other by a rigid weightless link. The natural frequencies and eigenfunctions of such 
system have the form 
 

 
2 ( 1)

, 1,2,...j
j E

j
l

π −
ν = =

ρ
 (6) 

 

 
2 ( 1) 2 ( 1)

( ) sin cos , 1,2,...j j j
j j

X x C x D x j
l l

π − π −
= + =  (7) 

 
where l denotes  the length of the rod, ρ – density and E –Young’s modulus. Making use 
of the relation between amplitude of three subsequent masses, the relation between 
length of the rod and relative distance between masses in the regular system and the 
formula determining location of masses in a rod frame of reference, one can obtain 
formulae on frequencies and modes of vibration in the form [1] 
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1
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1,  even
2

sep

n
n

j
n

n

+


= 
 +


 (10) 

 
Taking under consideration the second relation of Eq. (3), the eigenvalues of A take the 
form 
 

 2 ( 1)
4 sin , 1,2,...,j

k j
j n

m n

π −
α = =  (11) 

 
It appears from Eq. (11) that the smallest eigenvalue α1 is single, while the remaining 
eigenvalues, in the case when n is odd, are double. In the case when n is even, the 
smallest eigenvalue α1 as well as the biggest one αn/2+1 are single, while the remaining 
eigenvalues are double. The matrix U composed of elements uij diagonalizes matrix A 
[2], i.e.: 

 1
1 2diag ( , ,..., )n

− = α α αU AU  (12) 

4. Multi-degree-of-freedom system with one repeated frequency 

Let us consider a mechanical system consisting of n identical elements of mass m, 
connected – each one with each one – through springs of stiffness k and, additionally 
connected with the base through springs of stiffness p. The potential energy of such 
system has the form 
 

 2 2

1 1 1

1 1
( )

2 2

n n n

j i i
i j i i

U k q q p q
= = + =

= − +∑ ∑ ∑  (13) 

Matrix A for such system is the symmetric Toeplitz matrix of the form 
 

 

( 1)

( 1)

( 1)

( 1)
n n

k p k k k
n

m m m m m
k k p k k

n
m m m m m

k k k p k
n

m m m m m
k k k k p

n
m m m m m ×

 − + − − − 
 
 − − + − − 
 

=  
 

− − − + − 
 
 

− − − − +  

A

L

L

M M O M M

L

L

 (14) 

The determinant of A can be written as [3]   
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1

det
n

p k p
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m m m

−
 = + 
 

A  (15) 

 
Since the determinant of the matrix is equal to the product of its eigenvalues, one can 
suppose that eigenvalues of A will have the form 
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, 2,3,...,j
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 (16) 

 
As can be seen α1 is a single eigenvalue while α2 is repeated 1n −  times. Analyzing  
Eq. (2) for α = α1 and α = α2 one can demonstrate that matrix U composed of 
eigenvectors of A has the form 
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and the inverse of U can be written as follows  
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The matrix U plays the part of transformation matrix in similarity transformation of 
matrix A, determined by Eq. (14), i.e.: 
 

 1
1 2diag ( , ,..., )n

− = α α αU AU  (19) 

 
The system presented in Fig.1 can be recognized as a special case of the system defined 
by Eq. (13), for n = 3 i p = 0 and in consequence the eigenvalues calculated from  
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Eq. (16) will be identical with the roots of characteristic equation, presented in Eq. (4) 
and the eigenvalues calculated from Eq. (11). 

5. Conclusions  

The eigenvalues determine, by a suitable formula, natural frequencies while the 
eigenvectors determine directly the modes of vibration for undamped natural systems. 
Repeated eigenvalues can appear in discreet systems, consisting of identical masses and 
springs – arranged in such a way that every mass is constrained in the same manner. In 
such systems, to repeated eigenvalue corresponds the set of linearly independent 
eigenvectors which determine the modes of vibration. Since any linear combination of 
linearly independent eigenvectors corresponding to the repeated eigenvalue is also an 
eigenvector, therefore, an infinite number of modes of vibration correspond to repeated 
eigenvalue. 
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Zagadnienie własne w układach o dowolnej liczbie stopni swobody z wielokrotnymi 
częstościami drgań  

Praca dotyczy zagadnienia własnego macierzy związanych z układami dyskretnymi, zbudowanymi z n 
identycznych mas połączonych spręŜynami w taki sposób, by macierz sztywności miała budowę 
wielopasmowej macierzy symetrycznej. Zagadnienie własne tego typu macierzy charakteryzuje się 
wielokrotnymi wartościami własnymi, którym odpowiadają układy liniowo niezaleŜnych wektorów własnych. 
W pracy podano analityczne rozwiązanie zagadnienia własnego macierzy dla układu w pełni sprzęŜonego i 
układu, w którym kaŜda masa połączona jest wyłącznie z dwiema sąsiednimi. 
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Abstract 

The dynamic load is essential for proper working of the skeletal system. The loads affecting skeleton during 
practising different kinds of sports and when accidents occur (for example resulting with bone injuries) have 
dynamic character, often with periodical or pulse shape. Therefore, from the scientific and clinical point of 
view, assignment of the dynamical properties of bone tissues is necessary. In this paper two degenerate 
models for description of the bovine bones dynamic properties are presented. The whole femur bone 
supported as a cantilever beam with additional mass on the free end is subject of investigations. The excitation 
is applied by electro-dynamic shaker. The force sensor is situated between shaker and the bone, and the 
reaction of the system is measured by acceleration sensor. On the basis the energy balance and the power 
balance equations the models parameters are identified. In this paper is presented a set of parameters 
describing chosen models for two cases. In the first case, it is assumed that a value of the additional mass is 
not known, and in the second case calculations are performed for known value of the substitutional mass. In 
the first case for both models (built on a basis of the Zener model I and the system basing on the general 
model of viscoelastic body II), a majority of identified parameters are negative. For a given mass value, in 
model I every parameter had positive value whereas in model II only the damping parameter was negative. 
The obtained results indicate that the model I is more suitable to describe of the bone dynamical properties. 
 
Keywords: Dynamic properties, bone, degenerate model, identification. 

1. Introduction 

In human organism the osseous skeleton is acting as a load-bearing structure which 
assure possibility of maintaining an appropriate posture. Additionally, the skeleton  
as a passive motion apparatus together with the other motion system elements assures 
possibility of efficient motion. The loads affecting the osseous elements during body 
motion, have key meaning as well from the bone biology as the mechanical point 
of view. For the osseous correct system functioning, an appropriate physical activity 
is essential to assure occurrence of the dynamic loads (in peculiarity with periodic shape 
oscillations) [I, II, IV]. During practising different kinds of sports, forces acting  
on the human bones have also a dynamic character. Damages of the osseous tissues  
are rarely caused by static load, usually they are a result of working of the external 
forces which have pulse shape or are originating from the material fatigue. Therefore 
from the scientific as well as the clinical point of view, the recognition of dynamic 
properties of osseous tissues is crucial.  

As it is shown in literature, there is still lack of models describing dynamic behaviour  
of bones. Their properties under static loading are rather well known, but behaviour 
under dynamic excitations is still not well recognized. Therefore models describing 
bones behaviour in conditions of dynamic loads are still searched. 
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2. Material and Method 

In this paper two degenerate models are presented which are going to describe  
the dynamic properties of bovine bone. Model I is built on a basis of tde Zener model 
(parallel configuration of a Maxwell body and a Hooke body - nonlinear in this case) 
with a Saint-Venant body connected in parallel (Figure 1a). Elasticity function  
for the nonlinear element is taken as follows: 

3
31)( xcxcxFc +=  (1) 

Dynamic system II (Figure 1b) is created by parallel connection of the general model 
of springy-viscous medium (Hooke’s and Kelvin-Voight body in serial configuration) 
with Saint-Venant body.  

The purpose of using the models described above is to describe mechanical 
properties of the examined osseous element under dynamic loadings. 

 
Figure 1. Models used to the dynamic properties of bones description:  

a) model I, b) model II. 

The bovine femoral bone is the examined material, because one of the biggest forces 
acting on elements of the human skeleton are located in lower limbs. Moreover injuries 
of the lower limbs bones are frequent consequence of dynamic loads which occur for 
example in road accidents. Also the lack of human bone material decided about taking 
the bovine bone for examinations. 

The experimental examinations are conducted on constructed research stand, which 
is shown in Figure 2. Osseous specimen is examined in a cantilever beam with additional 
mass configuration. To restrain investigated object one end of the bone is placed  
in the handle and flooded in epoxy resin, whereas at the second end an additional mass m 
is fastened. For better restraining examined specimen, some steel elements are put 
between the bone and handle walls (also flooded in resin), which partially transfer the 
load from bone to the handle and relieve a resin. 

During bone examinations the excitation is realized with the help of electro-dynamic 
shaker. Between the shaker and specimen a force sensor is placed, which detect a real 
load acting on the examined element. The load is applied to the free end in sagittal plane 
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of femur, perpendicularly to its long axis. Bone vibrations are measured by the 
acceleration sensor seized to the additional mass m (Figure 2). Information about force 
and acceleration changes are gathered by HP Analyzer and next sent to PC computer 
which collected and stored information obtained from the experiment. These data, are 
analyzed in order to determine the parameters describing models I and II. 

 

Figure 2. Scheme of investigation stand, 1- restrained bone, 2- additional mass,  
3- shaker, 4- accelerometer, 5- force sensor, 6- handle. 

The motion of additional mass fastened on the free end of bone is considered as a mass 
vibration in one degree of freedom system (see Figure 1). An identification algorithm 
basing on the energy balance and the power balance equations [V, III, VI] is used  
to determine the models parameters. For each of the chosen model an equation  
of dynamic equilibrium of mass m is derived. On this basis the equation of energy 
balance is obtained by multiplying both sides of the mentioned equation by elementary 
displacement and integrating it with period T. Similarly, the power balance equation is 
received i.e. equation of mass m motion is multiplied by elementary velocity and 
integrated in limits of a full period T of the observed vibrations. 

For example, an equation of dynamic equilibrium of model II can be described  
by formulae (2) and (3), whereas energy balance and the power balance equations take 
form (4) and (5), i.e.:  
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Symbols α denote variables which examples are presented below: 
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where p means force (excitation signal) whereas x, v, a, adequately represent 
displacement, velocity and acceleration of additional mass m. The values of these 
integrals are equal to the areas bounded by appropriate closed curves (loops), see Fig 3. 

 

Figure 3. Examples of loops for the system investigated. 

The obtained formulae (4) and (5) are algebraic equations which are convenient  
to identification of material constants: m, c0, cd, kd, and h. In the case of application 
periodic excitations during experimental investigation, these constants can be calculated 
by help of the linear regression method. 

3. Results 

On the basis of the data obtained from the experiment, parameters of model I and II  
are evaluated. Values of parameters describing these models, for two cases,  
are presented in Table 1. In the first approach, it is assumed that the size of an additional 
mass in unknown and this value is calculated in the same way as for the other 
parameters. For this case most of the appointed parameters have negative values.  
In the second approach after appropriate modification of identification procedure, 
calculations were performed for a given value of the concentrated mass. In this case all 
of the evaluated parameters (except kd in model II) have positive values see Tab. 1. 
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Table 1. Results of the identification process for model I and II. *-  model parameters  
are appointed for set mass value. 

Parameter Unit Model I Model I* Model II Model II* 

c1 N/m -332�103 345�103 — — 

c3 N/m3 0 0 — — 

c0
 N/m -207�103

 457�103 -1,9�10-10 557�103 

cd kN/m — — 1,9�10-10 380�103 

k0 N�s/m 76 360 — — 

kd N�s/m — — 1,94�10-7 -5,2�109 

h N -1,1 1,27 -3,8�10-1 16,1 

m kg -4,55 2 -0,21 2 

4. Conclusions  

In the case of unknown mass m, most of the identified parameters values are negative for 
model I and for model II reasonable doubts occur regarding the order of magnitude of 
the appointed parameters. Therefore the assumption of a given magnitude of the 
concentrated mass m, is well-founded. 

In model I parameter c3 takes ”0” value in both unmodified and modified procedures.  
It seems that using the non-linear elastic element, in the case of modeling of the osseous 
elements dynamic properties, is not necessary. Taking into account that in model II  
the kd parameter has a negative value (for set mass m) while in osseous elements a clear 
viscous effects occurs [IV, IX, VII, VIII], it seems that this model is not suitable  
to describe of the bone dynamic properties. 

Further examinations under dynamic loads are necessary for the ultimate 
determination of usefulness of presented models. In order to obtain a description of the 
bone dynamic properties further studies in the degenerate models domain are needed. 

The identification method of elasto-dissipative properties of long bones, presented in 
this paper, does not currently allow for fully automatic evaluation of the models 
parameters used to describe the dynamic properties of the bone elements. Further studies 
of the models describing the dynamic behaviour of osseous elements are necessary. 

It seems that the examined material behaves itself in a more complex manner than  
model II proposed and investigated in this paper. 

References 

1. Będziński R., Biomechanika inŜynierska, Zagadnienia wybrane. Oficyna 
wydawnicza Politechniki Wrocławskiej, Wrocław 1997. 

2. Bocian M., Kulisiewicz M., Piesiak St., Wykorzystanie  nieliniowych  modeli  
zdegenerowanych w Identyfikacji elementów spręŜysto-tłumiących maszyn. XIV 
Konferencja Naukowa pt. ''Problemy Rozwoju Maszyn Roboczych'', Zakopane, 
2001. 



 
 
318

3. Cowin S.C., Bone Mechanics Handbook. Informa Health Care, 2001. 
4. Currey J.D., Bones: Structure and Mechanics. Princeton University Press, 2002. 
5. Garner E., Lakes R.S., Lee T., Swan C., Brand R., Viscoelastic dissipation in 

compact bone: implications for stress-induced fluid flow in bone. J. Biomech. 
Engineering, 2000; 122:166–172. 

6. Iyo T., Maki Y., Sasaki N., Nakata M., Anisotropic viscoelastic properties of 
cortical bone. Journal of Biomechanics, 2004; 37:1433–1437. 

7. Kulisiewicz M., Modeling and identyfication of nonlinear mechanical systems under 
dynamic complex loads. Oficyna wydawnicza Politechniki Wrocławskiej, Wrocław 
2005 

8. Piesiak St., Identyfikacja układów mechanicznych w dziedzinie nieliniowych i 
zdegenerowanych modeli dynamicznych. Oficyna wydawnicza Politechniki 
Wrocławskiej, Wrocław 2003. 

9. Sasaki N., Enyo A., Viscoelastic properties of bone as a function of water content. 
Journal of Biomechanics, 1995; 28:809–815. 

 
 

Identyfikacja właściwości dysypatywno-spręŜystych kości długich na bazie modeli 
zdegenerowanych. 

Do prawidłowego funkcjonowania układu kostnego niezbędne jest działanie obciąŜeń o charakterze 
dynamicznym. Siły działające na kościec podczas uprawiania róŜnych rodzajów sportu oraz podczas 
wypadków, np. prowadzących do uszkodzenia kości, takŜe mają charakter dynamiczny, w tym często o 
przebiegu impulsowym lub okresowym. Dlatego tez z naukowego oraz klinicznego punktu widzenia, istotne 
jest poznanie własności dynamicznych tkanek kostnych. W niniejszej pracy przedstawiono dwa modele 
zdegenerowane, mające opisać własności dynamiczne kości wołowych. Badaniom poddano całą kość udową, 
która mocowana była w układzie belki wspornikowej z dodatkową masą. Wymuszenie realizowane było za 
pomocą wzbudnika elektro-dynamicznego. Pomiędzy nim a kością umieszczony był czujnik siły, natomiast 
odpowiedź układu rejestrowana była za pomocą czujnika przyspieszenia. Na tej podstawie za pomocą metody 
bilansu energii i bilansu mocy identyfikowano wartości parametrów występujących w modelach. Ruch masy 
dodatkowej zamocowanej na wolnym końcu kości, rozpatrywano jako drgania masy w układzie o jednym 
stopniu swobody. W pracy przedstawiono zestaw parametrów opisujących wybrane modele dla dwóch 
przypadków. W pierwszym załoŜono, Ŝe wielkość masy dodatkowej nie jest znana, a w drugim obliczenia 
przeprowadzono dla zadanej wielkości masy zastępczej. W pierwszym przypadku, zarówno układzie w 
bazującym na modelu Zenera I jak i powstałym na bazie ogólnego modelu ośrodka spręŜysto-lepkiego II, 
większość identyfikowanych parametrów przyjmowała wartości ujemne. Przy zadanej wielkości masy, w 
modelu I wszystkie parametry przyjmowały wartości dodatnie, natomiast w modelu II tylko parametr tłumienia 
był ujemny. Na tej podstawie wydaje się, Ŝe model I lepiej nadaje się do opisu właściwości dynamicznych 
kości. 
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Abstract  

The paper deals with the problem of implementing a genetic algorithm GA to calculate a pareto-optimal 
function of voltage powering solenoids, used for controlling a linear electromagnetic motor. The process 
assumes two conflicted criteria: minimizing the time of motion of the linear electromagnetic motor (l.e.m.) 
and minimizing the energy input. The results have been obtained for a set position with a narrow range of 
power supply. The work of electromagnetic motor is based on a electromagnetic repulsion. The device 
consists of a two solenoids and a slide control with neodymium magnet bars placed on its end. The paper 
discusses also static characteristics of l.e.m., i.e. a current density vs. force, a dependence of a force on 
deplacement of the slide control and magnetic flux density. There are also dynamic characteristics of l.e.m. 
presented and compared to the results of simulations obtained in the Matlab-simulink program.  
 
Keywords: electromagnetic motor, electromagnetic repulsion, control, genetic algorithm, 
optimization 

1. Introduction  

The device consists of two solenoids and a slide control with neodymium magnet bars 
placed on its end (Fig.1). The work of the electromagnetic motor is based on the 
phenomenon of a electromagnetic repulsion. One can steer the position of the slider by 
changing the force created by the solenoids. The mathematical model of the 
electromagnetic motor is non-linear, so we can’t apply conventional controlling systems 
with a feedback. By applying a genetic algorithm GA, it is possible to designate pareto-
optimal solutions as control functions of a voltage and current in time domain, with the 
criteria of time the movement and absorbed energy defined and then applying the control 
functions to the device. This paper focuses on the simulations of the electromagnetic 
motor in the Matlab-Simulink environment.  
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Figure 1. Physical model of electromagnetic motor (a),  
3D model of the electromagnetic motor (b) 

2. Modelling of electromagnetic motor 

The mathematical model of the electromagnetic motor is described by the equation of 
motion of the slider (1), the forces F1 and F2 result from the finite element analysis that 
has been carried out for the magnet bar and coil system [2]: 
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In equations (1) ÷ (8): m is the mass of the slider, n = 1; 2 (left or right coil), F1 and 
F2 are forces acting on the slider, Ftm is the damping force, k and kv are constants 
resulting from the researched simulation , in describes the behaviour of current in both 
coils, iin is inducted current in coil, weightn(x) is a function describing dependence of a 
force acting on the magnet and electromagnetic induction on the position of the slider in 
the coil, Ln is an inductance in coil, Un is a voltage, Uin is inducted voltage in coil, Rn is 
resistance, T is normalized time of movement, E is normalized absorbed energy, P is an 
absorbed energy. 
 By carrying out calculations by means of the Finite Element Method (FEM) we can 
observe changes in the magnetic potential and magnetic flux density in the coil and 
magnet bar. As a result (Fig.2), we can calculate the forces between the magnet bar and 
the coil (2) by using Maxwell Stress Tensor analysis (Fig.3).  
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Figure 2. Magnetic potential and magnetic flux density in the coil and the magnet bar 

 The model, based on the one in the FEM environment was built in Matlab-Simulink. 
On the basis of the model device built in FEM environment with transient analyses, 
electromagnetic induction was found to be dependent on the magnet velocity in a coil 
(6). The model device in the Matlab-Simulink environment was created and based on the 
data resulting from the FEM analyses. Its accuracy was found to match the FEM model. 
The control system for the model is open, thus there is not a feedback loop to control its 
output. Input signals are only time-dependent functions of voltage powering the coils. 

 

Figure 3. a) Dependance between the force acting on the magnet bar, the position of the 
magnet in coil and current value, b)  dependance between the force acting on the magnet 

bar, the position of the magnet in coil 

The objective of the slider is to move from the starting point (marked in Fig.3b as 
first red line) to the final point (marked in Fig.3b as the second red line) and stop there 
with a required accuracy i.e. 10-3m. Time of movement has to be below 0.1s, and the 
absorbed energy has to be low one [1]. 
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3. Formulation of the control problem 

The main problem is to find the minimum of two conflicted the local criteria - the 
normalized time of movement and normalized absorbed energy (8). The voltage and 
current as time-dependent functions are searched for. The genetic algorithm selects 
parameters, for the left coil and for the right one, as points of the voltage in starting and 
final points of the slider positions. Each of the points may take values from zero to fifty 
volts with accuracy to one volt. There are only four parameters necessary to create two 
voltage functions dependent on the slider position of the coils. The numeric model 
calculates time-dependent functions of voltage on the basis of the four parameters 
mentioned above. On the basis of the selected points the interpolated function, i.e. the 
voltage from the slider position, is created. The voltage function determines the current 
value in the coils (4) and (3). 

4. Comparison of the full survey method and genetic algorithm 

By applying the method of full survey, where the number of solutions to analyse is over 
6,7 million, only 689 solutions fulfil the required constrains. All these solutions are 
illustrated in Fig.4. Thus, only 0,0102 percent of all the solutions is acceptable. The best 
solutions, marked as blue star, are pareto-optimal (global) solutions. The time used to 
analyse all the solutions was 310 hours. As a result of implementing genetic algorithms, 
three solutions, marked in the chart as red round points (Fig.4), are obtained after 2 000 
iterations with initial population of 50. The time needed to find these solutions is only 2 
hours and 48 minutes.  Figure 5 shows the position-dependent voltage functions built for 
the results marked as the blue star with the arrow pointing at it (Fig.4). The time-dependent 
functions used for controlling the electromagnetic motor results from the position-
dependent  voltage functions.  

 

Figure 4. Results from full survey method compared with GA 
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Figure 5. Control functions for the one global pareto-optimal solution marked in Fig.4 as  
blue star with arrow pointed 

 

Figure 6. Compared two results marked in Fig. 4 by arrows. Red curves are from GA 
optimization, blue one are from full survey method. Positions (a) and velocity (b) of the 

slider in time domain. 

5. Results and conclusions 

If we compare the obtained result with the time necessary to implement the full survey 
method, we notice that it is only 0,9 percent of the time spent on calculations. The 
locations of the solutions found by the genetic algorithm are close to pareto-optimal 
solutions (marked as blue stars). In Fig.6a and 6b the two solutions are compared, the first 
resulting from using the genetic algorithm and the second one obtained using the full 
survey method (the red line corresponds to the red colour points in Fig.4). The red curve 
represents the solution where GA selects four parameters, two for the left coil and two for 
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the right one, as points of voltage. The blue curve represents the best solution obtained 
from the full survey method for the same constraints (Fig.6). 

In this case, the movement time equals 37 miliseconds and the absorbed energy is over 
11 Joules. For the red curve, the time of movement equals 40,4 miliseconds and the 
absorbed energy is less then 15 Joules. The genetic algorithm is able to calculate a solution 
that is similar to the global optimum in a short period of time. Using the genetic algorithm 
one can designate pareto-optimal solutions as control functions of the voltage and current 
in time domain, with the two conflicted criteria defined: minimizing the time of motion and 
minimizing absorbed energy.  
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Modelowanie i optymalizacja sterowania siłownikiem elektromagnetycznym  
z wykorzystaniem algorytmów genetycznych 

W pracy przedstawiono sposób implementacji algorytmów genetycznych do wyznaczania pareto-optymalnych 
funkcji sterujących, słuŜących do sterowania pozycją suwaka siłownika elektromagnetycznego. Proces 
zakłada minimalizację dwóch przeciwstawnych kryteriów, tj. czasu ruchu tłoka siłownika i energii pobranej 
przez urządzenie. Praca siłownika elektromagnetycznego oparta jest o zasadę wypychania  magnesów stałych 
z pola magnetycznego solenoidów. Urządzenie składa się z dwóch solenoidów i suwaka na którego końcach 
są umieszczone magnesy stałe. W pracy przedstawiono charakterystyki statyczne jak i dynamiczne 
urządzenia, m.in. zaleŜność prądu od siły wypychającej magnes, zaleŜność siły od pozycji magnesu w 
solenoidzie.  
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Abstract 

In this paper we address a group of recent research focused on the semi active control problems in carrying 
structures systems subjected to a travelling load. The magnitude of the moving force is assumed to be constant 
by neglecting inertial forces. The response of the system is solved in modal space. The optimal control problem 
is stated and it is solved by using of Pontryagin Maximum Principle. Switching control method is verified by 
numerical examples. The controlled system widely outperforms passive solutions. Due to its simplicity in 
practical design, the presented solution should be interesting to engineers.  
 

Keywords: Semi-active control, structural control, optimization, moving load 

1. Introduction  

An increasing speed requirements in transport and technological processes forces 
engineers to apply new and unique solutions for the carrying structures design. From the 
last few decades the main role in such a design play an integrated systems of control. 
Semi-active methods superiority over active result from its reliability and low power 
consumption.  

 

Figure 1. Semi-active controlled guideways. 

In this paper we propose two fields of applications of semi-active controlled systems. 
The first one is dedicated to technological processes such as cutting or bonding, where 
the  straight passage of a moving load is essential. The second one is directed to large-
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scale engineering structures like bridges that span gaps or beams that must resist loads 
due to heavy and fast vehicles.  

Technical difficulties with the rigid support of the bottom parts of the dampers 
require new, more practical solutions. One of them is presented in Fig 1.  

A good number of semi-active control methods have spread widely and some of them 
have been put into practice recently. They are usually based on sky-hook and ground-
hook ideas. These strategies are used for the active suspension of a moving oscillator in 
[3, 4]. The idea of a beam vibrations control by dampers and preliminary results were 
presented in [5]. The early papers deal with the problem of active control of a beam 
vibrations [6]. An active constrained layer is applied in [7]. 

In this paper we propose an open loop switching control method. The optimal 
solution is based on the Maximum Principle [8]. The form of cost integrand depends on 
the aim of control. 

2. Mathematical background 

In this section we present a control method and its optimal solution in a short. The aim of 
the proposed strategy is to provide a straight passage for the moving load. We consider 
the double-beam system as shown in Fig. 1. The solution scheme for a single-beam 
system is analogous. 

 

Figure 2. Double Euler-Bernoulli beam system coupled by a set of semi-active dampers. 

We can write the governing equation for the considered system as follows: 
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together with the boundary and initial conditions: 
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Here, w1(x,t) and w2(x,t) are the transverse deflections of the beams at point (x,t), ui(t) is 
the i-th damping coefficient as a function of time, m is the number of viscous supports 
and P is the concentrated force passing the upper beam at constant velocity v and δ is the 
Dirac delta function. For the control design we use a representation of the system in 
modal space. Respecting the boundary conditions we look for the solution expressed 
upon the  sine serie base.  
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Furthermore, we consider only approximate solutions of  Eq. 1 by using a finite-
dimensional modal space, i.e. j, k = 1,2,…, M. The transformation (3) yelds the 
following system of ODEs 
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Introducing a new state variable 1=)(1 tyn+& , 0=(0)1+ny  and rebuilding AA ˆ→ , 

ii BB ˆ→ , )(ˆ)( yftf →  in such a way they respect a new variable, we replace (5)-(8) 

with the autonomous optimal control problem so Maximum Principle can be applied 
directly. The Hamiltonian function is given by  
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The adjoint differential equation and the transversality conditions are as follows: 
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The Hamiltonian (9) takes the maximum value when the controls equal:  
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However Maximum Principle is only a nessesary condition for the optimal solution. We 
suppose the most efficient control method is generated by switching controls.  

The implicit solution of stated problem can be solved numerically by the shooting 
method for instance. However, it can be extremely difficult due to high dimensional 
problem. For the alternate method we assume a priori a number of switchings for every 
control and then transform the problem into mathematical programming.  

3. Numerical examples 

Here, we present a few numerical solutions of optimal control problem stated in the 
previous section. We use Hooke-Jeeves Direct Search Method, where we consider at 
least 3 different starting points with 3 reducing step size schemes for each case. The 
number of switchings was first assumed as 3, then 2, and finally 1 for every control. 
Reduced number of switching actions is a great advantage from the practical point of 
view while the cost (Eq. 5) is comparable. 

 

Figure 3. Transverse vibration of controlled beam in space-time domain. 

The idea of straight-line passage is based on the principle of a two-sided lever. The first 
part of the beam which is subjected to a moving load is supported by an active damper 
placed on the rigid base. The first damper is active while the second one is passive. At 
this stage, a part of the beam is turned around its centre of gravity, levering the right 
hand part with a passive damper attached. The temporal increment of displacements on 
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the right hand part of the beam enables us to exploit it during the second stage of the 
passage. This phenomenon can be observed in the space time-domain (Fig 3). 

Below, we present the exemplary optimal deflection trajectories under a moving load 
in two different cases. In the first one (Fig. 4), we consider a single beam with two active 
dampers placed in the positions 0.25l, 0.75l. In the second one (Fig. 5), four dampers 
placed in positions 0.2l, 0.4l, 0.6l, 0.8l are attached to the double beam system. 
Trajectories for passive cases (all dampers are on) are added for comparison.    

 

Figure 4. Optimal deflection trajectory and switching controls. 

While the cost integrand is calculated with respect to velocities or accelerations of 
vibrations we do not observe a significant efficiency of the proposed method. High-
frequency harmonics included in those trajectories can be reduced by high-frequency 
switching controls. This is the ongoing research topic of the authors.     

