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Introduction to the Volume XXIV
of Collected Papers on Vibrations in Physical Systems

Vibrations, oscillations and waves as physical phenomena are omni-
present. They are the sign of life, the sign of the operation of machines
and devices and they accompany any production processes. Their effects
may be harmful, useful and they may also be a source of information on
the technical condition of the supervised machines and devices. Volume
XXIV of Vibrations in Physical Systems published every second year
deals with these widespread phenomena. It comprises the papers
presented by specialists from our country but also from abroad at many
sessions of the XXIV Symposium of Vibrations in Physical Systems
organized also every second year. The Symposium has been organized
since 1960 in Poznan by a branch of the Polish Society of Theoretical and
Applied Mechanics and the Institute of Applied Mechanics at Poznan
University of Technology.

Topics of the publications relate to a wide range of issues connected
with modelling and identification of mechanical systems, their stability
and dynamics of mechanical systems as well as physical phenomena such
as propagation of acoustic waves, vibrations in solid bodies, vibrations of
liquids and mechanical structures.

The monograph comprises also numerously presented publications
relating to the issues of dynamics in biological as well as biological and
mechanical systems. They mainly concern mechanical properties of a
human body and its organs (auditory bones) or parts. Other publications
describe the dynamic interaction of power between human and machine
(Human — Hand-held Powered Tool) or distribution of power and the
energy flow in Human-Machine Systems.

Many of the publications present the results of research carried out
through simulation with the application of modern digital technologies
worked out for the needs of solving linear and non-linear issues of the
dynamics of solid bodies or physical phenomena such as propagation of
acoustic waves or complicated structures. The publications comprise the
results that are analysed from the point of view of the applied
methodology or accuracy of the obtained figures.



There are also quite a few publications devoted to methods of passive,
active and semi-active minimizing of vibrations and noise and to
modelling of vibrations damping with viscotic damper. The publications
concerning dynamic issues also analysed the stability of the tested
mechanical systems.

Other significant publications concern the monitoring of technical
facilities with the use of the propagation of elastic waves that allow us to
detect cracks in the composite structure under the test and to specify their
location. They also describe methods of modelling the propagation of
waves.

All the papers comprised in this volume have been reviewed by
members of the Scientific Committee, and in some cases by specialists
outside the Committee, should the issues concern problems outside the
scope of knowledge of the Committee members. I would like to thank all
those persons who help us review the papers and the published
monograph and improve their quality.

Co-editor
Marian W. DOBRY
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Structural Health Monitoring by means of elastic wave propagation
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Pawet KUDELA
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Abstract

The main issues regarding damage detection in elements of structures are discussed. The detection is
conducted by the use of methods based on the phenomenon of elastic wave propagation. The emphasis is
placed on modelling the phenomenon of elastic wave propagation in composite elements of structures, along
with issues of wave interactions with damage and problems of damage location.

Keywords: elastic waves, damage detection, Structural Health Monitoring

1. Introduction

The scope of Structural Health Monitoring (SHM) includes constant monitoring of the
structure's material condition (in real-time), for the elements of the structure as well as
for the whole structure during its useful lifetime. The condition of the structure’s
material is to remain within the limits specified by the standards of the design process.
Those standards, regarding the material, ought to take into consideration changes caused
by exploitation wear during the operation process, changes caused by environmental
factors, in which the structure is being used, and coincidental situations influencing the
condition of the material. Owing to the fact that the monitoring process is being
conducted continuously during operation, there will be a record of the complete history
of utilization. Such information may be used for future condition prognosis as well as
prediction of faults and the structure's safe utilization time.

Systems executing SHM processes ought to be structure integrated; this allows
making modification of the structure in such a way that the probability of a failure is
minor. It also enables minimization of the failure risk through management of the
structure's utilization and treating it as part of a bigger system. The first layer of a SHM
system is the monitoring layer specified by the type of physical phenomenon that is
being monitored by the sensors. It is dependent on the damage type to be detected and
the type of physical phenomenon that is being used by the sensors in order to generate
the signal, mostly electrical, containing features and processable information regarding
damage. Several connected sensors work together in a system measuring environmental
factors influencing the condition and process of the exploitation of the structure. Data
gathered from all the sensors along with historical data from previous structures allow
diagnostic synthesis of information (signal fusion) regarding the condition of the
structure. Once the above-mentioned information is linked with all the data from the
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general system of knowledge about the phenomenon of damage and structural wear, it is
possible to gain prognosis of condition and data defining the scope of any necessary
repair. It is more common, that for such purposes simulation systems are used. Those
systems enable extremely quick generation of the results, similar to those obtained from
the chain of sensors based on familiar damage models (virtual exploitation of the
structure).

The motivation for applying such systems is:

e ability to avoid failures with catastrophic consequences,

o ability to optimize the utilization process (minimization of emergency stoppage
time),

e gaining essential information for designers regarding structural modification,

e ability to minimize maintenance costs and to raise the efficiency of a device
thanks to the use of a methodology of repair according to condition, as well as
avoiding disassembly, and replacement of non-damaged and non-used
elements,

e ability to avoid operator's mistakes regarding evaluation of the condition of the
structure.

Many methods used in practice to build SHM systems are being adopted from
widely-known and applied disciplines e.g. NDT. Classical NDT methods can be
executed continuously, such as: measurement of acoustic emission, Lamb waves,
temperature, or mechanical impedance or direct monitoring of the displacement field
with the use of visual methods, can be examples of applying NDT techniques in SHM
systems.

A popular method, that can be applied passively as well as actively is the method
based on examination of thermo-flexibility phenomena accompanying damage,
especially its formation and propagation. Currently, interest in this method is increasing
due to the opportunity of non-contact measurements of thermal phenomena within
structures and intensive development in temperature measurement. Another method is
the method of surface Lamb wave excitation within the structure. This method uses a
grid of sensors/actuators. Registration and processing of transmitted waves as well as
reflected waves is conducted. Evaluation of the condition of the structure takes place on
the basis of wave profile deformations due to damage in the interrogated area of the
structure.

2. Lamb waves

Elastic waves that propagate in solid media bounded by two free and parallel surfaces
are known in the literature as Lamb waves or guided waves. Lamb waves are named
after Horace Lamb in honour of his fundamental contribution in this area of research. He
developed a mathematical theory that describes this kind of elastic waves, but what is
very interesting he never managed to generate this type of waves in a real structure.
Lamb waves propagate both as symmetric (SO, S1, S2, ...) and anti-symmetric (A0, Al,
A2, ...) modes and the number of these modes depends on the product of the excitation
frequency and the element thickness. Up to almost 2 MHzmm only two fundamental
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Lamb wave modes SO and AO can propagate and be observed in a plate made out of
aluminium alloy (Fig. 1-2). It has been found that just fundamental Lamb wave modes
are most useful for damage detection purposes.

N
N
o

12

10

8

Phase velocity [mm/usec]
Group velocity [mm/usec]
N
o
o,

N
~f
2 1
0.5F
k 4 6 8 10 O0 2 4 6 8 1
fd [MHz mm] fd [MHz mm]
Figure 1. Phase velocities of symmetric Figure 2. Group velocities of
(red) and antisymmetric (blue) modes of symmetric (red) and antisymmetric
Lamb waves (blue) modes of Lamb waves

It should be noted that in composite plates dispersive relations are little more
complex than in isotropic materials and solution must satisfy Christofel’s equation for
each layer, the continuity condition at the interfaces and the traction-free boundary
conditions at the plate surfaces [1]. Alternatively, some approximate solution can be
applied i.e. based on Mindlin’s plate theory and material homogenisation [2]. Such
approach clearly shows that group velocity of the transverse wave (which approximate
A0 Lamb wave mode) is not constant, but is a function of a relative volume fraction of
fibres and direction of propagation (Fig. 3).

Figure 4 show that structural discontinuity in the form of crack cause additional wave
reflection. Hence, it is evident that changes in propagating waves carry information
about the damage.

Figure 3. Geometry of half-pipe with Figure 4. Interaction of elastic wave
crack with the crack of the length 1 cm in
a thin plate
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3. Wave propagation modelling

Complexity of real structures cause that modelling of waves guided by boundaries of
structural elements is challenging task. FFT-based Spectral Element Method proposed
by Doyle [3] is efficient but it is not applicable for 3D geometry. Some of researchers try
to use methods based on the Finite Element approach or the Finite Difference approach
such as LISA [4]. These methods are more suitable for modelling of complex
geometries. Unfortunately, both methods are inefficient and lead to errors corresponding
to numerical dispersion. Only few commercial packages enable modelling of generation
of elastic waves by piezoelectric transducer but they also are based on the FEM. In order
to overcome disadvantages mentioned above, research group at IFFM have already
implemented more accurate and efficient spectral element method [2, 4]. Recently
developed spectral elements also take into account electromechanical coupling [6] (see
pzt element in Fig. 7).

Exemplary numerical calculations have been carried out for a half-pipe structural
element made out of aluminium alloy (Young’s modulus 71 GPa, Poisson ratio 0.33,
mass density 2700 kg/m’). The radius of the element was R=0.2 m, length L=0.5 m and
thickness 2 mm (figure 1). 34 piezoelectric transducers were used in which 17 for wave
actuation. The placement of piezoelectric transducers along with the mesh of spectral
elements is presented in Fig. 6. Each piezoelectric transducer is modelled by four
spectral elements with 108 nodes each (3 nodes through the thickness). The detail of the
mesh near the transducer is presented in Fig. 7. The thickness of transducers is 1 mm and
it is assumed that it is made of PZT material type 4. The excitation was applied
simultaneously to 17 actuators on the one side of half-pipe in the form of sine pulse of
frequency 100 kHz modulated by Hanning window (3 cycles). Damage in the form of
crack was modelled by splitting appropriate nodes in neighbouring elements. The crack
is located at distance d=0.153 m from the end of the half-pipe (Fig. 5). Simulations have
been carried out for the crack about 24.8 mm long.

0.05 L o
0 .005

Figure 5. Geometry of half-pipe with Figure 6. Mesh of spectral elements
crack with piezoelectric transducers
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Results of numerical simulations are presented in Fig. 9. It is easy to notice that the
front of symmetric mode is created and next slower antisymmetric mode propagate.
Reflections between piezoelectric transducers as well as reflections from the crack are
clearly visible. Reflections from the crack cause that energy transmitted to sensors drops
significantly in comparison to signals for undamaged half-pipe (Fig. 8). This energy
drops correlate with the position and the length of the crack. Such a simple feature can
be used for damage detection purposes.

4. Damage imaging techniques

Damage localisation can be achieved by various inverse techniques performed on wave
propagation signals registered by piezoelectric transducers. However, inverse techniques
are computationally intensive and operate on huge amounts of data. A good alternative
can be a direct method that utilises some knowledge about the wave velocity and the
placement of transducers. In this case it is possible to transform the signals in such a way
that damage influence maps are created [7].

The performance of the damage influence maps strongly depends on the placement

of transducers and wave excitation-reception strategy [8, 9, 10].
The proposed in [7-9] methods are nothing more than signal tomography performed on
the basis of some simple geometric relations. Such tomography is conducted on
differential signals, i.e. based on differences between healthy state (reference signals)
and damage state. The idea is to map differential signals from point locations (actuator-
sensor locations) onto the surface of the analysed structure (e.g. square plate). Such
mapping has been conducted for various configurations of piezoelectric transducers in
order to obtain best damage localisation results. It has been found that configurations
might be better suited for isotropic materials and for local inspection (focused arrays)
and some are better suited for composite laminates (distributed arrays).

The basic problem with imaging techniques comes from the boundary and structural
feature reflections. Imaging technique itself looks for propagating wave packet reflected
from damage in order to associate reflected energy with location of the damage. This
association is performed based on the knowledge of the velocity of propagating wave
and the time delay of wave packet. Unfortunately, some of the energy of the wave packet
is reflected back to the sensor but the rest of energy is further transmitted. Because less
energy behind the damage is transmitted than in the surrounding area, reflection from
boundary is also weaker. This, in turn, lead to damage influence map differences in
locations not associated with damage. From practical point of view the inspection area is
limited to the area enclosed in the distance from the sensor array to the nearest structural
edge. It is evident that for clock-like sensor array shown in Fig. 10 (right) the algorithm
is not able to find damage near plate corners (areas marked as ‘dead zones’) [7].

In order to overcome mentioned above difficulties triangular sensor networks were
considered [8] with mapping performed separately in isolated triangular subspaces (Fig.
10 (left)). In this case the crack can be found by the algorithm regardless the boundary
reflection contribution. Nevertheless, a new problem arise, namely damage indication is
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ambiguous, due to symmetry between triangles. For this reason algorithm was refined in
[9] for clear damage indication by multi triangular grid utilisation.

symmetric damage
indicator

f

o PZT\-)» [

& triangular

subspace®

Figure 10. Damage influence maps for distributed sensor network (left) and clock—like
sensor array (right).

Experimental work [11] conducted on aluminium and carbon/epoxy plates in
laboratory conditions confirms that developed damage localisation algorithms are valid
and can be used for detection of about 1 c¢cm long through-thickness crack. The crack
location is easily interpreted thorough damage influence maps. On the other hand
delamination also can be detected with described methods but localisation of
delamination is possible only to some extent.

4. Conclusions

Developed models based on the Spectral Element Method are very helpful in designing
effective Structural Health Monitoring systems. Exemplary simulations show capability
of modelling and testing damage detection algorithms.

It has been shown that in spite of the fact that elastic wave propagation is very
complex phenomenon it can be successfully utilised for damage detection and
localisation in structures.

Experimental works indicates that guided wave-based methods are reliable for
inspection of simple structures like pipes, rods or even flat plates. However, for more
complex shell-like structures with stiffeners, bolts or rivets developed algorithms are not
yet ready to be used in real world structures.

Further work will focus on estimation of the damage size and prediction of remaining
service life.



22

Acknowledgments

The authors of this work would like to gratefully acknowledge the support for this
research provided by project PROFAL — SHM system based on Lamb wave propagation
analysis (ref. No. WND-POIG.01.03.01-22-078/09). The second author also would like
to thank Foundation for Polish Science for their support.

References

1. J. Rose, Ultrasonic Waves in Solid Media, Cambridge University Press, 1999.

2. P.Kudela, A. Zak, M. Krawczuk, W. Ostachowicz, Modelling of wave propagation
in composite plates using the time domain spectral element metod, J. Sound Vib.,
302 (2007) 728-745.

3. J.E. Doyle, Wave Propagation in Structures, Springer-Verlag, 1997.

4. P.P.Delsanto, R.S.Schechter, R.B.Mignogna, 1997. Connection machine
simulation of ultrasonic wave propagation in materials III: The three dimensional
case, Wave Motion, 26 (1997) 329-339.

5. W. Ostachowicz, P.Kudela, Spectral Element Method for wave propagation
modeling in 2D and 3D solids, Proc. of the 7th Int. Conf. on SHM, 2 (2009) 2213-
2221, Stanford, USA.

6. P.Kudela, W. Ostachowicz W., 3D time-domain spectral elements for stress waves
modelling,” 7th Int. Conf. MPSVA, Cambridge, UK, J. Physics: Conf. Series, 181
(2009), paper no 012091

7. P.Kudela, W. Ostachowicz, A.Zak, Damage detection in composite plates with
embedded PZT transducers, Mech. Syst. Signal Pr. 22 (2008) 1327-1335.

8. P.Kudela, W. Ostachowicz, Lamb wave—based damage detection in composite
structures: potentials and limitations. Proc. 4th European Workshop Structural
Health Monitoring, Cracow, Poland, 2008 482—490.

9. P.Kudela, W. Ostachowicz, A. Zak, Sensor triangulation for damage localisation in
composite plates. Key Engineering Materials, 413—414 (2009) 55-62.

10. F. Schubert: A Conceptual Study on Guided Wave Based Imaging Techniques for
SHM with Distributed Transducer Array, Proc. Structural Health Monitoring (2008)
748-757.

11. W. Ostachowicz, P. Kudela, P. Malinowski, T. Wandowski, Damage localisation in
plate-like structures based on PZT sensors, Mech. Syst. Signal Pr. 23 (2009) 1805—
1829.

Monitorowanie stanu technicznego konstrukeji przy wykorzystaniu propagacji fal
sprezystych
Przedyskutowano gléwne problem dotyczace detekcji uszkodzen w elementach konstrukcji. Detekcja
przeprowadzana jest poprzez metody bazujace na zjawisku propagacji fal sprezystych. Potozono nacisk na
modelowaniu zjawiska propagacji fal sprezystych w kompozytowych elementach konstrukcji jak rowniez na
zagadnieniu interakcji fali z uszkodzeniami i zagadnieniach lokalizacji uszkodzen.
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Full professor doctor habilitatus Jarostaw Stefaniak was born on 17 May, 1929 in
Poznan. His father was a municipal clerk, his mother unemployed. During the Second
World War he worked first as a helpmate and then as a workman in Poznan Power Plant
on Garbary Street. He attended a non-existing now the Berger State Lower and Upper
Secondary School (a former school building on Strzelecka Street now occupied by
Poznan University of Technology). In 1948 he passed examination for the secondary
school certificate. Just then he began studying mathematics and physics at the Faculty of
Mathematics and Science at Poznan University, later renamed as the Faculty of
Mathematics, Physics and Chemistry at the Adam Mickiewicz University in Poznan. He
received the diploma of Master of Science in philosophy in the field of mathematics in
1952. Yet, as a student in 1951 he took up a job as an assistant at the Chair of
Mathematics at the Higher School of Engineering in Poznan and since then his
professional life was connected solely with this school. In 1956 after the Higher School
of Engineering received the status of Poznan University of Technology, he took a post at
the Chair of Technical Mechanics whose head in those days was prof. Edmund
Karaskiewicz. Then he became deeply involved in the theory of elasticity, especially
thermoelasticity. His first papers concerned thermal stresses in elastic halfspace.

The second half of the sixties was abounding with many events that contributed
greatly to his career. As early as in February 1965 he defended his doctor’s thesis on:
Propagation of Waves in a Viscoelastic Medium with Respect to Thermomechanical
Coupling, at the Faculty of Mechanical Engineering, PUT, thus obtaining the Doctor of
Science degree in technical sciences in the field of mechanics. The supervisor was prof.
Witold Nowacki, an outstanding scientist, the author of many fundamental papers and
monographs in the field of structural mechanics, theory of elasticity and theory of fields
coupled in deformable media, the IVth division chairman and president of Polish
Academy of Sciences. In his next papers from the same period he analyzed the
phenomena of wave propagation in viscoelastic unbounded media as well as surface
waves with respect to thermomechanical coupling. Obtaining the D.Sc. degree was a
significant incentive for his further scientific development and for more intensive
research on thermoelasticity of the Cosserat media. In his papers before habilitation
thesis  Jarostaw Stefaniak emphasized the possibility of presenting the loads
concentrated by means of singular distribution and showed the method for solving the
equations that describe the above problems. At that time special attention should be paid
to generalization of the Galerkin function for nonsymmetric_thermoelasticity.
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From November 1967 to May 1968 J.Stefaniak ,D.Sc. served a 6 — month visiting
professor fellowship at the Institute of Mathematics at Romanian Academy of Sciences
in Bukarest. As a result of the studies on nonsymmetric thermoelasticity and on
application of generalized functions in continuum mechanics he elaborated habilitation
thesis entitled: Concentrated Loads in Nonsymmetric Thermoelasticity. On this basis in
May 1969 he obtained the degree of doctor habilitatus in technical sciences in the field
of thermoelasticity by the resolution of the Board of Mechanical Technological Faculty
at PUT.

Following it on 1 March, 1970 the Minister of Education and Schools of Academic
Rank appointed dr hab. Jarostaw Stefaniak to the post of Reader at the Chair of
Technical Mechanics. Research that Reader J.Stefaniak continued after being conferred
the title of dr hab. concerned the problems of refraction and reflection of waves in
thermoelastic media of the Cosserat type. He also showed that in micropolar media
during reflection and refraction new kinds of waves are generated that are unknown in
classic elastic media.

Due to his scientific achievements he was appointed to the post of deputy dean of
the Mechanical Technological Faculty in 1969. He held this position till 1971.

At the end of September 1970 important organizational changes took place at PUT.
The structure of institutes developed. The head of the Technical Mechanics Chair — prof.
Edmund Karaskiewicz retired. This Chair together with other units of Mechanical
Technological Faculty, i.e. Division of Strength of Materials , Division of Theory of
Mechanisms (so far included in the Chair of Machine Parts and Theory of Mechanisms),
the Chair of Mechanics (included in the Faculty of Working Machines and Vehicles)
formed the Institute of Technical Mechanics. Its first head was prof. Wlodzimierz
Derski, his only deputy — Reader J.Stefaniak who held this post till 1972. After
prof.W.Derski took a post at the Institute of Fundamental Technological Research
(Polish Academy of Sciences), Reader J.Stefaniak took over as head at the Institute of
Technical Mechanics (for the first time) from 1973 to 1981. From 1981 to 1998 he was
the head of the Division of Technical Mechanics at the Institute of Technical Mechanics
(from 1984 at the Institute of Applied Mechanics). Then he developed his interests in
magneto-thermoelasticity and diffusion in solids. With the use of distributive description
of disturbance sources he investigated the conditions of mechanical wave generation by
plane and linear sources in a magnetoelastic medium.

The intense development of research by Reader J.Stefaniak resulted in the title of
associate professor conferred on him in 1976, at the age of 47, which was at that time
very uncommon. Further research on magnetoelastic media led to the formulation of
linear equations for different cases of interactions among electromagnetic, thermal,
elastic fields and mass diffusion. Most of the results in this domain were published in his
monograph: Influence of Electromagnetic Field on Thermodifussion in an Isotropic
Medium, edited by Polish Scientific Publishers in 1982. At that time prof. J. Stefaniak
began to develop another line of his research dealing with a method of controlling
fictitious heat sources and its application in solving boundary problems of heat
conduction. In 1989 he was conferred the title of full professor. A few months later a
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new regulation about degrees and scientific titles became effective replacing the title of
associate professor and full professor with one title — professor.

Prof. J. Stefaniak carried out research both on his own and in cooperation with
scientific workers from the Division of Technical Mechanics run by him. He and the
team often took part in big research programs financed by central authorities:
interdepartmental programs and so called Central Programs for Basic Research or
Central Programs for Development_Research co-ordinated by main national scientific
units (Institute of Fundamental Technological Research-Polish Academy of Sciences,
Military University of Technology, etc.). He was a member of Co-ordinating Teams of
two of them.

After the Committee of Research was set up, prof. J. Stefaniak conducted research
projects financed by the state budget.

He published the results of his research not only in the form of monographs but also
in well-known scientific journals in Poland and abroad. He is the author and co-author of
over 100 papers of fundamental and practical character. He presented his current results
at many national and international scientific conferences.

As a scientific worker of a higher technical school he was also involved in a lot of
research for industry. He mainly focused on the problems of noise level and vibrations
caused by different technological processes in industrial plants.

Prof. J. Stefaniak’s high position made him an educator and tutor of many younger
scientific workers thus initiating Poznan school of continuum mechanics that aimed at
investigating interactions of different physical fields in continuum media.

So we can consider him to be the main follower of Poznan school of mechanics
established at PUT by prof. Edmund Karaskiewicz. J. Stefaniak promoted 12 doctors; 4
of them obtained later the degree of doctor habilitatus, 2 — were conferred the title of
professor.

He reviewed a lot of scientific articles, a considerable number of doctoral and
habilitation thesis and gave many opinions for conferring the title of professor.

From 1974 he was a co-ordinator of an international symposium — Vibrations in
Physical Systems — organized every 2 years.

In 1984, together with prof. Dominik Rogula from the Institute of Fundamental
Technological Research — Polish Academy of Sciences, he organized in Poznan
international EUROMECH Colloquium 189: Elasticity Coupled with Thermal and
Electromagnetic Effects.

During his work at PUT prof. J. Stefaniak was actively engaged in the teaching
process. He gave lectures on the mechanics of a rigid body, continuum mechanics and
some mathematical problems to students at all kinds of studies: full-time Master of
Science and_Engineer studies, evening and extramural ones. He contributed to a lot of
doctoral studies at the University as a co-ordinator and a lecturer. He also co-originated
the field — fundamental technological research and also modern specialization in the field
of mechanical engineering — computational mechanics of constructions. He is the author
of a handbook — Mechanics for Chemists.
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He also used his teaching skills lecturing on mechanics and applied mathematics among
other things at the Academy of Agriculture in Poznan, Military University of
Automotive Vehicles in Pita and at courses organized by many scientific societies.

Prof. J. Stefaniak always attached much importance to the organization of a didactic
process. Besides performing the duties of the head of the division, vice-dean, deputy
head of the_institute and (from 1984 -1990 for the second time) the head of the institute,
he held an office of a prorector of PUT (1981 — 1984), and in 1990 — during the intense
period of political changes, academic staff trusted him with the function of president of
the Civic Forum at PUT - the first non-union democratic organization at the university.
From 1990 to 1993 he was Rector of Poznan University of Technology.

Prof. J. Stefaniak was a member of many organizations and scientific societies both
national and international, often holding high positions. He was an appointed member of
Committee for Mechanics — Polish Academy of Sciences for many years, and during the
last two terms of office he was one of the presiding officers. From 1975 — 1977 he was a
member of the Committee for Acoustics — Polish Academy of Sciences. Moreover, he
was a member of International Informatization Academy, Accademia Peloritana dei
Pericolanti, American Mathematical Society, Gesellschaft fiir Angewandte Mathematik
und Mechanik, the Committee for Mechanical and Building Sciences — Polish Academy
of Sciences (Poznan branch), Poznan Society of the Friends of Sciences, Polish Society
of Theoretical and Applied Mechanics, Polish Society of Acoustics as well as the Rotary
Club in Poznan, which shows still another field of prof. J. Stefaniak’s activity. He was
an active welfare worker and a member of scientific councils of research institutions
related to universities.

Prof. J. Stefaniak also maintained numerous relations with other countries, apart from
his notable activity in Poland. He received fellowships from well-known universities
abroad (Université de Liége, Universitit Stuttgart, Technische Hochschule etc.) where
he cooperated with the authorities in the field of mechanics. He was a holder of DAAD
scholarship — a West German institution supporting science. He maintained many
individual relations with Italy, Sweden, Ukraine, the Czech Republic, Germany, Japan,
Cuba, Great Britain, France, Belgium, the Netherlands, Egypt, Lithuania.

Prof. J. Stefaniak was also a supervisor of honoris causa doctor titles of: prof. Witold
Nowacki (1979) a former President of Polish Academy of Sciences and prof. Heinrich
Seidl — in those days Rector of Hanover University (1995), conferred by the resolution
of senate of PUT. Moreover, he was asked to review honorary doctorates of professors:
Wactaw Olszak (Krakow University of Technology), Witold Nowacki (Warsaw
University), Michat Zyczkowski (Krakéw University of Technology) and Zenon Mroz
(Krakow University of Technology).

Prof. J. Stefaniak was distinguished many times for his outstanding scientific
achievements and didactic activity. He was knight of the Knight’s Cross of Polonia
Restituta Order (1977), he was awarded the Gold Cross of Merit (1972), the Medal of
National Education Committee (1996), the Brown Medal for Contribution to the
Development of Poznan Province (1972) and the Gold Badge of Honor for Contribution
to the Development of Pita Province (1978).
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He was also a winner of numerous prizes of Minister of Science, Schools of Academic
Rank and Technology: a third-degree award for postdoctoral dissertation in 1970, an
individual third - degree award in 1975, an individual second-degree award in 1982 and
a collective second - degree award in 1983.

It is necessary to mention his unceasing activity after he retired in 1999. He gave
lectures and tested students on their knowledge till the last moments. He gave his last
lecture on 30 August, 2008 and was scheduled to give more. He took part actively in
international scientific conferences: Trends in Continuum Physics TRECOP’04
organized by the Institute of Applied Mechanics, where he delivered a speech on his
method of fictitious sources in solving problems of thermoelasticity, and Vibrations in
Physical Systems — as a member of Organizing Committee. Having been the head of the
Division of Technical Mechanics for many years, he did not miss scientific seminars at
the Division on Monday mornings. He still reviewed applications for conferring the title
of professor, doctoral and habilitation theses and dissertations, he published scientific
articles and in 2008 — a handbook - Mathematical Physics. Selected problems (co-
authorship). He left an unfinished handbook on mechanics.

Prof. J. Stefaniak was deeply engaged in educating and bringing up a few generations
of scientists and engineers. He was a great friend of the young. He always gave advice or
a hand. Not only did academic life of the institute and faculty where he worked centre
around him but also many other research teams at the university and other institutions.
He had a lot of friends in the scientific circle of Poznan, Poland and abroad. He was a
very sociable person. If he could not persuade somebody into certain objective reasons,
he used to say in the midst of his friends: look, this way of reasoning is the best which he
understands and suits him most.

He liked poetry very much and was a lover of hiking.

We bid him farewell but he will remain in our thoughts and hearts.
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Abstract

The paper presents kinematic analysis of ossicles mechanism, which is part of the middle ear. Movement,
velocity and acceleration trajectories of important points of the mechanism were determined. Influence of the
length of the ossicles on the functioning of the mechanism was tested through calculating the relationship of
oscillation amplitude of stapes and oscillation amplitude of incus.

Keywords: vibrations, velocity, acceleration, amplitude, malleus, incus, stapes.

1. Introduction

The middle ear consists of an eardrum, auditory ossicles (malleus, incus and stapes) and
Eustachian tube. The ear bones fulfill the role of a transmission that transmits the sound
from outer to inner ear through the means of converting the vibrations of the tympanic
membrane, which is connected to the malleus, to vibrations of stapes footplate [1].

Sound propagates across the ear canal and stimulates vibrations of the eardrum.
These vibrations bring about rotation of system of malleus — incus around the axis that
crosses the centre of mass of the bones [2]. Mutual position of ossicles has significant
influence on how vibrations are transmitted from outer ear to inner ear. The ossicles
form a chain that functions as a lever. Vibrations of tympanic membrane cause
declination of manubrium, which result in shift of incus and stapes. Oscillations of
stapes affect the motion of fluid, which fills the inner ear, and excitement of hearing
receptors [3 - 4].

2. Ossicles mechanism

Substitution model of middle ear was created based on the relationship of size of ossicles
[1,5 - 6]. This is three elements planar mechanism. The elements of mechanism are
malleus, incus and stapes.

The numbers 1 — 6 in schematic of ossicles mechanism (Fig. 1) represent important
points of mechanism: number 1 — represents point of connection between eardrum and
bone of ear canal, 2 — umbro (a slight rounded elevation where the malleus attaches to
the eardrum), 3 — incudo-malleolar joint, 4 — incudostapedial joint, 5 — point, that marks
the axis of circulation of stapes, 6 — upper edge of stapes footplate [7].
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Figure 1. Schematic of ossicles mechanism

The mechanism is propelled by rotation of the element that represents malleus
connected with tympanic membrane, around point 1.
The origin of coordinate system was set in point 1.

3. Results

Analysis of mechanism’s vibration enabled determination of trajectories, velocities and
accelerations of important points of mechanism. Kinematic parameters of points 1 and 5
weren’t taken into consideration, because these points are stationary.

Vibrations of eardrum are very small, therefore maximum rotation angle of
propelling element was assumed 5 deg. That is way trajectories of points 2 and 3 that
belong to propelling element may be approximated as straight lines. Trajectories of
points 4 and 6 are nonlinear.

Graphs of horizontal and vertical components of velocities and accelerations of
points 2, 3, 4 and 6 in time function for one oscillation period were presented in figure 3.
Time t=0 was assumed to relate to the point of the maximal swing of manubrium
towards the ear canal and whereas time t= 0,5 T to (half of the oscillation period) relates
to the maximal swing towards eardrum. The Graphs were normalized to the maximal
value of velocity or acceleration respectively.

The graphs of horizontal and vertical components of velocities in time function are
symmetrical around the equilibrium point, that is point 0,5T, 0. Points 2, 4 and 6 move in
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conformity with the sense of horizontal axis during oscillation of eardrum and
manubrium in direction of ear canal, therefore horizontal components of velocity are
positive. Sense of horizontal component of velocity of point 3 is opposite to sense of the
x axis. Senses of vertical components of velocity of points 2, 3 and 4 are as per sense of
y axis, however sense of Vy(6) is opposite to sense of y axis. All velocity components
change sign at the point of greatest swing from the equilibrium. The largest value of
horizontal component of acceleration is observed at umbro and the smallest at
incudostapedial joint. The greatest value of vertical acceleration is observed at point 4

and the smallest at point 6.
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Figure 2. Graphs of horizontal and vertical components of velocities in time function.
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Figure 3. Graphs of horizontal and vertical components of accelerations in time function.

Graphs of horizontal and vertical components of accelerations of analysed points in
time function are symmetrical around an axis that represents middle of oscillation
period. In the time points that correspond to maximum values of velocity components
matching acceleration components change sign.

4. Influence of ossicles size on functioning of the mechanism

Lenghts of ossicle were reduced by 2,5; 5; 7,5; and 10%, but other mechanism
parameters were not modifited. Vibrations of mechanism were analysed and dependence
of relationship betwen vibration amplitude of upper edge of stapes footplate (point 6)
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and vibration amplitude of umbro (point2) — Axs/Axm - on lenght of malleus, incus and
stapes was calculated. It was assumed that changing of the lenghts of ossicles does not
affect position and motion of tympanic membrane and malleus, but only the position and
motion of incus and stapes.
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Figure 4. Graphs of dependance relationship betwen vibration amplitude of upper edge
of stapes footplate and vibration amplitude of umbro — Axs/Axm - on lenght of malleus,
incus and stapes

Reduced lenght of malleus entails reduced vibration amplitude of stapes footplate,
while reducing dimensions of incus and stapes causes opposite effect: increase of
displacement of stapes footplate.

Horizontal displacement of stapes footplate, under geometrical parameters assumed
in this work, amounts to about 19 — 45% of umbro displacement.