 

Figure 5. Optimal deflection trajectory and switching controls. 
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4. Conclusions  

In this paper, a semi-active control method for linear carrying structures has been 
presented. A bang-bang control method has been proposed and its performance has been 
verified by numerical examples. The best efficiency is obtained at high travel speeds. 
The controlled system can efficiently decrease the mass of the guideway. The control 
strategy is simple for practical design. It can be implemented by creating an optimal 
control map in the memory of the controller. Integration of a neural network with the 
system will be addressed in future works. 
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O semi-aktywnym sterowaniu układów nośnych pod ruchomym obciąŜeniem.  
W pracy przedstawiono wyniki badań półaktywnego sterowania w układach nośnych poddanym obciąŜeniom 
ruchomym. ObciąŜenie zostało przedstawione jako bezinercyjne. Odpowiedź układu została wyznaczona  
w reprezentacji modalnej. Sformułowano zadanie sterowania optymalnego. Uzasadniono zastosowanie 
sterowań typu bang-bang opierając się na Twierdzeniu o Maksimum Pontryagina. Proponowana metoda 
sterowania została zweryfikowana na podstawie przykładów numerycznych. Wykazano przewagę układów 
sterowanych nad układami tłumienia pasywnego. Opracowana strategia sterowania jest prosta  
w implementacji i moŜe być atrakcyjnym rozwiązaniem dla inŜynierów.   
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Abstract  

The work refers to the problem of free vibrations and global instability of slender system with imperfections 
subjected to load by the force directed towards the positive pole. The inaccuracies in the systems are modelled 
assuming an initial curvature and the introduction of the eccentricity of an external load. On the basis of total 
mechanical energy, equations of motion and boundary conditions are determined. The relationship between 
the introduced inaccuracies for which the bending of the free end of the column has a finite value at load 
approaching critical load is determined. Curve courses of longitudinal bending are presented. The results of 
numerical calculations of the course of the natural frequency against external load for given geometry and 
physical constants of the column are presented.  

Keywords: elastic column, free vibrations, initial imperfections  

1. Introduction  

The influence of initial imperfections on the stability and longitudinal bending of 
columns loaded by conservative loads was considered in works [1-4]. The initial 
geometrical imperfection of the system in the form of the initial curvature was analysed 
or the eccentric external load was taken into account separately. The systems subjected 
to the Euler’s load or to a force directed towards the positive pole (realised on linear 
elements) were examined in [5]. Imperfections in shape and applied external load were 
taken into consideration in the systems mentioned above. Mutual interactions between 
the introduced imperfections were revealed and proved. The relationships between the 
imperfections in shape and load, for which the bending of characteristic points has a 
finite value at load P approaching critical load Pc, were determined. The static criterion 
of stability is insufficient for the evaluation of the system behaviour. The discussed 
phenomenon was illustrated by diagrams showing the courses of longitudinal bending 
and was confirmed by experimental research. 

2. Physical model of the column  

In this paper the column loaded by the force directed towards the positive pole [compare 
6], realised by loading head built from circular elements is considered. The 
imperfections resulting from an initial curvature of the system, described by W0(x) = αx 
function, and from eccentricity of external force P (e − the value of eccentric) are taken 
into account.Total transverse displacement of the system was denoted as Wc(x,t), where: 
Wc(x,t) = W0(x) − W(x,t). 
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The direction of external force P is crossing the constant point O (Fig. 1). The point O is 
lying at R distance from the point of application of the force and is displaced by the 
value e in relation to non-deformed axis of the system. The following relationships are 
fulfilled: 

( ) ( )
rR

tlW

rR

lW c

−
=

−
=

,
,0
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where β0 and β are the angles created by the direction of external force P and non-
deformed axis of the system for the initial state (the initial bending) and state of strain, 
respectively. 

 
Figure 1. Physical model of the considered column 

Individual longitudinal displacements of the systems are determined by relations:  
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3. Mechanical energy of the system, formulation of the boundary problem  

The boundary problem is formulated on the basis of the Hamilton’s principle described 
for conservative system by the relationship: 
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The kinetic energy T is sum of the column’s kinetic energy and mass m placed at the 
end of the column: 
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Total potential energy V of the system is described by the formula: 
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Equations (4) and (5) after taking into account relationships (1), (2) are considered in 
Hamilton’s principle (3).  

The equation of motion and boundary conditions for the considered system, after 
taking into account the commutation of variation and differentiation operators and after 
integrating kinetic (4) and potential energies (5) of the system are obtained. Using of the 
expansion function W(x,t) in the form: 

( ) ( ) ( ) ( )txyxytxW ωcos, 0 +=  (6) 

then, by grouping the components of series connected to expressions cos0(ωt) and 
cos1(ωt), the equation of displacement and boundary conditions necessary to solution of 
the longitudinal bending problem was obtained: 
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and formulation of dynamic’s problem: 
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4. The solution of longitudinal bending problem, results of numerical computation  

The general solution to equation (7), which fulfils adequate boundary conditions in the 
form of function described by: 

( ) ( ) 43210 cossin)( CxCkxCkxCxy +++=  (12) 
is being searched. Substituting solution (12) into boundary conditions (8) and (9) 
equation for y0(x) expressing total displacement for considered system is obtained: 

( ) ( )[ ] ( ) ( )[ ]{ } ( )[ ] ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )[ ]
( ) ( ) ( )klklrRlk

xlkklklkx
rRl

klklrRlk

klkxxlkkxrRlklxk
exy

sincos

sinsincos

sincos

sinsinsincos1cos1
0

−+−
−+−

+−+

+
−+−

+−−−−+−−−
=

α

 (13) 

Based on dependency (13) between displacement of the column’s end y0(l) and load 
parameter k2 was determined: 
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The condition describing interactions of imperfections in form and load of the column 
(15) is determined considering relationship (14) as well as the transcendental equation 
for the value of critical force for the column loaded by the force directed towards the 

positive pole in the form ( ) ( ) ( ) 0sincos =−− klklllk B : 
[ ] ( ) ( )[ ] 01coscos)(1 =−−−− kleklrRα  (15) 

The graphical interpretation of form and load imperfections, for the several value of the 
∆r* parameter is presented in Fig. 2. 
 

 
Figure 2. Curve courses of the interactions of imperfections in shape and load 

Exemplary courses of transversal displacements of the end of system yc(l) = W0(l)− 
y0(l) in relation to the external load were determined (Fig. 3) on the basis of relationship 
(14) describing displacement y0(l) of the systems, where: 
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Figure 3. Curve courses of longitudinal bending on the plane: λ* − yc

*(1)  

5. The solution of the vibration problem, results of numerical computation  

A general solution of equation (10) is: 
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( ) ( ) ( ) ( ) ( )xDxDxDxDxy ββαα sincossinhcosh 4321 +++=  (17) 
where Dn are integration constants (n =1, 2, 3, 4) and: 
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Substitution of solution (17) into boundary conditions (11) yields a transcendental 
equation to eigenvalues of the considered system. 

Numerical computations for the change of natural frequencies in relation to the 
external load for several values of the parameter ∆r*, with the constant length l and 
constant value of concentrated mass m has been performed. In Fig. 4 the courses of two 
basic natural frequencies change Ω* and additional frequencies Ω*

s characterized by 
symmetry of vibrations against dimensionless parameter of load λ*are presented, where: 
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Figure 4. Curves in the plane: loading parameter λ* – natural frequency parameter Ω * 

The courses of free vibration frequencies in relation to external load, typical for 
divergence (curves 1, 7 − 9) or divergence pseudoflatter (curves 2 − 6) type system were 
obtained. 

5. Conclusions  

Based on theoretical considerations and results of numerical simulations related to the 
influence of introduced inaccuracy on the longitudinal bending and free vibrations of 
considered system, one can state that: 
− the interaction of the imperfections in shape and load was revealed and proved, 
− the relationships between the introduced inaccuracies for which the bending of the 
column’s end has a finite value at load P approaching critical load Pc were determined, 
− the system depending of the course eigenvalues curves can be classified as one of the 
two types: divergence or divergence pseudoflatter system. Obtained curves allowing 
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classify considered column to system realising specific load (L. Tomski) in divergence 
pseudoflatter range. 
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Niestateczność i drgania kolumny z imperfekcjami poddanej obciąŜeniu siłą skierowaną do 
bieguna dodatniego 

W pracy rozwaŜa się zagadnienie drgań własnych i niestateczności globalnej układu smukłego 
z imperfekcjami, poddanego obciąŜeniu siłą skierowaną do bieguna dodatniego. Niedokładności układu 
modeluje się zakładając wstępną jego krzywiznę oraz wprowadzając mimośrodowe przyłoŜenie obciąŜenia 
zewnętrznego. Na podstawie całkowitej energii układu wyznacza się równania ruchu oraz warunki brzegowe 
rozpatrywanego układu. Określa się relację między wprowadzonymi niedokładnościami, dla których ugięcie 
swobodnego końca kolumny ma wartość skończoną przy obciąŜeniu dąŜącym do obciąŜenia krytycznego. 
Prezentuje się wykresy przebiegu krzywych podłuŜnego zginania. Przedstawia się wyniki obliczeń 
numerycznych dotyczące przebiegu krzywych częstości drgań własnych w funkcji obciąŜenia zewnętrznego, 
dla zadanej geometrii i stałych fizycznych kolumny.  
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Abstract 

This paper presents the proposal design of the active balancing of rotors with correction mass (liquid), whose 
relative position to the rotor is changed continuously. Two design versions are adopted for the implementation 
- the mechanical models of the system. Proposed models consisted of rings with internal chambers, filled with 
fluid in sequence. It has been described a mathematical model of the equivalent correction mass allocation. 
There are presented concepts of supply and control of the fluid flow into the selected chamber. There were 
elaborated the algorithms of start-up and run-out the rotor. It has been presented the scheme of supplementary 
hydraulic manual control. Paper presents the potential scope of use of method for industrial applications. 
 
Keywords: balancing rotor, unbalance, rotor dynamics, balance disc  

1. Introduction 

Most of rotating machines operate at rotational speeds out of the resonance conditions. 
Vibrations of rotor can be amplified by the unbalanced mass. Unbalance is caused by the 
rotor deflection or change in mass distribution due to work conditions e.g. dust adhesion 
to blower’s blades. Vibrations of rotors with unbalanced masses lead to damage of the 
bearings, the rotor fatigue effects and shorten the life of the entire system. The methods 
of the unbalance reduction apply electro-magnetic bearings, active dampers and systems 
for correction masses motion. Research focuses on the active vibration reduction in rotor 
systems, as it was described in the literature [1, 5, 6, 7, 8, 9, 13, 14]. 

In purpose of rotor balance it was proposed the use of a balancing disks dedicated for 
balancing, with channels and various valves separating the liquid storage chambers. 
Replacement and storage of fluid in the chambers corresponds to the correction mass 
motion within the shaft. By the application of the control system a desired quantity of 
fluid can be allocated in each of single chambers. System should actively respond to 
changes of unbalance without the need to retain the rotor to adjust the distribution of the 
correction mass. The conducted research develops also an algorithm for safe start-up and 
run-out of the rotor with a balancing discs and supplementary manual control system. 

2. Previous automatic balancing methods 

The one of next steps in the development of rotors dynamics was application of 
automatic balancing methods. Adverse effect on the rotor machines was making 
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substantial changes to the balanced device, which greatly complicated their installation 
in existing structures. Selection of balancing technologies of rotating systems derived 
from the literature review [4, 13, 14] is presented as follows:  
 Van de Vegte and Lake 1978 - proposed a procedure for balancing rigid shafts during 
their normal work. The system includes a mechanical device with at least two correction 
masses. The electric drives were mounted on the disk and provided the change of the 
position of correction masses: Majewski 1976, 1994 – the theoretical background to the 
automatic balancing of rotors; Bishop 1982 – made a system for flexible shafts 
balancing; similar system to the Van de Vegte; Furman 1982 – an additional special 
metal disc was placed into the rotor. Locally heated disc undergoes a plastic deformation 
leading to the creation of a centrifugal force; Gosiewski 1985 – concept of rotated mass 
with electric drive. Instead of single mass numerous elements are used - automatic 
continuous balancing; Smalley, Baldwin, Schick 1998, and Smalley, Baldwin, Yuhas 
1989 – study about balancing by synchronous projection of metal particles; Jenkins 1996 
– active balancing device for machine with large size rotor. The disk with containers 
including the liquid was placed to balanced shaft. In the process of balancing the liquid 
has been moved from one chamber to the another through the procedure of temperature 
gradient generation; Alauze, Der Hagopian, Gaudiller, Voinis 2001 – an active balancing 
system consisted of two satellites with own drives (correction masses), located on round 
track, specially prepared for this purpose; Felis J, Mańka M., Uhl T. 2004 – device for 
dynamic balancing of rotors – angular motion of constant masses, external drives. 

Currently used automatic balancing systems have various disadvantages that restrict 
their use. This is the main reason for further development of automatic balance system 
for rotary machines [2]. Current research investigate a new, efficient and less expensive 
mechanical balancing systems for use in specific environmental conditions. 

3. Equivalent of correction mass 

According the theoretical assumptions of automatic balancing system is equipped with 
additional discs placed onto the rotor. Each disc includes hydraulic system supplying the 
small amount of fluid (correction mass) to the proper chambers.  

 

  

Figure 1 Principle of equivalent correction force generation through two mass 
components: a) constant mass motion; b) fluid filling the appropriate single chamber. 
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The mechanism allows the use combination of at least two correction masses (liquid), 
placed concentrically with respect to the axis of rotation of the system. The entire 
balancing ring with several chambers may be filled in the same time. Each chamber can 
be filled partly or in full in order to obtain the exact effective balancing mass.  

Balancing is performed in several steps: by measuring the shaft vibration at the 
synchronous speed of the system (actual work of system), then by calculating which 
chamber should be filled by fluid (new position of equivalent correction mass) and 
controlling valve which determine the flow of the fluid from starting position to 
correction position. The automatic balance process changes the fulfillment of the 
chambers to gain the angular position of the partial mass (correction masses m1, m2) and 
thus the position of equivalent correction mass. This causes the corrective force of equal 
magnitude but opposite in phase (relative angular position with respect to an axis of 
rotation) relatively to unbalanced force identified in the system. 

4. Active balancing theory  

Previously there were developed a lot of methods for rotor’s active balancing e.g.: modal 
method, method of influence coefficients (IC) and the combination of these two. The 
method of influence coefficients is widely used active balancing method in industrial 
applications [10]. This method describes change of response of the unbalance in function 
of rotating speed and point out the dynamic characteristics. The response to the 
unbalance for k-th iteration is expressed by the formula [11]: 

 {V}k = [A(ω)]{U}k +{D(ω)} (1) 
where: 
{V}k   – measured signal of vibrations for kth iteration, 
[A(ω)] – matrix of influence coefficients determined for the rotating speed ω,  
{U}k  – vector of unbalance for the kth iteration, 
{D(ω)} – vibration signal for the initial unbalance at speed ω. 

Response to unbalance system for k+1th iteration is represented by the formula: 
 {V}k+l = [A(ω)]{U} k+l + {D(ω)} (2) 
Subtracting the equation (1) from the equation (2) we obtain: 
 {V}k+1 - {V}k = [A(ω)]{ {U}k+1 - {U}k } (3) 
In order to balance it is necessary to find a vector of correction mass {U}k+1 such the 

response of vibration will be minimized after the completing of control sequences.  
Correction vector take the form: 
 {U}k+1 = {U}k+ - [A(ω)]-1{V}k (4) 
Equation (4) may be used only if the number of measurement planes is equal to the 

number of balancing planes. This condition is satisfied when the matrix of influence 
coefficients is a square matrix and the inverse matrix exists. 

If the number of measurement planes is larger than the balancing planes, the solution 
is related to the optimization problem. Correction vector should minimize the system 
response to the unbalance.  

Cost function is defined in following form: 
 J k+l = {V}T

k+l {V}k+1 (5) 
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The correction vector can be written as follows to minimize the cost function: 
 {U}k+l = {U}k - ([A(ω)]T [A(ω)])-1 [A(ω)]T{V}k = {U}k - [K(ω)]{V}k (6) 

where: [K(ω)] – is the control gain. 
The correction vector as the result of IC method determining the location of the 

correction mass and minimizing the vibration amplitude can be obtained from equation 
(6) when the current vibrations signal and the rotor’s position are known. The influence 
coefficients matrix of the rotation speed is obtained by additional run the rotor with trial 
mass. The value of the correction mass is acquired by re-launching of the rotor. 

Any influence coefficients which are used to create a influence coefficients matrix 
for active rotor balancing may be calculated by the following equation: 

 aij = [(Vi)k - (Vi)k-1] / [(Uj)k - (Uj)k-1] (7) 
where: Aij - means a change of the vibration signal of i plane to unbalance of j balancing 
plane. 

If the predicted influence coefficients are more closer to the currently calculated, the 
vibration responses are increasingly minimized. An important element of active 
balancing is the choice of appropriate minimizing method. In the literature is reported 
the use of the following methods: LAD - Least Absolute Deviation, LS - Least-squares 
(LS), Chebyshev, or minmax - minimization of the maximum vibration amplitude. 
Previous studies have shown that using the plain least-squares method does not always 
bring the optimal solution [12]. 

5. Measurement and computational rules of IC 

In the IC method we can distinguish two main parts [3, 4]: the measurement and the 
consecutive computation. During the measurement part are performed three 
measurements of vibration amplitude and phase. The first measurement is made in the 
natural state of the rotor. The measured vibrations at the chosen points must be linearly 
dependent on the unbalance. In order to perform the dynamic balancing of rotating 
machines is necessary to use at least two correction planes. It is necessary to measure 
vibrations in the bearings 1 and 2, which are generated by the action of an unbalance. 
Then at the first correction plane is positioned trial mass and measurements of vibrations 
are made again. At the next step the trial mass is removed from the first correction plane, 
and then it is positioned in the second correction plane to make consecutive vibration 
measurements. In case the measured vibrations in the system are caused by an 
unbalance, the location and size of the correction mass could be calculated through the 
use of influence coefficients method. Obtained influence coefficients are vectors and 
determine the impact of trial masses placed in the correction planes on the amplitude and 
phase of vibrations measured at the measuring points. 

The method is based on the impact factors determining the sensitivity of the vibration 
amplitude to balancing mass placement in the correction plane. The amplitude of 
vibration is measured at the point of sensors attachment. Using this method requires the 
following conditions to be fulfilled: (1) vibration amplitude measured at the chosen 
points are linearly dependent on the unbalance present in the rotor; (2) distribution of the 
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masses in the system during the measurement does not change, including the changed 
position of the trial masses; (3) balanced object is considered as a rigid body. 

Among described methods of calculating the location of the correction mass the best 
results gives modal method allowing to precise rotor balancing, regardless of its speed of 
work. In most cases it is sufficient to balance on one speed – speed of the system. The 
most suitable method seems to be the method of influence coefficients. 

6. Draft of balancing system with fluid as correction mass 

The proposed solution is based on the concept of modification of existing with 
minimization of rebuilding of rotor systems. In this model balancing the rotor element is 
done by continuously changing of correction mass distribution. Proposed system gives 
the possibility of shaft balancing at arbitrary chosen plain. Main mechanical element is 
the balancing ring. Inside this element are specially designed and arranged chambers 
(slots, cells). The fluid will flow through them and concentrate in special correction 
volumes.  

 

 
Figure 2. Concept of balancing system: (a) I-st version: The hollow shaft with cells, 

(b) II-nd version: The balancing disc connected with rotor 

Distribution of cells at the periphery of the balanced shaft should be symmetric so the 
flow of the liquid can be controlled into each tributary cell independently. This will 
enable the unbalance reduction by change of concentrated correction mass location. 
Authors bring up that the particular design of system is the patent pending. 

Conclusion 

The main target of presented study and research was to find opportunities for active shaft 
balancing at an arbitrary chosen plains, possible to apply in existing unbalanced rotors. 
Innovative approach was use to elaborate of the concept of system with liquid medium 
as a correction mass for system balancing. There was considered the concept of rotors 
balancing method with continuous gaining mass. The use of this concept will take full 
advantage of control of balancing of rotating systems in industrial application e.g. rotors 
of ventilation system, laboratory centrifuges, and water or wind turbines.  
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Układ do automatycznego wywaŜania wirników przy pomocy ciągłej zmiany rozkładu 
masy korekcyjnej 

Artykuł przedstawia projekt układu do aktywnego wywaŜania wirników za pomocą masy korekcyjnej (płynu), 
którego połoŜenie względem osi wirnika zmieniane jest w sposób ciągły. Dla realizacji układu przyjęto dwie 
konstrukcje – dwa modele układu. Zaproponowano modele złoŜone z pierścieni z wewnętrznymi komorami, 
wypełnianymi sekwencyjnie przez płyn. Przedstawiono matematyczny opis zastępczej masy korekcyjnej. 
Opracowano koncepcje układu sterowania dostarczaniem i przepływem płynu do wybranej komory. 
Opracowano algorytmy rozbiegu i wybiegu wirnika. Przedstawiono schemat hydrauliczny dla rezerwowego 
układu sterowania ręcznego. Przedstawiono potencjalny zakres wykorzystania układu w zastosowaniach 
przemysłowych.  
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Abstract 

The paper focuses on experimental investigations of ossicular chain vibrations using Laser Doppler 
Vibrometer. Measurement of stapes velocity in case of  intact, damaged and reconstructed with Partial 
Ossicular Replacement Prosthesis ossicular chain  is presented. A typical transfer function between an input 
and an output signal is completed by other methods applied in dynamics such as Lyapunov and Hurst 
exponent. The main aim of the study is to find the most efficient method of ossicles reconstruction and 
measurements analysis. Apart from a classical approach based on the transfer function which gives an 
information about vibrations amplitude also analysis of vibration types exhibiting nonlinear behaviours is 
presented. 
 
Keywords:  ossicles vibrations, middle ear prosthesis, middle ear mechanics 

1. Introduction 

Middle ear surgery techniques, known since middle of the last century, can improve 
hearing destroyed by a disease. There  is a huge number of ossiculoplasty prostheses to 
choose from. Additionally, each of them has several factors that a surgeon can vary 
during prosthesis placement. On the other hand, also prosthesis designers are able to 
decide about prosthesis shape, size or length. Recently, the study which examines 
another key variable – the size of the prosthesis head has been published [3]. The results 
point out no essential difference in vibration transmission from the eardrum to the stapes 
footplate. Generally all prosthesis head size exhibit worse transmission properties than 
intact ear that is quite obvious and should motivate to improve existing prostheses. In 
case of damaged incus reconstruction of the ossicular chain can be done using the incus 
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replacement prosthesis (IRP). The main problem that must be solved is proper  
prosthesis length which provides optimal tension between the tympanic membrane or 
malleus and stapes. Different types of a cement incus replacement prosthesis (CIRP) in 
temporal bone were tested in [1]. The best tension and an acoustical efficient as well 
give the narrow Y-CIRP. Similar problem of optimum tension for partial ossicular 
replacement prosthesis (PORP) reconstruction is presented in [6]. Tension has a very 
significant effect on stapes vibration. Loose prosthesis result in the best overall vibration 
transmission, especially for lower frequencies. While tight prosthesis has a slight 
advantage  in the higher than 2 kHz frequencies. The same conclusions are shown for 
adjustable-length titanium ossicular prosthesis [10]. Some authors report that an 
anatomically shaped incus prosthesis used for reconstruction of the ossicular chain is 
better than PORP [5]. The important decision for surgeon during prosthesis placement is 
to choose the best site on a stapes footplate that is discussed in [2]. The results prove that 
the centre site is the best location on the footplate. A separate problem is prosthesis 
material which must fulfill  a lot of requirements such as: stiffness or force transfer 
function. In publication [9] teflon, polyetheretherketone, polysulfone, gold, Al2O3 
ceramics, carbon and titanium were examined. Finally, titanium prosthesis with open 
head was chosen.   

Most researchers (presented above and others) use Laser Doppler Vibrometer (LDV) 
as a tool to measure vibrations of human middle ear ossicles [4;7;8]. Usually, results of 
measurements are provided as a transfer function which most often is stapes velocity or 
displacement response to the sound stimuli. It gives us information about ossicles 
vibrations amplitude but not about the type of motion or regularity. Therefore, this study 
is an attempt to find another way of signal analysis engaging Lyapunov and Hurst 
exponent. The objective of the paper is to assess an effectiveness of middle ear 
prosthesis with various length compared to other method of hearing defects treatment 
and to the intact middle ear. 

2. Material and measurement methods 

Measurements are performed on fresh human temporal bone specimens. The specimens 
are subjected to extended procedure to visualise ossicular chain and to attach the 
microphone (ER-7C Etymotic Reserch) and the sound source (ER2 Etymotic Reserch) to 
external ear canal. The artificial canal is closed with a glass plate to create a sound seal 
chamber. Pieces of a retroleflective tape (0,5 mm2 squares) weighing less than 0,05 mg, 
are placed on the footplate of the stapes Detailed preparation of the temporal bone are 
described in [8] 

The measurements are performed on a antivibration table inside a sound booth. 
Sound stimuli are frequency sweeps from 0,2 to 8 kHz at 80-120 dB signal pressure level 
(SPL). The sound source is connected to power amplifier to produce an adequate signal 
output. The measurements have been recorded using processing board (National 
Instrument) and DasyLab software and the experimental data analyzed with the MatLab 
package. 
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Stapes footplate velocity is measured with Laser Doppler Vibrometer (LDV) system 
composed of OFV-5000 controller with VD-06 velocity decoder (Polytec). OFV-534 
sensor head is connected to a joystick operated micromanipulator, which is mounted on 
the operating microscope. The helium-neon laser beam is directed with the 
micromanipulator onto retroreflective targets on the stapes footplate through the artificial 
ear canal or on the stapes through the posterior tympanotomy approach.  

After baseline measurements of stapes in the intact ossicular chain the incus was 
removed and series of trials were made. Then, titanium PORP prosthesis (Kurz Vario) 
was placed, instead of the original incus, between the stapes head and the eardrum. 
Three lengths of the prostheses are tested. Optimum length (3mm) set by experienced 
surgeon then 0.5mm lengthen and 0.5mm shorter prostheses are introduced. 

3. Results 

The difference in vibrations velocity, measured at the stapes footplate, between the intact 
middle ear, incus removed and titanium prosthesis for three various length (3mm - 
optimum, +0.5mm and -0.5mm) is presented in Figure 1 as velocity normalized to SPL 
of the input signal.   

 

 

Figure 1. Velocity response in case of intact middle ear, incus removed and titanium 
prosthesis 

The acoustic transfer function of the optimum length prosthesis is of course not as 
good as the baseline intact middle ear particularly above 4 kHz. Higher frequencies are 
important, especially for understanding speech in noise. Generally, using this type of 
prosthesis causes a meaningful improvement compared to situation with incus 
completely removed or destroyed. Interestingly, tight mounted prosthesis (length 
optimum +0.5mm) gives better results for higher frequencies (>2kHz) then optimum 
length. For frequencies below 2 kHz optimal prosthesis length is the most appropriate.  
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Looking at the problem in details, it must be noticed that the transfer function say 
only about vibrations amplitude but nothing about regularity and possible motions which 
stapes perform. Some symptoms of regular or irregular behaviour can be obtained just 
from time series of velocity (Table 1) made for chosen frequencies.  

Table 1. Time series of the stapes velocity 
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Figure 2 Lyapunov and Hurst exponent versus frequencies  for intact middle ear, incus 
removed and three length of Kurz prosthesis 

All prostheses show subhrmonical nature for lower frequencies (0.6 and 1kHz) while the 
intact ossicular chain is characterized by harmonic motion. Additionally, the loose 
placement of prosthesis seems to work worse than optimal (3mm) and longer (3.5mm) 
assembly. Middle ear vibrations without incus are irregular specially below 2kHz. It 
suggests that another tools like Lyapunov and Hurst exponent (Figure 2) should be used 
to estimate hearing results after various kind of treatment including PORP 
reconstruction. Both the intact middle ear and the ear with optimal and long (+0.5mm) 
prosthesis can be easily distinguishable from the damaged ossicles chain, when 
Lyapunov exponent is bigger that 0.7. Only the loose fitted prosthesis (-0.5mm) gives 
higher Lyapunov exponent, what is consistent with Figure 1 and speaks volumes for 
worse features of short prostheses. Similarly, Hurst exponent shows that the time series 
of reconstructed ear with prosthesis are more predictable (persistent) because the 
exponent is distinctly bigger. 

3. Conclusions  

Proper prosthesis tension is essential for excellent reconstructed middle ear sound 
transmission. The best tension is produced by prosthesis length of 3mm although, for 
higher frequencies 3.5mm length seems to be better. General conclusion obtained on the 
basis of the transfer function can be completed by time series of vibrations or replaced 
with Lyapunov exponent analysis.  

Interestingly subharmonic vibrations for low frequencies are observable when PORP 
prosthesis is applied. This effect cannot be shown looking only at transfer function 
therefore, further analysis of phase space should be helpful to disease diagnosis and 
specially to estimate method of reconstruction.  
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Analiza drgań kosteczek słuchowych człowieka 
Praca przedstawia wyniki pomiarów drgań kosteczek ucha środkowego wykonane Doplerowskim 
wibrometrem laserowym w przypadku zdrowego łańcucha kosteczek, uszkodzonego i naprawionego z 
uŜyciem protezy tytanowej Kurz. Przeanalizowano drgania kosteczek słuchowych w przypadku trzech 
róŜnych długości protezy i oceniono ich skuteczność klasycznie stosując funkcję przejścia oraz z 
zastosowaniem wykładnika Lyapunowa i Hursta  do oceny zastosowanych protez. 
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Abstract  

The study covers the identification of model parameters of a sandwich (three-layered) cantilever beam 
incorporating magnetorheological (MR) fluid. The beam comprises two outer layers made of aluminium and a 
MR fluid layer in between, sealed with silicone rubber. The beam finite element (FE) model is created using 
the ANSYS software. Interactions of the magnetic field are taken into account by varying the FE model 
parameters. Data required for identification are collected from results of measurement of the beam’s free 
vibration. The identification procedure assumes the good agreement between the frequencies of the beam’s 
free vibrations and dimensionless damping factors obtained from research and computation data. 
 