Under basic dimensions of the mechanism, the As/Am relationship equals 0,24,
which means that the vibrations of eardrum and malleus translate to fourfold less
vibration of stapes footplate. As/Am increases to 0,32, when lenght of stapes is reduced
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by 10% and to 0,45, when lenght of incus is reduced by 7,5%. Reducing dimensions of
malleus by 10% results in decrease of As/Am to 0,19.

4. Conclusions

Performed vibrations analysis enables better understanding of properties of ossicles
mechanism. It is very important in case of designing middle ear implants, as implant’s
proprerities should be as simmilar as possible to those of the part of body it is replacing.
The knowledge of impact of the ossicles length on vibration transmission from
eardrum and malleus to stapes footplace and vistibule membrane allows for better
foresight of the results of middle ear surgical interventions. It also gives important
advice on sound transmission through middle ear if lengh of one of ossicles is changed
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Analiza drgan mechanizmu kosteczek stuchowych
Artykut ten jest po$wigcony analizie kinematycznej drgan uktadu kosteczek stuchowych wchodzacych w
sktad ucha s$rodkowego. Wyznaczono tory ruchu, predkosci oraz przyspieszenia istotnych punktéw
mechanizmu podczas drgan. Zbadano wplyw zmiany dhugosci kosteczek shuchowych na dziatanie
mechanizmu, poprzez wyznaczenie stosunku amplitudy drgan strzemiaczka do amplitudy drgan kowadetka
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Abstract

The paper is devoted to a dished head of a pressure vessel subject to internal uniform pressure. A short survey
of optimal design of a pressure vessel and its head is presented. The problem of shaping of middle surface of a
dished head with the use of trigonometric series is depicted. As a criterion of the shaping process the continuity
of curvatures of the surfaces in the joint of the circular cylindrical shell and the dished head is assumed.
Results of the numerical calculation for optimal shapes of head are presented in figures.

Keywords: thin-walled pressure vessel, dished head, minimal stress concentration

1. Introduction

Standard torispherical, ellipsoidal or hemispherical head of a pressure vessel
significantly disturbs the membrane stress pattern arising in its cylindrical part. The
value of the meridional principal curvature of the middle head surface is non-zero while
in the cylindrical it takes zero level. In result the curvature becomes discontinuous. The
problem of dished heads of the vessels has been undertaken by many investigators.
Middleton [9] presented an optimal design problem of torispherical pressure vessel head.
Mansfield [8] proposed the meridian shape in the form of an integral equation
determining the optimal surface of revolution. Yushan et al [11,12] calculated stresses of
ellipsoidal heads and noticed the stress concentration occurring there. Magnucki and
Lewinski [4] described the stress state arising in a untypical torispherical head composed
of circular and polynomial parts. Magnucki et al. [5] solved the problem of stress
minimization of a vessel with ellipsoidal head. Magnucki and Lewinski [6] presented
optimal design of an ellipsoidal head with consideration of various thickness values of
the shell. Malinowski and Magnucki [7] minimized the stress concentration in sandwich
ribbed flat baffle plates of a cylindrical tank. Krivoshapko [2] presented a review of
strength and buckling problems of generalized and ellipsoidal shells of pressure vessels.
Liu et al [3] proposed a theoretical method using finite element analysis to calculate the
plastic collapse loads of pressure vessels under internal pressure and compared the
analytical methods according to three criteria stated in the ASME Boiler Pressure Vessel
Code. Btachut and Magnucki [1] delivered a review of strength, static stability, and
structural optimization of horizontal pressure vessels. Wittembeck and Magnucki [10]
shaped the dished head meridian in the form of clothoidal and circular parts. Ventsel and
Krauthammer [13] delivered a monograph presenting the strength and stability problems
of plates and shells with the edge effect of cylindrical shells.
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The present paper is a continuation of the strength and optimization problems and deals
with shaping the middle surface of dished heads with the use of trigonometric functions.

2. Mathematical description of the middle surface of the dished head

The shape of a head closing a cylindrical pressure vessel significantly affects the pattern
of stress arising along its generatrix. The shape of the vessel generatrix is shown in
Fig. 1.

cylindrical
shell
r
r dished
i head
0 z

Figure 1. Example shape of the vessel generatrix

Since the stress depends, among others, on the generatrix curvature, its radius of
curvature should be continuous. In order to ensure it the head profile should begin from
infinite radius too. Such a shape of the head may be described by the following function:

r(z)=ar(¢), (1)
where:
7(@’ ) =q cos(;z'cf ) +a, cos(272'§’ ) + oy cos(372'§ ) +ay, cos(472'§’ ) — dimensionless
radius,

z . . . . . .
¢ = - dimensionless coordinate, b, — the size — a linear quantity.
0

Continuity conditions of the dimensionless radius for the joint of cylindrical shell and
the dished head have the following form:

7(0)=1, giving o ta,taz+a,=1. 2
Other conditions that should be met by the function (1) in order to ensure stepless
variation of the radius are as follows:

2
A _ 0 fulfilled by identity , o 3)
d¢l I
giving o, +4a,+9a5+16a, =0 4)

The first of the above equations is satisfied by identity, while the other provides another
condition for &y, o, oz, and ay. This allows to express the coefficients 3 and ¢4 in
terms of ¢ and o:

a, =%(16—15a1 ~12a,), a, =%(8a1 +5a, -9) (5)
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Thus, the function (1) may smoothly match the cylindrical part of the vessel shape but in
order to provide satisfactory shape of the head it must be completed by a circular part.
Since the connection between cosinusoidal and circular parts of the generatrix should be
smooth too the circle should begin in the point for which the centre of curvature of the
cosinusoidal curve (1) reaches the axis of vessel symmetry.

The longitudinal-meridional curvature radius

(o)) () e

3/2

m d2 =da 5 N (6)
r Vs
e (ﬂoj £(¢)
and the circumferential-parallel curvature radius
PR N A . 2~f2(§) (7
° cosd Bo b
where:
£(¢)= ey sin(z) + 2@, sin(228) + 35 sin(37¢ ) + 4a, sin(47 ),
1o (é’ ) = cos(rr{ )+ 4a, cos(2fr§ ) +9a5 cos(372'c: )+ l6a, cos(472'§’ ) ,
b
By = —.
a
The following expressions determine coordinates of the centre of the generatrix
curvature:
2 2
1+ (er} d 1+ (ZIFJ
z r z
=7 2 = 7 8
Z, dzr dz 7. }"(Z) dzr ( )
dz* dz*

Taking into account the relationship (5) the cosinusoidal curve (1) is determined by three
parameters: oy o, and b,. Therefore, once their values are assumed one is able to find
such a point M at the cosinusoidal part of the curve from which the circular shape should
begin.

In consequence, selection of the sets of three parameters ¢ o, and b, enables finding a
family of the head shapes of various values of the relative depth 8 given by the formula

ﬂ:§=ﬂ04M+ﬁm(1+coseM), ©)
R

Z ~
. —_C — m
where: &y =5 R, =—".
0 a
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3. Equivalent stress of circular cylindrical vessel

The longitudinal and circumferential stresses of the head are as follows:

1 Po 1 R, | Po

o, =—R, - —, 0,=—R,|2—-—— |- =%, 10
R o
where:

po — uniformly distributed pressure, t — thickness of the head

The equivalent stress (i.e. Huber-Mises stress) may be expressed as

2
R R
O-eq:lRe 33 4| ¢ &, or o,, =0, a&, (1D
2 R, \R,) t Ty
where the dimensionless equivalent stress amounts to
2
~ 1~ R R ~
Goy == Roq[3-3—5+|=%| and R, _Re (12)
2 w \ Ry, a

An exemplary variant of the head obtained for ¢=0.8, %=0.52, &z=-0.32, o4=0 is shown
in Fig. 2.

1.2

0.8

head
generatrix

trajectory
of the curvature

centre M,

>
©
s ¢
-0.8 -04 0 0.4 08
S

Figure 2. Example of the head solution for ¢=0.8, =0.52, o5=-0.32, =0 and =2

The centre of curvature runs along its trajectory and intersects twice the x-axis. The
solution obtained with the use of the points M, and C, gives the head generatrix shown
in the illustration, with the relative depth (=0.7356. Unfortunately, the pattern of the
dimensionless equivalent stress of the cosinusoidal part of the head is rather
unfavourable, as the stress exceeds the level of 52, = \/g / 2 occurring in the cylindrical

part of the vessel.
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Therefore, final solution of the problem should consist in finding a set of ¢, & and by
parameters so adjusted as to obtain possibly small g value with the equivalent stress

level kept below the value of Eeoq :\E /2. Numerical analysis carried out with the

Monte Carlo method has shown that such a solution exists for ¢=1.417, a,=-0.499 and
So=1.34.

The MES calculation carried out with the help of the ABAQUS system confirmed the
equivalent stress pattern obtained for the central line. The computation was performed
for an example vessel of the radius equal to 1m and shell thickness 10mm. It became
evident that in this case the stress arising at the inner part of the head shell exceeds its
level occurring in the cylindrical part.

Therefore, another attempt has been undertaken with a view to find a variant so adjusted
as to keep the maximum stress at the level below the one occurring in the cylindrical
part. This was possible by enlarging the relative depth of the head. Finally the relative
depth equal to /~0.807 gave satisfactory result depicted in Fig. 3

1

o N
eq Equi .
— quivalent stress:
Geq__
_ . 7\ atthel i
0.8 —I\\ atthe middle surface / \\‘w
'\ \
‘ ) \
a \.\ ‘\‘ I \
A\ ! \ .
"\ ] \ .
0.6 — W\ / VoS =
A\ / oL /
A\ ! Lo !
- W\ i /! /
\ ' 1 - o\ I!
0.4 — A\, [ N/
A\ NS
"\, / K ~
— . . at the outer surface
0.2 —
N~
S
©
— S
Il
[S=N
| ' ' | : G
-0.4 0 0.4 0.8

Figure 3. Equivalent stresses in the middle, inner and outer surfaces of the head for the
variant with enlarged relative depth of the head

4. Conclusions

Numerical study of the stress state of a cylindrical pressure vessel with convex

cosinusoidal-spherical heads enables drawing the following conclusions:

=  Fulfillment of the condition of continuous curvature in the joint between the head
and the cylindrical shell is not sufficient to avoid stress concentration in this place.

= Further increase in the head depth reduces the value of the concentrated stress.

= In result of shaping the head according to the boundary effect theory the relative
depth $=0.7417 has been obtained for which the stress concentration should
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disappear. Nevertheless, numerical test with the help of FEM has shown the
opposite.
Increase in the relative depth up to £=0.807 eliminates the stress concentration.

It should be noticed that the relative depth of standard elliptical heads amounts to the
value of £=0.5 at which a remarkable stress concentration occurs.
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Abstract

The paper is of a purely didactic nature. We are going to focus on a distinction between two notions; i.e., the
root of characteristic equation and vibration eigenfrequency of a system. The issue is well known, however,
hardly any comments and satisfactory explanations can be found in handbooks on vibration theory, which may
confuse the reader, particularly a student.

Keywords: Vibration thory, eigenfrequencies

1. Model of the lateral beam vibration and the characteristic equation for specific
boundary conditions

Consider the simplest lateral vibration model i.e. the Euler-Bernoulli beam. Let the
length of the beam be /. On the assumption that the mass density g and bending
stiffness EI are constant along the beam length, the equation of its free lateral vibration
becomes

'y _ 2%
or? ox*

c=Elu @

A solution of equation (1) can be obtained by using the variable separation technique.
At the initial stage we assume a solution in the form
y(x,1) = ¢(x)q (1) 3
where ¢ (x) is a space-dependent function, and ¢(#) is a function that depends only on
time. Equation (1) leads to

)

where c is a constant defined as

" -n'¢=0 )
j+o’q=0 (5)

n=+ol/c. (6)

where
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A solution of (4) is given by

¢(x) = A, sinhnx + A, coshnx + Ay sinmx + A, cosnx 7
while the solution of Eq. (5) takes the form
q(t) = B, sinwt + B, cos ot ()

The arbitrary constants 4;, A,, A3, and A4 can be determined using boundary
conditions while the constants B, and B, by means of the initial conditions. It means that
the function ¢ (x) called mode shape depends on specific boundary conditions.

For the given boundary conditions a further procedure comprises the following
steps:
a) derivation of the characteristic equation;
b) determination of the roots of this equation; i.e., numbers 7, and in accordance with

(6) - eigenfrequencies «;;
¢) determination of the eigenmodes corresponding to the eigenfrequencies @; .

The above procedure will be referred to as the standard one.
In order to formulate the essence of the matter let us consider a beam with fixed ends
(Fig.1) and then a beam with free ends (Fig.2).

A

N T N
. , —

Figure 1. Beam with fixed ends Figure 2. Beam with free ends
For a beam with fixed ends the boundary conditions read
y(0,£)=0, y'(0,£)=0 (9a)
y(i,t)=0, y'(L,1)=0 (9b)
while for a beam with free ends
y"(0,¢)=0 y"(0,£)=0 (10a)
y'(l,1)=0 y"(L,1)=0 (10b)

Despite the fact that boundary conditions differ, the standard procedure leads in both
cases to the identical characteristic equation, i.e.
cosnlcoshnl =1 (11)

The first four roots of (11) are

nyl =0, ml=4,73, 1l =785, 13 =10,99 (12)
The natural frequencies of the beam with free ends correspond to successive roots (12)
while the same frequencies for the beam with fixed ends correspond also to successive
roots except for the zero root. Here we face the question: why for a beam with fixed ends
in contrast to that of free ends, the eigenfrequency @ = 0 does not appear?
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2. Explanation of the inconsistency

The aforementioned apparent inconsistency may be explained basing on the definition of
eigenvalue, i.e., a number A is called an eigenvalue of a matrix A if there exists a vector
x # 0 such that
Ax = Ix (13)

The vector x is then called an eigenvector of the matrix A4 belonging to A.

Now taking into account the above definition one should check the value @ = 0 for
the existence of a nontrivial eigenvector belonging to it. Note that for @ = 0, equation
(5) degenerates to the form:

d*¢/dx* =0 (14)
to which a general solution is given by
#x)=C3x° +Cox? +Cyx+C, (15)
Introducing boundary condition (9) (i.e. for a beam with fixed ends) into (15) yields
#0)=C, =0
#(0)=C, =0
HI)=C3I* + CoI* +C 1 +Cy =0 (16)

¢'(1)=3C;1* +2C,1+C, =0
which implies Cy= C; = C,= C;= 0. Thus the associated mode shape is ¢ (x) = 0 which
means that there is no motion associated with @ = 0. It is the reason why this frequency
can not be considered as the eigenfrequency of the beam with fixed ends. The first three
mode shapes of this beam are shown in Fig.3.

_Qv_
_Qvg_

Figure 3. First three mode shapes of a beam with fixed ends.

The natural frequencies corresponding to these modes are:

o, =224 EJ/ml®, @, =6L6JEJ/ml*, @y =1209yEJ/mI’® (17)

Let us now consider the existence of nontrivial mode shape belonging to the zero
frequency for the beam with free ends. We will search for a function of a form (15)
which satisfies boundary condition (10). Introducing conditions (10a) gives

$"(0)=2C, =0 #"(0)=6C; =0 (18a)
which implies C, = C; = 0. Remaining conditions (10b) take the form
¢"(1)=6C51+2C, =0 ¢"(1)=6C; =0 (18b)
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and these do not impose any limits on constants the Cy and C;. Thus the constants C, and
C; may be arbitrary wherefrom the corresponding mode shape follows

#x)=Cx+C, (19)
One can observe that the mode-shape given by formula (19) is a combination of
translation (constant Cy) and rotation of the beam. There is no deformation of the beam
associated with this mode and it is the reason why it is called a rigid-body mode shape of
the beam.
The remaining deformable mode shapes of the beam corresponding to non-zero
eigenfrequencies are determined on basing on solution (7), and these are shown in Fig.4.

-~ N
s U
NN

Figure 4. First three deformable mode shapes of a beam with free ends.

3. Conclusions

Like the mathematical definition of eigenvalues, the definition of eigenfrequency should
be associated with a nontrivial mode shape. It is the reason why even for two vibrating
systems of the same characteristic equation the sets of eigenfrequencies may be
different.

Pierwiastki rownania charakterystycznego a czestosci drgan wlasnych
Referat ma charakter czysto dydaktyczny. Chcemy w nim zwréci¢ uwagg na konieczno$é
rozrozniania poje¢ pierwiastek rdwnania charakterystycznego i czgsto$¢ drgan wiasnych uktadu.
Sprawa aczkolwiek jest znana, ale niezwykle rzadko podejmowana i wyjasniana w podrgcznikach
teorii drgan, co moze by¢ przyczyna konfuzji czytelnika, zwlaszcza studenta.
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Abstract

This work presents results of the numerical investigations devoted to clutch system dynamics. The general
non-linear wear model has been presented and used during simulations. The influence of the considered wear
model on the contact pressure distribution of the clutch discs has been investigated. Dynamics of the system is
monitored via standard trajectories of motion in the system’s phase space and behaviour of the system around
resonance angular velocity is studied. Presented results show interesting phenomena of the investigated
system and a key role of the influence of the wear process on its dynamics.
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1. Introduction

Dynamic phenomena in the neighbourhood of the resonance angular velocity have the
significant influence on the endurance of elements of the system and its dynamics. The
mentioned phenomena can be caused by various factors like friction, wear, heat
generation or/and impacts. In this work chosen issues of vibrations of a mechanical
system with friction clutch are discussed and investigated. The attention is focussed on
the investigation of influence of wear of clutch shields on its dynamics in the
neighbourhood and far from the resonance regions.