Keywords: MR fluid, beam, vibrations, damping, identification 

1. Introduction 

Control of vibration of flexible structures using smart fluids has received a great deal of 
attention since the early 1990s. The literature on the subjects abounds in reports on adaptive 
features of beam and plate structures incorporating electrorheological (ER) fluid. Fewer 
reports are available that explore similar applications of MR fluids [3, 4, 5, 6, 7]. 
 The distinctive feature of such structure is that their structural behaviour can be 
controlled by the magnetic/electric field which activates the smart fluids present in them. 
Interactions of the magnetic/electric field cause the stiffens and damping characteristics 
to change, hence enabling vibration reduction. 
 At this stage of the research programs, the authors focus on a three-layered cantilever 
beam, incorporating MR fluid layer of 140CG type of Lord Corporation [8] in between two 
flexible layers. The purpose of the research program is to reduce the free transverse vibration 
of the beam under the applied magnetic field. 
 The paper is concerned with identification of model parameters of a beam incorporating 
MR fluid, assuming the fluid is represented by finite elements in the form of a rheological 
structure of the Voigt-Kelvin type and of the modified Bingham structure. The model is 
intended to be used for testing the control algorithms of beam vibration. 
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2. Model 

The structure of the beam with a MR fluid layer, is shown in Figure 1. Development of the 
beam model involves three stages. The beam considered in the first stage is made of a 
single layer of aluminium 400 mm in length, 30 mm in width and 2 mm in thickness 
(Beam1). The beam modelled in the second stage comprises two aluminium layers and a 
silicone rubber sealing 2 mm in thickness (Beam2). Finally, the beam modelled in the 
third stage has a MR fluid layer in between the aluminium layers (Beam3). 
 The beam is modelled using the finite elements readily available in the ANSYS library: 
solid45 (aluminium layer), solid185 (silicone rubber sealing), combin40 and mass21 
(MR fluid). The schematic diagram of the finite element combin40 is shown in Figure 2a. 
The MR fluid layer is modelled by the rheological Voigt-Kelvin structure (Figure 2b) and 
the modified Bingham structure (Figure 2c) assuming shear mode of MR fluid operation. 
 In order to assure the shearing mode operation it is required that vertical displacements of 
relevant cross-sections of the upper and lower aluminium layers should be the same [2]. Thus 
the relative displacement of modes of the element combin40 is confined to direction 
coinciding with the beam’s axis. 

b) 

I J

cp

kp
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layers MR fluid

Silicone
rubber  
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k1
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Gap
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Figure 1. Beam structure Figure 2. combin40 element and its modifications 

3. Identification experiment 

Experiments were performed in the set-up shown schematically in Figure 3. Data for 
identification were collected by testing the beam’s free vibration and recording the 
displacement z of the point P.  
 Experiments were performed on the beams: Beam1, Beam2 and Beam3. 
Experiments were performed in the absence of magnetic field and under the applied field. 
The free end of the beam was deflected from the equilibrium state and displacement z of 
the point P was registered with the laser vibrometer. The height of the slit between the 
poles of an electromagnet was 20 mm. 
 Of particular interest is the relationship between the electromagnet’s position and 
dimensionless damping coefficient. The electromagnet position was measured by the 
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distance ym between the beam attachment point and the slit centre. The following values 
of ym were assumed: 43, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140 mm. 

 
Figure 3. Experimental set-up: 1─ beam; 2─ electromagnet; 3─ laser vibrometer 

In each position of the electromagnet, it was supplied with current I=5 A. The current 
induced the magnetic field with flux density 0.16 T. Figure 4 shows time histories of 
displacement of the point P for the Beam1 and Beam3 with no magnetic field and 
under the applied field, for ym=80 mm. 
 

 
Figure 4. Displacement of the point P 

 Thus obtained time histories yield natural frequencies f and dimensionless damping 
coefficient ζ of the beam’s vibration, depending on the position of the electromagnet  
for the current I=5 A. Computation data, obtained for selected positions of the 
electromagnet, are compiled in Table 1. Frequency and the dimensionless damping 
coefficient for Beam3 with no activated magnetic field become 8.63 Hz and 0.0075, 
respectively. 
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Table 1. Frequency and dimensionless damping coefficient  

ym [mm] 43 60 80 100 120 140 

f  [Hz] 8.82 8.90 8.98 9.02 9.07 8.94 

ζ [─] 0.016 0.018 0.023 0.030 0.041 0.049 

4. Identification procedure  

The main purpose of identification was to find the values of major model parameters: the 
internal damping factor for aluminium and the rubber sealing, Young modulus for 
aluminium and the rubber sealing and, most importantly, of model parameters of the MR 
fluid layer. 
 Identification of parameters of the MR fluid layers involved two procedures. 
In accordance with the procedure 1, parameter values of the Voigt-Kelvin structure cp, kp 
(Figure 2b) are determined basing on the equality between experimental and calculated 
values of natural frequencies and dimensionless damping coefficients obtained for the 
electromagnet position ym=80 mm. In the procedure 2 we sought such values of 
parameters cp, kp that the error defined by the formula (1) takes minimum value: 

( )( ) ( )( )
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where: *
jf , jf  ─ natural frequency, experimental and theoretical; *

jζ , jζ ─ 

dimensionless damping coefficient, experimental and theoretical; j=1, 2, ... ,11 ─ index 
corresponding to successive positions of the electromagnet; W=0.001 ─ weighting 
coefficient. 
 Values of cp and kp obtained in the first procedure are equal to cp=19.2 [N·s/m],  
kp=2544 [N/m] and in the second procedure are equal to cp=21.1 [N·s/m],  
kp=2162 [N/m]. These values yield the relationship between frequency and the dimensionless 
damping coefficient and the electromagnet’s position, shown in Figures 5 and 6. 
The values of cp and kp calculated for various current levels are compiled in Tables 2 and 3. 

 

Figure 5. Frequency as the function of electromagnet’s position 
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Figure 6. Dimensionless damping coefficient as the function of electromagnet’s position 

Table 2. Values of cp and kp in 
accordance with the procedure 1 

 
Table 3. Values of cp and kp in 

accordance with the procedure 2 

 I =3 A I =5 A I =9 A   I =3 A I =5 A I =9 A 

cp [N·s/m] 7.9 19.2 32.6  cp [N·s/m] 8.7 21.1 35.9 

kp [N/m] 1000 2544 3670  kp [N/m] 900 2162 3303 

 The proposed model correctly predicts the changes of parameters ζ and f for 
successive position of the electromagnet along the beam axis. A good approximation of 
the dimensionless damping coefficient is achieved for all electromagnet’s positions. 
Frequencies are well predicted for the electromagnet in the position ym<100 mm, which 
might be associated with enhanced interactions of a non-homogenous magnetic field at 
the edges of the space between the poles of an electromagnet [1]. The influence of non-
homogeneity of the field on the beam’s motion enhances with amplitude increase. It was 
observed at points of the beam at a larger distance from the attachment point. At higher 
amplitudes of vibration, points of the beam are temporarily placed in the space where 
concentration of magnetic field lines is so high that attraction of ferromagnetic particles 
causes the natural frequency to be vastly reduced. 

5. Summary  

A model of a sandwich beam incorporating MR fluid is proposed and its parameters are 
identified. The model enables us to accurately predict the vibration damping capability 
over the entire range of electromagnet’s positions. Natural frequencies of beam vibration 
are established with sufficient accuracy for the electromagnet in the position given as 
ym<100 mm. Phenomena due to non-homogeneity of the magnetic field in the slit of the 
electromagnet can be neglected for the electromagnet positions ym< 100 mm. In the light 
of the assumptions made, the predictions of the beam’s motion are sufficiently accurate, 
enabling us to the test the control algorithms of beam’s vibration.  

Acknowledgments 

This study is a part of the research program no N501 223337. 



 
 
354

References  

1. B. Sapiński, J. Snamina: Vibration of a beam with magnetorheological  fluid in 
 non-homogenous magnetic field. Engineering Modeling, 6, 241−48, 2009 
2. B. Sapiński, J. Snamina: Modeling of an adaptive beam with MR fluid. Solid State 
 Phenomena 147−149, 831−838, 2009  
3. M. Yalcinitas, H. Dai: Vibration suppression capabilities of magneto-rheological 
 materials based adaptive structures. Smart Materials and Structures, 13, 1−11, 
 2004 
4. Q. Sun, J. X. Zhou, L. Zhang: An adaptive beam model and dynamic 
 characteristics of magnetorheological materials. Journal of Sound and 
 Vibration, 261, 465−81, 2003 
5. Z. F. Yeh, Y. S. Shih: Dynamic characteristics and dynamic instability of 
 magnetorheological based adaptive beams. Journal of Composite Materials, 40, 
 1333−59, 2006 
6. V. Lara-Prieto, R. Parkin, M. Jackson, V. Siberschmidt, Z. Kęsy: Vibration 
 characteristics of MR cantilever sandwich beams experimental study. Smart 
 Materials and Structures, 19, 1−9, 2010 
7. US Patent 5547049 Magnetorheological Fluid Composite Structure 
8.  http://www.lord.com 
 
 

Identyfikacja parametrów modelu trójwarstwowej belki z cieczą magnetoreologiczną 
W pracy dokonano identyfikacji parametrów modelu trójwarstwowej belki wspornikowej z cieczą 
magnetoreologiczną (MR). Belka składa się z dwóch zewnętrznych warstw aluminiowych, pomiędzy którymi 
znajduje się warstwa cieczy MR uszczelniona gumą silikonową. Model belki zbudowano przy wykorzystaniu 
elementów skończonych dostępnych w programie ANSYS. Oddziaływanie pola magnetycznego na belkę 
uwzględniono przez zmianę wartości parametrów uŜytych w modelu elementów skończonych. Dane  
do identyfikacji pozyskano z badań drgań własnych belki. W procedurze identyfikacji kierowano się zgodnością 
wartości częstotliwości drgań własnych belki oraz bezwymiarowych współczynników tłumienia uzyskanych z badań 
i obliczeń. 
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Abstract 

In rail vehicles, because of higher and higher ride speeds, there are works carried out to upgrade braking 
systems to stop the vehicle at shortest possible braking distance. It is required that in braking systems the 
condition of friction set is periodically controlled and the wear of braking system parts is constantly monitored.  
The purpose of this article is to present possibility to diagnose the friction set of disc brake by using selected 
amplitude characteristics of vibration signal generated by brake holder with friction pads.  
 
Keywords: wear, friction pad, railway disc brake, point parameters, amplitude characteristics 

1. Introduction 

In rail vehicle, because of constantly rising ride speed and to obtain required braking 
distance, disc brakes are used as primary brake. Additionally, according to UIC 546, 
speed of passenger trains of over 160km/h triggers application of disc brake. Few 
disadvantages of disc brake include a lack of possibility of controlling the condition of 
the friction set: brake and pad in the whole operation time. It is particularly observable in 
rail cars, where disc brakes are mounted on the axle of the axle set between the wheels 
[3]. To check the wear of friction pads and brake discs it is necessary to apply 
specialistic station e.g. inspection channel to carry out inspections, and to carry out 
replacement of friction parts in case they reach their terminal wear. 

In rail technique, rail track stations are used to diagnose the wear of friction pad. At 
these stations friction set consisting of disc brake and friction pad is photograhed during 
train ride. However is not a very precise metho because, on the basis of registered 
pictures the thickness of frction pads of disc brake is only assessed. When pads’ 
thickness amounts to approx. 10mm tram driver receives information that terminal 
acceptable wear of pads on a certain axle of axle set has been reached. Rail track stations 
to diagnose the wear of friction pads are used by German, British and French railways.  

In railway vehicles, systems signaling braking process and easing process, visible for 
the service from the inside and outside of the vehicle, are the most often applied. Those 
systems enable to check during train ride in which car braking system is bloked. 
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Nevertheless, rail technique lacks an objective method of quantitive assessment of the 
wear of friction pads.  

The purpose of this research is to apply vibration signal of pad calipers to assess the 
wear of friction pads of disc brake. 

2. Methodology research 

The research was carried out at inertial station for tests of railway brakes. A brake disc 
type 610×110 with ventilation fans made by Kovis and three sets of pads type 200 
FR20H.2 made by Frenoplast constitute the research object. One set was new - 35 mm 
thick and two sets were worn to thickness of 25 mm and 15 mm. 

A reasearch program C (fast ride) according to instructions of UIC 541-3 was 
applied. The brakings were carried out from speed of 50, 80, 120, 160 and 200 km/h. 
During the research pad’s pressures to disc N of 28 and 44kN were realized as well as 
braking masses per one disc of M=4.4T and 7.5T [5]. Vibration converters were 
mounted on pad calipers with a mounting clip, which is presented in Figure 1a [6]. 

 

Figure 1. Interial station for tests of railway brakes; a) pad calliper with accelerometer, 
b) view of measurement set of vibrations generated by calliper with pads;  

1-accelerometer, 2-measuring case type B&K 3560 C , 3- System software PULSE 12.5 

During the research signals of vibration accelerations were registered in three 
reciprocally orthogonal directions. To acquire vibration signal a measuring system 
consisting of piezoelectric vibration accelerations converter and measuring case type 
B&K 3560 C with system software PULSE 12.5. was used. Figure 1b presents the view 
of the measuring track.  

Vibration converters type 4504 made by Brüel&Kjær were selected on the basis of 
instructions included in papers [1], the linear frequency of converters transit amounted to 
13 kHz. During diagnostic tests signals in frequency from 0.7 Hz to 9 kHz [1] were 
registered. Sampling frequency was set at 32 kHz. This means that the frequency that 
was subject of the analysis in accordance with Nyquist relation amounted to 16 kHz. 

This research was carried out in accordance with principles of active experiment. 
After carrying out a series of brakings at set speeds at the beginning of braking, pads’ 



Vibrations in Physical Systems Vol.24 (2010) 

 
357

pressures to the disc and braking masses, the friction pads were changed and values of 
instantenuous vibration accelerations were registered. 

3. Research results 

In domain of amplitudes, the most common are the point parameters [2], which are used 
to describe displacement signals, speed signals and signals of vibration accelerations. 
Characterizing vibration signal with one number is an advantage of point parameters, 
thanks to which it is easy to define changes in vibroacoustic signal resulting from 
changes in technical condition of the tested object. 

To diagnose the wear of friction pads of railway brake the following dimensional 
point parameters are applied: 
- average amplitude, described with dependence: 
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T
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S
0

1  (1) 

where:  T  - means average time [s], 
 s(t) - means instantaneous value of vibration accelerations [m/s2]. 

- RMS amplitude, described with equation: 
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- square amplitude, describe with dependence: 
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- peak amplitude, described with equation:  
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Before calculating point parameters from signals of vibration accelerations in 
program Matlab 7.0, a preliminary processing of signal in time domain was carried out. 
The reason of this processing was to select from the whole registered signal a part 
connected only with braking process. This process was also carried out to obtain 
required dynamics of changes essential for diagnostic purposes. Defining dependence of 
friction pad’s thickness on selected point parameters was carried out through 
determining dynamics of changes for a certain parameter, which is presented in 
dependence (5) [4]: 
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where: s1 - means the value of point parameter determined for pad G3 or G2 [m/s2], 
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 s2 - means the value of point parameter determined for pad G1 [m/s2]. 

The analysis of results of vibration tests showed that obtaining dependence of friction 
pads’ thickness on the value of point parameters is possible by measuring vibration in 
directions Y2 and Z2 on a sensor mounted from the side of brake cylinder’s case. 
Diagnostic tests with application of point parameters showed that inference about the 
wear of friction pads is dependant on type of braking with pressure N to the disc and on 
braking mass M. Realizing pressure N=44kN on the disk with M=4.4T enables 
determining dependence of the wear of friction pads on the value of point parameters in 
the whole speed range at the beginning of braking i.e. from 50 to 200km/h. Moreover 
vibration tests showed that combinations of brakings with N=44kN and M=7.5T, 
N=28kN and M=4.4T, N=28kN and M=7.5T preclude assessment of pad wear on the 
basis of values of point parameters for considered speeds at the beginning of braking. 

The greatest values of dynamics of changes were noticed by using from point 
parameters the RMS value and square value. Figure 2 present dependence of (RMS) 
value of vibration accelerations in direction Z2 on braking speed for various values of 
pad wear G with N=44kN and M=4,4t. 

 

Figure 2. Dependence of (RMS) value of vibration accelerations in direction Z2 on 
braking speed for various values of pad wear G with N=44kN and M=4,4t 

Because of increasing values of selected point parameters in the speed function at 
the beginning of braking, which was found out for each tested friction set, in the further 
analysis calculated point parameters were approximated against three friction pads’ 
thicknesses. Dependences were approximated with the polynomial function or the linear 
function (depending on the speed at the beginning of braking) receiving the largest 
values of correlation coefficient R2. As a result of approximation mathematical models 
were obtained, which enable to calculate value of selected point parameters in the 
function of friction pad’s thickness. In the measurement’s orthogonal direction to the 
friction surface of the disc (Y2) and tangential direction (Z2), approximation was carried 
out for RMS value, average value and square value, which resulted from the greatest 
dynamics of changes in enumerated point parameters. 
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In case of measurement of instantaneous values of vibration accelerations in 
direction Y2, it was found out that for lower speeds at the beginning of braking (to 
80km/h), approximation of point parameters can be effected with linear functions, which 
was confirmed for each calculated parameter i.e. for, RMS value, average value, square 
value and peak value. Higher braking speeds cause that the value of point parameters 
should be approximated with the polynomial function. In direction Z2 of measurement of 
vibration accelerations of calipers with pads, average value should be approximated with 
the polynomial function in the whole range of speeds at the beginning of braking. 

During station research, dynamics of changes of analyzed values of point 
parameters according to dependence (5) was defined, which is presented in table 1. On 
this basis it was found out that RMS value of vibration accelerations shows the best 
sensitivity towards change of pad’s thickness against other point parameters at vibration 
measurement in directions Y2 and Z2. 

Table 1. Dynamics of changes of selected point parameters in direction Y2 and Z2 

Value of dynamics of changes 
Point paramiters Symbol Unit 

Measurement direction Y2 Measurement direction  Z2 

RMS value
 

SRMS
 m/s2 4.8 5.3 

Average value SAVERAGE
 m/s2 4.3 4.5 

Square value SSQUARE
 m/s2 4.1 5.1 

Peak value SPEAK
 

m/s2
 

3.9 4.4 
 

Fundamental aim of station research of diagnostic character is to determine the 
wear of friction pads on the basis of values of vibration accelerations by applying 
approximating functions, on the basis of which, measured value of point parameter 
enables to define the wear of brake’s friction pad. The wear of pads determinates pads’ 
thickness, which in the carried out tests were diversified. Calculations were carried out 
for RMS value obtained in measurement direction Z2.. For RMS value of point 
parameter, also obtained from measurement in direction Z2 by using linear 
approximating functions described with dependences (6-10) for five speeds at the 
beginning of braking, the following equations defining friction pads’ thickness were 
introduced: 

( ) ( ) 974,80312,10 50,50, +⋅−= == vRMSvRMS SG  (6) 

( ) ( ) 157,899328,9 80,80, +⋅−= == vRMSvRMS SG  (7) 

( ) ( ) 929,850383,8 120,120, +⋅−= == vRMSvRMS SG  (8) 

( ) ( ) 416,8968,6 160,160, +⋅−= == vRMSvRMS SG  (9) 

( ) ( ) 448,803409,6 200,200, +⋅−= == vRMSvRMS SG  (10) 

where: GRMS, (…) - means pad’s thickness calculated on the basis of RMS value of 
vibration accelerations  SRMS [mm] 
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4. Conclusions  

In the diagnostics of the wear of friction pad of disc brake, point parameters obtained 
from amplitude flows of vibration accelerations are easier to interpret. Analyzing results 
in the range of applying point parameters of signals of vibration accelerations to 
determine friction pads’ wear determinated by current pads’ thickness in the moment of 
measurement, it can be found out that selected parameters allow to determine friction  
pads’ thickness.. 

Measurement of vibration accelerations in direction Z2 tangential direction to friction 
surface of the disc and mounting vibration converter from the side of brake cylinder’s 
case, is characterized as the most sensitive towards direction Y and X, which is 
confirmed by values of coefficient of dynamics of changes defined with dependence (5). 
During verification of regression diagnostic models determined on the basis of point 
parameters of signals coming from pad caliper, differences in determining pads’ 
thickness did not exceed 14% for RMS value in direction Z2. 
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Szacowanie zuŜycia okładzin ciernych tarczowego układu hamulcowego pojazdu szynowego 
przy wykorzystaniu wybranych charakterystyk amplitudowych sygnału drganiowego 

W pojazdach szynowych ze względu na coraz to większe prędkości jazdy prowadzi się prace nad 
udoskonalaniem układów hamulcowych tak, aby zatrzymanie pojazdu odbyło się na moŜliwie najkrótszej 
drodze hamowania. Większe wymagania stawiane układom hamulcowym wymusza nie tylko okresowe 
kontrolowanie stanu pary ciernej, ale równieŜ stałego monitorowania zuŜycia elementów układu 
hamulcowego.  

Celem artykułu jest przedstawienie moŜliwości diagnozowania pary ciernej hamulca tarczowego 
wykorzystując wybrane charakterystyki amplitudowe sygnału drganiowego generowanego przez obsadę 
hamulcową z okładzinami ciernymi.  
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Abstract  

The paper presents an active vibroisolation system with two magnetic springs. Force exerted by the magnetic 
spring is a result of interaction of magnetic fields formed by magnets and coils. The stiffness of the spring can 
be modified by changing the current in coils. Static characteristic of the spring were determined using results 
of calculations and experiments. Magnetic springs were applied in two degrees of freedom system. 
 
Keywords: vibration control, switching stiffness, magnetic suspension, controlled magnetic spring 

1. Introduction 

Magnetic springs are very useful elements in design of vibroisolation systems. The 
principle of operation of magnetic spring consists in automatic control of spring force by 
the current in coils. The current modifies the magnetic flux and simultaneously the 
spring force. 

Recently the active vibroisolation systems with magnetic springs are used in many 
applications for instance in vehicle suspensions [1], [2]. Traditional suspension systems 
are often replaced by active magnetic suspension systems. Operating principle of 
magnetic suspension were discussed in [3], [4] and [5], where authors considered 
mathematical models and result of experiments.  

Paper presents the new design of controlled magnetic spring. The assumed 
characteristic of spring was obtained by the appropriate arrangement of magnets and 
coils. 

2. Operating principle of magnetic spring 

Schematic sketch of magnetic spring is shown in Figure 4. Main parts of the magnetic 
spring are: magnetic core, magnets, coils, shaft and covers. Two upper neodymium 
magnets are fixed to the end of the shaft and the next two magnets are fixed to the lower 
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magnetic core in the spring axis. Four coils are used to change the magnetic field in the 
space between magnets. 

 
Figure 2. Axis section of magnetic spring 

3. Spring characteristics 

In order to determine the magnetic field distribution and spring forces the finite element 
(FE) model was prepared using ANSYS 11.0. The FE model of spring and its section are 
shown in Figures 2 and 3. 

  
Figure 3. FE model of magnetic spring Figure 4. XZ section of  FE model 

Calculations were done for various positions of the shaft. The result of calculations 
of spring force is presented in Figure 4.  
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Figure 5. Force vs distance between magnets 

The force is a non-linear function of distance between magnets. As it was expected 
the force decreases for larger distances between magnets. The force tends to very large 
values if the distance tends to zero.  

The prototype of magnetic spring was made and using this prototype the series 
experiments were conducted in the Laboratory of Dynamic Structures and Systems in 
Department of Mechanical Engineering and Robotics AGH. Displacements and forces, 
measured for various sequences of active coils, were the base for determination of 
magnetic spring characteristics..  

Results of calculation and results of experiments are shown Figure 8. Both relations 
between force and distance were approximated by third degree polynomials. 
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Figure 6. Calculated and measured forces 

The relative error between calculation and experiments results does not exceed 13 %. 
The highest value of error is attained for small value of displacement between magnets.  

4. Vibroisolation systems with controlled magnetic springs 

The system considered in this study is a simple two-degree of freedom system. It is 
shown in Figures 6 and 7. For instance such system can be used as a model of truck and 
cabin suspension system. 
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Figure 7. First version of the system Figure 8. Second version of the system 

The coordinate system introduced previously, for the presentation of the force as a 
function of distance between magnets (Figure 5), is replaced with a new, more 
convenient coordinate system as shown in Figure 8. 
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Figure 9. Force vs. displacement for various configuration of active coils 

The principle of operation of vibroisolation system reduces to adequate switching 
between two characteristic of the spring. In each period of oscillation the energy of the 
system decreases. Two versions of vibroisolation system are considered. In the first 
version, the system consists of only one controlled magnetic spring (Figure 6) and in the 
second version, the system contains two controlled magnetic springs (Figure 7). 
Depending on the velocity sign the switching system selects the appropriate 
characteristic of magnetic spring. 

In the system with one magnetic spring the magnetic force ),( 111 xxF &  depends on 

switching function )( 11 xf & which takes the value 1 (when 01 <x& ) or 0 (when 01 >x& ). 

The force can be calculated from the following formula: 

)())(1()()( 1
)2(

1111
)1(

1111 xFxfxFxfF ⋅−+⋅= &&  (1) 

Functions )( 1
)1(

1 xF  and )( 1
)2(

1 xF  describe spring forces for assumed combinations of 

active coils. In the system with two magnetic springs the first force ),( 111 xxF &  depends 

on switching function )( 11 xf &  as it was described in (1) and the second force 
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),( 12122 xxxxF && −−  depends on switching function )( 122 xxf && − which takes the value 1 

(when 2 1 0x x− <& & ) or 0 (when 2 1 0x x− >& & ). The second force can be written in the form: 

)())(1()()( 12
)2(

212212
)1(

21222 xxFxxfxxFxxfF −⋅−−+−⋅−= &&&&  (2) 

Forces ),( 111 xxF &  and ),( 12122 xxxxF && −−  are independent. As a result of spring 

action, the energy is reduced in each cycle of vibration. The implementation of control 
algorithms in Matlab environment enables us the simulation of vibrations decrease.  

The following parameters of the system are assumed in numerical calculations: the 
lower mass m1=30 kg, the upper mass m2= 10 kg, stiffness coefficient k2= 105 N/m. 

Results of calculations are shown in Figures 9 and 10. All displacements of masses 
are related to equilibrium positions. 
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Figure 10. Displacements:  a) one active coil, b) two active coils, c) four active coils. 

As long as the lower mass is not in equilibrium state the energy of the system is 
dissipated. Amplitudes of displacements of each mass decrease. When the lower mass is 
near equilibrium position the amplitude of displacement of the upper mass is almost 
constant.  
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Figure 11. Displacements: a) one active coil, b) two active coils, c) four active coils. 

In the second version of vibroisolation system both mass attain equilibrium positions at 
almost the same time. Dissipation of energy is more effective than in the first version of 
vibroisolation system. 

8. Conclusions 

In the paper the new design of magnetic spring was proposed. Active vibroisolation 
systems with magnetic springs were studied analytically and experimentally. Vibrations 
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of two degrees of freedom system were reduced by vibroisolation systems with one and 
two magnetic springs. Various configurations of active coils were used in applied 
algorithms of vibroisolation. Numerical and experimental studies can be reassumed as 
follows: 

1. Magnetic spring characteristics are nonlinear. Difference between spring 
characteristics obtained by measurement and FE calculations is very small.  

2. The variation of the current in coils allows for modification of the spring force 
up to 33%. The force changing in this range can be exploited by control 
algorithms. 

3. The number of active coils is the base for more effective damping of the upper 
mass in both versions of vibroisolation system, 

4. Due to the range of effective force the magnetic springs should be designed for 
definite masses constituting the system.  
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SpręŜyna magnetyczna, jako element aktywnego układu wibroizolacji 
W pracy przedstawiono badania symulacyjne układu wibroizolacji z wykorzystaniem spręŜyny magnetycznej 
ze sterowalnym polem magnetycznym. Analizę pola magnetycznego spręŜyny magnetycznej wykonano 
metodą elementów skończonych wykorzystując pakiet ANSYS. W pracy przedstawiono symulację układu 
wibroizolacji z zaprojektowaną spręŜyną przy zastosowaniu odpowiedniego algorytmu przełączającego. 
Wyniki symulacji przedstawiono na wykresach. Proponowany układ wibroizolacji moŜe być wykorzystany w 
układach zawieszenia kabin pojazdów roboczych, foteli operatorów maszyn oraz w układach mocowania 
stabilizowanych platform. 
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Abstract 

The problem of the dynamic stability of a beam with different boundary conditions and with undamped 
oscillator  is formulated and solved in this work. Oscillator can be mounted at any chosen place along the beam 
length. The beam is axially loaded by a force in the form P(t)= P0+Scosνt. The problem of dynamic stability is 
solved by applying the mode summation method. The obtained Mathieu equation allows the influence of 
oscillator on the position of solutions on a stability chart to be analysed. This analysis relies on testing the 
influence of oscillator on the value of coefficient b in the Mathieu equation. The considered beams were treated 
as Euler- Bernoulli columns. 
  
Keywords: Dynamic stability, beam, harmonic oscillator  

1. Introduction  

A lot of works dealing with the dynamic stability of beams with additional discrete 
elements can we find in the literature. Evensen and Evan-Iwanowski [1] carried out 
analytical and experimental research on the influence of a mass mounted at the end of a 
beam on the dynamic stability of this beam. Sato et al. [2] investigated the parametric 
vibrations of a horizontal beam loaded by a concentrated mass, which showed the 
influence of the beam weight and the inertia of a rotational mass on the beam vibrations. 
Gürgöze [3] analysed the influence of a mass mounted at the end of an elastically 
supported beam along its axis. The dynamic stability of an elastic beam was analysed by 
Cederbaum and Mond [4]. Majorana and Pellegrino [5] analysed the dynamic stability of 
an elastically supported beam (rotation and translation springs at the ends). In [6] 
Sochacki has investigated a simply supported beam axially loaded  by a harmonic force, 
showing the destabilising effect of the concentrated mass, spring and harmonic 
oscillator. 

This paper takes into account beams at different types of boundary conditions 
(clamped-free C-F, clamped-sliding C-S, clamped-clamped C-C and clamped-pinned  
C-P). An undamped harmonic oscillator was connected to the beams at a chosen position 
between the supports. The considered beams are treated as Bernoulli-Euler beams and 
solved according to the small bending theory. The dynamic of the system was described 
with the use of the Mathieu equation. The problem of dynamic stability was solved using 
the mode summation method. The influence of additional an undamped harmonic 
oscillator (its values and positions) on the value of coefficient b in the Mathieu equation 
was investigated. In this way the possibility of a loss in dynamic stability by the 
investigated system was determined. 
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2. Mathematical model 

A scheme of the considered C-F beam is presented in Fig. 1. 
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Figure 1. Model of the C-F beam with additional undamped harmonic oscillator 

mounted in selected positions along the beam length. 
 
The equations of vibrations: 
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where  : P(t)  = P0+Scosνt , ν - forcing frequency, EiJi – flexural rigidity of beam, 
ρi – density, Ai – cross-section area, i = 1,2 ith part of the beam 

together with the boundary and matching conditions: 

( ) 0,01 =tw ,     ( ) 0,01 =tw I                                          (2a-b)  
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( ) ( )twtlw ,0, 211 = ,     ( ) ( )twtlw II ,0, 211 = ,     ( ) ( )twJEtlwJE IIII ,0, 2221111 =       (2f-h) 

( )( ) 0,11 =−+ tlwzkzm &&                                       (2i) 
where: the Roman numerals denote differentiation with respect to x, and dots denote 
differentiation with respect to time t,  
made the formulation of the boundary value problem of the investigated beam.  
During the vibrations the displacement of the beam and oscillator mass take the form: 

( ) ( ) ( )txWtxw iiii ωcos, = ,  (i = 1,2)                                                (3) 

and      ( )tZz ωcos=                                                                  (4) 

where ( )ii xW  and Z are displacement amplitudes wi and z, while ω  is the natural 

frequency of the beam with discrete elements. 
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For the nth mode the natural frequency ωn and eigenfunctions of the beam Win(xi) are 
determined by solving the boundary value problem.  

Analogical procedure in case of remaining beams C-C, C-P and C-S after introducing 
the appropriate boundary conditions, leads to determination of the natural frequency and 
eigenfunction of these beams. 

2. Solution of the dynamic stability  

The solution of equation (1a,b) is assumed to be in the form of eigenfunction series [7].  

 ( ) ( ) ( )∑
∞

=

=
1

,
n

niinii tTxWtxw             (i=1,2)                         (5a,b) 

where: ( )tTn  are unknown time functions and ( )iin xW  are normalized eigenfunctions of 

free frequencies of ith parts of the beams. 
Substituting solution (5a,b) into equation (1a,b) one can obtain: 
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After multiplying by ( )iim xW , one can receive from equation (6): 
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From equations (1a,b) for the nth eigenfunction ( )iin xW , for free vibrations of the beam, 

after separate variables and multiplying by ( )iim xW , one can obtain:  
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Then (7) takes the following form: 
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After integrating equations (9), the following form was obtained for the whole beam and 
the first term: 
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Appropriate transformations of equation (10) and the substitution of t by a new variable 
τ = νt lead to the following form of Mathieu equation.  

 ( ) ( ) ( ) 0cos =++ τττ TbaT&&                                             (11) 
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where: 
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The periodical solutions to the Mathieu equation (11) are known (e.g. [8]). These 
solutions allow us to determine the stable and unstable regions of solutions. The 
numerical values of a and b each time decide the position of solution in the stable or 
unstable region. However, it must be stated that the probability of obtaining stable 
solution is higher in case of lower value of coefficient b, at the determined value of a. 

4. The results of numerical computations and discussion 

The solution to the problem of dynamic stability of the tested beams allowed to 
determine the values of coefficient b in the Mathieu equation at changeable values of       
the elasticity coefficient of oscillator  K (Fig. 2) and mass of oscillator M (Fig.3). 
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Figure 2. The influence of oscillator mounting location on the beams and the value of 
the elasticity coefficient of oscillator  K on the value of coefficient b for a =1  

and  M = 0.2: K = 10                    ,  K = 100                   ,  
(for CF beam K = 1                  , K = 10                     ) 
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Calculations were carried out assuming the following dimensionless quantities: 
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Figure 3. The influence of the oscillator mounting location on the beams and its  

mass M on the value of coefficient b for a =1 and  K = 100 (for CF beam K = 10):  
M = 0.2                   , M = 0.6                  . 

 
Analysis of the research results of the influence of the oscillator (K and M) and its 

placement on the beams on the value of coefficient b allows the following conclusions to 
be drawn: an increase in the elasticity coefficient K of the oscillator leads to a decrease in 
coefficient b (Fig.2), while an increase in oscillator mass M leads to an increase in the 
value of coefficient b (Fig. 3).  

Analysing the influence of the oscillator placement on the beams it can be stated that, 
independently of the values K and M, the closer oscillator mounting in places for which 
the amplitudes of first modes are the highest  leads to an increase in the value of 
coefficient b.  
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Stateczność dynamiczna belek z oscylatorem harmonicznym 
W niniejszej pracy rozwaŜa się belki o róŜnych warunkach brzegowych, obciąŜonych siłą wzdłuŜną postaci 
P(t) = P0+Scosνt. Dodatkowo w dowolnym miejscu pomiędzy podporami do belek dołączono liniowy 
oscylator harmoniczny bez tłumienia. Badane belki traktuje się zgodnie z teorią  Bernouliego – Eulera i 
rozwiązuje zgodnie z teorią małych ugięć. Zagadnienie stateczności dynamicznej rozwiązano, stosując metodę 
sumowania funkcji własnych i opisano za pomocą równania Mathieu. Zbadano wpływ oscylatora 
harmonicznego na stateczność drgań belek. Badania polegały na określeniu wpływu oscylatora dołączonego do 
belki zarówno co do jego wartości jak i miejsca mocowania na belce na wartość współczynnika b w równaniu 
Mathieu. W ten sposób określono moŜliwość utraty stateczności dynamicznej przez badane układy.  
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Abstract 

The paper describes some new vibration features which had been successfully applied and could be 
recommended for more effective vibration monitoring and incipient fault detection. These features known as 
the vibration non-dimensional S-discriminants are now calculated in parallel way for a set of narrow frequency 
bands and represented in format convenient for interpretation and documentation. This cartography kind of 
vibration data visualization enables localization of increased vibroreactivity sources, an early fault detection 
and prompt estimation of the machinery degradation speed in a very sensitive manner, in contrast with other 
current methods. The point is that this approach allows to emphasize not only common used changes (growth) 
of powerful vibration signal components (event of vibroactivity), but also variability of weak, though just 
informative vibration components (event, called “vibroreactivity”). One of the practical example of successful 
application of this method is given for incipient burn-out of turbine nozzle. 
 
Keywords: machinery, sources localization, incipient fault detection, vibration non-dimensional discriminant.  

1. Introduction 

Generally, most of machinery monitoring and protection system algorithms are based on 
estimation of vibration velocity RMS (root mean square) values within 10 to 1000 Hz 
frequency band, or of current amplitude divergences (for specific narrow frequency 
bands) from baseline meanings collected under the good machinery condition [1]. There 
are well-known conventions accordingly to which RMS level increase by a factor greater 
than 10 (20 dB) is classified as “not permissible”, which suggests the crash condition.  

This approach is based on an assumption that rotary machines, having similar power, 
axes location height, shaft rotation speed, foundation and amortization types may be 
unified in a particular class with the same alarm thresholds of vibration RMS levels: for 
its good, allowable and not permissible status, without taking into account some 
difference in their operation, excitation of oscillation, fault symptoms in the vibration 
signal. The conventional frequency band for such high-speed machinery as gas turbine 
units (GTU) contains only several first shaft rotation frequency harmonics which are 
affected only by rough machinery malfunctions like an unbalance, a part breakage, and 
so on). Meanwhile, technique of an incipient fault detection (such as erosion, pitting and 
so on) bases on some other principles, because their symptoms lie in higher frequency 
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range. Obviously, an application of common vibration monitoring technique for high-
speed machinery is not effective. This is the reason to address to more effective methods. 
The proposed one is the fresh machinery vibration monitoring technique, which is built 
upon usage of parallel narrowband S-discriminant analysis of clipped vibration signals 
[2-3]. This method provides localization of machinery heightened “vibroreactivity” 
sources in bands with signal dispersion dramatically grown in comparison with reference 
measurement data due to arising and then developing defects [4]. An example of this 
novel vibration monitoring technique practical application is given for an early detection 
of gas turbine engine part damage. 

2. A new approach to the vibration monitoring of high-speed machinery 
There are several well-known common laws of vibration waveform changes along 
machine operational time. Firstly, the amplitude and amount of signal overshoots are 
increasing; secondly, noise level is growing; and at last, waveform changes become 
irregular, unstable and non-linear. The specific signal changes depend on an operational 
damage nature, but a mandatory feature of an incipient fault influence is appearance of 
single or multiple signal overshoots deriving from interaction conjugate parts format 
changes due to erosion, corrosion, pitting, contact surfaces local welding and so on.  

As a matter of fact, the informative components of vibration signal changes that 
really describe a process of machine deterioration, especially at its early stage, are too 
weak. So, these negligible amplitude changes are masked by vibration background, 
making the detection of any fault very difficult. To properly realize the “critical” 
machine condition monitoring and incipient fault detection it is suggested to use the 
algorithm of estimation of some dimensionless S-discriminant magnitude declining from 
the value equal to unit which corresponds to machinery normal (reference) condition:  

 
                                                                                                                         
                             
 

 
Here (xi)(t) and (xi)(n)  are values of vibration amplitude components, calculated for 

current and reference machine conditions, correspondingly; P = λλλλ σn , (λλλλ = 0.5 – 3.0) – 
amplitude clip-threshold, σn - standard deviation (RMS) of vibration signal for normal 
machinery condition; C – power (equal to 2 for dispersion index Id of threshold 
exceedings); K(t) and K(n) - are numbers of spikes above the threshold P for current and 
normal vibration signals. Thus, it is dimensionless amplitude S-discriminants, featuring 
high sensitivity to instability, caused by machinery operational imbalance, resulted from 
any fault, and noise immunity to internal machinery masking interference. 

For normal condition, discriminant meanings are equal to 1, and become much 
bigger than 1, if amplitude overshoots (spikes) and their amount increase due to 
deterioration process development. These properties permit to use them in machinery 
condition monitoring systems not only for emergency protection aim, but for heightened 
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vibroreactivity sources localization, caused by incipient faults influence, and hence, for 
early machinery operational damages detection.  

3. GTU condition monitoring technique based on multidimensional visualization of 
vibration S-discriminants 

The method was used for condition monitoring of avia derivative gas turbine engine PS-
90 of gas transportation compressor stations. GTU case measurement points disposition 
is presented on figure 1. Further only results for point 5 are considered. 

 

Figure 1. Vibration sensor locations on engine PS-90 case were as follows: 1, 2 –input 
compressor flange; 3, 4 – combustion chamber area; 5 – high pressure turbine (HPT) of 

gas-generator (GG) area (measuring point is TGG-H); 6 – power turbine area.  

GTU condition monitoring results are known to depend on some factors that reduce 
degree of diagnosis accuracy. Remoteness of case sensors from vibration sources; 
instability of load and high speed of rotor revolution; anisotropic construction and 
temperature deformation susceptibility; using for monitoring aim vibration velocity 
information, contained in 0-4.0 kHz, - are the factors which make the standard vibration 
monitoring methods ineffective. For example, Figure 2 shows the case vibration velocity 
spectrum for damaged inner race of HPT roller bearing with relative frequency 
BPFI=15.2 Fr. This spectrum includes only first harmonics of shaft rotation frequency.  

 

Figure 2. Case vibration velocity spectrum of PS-90 for HPT roller bearing damage. 
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The proposed machinery vibration monitoring technique is based on parallel 
narrowband S-discriminant analysis of clipped vibration signals for the machinery 
heightened “vibroreactivity” sources localization, i.e. definition of the frequency bands 
with significant growth (in comparison with reference measurement data) of signal 
dispersion and overshoots amount originated from arising and then developing defects. 
Presentation of the multidimensional information in a table form, where array colour 
cells are S-discriminant meanings (in accordance with coloured bargraph), which is 
convenient for further interpretation, provides a good tool for incipient fault detection, 
primary identification of flaws and on-the-fly estimation of its development rate. An 
example of this technique usage is shown on Table 1 (in reduced form).  

Table 1. The trend of vibration velocity S-discriminant values calculated within several 
frequency bands: a broad one (0…4.0 kHz) and eight narrow (0.5 kHz) ones, as for GTU 

case horizontal vibration under the HTP nozzle set burn-out development. 

(1-2) (3-4) (5-8) (9-16) (17-32) (33-64) (65-128) (129-256) (257-512) 513-1024 

 
Frequency band ∆F= 

4.0 kHz 
∆F ≈0.5 kHz 

 

Dates 

 
  0

 –
 4

.0
 

0.
1-

0.
5 

0.
5-

1.
0 

1.
0-

1.
5 

1.
5-

2.
0 

2.
0-

2.
5 

2.
5-

3.
0 

3.
0-

3.
5 

3.
5-

4.
0 

26.12.06_18.02  - Reference 1 1 1 1 1 1 1 1 1 
Out of operation  (13.02-15.04.07) 

16.04.07_18.00 – Defect arise 2 2 1 2 3 1 1 45 2 
17.04.07_18.02 1 4 2 1 1 1 1 382 2 
18.04.07_18.00 1 2 1 2 2 1 2 106 1 
27.04.07_18.00 1 2 1 2 4 1 2 428 2 
10.05.07_06.00 – Full-blown defect 1 2 1 2 1 1 1 742 1 
13.05.07_06.00 1 2 1 3 1 1 1 350 1 
13.05.07_18.00 – Max defect 2 3 1 2 2 1 1 802 1 
14.05.07_06.00 2 3 1 3 1 1 1 249 1 
14.05.07_18.00  2 4 1 2 4 1 1 560 1 
20.05.07_18.00– Secondary damages 1 10 1 2 2 1 1 282 5 
24.05.07_06.00 1 2 1 1 1 1 1 150 2 

Out of operation  (25.5- 27. 05.07) 
28.05.07_08.32– Secondary damages 1 5 1 2 2 1 1 107 17 
29.05.07_06.00 1 2 1 3 3 1 1 122 33 
31.05.07_18.00  2 4 1 2 3 1 1 20 39 
06.06.07_18.00  1 1 1 3 1 1 1 465 1 
12.06.07_06.00 1 1 1 3 1 1 1 16 2 
12.06.07_18.00 1 1 1 2 1 1 1 195 1 
14.06.07_18.00 1 3 1 2 1 1 1 598 3 

Out of operation  (19.06 - 24.06.07) 
25.06.07_18.00 1 1 1 4 1 2 1 29 9 
07.07.07_18.00 1 1 1 3 1 1 1 278 1 
11.07.07_06.00  1 1 1 2 1 1 1 6 1 
11.07.07_18.00  1 1 1 2 1 1 1 240 1 
18.07.07_18.00 – Multiple faults 1 1 1 1 1 1 1 4 1 

Out of operation  (19.07- 23.07.07) 
27.07.07_18.00 – Engine shutdown 1 1 1 1 1 1 1 1 1 
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Table 1 with vibration velocity S-discriminants peak values colour presentation for 
case measurement point TGG-H (in narrow frequency bands) within operational dates 
Dec 26, 2006 through Jul 27, 2007, when the nozzle set of HPT was burning up, 
demonstrates case vibroreactivity changes during the nozzle degradation. Given 
vibroreactivity table allows visual estimating of current machinery condition and 
malfunction development rate to promptly make decision about further machine 
exploitation. As it could be seen from the table a nozzle burn-out (the stationary part of 
HPT) essentially affects 3.0-3.5 kHz frequency band vibration features with maximum 
discriminant value Id=802 as early as on May 13, 2007, i.e. 2.5 months beforehand the 
engine final breakage. Obviously, neither wide frequency band (0-4.0 kHz), nor rotation 
frequencies narrow band (0.1-0.5 kHz) show any reaction to this machinery damage.  

Figure 3 represents a narrowband (3.0-3.5 kHz) S-discriminant trend. To understand 
the origin of its changes, see Figure 4.  

 

 

Figure 3. Dependence of narrowband (3.0-3.5 kHz) S-discriminants on operational 
time when the nozzle set of HPT was burning up, with max Id=802.2 of 13.05.07. 

 

 
Figure 4. Waveforms and corresponding spectrums in wide (top) and narrow (bottom) 

bands) for date 13.05.07, when the second stage HPT nozzle set of engine PS-90 is 
burning up. (Max Id =802.2). 
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It could be well seen at the bottom part of Figure 4 where spectra for wide frequency 
band (0…4.0 kHz) – upper, and for narrow frequency band (3…3.5 kHz) – lower, 
respectively, are presented. It is significant that the high frequency component is not 
synchronous with rotation frequency. Presumably, with regard to the other vibration 
spectrum data, the real source of the vibration is self-excitation oscillations generated by 
high pressure flow going by reach-through holes due to whirls arising at their edges and 
producing something similar to a whistle. The positive results of the novel vibration 
monitoring technique practical application were also obtained for some other parts 
operational damages (bearing faults, damages of compressor and turbine blade set) of 
avia- and navy-derivative gas turbine engines.  

Conclusions  

The paper shows that in order to effectively monitor machinery condition, detect 
incipient faults and localize heightened vibroreactivity sources, the condition monitoring 
procedure has to deal with the vibration features susceptible to vibration signal 
overshoots and even slight changes of its amplitude. These requirements are met by the 
proposed vibration condition monitoring algorithm based on conception of 
dimensionless vibration S-discriminants presentation such as multidimensional trend plot 
which is convenient tool for fulfillment of different tasks: organization of automatic 
machinery condition monitoring; incipient fault detection; preliminary faults 
identification and definition of cause-and-effect relations along the operational time. 

As it is seen from practice, the more complicated a machine unit is, the bigger is the 
dispersion of measured parameters within general scope of similar machines. Thus, it is 
important to use the individual approach when the vibration monitoring is on.  
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Abstract  

The nonlinear spring pendulum externally and parametrically excited has been tested. The approximate 
analytical method was adopted  to solve the equations of motion. Dimensionless variables are introduced into 
the equations of motion. The conditions for all the third order resonances were detected. The modulation 
equations and the frequency response functions for chosen cases of resonances have been derived and 
presented graphically. Calculations were made in the computer algebra system Mathematica. The elaborated 
procedures are in a general form and can be used to investigate the other systems in the similar way. 
 
Keywords: nonlinear dynamics, asymptotic analysis, resonances  

1. Introduction 

Nonlinear dynamics of mechanical system with two degrees of freedom near the 
resonance is the subject of the paper. This system is the pendulum with changing length 
moving on circular path (Fig.1). There are many papers investigating various kinds of 
single, multiple or spring pendulums [2, 3, 5], because they can simulate the dynamics of 
various engineering systems and machine parts.  

The coupling in the equations describes energy exchange between modes of 
vibrations and possibility of autoparametric excitation. Energy transfer in nonlinear 
systems is well known in nonlinear dynamics of multi degree-of-freedom and is widely 
discussed by many authors [1, 4]. 

In our work we introduce the equations of motion of the pendulum in the  
dimensionless form. The asymptotic method of multiple scales was applied both to 
solving equations of motion and to determine resonances conditions. All calculations 
were performed with the help of the computer algebra system Mathematica, in which 
several procedures were elaborated in order to automatize most operations. The 
procedures have general form and enable researching other nonlinear systems. 
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Fig. 1. Spring pendulum moving on circular path 

2. Formulation of the problem 

The studied system is presented in Fig. 1. The motion is planar and X  and ϕ  are the 

generalized co-ordinates. The pendulum is loaded by external force ( ) tFtF 10 cos Ω=  

and moment  ( ) tMtM 20 cos Ω= . Moreover, linear viscous damping is assumed. 

The governing equations of the system in non-dimensional form are as follows: 
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L denotes length of the statically stretched pendulum at 0=ϕ , m is its mass, k denotes 

stiffness of the spring, g is the Earth acceleration, B1 and B2 are the viscous coefficients. 
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3. Solution Method 

The asymptotic method of multiple scales is used to obtain the solution and to determine 
resonances conditions. Trigonometric functions in Eqs. (1)–(2) are approximated by the 
power series of 3rd order. The amplitudes of vibrations are assumed to be of the order of 
a small parameter ε , where 10 <<< ε , and hence εφϕε == ,xz . The generalized forces, 

damping coefficients and radius of the path are assumed in the form: 
rrffcc iiii
~,

~
,~ 232 εεε === , i=1,2. The parameters rcf ii

~,~,
~

 are of the order of 1. 

The functions x  and φ , are sought in the form 
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where τ=0T , τε=1T  and τε 2
2 =T  are various time scales. 

Substituting the definitions (3) into Eqs. (1)-(2) and then arranging them according to 
the powers of the small parameter, we obtain the set of the partial linear differential 
equations. First order solutions have a form 
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where A1 and A2 are unknown complex functions of slow time scales. 
After eliminating secular terms we get the following second and third order solutions 

 ( ) ( ) CC
w

A

p

r
AAwx

wTpT

+
−

+
−
Ω

−=
142

e3

12

~e
2

2
2

i2

2

2i

22
2

2

00

 (5) 

 ( )
( ) ( ) ( ) ( )

,
21

2e

21

2e

2

~ie 21
1i

21
1i

22

2i

2

000

CC
w

AAww

w

AAww

wp

pr wTwTpT

+
−

−
+

+
+

−
−

=
−+

φ  (6) 

where CC stands for the complex conjugates of the preceding terms. 
The third order approximation is given by  
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The functions A1 and A2 can be calculated from secular terms and initial conditions 
related to Eqs. (1)–(2). In the further part of the work we make the polar representation 
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of the complex amplitudes 
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4. Parametric and External Resonances 

The resonances detected from the solutions (5)–(8) can be classified as: primary external 
11 =p , ,2 wp =  parametric p=1, p=w, internal w21= and combined ( )wp −±= 1 , 

( )wp +±= 1 . Two cases of simultaneously occurring resonances are discussed below 

and then solved for chosen parameters. 
Case 1 – Parametric spring resonance 1≈p  and external resonance with pendulum 

wp ≈2 . Resonance conditions are reflected in the secular terms when we introduce  the 

detuning parameters 1σ  and 2σ  in the following way 1
~1 σε+=p , 22

~σε+= wp , 

where ii σεσ ~= . Using above substitutions into equations of motion and eliminating the 

secular terms we can obtain the modulation equations. After labor–consuming 
transformations we get autonomous modulation system 
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where ( ) ( ) ( ) ( )2122121221111211 ,~,,,~, TTTTTTTTTT ψσθψσθ −=−= . 

Amplitude modulations according to (9, 10) and time history obtained numerically 
from eq. (1) are presented in Fig 2. 

 
 
Fig 2. Amplitude modulations (thick line) and time history (thin) obtained from (1). 
 
Considering steady state motion, frequency response functions can be obtained 
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(i) for parametric resonance 
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(ii) for external resonance 
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Some families of resonance curves are shown in Figs. 3 and 4. 

    

Fig. 3 a) Amplitudes a1 vs. detuning parameter for different r .b) Amplitudes a2 vs. 
detuning parameter for different c2. 

      

Fig. 4 a) Amplitudes a2 against detuning parameter (effects of natural frequency w 
variation) b)Poincare map in resonance. 

The change of character of resonance from “hard” to “soft” (Fig. 4a) is a 
consequence of changing sign of the coefficient standing at a6 in Eq. (12). For some 
parameters the motion is very complicated (see Fig. 4b). 
Case 2 – Parametric spring resonance 11 ≈p  and external resonance with pendulum 

wp ≈ . In order to consider that case we introduce the detuning parameters 1σ  and 2σ  

in the following way 11
~1 σε+=p , 2

~σε+= wp , where ii σεσ ~= . 

a) b) 

a) b) 
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Fig. 5. a) Amplitudes a2 vs. detuning parameter (effects of natural frequency w 
variation) b) Amplitudes a2 vs. detuning parameter for different c2 

6. Conclusions 

The dimensionless equations of motion were introduced and successfully solved with the 
multiple scale method. General solutions, including the third order of approximation, 
were achieved in analytical form. Dimensionless solutions are universal and valid for 
many systems of the same scale of similarity. The amplitude modulations presented in 
Fig. 2 well agreed with time history obtained numerically. Frequency response functions 
for the chosen resonances are presented graphically. The complicated motion of the 
pendulum near resonance is illustrated in the Poincare map. Most operations were 
performed with the help of procedures elaborated by authors in Mathematica. 
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Metoda wielu skal dla wymuszanego kinematycznie nieliniowego układu z wahadłem   

Badana jest dynamika wahadła spręŜystego z zewnętrznym i kinematycznym wymuszeniem. Do 
rozwiązania równań ruchu zastosowano metodę wielu skal. Określono warunki pojawienia się 
rezonansu i przedstawiono wykresy krzywych rezonansowych oraz funkcje modulacji dla 
wybranych parametrów. Obliczenia przeprowadzono w systemie algebry komputerowej 
Mathematica. 

a) b) 
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Abstract 

Multilobe journal bearings with 3 operating lobes of cylindrical profile and 3 oil pockets are applied in 
different types of rotating machinery. The design of 3-lobe journal bearings, the number of lobes and oil 
grooves improves thermal state of bearing at higher speeds and the stability of operation.  

The paper describes the results of the calculations of dynamic characteristics and determination of 
stability ranges of simple symmetric rotor operating in 3-lobe journal bearings of cylindrical profile. The 
dynamic characteristics of supporting bearings are defined by four stiffness and damping coefficients of oil 
film. The iterative solution of Reynolds, energy and viscosity equations allows the obtaining of the load 
capacity of bearings and the required coefficients of oil film. Adiabatic, laminar oil film and the static 
equilibrium position of journal were assumed. The oil film pressure, temperature, viscosity fields and the oil 
film forces were the basis of the bearing dynamic characteristics and stability determination. 
 
Keywords:  multilobe journal bearings, stability of rotor  

1. Introduction 

The 3-lobe journal bearings [1-4] applied in the turbines and turbo generators should 
assure long and reliable operation of this responsible rotating machinery. They are 
characterised by good stability in the range of higher rotational speeds assuring very 
good cooling conditions for the oil film. Any failure occurring during operation of these 
bearings can cause very high power losses. The static and dynamic characteristics of the 
journal bearings are the basis for the determination of the stability of rotor operating in 
the journal bearings. 

In the turbogenerators, the lemon bearings are very often applied. The „half-lemon” 
bearing (Fig. 1a) has been used with success in the bearing systems of rotating 
machinery, too [4]. This has a lower half with the normal radial clearance, the bearing 
and the shaft centres coincide if the shaft spins centrally. The top half has a difference in 
radii between shaft and bearing surface, about 2,5 to 3 times that of the bottom part. Its 
centre is however dropped, so the actual top clearance equals the bottom clearance, but 
that of the side is larger. This ensures that the shaft is always running eccentric to the top 
half, which therefore exerts a downward force on it. Some unpublished experiments at 
Imperial College have shown that this puts up the vibration frequency by some 20 per 
cent [4]. 

The design that is mentioned in [4] can be applied for the 3-lobe journal bearings 
(cylindrical profile, Fig. 1b), i.e. the bottom lobe as the cylindrical and both upper lobes 
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with the difference in radii between shaft and bearing surface (multilobe profile, Fig. 1c). 
For such solution there are no publications and this situation generates the need for more 
results to obtain better knowledge on this type of bearing. However, for the cylindrical 3-
pockets bearing little publication are known, only. Hence, more investigation on the 
static and dynamic properties of this type of bearings can be useful. 

The 3-lobe bearings are represented by the 3-lobe cylindrical bearing [1-4] (Fig. 1b), 
classic bearing [1-4] and with the pericycloid profile [3]. All these types of bearings 
have three lubricating grooves placed each 1200. The 3-lobe bearing is designed as three 
parts bearing of cylindrical non-continuous profile [1-4]. The single lobes of this bearing 
are designed as the arc of the circle with the centre points placed on the symmetry line of 
the single lobe. In the symmetric multilobe bearing the circle inscribed in the bearing 
profile is tangent to the lobe exactly at the middle point of each lobe. 

The paper introduces theoretical investigation into the stability of rotor operating in 
3-lobe cylindrical journal bearings (3-pocket). The Reynolds, energy and viscosity 
equations were solved numerically on the assumption of incompressible lubricant, the 
laminar and adiabatic flow of oil in the lubricating gap of finite length bearing. The static 
equilibrium position of the journal was assumed in the calculations. Finite difference 
method was applied for the solution of all hydrodynamic equations. 

The stability of rotor running in considered journal bearings is investigated on the 
basis of bearing dynamic characteristics [5]. On the assumption of very small 
displacement of journal centre from its static equilibrium position, the oil film forces 
were linearized. Characteristic equation of the system rotor-bearings obtained in the 
form of an algebraic polynomial of 6-th order with the coefficients, which are functions 
of oil film stiffness and damping coefficients, was applied. Application of the Routh-
Hurwitz criteria has allowed knowing whether or not; the characteristic equation has a 
positive root with positive real part. 

2. Oil film pressure and temperature distributions 

The geometry of multilobe journal bearing (Fig. 1) describes Eqn. (1) on the assumption 
of the parallel axis of journal and bearing sleeve. In this equation, the first member gives 
the geometry of multilobe bearing [1,3] and the second member describes the geometry 
of cylindrical bearing.  

)cos()()( αϕεϕϕ −⋅−= LiHH     (1) 

where: α - attitude angle, (0) , ε - relative eccentricity,  ϕ - peripheral co-ordinate, (0) 
The first member of the right side of Eqn. (1) determines the gap geometry of 3-lobe 

journal bearing, at the concentric position of journal and bearing axis. It has the 
following form [1, 3]: 

)cos()1()( iissiLiH γϕψψϕ −⋅−+=
 

  (2) 

where: γi - angle of lobe centre point, (0), ψsi - lobe relative clearance. 
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a)    b)    c) 

Fig. 1 Examples of multilobe journal bearings: a) half-lemon, b) cylindrical 3-
pockets, c) 3-lobe asymmetrical (combined profile) 

The journal bearing performances for laminar, adiabatic model of oil film can be 
determined by the numerical solution of the oil film geometry, Reynolds, energy and 
viscosity equations on the assumption of static equilibrium position of the journal [6-9]. 
The oil film pressure distribution was defined from the following, transformed Reynolds 
equation: 
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where: D, L - bearing diameter and length (m), H  = h/(R-r) - dimensionless oil film 
thickness, h - oil film thickness (µm), p  - dimensionless oil film pressure, 

p =pψ2/(ηω), p - oil film pressure (MPa), r, R - journal and sleeve radius (m), t – time 

(sec), ϕ, z  - peripheral and axial co-ordinates, φ =ω t - dimensionless time, ω -  angular 
velocity, η  - dimensionless viscosity, ψ  - bearing relative clearance, ψ =∆R/R (‰), 

∆R - bearing clearance, ∆R=R-r (m). 
It has been assumed for the pressure region that on the bearing edges the oil film 

pressure p(ϕ , z)= 0 and in the regions of negative pressure, p(ϕ , z) =0. The oil film 

pressure distribution computed from Eqn. (3) has been introduced in the transformed 
energy equation [6-9]. The boundary conditions for the oil film pressure and temperature 
take into account the inlet pressure and temperature. Temperature values T(ϕ , z) on the 

boundaries  (z = ±  L/2 ) were determined by means of the parabolic approximation [6]. 
Temperature and viscosity distributions were found by the iterative solution of equations 
(1) through (3) and energy one [6-9]. 