In many monographs [1], [2], [3], [4], [5] friction and wear essential testing methods
and problems of the theory of wear in such systems are described. Empirical models,
which let for better understanding occurring processes are studied. However, a general
relation between friction and wear has not been formulated so far.

In this work we consider general non-linear differential model of wear w in the form

Ww=K"pey,|”, @)
where K™ is a coefficient of material wear, V., is relative sliding velocity of surfaces

touching each other, P is a contact pressure, and «, £ are rates dependent on the

model of wear, the step of lubricating and spreading on the contacting surfaces. For
a = =1 we obtain a particular linear Archard’s wear model (see [1]).
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2. Model of a System with Friction Clutch

Our investigations are concern of mechanical system with flexible-friction clutch, shown
in Figure 1.

I M;(t) L

M, + Mgcos Qpt

M(1) ke

Figure 1. The model of the considered mechanical system
For a study we consider two-masses model of the system. The body 1 have the reduced
moment of interia /,, whereas the body 2 have the reduced moment of interia 7, .

Vibrations in the system are caused by harmonic excitation from the side of the motor.
The moment of motor is characterized by an average constant value A/,, and a harmonic

excitation part M(t)=M,cosQ,t. The clutch is characterized by springiness
(susceptibility) & and damping ¢ in angular direction, and friction torque M 4 ()
moved by the clutch. The system governing equations have the form
Ly +c(y —yo) +hk(y —yay) =M, + M, cosQot — M 4. (1) 5
Ly + e ~0) + k(s =) = =M, + M, 1) ’ @
where y, and y, are angles of driving shaft and driven shaft of the clutch, respectively.
Taking w =y, -y, as the relative angular displacement of clutch shields and the

reduced moment of interia 7, =1,1,/(1, +1,) , we obtain

y7+%y)+%y/:]‘;[—:”+A;[—l‘)cosQOt—MLr(t). 3)
Friction torque moved by the clutch M ;.(¢) is
RZ
M ;.(6)=27 [ iR*P(R,0)dR,, o

Rl
where u is a coefficient of friction, R, and R, are internal and outside radii of contact

surfaces, respectively, and P(R,t) is contact pressure between shields pressed by force

o).
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Let us enrol equations on wear for the left shield and the right shield
UM (R.t)= K™V, (R,t)|ﬂ PY(R,t), U™ (RO=K, (R,t)|ﬁ P%(R,f), and axial
displacements U(l)(R,t) =kP(R,t), u® (R,t) =k, P(R,t) with coefficients of stiffness
of shields &, and k,, respectively. In what follows we obtain conditions of the contact
of shields of the clutch in the form

UDR,t)+UP (RO +UM™ (R,1)+US (R,t)=E(1), )
where E(¢) is a function describing distance between shields. After differentiating of
equation (5) with respect to the time, taking k, =k +ky, K™ =K +K{,
V.(R,t)=Q,()R, Q, =y, next multiplying by RdR, integrating over interval

R €[R|,R,], and taking into account differentiation regarding time of the equation

RZ
o) =2x JRP(R, t)dR , (6)
R
we finally obtain

ku%“ RO, (0 P (R,1) =
™ i )
- 2K o) [R P Ry 2 OO,
Ry — R R (R} -RY) dt

3. Non-Dimensional Form

Let us introduce the following similarity coefficients: #., P ; non-dimensional time:
7 =1t/t. ; non-dimensional radius: r =(R—R,)/(R, — R,); non-dimensional geometrical
parameter: p=R,/(R,—R;); other non-dimensional parameters: @, =Qqls,
L =K®RELP P [k, (14 p)P),  d=ct)I,, @} =ki2]I., F,=M, i3]I,
Fy= Mot*2 /I1 , kpo= 27z2‘*2P*,uR23 /(Ir (1+p)*), and then following non-dimensional
functions:  p(r,7) = P((R, — R))(r + p),t:7)/ B , Fp(t)=M (t*r)tf/lr , Q=y,
o=yt., @, =y,. Let us take Q@)=Q=const, t.=4/I,/k and

P =01+ p)zQ/ (7rR22 (14+2p)) . Then, replacing integrals appearing in equations (4) and
(7), after enrolling them in a non-dimensional form using method of trapezia by dividing
the length of non-dimensional radius on m even segments, and taking A, =1/m,

rn=Ad, r;=Aj, p(r;,7)=p;(r), p(r;,;7)=p;(7) (rates of the method of trapezia
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are: ay=a,, =1/2, a; =1, j=12,.m-1), we obtain the following system of m+3
first order ODEs

m
o=—p—do+F, +Fycosa,r—k;A, Zaj (r; + p)? p; (),

j=0
p=o0, ®)
pi(@) =)o, @) ¢ + p)” p*(7) +(1+2—121p) 0,0 A, ;a, (r; +P)"*F p% ().

4. Numerical Computations

Numerical calculations are carried out using the fourth order Runge-Kutta method with
constant time step. We assumed the following initial non-dimensional parameters:
w,=02, d=0.0001, F,=1, F,=0.5, p=02, /=05, a=1, =1, m=100
and F;(0)=0.2 for initial moment. Let us study first contact pressure distribution

(Figure 2 on the left) as the function of the non-dimensional radius r of shields for
different values of # parameter.

T piv. U

0 0.2 04 0.6 0.8 L 0 2 4 & s T10

Figure 2. Contact pressures in equilibrium and changes of the friction torque moved by
the clutch

Before beginning of the process of wearing of shields, the contact pressure distribution
p(r,0) is identical on the entire contact surface. However, contact pressure distributions
p(r,o) are different for various values of the S parameter. Figure 2 (on the right)
shows changes of the friction torque moved by the clutch for various values of the
geometrical p parameter. As can be seen, amendments of the contact pressure
distribution during the wear causing reduction of the friction torque moved by the clutch.
In Figure 3 we take into consideration process of wearing during vibrations of shields of

clutch with a great coefficient of wear in order to observe changes in dynamics of the
system. This dynamics is monitored via trajectories of motion in the system’s phase for
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different (rather small) values of the angle velocities of excitation, possible to appear, for
example in the set-up time of the system for the slowly acting harmonic excitation.

w

a) o, =0.05 b) @, =0.1

005y ¢y

0,08

0,026 0,08

0,08
8 0.8 1 1.2 14

¢) @, =0.15
0,15 w

Figure 3. Phase trajectories of the system for various angular velocities including wear

As can be seen above, vibrations of the system depend both on angular velocity of
harmonic excitation and friction torque moved by the clutch.
Figure 4 shows angular characteristics for various values of F; = F;(0) = const,

(without wear process - /; =0).
16 T
Pm 1

12 +
0.8 +

04+

Wo

0 } T
0 05 1 1.5 2

Figure 4. Angular characteristics of the system for various values of F; ;
curve 1 - Fu =04, curve 2 - Fj =042, curve 3 - F, =0.45

Observe that the described resonance curves begin from the zero-dimensional vibration
amplitude ¢, a little below value equal to zero for @, =0.1, and are aspiring
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asymptotically in the scope apart from resonance up to the nought. They have tendency
of the gentler course in the scope apart from resonance. For smaller values of the F

resonance amplitudes have greater values. Besides, it should be noticed the phenomenon
of moving of resonance on the left for more and more great values of the ;..

5. Conclusions

The considered in this work issues allow to model and analyse wear processes on the
contact surface of a mechanical friction clutch and the system dynamics. Unlike many
previous works, here friction clutch is treated as a friction connection of elastic (not
rigid) bodies and general non-linear differential wear model is applied. Besides,
mathematical model describing wear processes and equation of motion of the system are
used and applied together during computer simulations. The presented in this work
numerical analysis shows influence of wear processes in friction clutch on the system
dynamics.
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Drgania Ukladu Mechanicznego ze Sprzeglem Ciernym
Praca przedstawia wyniki badan numerycznych po$wigconych dynamice uktadu mechanicznego ze sprzggtem
ciernym. Podczas symulacji przedstawiono i wykorzystano nieliniowy model zuzycia. Zbadano wplyw
rozwazanego modelu zuzycia na rozklad naciskow na tarczach sprzggtowych. Dynamike uktadu
monitorowano przy uzyciu trajektorii ruchu w przestrzeni fazowej oraz zachowania uktadu wokot
rezonansowej czgstosci katowej. Przedstawione wyniki pokazuja interesujace i zblizone do rzeczywistych
zachowania sig¢ rozwazanego uktadu oraz wplyw procesu zuzycia na jego dynamike.
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Abstract

In this paper a stand for forearm flexor muscles examination is presented. This stand is equipped in special
cam which theoretically should extort a constant force in biceps brachii during arm flexion. It should allow
examining maximal force of main muscle and muscles cooperation measurements. Herein an arm geometry
and cam calculations is also presented.

Keywords: Muscle examination, upper limb.

1. Introduction

Muscles are biomechanical engines for animals and human beings; without them the
movement or even some vital functions in biological organisms would not be possible.
From biomechanical point of view, striated muscle, which are part of musculoskeletal
system, are the most important part of muscle system.

Experimental examinations of muscles like measuring of damping factor, stiffness
factor, length, force, cross-section, marking out static and dynamic characteristics of a
muscle and so on are very important in construction mathematical models of muscles
[1]. For instance a rheological model needs information on soft tissues properties. In
order to build a geometrical model of muscles it is necessary to measure shape changing
during contraction. The more parameters of muscles are precisely measured the better
mathematical and bio-consent muscle model of actuators for artificial limbs can be built.
The moments measuring, generated by muscle under conditions of maximum voluntary
contraction is the most popular method for muscle strength evaluating [2].

In arm flexion the following muscles take a part (Figure 1): biceps brachii (1),
brachioradialis (2), extensor carpi radialis longus (3), brachialis (4), pronator teres,
flexor carpi radialis, palmonaris longus, flexor digitorum superficialis.
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It should be emphasized that biceps brachii and brachialis muscles are the most
important actuators during forearm flexion [3].

Figure 1. Main muscles of upper limb (1 — biceps brachii; 2 — brachioradialis,
3 — extensor carpi radialis longus; 4 — brachialis; 5- triceps brachii).

In the following graph it can be observed that in the human body maximum force
generation occurs, when muscles are slightly stretched (see Figure 2), where L, is a
resting length.

100%

Tension force

Lo * Muscle lenght

Figure 2. Force — length relationship for different levels of muscle stimulation (from [4])



Vibrations in Physical Systems Vol.24 (2010) 53

A mechanism, which is presented below, is designed to extort constant force during the
whole contraction of biceps brachii by a specially designed cam (3 in Figure 3).

Figure 3. The stand for forearm flexor muscles examination (1 — arm holder,
2 — transmission, 3 — cam assembly, 4 — counterbalance,
5 —load, 6 — stands foundations.)

This construction allows measuring of a maximum force load for biceps brachii and
makes possible an evaluation of work and cooperation of other muscles in an elbow joint
during forearm flexion in supinated position. The use of transmission (2) was necessary
because the lever angle of rotation is 180" in contrary to 360° of can rotation.

2. Arm Geometry and Cam Calculations

The arm model, shown inFigure 4, is taken under consideration, where: r; stands for arm
length, r, — forearm length, r,, — distance from elbow to muscle attachment, 1 — muscle
length, o — forearm flexion angle, B — angle between F and F, forces, y — angle between
muscle and elbow — upper surface of tuberositas radii axis, F — force generated by
biceps brachii, F. — stands for rotational component of force F, d — high of muscle
attachment (measured between an elbow — wrist axis and upper surface of tuberositas
radii).
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Figure 4. Arm geometry

In calculations, the following relations are used: r,=0.93 1|, 1,,=0.23 1), d=0.3 r,,. The
relations between r,, 1, and d were designated experimentally in vivo and verified to
data in [4], [5] and [6]. This model gives comparable results to human arm (see [7]). Let
assume that a muscle generate constant force F during contraction. Then we have.

F, :Fcos[%—ﬁj:FSiny )]

From the law of sines we get

! i
- = 2)
sina  siny
which implies
¥ = arcsin nSmae 3)

From the law of cosines we get
l:\/r12+r,ﬁ—2rlrm cosa, 4)
It follows from (1), (3) and (4), that

7 sino
F.=F L .
c \/ 5 ®)]
o +r, —2nr, cosa
The following function
rsina
Ala) = (6)

2,2
\/rl +1, —2nr, cosa

governess changing of arm load during movement from position 0" to 180",
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Figure 5. Plot of A4(@) in the Cartesian coordinate system.

Changing the Cartesian coordinate system into the polar one, we receive the
following function

ra)=ya*+4*(a) , ac(0, ). @)
This allows to construct the polar plot reported in Figure 6.
0se 0%, 750
1200 " T 60°
e i S Ny ‘\\ .
13507 50
/ 0.8 AN \\\
150/ \ \30°
/ / 0.6 \\
7 | 0.4 / X
165 / \ \15
: 02/
1804 e o

Figure 6. Plot of 4(a) in the polar coordinate system.

Let us point out that the shape of the curve in gray was used to design the shape of the
cam for the stand. Because of the positive value of the high of muscle attachment (see
the parameter d in Figure. 4), it is necessary to take into account the constant difference
between theoretical arm (made from straight beams) and human arm (where bones do
not have regular shapes) for the cam installation, i.e. the cam must be rotated about 15",
It is also possible to modify the stand for generating maximal force in biceps brachii
during whole arm contraction as it is shown in Figure 2 (see also [7]). The new cam will
have the shape reported in Figure 7.

1050 907 750
1200 " 1T T 60
e ‘1 T
° | 450
135 L 45
/ os \
150° /7 los ‘) \30 °
{1 \
/
165°/ ‘\ |04 15°
{ \olo2 /
\‘ | /(’/ }
180 °l e }0

Figure 7. Plot of the new calculated cam for generating maximal force in biceps
brachii during contraction.
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3. Conclusions

Most of the researches are concerned to isometric or isotonic muscle characteristics, see
for example [2] and [7]. Our presented construction is designed to measurement of
isotonic arm flexor muscles. However, by changing load, it is easy to change force
acting on a muscle and to examine arm behaviour. It is also possible to modify the stand
in order to generate a constant force momentum by replacing the cam by a centrally
mounted disc or generating maximal force in biceps brachii during whole arm
contraction by using appropriate cam shape. For other joints examination (for example
an ankle) it is possible to recalculate new cam geometry.
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Stanowisko do badania zginaczy przedramienia
Migénie sa biomechanicznymi silnikami dla zwierzat i ludzi. Maja one ogromny wptyw na ruch, a nawet
pewne istotne funkcje zyciowe. Z biomechanicznego punktu widzenia najwazniejsza czgscia ukladu
mig$niowego sa migsnie poprzecznie prazkowane.

W artykule zaprezentowano stanowisko do badania zginaczy przedramienia. Jest ono wyposazone w
specjalnie zaprojektowana krzywke, ktorej zadaniem jest wymuszenie staltej sity napigcia bicepsa podczas
zginania reki. Ma to na celu umozliwienie wyznaczenia maksymalnej sity, ktora moze wygenerowaé ten
migsien oraz zbadanie wspolpracy migsni przedramienia. W artykule zamieszczono rowniez przyjeta
geometrig reki oraz obliczenia dotyczace konstrukceji krzywki.
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Abstract

In the paper problem of a room with a harmonic sound source inside and resulting acoustic field in a steady
state is investigated. A question of a proper and optimum distribution of an acoustic absorption material on the
room’s boundaries, to obtain desirable acoustic pressure level is considered. Below the Schroeder frequency,
acoustic modes are perfectly separated. Under such conditions, room’s pressure distribution can be described
using modal analysis assumptions. Thus, the acoustic pressure represents a sum over a set of room’s
eigenfunctions and time components, i.e. the modal amplitudes. Additional assumption of enough high
boundaries’ impedance is made, and finally the modal coupling can be neglected. By means of the analysis of
the modal amplitude function, as the most important component of acoustic pressure, multi-objective function
for arbitrary shaped room, with 15 different boundaries is created. Impedance values on each boundary are
chosen as design variables. Research of the minimum objective function (non-dominated solutions), using
genetic algorithm, is conducted. As the result, the Pareto optimal solution i.e. set of material with the specific
impedance, properly distributed on boundaries has been found.