The equations of motion for the journal and the centre of elastic shaft are given in 
matrix form by Eqn. (4). All the stiffness and damping coefficients were calculated by 
means of perturbation method [1-3].  
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The motion of simple symmetric rotor can be described by the following equation 
[5]: 

tbtaxCxBxM ωω sinˆcosˆ +=⋅+⋅+⋅ &&&    (4) 

where: M, B, C –matrices of mass, damping and stiffness, ba ˆ,ˆ  - coefficients of dynamic 

constraints.  
After transformations of Eqn. (4) the real and imaginary part was obtained [5]. The 

stability of elastic rotor-bearing system is analysed on the basis of the following 
characteristic frequency equation of 6-th order with regard to (λ/ω) [5]: 

c6( ωλ / )6 + c5( ωλ / )5 + c4 ( ωλ / )4 + c3 ( ωλ / )3 + c2 ( ωλ / )2 +c1 ( ωλ / ) + c0 = 0. (5) 

The coefficients c0 through to c6 of Eqn. (5) are given by the Eqn. (6): 

 c0 = A0  c1 = A1  c2 = A2 + a0 (2 A0 + b0 A4) 

 c3 = a0 (2 A1 + b0 A3) c4 = 2 a0 A2 + )( 400
2
0

2
0 AbAba ⋅++              (6) 

 c5 = )( 301
2
0 AbAa ⋅+  c6 = 2

2
0 Aa          

where: a0 - ratio of angular velocity to the angular self-frequency of stiff shaft, 

a0=
22 / crωω , b0 - ratio of Sommerfeld number to the relative elasticity of shaft, So/cs , c* 

– shaft stiffness, (Nm-1) , cs – relative elasticity of shaft, cs=f/∆R = )/( 2 Rg cr ∆⋅ω , f- static 

deflection of shaft, (m), F - resultant force of oil film  (N), Fstat  - static load of bearing, 
(N), g - acceleration of gravity, (ms-2), m - mass of the rotor, (kg), So - Sommerfeld 

number, )/(2 ωηψ ⋅⋅⋅⋅= DLFSo , Sok - critical Sommerfeld number, So ω/ωcr , τ - angle 
determining stability range, (0) , ω cr - angular self frequency of stiff rotor, 

ω cr= mc /* . 
As the result of the transformations of Eqn. (6), the expression that determines the 

ratio of boundary angular speed ωb to the critical ωc one, and determines the stability of 
rotor, has the form [3, 5]: 
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    (7) 

where: A0 ÷ A4 are the combination of eight coefficients (four stiffness gik and four 
damping bik). 
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3. Results of calculations 

The stability of simple elastic, symmetric rotor was determined based on the calculated 
dynamic characteristics. These calculations included the non-dimensional load capacity 
S0 and journal displacement ε as well as the static equilibrium position angles αeq, too. 
The 3-lobe cylindrical journal bearings under consideration have the length to diameter 
ratio L/D=0.5 and L/D=0,8. The rotational speed of journal was n=3000 rpm. The 
feeding oil temperature was 400C and the corresponding thermal coefficients KT [1,6] 
were 0,014 at the bearing relative clearances ψ = 2,7‰. Exemplary results of the 
calculations of journal displacement ε versus Sommerfeld number S0 and the static 
equilibrium position angles αeq are showed in Fig. 2 and Fig. 3. 

The journal displacements ε that were obtained at different Sommerfeld numbers of 
bearings with different operating surfaces can be observed in Fig. 2. The values of these 
displacements are different for the bearings under considerations. In case of bearing with 
the operating surfaces having the lobe relative clearance ψs =1 (cylindrical 3-pocket 
bearing) the displacements are larger at larger Sommerfeld number as compared to the 
bearing with the lobe relative clearance ψs =1,5 or ψs =3,0 (Fig. 2; denotations in this 
figure are: 3LC – three lobe cylindrical profile, 3LM – multilobe profile). An increase in 
the lobe relative clearance and at assumed journal eccentricity ε, causes the decrease in 
the Sommerfeld number (Fig. 2). The static equilibrium position angles αeq for all types 
of operating surfaces (i.e. at ψs =1 and ψs =1,5 and ψs =3,0) shows Fig. 3; the difference 
between these angles results from the profiles of considered bearings. 
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Fig. 2 Load capacity versus Sommerfeld      Fig. 3 Static equilibrium position angles 
number     versus Sommerfeld number 

Exemplary results of the calculated stiffness gik and damping bik coefficients are 
showed in Fig. 4 and Fig. 5.  
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The run of all coefficients is similar for the considered values of the bearing length to 
diameter ratios L/D. Among the stiffness coefficients that were obtained at L/D=0.8, the 
coefficient g21 shows the largest values in the range of Sommerfeld numbers from 0 
through 0,8 (Fig. 4). However, at higher values of Sommerfeld numbers, the coefficient 
g22 has the largest values (Fig. 4 – see the range of S0 over the value 0,8). The smallest 
values show the stiffness coefficients g12 (e.g. Fig. 4). The values of stiffness coefficient 
g11 are placed between the values of the coefficient g22 (they are smaller than the values 
of this coefficient) and g12 (the values greater than the values of g12 ) (Fig. 4).  

Among the damping coefficients, the coefficient b22 has the largest values (Fig. 5). In 
the range of Sommerfeld numbers from 0 through about 0,75 the smallest values have 
the coupled damping coefficients b12 and b21 (Fig. 5). However, for the Sommerfeld 
numbers larger than 0,75 the coefficient b11 shows the smallest values (see the curve of 
b11 in Fig. 5).  The coupled damping coefficients have very close values with the values 
of coefficient b12 larger than coefficient b21 in the range of Sommerfeld numbers over 
0,75 (Fig. 5). 
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Fig. 6 Stiffness coefficients of the oil of      Fig. 7 Damping coefficients of the oil film of  
 3-lobe cylindrical journal bearing  3-lobe cylindrical journal bearing 
 

The stability charts of rotor operating in the 3-lobe cylindrical journal bearings at 
different relative stiffness of rotor can be observed in Fig. 6 and Fig. 7 for two 
considered bearing length to diameter ratios. The stability properties of rotor are 
characterized by the angle τ that is different for different types of journal bearings [2]; 
better stability occurs at larger angle τ. Very small values of the relative elasticity 
correspond to very stiff rotor and very high values of relative elasticity cs correspond to 
the very elastic rotor.  

There is a difference in the stability of symmetric rotor operating in the bearings with 
the bearing length tot diameter ratio L/D=0.5 and L/D=0.8 (Fig. 8 and Fig. 9). The rotor 
running in the bearings that are characterized by the value of L/D=0.8 (Fig. 9, τ = 
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63027’) shows better stability then for the bearings with L/D=0.5 (Fig. 8, τ = 26030’ ). 
The ranges below the curves are the stability ranges and the ranges over the curves are 
the ranges of instability (e.g. Fig. 7 the curve for cs = 0.5). An increase in the relative 
elasticity of rotor causes the increase in the stability – better stability for the rotor with 
larger relative elasticity. 
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Fig. 8 Stability chart of rotor operating in     Fig. 9 Stability chart of rotor operating in   
3-lobe cylindrical journal bearings at     3-lobe cylindrical journal bearing at  
different relative stiffness of rotor     different relative stiffness of rotor  

4. Conclusions 

The calculations of the dynamic characteristics of 3-lobe cylindrical journal bearings 
with three lubricating pockets and the determination of stability ranges of simple 
symmetric, elastic rotor allow to present the conclusions given below. 
1. At assumed value of Sommerfeld number an increase in the lobe relative clearance 

causes the increase in the journal displacement. 
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2. The static equilibrium position angles show the increase at the increase in the lobe 
relative clearance. 

3. The runs of stiffness and damping coefficients that were obtained in this 
investigation are typical for the multilobe type of bearings with the coupled damping 
coefficients having very close values. 

4. In case of considered journal bearings, an increase in the bearing length to diameter 
ratio causes the increase in the stability of rotor. 
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Stateczność wirnika łoŜyskowanego w łoŜyskach cylindrycznych z trzema kieszeniami 
smarowymi 

Przedstawiono wyniki obliczeń charakterystyk dynamicznych oraz wyznaczenie obszarów stateczności 
prostego wirnika symetrycznego pracującego w łoŜyskach cylindrycznych z trzema kieszeniami smarowymi. 
Charakterystyki dynamiczne łoŜysk wirnika określone są przez 4 współczynniki sztywności i 4 współczynniki 
tłumienia filmu smarowego. Podstawowe równania hydrodynamicznej teorii smarowania, równanie 
Reynoldsa, energii i lepkości rozwiązano numerycznie otrzymując nośność oraz wymagane współczynniki 
filmu smarowego. ZałoŜono laminarny, adiabatyczny film smarowy oraz statyczne połoŜenie równowagi 
czopa. Obszary statecznej pracy wirnika wyznaczono w oparciu o równanie charakterystyczne 6-go rzędu.  
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Abstract 

The paper concerns the natural frequencies and mode shapes of a liquid sloshing in three dimensional baffled 
tanks with arbitrary geometries. The hydrodynamic pressure of the liquid is described by the boundary 
integral equation. The boundary element method is used to solve it. In the present formulation the baffles are 
treated as double layers. Numerical results are presented. 
 
Keywords: sloshing, tanks with baffles, BEM  

1. Introduction  

The liquid sloshing phenomenon in a tank is an important field of the fluid dynamic 
research. Liquid tanks are considered as important parts of municipal facilities systems, 
oil industry, naval and aerospace systems. Hydrodynamic forces acting on walls of the 
tank as a result of sloshing of the liquid inside may damage the whole system. The 
baffles in tanks are used to increase the damping of the liquid sloshing and usually cause 
changes of sloshing frequencies and can be treated as a passive control system. 

This paper presents the application of the boundary element method to determine the 
natural frequencies and mode shapes of a liquid sloshing in three dimensional baffled 
tanks with arbitrary geometries. Triangular curvilinear 6-node boundary elements are 
applied. In the present formulation the baffles are treated as double layers. A similar 
problem of liquid sloshing in tanks with baffles was considered in the papers [1, 2, 3], in 
which the zoning method was introduced. The domain of the liquid was divided into 
zones. The baffles were than located at boundaries of the zones and compatibility 
conditions between zones were applied. In the present formulation such an approach is 
not necessary. 

2. Problem formulation 

Let us consider a tank of an arbitrary shape with a liquid free surface S1, a bottom 
surface S2 and baffle S’  (Fig.1). It is assumed that the fluid is incompressible and 
inviscid. The perturbation fluid velocity potential ( )tzyx ,,,Φ  satisfies the Laplace’s 

equation: 

( ) 0,,,2 =Φ∇ tzyx  (1) 

The solution of the Eq. (1) may be expressed as a single-layer and a double-layer 
potential: 
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where C(P) is a coefficient defined as: 
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Figure 1. A tank of an arbitrary shape with a baffle. 

The last part of  Eq. (2) represents a double-layer potential of the open surface S’ 
immersed in liquid. Boundary conditions on the surface S and S’ are of the Neumann 
type: 

� bottom condition:   0=
∂
∂

n

Φ
 on  S2 (3) 

� free-surface condition:   
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� baffle-surface condition:   0=
∂

∂

n

Φ
 on  S’ (5) 

where g is the gravity acceleration. 
The boundary condition (4) is known as the linearized surface wave condition. 

Coming with the point P onto the surface S’ (see point P’, Fig.1) and calculating the 
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derivative of the velocity potential in the direction normal to the surface at this point, 
Eq. (2) with the boundary condition (5) can be rewritten as: 

( )
( )

( )
( )

( ) ( ) ( )
( ) ( )

( )+
∂∂

∂
−

∂

∂

∂

∂
=

∂

∂ ∗∗

∫∫ QdS
PnQn

QPΦ
tQΦQdS

Pn

QPΦ

Qn

tQΦ

Pn

tPΦ

SS
'

,'
,

'

,',

)'(

),'( 2

 

( ) ( )
( ) ( )

( ) 0''
''

','
,''

2

'

=
∂∂

∂
+

∗

∫ QdS
PnQn

QPΦ
tQΦ

S

 
(6) 

The boundary integral equation (2) with the boundary conditions (3) and (4) and the 
boundary integral equation (6) allow us to solve the sloshing problem of any tank with 
baffles. 

The hydrodynamic pressure is expressed as: 

t
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∂
−= ρ  (7) 

where ρ is the fluid density, tiepp ω~= , ω is the circular frequency. 

Differentiating (2) and (6) with respect to time and using (7) we can rewrite (2) and 
(6) in the form: 
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Using (7) the boundary conditions (3) and (4) can be expressed in the form: 
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On the free surface the hydrodynamic pressure p1 can be approximated by assuming 
the actual surface to be at an elevation w1 relatively to the mean surface. 

Using (4), (7) and the relation 
t

w

z

Φ

∂
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∂

∂ 1  on S1 we can write down: 

11 gwp ρ=  (12) 
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3. Solution of the problem 

The surface of the liquid boundary and the baffle surface were discretized using 6-node 
isoparametric curvilinear triangular boundary elements. The curvilinear elements located 
at the baffle were subdivided into four planar triangular constant type elements. The 
collocation points were the centroids of the planar triangles. It was necessary because the 
last part of Eq. (9) contains the hypersingular integral. The boundary element 
discretization of Eqs. (8) and (9) results in the following matrix equations: 

'~~~~
1pDpBfApC +−=  (13) 

0pDpDfA =+− '~~~
321  (14) 

where '~,~ pp and f
~

 are the amplitudes of nodal vectors, tie ωpp ~~ = , tie ωff
~~

= , 
n∂

∂
=

p
f , 

C is  the diagonal matrix of coefficients C(P). 
The majority of the elements of the matrices A, B, D1, A1, D2, and D3, is computed 

numerically using Gaussian integration formulae. The exception is with the diagonal 

elements of matrices A and D3, which have the singularity of r1  and 31 r types, 

respectively. Calculations of such integrals are discussed in the papers [4] and [5], 
respectively. Using Eq. (13) and (14) we get: 

fApB
~~

ss = , (15) 

where 2
1

311 DDDBB −−=s , 1
1

31 ADDAA −−=s , BCB +=1 . 

From Eq. (15) we obtain: 
fABp
~~

ss
+= , (16) 

where +
sB is the pseudoinverse of sB . The matrix sB  is singular, so we calculate the 

Moore-Penrose pseudoinverse matrix using the SVD procedure [6]. After the 
substitution of (10) and (11) into Eq. (16) we get: 
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or: 

111

2

1
~~ pEp

g

ω
= , (18) 

where ss ABE += , E11 is the MxM submatrix of the matrix E, M is the number of free 

surface nodal points. 
Substituting of Eq. (12) into Eq. (18) gives the standard eigenvalue problem: 

( ) 0wID =− 1
~λ , (19) 

where 11
1

ED
g

= , 
2

1

ω
λ = , I is the unit matrix. 
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The eigenvalues and eigenvectors of Eq. (19) allow us to determine the sloshing 
frequencies and their corresponding modes. The eigenproblem is reduced to the free 
surface degrees of freedom only. 

4. Numerical examples 

Basing on the problem formulation given in Sections 2 and 3, computer programs were 
developed. The calculations were performed for several types of tanks. 

4.1. Example 1. The cylindrical tank 

The calculations are performed for the cylindrical tank with 0.1=RH  and 5.0=RH , 

where R and H are the cylinder radius and the liquid depth, respectively. The boundary 
element mesh is as follows: 60 curvilinear elements on full domain, 18 curvilinear 
elements and 43 DOF on the free surface.  

Table 1 presents the first three dimensionless sloshing frequencies in comparison 
with the exact values. 

Table 1. The first three dimensionless sloshing frequencies in the cylindrical tank 

( gRωω = ) 

0.1=RH  5.0=RH  
mode 

present BEM analytical present BEM analytical 

1ω
 

1.318 1.323 1.152 1.156 

2ω  1.740 1.744 1.665 1.667 

3ω  1.941 1.957 1.901 1.915 

4.2. Example 2. The cylindrical tank with the ring baffle 

We consider the cylindrical tank with the ring baffle [2]. The geometry of the tank and 
the baffle position is shown in Figure 2. 

 
Figure 2. Cross-section of the cylindrical tank with the ring baffle. 
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The boundary element mesh of the fluid domain is similar as in Example 1. The 
baffle surface is discretized by 18 curvilinear elements.  
The first natural frequency of the liquid is: present BEM - Hzf 613.01 = ; Reference [2] -

Hzf 605.01 = . The agreement of results is good. 

3. Conclusions  

The method of calculation the natural frequencies and mode shapes of liquid sloshing in 
three dimensional baffled tanks with arbitrary geometries is presented in the paper. The 
hydrodynamic pressure of the liquid is described by the boundary integral equation and 
the boundary element method is applied to solve it. The triangular curvilinear 6-node 
boundary elements are used. In the present formulation the baffles are treated as double 
layers and it is not necessary to introduce the zoning method. Some examples 
demonstrate the effectiveness and efficiency of the proposed method. 
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Drgania swobodne cieczy w zbiornikach z przegrodami 
W pracy zaprezentowano metodę obliczania drgań swobodnych cieczy w zbiornikach z zainstalowanymi 
przegrodami. Przegrody w zbiornikach stosuje się w celu zmniejszenia dynamicznego oddziaływania cieczy 
na ściany zbiornika. Do rozwiązania problemu zastosowano metodę elementów brzegowych. Do dyskretyzacji 
brzegu obszaru cieczy wykorzystano trójkątne 6-cio węzłowe krzywoliniowe elementy brzegowe. Sztywną 
przegrodę w zbiorniku traktuje się jako warstwę podwójną. Pozwoliło to zrezygnować z podziału obszaru 
cieczy na strefy w celu uwzględnienia obecności przegrody. Zamieszczono przykłady liczbowe. 
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Abstract  

The results of numerical computations and experimental research into the free vibrations of a column loaded 
by a follower force directed towards the positive pole – the case of the specific load – are presented in this 
paper. The total mechanical energy of the column was formulated by taking into account the physical model of 
the system and constructional solution of the loading head. The curve courses of changes in the eigenvalues in 
the plane: load – natural frequency are shown on the basis of the solution to boundary problem which is 
obtained by considering kinetic criterion of the stability. The changes in natural frequencies were determined 
for the chosen values of the geometrical parameters of the loading head. The distribution of bending rigidity of 
the column, accepted for the numerical computations, corresponds to the systems with maximum values of the 
critical load at the assumed constant volume of the structure. 
 
Keywords: column, specific load, free vibrations 

1. Introduction  

Many scientific publications have been dedicated to analysis of free transverse vibrations 
of columns and beams with jumping changeable cross-section. There are works where 
the problems of free vibrations of systems consisting of segments with changeable cross-
sectional area [1-3] or works where the cross-section was changed continuously along 
the length [4, 5] were considered. Additional discrete elements, such as translational and 
rotational springs and bodies of concentrated masses, were taken into account in the 
models of beams and columns. The added discrete elements were mounted at the ends of 
the system [3, 5] or at points marking changes in the cross-section [1, 2, 4]. The solution 
to the vibration problem is also considered in research into the optimisation of slender 
system forms [3, 6]. 

2. The physical model of the column 

The physical model of the column for the chosen specific load which was first 
formulated by L. Tomski [7] is presented in Fig. 1a. Column 3 is loaded by the follower 
force directed towards the positive in constructional solution [7 - 9] of the loading head 1 
and receiving head 2 with circular profile (constant curvature). Direction of force P 
passes through the constant point O, place at distance R from the end of the column. The 
column is rigidly mounted from one side (x1 = 0) and is connected to receiving head at 
the free end (xn = l) by rigid element of l0 in length (elements of the loading head are 
infinitely rigid). The system is divided into smaller segments (Fig. 1b) with flexural 
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rigidity (EJi) (indexes i = 1.. n), where Ji is a moment of inertia of the cross section of 
the i – th segment of the column in relation to neutral bending axis. Segments are 
described by the length l and by transverse displacement  Wi(xi, t). The following 
assumptions and denotations are applied in work [9, 10]: 
- constant total length of column  L and constant length of its elements  li= l (L = n l), 
- constant value of Young’s modulus E and material density ρ of all segments of the 
column, 
- constant total volume of all segments describing form of the column. 
 

 
Figure 1. The physical model of the column: a) loaded by the follower force directed 

towards the positive pole, b) division of the columns into segments 

Exemplary denotations of the columns considered in this paper are introduced: 
- DO(Ro

*  0.3) – optimized column with changeable bending rigidity at the parameter 
of the loading and receiving head Ro

*  = 0.3, 
- DP(Ro

*  0.2) – comparative column with bending rigidity constant along the length of 
the system at the parameter of the loading and receiving head Ro

*  = 0.2, while: 

L

R
Ro =*  (1) 

Volume of the column DP(Ro
*  j) is identical to the total volume of all segments describing 

the form of the system DO(Ro
*  j). 
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3. Formulation of and solution to the boundary problem 

The boundary problem is formulated on the basis of the Hamilton’s principle which for 
conservative systems takes the form: 

( )∫ =−
2

1

0
t

t

dtVTδ  (2) 

where: δ  is operator of variation. 
Kinetic energy T of the considered column DO(Ro

*  j) is a sum of kinetic energy of its 
individual segments and kinetic energy of a body with mass m. 
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The total potential energy V is described by the relationship : 
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Commutation of integration (in relation to space coordinates xi and time t) and 
computation of variation is used in Hamilton’s principle (2). After computing variation 
of kinetic energy (3), variation of potential energy (4) and separation of variables of 
function Wi(xi, t) in relation to variables xi and t : 

( ) ( ) ( )txytxW iiii ωcos, =  (5) 
one can obtain: 
- equations of motion for the considered system: 

( ) ( ) ( ) nixyxykxy iiii
II
iii

IV
i ...1,022 ==−+ Ω  (6) 

- boundary conditions for the column in relation to mounting point (x0 = 0), at the free 
end (xn = l) and continuity conditions between individual segments: 

( ) ( ) ( ) ( ) ( ) ( )0,0,000 1111
I
j

I
jjj

I ylyylyyy ++ ====  (7a-d) 

( ) ( ) ( ) ( )0,0 1111
III
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III
j

II
jj

II
j ylyyly ++++ == χχ  (7e-f) 
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where: j = 1,...,(n-1), ( ) ( ) ( ) ( ) ( )jjjiiiii EJEJEJAEJPk 11
222 ,,/ ++ === χωρΩ . 

Substitution of equation solutions (6) into the boundary conditions (7a-h) leads into 
transcendental equation for natural frequency ω. 
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4. Results of numerical computations and experimental research 

Results of experimental research and numerical computations applied to the values of 
natural frequency of optimized system [9] for chosen geometry of the receiving head (R 
= 0.059 [m], l0 = 0.051 [m]) are presented [8, 9]). Physical and geometrical parameters of 
the tested column are given in Table 1. 

Table 1. Geometrical and physical parameters of the column DO(Ro
*   0.0125)   

Quantity Symbol Unit Value 
Young’s modulus of column material E

 
N/m2 7.5*1010 

Density of column material ρ kg/m3

 
2790 

Length of optimized column L m 0.6 
Concentrated mass   m kg

 
0.39 

Dimension of the cross-section  b m
 

0.008 
 

The results of computations concerning optimization of the column DO(Ro
* j) are 

presented in works [9, 10]. The rectangular cross-section of the tested column with a and 
b in dimensions was assumed in research by taking into account static criterion of the 
stability and modified algorithm of simulated annealing. The width of the cross-section a 
(ai – decision variables of optimization) was optimized at its constant thickness. 
The following condition was additionally considered in computations: 

nibai ,...,1]m[001.0 =+≥  (8) 
Geometrical inequality limitations (8) of the optimized column were justified due to 

buckling plane of the system assumed in numerical computations and experimental 
research. This plane is described by the minimal moment of inertia in terms of neutral 
axis in the bending plane. The form of the optimized column DO(Ro

*   0.0125) (full lines), 
at division of the system into n = 128 segments is presented in Fig. 2. The profile of 
adequate comparative column DP(Ro

*   0.0125) is shown by broken line. 
 

 
Figure 2. Form of the column DO(Ro

*   0.0125), DP(Ro
*   0.0125) 

Experimental research was carried out at the test stand designed and built in the 
Institute of Mechanics and Machine Design Foundations of Czestochowa University of 
Technology [11]. The results of numerical computations (full lines - system  
DO(Ro

*   0.0125)) and experimental research (points) in relation to changes in natural 
frequency are presented in Fig. 3. The course of changes in the eigenvalues of the 
comparative column DP(Ro

*   0.0125) are marked by broken line. Range of changes in the 



Vibrations in Physical Systems Vol.24 (2010) 

 
403

first three natural frequencies  f in relation to the external load P was given. It was stated 
that the results stay in good agreement after comparison of numerical computations and 
experimental research of the column DO(Ro

*   0.0125). At the basic natural frequency, 
maximal relative error between experimental results f e and frequencies obtained 
theoretically f t  is equal to 7.24%. 
 

 
Figure 3. The curves in the plane: load P –natural frequency f  

(system DO(Ro
*   0.0125)) 

5. Conclusions  

Regarding the influence of the external load and the geometrical parameters of the 
loading and receiving heads on the changes in natural frequencies, the considered 
column was rated as a divergence or divergence pseudo-flutter type of the systems. The 
accuracy of the assumed mathematical model of the system was confirmed by the results 
of original experimental research.  
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Drgania swobodne kolumny o optymalnym kształcie ze względu na wartość obciąŜenia 
krytycznego poddanej obciąŜeniu siłą śledzącą skierowaną do bieguna dodatniego 

W pracy przedstawia się wyniki obliczeń numerycznych i badań eksperymentalnych dotyczących drgań 
swobodnych kolumny realizującej obciąŜenie siłą śledzącą skierowaną do bieguna dodatniego - przypadek 
obciąŜenia swoistego. Biorąc pod uwagę model fizyczny układu oraz rozwiązanie konstrukcyjne głowicy 
realizującej obciąŜenie, formułuje się całkowitą energię mechaniczną kolumny. Na podstawie rozwiązania 
zagadnienia brzegowego, które uzyskuje się przy uwzględnieniu kinetycznego kryterium stateczności, 
prezentuje się przebieg krzywych zmian wartości własnych na płaszczyźnie: obciąŜenie – częstotliwość drgań 
własnych. Zakres zmian częstości drgań własnych wyznacza się przy wybranych wartościach parametrów 
geometrycznych głowicy realizującej obciąŜenie. Przyjęty do obliczeń numerycznych rozkład sztywności na 
zginanie kolumny odpowiada układom, dla których uzyskano maksymalne wartości obciąŜenia krytycznego, 
przy przyjętym warunku optymalizacyjnym stałej objętości struktury. 
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Abstract  

Theoretical research into and numerical computations of free vibrations of a rectangular two rod frame for the 
chosen case of a specific load are presented in this paper. A column of the frame is loaded by a follower force 
directed towards the positive pole. The equations of motion and boundary conditions of the considered system 
are determined by taking into account the total mechanical energy and Hamilton’s principle. The solution to 
the boundary problem leads to adequate relationships in changes in natural frequency in relation to the external 
load. The results of numerical computations are presented for the chosen physical and geometrical parameters 
of the system. The obtained results were verified on the basis of original experimental research. 
 
Keywords: frame, specific load, free vibrations 

1. Introduction  

The free vibration problems of slender systems including planar frames are very 
significant from the point of view of mechanical structural designs. Theoretical and 
numerical research into the stability of planar frames was carried out for different types 
of loads. The determined values of critical load (comp. [1 – 4, 6]) and the course of 
changes in natural frequencies in relation to the external load (comp. [3 – 6]) at the 
accepted structural solutions of the systems were the results of the above research.  
The structures of frames in square form (ΓΓΓΓ type) (comp. [1, 2, 5, 6]), three rod frames  
(T type) (comp. [1, 4]), or systems built up from a certain number of straight frames – 
portal frames (comp. [7]) have been considered in many scientific publications.  
The results of theoretical research into and numerical simulations of changes in natural 
frequency for the chosen cases of the conservative load for the planar frame were 
confirmed by experimental research in works [4, 6]. 

2. The physical model, mechanical energy of the system 

Loading and mounting method of the considered system of ΓΓΓΓ type is presented in Fig. 1. 
The frame consists of two rods with flexural rigidities (EJ1), (EJ2) and mass (ρA1), (ρA2) 
per unit length. A frame bolt with flexural rigidity (EJ2) and a frame column with 
flexural rigidity (EJ1) were mounted in rigid way. Additionally, the frame bolt is able to 
displace in longitudinal direction. The frame column is subjected to the one of specific 
load types formulated by L. Tomski (comp. [8]). In the considered case of the load by 
the follower force directed towards the positive pole (comp. [6, 8]), the rods of column 
and bolt were connected to a head, which received the load by a rigid element � with l0 
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in length ensuring equality of the bending angles of the frame two elements. Direction of 
the loading force action crosses the constant point O – the centre of curvature of the 
loading � and receiving � heads, described by radius R. In the body of concentrated 
mass m, the total reduced mass of receiving head elements �, � was taken into account. 

 

 
Figure 1. The physical model of the system 

Kinetic energy T of the considered flat frames is a sum of kinetic energy of 
individual rods of the frame and kinetic energy of element with concentrated mass m 
(transverse inertia towards the frame column) : 

( ) ( ) ( ) 2
11

2

1 0

2
,

2

,

2 





∂

∂
+





∂

∂
= ∑ ∫

= t

tlWm
dx

t

txWA
T i

i

l
iii

iρ  (1) 

Bending elasticity of the individual rods of the system and the direction of the 
external load are taking into account in potential energy V : 
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3. Formulation of the problem, equations of motion, boundary conditions 

The boundary problem is formulated on the basis of the kinetic criterion of the stability. 
This criterion relies on finding such a load at which free motion of the system stopped 
being restricted. Hamilton’s principle is taken into consideration : 

( )∫ =−
2

1

0
t

t

dtVTδ  (3) 

Geometrical boundary conditions and continuity conditions are as follows : 
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Geometrical relationship between elements of the loading head � and receiving head �, 
� (comp. Fig. 1) is given by equation 4f. After substituting equations (1), (2) into the 
Hamilton’s principle (3), using adequate boundary conditions (4a-f), one can obtain : 
- equations of motion  
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- natural boundary conditions in the connection point of the column and the frame bolt  
(x1 = l1, x2 = l2) 
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4. The results of numerical computations and experimental research 

The constructional solution to the frame (comp. [6, 10]) loaded by the follower force 
directed towards the positive pole is presented in Fig. 2. Experimental research into the 
course of changes in natural frequency in relation to the external load was carried out by 
taking into account geometrical and physical parameters of the applied head realising the 
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load (R = 0.059 [m], l0= 0.019 [m], m = 2.24 [kg]). The research was carried out on a 
stand designed and built in the Institute of Mechanics and Machine Design Foundations 
at Czestochowa University of Technology (comp. [9]). The frame is composed of bolts 
6(3), 6(4) and columns 6(1), 6(2). The loading head (comp [11]) consists of an element 
(1) with mounted external ball race 9(1). An internal ball race 9(2) is mounted in 
enclosure (2) and attached to a rigid beam (10). The elements of receiving head are 
assumed to be infinitely rigid with regard to construction. The ends of the bolts 6(3), 
6(4) and columns 6(1), 6(2) are attached to the beam (10) in such a way that bending 
angles of the frame rods are identical. Rigid support of the frame column is realized by 
element 5(1). Support structure of the frame bolt 5(2) is built of the beam (7) with 
mounted pivots of rolling bearings (8). The beam (7) can be shifted in guides (8) of 
mounting (4). Measurement of the loading force is realised by the dynamometer (3). 

 

 
Figure 2. The constructional solution to the tested system 

The results of numerical calculations (lines) and experimental research (points) are 
presented in Fig. 3 at the given geometrical and physical parameters of the frame 
elements (table 1). The range of the first three M1, M2, M3 natural frequencies f in 
relation to the external load P is also presented. The course of two additional natural 
frequencies for the column M2se and the frame bolt M2re was determined. The presence 
of additional natural frequencies, characterised by symmetrical form of the vibrations, is 



Vibrations in Physical Systems Vol.24 (2010) 

 
409

connected to slender systems which component elements are built of even number of 
identical rods (comp. Fig. 2). 

Table 1. Geometrical and physical parameters of the flat frame 

Quantity Symbol Unit Value 
Bending rigidity of the column  (EJ1)

 
Nm2 282.26 

Bending rigidity of the bolt   
 

(EJ2)
 Nm2

 
152.68 

Mass per unit length of the column (ρA1)
 kg/m 0.859 

Mass per unit length of the bolt (ρA2)
 

kg/m
 

0.631 
The length of the column  l1 m

 
0.59 

The length of the bolt l2 m 0.61 
 

 
Figure 3. Curves in the plane: load P – natural frequency of the system f 

Conclusions  

The flat frame, considered in this paper, is one of the two types of systems: a divergence 
or divergence pseudo-flutter, depending on the parameters of the loading head. The 
conducted experimental research confirmed the correctness of the assumed mathematical 
model of the system.  
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Drgania swobodne ramy typu ΓΓΓΓ obciąŜonej siłą śledzącą skierowaną do bieguna dodatniego 
W pracy prezentuje się badania teoretyczne oraz obliczenia numeryczne  dotyczące drgań swobodnych 
prostokątnej dwuprętowej ramy przy wybranym przypadku obciąŜenia swoistego. Słup ramy realizuje 
obciąŜenie siłą śledzącą skierowaną do bieguna dodatniego. Biorąc pod uwagę całkowitą energię mechaniczną 
układu oraz zasadę Hamiltona wyznacza się równania ruchu i warunki brzegowe rozpatrywanego układu. 
Rozwiązanie zagadnienia brzegowego prowadzi do odpowiednich zaleŜności na zakres zmian wartości 
częstości drgań własnych w funkcji obciąŜenia zewnętrznego. Wyniki obliczeń numerycznych prezentuje się 
przy wybranych parametrach fizycznych i geometrycznych układu. Otrzymane rezultaty weryfikuje się na 
podstawie przeprowadzonych badań eksperymentalnych. 
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Abstract  

In the paper there is performed an analysis of transient and steady-state electro-mechanical vibrations of the 
laboratory micro-drive system driven by the stepping motor. The main purpose of these studies is to indicate 
significant differences between the dynamic responses obtained for the considered object regarded respectively 
as electro-mechanically coupled and uncoupled. These theoretical investigations are based on a hybrid 
structural model of the mechanical system as well as on the classical circuit model of the stepping motor. From 
the computational results it follows that these differences are qualitatively and quantitatively essential from the 
viewpoint of possibly precise and reliable operation of the micro-drive systems.  
 
Keywords: Electro-mechanical vibrations, micro-drive system, stepping motor, hybrid model  

1. Introduction  

The drive systems of machines, vehicles as well as of precise micro-mechanisms are 
commonly driven by electric motors of various types, e.g. asynchronous motors, 
synchronous motors, direct-current motors or stepping motors. During nominal and 
steady-state operating conditions these motors generate more or less significant variable 
components of the electromagnetic torques which are sources of severe torsional 
vibrations of the entire mechanical drive system. The torsional vibrations of the drive 
system usually result in significant fluctuation of rotational speed of the rotor of the 
driving electric motor. Such oscillation of the angular velocity superimposed on the 
average rotor rotational speed cause more or less severe perturbation of the magnetic 
flux and thus additional oscillation of the electric currents in the motor windings. Then, 
the generated electromagnetic torque is also characterized by additional variable in time 
components which induce torsional vibrations of the drive system. According to the 
above, the mechanical vibrations of the drive system become coupled with the electrical 
vibrations of the currents in the motor windings. An importance of the electromechanical 
coupling effects taken into consideration is particularly severe when possibly very exact 
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simulation results are required for investigation of extremely responsible drive systems 
or for analyses of their sufficiently precise motions, realized by e.g. micro-drive systems, 
as well as in order to elaborate for them proper active vibration control algorithms.  

In the presented paper there is studied an influence of electro-mechanical coupling 
effects on dynamic responses of the laboratory precise micro-drive system driven by the 
stepping motor. Since in such case a possibly exact rotational motion of the micro-
mechanism must be assured, it is necessary to introduce sufficiently accurate models of 
the micro-drive system and of the electric motor, where dynamic electro-mechanical 
coupling effects are going to be taken into consideration. The fundamental purpose of 
this study is realized by investigation of dynamic interaction between the stepping motor 
and the micro-drive system during its start-ups, run-downs and steady-state operation.  
 
2. Assumptions for the electromechanical model.  

In the paper there is considered the laboratory micro-drive system driven by means of 
the stepping motor shown in Fig. 1. This system consists of the driving motor, direct-
current micro-generator, rotational angle encoder, three elastic couplings of the Oldham-
type, inertial disk representing a rotor of the power receiver (impeller), one-stage rubber 
teethed-belt gear and of the connecting shaft segments properly supported by the roll-
bearings.  

 

Figure 1. Laboratory micro-drive system  

Since the fundamental excitations generated by the driving motor as well as the 
retarding torques produced by the power receivers are torsional in character, the 
torsional vibrations of the micro-drive system are going to be regarded as predominant. 
In order to perform a theoretical investigation of the electro-mechanical coupling effects 
in this system, a reliable and computationally efficient simulation model is required. In 
this paper dynamic investigations of the entire micro-drive system are performed by 
means of the one-dimensional hybrid structural model consisting of continuous visco-
elastic macro-elements and rigid bodies. In this model by the torsionally deformable 
cylindrical macro-elements of continuously distributed inertial-visco-elastic properties 
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there are substituted successive cylindrical segments of the stepped shafts. The rigid 
bodies represent gear wheels as well as the rotors of the of the power receiver, micro-
generator and of the rotational angle encoder, as presented in Fig. 2. Apart of numerical 
simulations of coupled electro-mechanical vibrations, this model is employed here also 
for torsional eigenvalue analysis of the drive train.  

 
Figure 2. Hybrid mechanical model of the laboratory micro-drive system  

Torsional motion of cross-sections of each visco-elastic macro-element is governed 
by the hyperbolic partial differential equations of the wave type. Mutual connections of 
the successive macro-elements creating the stepped shaft as well as their interactions 
with the rigid bodies are described by equations of boundary conditions. These equations 
enclose geometrical conditions of conformity for rotational displacements of the macro-
element extreme cross-sections as well as linear conditions of equilibrium for external 
torques and for inertial, elastic and external damping moments. The solution for the 
forced vibration analysis has been obtained using the analytical-computational approach 
demonstrated in details e.g. in [1]. Solving the differential eigenvalue problem for the 
orthogonal system and an application of the Fourier solutions in the form of series lead 
to the set of modal equations in the Lagrange co-ordinates ξm(t): 
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where ωm are the successive natural frequencies of the drive system, β denotes the 
coefficient of external damping assumed here as proportional one to the modal masses 
γm

2, τ is the shaft material retardation time and Qm(t) are the modal external excitations.  
In the considered micro-drive system there is applied a quite typical four-cycle, 

double-phase stepping motor with the fundamental step angle 1.8 deg, which means that 
its rotor is characterized by Zr=50 poles. According e.g. to [2], the mathematical model 
of such stepping motor is described by two voltage equations: 
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where i1(t), i2(t) denote the electric currents in both motor phases, L0 is the phase 
inductance, R denotes the resistance of each phase, KU is the motor voltage constant, 
Ω(t) denotes the instantaneous angular velocity of the rotor, U(t) is the slowly varying 
control voltage and ΘE(t) denotes the rotor electric angle. The electromagnetic torque 
generated by the double-phase stepping motor is expressed by the following formula 

( ) ( )[ ] )3(,)(Ecos)(2)(Esin)(1T)( ttittiKtET Θ⋅+Θ⋅−=  

where KT denotes the stepping motor torque constant. Assuming a uniform distribution 
of the motor electromagnetic torque along the rotor, by the use of the virtual work 
principle the modal external excitations for the hybrid discrete-continuous model of the 
considered micro-drive system have been determined in the following form  

)4(,,...2,1,0),
28

(
,28

)(
28

)0(
,18

)(
18

2

0

d)(
2

2

)(
)( =⋅−⋅−∫⋅= ml

m
XtM

m
XtM

l

xx
m

X
l

t
E

T
tmQ

 

where X2m(x) denotes the local m-th eigenfunction of the macro-element (2) 
corresponding to the electric motor rotor, X18,m(0), X28,m(l28) are the m-th eigenfunction 
values for the model cross-sections to which there are imposed the retarding torques 
M18(t) and M28(t) generated by the power receiver and the micro-generator, respectively.  

By substituting expression (3) into (4) and (1) and upon a proper combinations of the 
modal equations (1) with the voltage equations (2) one obtains the coupled set the 
parametric ordinary differential equations  
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The symbols M, C0 and K0 denote respectively the constant diagonal modal mass, 
damping and stiffness matrices, CE(ΘΕ(t)) is the band matrix of the inductant-electro-
magnetic effects and KE(ΘΕ(t)) denotes the band matrix of the resistant-electro-magnetic 
effects, both of periodically variable coefficients with the electric rotation frequency 
ZrΩ(t). The symbol F(t, r’(t)) denotes the external excitation vector due to the control 
input voltage and the retarding torques. The unknown co-ordinate vector r(t) consists of 
the electric currents in both motor phases and of the unknown time functions ξm(t) in the 
Fourier solutions. In order to obtain the system's dynamic response Eqs. (5) are solved 
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by means of a direct integration. The number of equations (5) corresponds to the number 
of eigenmodes taken into consideration in the range of frequency of interest. These 
equations are mutually coupled by the parametric terms corresponding to the 
electromagnetic interaction with the stepping motor. A fast convergence of the applied 
Fourier solutions enables us to reduce the appropriate number of the modal equations to 
solve, in order to obtain a sufficient accuracy of results in the given range of frequency.  
 
3. Computational example  

In the computational example there is performed a simulation of the run-up, steady state 
operation and run-down of the considered geared micro-drive system shown in Fig.1 and 
driven by means of the stepping motor of the nominal voltage and current 4.8 V and 1.5 
A, respectively, and the maximal braking torque 0.8 Nm, where the reduction gear ratio 
is equal to 1:3. This mechanical system of the entire mass moment of inertia reduced to 
the motor axis 9.34⋅10-5 kgm2 has been uniformly accelerated from its standstill to the 
constant average rotational speed 300 rpm within 3 s in order to operate for next 1 s 
under the constant retarding torque 0.35 Nm generated by the micro-generator. Then, 
within successive 3 s the micro-drive was uniformly stopped back to the standstill.  

In order to study the influence of electro-mechanical coupling effects on the 
considered system dynamic response, the numerical simulation of the assumed above 
motion has been carried out in the form of two modes: For the coupled electro-
mechanical mode the full system of equations (5) was solved. In the case of the 
uncoupled mode only the first three equations (5) have been solved, i.e. two electrical 
equations coupled with the third one describing the rigid body motion of the drive train. 
Then, using (3) the electromagnetic torque was ‘a priori’ determined and substituted into 
the modal equations (1) in the form of an external excitation of the mechanical system 
torsional vibrations. In Fig. 3 by the black and grey lines, respectively for the coupled 
and uncoupled mode, there are presented time history plots of the stepping motor 
electro-magnetic torques. From this figure it follows that in the case of coupled mode the 
driving torque generated by the motor is characterized by greater fluctuation during run-
up and run-down phase than in the case of the uncoupled mode. However, during the 
steady-state operation the latter has greater amplitudes of predominant frequency close 
to the first system natural frequency equal103.4 Hz. In Fig. 4 there are shown plots of  

 
time  [s] 

Figure 3. The retarding (dashed line) and electro-magnetic torque in the coupled (black 
line) and uncoupled (grey line) electro-mechanical system  
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Figure 4. The rotational velocity and the dynamic torque in the coupled (black line) 
and uncoupled (grey line) electro-mechanical system 

the system dynamic response corresponding appropriately, i.e. by the black and grey 
lines, to both compared modes of the problem solutions. In this figure the time histories 
of the angular velocity and of the dynamic torque in the shaft at the input to the power 
receiver are depicted. Here, the significant differences of the transient fluctuations of the 
velocity and of the steady-state oscillations of the dynamic torque are worth noting. 

4. Conclusions  

The performed investigations enabled us to indicate essential qualitative and quantitative 
differences between the computational results obtained using the coupled and uncoupled 
modes of the vibrating electro-mechanical micro-drive system. The electromagnetic 
torque generated by the stepping motor is characterized by more regular time history in 
the case of the traditional uncoupled mode. Then, the induced resonant effects during 
steady-state operation are artificially more severe than in the case of the much realistic 
coupled mode, where the velocity dependent parametric coupling terms result in 
significantly greater transient states and weaker or even negligible resonant responses.  
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Analiza przejściowych i ustalonych sprzęŜonych drgań elektro-mechanicznych w układzie 
mikro-napędu  

W pracy przeprowadzono analizę przejściowych i ustalonych elektro-mechanicznych drgań laboratoryjnego 
układu mikro-napędowego napędzanego silnikiem skokowym. Głównym celem badań było wykazanie róŜnic 
odpowiedzi dynamicznych układu potraktowanego jako elektro-mechanicznie sprzęŜonego i rozsprzęŜonego. 
RozwaŜań teoretycznych dokonano dzięki zastosowaniu hybrydowego modelu układu mechanicznego oraz 
klasycznego obwodowego modelu silnika skokowego. Uzyskane jakościowe i ilościowe znaczące róŜnice 
badanych odpowiedzi są istotne z punktu widzenia precyzyjnego działania układów mikro-napędowych.  
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Abstract  

The paper deals with the stability problem, longitudinal bending and free vibrations of a geometrically non-
linear cantilever column loaded by Euler’s load. Imperfections, resulting from the omission of the assumption 
that the external load is perfectly axially applied, were taken into account in the physical model of the column. 
An initial curvature of the rods was introduced. The problem of free vibrations and stability was formulated on 
the basis of Hamilton’s principle and then solved by applying the small parameter method. Local or global 
instability of the system specified by free vibrations (the plane: load – natural frequency) is presented in the 
first part of the paper. The second part concerns the influence of imperfections in shape and load on the 
stability of the system. The interactions between the introduced imperfections were analysed. 
 
Keywords: column, free vibrations, initial imperfections, local and global instability 

1. Introduction  

Theoretical considerations and solutions of numerical computations referring to stability 
and transverse free vibration geometrically non-linear columns, subjected to Euler’s load 
are included in many scientific publications [1-9]. Distinguished are to be works dealt 
with: 
− rectilinear form of static equilibrium (determination of bifurcation force) [1-7, 9], 
− curvilinear form of static equilibrium (determination of critical force) [3, 7, 8, 9], 
− local and global non-stability [5-7], 
− pre-stressing of the system  [3, 4, 6, 7], 
− course of characteristic curves in the plane: load − natural frequency [3, 4, 6, 7, 9], 
− influence of eccentrically fixed external loads [8, 9]. 
In works [6, 7] are presented results of experimental research dealing with the vibration 
frequencies in relation to the external load, which confirms local and global non-stability 
of geometrically nonlinear column. 

2. The physical model of the column 

A geometrically non-linear column N and linear column L, subjected to Euler’s load are 
considered in this paper. The physical models of these columns are presented in Fig. 1. 
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The initial curvature of the system described by function W0(x) was introduced. 
Innacuracy in the external load application was modelled by introducing the eccentric 
action of a force with value dentoted as e. The geometrically non-linear column was 
built of three rods with a symmetrical distribution of flexural rigidity (EJ)i, compression 
rigidity (EA)i and mass per unit length (ρA)i (for i = 1÷3),while: 

212121 )()(,)()(,)()( AAEAEAEJEJ ρρ ===   (1) 
Rods of the system are rigidly mounted for x = 0 and connected to each other in point x = 
l with the help of the body with mass m in such a way that transverse and longitudinal 
displacements and bending angles of every rods are identical. Linear column L was only 
built of two rods with total bending rigidity (EJ)1+(EJ)2 compression rigidity 
(EA)1+(EA)2 (without the middle rod). Flexural rigidity asymmetry factor µ is defined 
during description of the stability of a geometrically non-linear column N assuming that 
sum of flexural rigidity of rods is constant: 
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The rigidity of rods of column L is the same as for rods with indexes 1, 2 of column N at 
the assumed flexural rigidity asymmetry of the geometrically non-linear column 
described by coefficient µ. 
 

 
Figure 1. The physical model of geometrically non-linear column N 

Total transverse deflection of the i−th rod of the system was denoted as: Wci(x,t) = W0(x) 
+ Wi(x,t), while function of the initial deflection was accepted in the form: W0(x) = αx. 
Longitudinal displacements of the system were determined by relationships: ∆ = e W0

I(l), 
∆1 = e Wc1

I(l,t). 
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3. Mechanical energy of the system, equations of motion, boundary conditions 

The problem of stability and vibrations is formulated on the basis of Hamilton’s 
principle. Kinetic energy T is a sum of kinetic energy of its individual rods and kinetic 
energy of mass m: 
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The total potential energy V consists of energies of: internal forces, bending elasticity 
and action of the external load components: 
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Taking into account equations (3) and (4) in Hamilton’s principle, using commutation of 
integration (over x and t) and variation computation, the equations of motion of the 
considered system in transverse (5a) and longitudinal (5b) directions were obtained: 
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(5b) 

Known geometrical boundary conditions of the considered system, after taking into 
account relationships describing function W0(x) and its adequate derivatives: 
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considered in the Hamilton’s principle, make it possible to obtain the remaining 
conditions necessary to solve the problem: 
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The problem of stability and free vibrations of a geometrically non-linear column L was 
solved by applying the small parameter method. The values of bifurcation force were 
determined on the basis of solution to equations of displacements. Transcendental 
equation for natural frequency ω was obtained substituting the solutions to motion 
equations into boundary conditions after previous separation of variables in terms of 
time and displacement. 

4. Results of numerical computations and experimental research 

The results of research into the stability were partly worked out on the basis of work [7]. 
Diagram of changes in bifurcation load of column N and in critical load parameter of 
column L in relation to flexural rigidity asymmetry function µ  is presented in Fig. 2. 
The value of external load, concentrated mass and obtained values of bifurcation load 
and natural frequencies are expressed in dimensionless way: 
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Figure 2. The value of dimensionless parameter of bifurcation force λc

* in relation to 
flexural rigidity asymmetry factor µ  
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For coefficient value µL in the range of changes from 0 to µgr, parameter of bifurcation 
force λc

*
 for geometrically non-linear column N is lowest than for linear column L. 

Increase in parameter λc
* is obtained by removal of the rod with flexural rigidity (EJ)3  

from the system. The global loss of stability takes place at the coefficient value µ > µgr. 
Numerical computations of changes in value of natural frequency in relation to the 

external load was carried out for the geometrically non-linear system characterised by 
the local stability loss and corresponded to it linear system. The results of numerical 
computations are presented in Fig. 3.  

Table 1. Geometrical and physical parameters of the column  

Quantity Symbol Unit 
Value for   
i= 1,2

 Value for  
i= 3

 

Flexural rigidity of the i−th rod (EJ)i
 

Nm2 792.4 0.568 
Mass per unit length  (ρA)i

 kg/m 0.598 0.012 
Flexural rigidity asymmetry factor  µ / 0.00036 

 

 
Figure 3. The curves in the plane: loading parameter λ* – natural frequency parameter Ω*  

The results of numerical computations and experimental research into the stability and 
natural vibrations as well as influence of imperfection in form and load on instability of 
the system will be presented during Symposium.  

5. Conclusions  

The considered system, being dependent on the value of the distribution of flexural 
rigidity asymmetry factor, is characterised by a local or global loss of stability. The term 
with lower flexural rigidity is responsible for the local loss of stability. 
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Niestateczność i drgania kolumny wspornikowej, geometrycznie nieliniowej 
z imperfekcjami poddanej obciąŜeniu eulerowskiemu 

Praca dotyczy zagadnienia stateczności, podłuŜnego zginania i drgań swobodnych wspornikowej, 
geometrycznie nieliniowej kolumny poddanej obciąŜeniu eulerowskiemu. W modelu fizycznym kolumny 
uwzględniono niedokładność wynikającą z pominięcia załoŜenia idealnie osiowego przyłoŜenia obciąŜenia 
zewnętrznego oraz wprowadzono wstępną krzywiznę prętów. Zagadnienie drgań własnych i stateczności 
sformułowano na podstawie zasady Hamiltona, a następnie rozwiązano wykorzystując metodę małego 
parametru. W pierwszej części pracy, poprzez drgania swobodne (płaszczyzna: obciąŜenie − częstość drgań 
własnych) opisana jest niestateczność lokalna lub globalna układu. Druga część pracy dotyczy wpływu 
imperfekcji kształtu i obciąŜenia na stateczność układu. Analizuje się interakcje wprowadzonych imperfekcji. 
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Abstract  

Boundary problem of free vibrations of an elastically mounted slender system subjected to Reut’s generalized 
load is formulated in the paper. A finite elasticity of kinematic pair connecting column to beam was 
considered. The beam was directly affected by external load. On the basis of the kinetic stability criterion, 
critical load of divergence and flutter type was determined for different rigidities of the kinematic pair 
connecting the column to the beam. The boundary value of the rigidity dividing the divergence and flutter 
instability area and the characteristics curves in the plane load – natural frequency were also determined. 
Computations were carried out using different parameters of the considered system including: coefficient 
describing the place of external force application, rigidity of mounting, and rigidity of the kinematic pair 
connecting the column to the beam. 
 
Keywords: Flutter instability, divergence instability, column,   

1. Introduction  

All systems, loosing stability due to divergence instability or flutter instability in 
dependence on values of parameters were called hybrid systems by Leipholz [1]. 
Parameters, having influence on the method of stability loss, are as follows: structural 
parameters and parameters connected to application of the load. Translational springs [2, 
3, 4, 5, 6], rotational springs (comp.[2, 3]), systems of viscoelastic and elastoplastic 
dumpers [7, 8], and the concentrated mass [9] are the structural parameters. Flexural 
rigidity asymmetry factor [10] and initial pre-stressing [11, 12] are the structural 
parameters in the case of complex slender systems. Major parameter defining character 
of load is a load following factor [4, 10, 13] (Beck’s generalized load) and coefficient 
describing the place of load application (Reut’s generalized load) [10]. Reut’s 
generalized load is coupled with Beck’s generalized load [14].  
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2. Formulation of boundary problem 

The considered system is presented in fig. 1. The column is elastically mounted (rigidity 
of mounting Co) and subjected to Reut’s generalized load . The place of external force 
application is determined by η coefficient. Additionally, the finite rigidity of kinematic 
pair connecting the column to the beam was considered in the system, while the beam 
was directly affected by the external load. Rigidity of the kinematic pair connecting the 
column to the beam was modelled by the rotational spring with rigidity C. 

 

Fig. 1. Diagram of the considered system 

The described above system is a hybrid system and the kinetic criterion of stability 
was used to determine the critical load.  The boundary problem regarded free vibrations 
of the system was formulated on the basis of Hamilton’s principle: 
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where: T – kinetic energy, V – potential energy, Ln – work of non-conservative forces. 
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 ( )ϕη tlWPLn ,−=  (4) 

Equations describing the kinetic (2) and potential (3) energies and work of non-
conservative forces (4) were substituted into Hamilton’s principle (1). After application 
of geometrical boundary conditions: 
 ( ) 0,0 =tW  (5) 

the following was obtained: 
− angle ϕ equation  
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− differential equation of motion  
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By separating the variables using the relationship: 
 ( ) ( ) ( )txYtxW ωcos, =  (11) 

the differential equation was obtained, which must be fulfilled in the range x ∈ (0 , l) and 
at every time of interval t:  
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where:  EJPk /2 = ; EJA /22 ωρΩ =  

Substituted formula (11) into the equations (5) and (7-9) the boundary conditions 
were obtained, which must be fulfilled by solution to equation (12). 

The solution to equation (12) is as follows: 
 ( ) ( ) ( ) ( ) ( )xDxDxDxDxY ββαα sincossinhcosh 4321 +++=  (13) 

where: 242 25.05.0 Ωα ++−= kk , 242 25.05.0 Ωβ ++= kk    

Taking into account solution (13) in the boundary conditions, the system of equations is 
obtained where determinant of matrix coefficient equated to zero is a transcendental 
equation for natural frequency:   

 0=ija  (14)  
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On the basis of equation (14) one can determine the relationships between the load 
and natural frequency. The critical divergence load takes place when the first natural 
frequency equals zero (ω1 = 0). The critical flutter load is when the first natural 
frequency equals the second natural frequency (ω1 = ω2). 

3. Results of numerical computations 

Figure 2 presents dimensionless parameter of the critical load in dependence on 
dimensionless parameter of the rigidity of rotational spring. This spring is present in 
kinematic pair connecting the column to the beam. If coefficient η is in the range  
η ∈ (0.5 − 1.0) for spring rigidity values c = cgr  , “snap through” occurs - from critical 
divergence force to critical flutter force. 

 
 Fig. 2. The critical load in dependence on rigidity C 

  

Fig. 3. The characteristics curves in the plane: load – natural frequency.  
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Exemplary characteristic curves in the plane: load − natural frequency are presented 
in figure 3. The characteristic curves, independent on the rigidity value of rotational 
spring C, are intersecting in the one point (fig. 3 − point S). 

4. Summary 

In the paper the critical load of a column subjected to Reut’s generalized load was 
determined on the basis of the kinetic criterion of stability. The finite rigidity of 
kinematic pair connecting the column to the beam was considered. Divergence and 
flutter instability areas were dependent on rigidity of kinematic pair connecting the 
column to the beam, rigidity of system mounting and on coefficient describing the place 
of load application. The characteristic curves in the plane: load – natural frequency were 
determined. Numerical computations were carried out for different values of the 
parameters characterizing the considered system. 
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Niestateczność dywergencyjna i flatterowa kolumny poddanej uogólnionemu  
obciąŜeniu Reuta z uwzględnieniem spręŜystości rotacyjnej 

W pracy sformułowano zagadnienie brzegowe dotyczące drgań własnych spręŜyście zamocowanego 
smukłego układu poddanego obciąŜeniu uogólnionemu Reuta. Uwzględniono skończoną spręŜystość węzła 
łączącego kolumnę z belką, na którą oddziałuje bezpośrednio siła zewnętrzna. Na podstawie kinetycznego 
kryterium stateczności wyznaczono obciąŜenie krytyczne zarówno dywergencyjne jak i flatterowe 
rozwaŜanego układu przy róŜnych sztywnościach węzła łączącego kolumnę i belkę. Wyznaczono równieŜ 
graniczną wartość sztywności rozdzielającą obszary niestateczności dywergencyjnej i flatterowej oraz krzywe 
charakterystyczne na płaszczyźnie obciąŜenie − częstość drgań własnych. Badania numeryczne wykonano 
przy róŜnych parametrach rozwaŜanego układu. Parametrami układu są: współczynnik określający miejsce 
przyłoŜenia siły zewnętrznej, sztywność zamocowania oraz sztywność węzła łączącego kolumnę z belką.  
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Abstract  

Slender system is considered in the paper. While using this system two cases of specific load (generalized 
load with the force directed toward the positive pole and load by follower force directed toward the positive 
pole) occur at the same realization of the load. These two cases of the specific load exist at determined values 
of rigidity of rotational spring which is mounted in the considered system. The rotational spring generating 
adequate case of the specific load is mounted in kinetic pair connected infinite rigid elements. Infinite rigid 
elements create loading system. Constructional diagram of the considered system is presented in this work and 
theoretical and numerical research into free vibrations and stability in dependence on geometrical and physical 
parameters as well as on a location of kinetic pair with the rotational spring was carried out. 
 
Keywords: divergence instability, column, free vibration, specific load  

1. Introduction  

Specific load for the first time was formulated and introduced to literature by L. Tomski 
in 1994 (comp. [1]). Two basic kind of specific load are presented: generalized load with 
the force directed toward the pole (comp. [1, 2, 3]) (positive or negative) and load by 
follower force directed toward the pole (comp. [4, 5, 6]) (positive or negative). 
Realization of the considered load is possible by usage of appropriately designed loading 
heads built of linear or circular elements. Geometrical parameters of heads loading the 
specific load have an influence on a critical force as well as on natural frequency. One 
can obtain new course of characteristic curves in the plane: load – natural frequency 
appropriately selecting mentioned above parameters. These curves have been called by 
L. Tomski and R. Bogacz as the curves of divergence pseudoflutter type (comp. [7]). 

2. Formulation of the boundary problem 

The system, considered in this work, is presented in fig. 1b. This system is loaded by 
properly designed loading heads built of linear elements. Additionally, rotational spring, 
with the rigidity C modelling the finite rigidity of the considered kinetic pair, is placed in 
kinetic pair which joins rigid elements with lD and lC in length respectively. At limiting 
value of rigidity of spring C (C = 0 and 1/C = 0), two classical cases of the specific load 



 
 
430

are obtained. If C = 0, the slender system is subjected to generalized load with the force 
directed toward the positive pole (fig. 1a). If 1/C = 0 (infinite rigid element with lD + lC 
in length), the slender system is subjected to a load by follower force directed toward the 
positive pole (fig. 1c). 