Keywords: modal amplitudes, multi-objective function, optimization, genetic algorithm

1. Introduction

The problem, how to distribute the material with specific absorption on walls, floor and
other surface in the room, in order to obtain desirable acoustic field properties is
commonly known. After the source of sound starts to emit a signal, losses of acoustic
energy caused by absorption on room’s boundaries at the same time are equalized by
energy from the source, and in an enclosure acoustical steady-state is reached. In order to
describe acoustic field distribution inside a room, one can use modal analysis
formulation under several restrictions [1,2,3]. Using modal analysis assumptions,
acoustic field distribution in a room interior can be described with its normal modes
(eigenfunctions) ¥, and corresponding eigenfrequencies w,. The eigenfunctions for
sufficiently enough high sound absorption related to room’s boundaries impedance,
approximately equals eigenfunction for the same room with Neuman boundary
condition. Simultaneously orthogonal, normalized set of functions ¥, is required [1,2,3].
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According to the above assumptions, if an acoustic field distribution in a room with
harmonic source g¢’” inside describes a linear, inhomogeneous wave equation
(¢ is a function describing source distribution in a room and its volume as well, ® is a
source frequency), then the solution can be represented by a sum over a set of
eigenfunctions [1]:

P y,z0) =AYV S P ()Y, (x,,2) (1)
=0

In equation (1), V' is a volume of a room and P,(t) is the time components i.e. the modal
amplitude calculated for n-th room’s mode. For a steady-state and harmonic source,
modal amplitudes take the form P,(t) = 4, &', were:

9,

A =
! a)2+2jwrn

2
,

_ 2

In equation (2), r, is a room’s damping coefficient and Q, 1is an acoustic source
factor [1], which are given for n-th mode by the following relation:

vy ? c?
r,=05-py-ct(Zds, 0, =—=|q-¥,av 3
pO £ ZS Q \/;f[q ( )

where S describes the surface of room boundaries with the individual impedance Z.

2. Multi-objective function

Under assumption mentioned above, one can state that acoustic pressure (1) in each
enclosure, are directly depended on modal amplitudes (2). The eigenfunctions ¥, and
the eigenfrequencies ®, are constant and characteristic for a particular room. Therefore
the influence on the interior acoustic field can be done by modal amplitudes
modification. Additionally, when a constant position of the sound source is considered,
the factor Q, in (2) is constant as well. Eventually, coefficients r, play the main role in
room’s acoustic filed creation, through boundaries impedance value Zg and its
distribution. The commonly desirable situation is minimum of the acoustic pressure in
enclosure under different impedance conditions. It is obvious that this can be achieved
applying maximum value of impedance Zg on all boundaries (3), from the assumed
range. On the other hand, in practice higher impedance on a surface increases costs.
Simultaneously, for some configurations of an impedance, absolute values of modal
amplitudes are reduced, but the total sum (1) could give higher values.
It results from signs of amplitudes and eigenfunctions. Thus, there are two opposite
criteria, and a double criteria objective function is considered with an intention of
searching optimal values of walls’ impedances, which give maximal reduction
of an acoustic pressure inside enclosure. The first criterion K/ (the acoustic criterion) is:
spatial root mean square value derived from (1) has to be minimal.

Kl = pnrms —> mln (4)
where n is a number of modes taken into consideration. The second criterion K2
(the cost criterion) is: values of impedances of particular walls have to be close to the
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highest impedances from the examined range. Additionally, each separate surface, where
the impedance could vary, is related to its weight w;. Values of the weights reflect the
relative importance of the surface in the enclosure. Finally, the cost criterion takes the
following form:

m

K2 = W (Z e —Z;) - min (5)

i=1

where m is a number of surfaces taken into consideration.

3. Sample object

As an example of optimized object, the room shown in figure 1 is taken into
consideration. The volume of the enclosure is 45,27 m3, and total surface area S with
varying impedance is 84,96 m®. 15 different surfaces are considered (walls, the floor,
the ceiling, doors).

Figure 1. Shape and dimensions of the examined object

The double-objective function has been created using the relations (4) and (5). The first
500 modes are involved which is related to the eignfrequency 480,4Hz as a limit.
Therefore in the case of the criterion K/ (4), we have n=500. Modal amplitudes have
been found according to (2) and factors O, w,, r, have been obtained numerically,
using FEM method. In the case of the criterion K2 (5) the impedance of 15 surfaces
(m=15) varies from Z,,=10" to Z,,=10° Pa:s/m. The weights w; are defined to
emphasise the surfaces of small area and its sum equals unity (Zw; =1).

4. Genetic algorithm method

In order to examine the objective function taking into account two criteria, the genetic
algorithm method [4,5] has been used. This approach has been applied due to the
following reasons. The genetic algorithm does not require gradient information which
could be difficult to get in a case of a large number of design variables (15 values of
surfaces’ impedance). The nature of the objective function is not known, the genetic
algorithm converges to the global solution rather than to a local one. Additionally,
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Pareto-optimal solutions are available directly. The initial population which is generated
using the uniform distribution guarantees covering the whole feasible design space with
equal probability.

5. Results

Results were obtained for four different sound source configurations (the position and
frequency) and the phase shifted flow out from the source 0.005 m’/s. Genetic algorithm
options were: the population size-500, the number of iterations-100 and design variables
tolerances 10 Pa-s/m. In figure 2 the Pareto optimal solutions normalized by maximal
values of each criterion are shown. The quantity Cost™" is the value of the cost criterion
(K2) in case of Z,;, for all room’s surfaces. The quantity p™ is the value of the acoustic
criterion (K1) for Z,,,c on all surfaces.
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Figure 2. Normalized Pareto optimal solutions for different positions (X,y,z)
and frequency (f) of the sound source: a) x=4.76m, y=2.37m, z=1.26m, f=90Hz;
b) x=1.07m, y=2.50m, z=1.42m, f=90Hz; c¢)x=4.76m, y=2.37m, z=1.26m, f=81.5Hz;
d) x=1.07m, y=2.50m, z=1.42m, f=250Hz.

Points on the Pareto curve in figure 2 are related to specific set of design variables
(surface’s impedances). In figure 3 the particular solutions, selected from the Pareto
optimal solutions, by means of its distance evaluation from utopia point (i.e. solutions
with minimal distance)[5] are shown. In figure 3, room’s surfaces are put in increasing
area order. The surfaces numbered from 13 to 15 are the largest, their relative areas
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reaches 58% of total surfaces areas. According to the cost criteria K2, their impedances
should take values in a high range of the impedance.
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Figure 3. Solutions with minimal distance from utopia point for different positions
(x,y,z) and frequency (f) of the sound source: a) x=4.76m, y=2.37m, z=1.26m, f=90Hz;
b) x=1.07m, y=2.50m, z=1.42m, f=90Hz; c)x=4.76m, y=2.37m, z=1.26m, =81.5Hz;
d) x=1.07m, y=2.50m, z=1.42m, f=250Hz.

6. Conclusions

The optimization process was conducted for specific room and source configurations,
but the procedure presented in the paper can be used for other applications in room
acoustics, especially in cases where many factors like source prosperities, position,
impedance distribution etc., can influence on the acoustic field. Particularly, using modal
analysis, one can define desired optimization condition, avoiding the FEM or BEM
method to calculate acoustic variables. As the result, the set of optimal solutions
is available (Fig. 2) and one can decide which solution is suitable one (Fig. 3).
In the case of example considered above, only the real impedances of surfaces were
examined but other values are possible to obtain. Likewise, room boundaries can be
divided into smaller areas but this increases the number of design variables and the cost
of computing as well. Extremely, each point of boundaries can receive its specific
impedance and as the optimization result, a room with varying prosperities of surfaces
can be considered. Additionally, the obtained results show that the optimization strongly
depends on the position and frequency of the sound source. As follows from figure 2a



62

and 2c, for the same position but different source frequency, even close each other,
the acoustic pressure p.,s reduction decreases. In the case of 90Hz in the same range of
expenditure, one can achieve more effects (the p,,s reduction) than for frequency
81,5Hz. Similar dependence appears from figure 2b and 2d. On the other hand, the same
sound source placed in another position in the enclosure may change room’s response
likewise possibility of pressure reduction by boundaries’ impedance.
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Wielokryterialna optymalizacja rozkladu materialu o okreslonej impedancji

W pomieszczeniu, w ustalonym stanie pola akustycznego
Praca dotyczy zagadnienia pomieszczenia zamknigtego, w ktorym umieszczone zostato harmoniczne zrodio
dzwigku. Zaprezentowano problem optymalizacji rozmieszczenia na brzegach pomieszczenia materiatu
absorbujacego akustycznie, o odpowiedniej impedancji. Ponizej czgstotliwosci granicznej Schroedera, mody
akustyczne pomieszczenia zamknigtego sa dobrze odseparowane. W tym zakresie czgstotliwosci, do opisu
rozktadu ci$nienia akustycznego w pomieszczeniu mozna zastosowaé analiz¢ modalna. Cisnienie akustyczne
w kazdym punkcie moze by¢ przedstawione w postaci sumy funkcji wlasnych oraz sktadowych czasowych
tj. amplitud modalnych. Dodatkowo zalozenie, wystarczajaco duzej impedancji na brzegach pozwala pominaé
sprzezenie migdzy modami. Wykorzystujac amplitudy modalne, jako najbardziej istotne czynniki ci$nienia
akustycznego, stworzono wielokryterialng funkcjg celu dla przykladowego pomieszczenia o nieregularnym
ksztalcie i 15 powierzchniach brzegowych. Wartosci impedancji na poszczegdlnych brzegach pomieszczenia
stanowity uktad zmiennych decyzyjnych. Do poszukiwania minimum funkcji celu (rozwiazania
niezdominowane) wykorzystano algorytm genetyczny. W rezultacie otrzymano zestaw rozwigzan Pareto
optymalnych tj. ukfad materialu o specyficznej impedancji akustycznej, rozmieszczony odpowiednio na
brzegach pomieszczenia.
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Abstract

The given work is devoted to development of theoretical bases of a new vibrating diagnostics method and
evaluation a current condition of the anchor. The research of the pulse response of the anchor against landslide
construction is a basis of vibrating diagnostics of a tension condition an anchor, detection of feature of
abatement of a tightness, and definition of character of its dependence on a changing stretching force. The
elastic body with the distributed parameters (a string) is used as the diagnostic model of the tense and fixed
core of an anchor. Dependences of own frequencies changing of the pulse response of an anchor on a tightness
changing at deformations and displacement of a place of fastening of an anchor are defined. The discrete model
of an anchor against landslide construction is developed and researched for definition of dependences between
parameters of an anchor condition and vibrating characteristics of a retaining wall, which is accessible to
carrying out of measurements.

Keywords: sliding processes, anchor against landslide constructions, tension of anchors, vibrating diagnostics.

1. Introduction

The anchor against landslide constructions are used for the protection of territories and
the located on them buildings from distribution and catastrophic consequences of the
sliding processes. They are installed in potentially dangerous places with retaining walls.
Practically, their original tension is a major factor, determining density of roof-bolt
setting. The anchor tension is necessary constant over a long period of anchor
construction operation. However, the tension of anchors can change in due course under
influence of sliding processes. In some cases it can lead to that the anchor will be pulled
out from a bedrock surface and will not carry out maintaining function without any
visible external attributes of change of its technical functional condition. Therefore, it is
necessary to spend periodically the control of a tension of anchors, that is the important



64

information for an evaluation of a current condition of sliding processes and forecasting
of their further development.

The anchor against landslide construction is offered by complex system enclosed a
retaining wall (1), a tightener (2), a rod (3) and a locking device (4) as shown on Figure
1. A locking device serves for anchor fixation into rock, a tightener is used for stress
making in an anchor rod for a decrease or elimination of a deformation and displacement
of linked rocks. Practically, the steel wire rope or iron reinforcement constructions are
used as a rod. Carried out theoretical researches of anchor constructions in the core touch
problems of their strength and reliability for different operation phases [1]. These results
allow to make demands to geometrical sizes and performances of used materials of
elements of an anchor constructions, but are not sufficient for monitoring possible strains
and offsets of rocks in a place of anchor fixation under natural excitation of land (for
example, landslide).

Figure 1. Configuration of an anchor against landslide construction: 1 - a retaining
wall; 2 — a tightener; 3 - a rod and 4 - a locking device

The given work is devoted to development of theoretical bases of a new vibrating
diagnostics method and evaluation a current condition of the anchor. The research of the
pulse response of the anchor against landslide construction is a basis of vibration
diagnostics of a tension condition an anchor [2], detection of feature of abatement of a
tightness, and definition of character of its dependence on a changing stretching force.

2. Frequencies analysis

We use the elastic body with the distributed parameters (a string) for mathematical
description of the tense and fixed rod of an anchor [3]. As a first approximation we’ll not
take into account a limitation of a string flexing by walls of an open test pit. String
flexing (a deviation of a string in a cross plain) characterizes cross vibrations of a model.
As is known, cross vibrations of a string under a influence of axial stretching force P are
presented by expression

y:sin%x(An cos%t+3n sin#t), €8

where a=,/Pgl/Q ; g is gravitational acceleration; Q is string weight; / is string length;
A

no

B, are coefficients, which rate the amplitudes of a string oscillations on the main
(n=1) and higher (n=2;3;...) oscillations shapes; x, y are axial and cross displacements.
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The frequencies f,, of oscillations (1) are defined as:

_an_n | Pg
fno_21 2\/; (2)

Let an axial stretching force P is changed at a strain and offset of a place of anchor
fixation:
B =P+AP,
where AP is changing value of stretching force; the sign "+" corresponds to increasing
of stress in an anchor rod under landslide activity and the sign "-" corresponds to a case,
when rod is pulled from rocks.
Let's consider coefficient of the relative tension changing z = AP/P , therefore force

B =P(1+z). The frequencies f,; in this case are:

n |B —
fnl:_ l_g:<fno 1+z. (3)
2\ 10
The factor R of nature frequencies changing at the tension changing can be defined
from (3) as:

R:fi:\jliz. “

J no
Table 1 presents dependencies of frequencies changing factor on coefficient of the
relative tension changing at the increasing and decreasing of axial stretching force.

Table 1. Dependencies of factor R on coefficient z of the relative tension changing.

z 0,01 0,05 0,1 0,15 0,2 0,3
R 1,005 1,025 1,049 1,072 1,095 1,140
R 0,995 0,975 0,949 0,922 0,894 0,837

Apparently from the received results, small changing of force P (z<0,1) brings to
changing of frequencies under all shapes of oscillations no more than 5 % both at
increasing and at a decreasing of a tightness. The changing of axial stretching force in
the range of 0<z<0,3 brings to changing of frequencies under all shapes of
oscillations about 14-16%. Thus, changing of anchor rod frequencies can be used as
diagnostic feature of tension of anchors.

3. Researches of anchor discrete model

As it was noted above, rod of an anchor is unapproachable to monitoring its tightness or
own frequencies. Anchor against landslide constructions are mounted in such a way that
retaining wall only is accessible to carrying out of measurements (see Fig. 2).

Therefore, it is necessary to determine influence of tension changing on performances
of stress, displacements and strains of a retaining wall.

We use Finite Element (FE) Analysis for the design discrete model of an anchor
against landslide construction which can be representative of an actual object. For this
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aim we consider anchor rod made from carbon steel rope with the following properties:
Density 7850 kg/m’; Modulus of Elasticity 2,05-10'"" N/m?% Poison’s ratio 0,29; Shear
Modulus 8-10'" N/m”. Retaining wall is represented by concrete slab with the following

properties: Density 2000 kg/m*; Modulus of Elasticity 2,75-10'" N/m?*; Poison’s ratio
0,2. The developed discrete model consists of 8444 FE and 14572 nodes.

Figure 2. Photograph of anchor against landslide construction, installed in Crimea

The second goal was to understand the behavior of the vibrating characteristics of a
retaining wall as a function of parameters of an anchor condition. For this study, rod
rigidity value is changed (rigidity is decreased), relative rigidity changing AC is
assigned of 0,15, that corresponds to R=0,97; 0,25 (R =0,87) and 0,5 (R=0,7). Figure 3
shows the example of modeling and estimation of wall displacement at the initial value
of rigidity ( AC =0).

Maicc: 1.1 692-008
URES (m)

1168008

l 1.1108-008

- 1.030e-008

. 9.509-008
W 1as it

. 7973009

724600
63290008
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. 4.739e-009

. 3.8440.008
3.148-009

2.353e-009

Figure 3. Example of modeling and estimation of wall displacement
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As it is possible to see from the presented figure, the maximum displacement occurs
on the slab and anchor rod has minimum displacement in the area of anchor fixation.
Values of maximum and minimum displacement are change at a rod rigidity changing
the means specified above. These values increase at the decreasing of rod rigidity.
Changing of minimum displacement can be interpreted as displacement of rocks and
development of activity of landslide at the modeling and study diagnostic model of
anchor against landslide construction. Relative rigidity changing of a rod and
corresponding changing of frequencies are considered as parameters, which
characterized functional condition of an anchor and its possibility to carry out
maintaining function. Changing of maximum displacement is used in this study as a
feature of changing of the anchor tightness or own frequencies. The relation between
maximum and minimum values of displacement also depends on change of rod rigidity.
The maximum value is different from minimum five times at the AC =0, and these
values do not different among themselves at the AC = 0,5, practically. In the latter case
it means that the anchor against landslide construction practically does not carry out
maintaining function.