 

Fig. 1. Diagram of the considered system 

Boundary problem of free vibrations of the considered system is formulated on the 
basis of the Hamilton’s principle: 
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The equations determining kinetic energy (2) and potential energy (3) are substituted 
into the Hamilton’s principle (1). After giving consideration to the geometrical boundary 
conditions: 
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the following equations were obtained: 
− differential equation of motion  
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− natural boundary conditions 
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Separation of variables with the help of relationship: 
 ( ) ( ) ( )txYtxW ωcos, =  (8) 

leads into differential equation, which must be fulfilled in the range x ∈ (0 , l): 
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where:  EJPk /2 = ; EJA /22 ωρΩ =  

Substituting formulae (8) into the equations (4), (6, 7), the boundary conditions were 
obtained, which must fulfil the solution to equation (9). 

The solution to equation (9) is presented as follows: 
 ( ) ( ) ( ) ( ) ( )xDxDxDxDxY ββαα sincossinhcosh 4321 +++=  (10) 

where: 242 25.05.0 Ωα ++−= kk , 242 25.05.0 Ωβ ++= kk    

After considering the solution (10) in the boundary conditions, the system of 
equations was obtained where determinant of matrix of coefficient was equated to zero. 
This is the transcendental equation for natural frequency: 

 0=ija  (11)  

Relationships between the load and natural frequency was determined on the basis of 
the equation (11). The critical load occurs when the first natural frequency is equal to 
zero (the kinetic criterion of stability ω1 = 0).  
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3. The results of numerical computations 

Dimensionless parameter of the critical load in dependence on a rigidity of spring C was 
presented in fig. 2. Numerical calculations was carried out for different values of the 
parameter ζB (ζB = 0.01; 0.25; 0.5; 0.75; 0.9) and for parameter ζA = 0.5. The parameters 
ζA i ζB were defined in a way presented in Fig. 2.   

  

Fig 2. Dimensionless parameter of the critical load λkr in dependence on dimensionless 
parameter of the rigidity of spring c  

  

Fig. 3. Parameter of the critical load λkr in relation to parameters c and ζA at ζB = 0.5  
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Maximum differences in the value of critical force with changes in the spring rigidity 
was observed at higher value of parameter ζB. Dimensionless parameter of the critical 
load in dependence on rigidity parameter of spring c and parameter ζA was presented in 
fig. 3. In computations it was assumed that length lC and lD were identical. Maximum 
critical load was when sum of length lC + lD was equal to a half of the column length (ζA 
= 0.5) (independently on rigidity of spring C).  

 

Fig. 4. The characteristic curves in the plane: load − natural frequency 

Exemplary characteristic curves in the plane: load − natural frequency were 
presented in fig. 4. 

4. Summary 

The critical load of a column subjected to compression load generated by adequately 
constructed system built of linear elements was determined in this paper. Rigidity of 
kinetic pair, in which rigid bolts were connected, was taken into consideration. The rigid 
bolts made loading system. The rigidity of the kinetic pair was modelled by a rotational 
spring with rigidity C. Generalized load with the force directed toward the positive pole 
and load by follower force directed toward the positive pole was obtained by selecting 
boundary values of the spring rigidity (C = 0 and 1/C = 0, respectively). The 
characteristic curves in the plane: load − natural frequency were also determined in this 
work. Numerical computations were carried out at different parameters of the considered 
system. 
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Wybrane układy smukłe w aspekcie moŜliwości realizacji obciąŜenia swoistego  
W pracy rozwaŜaniom poddano pewien układ smukły, za pomocą którego przy tej samej realizacji obciąŜenia 
generuje się dwa przypadki obciąŜenia swoistego (obciąŜenie uogólnione z siłą skierowaną do bieguna 
dodatniego oraz obciąŜenie siłą śledzącą skierowaną do bieguna dodatniego). Te dwa typy obciąŜenia 
swoistego występują przy określonych wartościach sztywności spręŜyny rotacyjnej umiejscowionej w 
rozwaŜanym układzie. SpręŜyna rotacyjna, za pomocą której generuje się odpowiedni przypadek obciąŜenia 
swoistego znajduje się węźle łączącym nieskończenie sztywne rygle wchodzące w skład układu 
wywołującego obciąŜenie. W pracy zaprezentowany zostanie schemat konstrukcyjny rozpatrywanego układu 
oraz przeprowadzone zostaną badania teoretyczne i numeryczne dotyczące drgań swobodnych i stateczności 
w zaleŜności od parametrów geometrycznych i fizycznych oraz w zaleŜności od połoŜenia przegubu ze 
spręŜyną rotacyjną. 
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Abstract 

This paper describes the application of the method of fundamental solutions to the solution of the initial-
boundary value problems of the dynamic torsion of functionally graded rods. The time derivation is 
approximated by finite differences method. For the obtained by this way boundary value problem the 
interpolation of an inhomogeneous term in governing equation is done by the radial basis function. The very 
basic step of the calculations of dynamics of rod torsion is solution of boundary value problem with the method 
of fundamental solutions. 
 
Keywords: Method of fundamental solutions; Radial basis functions; Functionally graded materials 

1. Introduction 

Functionally graded materials (FGMs) are materials with continuously varying material 
properties designed for specific engineering applications. FGMs have recently been 
applied in variety of fields, including aircraft, aerospace and automobile technologies.  

Although the torsion problem for homogeneous linearly elastic bars is a classical one 
in the elasticity, there has been relatively little attention for case when material is 
inhomogeneous. Recently, research activity on functionally graded materials has 
stimulated investigation also on the torsion problem for inhomogeneous material. In 
1964 Chen presented a study on torsion of inhomogeneous bars [1]. He presented 
governing equations and boundary conditions of the torsion problem of inhomogeneous 
bars in terms of stress function. Then, he applied a semi-inverse method and found a 
specific distribution for shear modulus of rigidity in a specific geometry of cross section. 
By this method, he could find simple solutions for stress function and torsional stiffness 
of circular and elliptical shafts. An analytical formulation for torsional analysis of 
functionally graded elastic bars with circular cross sections was presented by Horgan and 
Chan [3]. They supposed the shear modulus of rigidity to be a function of radius, just as 
in [2]. Using the axisymmetric geometry of the cross section of the circular bar, they 
found an exact analytical solution. The Saint-Venant’s torsion problem of linearly 
elastic, isotropic, non-homogeneous cylindrical bars was considered in paper [4]. The 
novelty of this paper is that the shear modulus of the investigated non-homogeneous bar 
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is a given function of the Prandtl’s stress function of a homogeneous bar, which has the 
same cross-sections as considered non-homogeneous bar. 

In paper [5] an analytical formulation was presented for torsion of functionally 
graded hollow tubes of arbitrary shape. Authors assumed that thicknesses of all segments 
of the cross section are the same and shear modulus of rigidity changes continuously 
across the thickness. In this way the simple but relatively accurate formulas for stresses 
and torsional stiffness were obtained on the base of analytical integration of governing 
equation for stress function. 

As the above short review shows, by far, the uniform torsion problem of functionally 
graded materials has been solved by analytical methods and traditional mesh methods 
such as FEM [5], and FED [6]. The purpose of this paper is the application of Method of 
Fundamental Solutions (MFS) to the dynamic torsion problem of functionally graded 
materials. This method belongs to so-called meshless methods which have been more 
and more popular in the two last decades. The MFS was first proposed by the Georgian 
researchers Kupradze and Aleksidze [7]. Its numerical implementation was carried out 
by Mathon and Johnston [8]. The comprehensive reviews of the MFS for various 
applications can be found in [9-10]. 

2. Formulation of the problem 

We consider an infinitely long cylinder with a solid circular cross-section of radius a. 
The displacement components in the cylindrical coordinates are ur, uθ, uz and the 
components of stress are σrr, σrθ, σrz, etc. The torsional waves propagating in a cylinder 
involve only a uθ - circumferential displacement which is independent of θ . 

The dynamical torsions of cylinder made with functionally graded materials in the 
axi-symmetric case is described by the equation (given in [12]): 
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where Ω∂  is the boundary of the region Ω . 
Also we assume that the displacement at r = 0 is finite. 

3. Numerical approach 

The considered problem is solved in the time period ( )MAXtt ,0 , which is descretized. And 

the solution is obtained in chosen time steps it , where i = 0,1,2,...,N and MAXN tt = . The time 

subinterval has length 1−−= ii tth  for i = 1,2,...,N. For every time step the time derivation is 

approximated by finite difference (see [11])as 
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So, the initial-boundary problem (1-4) is written as a boundary value problem in axi-
symmetric case 
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for i = 2,3,…N. 
To start the calculations, the solution of the boundary value problem (6, 7) for 2tt = has 

to be obtained. The equation for this case is: 
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for Ω∈),( zr . 

The quantities ( )0,, tzruθ , ( )1,, tzruθ  are described by the initial conditions. So, 

( )0,, tzruθ  is directly given by equation (2). To obtain ( )1,, tzruθ  the finite difference of 

first order is applied as: 
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and finally from equation (3) and (9) the solution for 1t is given by 

 ),,(),(),,( 01 tzruzruhtzru θθθ += & .  (10) 

For the next time step i.e. 3tt =  the governing equation (6) has the form 
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The ( )1,, tzruθ  is defined by formula (10) and ( )2,, tzruθ is the solution of the boundary 

value problem (8, 7). 
The equation (6) is the linear one with variable coefficient. The proposal of this paper is 
to solve the equation in an iterative procedure. The equation (6) is rewritten in the 
iterative fashion as 
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which is the modified Helmholtz equation in axi-symmetric case. 
For the equation (12) the boundary condition (7) has form: 

 ( ) 0),,(
1

)( =














 −
∂
∂

=ar

i
j tzru

rr
rG θ  for Ω∂∈),( zr . (13) 

So, at each iteration at every time step the boundary value problem is to solve. The 
problem is described by inhomogeneous modified Helmholtz equation in axi-symmetric 
case and the boundary condition. This problem is solved by the Method of Fundamental 
Solutions (MFS) supported by the approximation with Radial Basis Functions (RBF) 
(see Ref. [13]).  
Lets write the equation (12) in a general form 
 ( ) ( )zrfzrLu ,, =  for ( ) Ω∈zr,   (14) 

where L is a linear operator, which can be modified Helmholtz one, as well.  
The boundary condition (13) is rewritten as: 
 ( ) ( )zrgzrBu ,, =  for ( ) Ω∂∈zr,   (15) 

where B can describe Dirichlet, Newman or Robin boundary condition. 
The approximation of the right-hand side function is done by 

 ( ) ( ) ( )∑∑
==

+=
Nl

i
ii

Nw

i
ii zrpbzrazrf

11

,,, ϕ   (16) 

where ( ) ( )( )a
i

a
ii zzrrzr −−= ,, ϕϕ  is a Radial Basis Function and ( ){ }Nw

i
a
i

a
i zr 1, =  is a set of 

points of the region Ω  (see Fig. 1) and ( )zrpi ,  for i = 1,2,…, lN  are monomials. 

The approximation given by (16) is written for each point chosen in the region as 
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Additionally, the condition is to fulfill 
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The solution { }Nw

iia 1=  of system of the linear algebraic equations (17, 18) gives the 

particular solution of the boundary value problem (14, 15) as 
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where 
 ( ) ( )zrzrL ii ,, ϕφ =  for ( ) Ω∈zr,  and i =1,2,…, wN   (20) 

 ( ) ( )zrpzrLP ii ,, =  for ( ) Ω∈zr,  and i =1,2,…, lN .  (21) 

The implementation of the Method of Fundamental Solutions is based on assumption 
that the solution of the boundary value problem is a sum of particular solution given by 
(19) and homogeneous one written as 
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where ( ) ( )( )s
i

s
ii zzrrfszrfs −−= ,,  is the fundamental solution of the equation 

( ) 0, =zrLu  and ( ){ }Ns

i
s
i

s
i zr 1, =  is a set of points outside the region Ω . The points 

( ){ }Ns

i
s
i

s
i zr 1, =  called source points are presented in Figure 2. 
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Figure 1. The set of approximation points Figure 2. The sets of boundary and source points 

 

The set of boundary points ( ){ }Nb

i
b
i

b
i zr 1, =  is chosen (see Fig. 2). The boundary condition 

(15) is written at every boundary point, which gives the system of linear algebraic 
equations: 
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 for j =1,2,…, bN .  (23) 

The solution of the system (23) gives the homogeneous solution of the boundary value 
problem (14, 15). Therefore, the numerical procedure of solution of the initial-boundary 
value problem (1-4) is completed. 
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4. Summary 

The numerical experiment has been performed to check the convergence of the proposed 
algorithm of numerical calculations. The influence of the method parameters on the 
convergence is investigated. Due to complexity of the proposed combined numerical 
procedure the very strong and complicated dependence of the accuracy and convergence 
of the calculations on the method parameters is observed. 
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Abstract  

A boundary problem concerning the stability and free vibrations of a geometrically nonlinear cantilever 
column subjected to Euler’s load (one end of column is free) was formulated in the paper. The boundary 
problem was formulated on the basis of the Hamilton’s principle and the small parameter method due to 
nonlinearity. Internal forces in the individual elements of a system (both in the case of rectilinear and 
curvilinear form of a static equilibrium), the regions of local and global instability, bifurcation load and 
characteristic curves in the plane: load – natural frequency were determined in this work. Numerical 
calculations were carried out for different values of parameters of the considered system. These parameters 
are: flexural rigidity asymmetry factor and the rigidity of element connecting the rods of the column . 
 
Keywords: divergence instability, column, free vibration, Euler load, nonlinear system 

1. Introduction  

Geometrically nonlinear slender systems are the systems where mathematical description 
of the stability and free vibrations problem relies on nonlinear differential equations 
(nonlinearity is connected with geometrical parameters). Nonlinear differential equations 
are obtained by applying theory of moderately large deflections to formulate the 
boundary problem. Complete solution to the stability of slender system consisting of two 
different elements was presented for the first time by L. Tomski in work [1]. The 
presented solution concerned a behaviour of the considered system after attaining the 
bifurcation load. Research into geometrically nonlinear systems included the different 
cases of the load: both conservative [1-6] and non-conservative [7] as well as local and 
global instability [2, 3] and the initial prestressing [4-6]. 

2.  Boundary problem −−−− formulation and solution 

Complex geometrically nonlinear system considered in the paper is presented in Fig.1. 
This system consists of three symmetrically placed rods of the flexural rigidities (EJ)1, 
(EJ)2 and (EJ)3 ((EJ)2 = (EJ)3), compression rigidity (EA)1, (EA)2 i (EA)3 ((EA)2 = (EA)3) 
and mass per the unit length (ρA)1, (ρA)2 and (ρA)3 ((ρA)2 = (ρA)3). The finite rigidity of 
element connecting the individual rods of the column at x = l was modelled with the use 
of rotational spring of rigidity C. The system was subjected to Euler’s compressed load 
and was rigidly fastened. The boundary problem was formulated on the basis of 
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Hamilton’s principle and the small parameter method. Kinetic energy T and potential 
energy V of the considered system are as follows: 
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Fig. 1. Diagram of the considered nonlinear system 

The internal force in the i-th rod is defined by formula: 
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Further discussion into the boundary problem was carried out with the use of 
dimensionless quantities: 
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where: Si(τ) – internal force of i-th rod of the column, ω − natural frequency 
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The geometrical boundary conditions of the column are written in the following 
form: 
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Using Hamilton’s principle and considering the geometrical boundary conditions  
(5-8) one can obtain: 
− differential equations of motion in the transversal direction to axis of the column   
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− differential equations of longitudinal displacement 
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− natural boundary conditions 
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Equations of longitudinal displacement after double integration and application of the 
boundary conditions (7) were written as follows: 
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Equations (15) are nonlinear. The small parameter method was used to finally 
formulate the boundary problem. This method relies on expansion of all nonlinear 
components of differential equations into the power series of small parameter. Nonlinear 
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components of differential equations are: transversal displacements wi(ξ,τ), longitudinal 
displacement ui(ξ,τ), internal forces of individual rods Si(τ) and natural frequency ω. 
Complex geometrically nonlinear column is characterized by two form of static 
equilibrium: rectilinear and curvilinear. The component of transversal displacement 
independent on time occurs in the case of curvilinear form of static equilibrium in 
expansion into power series of small parameter. This component is characterized by 
static displacement around which free vibrations appeared for curvilinear form of static 
equilibrium. Expansions into the power series of small parameter are substituted into 
differential equations and the boundary conditions. Thus, the differential equations and 
boundary conditions connected to appropriate power of the small parameter were 
obtained. On the basis of the solution to the formulated boundary problem, the 
distribution of internal forces in the individual rods of system, bifurcation and critical 
load and natural frequency were determined. 

3. The results of numerical computations 

The dimensionless parameter of bifurcation load in dependence on flexural rigidity 
asymmetry factor µ  for different values of parameter c defining the rigidity of rotational 
spring is shown in Fig. 2. The results of numerical computations concern geometrically 
nonlinear λb and linear λbL system. Geometrically linear system is built only of two rods 
denoted by indexes 2 and 3 (Fig. 1). At a certain value of flexural rigidity asymmetry 
factor µ , the relationship λb < λbL took place. In this case system is characterized by 
local instability. The global instability λb > λbL occurs in the remaining range of flexural 
rigidity asymmetry factor. 

  

Fig. 2. Dimensionless parameter of bifurcation load λb in dependence of coefficient of 
asymmetry flexural rigidity µ at different value of parameter rigidity of spring c  

The initial prestressing is a way of increase in bifurcation load of geometrically 
nonlinear system which is characterized by local instability. The initial prestressing 
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relies on the initial stretching and compressing rods of the column. The influence of the 
initial prestressing on bifurcation load was presented in Fig. 3. 

             

Fig. 3. Parameter of bifurcation load λb in relation to parameters c and ζA at ζB = 0.5  

Characteristic curves in the plane: load − natural frequency were presented in figure 
4. Numerical computations were conducted for different parameters of the considered 
system.  

 

Fig. 4. Characteristic curves in the plane: load − natural frequency 

4. Summary 

The boundary problem concerning free vibrations of a geometrically nonlinear system 
subjected to Euler’s load was formulated in the paper. The bifurcation load, influence of 
the initial prestressing on value of the bifurcation load and characteristic curves in the 
plane: load – natural frequency were determined. Numerical computations were 
conducted for different values of parameters of the system (such as flexural rigidity 
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asymmetry factor, torsional rigidity of element connecting individual rods of the column 
and the initial prestressing of the system). On the basis of numerical calculations was 
found that the increase of the stiffness of rotational spring causes the increase of 
bifurcational force at smaller value of parameters µ and λ0R-2,3. First free vibration 
frequency is not depended on the stiffness of rotational spring at smaller value of 
external force.  
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Niestateczność lokalna i globalna oraz drgania wspornikowej kolumny geometrycznie 
nieliniowej z uwzględnieniem skończonej spręŜystości elementu łączącego poszczególne 

człony kolumny  
W pracy sformułowano zagadnienie brzegowe dotyczące stateczności i drgań własnych wspornikowej 
kolumny geometrycznie nieliniowej poddanej obciąŜeniu Eulera (jeden koniec swobodny). Do sformułowania 
zagadnienia brzegowego wykorzystano zasadę Hamiltona oraz ze względu na występującą nieliniowość 
metodę małego parametru. W pracy wyznaczono siły wewnętrzne w poszczególnych członach układu 
(zarówno w przypadku prostoliniowej jak i krzywoliniowej postaci równowagi statycznej), obszary 
niestateczności lokalnej i globalnej, obciąŜenie bifurkacyjne oraz krzywe charakterystyczne na płaszczyźnie 
obciąŜenie − częstość drgań własnych. Obliczenia numeryczne przeprowadzono przy róŜnych wartościach 
parametrów rozwaŜanego układu do których zalicza się współczynnik asymetrii sztywności na zginanie oraz 
sztywność elementu łączącego człony układu. 
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Abstract   

Thanks to great progress that has occurred in technology in the past twenty years many 
engineering issues which were difficult or even impossible to solve in the past, now are 
worked out with use of the modern numerical technology tools. Such tools consist of 
systems supporting calculations  with Finite Element Method. This method is currently 
the main tool used to solve many mechanical problems. What is more, dominates among 
all the calculations performed in the field of biomechanics. In the paper, the alternative 
methods of solving differential equations was presented – Method of Fundamental 
Solutions (MFS). It is a meshfree method which in the last years is becoming more and 
more popular as it is very effective and easy to determine solutions of the differential 
equations of many engineering solutions [1-6]. However, it is not as commonly used in 
three-dimensional issues of theory of elasticity or heat conduction. The aim of the paper 
is to show that the method can be successfully implemented in order to determine the 
spatial stress pattern or displacement distribution in case of biomechanics. 
 
Keywords: Biomechanics, Method of Fundamental Solutions, Spine, Cervical Segment, Stresses 
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1. Introduction 

Method of Fundamental Solutions belongs to the meshfree numerical methods serving to 
solve the differential equations describing many engineering issues. It has already been 
used in problems of heat conduction, theory of elasticity, plasticity and fluid mechanics. 
Its main advantage is its relatively easy computer implementation and in comparison to 
other methods very little complexity of calculations. 

In MFS the solution of problem (differential equation + boundary condition) is 
approximated with help of linear combination of fundamental solutions of governing 
equation. The fundamental solutions are the functions of the source points occurring 
outside the examined area.  

In order to obtain the solution of examined problem in the given area, it is enough to 
define one algebraic linear equations system in which the coefficients standing before 
the fundamental solutions in their linear combination are the unknown. These linear 
coefficients are determined based on boundary conditions. It allows to estimate easily 
the calculation error and approximation thanks to the standard tools of linear algebra.  

Determining stress patterns in the model implant of the intervertebral disc is an 
example of the method’s use. The chosen object has a homogeneous structure, therefore 
the classical equations of Cauchy-Navier were used to describe the fundamental 
mechanical parameters (stresses, displacements, strains). 

2. Governing equations 

On the basis of linear theory of elasticity for a homogeneous body with constant material 
parameters in three-dimensional area Ω, the Cauchy-Navier equations for displacements 
u1, u2, u3 have form: 
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with the boundary conditions defined on ∂Ω form: 
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where ∂Ω is the boundary for the  Ω area and an operator Bi for i-1,2,3 defines boundary 
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stresses can be obtained from the Hook’s law: 
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And thanks to them, interacting forces ti  can be expressed in the form: 
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In the above formulae the Lame constants λ and µ are determined with relations: 
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where E is the module of elasticity and v is the Poisson coefficient. For a source point Z 
placed outside the examined boundary acting on a point Ω∂∈P , the fundamental 
solutions of system of equations Cauchy-Navier have a form: 
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The solution (the searched displacements) is obtained as the linear combination of 
fundamental forms’ solutions: 
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where 3N-dimensional vector S contains the coordinates of the source points Zi, however 
N-dimensional vectors a, b, c contain the unknown coefficients. After solving the above 
system of linear equations with 3N unknown coefficients, the stresses, displacements 
and strains in any point of the considered area can be determined according to the 
formulae presented above. 

3. Example and conclusions  

In the paper, the problem of determining the stress pattern in the corpus vertebrae of 
cervical spine of human was used as an example of the application of the Fundamental 
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Solution Method. In the Figure 1 the outline of the structure of the spinal vertebra  
(C3-C6) is shown. 

 
Figure 1. The structure of the spinal vertebra (C3-C6) 

 The maximum strains in the corpus vertebrae of a patient with a degenerative disease 
of the segment of cervical spine were examined. They were determined for two 
conformations of a spine: before and after surgery. The load consisted only of the mass 
forces and the geometry of the corpuses was determined based on the X-ray photography 
of a patient. The examined patient was 170 cm high and his mass was 78 kg. Material 
parameters of the bone tissue was taken from literature [8]. In the below Table 1 the 
maximum stresses in the C3 to C6 corpuses vertebrae are presented.  

Table 1. The maximum stresses [MPa] in the sagittal section in the corpuses vertebrae 

spinal vertebra C3 C4 C5 C6 

after surgery 1.84 2.10 2.64 2.97 

before surgery 1.80 2.15 3.13 3.59 
 

 A minor improvement can be observed – the decrease in the maximum stresses 
especially for C5 and C6 vertebrae. It is caused by the change in the conformation of a 
cervical spine. As a result of placing the implant between the vertebrae C5 and C6, the 
geometry of the cervical segment has changed which leaded to different stress pattern. 
The increased stresses present in the vertebrae as a result of improper conformation are 
the reason for the deformation of the bone tissue which contributes to pain complaints 
and demands surgery.  
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Zastosowanie metody rozwiązań podstawowych w biomechanice kręgosłupa szyjnego 
DuŜy postęp jaki dokonał się w informatyce w przeciągu ostatnich dwóch dekad spowodował, Ŝe wiele 
zagadnień inŜynierskich trudnych bądź wręcz niemoŜliwych niedawno do rozwiązania, zostało opracowanych 
za pomocą nowoczesnych narzędzi numerycznych. Do takich narzędzi zaliczyć moŜna wszelkie systemy 
wspierające obliczenia metodą elementów skończonych (MES). Metoda ta jest w tej chwili głównym 
narzędziem rozwiązywania wielu problemów mechaniki, a szczególnie dominuje we wszelkich obliczeniach 
prowadzonych w dziedzinie biomechaniki. W pracy zaprezentowano alternatywną metodę rozwiązywania 
równań róŜniczkowych - metodę rozwiązań podstawowych (Method of Fundamental Solutions MFS). Jest to 
metoda bezsiatkowa, która w ostatnich latach zyskuje coraz większą popularność jako wyjątkowo skuteczna i 
prosta do wyznaczania rozwiązań równań róŜniczkowych wielu zagadnień inŜynierskich [1-6]. Metoda ta, nie 
jest jednak powszechnie stosowana w trójwymiarowych zagadnieniach teorii spręŜystości czy przewodzenia 
ciepła. Celem pracy jest pokazanie, Ŝe moŜna ją skutecznie zastosować do wyznaczania przestrzennego 
rozkładu napręŜeń czy przemieszczeń w zagadnieniach biomechaniki.  
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Abstract  

In the paper the model of the cervical segment of the human’s spine based on the theory of strongly curved 
beams was proposed. Suggested model was used to biomechanical analysis of cervical segment of the spine 
before and after its stabilization by cage. The stress patterns in centra around stabilizer among chosen patients 
suffering from discopathy in the cervical segment were described. 
 
Keywords: Biomechanics, Spine, Cervical Segment, Stresses 

1. Introduction  

Degenerative changes in the spine develop in case of every human. They intensify with 
the age and very often may lead to the deformation of the vertebrae and of intervertebral 
discs, to the narrowing of the vertebral canal as well as of the intervertebral openings and 
even to the instability of the spine. The spine which is distorted with disease can not 
fulfill the basic functions correctly as the organ protecting the spinal cord, responsible 
for the movement or as the support for the body. The degenerative changes which 
significantly disrupt the basic functions of a spine may contain different changes of the 
physiological  curvatures, scoliosis, twists and improper positions if vertebrae. In the 
paper, the cervical spine segment is analyzed, where the physiological lordosis has 
changed as the result of degenerative disease. The method for determining stresses 
present between the vertebrae was presented and it was used to  compare the stresses for 
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the certain vertebrae for the patients who were operated on. The treatment considered the 
remove of the degenerated intervertebral disc and substituting it with the implant. As the 
result of the surgery, the spine conformation and the stress pattern change. 

2. Mechanical model of the cervical spine segment 

The cervical spine segment consists of seven vertebrae (from C1 to C7) where each of 
them has different characteristic dimensions. The vertebrae from C2 to C7 have a similar 
structure presented schematically in the Figure 2. 

 
Figure 1. The scheme of the structure of cervical vertebrae C2- C7: a) section of 

vertebrae in sagittal plane, b) section of vertebrae in cross-section 

The vertebrae C1 and C2 belong to the upper part of a cervical spine and have 
different structure from the other vertebrae. The links with the scale of the occipital 
bones are called the cranial-spinal junction and their structure and compound system of 
the ligaments assure the proper motion of head. The corpus vertebrae for C2 to C7 are 
responsible for the transfer of stresses such as the force caused by the contraction of 
muscles or by the weight of the head. In order to determine the stresses, there are 
possible different approaches because the corpuses are made of different substances [1]  
(Figure 2b). The assumption that the corpus is a homogenous body consisting of 
substance with averaged properties of the cortical bone and the trabecular bone is 
frequently used and is the approach which most simplifies a model. In the paper, the 
model illustrates the reality as much as it is possible, which means treating every corpus 
as the heterogeneous body made of the two different substances. Some simplifications 
were also introduced, such as omitting the trabecular bone as the one which transfers a 
minor part of stresses in comparison to the cortical layer of corpus. The stresses 
determined for the posterior and anterior planes of the corpuses vertebrae for C2 to C7 are 
the field of the examinations in the paper. This is why, every vertebra is treated as the 
elliptical beam with the elliptical hollow. 
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Figure 2. The scheme of the loads of cervical spine 

The forces causing stresses in the corpuses vertebrae are the weight of head and the 
vertical component of the net force of the muscles acting on its posterior part  
(Figure 3).  The data considering the forces and the arm of the forces on which they act 
and the geometry of the cervical spine segment as well as the dimensions of the 
characteristic vertebrae were taken from literature [2]. For every examined case, the 
centre of the coordinate system was chosen in the centre of vertebra C1 (as in Figure 3). 
Furthermore, the coordinates of the centre of corpuses of every vertebrae from C2 to C7 
were used as the bends of interpolations. In order to obtain a curve y(x) representing the 
conformation of cervical spine segment the method of the interpolation with the spline 
functions [7] was used. The value of an axial force F acting on the system is the sum of 
the weight of head and the force originated in neck muscles 

SQF += . (1) 

While, the bending moment derived from these forces is determined from formula  

( ) 7,...,2, =+= iSQlM ii
, (2) 

where Mi –bending moment acting on ith
 vertebra, li – y-coordinate of the centre of the 

corpus of ith
 vertebra. Moment acting on the vertebra C1 is equal to 0. Knowing the loads 

on every vertebra the stresses which are the field of interest can be determined. In order 
to do this, the radius of the curvature in every x point of y(x) curve must be defined, in 
which the stresses are to be known. It is determined from the formula: 
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Having a radius of the curve r0 , the position of the neutral axis e is determined (on 
which the stresses coming from the bending moment are equal to zero) [3]: 
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where Ai – the fields of the cross-section of the ith vertebra and the integral in the above 
expression is on the cross-section area of the ith vertebra, r(x) – distance from fiber to the 
centre of the curve y(x) (Figure 3). 