Table 2 presents dependencies of relative values of maximum and minimum

displacement ( AD,,, and AD,; , accordingly) on relative rigidity changing AC. The
relative values are estimated by using the following expressions:
D A D_. (4
ADmax — max( C) and ADmin — mln( C) , (5)
Dmax (0) Dmin (0)

where D, (4C) and D, (4C) are displacements at the rod rigidity changing
(AC#0); Dy (0) and D, (0) are displacements at the initial value of rod rigidity
(4C=0).
Table 2. Dependencies of 4D, and AD,;, on relative rigidity changing of a rod
AC 0 0,15 0,25 0,5
AD, .« 1 1,04 2,61 28,82
AD,. 1 1,79 9,15 143,41

The presented results show that evaluated values of minimum displacements increase
too much at the decreasing of a rod rigidity. But we have not any possibility to measure
these displacements. Value of maximum displacement increases slightly at the
AC £0,15 (it corresponds to R <0,97 and z <0,05). Further decreasing of a rod rigidity
causes a large increasing of values of maximum displacements. Since the mentioned
displacements occurs on the slab, we can to measure these characteristics by using
mounted on the retaining wall sensor.
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4. Conclusions

The theoretical basis of development vibration diagnosis method is presented for
monitoring and evaluation a current condition of the anchor against landslide
constructions.

The elastic body with the distributed parameters (a string) is used as the diagnostic
model of the tense and fixed core of an anchor, that allows to define and analyse
dependencies of frequencies changing factor on coefficient of the relative tension
changing at the increasing and decreasing of axial stretching force.

The discrete model of an anchor against landslide construction is developed and
researched, that allows to understand the behavior of the vibrating characteristics of a
retaining wall as a function of parameters of an anchor condition. The received results of
anchor modeling and analysis show that decreasing of a rod rigidity causes increasing of
displacements occurs on the slab and in the area of anchor fixation. Dependencies of
relative values of displacements are researched on relative rigidity changing.

The received results are new and will be used for the further investigations and
development of a new vibration method for monitoring and evaluation a current
condition of the anchor against landslide constructions.
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Abstract

The work is devoted to condition monitoring and vibroacoustical diagnosis of the crack-like damages of the
gas-turbine engines (GTE) blades at the steady-state and non-steady-state modes of GTE. The developed
diagnostic model of GTE is presented and the influence of damage on the measured vibro- and acoustical
signals at the steady-state and non-steady-state modes of GTE is determined. The application of the following
signal processing methods: Polyspectral (Higher-Order Spectral) analysis, Wavelet-transformation and
dimensionless characteristics of the vibroacoustical signals is proved. The efficiency of signal processing
methods is demonstrated by the results of numerical simulations of the turbine stage at the steady-state and
non-steady-state modes of vibration excitation. The fault features are detected and investigated.

Keywords: gas-turbine engine, crack-like damage, vibroacoustical diagnosis, signal processing

1. Introduction

Statistics about aircraft gas-turbine engine (GTE) failures demonstrate that the most part
of these failures, led to premature taking away the engine, are provoked by the damages
of the compressor components (from 20% to 76%) and the turbine ones (from 15% to
65%). The mentioned engine failures are caused by typical totality of damages as: nicks,
dents, bending of compressor blades; cracks and compressor blades break; nicks and
burning turbine blades. After scheduled inspections and repair, more then a half of
blades are culled because of erosion, nicks, initial cracks and burning. According to
analysis, the some of these damages (named crack-like damages) could be found out at
initial stage of its evolution without engine disassembling if the continuous monitoring
of the engine components condition was conducted.

The problem of detection of the crack-like damages of blades at the steady-state and
non-steady-state modes of GTE may be solved by using the vibration and
vibroacoustical diagnostic methods [1]. Creation of the monitoring system is based on
application and further development of low-frequency (0-25 kHz) vibroacoustical
diagnostic methods which use vibrating and acoustical noise as diagnostic information.
This noise is radiated by the turbine and compressor stages at the GTE operating.

Generally monitoring is a continuous process of information gaining about the object
vibrating condition, its transformation, signal processing and making decision about
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object technical condition. The stages of the mentioned informative process depend on
the engine operative modes. These modes define specific character of vibrating and
acoustical excitation of the compressor and turbine blades, and consequently, they define
the methods and algorithms of signal processing, which will allow to detect initial faults.

Initiation and increase of a crack-like damages in the blade lead the instantaneous
change of its stiffness. Usually the change of stiffness is modeled by the piecewise-linear
characteristic of the restoring force [1,2]. At low a level of a useful signal in vibrating
and acoustic noise which is radiated by the engine at its operating, use of traditional
spectral analysis is inefficient for incipient cracks detection. In this paper we propose to
use the Bispectrum analysis (BS), Wavelet Decomposition (WD) and Dimensionless
Peak Characteristics (DPC) of the vibroacoustical signals for the signal processing and
fault features extraction.

2. Diagnostic model of GTE and measuring signal conditioning

The GTE is the compound system which consisting of many subsystems, assemblages
and devices. Deriving of full mathematical exposition of GTE behavior is hampered,
therefore for the purpose of diagnostic, as a rule, the simplified models of GTE are used
(for example, at the engine separation on subsystems and devices with hierarchical
structure of connections). According to mentioned diagnostic model of GTE has been
developed. The main prominent features of diagnostic model are:

1. Model includes set of n stages (subsystems "disk-blades") which are rotation by a
rotor of the engine.

2. The basic and most important source of vibration at the engine operation is the
rotor, therefore rotor vibration P(¢)is considered as the basic entrance vibrating
excitation on subsystems "disk- blades ".

3. Rotor vibration model at the steady-state mode (named ml) of GTE has been
accepted in the form:

1
P0)= Y R ()sinio, + 0,0+ £0), ()
i=1
where F(¢) is the amplitude of a harmonic whith number i; @, is the main rotation
frequency; &£(¢) is the broadband normal noise.
4. Rotor vibration model at the non-steady-state modes (named m2 and m3) of GTE
has been accepted in the form:

3
. . 2
P(t)= ZPl-(t)sm[a)po +0,5i66% + ¢, (t)]—i— (1), ©)

i=1
where @, is the initial value of rotation frequency; £ is speed of frequency variation of
the first rotor harmonic; the sign "+" corresponds to a mode m2 with the fast increase of
the rotor rotation frequency and the sign "-" corresponds to a mode m3 with the decrease
of the rotor rotation frequency.
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5. In relation to described above rotor excitation set of n stages is represented in the
form of parallel connection of n subsystems "disk- blades". Generally reaction of system
on rotor vibration represents the following n-dimensional vector of reactions:

Rp (t) = [Rpl (t),...,an (t)] 5
where Rp; (t) is the reaction of subsystem with number j on excitation P(¢), and which

are represented by the following expression in case of elastic and dynamic independence
of oscillations of blades and the disk:

Rey()=Y 1 () + 7330 1) 3)
q=1

In the expression (3) following designations are used: rp, (t) is reaction of blade with
number g; 7pyy (¢) is reaction of disk; z; is blades quantity at the selected stages.

6. Unfailing blades are described by the model of an linear oscillating system with
natural frequency @, ( f, =600 Hz). The impulse response of it is:

1 .
g.(t)y=—-sinw,t . )
o8
The model of a blade with a crack-like damage is presented by the model of an
oscillating system with piecewise-linear (asymmetrical) characteristic of the elastic
force. The impulse response of this system is expansion in Fourier series at harmonics of

the cracked blade model base frequency @ [1]:

K
g(t)=a70+2ak cos kayt (5)
k=1
4(1— 31— )2
where a, = ( g);ak: 4§1+§)2(1 S) __cos ik ;wOZZw*g;
V0N mws[(c+1)" =4k (¢ + 1) —4c7k”] c+l1 l+¢

¢ =+/1-9 ; 9- crack parameter, relative rigidity changing at the crack presence.
The reaction of one blade on excitation P(¢)in the form (1) or form (2) can be
defined by Duhamel integral:

g0 = [ P e, ) ®

where g, (t, 2') is the blade impulse response (4) or (5).

7. Each stage oscillates vibration of an aerodynamic origin Q;(¢) on rotor frequency
and in z; times more. Mathematical expression of vibration similarly to (1). Other
aerodynamic vibration S;(¢) is excited by processes in an air-gas tract of a GTE and

described as additional random entrance effects on each blade s, (7). In case of not
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correlated P(7) and s, (7) reaction of a blade on s, (f) is represented additive
component rg, (¢) in vector of reactions by using integral (6). Let's consider also
acoustical noise B;(#) directly radiated by a compressor and turbine, which model is
similar (1), noise with continuous spectrum D, (7) on an exit of each stage, which is

caused by turbulent phenomena and an eddy generation, and also broadband vibration of
low intensity N(¢) from non-power elements of GTE.

Stated above has allowed to generate model of measured vibroacoustical signal X (¢)
in the following form:

X(1) = Z {Z[r,,]q (6)+ gy (O] + Z 0, sinlio, 1 +iz,0,+ 0,0 )+
j=1 g=1
. (7

1y
+2.B; sin(i 2,0, + @0, )+ D, (0} + N(1)

Depending on impulse response (4) or (5) model (7) reflects a state of the GTE at the
absence or presence of blade crack-like damages, and it allows to research influence of a

fault on behaviors of signal X(¢) .

3. Signal processing and fault features analysis

The received model (7) is used for simulation and analysis of vibroacoustical processes
which occur at the steady-state (ml) and non-steady-state (m2, m3) modes of GTE at
absence and presence of small cracks in one blade of the turbine stage (the relative
rigidity changing at the crack presence is considered %=0,01;0,03;0,05;0,07;0,09).
Parameters of vibration excitation (2) at the non-steady-state modes are selected such
that at least the third harmonics of excitation at increase or a decrease of rotational speed
transited through a resonance region of blades. The Fig. 1 presents examples of drawings
of the simulated signals.
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Figure 1. Examples of the simulated signals for modes m1 (a), m2 (b) and m3 (c)
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Simulated signals were processed using BS, WD and DPS [2-4]. The examples of BS
analysis results at the steady-state (m1) mode of GTE are shown on Fig. 2 for $=0 and
$=0,05 at the crack presence. They are presented in a form of three-dimensional images
characterizing bispectrum module dependence on frequencies f; and f, .

BS module BS module
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: a) b)
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3
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-10 -1000 -1000 ~1000
Frequency,Hz Frequency,Hz Frequency,Hz Frequency,Hz

Figure 2. Examples of the BS module simulated signals for steady-state (m1) mode of
GTE at the absence (a) and the presence crack (b)

As the results of diagnostic information processing demonstrate, appearance and
development of a crack in the engine turbine lead to change of global and local
extremum intensity of BS module estimators. We propose to use the ratio Dgg =1, / I

as a fault features, where I, is value of intensity of global (local) BS module

maximum. The relationships between ¢ and Dz for ml, m2 and m3 modes are
illustrated in Table 1.

Table 1. Diagnostic features dependencies on a fault parameter.

4 0 0,01 0,03 0,05 0,07 0,09
ml 2,10 2,23 2,55 2,82 3,02 3,30
m2 2,31 2,34 2,38 2,43 2,61 3,05
m3 1,82 1,83 1,85 1,91 1,98 2,01

The following DPC are used: J,- peak factor and J, - factor of background. The

preliminary WD of signals is applied for the sensitivity increasing of DPC of the
vibroacoustical signals as fault features. We used wavelets of Daubechies family db10
and 5 levels of decomposition, results are used as drawings of each level for next DPC
evaluation. Fig.3 represents the values of relative speed in percents of the DPC changing
(from 9 =0 to $=0,05) evaluated for initial signals and approximations (a5) and details
(d1-dS) of their WD for m1 and m2 modes of GTE operation. Relative speed of the DPC
changing is calculated in the following form:



74

‘J, _J
v, =1

-100%,

where J,, J; are feature values at the crack presence and absence, accordingly.
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Figure 3. Relative speed of the DPC changing evaluated for signals and elements of
their WD for m1(a) and m2 (b) modes of GTE

Apparently from the presented results, DPC of approximation a5 are the most
sensitive fault features for a mode m1, and DPC of a detail d1 are the most sensitive fault
features for a mode m2. For a mode 3 (schedules are not presented) expediently to use
DPC for a detail d2, their relative speed of change makes 20%.

4. Conclusions

Developed diagnostic model of GTE allows to form the model of measured
vibroacoustical signals for further simulation and analysis the influence of damages on
the vibroacoustical characteristics of GTE at the steady-state and non-steady-state
modes.

Application of a modern signal processing methods allows to detect fault features,
which are sensitive to small crack-like damages. The received results can be used to
create a vibroacoustical monitoring system for aircraft engine rotor components.
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Abstract

In the paper, in the discrete-continuous model, the spring constants replacing the rotational and translational
restrained end of the Bernoulli-Euler beam have been identified on the basis experimental investigations and
formulation of optimization problem. The mathematical model of free vibration problem of analyzed system
has been formulated and solved according to the Lagrange multiplier formalism. Frequencies and mode
shapes of free vibration, which have been obtained from the experimental investigations, have been used to
formulate optimization problem. Optimization has been based on the genetic algorithm. The presented
proceeding’s stages allow identification any parameters of discrete-continuous systems.

Keywords: genetic algorithm, experimental modal analysis, free vibration, the Bernoulli-Euler beam

1. Introduction

The genetic algorithms were first developed by John Holland [1] in the early 1970s. At
present the genetic algorithms [2, 3 and 4] are widely applied in a lot of field of
knowledge. Their effective mechanism of searching the large space solution is the most
important advantage. It allows using the genetic algorithms in optimization problems
[5, 6].

In this paper the applying of the genetic algorithm, experimental modal analysis and
the Lagrange multiplier formalism [7, 8] to identify the chosen parameters of discrete-
continuous systems are presented. Identification of parameters has been carried out on
the example of the Bernoulli-Euler beam, which has been elastically restrained at the
end. This way restrained of the beam has been showed in the articles [9, 10].
Additionally in the paper [9] the concentrated mass at an arbitrary position along the
beam length has been added, while in the paper [10] the translational spring at the
intermediate point has been restrained.

2. Formulation of the problem

The vibration model of the uniform Bernoulli-Euler beam with discrete elements
(substituting the elastically restrained end) is presented in the figure 1. The translational
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restraint is characterized by spring constant K and the rotational restraint by the spring
constant C.

a)C

k4l
N

b)

=
=
g

=Y
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Figure 1. Scheme of the beam elastically restrained at the end: a) the whole system,
b) the separated element system

Acting on the Lagrange multiplier formalism [7, 8] the free vibration problem of
analyzed system has been formulated and the solution has been reduced to matrix system
of equations in the following form:

Ca+tea G, [/11 }
’ ’ =0 1
{ G Coata | W
where A; and A, are the amplitudes of Lagrange multipliers. Coefficients Cj,, which
characterize beam to boundary conditions respectively, are described by relationship:

ul bi kbi r
Cp,=)—=—, i=012...N, k=12, r=12 )
T i Ki-e™M;
and coefficients:
1 1
& =—, EHVy =— 3a,b
1= 27 ¢ (3a,b)

characterize the type of discrete elements joining to the beam.
In the formula (2) the following relationships (according to work [8]) have been
accepted:

El
Ki==5ki M, =pdLm,, i=012...N (4a, b)

where the symbols denote: p — density, £ — the longitudinal modulus of elasticity, 4 —
cross-sectional area, / — moment of inertia and L — length of beam, while:

b; (k =1y = Y(0), b (kr=2) = ¥/(0) (5a,b)
represent the mode shapes of the free-free beam calculated without any influence of the

other elements. Coefficients k; and m; occurring in formula (4a, b) can derive on the basis
of dependences appearing among other things in work [8].
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The equation set (1) yields the eigenvalue equation:

C,+g C
det| ST T2 =0 6
{ Gy Chte ©

which enables one to calculate the free vibration frequency values @, of the system.
When the values of free vibration frequency are known and on the basis of equation (1)
the amplitudes of Lagrange multipliers are determined, then the mode shapes can be
described with the use of following expression:

2
N zAr(a)k)bir
_ r=1 g
Yk(x)—g—K 207 Y, (x) (7

i T OpM;
3. Experimental investigations

The measurement system which has been used to the experimental investigations is
presented in the figure 2. This system consists of the fixed beam (1), PC computer (2)
with appropriate software, four-channel vibration analyzer (3), amplifier (4), exciter
body with exciter head (5), force detector (6), one-axial piezoelectric accelerometer (7).

Figure 2. Scheme of the measuring set

The modal model (set of natural frequencies, coefficients of damping and modes of
vibrations) of the system has been obtained as a result of the experimental investigations.

In the figure 3 first three received natural frequencies and corresponding modes of
vibrations are showed.

Figure 3. The experimental free vibration frequencies and the modes of the beam
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4. Genetic algorithm

The looked values of spring constants substituting the elastically restrained end of beam
can be determined on the basis of the derived relationships and obtained experimental
free vibration frequencies. In order to formulate optimization problem the genetic
algorithm has been used.

The genetic algorithm bases on the principles of genetics and natural selection and it
works as follows (fig. 4): first, population of chromosomes that are solution candidates
to a problem is randomly generated; then the fitness function of each chromosomes in
the population is calculated; next Selection, Crossover and Mutation are repeated until
a steady number of offspring will be created or the value of solution will be satisfactory.

Start

Y
Generation of
initial population

Crossover Fitness
Mutation
A )

/ Thebest /

) /" chromos om

Figure 4. Simple genetic algorithm

The selection operator selects chromosomes in the population for reproduction. The
fitter the chromosome, the more times it is likely to be selected to reproduce. Crossover
and mutation are the reproduction operators, the former forms a new chromosome by
combining parts of each of the two parental chromosomes and the latter forms a new
chromosome by making alterations to the values of genes in a copy of a single parent
chromosome.

In the examined case, objective function (fitness function) has been written by the
formula:

3 A 100%

a),(")

S(K.C)=+

, forn=3, ()
n

which means that relative average error between theoretical and experimental
frequencies is optimized.
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5. Sample results

Based on the presented mathematical model, the experimental investigations and the

genetic algorithm the numerical program has been worked out. This program enables to

identify the spring constants K and C representing the elastically restrained end of beam.
The exemplary numerical calculations have been completed for the following data:

= the beam parameters: the length — 1 m, the dimensions of the cross section of the box
shaped member: the external height and width — 0.04 m, the internal height and width
— 0.036 m; the beam’s material: the density — 7850 kg/m’, the Young’s modulus —
2.1-10" N/m?,

= the genetic algorithm parameters: the crossover probability — 0.5, the mutational
probability — 0.1, and selection has been carried out according to rank selection,

= the values of spring constants (K, C) were looked for in the range [100, 1-10'°] N/m.
On the basis of numerical calculations the spring constants modeling the elastically

restrained end of beam have been amounted: C=9.23795-10* N/m, K=1.51182-10" N/m

and the relative average error (8) between theoretical and experimental frequencies has

been equal 0.23%.
In figure 5 the theoretical natural frequencies and corresponding modes of analyzed

system are presented with the consideration of the determined spring constants K and C.

Figure 5. The theoretical free vibration frequencies and the modes of the analyzed beam

6. Summary

In this paper the use of genetic algorithm for identification of constants of discrete
elements which are joined to continuous element has been presented. Identification has
been carried out on the example of the Bernoulli-Euler beam which has been elastically
restrained by translational and rotational springs at the end. To the formulation and
solution of the problem has been used the Lagrange multiplier formalism and the
experimental modal analysis, too. The mathematical formulation is completed by the
exemplary numerical results.
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Zastosowanie algorytmu genetycznego do identyfikacji modelu drgan na przykladzie belki
Bernoulliego-Eulera

W pracy na podstawie przeprowadzonych badan eksperymentalnych oraz sformutowania zadania
optymalizacyjnego zidentyfikowano stale sprgzysto$ci sprezyn rotacyjnej i translacyjnej zastgpujacych
w modelu dyskretno-ciaglym zamocowanie jednostronne belki Bernoulliego-Eulera. Model matematyczny
zagadnienia drgan swobodnych analizowanego ukladu zostal sformutowany i rozwiazany zgodnie
z formalizmem mnoznikow Lagrange’a. Jako rezultat przeprowadzonych badan eksperymentalnych otrzymano
czestodei 1 postacie drgan wiasnych, ktore wykorzystano do sformutowania zagadnienia optymalizacyjnego.
Algorytm optymalizacyjny bazowat na algorytmie genetycznym. Przedstawione etapy postgpowania pozwalaja
na identyfikacj¢ dowolnych parametréow uktadéw dyskretno-ciagtych.
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Abstract

Modern railways, as light and classic vehicles, are designed with a new construction concept/trend.
Expression of this thesis is the increase of safety standards and loads/performance of vehicle elements with
simultaneous reduction of the vehicle mass. The newest constructions of trains and trams have applied many
parts which are made of light metal alloys, aluminium and plastic profiles, ceramic, fibber and glass.
Consequently those materials have major influence on a vehicle dynamics.

This article presents a first approach of a structural dynamics of a tram body during a ride test. Author
analyzed the vibration signals recorded on two different trams drive units and tram body. The vibrations are
analyzed in ride safety category and human vibration exposure of operator/passenger aspect. Author presents
rationales to use of ride-source vibrations as a potential excitation in OMA test technique. Paper includes a
methodology of the experiment and first results from performed investigation.

Keywords: operational excitation , tram dynamics, modal test

1. Introduction

Popularity of railway transport and its revival (particularly in fast railway as well as in
trams) stem from advantages of this form of relocating. It has, including but not limited
to, the following advantages:

. ride safety,

. continually rising ride speed,

. possibility to travel in ,,City-to-City” system,

. little sensitivity to weather conditions,

*  separated communication routes — minimal traffic congestion.

The last two advantages are especially important in case of trams and specific
conditions of their exploitation. In recent years those vehicles have experienced a revival
connected with dynamic development of cities and rising problems in individual car
communication. Possibility to operate big traffic steams and little urban requirements
result in dynamical development of tram market in Europe and in the world.

Classic and light rail vehicles undergo strict tests connected with investigation of
construction dynamics. These tests comprise two domains:

. ride safety,

. ride comfort of passengers.

In the first case, the most commonly used criterion of assessing ride safety of a
railway vehicle is Nadal’s criterion, which is the ratio between transverse dynamic force
and vertical dynamic force Y/Q according to UIC 518 chart [1]. Another values
connected with vehicle ride on the rails are also acceptable, e.g. the sum of leading
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forces affecting the rails, vertical pressure of wheels on the rails, transverse and vertical
acceleration measured in selected points in the vehicle or stiffness of susceptible parts of
vehicle suspension [1,2].

In case of the ride comfort investigation, parameters of ride characteristics of the
vehicle or adequate dosimeter parameters according to European Union Directive
2002/44/EC may be used. Broad numeric investigations connected with dynamics of
vehicle move in the rails are also carried out. The aim of these investigations is to
support, describe and explain through simulation the processes connected with wheel
interaction on the rail in the vibro-acoustic aspect.

In the all mentioned situations the dynamic susceptibility of the suspension as an
element that has influence on safety and comfort of rail vehicle ride, is omitted.

2. Structural dynamics of a tram

In dynamic investigation of rail vehicles, because of security against derailment,
particular attention is paid to cooperation between the wheel and the rail. The further
step of the designer is developing a suspension system meeting the following postulates:

. safe vehicle drive in the railway track,

. fulfilling requirements of vehicle gauge,

. transfer of driving and braking forces from the body to the bogie and from the
bogie to the body,

. possibly effective insulation (expansion) of vibrations transferred from the tram
drive unit to the car body and further to passenger and driver seats,

«  fulfilling requirements of ride comfort with assumption that the vehicle body is
a stiff solid.

A bogie is a widely used solution, which constitutes a good basis for a compromise
between safety and ride comfort. In case of trams, the bogie is a complicated riding
structure, which enables building up two or three grades of de-springing. For the
necessity of model testing of bogies,

7-mass-model with nonlinear damping is commonly accepted. Unfortunately, in
detailed investigation of tram ride dynamics, such models are not precise enough [3].
That is why e.g. 19-mass-models are built, which is presented schematically in Fig.1.

Scheme of tram bogie 105Na and its model [3]



Vibrations in Physical Systems Vol.24 (2010) 83

With bogie models defined in the mentioned way, there is possibility to carry out
broad numeric and experimental investigations to optimize construction parameters with
accepted assessing criteria.

In actual constructions of the tram drive unit, full mechano-acoustic separation of the

under-carriage from the tram body is not possible. A part of energy will be transferred to
the vehicle body, which will excite vibrations of the vehicle construction.
It is commonly accepted that the car body constitutes a solid which joins the vehicle
bogies. It has been suggested to verify this thesis. It is especially important that very
often light construction materials are used for suspension elements (light metal alloy,
composites). Enlarging glass surfaces and door-ways is also significant as it influences
construction susceptibility to elastic deformations. Modernization of older types of trams
is observed. The purpose of it is to increase their functionality without particular
consideration of consequences of performed works

Transfer of excitations from the tram drive unit to the tram body results in vibro-
acoustic effects affecting passengers and the tram driver. Taking into consideration
structural dynamics of the tram body itself it may turn out that the mechano-acoustic
susceptibility as well as global and local resonances of the tram body may significantly
affect safety and ride comfort. This hypothesis be-came the basis of tram investigations
in standard exploitation conditions. Cracks in top beam of the tram car resulting from
dynamic interaction between vehicle and rails, serve as another argument.

3. Investigation methodology

The purpose of this experiment was to define prospects of using exploitation excitation
for modal investigation of a tram car. As this investigation has a diagnosing character in
the first step only a vertical excitation was taken into consideration.

The excitation from the tram drive unit is a natural excitation for a certain vehicle
and exploitation conditions. As measurement of dynamic forces affecting the car body is
not possible, it was decided to use techniques of OMA. The priority of the investigation
is to determine frequencies characteristic for a tram in excitation frequency from the
tram drive unit because global and local construction resonances may occur.

The scope of frequencies, which should be taken for the analysis, results from taking
into ac-count frequencies characteristic for safety (kinematics and dynamics of a vehicle
in the railway track) and ride comfort. In safety aspect a few characteristic frequencies
may be defined [3,4]:

. approx. 2-20 Hz connected with basic hunting oscillation of wheel sets,

. approx. 4-10 Hz harmonics vibrations of individual bogie elements,

. approx. 20-60 Hz vibrations caused by cooperation between a wheel and a rail
for wheels with elastomeric inserts.

However, in ride comfort aspect and endangering a tram driver with excessive
vibrations, the scope of frequencies and their weight contribution in particular kinds of
influence on human body are defined by EU Directive2002/44/EC and commonly
acknowledged human vibration model [5].
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Carried analyses show that it is purposeful to carry out investigations in frequency
scope from min. 2 to approx. 200 Hz. Such defined band of frequencies covers with its
scope, all effects that are the subject of investigation.

4. Experiment results

The investigation was carried out with two types of jointed trams (from the left side: A
and B) with significant contribution of the low floor (Fig. 2).

Figure 2. Objects of comparative investigation; from the left side: type A and type B

Test rides were carried out on a classic ballast track, on the same parts of the straight
track with speed limit to 40 km/h. The signal of vibration acceleration was registered on
the floor inside the tram car directly over the pivot. In the investigation, vibration
transducers of Briiel & Kjar type 4504A were used. Portable data acquisition unit type
B&K 3560C with 17 input channels constitutes the central unit of the measurement set
[6]. Because of the character of the recorded signal and assumed estimation accuracy,
the signal of vibration acceleration was recorded in band 3.2 kHz.

The results of preliminary analysis are displayed in Fig. 3 and 4, where the signal
time flow and its spectrum are presented. The analysis was carried out in band 2-200Hz
with resolution of 0.5Hz and accuracy of amplitude estimation of 0.5dB [7].
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Figure 3. Signal registered in a tram type A
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Figure 4. Signal registered in a tram type B

As it can be concluded from the presented diagrams, obtained frequency
characteristics of registered signals in particular types of trams are different. For a tram
type A, characteristic frequencies are explicitly exposed in amplitude spectrum (Fig.3.)
of 54,5Hz, 74.5Hz and 95.5Hz. At the same time attention is drawn to amplitude rising
of the signal in band from 110 to 130Hz. For a tram type B characteristic and dominant
spectra are 2.5Hz and 84Hz.

Analyzing the distribution of vibration energy of registered signals, it was observed
that for a tram type B vibration energy is comprised in band 2.5 to 110Hz, whereas for a
tram type A, vibro-acoustic activity is shifted to higher frequencies 14-190Hz. This may
stem from the fact that a tram type B has a more elastic structure and more modern set of
the suspension over four times lowering the level of registered vibrations in comparison
to type A (respectively for type B and A: 178mm/s® and 813mm/s” on the investigated
part of the railway track).

5. Conclusion

Presented investigation results have cognitive character and refer to prospects of using
the test ride in investigations of structural dynamics of a tram car.

This article presents the genesis of the subject and analyses referring to methodology
assumptions of the experiment. The effects connected with tram move and influencing
vibration generation were systematized. The author suggested accepting a scope of
frequencies for the analysis in safety aspect and ride comfort aspect. Preliminary
investigation results of two types of joint trams confirmed that the assumed analysis
band was correct. At the same time possible origin of changes in amplitude structure of
spectra of recorded signals was indicated.

The further step in the investigation of prospects of using the ride test for structure
modal analysis will be an analysis in three directions.
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Wymuszenie eksploatacyjne w eksperymentalnych badaniach dynamiki lekkich pojazdow

szynowych

Nowoczesne pojazdy szynowe, tak lekkie jak i klasyczne, podlegaja najnowszym tendencjom panujacym w
projektowaniu i konstruowaniu pojazdéw. Wyrazem tego jest maksymalizowanie wspotczynnika wysilenia
konstrukcji, co przeklada si¢ na obnizanie masy wlasnej pojazdu. Coraz czgiciej do budowy pojazdow
wykorzystuje si¢ materiaty ze stopéw metali lekkich, szkta oraz kompozytow. Rodzaj uzytych materiatow ma
jednak bezposredni wptyw na wlasnosci dynamiczne konstrukcji pojazdow.

W artykule przedstawiono koncepcj¢ wykorzystania wymuszenia eksploatacyjnego tramwaju w

badaniach dynamiki strukturalnej jego pudta. Przeanalizowano mozliwos$ci i ograniczenia w metodologii
estymacji wiasnosci modalnych pojazdu z wykorzystaniem techniki Operacyjnej Analizy Modalnej w
zastosowaniu do pudta tramwaju.
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Abstract

The paper deals with the problem of modeling of the moving mass particle in numerical computation by using
the finite element method in one dimensional wave problems in which both the displacement and angle of the
pure bending are described by linear shape functions. The analysis is based on the Timoshenko beam theory.
We consider the simply supported beam, in a range of small deflections with zero initial conditions.

Keywords: numerical method, moving mass, moving inertial load, vibrations

1. Introduction

Rail and road transport development needs a closer understanding of phenomena
accompanying travelling load. Most applications can be found in the interaction between
railway wheels and rail or track, the effect of a moving vehicle on a bridge, interaction
between rail power collector and traction power network, as well as magnetic rail,
aerospace technology, automotive industry, and robotics. Despite of the wide interest in
moving loads for more than a century, still many issues remain unresolved. In the case of
non-inertial loads, for example the gravitational force or forces described by harmonic
functions, complete analytical solutions in the series are known [1, 2]. Solutions differ in
the case of inertial loads. A moving inertial load problem can not be solved fully
analyticaly, except special cases such as the massless string [3]. There are semi-
analytical solutions [4, 5, 6] which take into account the influence of a mass particle
moving along the structure.

T (f.{\é) rPnZZ

[ |

Figure 1. Ad hoc mass lumping in nodes
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Modelling of the moving forces does not take into account the inertia of a moving
point and is relatively simple. In practice it reduces to the modification of the right-hand-
side vector at each time step. Inclusion of the inertia of a moving load requires the
modification of the inertia, damping and stiffness matrices at every time step. A simple
modification of the diagonal of the inertia matrix (Fig.1) is incorrect and results in
divergence of the solution. Errors, due to incorrect modeling, increase with increasing
speed of a moving inertial load. According to the Renaudot formula [7] the acceleration
of the material point moving with a constant speed v, is composed of three elements:

Cwvt,t)  Pw(z,t) O?w(w,t) b O?w(w,t)
ez~ o Dwdt YT 02

We can show the components corresponding to transverse acceleration, Coriolis
acceleration and centrifugal acceleration.

There are numerous publications on numerical modelling of inertial moving load
using the finite element method [8, 9, 10]. In most of them displacements and rotations
are approximated as cubic functions. They can be applied to all the terms of the
equation (1). In the case of wave problems in a string or the Timoshenko beam we have
to use linear shape functions to describe independently displacements and rotations in
pure bending. It entails mathematical consequences. We can not compute the second
derivative of the displacement x. In such a case we should have to neglect the effect of
centrifugal acceleration of the moving material point in the formula (1). It leads to
incorrect solution.

Below we present recent results which enables us to solve the problem of a moving
mass travelling on the Timoshenko beam with an arbitrary velocity. Numerical examples
prove the efficiency of the proposed method.

+ v (D

z=uvt

x=vt x=vt

2. Timoshenko beam theory

Let us consider the Timoshenko beam with the length /, mass density p , cross-sectional

area A and moment of inertia /, subjected to the mass particle m accompanied by the
force P, moving with the constant speed v. Denoting the transverse displacement by
w(x,t) and the pure bending angles by w/(x,¢), the kinetic energy of the Timoshenko beam
and moving material point with mass m is expressed by the equation

1 LT ow(z,t)]? 1 LToy(x,t)]? 1 5,1 dw(vt, t)]?

2
The potential energy of the Timoshenko beam and a moving gravitational force is
described as follows

1 LTog(x,t)]? 1GA (' [ow(z,t) 2
€)
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E is the elastic modulus, G is the shear modulus and £ is the cross-section shape ratio.
Based on the second kind Lagrange equation, we determine two coupled equations
describing the motion of the Timoshenko beam subjected to a moving load

pALwed) _ GA (82w<w7t> _ _ch,gw)) — §(z — v)P — 6(z — vtym I w0t wlwd),

ot2 k dz2 z
pI T4t — BIZYGN - GA (25eh) (1)) =0.