 

Figure 3. Basic geometric parameters in sagittal section. 

For such defined parameters, normal stresses σι in the i
th section of vertebra in the 

distance s from the neutral axis of vertebra can be derived from the formula: 
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where r=r0-e+s is the distance between the examined fiber and the centre of the of the 
curvature of curve y(x) [3].  

3. Conclusions  

In the paper, the two conformations of cervical spine before and after surgery on a 
patient were studied. Parameters such as the coordinates of the centers of corpuses 
vertebrae, the diameters (characteristic dimensions) of corpuses vertebrae were read 
from patient’s X-Ray photography, the value of the force S was derived based on the 
data considering the moment of neck’s muscles’ force [4,5,6,9,10,11]. The mass of the 
patient was 68 kg, however, the material parameters of bone tissue were taken from 
literature. 
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In Table 1, the values of normal stresses for the anterior and posterior plane of 
corpuses vertebrae from C2 to C7 measured in the middle of corpuses’ heights are 
presented. The normal stresses were determined for the conformation of cervical 
segment before and after surgery which was characterized by placing between C5 and C6 
vertebrae an implant substituting the intervertebral disc. As the result of the geometrical 
change, the stress pattern has changed. 

Table 1. Normal stresses determined for anterior and posteriori C2-C7 vertebral margins   

 Normal stresses σi [MPa] 

 
place of 

determining 
stresses  

C2 C3 C4 C5 C6 C7 

anterior body 
margin 

-0.45 0.83 0.96 1.33 0.39 -1.55 
before 
burgery Posterior 

body margin 
-1.79 -2.64 -2.90 -3.14 -2.47 -0.64 

anterior body 
margin 

-0.48 0.84 1.27 2.00 1.04 -1.40 
after 
surgery Posterior 

body margin 
-1.85 -2.53 -2.97 -2.79 -2.22 0.03 

 
Based on the results shown in the Table 1, it can be observed that the biggest stresses 

in the corpuses vertebrae occur in C4, C5, C6 vertebrae before as well as after operation. 
Even a minor change of the relative distribution of cervical vertebrae after the surgery 
caused change in stress pattern. It can be noticed that the reduction in the absolute value 
of stresses in the operated segment is connected to increased stresses in the neighbouring 
segments. X-Ray photographies are usually taken a few weeks after operation. In order 
to have a full picture of the situation, the measurements should be repeated after a longer 
period of time e.g. after a year. After such a time, as the result of the introduction of 
implant, the conformation of the cervical spine segment can differ significantly from the 
original conformation. 

Data about the stresses occurring in cervical vertebrae can provide valuable 
information specifying the assessment of the deformations of spinal axis. In the 
presented method, determining the geometrical parameters as well as the loads of the 
segment of cervical spine cause that the model is individualized. Additionally, the 
calculations can be implemented to the common use and processing big amount of data. 
What is more, this method of determining stresses is very fast and easy, which is a great 
advantage of such an approach.  
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Model odcinka szyjnego kręgosłupa oparty na teorii silnie zakrzywionego pręta 
W pracy zaproponowano model odcinka szyjnego kręgosłupa człowieka oparty na teorii mocno 
zakrzywionego pręta. Opracowany model został wykorzystany do biomechanicznej analizy kręgosłupa 
szyjnego przed i po jego stabilizacji cage’em. Opisano panujące rozkłady napręŜeń w trzonach kręgowych 
wokół stabilizatora u wybranych pacjentów cierpiących na dyskopatię w odcinku szyjnym. 
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Abstract  

The aim of this paper was to develop and validate a model of controlled drug release from hydroxyapatite in 
the form of a cylinder, using cellular automata. In the course of working there were analyzed  many main 
parameters of shapes and medicine, as well as various models of the inflow buffer, diffusion and dissolution 
of particles. 

 
Keywords: Cellular Automata; Controlled drug delivery; Model FHP;  drunk random walker;  

1. Introduction 

Hydroxyapatite belongs to a group of so-called biomaterials. In a biological environment 
material this degrades into biocompatible substances. However, the time of this process 
is longer than the time of the release of the drug and it is a reason why the model 
assumes that the structure of delivery does not change during the simulation. 

In the study a cylindrical shape with a hole in the shape of a smaller cylinder was 
analyzed. In this hole there was a drug (heterogeneous model). The device was secured 
at the top with wax to prevent the escape of the medicament (Figure 1). 

 
Figure 1 The model of hydroxyapatite device in cylindrical shape 

2. Cellular automata 

Cellular automata are a tool for modeling changing in time the various physical, 
chemical, and biological phenomena, in which many systems interact together [1].   
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Using this simple model it can be simulated a lot of complex processes taking 
advantage of a simple algorithm. A cellular automaton  is a dynamic mathematical 
model, in which time, space and states are discrete values 

 At each step, a cellular automaton changes the state of its cells. A step is called a 
system’s evolution. Each cell is assigned a state from a finite set of states. In order to 
make the cellular automaton reflect the simulated phenomenon correctly, it should: 

− define initial states of all cells at t = 0, 

− designate a set of rules by which the automaton can evolve. 

3. Model of dissolution 

Dissolution is a complex process, which is influenced by physicochemical properties of 
drug and solvent. The first step is to contact the solvent with the surface of solid 
substances. The next step is to break the molecular bonds (merger) and salvation (impact 
created after dissolving ions with solvent’s molecules). The last stage is a transfer 
molecules within the solvent (diffusion) [2]. 

The process of dissolution, although quite complex in terms of physico-chemical 
properties, is usually presented in a simple way of simulation. In work [3] [4] the authors 
applied a simple rule of transition, describing the process of dissolving the drug, which 
lies in the fact that the cell can alter the state of permanent drug to dissolved drug if it 
has at least one neighbor with solvent state. 

In created application each cell with permanent drug’s state is assigned a “solubility” 
parameter, which determines the life span of such cells. In subsequent iterations, in 
which at least one of the neighbors is in the buffer state this  parameter is able to 
decrement. At the time when it will be zero, the state of the cell changes to the drug 
dissolved. Thus, the smaller the parameter value, the quicker the drug is soluble. 

4. Model of diffusion 

Diffusion is a process by which matter is transported from one part of the system to 
another, due to the random motion of molecules [5].  

The description of the basic laws of diffusion was developed by Adolf Fick. Fick's 
first law describes the relationship between the quantity of substance released per unit 
time from the unit area of the media and the gradient of the concentration of this 
substance. When the system is heterogeneous, Fick's law takes the form [8]: 

l

cDK
J

τ
ε∆

=  (1) 

where J – the change of the quantity of drug in time, D – the diffusion coefficient, ∆c - 
the difference in concentration, τ – the tortuosity of pores, ε – the porosity, l – the 
thickness of the material, K – the coefficient of medicine distribution between the liquid 
surrounding and contained in the pores of delivery system. 

Fick's second law, assuming that the diffusion coefficient does not depend on the 
concentration, can be written: 
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Molecules in the medium move in an irregular manner. These movements are 
referred to as Brownian motion [6]. Although Brownian motion is really complicated 
process, often it is simulated using simple models. One of them is called a random drunk 
walker [2]. In each iteration, the transfer of molecule is the same (regardless of direction) 
and after each step a new direction (all are equivalent) is chosen. If all particles are in 
one agglomeration at the initial moment, after several iterations the area of molecule 
occurrence will be much greater. It turns out that the spatial distribution of particles in 
this model corresponds to the Gaussian decomposition. Also calculated that the average 
displacement at time t is proportional to . 

The Block rotation method bases on Margolus’s neighborhood. In the model there is 
a separation of iterations into odd and even, for which the transition rule is the same. It 
consists in the fact that the 2x2 block of cells can be rotated clockwise or 
counterclockwise. The probability of rotation in both directions is the same [9]. It 
required numerous modifications to apply the block rotation algorithm to simulate a 
diffusion, where obstacles may get in the way of particles (eg. hydroxyapatite). After 
entering the appropriate changes, in some cases, a cell in the dissolved drug’s state does 
not change its position. This happens when in the block is not a single cell in the buffer 
state, which the drug molecule could switch places. If in the block there are two cells 
representing the moving drug molecules and one obstacle, it may happen that only one 
drug molecule changes the position. The examples of rules used in the method of Block 
rotation are  shown in Figure 2. 

 

 
 

Figure 2. Samples of transition rules in modified algorithm for Block rotation. Symbols: 
green cells - cells which are an obstacle for moving medicine, violet - a cell capable of 

dissolving drug, the red arrow points the direction of rotation. 

5.  Model of flow buffer  

The problem of simulating the flow of buffer through a porous material is not a new 
issue. Using the Navier-Stokes’s equations [10] the principle of conservation of mass 
and momentum of a moving fluid was described. According to them, changes of the 
element of fluid momentum depend only on external pressure and internal viscosity in 
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fluid. The first Navier-Stokes’s equation for incompressible fluid compares acceleration 
to the vector sum of forces acting on the particle:  

fp
t

+∇+∇−=∇⋅+
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VVV
V 21

)( ν
ρ

 (3) 

where ρ – the fluid(liquid) density, V – the flow speed, p – the pressure, ν – kinetic 
viscosity, f – main force acting on the particle, e.g. gravity and ̶ - the del operator. 

The second Navier-Stokes’s equation looks as follows: 
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 (4) 

However, it should be noted that these equations apply to an incompressible fluid and 
the time derivative of the density is equal to zero, so the equation will reduce to the 
form: 

0=⋅∇ V  (5) 
The above equation (5) is the law of conservation of mass. As a result, there are 

additional restrictions on the equation of motion of the first Navier-Stokes (3). 
Therefore, three components of velocity are closely linked. By identifying two 
components of speed, it can clearly identify the third component. 

With the advent of the gas lattice model’s cellular automata [11], there has been a 
huge breakthrough in simulating the flow of water in the pores. The main method of this 
group of models is a Lattice-Boltzmann method (LBM) [12]. In gas lattice models space 
and time are discrete. Particles can move on two or more dimensional grid with the 
nodes located in the same distance from each other. Time steps are equally divided. The 
location of particles is represented by the coordinates x = (x1, x2,…, xn), where n is the 
dimension of the space grid. Number of particles in a given node is presented by n’s,  
s = (s0, s1,…,sn), where s0 is the number of fixed particles, while s1,…,sn ̶ {0,1}, where 
0 - presence or 1- lack of particles moving in the direction of the velocity vector ̶1, ̶2, 
̶3, …, ̶n. 

If algorithm based on the model of the gas lattice is implemented, a defect should be 
taken into consideration, namely, a defect consisting in that the time, the position and 
velocity of particles are natural numbers. The advantages of this model are the speed and 
the slow accumulation of numerical error. 

6. Results  

The measure of successful simulation is the best match between the results obtained and 
their experimental results. For this purpose  the criterion was introduce, the so-called 
index differences [7]: 
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where: Et - experimental result at t, St – simulation results at t, t - time, N – number of 
points. 

This index is a number ranging from 0 to 1. The better the fit of simulation results to 
the experimental data, the smaller is the number. In [7] the authors suggest that Ic < 0.2 
means a good fit. Figure 3 shows the release profiles for different drugs together with 
examples of simulation results after calibration. The values of the index differences for 
each pair of curves are provided. Apparently the match is on a very good level, since 
indexes are much lower than 0.2 and are in the range of 0.1040 to 0.0577.  

 

 
Figure 3. Laboratory data, together with simulation calibrated results. Next to simulation 

results are index values differences. 

7. Conclusions  

For each model of the diffusion the relationship between the parameter of solubility and 
the speed of release have been determined. Each time it had the exponential character, 
but it differed in scope adopted values. For the diffusion based on Brownian motion it 
was examined how the number of changes in position of diffusive molecule decreased 
the rate of drug release. In the work it was found that models using Margolus’s 
neighborhood are characterized by several adverse features such as a very slow process 
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algorithm, the ability to block the drug inside pores and unpredictable results on the 
basis of preset parameters. 

Thanks to these tests, the choice a particular model of diffusion can be consciously 
made on the basis of the advantages and disadvantages of the different methods  
presented in the work. 
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Symulacja uwalniania leków z hydroksyapatytowych kształtek przy uŜyciu automatów 
komórkowych 

Celem pracy było opracowanie oraz walidacja modelu kontrolowanego uwalniania leków z 
hydroksyapatytowego nośnika w formie walca, przy uŜyciu automatów komórkowych. W toku pracy 
dokonano analizy najwaŜniejszych parametrów kształtki oraz leku, a takŜe róŜnych modeli napływu buforu, 
dyfuzji oraz rozpuszczania cząsteczek.  
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Abstract 

The continuous connection method has been extended for the dynamic analysis of composite tall buildings 
structures, which contain substructures of different materials. The example of free vibration analysis of 
79-storey building has been included. The results obtained by the present method have been compared with 
those of the finite element method program and field measurements, given in the literature, and a good match 
has been observed.  
 
Keywords: dynamic analysis, tall buildings, coupled shear walls, continuous connection method  

1. Introduction 

In tall buildings the lateral loads that arise from effects of wind and earthquakes are 
often resisted by a system of coupled shear walls acting as vertical cantilevers. It is 
possible to perform the analysis of shear wall structures using either the discrete method 
or the continuous one [5]. In the continuous approach, the horizontal connecting beams, 
floor slabs, and vertical joints are substituted by continuous connections. In recent years 
the use of continuum models in structural analysis has received considerable attention. 
These models offer an attractive, low cost method for analysing large structures and they 
represent the useful tool for the design analysis. 

For the dynamic analysis it is convenient to use a hybrid approach based on the 
analysis of an equivalent continuous medium and a discrete lumped mass system [1, 3, 
6]. This paper presents the extension of the method and the computer program based on 
it allowing for computations of the tall buildings constructed from different materials. 
The description of a structure and loads applied to it is made with the use of the global 
coordinate system, OXYZ, with axes X and Y assumed arbitrarily on the level of fixing 
shear walls, and with vertical Z axis (Fig.1). 

2. Equations of equilibrium 

An equation of equilibrium of resultant shear forces and torsional moment in the cross-
section of a shear wall system tk, with shear forces and flexure-torsional moments acting 
in the cross-sections of shear walls tE  can be presented in a matrix form (L is matrix 
defining the transformation from the global coordinate system of the structure to local 
coordinate systems of shear walls): 

)()(ˆ zz E
T

k tLt =     (1) 

An equation of equilibrium of normal forces in shear walls nE with forces in 
continuous connections nN and vertical loads acting on those elements nR  is expressed 
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by a matrix relation (SE - matrix related to the interaction between the continuous 
connection and the adjoining shear walls; SR - matrix related to the action of vertical 
loads on shear walls) 

∫∫ +=
H

z

H

z

drzdrzz )(ˆ)()( RRNEE nSnSn    (2) 

A differential relation in bending constitutes an equation of equilibrium of bending 
moments and bimoments mE for segments dz of shear walls. After taking into account 
the forces nN in continuous connections and loads nR acting on the shear walls with 
eccentricities of those forces described by coordinates collected in matrices CN and CR, 
the equation in a matrix notation takes the following form: 

)()(ˆ)()( zzzz '
ERRNNE mnCnCt =−−    (3) 

 

 
Figure 1. Three-dimensional shear wall structure: 1 – three-dimensional shear wall,  
2 – continuous connections which substitute connecting beam bands, 3 – floor slabs 

3. Compatibility equations 

The equation of compatibility of horizontal displacements of shear walls vL (on the 
assumption that floors are undeformable in their planes) is expressed by the following 
relation (vG - vector of global horizontal displacements of the structure) 

 )()( zz GL vLv =  (4) 

The equation of compatibility of vertical displacements of connecting beams (Fig. 2) 
has the following form: 

 0ddd 321 =++ )()()( zzz  (5) 
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where the following relation expresses components of those displacements resulting 
from bending and torsion of stiffening elements  

 )()( zz '
L

T
N1 vCd −=   (6) 

and components resulting from vertical displacements of stiffening elements due to 
shortenings and settlement are presented as follows 

 )()( zz Z
T
E2 vSd =  (7) 

 

 

 
 

Figure 2. Components of a vertical displacement of connecting beams: 
   d1 – from bending of walls,   d2 – from vertical displacement of walls,    

d3 – from bending of connecting beams 
 

The relation between shortenings of shear walls u, assumed foundation settlements z0 
and vertical displacements of shear walls vZ is expressed by the following equation 

 0Z zuv ˆ)()( += zz  (8) 

4. Physical relations 

A differential equation of deformations in bending of stiffening elements has the 
following form 

 )()( zz
"
LZE vKm =  (9) 

and an equation linking normal forces nE with axial shortenings of shear walls u can 
be presented as follows 

 )()( zdww uKn 1
S

z

0
E

−=∫  (10) 

The relation defining bending stiffness of connecting beams KW (the remaining 
stiffnesses, i.e. compression and torsion stiffness, are of no importance due to the 
assumption of floors undeformable in their planes) is as follows 

 )()( zz 3WN dKn =  (11) 
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5. Boundary conditions 

The assumption of fixing the stiffening elements at the base, on one level, directly yields 
the boundary conditions: 

 .ˆ(0)(0)(0) 0zLL zv0,v0,v ==′=  (12) 

The assumption of free ends of stiffening elements at the top of a building allows us 
to write the following relations 

 0,m0,n EE == )()( bb hh  (13) 

where: hb - height of the shear wall system. 

6. Equations of motion and computer program 

Dynamic solutions have been obtained by treating the structure as a lumped parameter 
system with discrete masses in the form of rigid floor slabs arbitrary located along the 
height, having flexural and torsional inertia [6]. A dynamic model with masses in the form 
of rigid floor slabs has been adopted since over a half of building total mass is concentrated 
on the floor levels. The coupled torsional-flexural vibrations have been considered because 
torsional response of  buildings  during  ambient  and earthquake  response  is  
significant. For shear wall multi-storey structure it is more natural to determine the 
flexibility matrix D than stiffness matrix K. The vibration of a structure is described by the 
following relation [2]: 

 f D x   x C D  x M D =++ &&&  (14) 
where: D - flexibility matrix, M - mass matrix, C - damping matrix, x - d-element 

vector of generalised coordinates (d - number of dynamic degrees of freedom of the 
calculated structure),  f - d-element vector of generalised excitation forces, corresponding 
to generalised coordinates.  

Calculations were made using DAMB program (Dynamic Analysis of Multistorey 
Buildings) [7], which gives a possibility to carry out linear dynamic analysis of three-
dimensional shear wall structures. 

The involved stages are as follows: (1) Determination of natural frequencies and 
mode shapes, (2) Evaluation of modal participation factors and calculation of modal 
loading on the structure (using an appropriate design spectrum), (3) Determination of 
response estimate taking into account the contribution from the given number of modes 
for various parameters of interest.  

7. Numerical example 

Di Wang Tower (Shun Hing Square) is a 79-storey office building, built in Shenzen 
City, China in 1996 year. The main structure of Di Wang Tower is about 325 m high and 
now it is the eighth tallest building in the world.  The aspect ratio of height to transverse 
width is about 9. This example has been chosen in order to demonstrate the potential of 
the presented method in the free vibration analysis of non-planar composite shear wall 
structures. 
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The plan of standard floors in this tower (Fig.3) includes a rectangular section (53.5m 
x 35.5 m) and two semi-circles (12.5 m radius) [4]. The composite structural system 
consists of central reinforced concrete core wall and perimeter frames connected by rigid 
steel outriggers. 

 
Figure 3. The floor plan of Di Wang Tower [4] 

The results of the free vibration analysis obtained by finite element method and by 
presented method are listed in Table 1. The field measurements results given by Li [4] 
and Xu [8] are also presented for comparison purposes.  

 8. Conclusions 

In the present paper the continuous-discrete approach to the free vibration analysis of 
non-planar coupled shear walls has been extended to composite structures. 

The results obtained by the present method have been compared with those of the 
finite element method program and field measurements, given in the literature, and a 
good match has been observed.  

 
 
 

 



 

 
470

Table 1.   The first two translational natural frequencies (Hz)  
in each direction obtained using FEM software [4],  

from the field measurements and by the presented method (CCM) 

 
The 1st mode 

in longitudinal 
direction X 

The 2nd mode 
in longitudinal 

direction X 

The 1st mode 
in transverse 
direction Y 

The 2nd mode 
in transverse 
direction Y 

SATWE (FEM)   0.201 0.676 0.159 0.592 
Field measurements: 

Li [4] 0.208 0.688 0.173 0.540 
Xu [8] 0.203 0.660 0.171 0.682 

Present method (CCM) 0.190 0.636 0.166 0.636 
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Metoda ciągłych połączeń w obliczeniach dynamicznych konstrukcji budynków wysokich 

z róŜnych materiałów 
Przedstawiono rozszerzenie metody ciągłych połączeń umoŜliwiające analizowanie budynków wysokich,  
których konstrukcje zawierają podukłady z róŜnych materiałów. Zawarto przykład liczbowy analizy 
dynamicznej budynku o 79 kondygnacjach. Uzyskane przy uŜyciu zaproponowanej metody wyniki wykazują 
dobrą zgodność z wynikami metody elementów skończonych  oraz wynikami eksperymentu na rzeczywistym 
obiekcie. 
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Abstract  

The paper presents results of preliminary experimental tests carried out on a demolition hammer. The hammer 
has a T-shape symmetric handle to be operated with two hands. [1], which forces an operator to assume a 
symmetric and vertically erect position. The measurements were performed using standard equipment at the 
Laboratory of Dynamics and Ergonomics of the Metasystem: Human Being – Technical Object – Environment 
of the Department of Vibroacoustics and Bio-Dynamics of Systems of Poznań University of Technology. 
Values of vibration acceleration in three directions x, y and z were measured on the tool handle. The tests have 
shown, that the tool generates impulse forces during work. It concerns particularly the ‘z’ direction along the 
axis of symmetry of the tool, which is simultaneously the main direction of motion of the tool.. The 
identification research on the tool are to be used for verification of the model of a Human Being – Demolition 
Hammer system [3]. 
 
Keywords: vibrations, a biomechanical model 

1. Introduction  

The paper presents results of experimental tests carried out at the Laboratory of 
Dynamics and Ergonomics of the Metasystem: Human Being – Technical Object – 
Environment of the Department of Vibroacoustics and Bio-Dynamics of Systems of 
Poznan University of Technology. The research is part of a research project funded by 
the Ministry of Science and Higher Education.  

The main goal of the research conducted within the confines of the project mentioned 
above is to adapt a vibroisolation system to a tool with a T-shape handle and to achieve 
in this way a reduction in vibration energy flow from the tool into a human operator. A 
demolition hammer with mass of 15.5 kg with a stiff symmetric handle for two hands 
was bought for the received means. At an earlier stage of the project was built a spatial 
dynamic model of a Human Being – Demolition Hammer system [3]. The conducted 
identification research have been used to verify the developed model as to the 
correctness of its dynamic structure and the forces exciting the hammer to vibrations 
during work. The correctness of the model will allow wide-ranging analysis of 
dynamics, power distribution and energy flow in the investigated structure, which is 
planned as the next stage of the research project. 
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2. Demolition hammer 

A tool with mass of above 15 kg with a T-shape symmetric handle to be operated with 
two hands (Fig. 1) was used for identification research. It is a heavy pneumatic hammer 
with a monolithic casing, a built-in lubricator, and an outlet air silencer. 

TECHNICAL DATA OF THE PNEUMATIC HAMMER: 
Tool grip: 25x108 mm 
Mass: 15.5 kg 
Air consumption: 1.5 m3/min 
Length: 590 mm 
Number of strokes per minute: 1470 strokes/min. 

Standard demolition hammers are used for such works as crushing of asphalt, 
concrete, frozen soil, driving posts, consolidation of subgrade etc. 

 
 
 
 
 
 
 

1- air inlet 

2- lubricator 

3- oil plug 

4- handle 

5- silencer 

6- trigger 

7- tool retainer  

8- cylinder 

 

Figure 1. Demolition hammer used for identification research 

The investigated tool is not equipped with any vibroisolation system. It is a pneumatic 
tool with 1470 strokes of the ram per minute.  

3. Test stand  

Experiments were carried out on a test stand for hand-held impact tools with use of a 
variant for measurements performed with participation of a human operator [1] (Fig. 2). 
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Figure 2. Test stand for hand-held impact tools  

Conditions of interaction of a hammer with a substrate are defined precisely by 
international standard ISO 8662 [4]. A standard substrate in the form of an impact 
energy absorber was introduced – Fig. 2. The substrate consists of a 150 mm high pile of 
four-millimeter steel balls closed in a thick-walled casing with the internal diameter of 
60 mm. The energy absorber is fixed to a concrete foundation with mass of about 500 
kg.  

Using a standard equipment for measurement of vibrations [2] (Fig. 3) accelerations 
on the handle were measured. The following equipment was used for measurements: 
B&K 4384 and 4374 accelerometers, a B&K 2513 vibration meter, RFT measuring 
apparatus consisting of a signal amplifier, a low-pass filter, a high-pass filter, an 
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oscilloscope and a power unit. Signals were recorded using a digital oscilloscope RIGOL 
DS 1102CD. 

 

Figure 3. Diagram of measuring equipment used for research 

4. Measurement results  

The instantaneous runs of vibration acceleration of the handle are shown in Fig. 4.Initial 
tests showed that the actual frequency of work (of stroking) equals 20 (+/- 2) Hz, which 
differs from the data given by the manufacturer, who declares it at a level of 25.5 Hz. 

During the identification research the running demolition hammer generated impulse 
forces. This was particularly the case for direction ‘z’ along the axis of symmetry of the 
tool, which is simultaneously the main direction of motion of the ram and tool body.  
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Figure 4. Signals of vibration acceleration recorded for three directions X, Y and Z 
during work of the tool held down by a human operator 

For directions x and y was observed a significant influence of changing working 
conditions on the recorded values of acceleration.  

Weighted values, RMS values (Lin) and peak values of vibration acceleration were 
obtained by means of a B&K 2513 integrating vibration meter (Tab.).. 

 
 



 

 
476

Table. Weighted values, RMS values (Lin) and peak values of vibration acceleration for 
each direction 

Measured value direction 
‘x’ 

direction 
‘y’ 

direction 
‘z’ 

aweighted [m/s2]  

aRMS [m/s2] 

apeak [m/s2] 

26 

48 

50 

24 

81 

94 

30 

152 

177 

Peak factor CR 1.04 1.16 1.16 

The values shown in the table are mean values from five tests conducted for one 
operator. The values of the peak factor confirm occurrence of impact forces. 

5. Conclusion 

Work with a demolition hammer having a percussive character of running is very hard, 
requires a lot of effort, and strains a human operator strongly by vibrations. Practically, it 
is impossible to hold down the tool with a constant force in the given direction. For 
further research it is planned to fix the hammer in a special fixture developed specially 
for this purpose.  
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Badania identyfikacyjne Młota Wyburzeniowego 
W pracy przedstawiono wyniki wstępnych badań eksperymentalnych zakupionego młota wyburzeniowego. 
Młot posiada symetryczny, dwuręczny uchwyt w kształcie litery T, co wymusza u operatora pozycję 
symetryczną i wyprostowaną. Pomiary wykonano przy wykorzystaniu standardowej aparatury w Zakładzie 
Wibroakustyki i Bio–Dynamiki Systemów Politechniki Poznańskiej w Laboratorium Dynamiki i Ergonomii 
Metasystemu: Człowiek – Obiekt Techniczny – Środowisko. Wykonano pomiary przyspieszeń drgań na 
rękojeści młota w trzech kierunkach x, y, i z. Badania wykazały, Ŝe narzędzie generuje w czasie pracy siły o 
charakterze impulsowym. Szczególnie dotyczy to kierunku „z” wzdłuŜ osi symetrii narzędzia, który jest 
jednocześnie głównym kierunkiem ruchu bijaka i korpusu narzędzia. Badania identyfikacyjne narzędzia 
przeprowadzono w celu weryfikacji modelu dynamicznego systemu Człowiek – Młot Wyburzeniowy.  
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Lamb waves in elastic anisotropic plates are characterized by an infinite set of dispersion 
curves. Generally, their intersections are forbidden. However degeneracies in Lamb 
wave spectra become possible when the plate medium has a symmetry plane parallel to 
the sagittal plane or to the surfaces. The first symmetry provides splitting of the 
eigenwaves into the sets of SH waves (polarized orthogonally to the sagittal plane) and 
in-plane waves (polarized in the sagittal plane). The second leads to their decomposition 
into the wave systems symmetric and anti-symmetric with respect to the middle plane of 
the plate. In both cases the wave sub-systems are independent and their dispersion curves 
may cross each other. It is clear that even infinitesimal perturbations eliminating a 
symmetry of the problem must exclude infinite number of intersections of the dispersion 
branches of initially independent systems. Such branch repulsion will mix wave fields 
with qualitatively different characteristics. A transformed spectrum is formed by new 
dispersion branches which consist of multiple fragments of initial curves belonging to 
different sets.  
 The paper presents three examples of perturbation of a symmetry of initially 
transversely isotropic elastic plate with the surfaces parallel to the fundamental 
symmetry axis and the sagittal plane coinciding with the basal symmetry plane: 1) a thin 
coating of one of the surfaces; 2) a small trigonal perturbation of elastic moduli; and 3) 
an addition of a weak piezoelectric coupling. These perturbations eliminate a horizontal, 
or a vertical symmetry plane, or both of them. We shall find for all considered cases the 
relations between perturbations and branch splittings. 
 
The paper is supported by the Polish Foundation MNiSW (grant No. N N501 252334). 
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The conditions for existence of Stoneley-type waves localized at the twist interface in 
the transversely isotropic medium are studied. The considered bi-crystalline structure is 
formed by the two semi-infinite medium with non-collinear principal axes parallel to the 
interface. The implicit form of the dispersion equation in terms of the Stroh formalism is 
found in a general statement. Its approximate analysis is accomplished for the limiting 
case of small twist angles between principal axes. It is proved the existence theorem for 
the Stoneley wave solutions in the sector of propagation directions close to the 
transverse isotropic orientations in the both halves of the structure. The basic parameters 
of the appropriate localized solutions are found both inside of the sector and on its 
boundaries.  
 
The paper is supported by the Polish Foundation MNiSW (grant No. N N501 252334). 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 

 