“
The equations (4) can be transformed into one equation of motion. It depends only on
displacements or rotations. Let us consider displacements first

0*w(x,t) 5 Htw(x,t) A ,Pw(x,t) o ,0w(,t)
o (At a) Gage tTU gp TS g - )
5 0%q(z,t) | 1 Pq(a,t)
2.2 2 Z, )
- CICQq(:E, t) - p_A 81:2 p_A at2 )
where the external load is given by the formula
d*w(vt, t
q(z,t) = é(x — vt)P — é(z — vt)m% . (6)
¢; =4/ G /(kp) is the shear wave speed and ¢, =+/E/p is the bending wave speed.
We assume a simply supported beam
0? ¢ O*w(z,t
w(0,) =0, w(i,t)=0, 2L@H| o Fw@hl - _, (3
b | 5 g |,
with zero initial conditions
w(z,0) =0, dw(a,t) =0. ()
ot |-

Equation (5) is a partial differential equation of the fourth order with respect to time. Its
solution requires additional initial conditions

O?w(z,t) 1 OBPw(z,t)

1 9q(z,t)
8t2 —o - pAq(x’O)’ at3

t=0 a pA 8t t=0 '

(€))

3. Semi-analytical solution

We can develop displacements of the beam into the sine Fourier series in a finite
interval, which fulfil boundary conditions (7)

ZQ sm@ (10)

By substituting the series (10) to the equatlon (5) we obtain a set of ordinary differential
equations of the form
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This method lead us to the system of differential equation of variable coefficients (11)
solved by the Runge-Kutta 4 order method. We compute numerically the vector Q and
then insert it to the resulting series (10).

4. Numerical solution by the finite element method

Let us consider the finite element of the length b of the Timoshenko beam. The element
carries the inertial particle of the mass m, travelling with a constant velocity v. The
equation of the virtual work which describes the influence of the inertial particle can be
written in the following form

d*w(vt, t)

b
/0 w*(z)6(x — xg — vt) M D

We impose the linear shape function describing the transversal displacement in finite
element nodes

dz=0. (12)

w(z,t) = (1 . %) wi () + %wg(t) . (13)

Equation (1) describes the acceleration of a moving material point. It can be expressed in
the form

d*w(vt, t) _ 0Pw(x,t) 0w (z,t) vi ow(z,t)
ez o Dot dt | 0Oz

The third term of (14) is developed into the Taylor series in terms of the time increment

+

] . (14)

r=vt Lvt r=vt

At=h
] )" - () o

t+h
(o) 1,

Upper indices indicate time in which respective terms are defined. We assume the
backward difference formula (o =1). In this case we have

d [ Ou(z,t) th _ 1 [0u(z,?) ek _ 1 [0u(z,t)
dt dan | h 0T |,_ut h Oz

r=uvt

t
] - (16)
r=vt
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The energy (12), with respect to (14) and (16) allows us to write the results in the matrix
equation, after classical minimisation

M Wi-ﬁ-l 4 C V‘Vi-‘rl + K wi—',—l — ei (17)
where m m m m
1-k)? k(l—& —(1—-k) 1—&k
M ( )? k( ) g =™ ( ) 7
k(1 — k) K2 b —K K
K muv _(1_’9) 1-k muv (1_"6)(U2—U1)
m = - em = S ,
T R | s — ) (18)

with the coefficient x = (x, +vh)/b, 0<x <1. It determines the force equilibrium of

the mass travelling over the finite element of a Timoshenko beam. Matrix factors M,,,
C,, and K, can be called mass, damping, and stiffness matrices, since they have similar
forms to matrices derived for pure finite element of the Timoshenko beam. The last term
e,, describes nodal forces at the beginning of the time interval [0; #]. We must emphasise
here that matrices (18) and the vector e contribute only the moving inertial particle
effect. Pure classical matrices of the finite element of a string must be added to the
global system of equations.

5. Examples

We choose the steel beam of the rectangular cross-section 4=0.015 m” and the length
I=2m. We assume other data: p=7860 kg/m®, /=0.0000281 m*, m=200 kg, P=mg,
2=9.81 m/s*, E=2.1-10° MPa, G=8.1-10* MPa, k=1.2. Fig.2 shows a comparison of the
results obtained by semi-analytical method presented earlier, and the finite element
method using matrices describing the moving material point of mass m. The obtained
results confirm the correct way of modelling a moving mass particle.

0.01 T T T T T T T T 0.01

FE — T T T T T T T IM T
G semi-analytical 0 semi-analytical =

-0.01 -0.01
-0.02
002 | 1

-0.03
-0.03 .

w(vt,t)[mm]
w(vt,t)[mm]

-0.04
-0.04 -

-0.05
005 ] -0.06
-0.06 1 1 1 L

1 1 1
0 02 04 06 08 1 12 14 16 18 2 "0 02 04 06 08 1 12 14 16 18 2
L[m] L{m]

Figure 2. Trajectories of a mass particle travelling along the Timoshenko beam
at the speed v =30m/s (left picture) and v =60m/ s (right picture)
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6. Conclusions

The paper deals with the problem of vibrations of the Timoshenko beam subjected to a
moving inertial particle. The presented approach allows accurate modeling of a mass
particle travelling with a constant velocity in numerical computation by using finite
element method. These matrices can be applied to every wave problem, where the
displacement and rotations of the pure bending are described by linear shape functions.
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Metody numeryczne analizy drgan belki Timoshenki pod inercyjnym obciazeniem
ruchomym
Praca omawia problem modelowania numerycznego poruszajacej si¢ czastki masowej metoda elementow
skonczonych w zadaniu jednowymiarowym. Przemieszczenia i obroty opisano liniowymi funkcjami ksztaltu.
Analizg oparto na teorii belki Timoshenki.
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Abstract

Motion of a hanging rope is considered and a discrete model of the body is discussed. The system consists of
identical members which are connected by rotational joints. Various character of both the elements and joints
is considered, and equations of motion are presented. Consequently, there are several options: an extensible or
non-extensible model, whose joints are ideal, elastic, dissipative or elastic-dissipative. Nevertheless, a concise
generalized mathematical model is presented which is suitable for all the variants.

Keywords: rope, modelling, elastic-dissipative joints

1. Introduction

Already in 19™ century D. Bernoulli (1732) and Euler (1781) considered and solved the
problem of small vibrations of a perfectly flexible, uniform rope which is fixed at one
end [1]. However, even now it is a non-trivial task to mathematically describe motion of
the rope in a general case and to perform computer simulations of such a phenomenon.

Usually research on dynamics of such bodies as ropes, chains, whips or fly lines
involves continuous models [5, 6, 7]. Although the approach seems to be very natural,
we consider a discrete model of the rope. The main advantage of this conception is
relatively simple description of the problem by means of analytical mechanics. On the
basis of the works [1, 2, 3, 4] we present equations of motion of the system and
concentrate on the included features: longitudinal elasticity, transverse elasticity and
damping.

2. Basic mathematical models

Let us consider planar motion of a discrete system consisting of #n identical members that
are connected by rotational joints. One end of the body is attached to a point P,.
Generally, we treat the point as non-stationary, so that its position is specified by the pair
of time dependent functions: xy=x(f), y¢=yo(¢). The motion takes place in a gravitational
field, but air resistance is neglected.

The simplest model of the rope can be represented by a multiple physical
pendulum [1], which is shown in Fig. la. It is assumed that every element is a rigid
prismatic rod of length / and mass m, the joints, in turn, are ideal (frictionless). Using the
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angular generalized coordinates ¢; (i=1, 2, ..., n), one can derive the following equations
of motion:

< . < Lo . b; . . ..
Za,-jgoj cos(gp,- —gpj)+ Za,-j(pjz- s1n(go,- —goj)+7’(gs1ngp,- + X cos@; — ¥, s1n(p,-):0, (1)
= J=1

where =1, 2, ..., n and the coefficients a;, b eR.

This system is modified in paper [2] by a simple longitudinal elasticity conception.
As in Fig. 1b, each of the rods is attached to a linear spring, thus, every segment has two
parts with a common longitudinal axis. The springs are assumed to be identical — their
free length is denoted by /; and stiffness by &;. If we introduce the additional variables z;
(==1, 2, ..., n) expressing elongations of the springs, then the mathematical model takes
the form:

ZA gojcos( ) ZBl/zjsm( ) ZAU¢JJ sm( (pj)+

+= ZBl/(sz/cos(gol ¢/)+%Bi‘f(gsin(pi+5c'ocos¢7i—j}0sin(pi):0,
L5 @)

Zqu’J Sm(@z ) ZBUZ/ COS( ) ZA (/)/ COS( (pj)+

. .. k;z
+7 E Bijz.(/')/»z'j sin((pi —¢/)+%B§(—gcos¢i + X, sing; + cosgoi)+ Lj’ =0,
= | | "

where i=1, 2, ..., n and Af,Bg’,A;,BZ eNR.

a) b)

Y

r &

Figure 1. Basic models of a rope: a) model of an inelastic rope, b) model of an
extensible rope
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3. Elastic-dissipative joints

It should be noted that the ideal joints enable to bend the rope freely, which is far from
its real behaviour. Hence, we try to modify the character of the joints within the discrete
approach.

Let us recall the bending stiffness idea discussed in [3]. Schematically, every joint is
enriched with a torsional spring whose constant is denoted by k7 (see Fig. 2). To
determine a characteristics of the springs, we consider a fragment of the rope shown in
Fig. 3. According to the classical formula:

1 M

r K~ )
where M is the bending moment and K is the flexural rigidity of a beam. Moreover, the
radius of a plane curve parameterized by the functions x(s) and y(s) may be expressed as

12 12 3/2
P L @)
xvyu_xuyl
where:
_dx dy o d’x | d’
X=—, y:_yr x:_Z’ y:_gj (5)
ds ds ds ds

) ;

Y

Y
Figure 2. Model of a rope with elastic joints

If we assume that s is the curvilinear coordinate along the rope, it is easy to approximate
the above derivatives by central difference schemes, which are based on the discrete
representation of the rope. Consequently, one can obtain

1

1 6, 0
r, =——Ilcos—ctg—, 6
Slcos—ctg= (©)
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Figure 3. Fragment of a rope

where 6; denotes the relative generalized coordinate:

Q; for i=1
b= ~ )
@, —¢; for i=23...,n
Finally, inserting (6) into (3) gives
/2
MA:E:_sz tg(al/ ) (8)

Lo I cos(6,/2)
As it can be seen in Fig. 4, the nonlinear characteristics of the springs is specific — as the

relative coordinate 6 tends to +7, value of the elastic moment M increases infinitely.

50
25 +
S 0
-25 ¢
- 50
-1 -05 0 0.5 1
qp

Figure 4. Characteristics of the springs
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Since the formulas (6) and (8) have been derived for the model of inelastic rope (1),
let us consider the other case. A length of the ith segment, consisting of a rod and spring,
can be denoted by [=[ytz;, where the component /;=/+/; is constant. Assuming that
z/ly<<1 for i=1, 2, ..., n, each of the products zz; for 7, j=1, 2, ..., n can be treated as
negligible. Then (6) and (8) take the forms:

r; :—%JIO(AZI- +lo)cos%ctg%, ©)

2k tg(6, /2)

M, =- : (10)
[1,(AL +1,) cos(6;/2)
where:
z; for i=1
Al = i (11)
z, +z, for i=2,3,...,n

In case of both the systems shown in Fig. 1, the generalized elastic forces can be
written as follows:

(12)

i

o - M, -M,;, fori=12,..n-1
M, for i=n

1
At last, let us introduce dissipation into the mathematical description. In this work we
apply simply the viscous damping model [4]. Beside the torsional spring, we can place a
damper in every joint. Denoting a damping coefficient by ¢, one can specify the
Rayleigh dissipation function as

R:%CZQ?. (13)
i=1

Hence, the generalized dissipative forces have the form:

b R _ (0., -6) for i=1,2. m1 14
l 09, —cb;
A combination of the forces (12) and (14) produces elastic-dissipative joints.

Typically for the Lagrange equations, it is easy to introduce Q;" and/or O/ to the
model (1) and (2). Thus, the generalized forces can be put in the right-hand side of the
equations related to the rotational degrees of freedom. For instance, a model of an
inextensible rope with the elastic-dissipative joints has the form:

for i=n

Lo N b, . . .
Zaijgoj cos(gp,- - (pj)+ Zaijgo? s1n((p,- - goj)+7’(g sin @; + X, COS@; — Y, Sin gp,-): 15
J=1 Jj=1

:#(Qif +0P).  i=12...n.

4. Generalized mathematical model

In a general case, a system of the dynamics equations can be written as follows:
M(a)d =( . 4), (16)
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where q denotes the generalized coordinates vector. Obviously, the following initial
conditions must be satisfied:

q(0)=q, q0)=u, (17)
It should be emphasized that, in the given problem, M is a full, non-symmetric and time-
dependent matrix, which complicates solution procedures in a numerical sense.

3. Conclusions

The presented mathematical model is suitable for all various combinations of the
discussed model properties. It allows to generalize consideration on numerical
integration of the dynamics equations. Moreover, many simulations based on this model
provide interesting results [1, 2, 3, 4], however, their presentation is beyond the scope of
this work.

The elastic-dissipative joints seem to be useful in modelling other multi-body
systems which may take a form of closed-loop mechanisms and play a practical role in
mechanical engineering.
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Dyskretny sprezysto-dyssypatywny uklad jako model liny
W pracy rozwazono ruch liny zawieszonej jednym koncem i omowiono jej dyskretny model. Uktad ztozony
jest z jednakowych cztondéw potaczonych przegubowo. Rozwazono rézny charakter zarowno elementow, jak i
potaczen oraz zaprezentowano rownania ruchu. W konsekwencji istnieje kilka mozliwosci: model rozciagliwy
lub nierozciagliwy, ktorych przeguby sa idealne, spr¢zyste, dyssypatywne lub sprezysto-dyssypatywne.
Niemniej jednak pokazano zwigzly, uogélniony model matematyczny, wlasciwy dla kazdego z wariantow.
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Abstract

Plane motion of a rope fixed at one end is considered. The body is modelled as a discrete system including
transverse elasticity and dissipation. Mathematical model is presented and some numerical aspects are
outlined. In simulations of dynamics vibrations of the system are excited by non-stationary constraints. It is
shown that appropriate model properties and the excitation parameters can lead to quasi-periodic motion of
the rope.
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1. Introduction

Usually forced vibrations are considered in the context of an external harmonic force
acting on a system. However, rheonomic constraints can lead to similar effects, although
the nature of such an excitation is kinematic. As with the external force, the time
dependent constraints make the system non-autonomous. Moreover, due to the variable
inertial terms resulting from the excitation, the motion may be treated as parametric
vibrations. All in all, kinematically driven systems can be very interesting subjects of
study in the area of nonlinear dynamics.

In this work forced vibrations of a hanging rope are considered. To simulate
dynamics of the system, a discrete model of the rope is used. As an extension of papers
[3, 4] we present equations of motion of the rope with transverse clasticity and viscous
damping. In several numerical examples the discrete system with multiple degrees of
freedom is analysed, whose vibrations are excited by non-stationary constraints. It is
shown that selection of appropriate model properties (damping coefficient and bending
stiffness) and the excitation parameters can produce quasi-periodic motion.

2. Mathematical and numerical model

Let us consider planar motion of the rope presented in Fig. 1a. One end of the body is
attached to a point P, whose position is specified by the pair of time dependent
functions:

Xg =Xxo(1), Yo =Yo(0). (D
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The system consists of # simple elements — rigid prismatic rods of length / and mass m,
which are connected by rotational joints. However, character of the joints is not idealized
— they involve both elasticity and damping. In a schematic manner, a torsional spring and
viscous damper is placed in each of the joints (see Fig. 1b). We assume that all the
springs have identical stiffness k7; similarly, one damping coefficient ¢ is associated to
all the dampers.

a) b)

X

Y

i Y

Figure 1. Discrete model of a rope: a) general conception, b) system with transverse
elasticity and damping

In view of the above assumptions, the rope is modelled by a multiple physical
pendulum with joints which are both flexible and dissipative. Such a discrete system can
be described with use of the angular generalized coordinates ¢; (i=1, 2, ..., n). Taking
into account the mathematical models discussed in [3] and [4], equations of motion of
the given system can be written as follows

L < Lo . b; ;.. ..
Za”goj cos(goi - goj)+ Za”gojz. sm(gol- - goj)+—ll (xo Cos@; — y, sin (Di):
= = @)

_1 .
:mlz (QZG+Q1T+Q1D)’ l:1,2,...,}’l,

where the coefficients
n—i+1/2 for j<i
a; = n—i+1/3 for j=i b=n—-i+1/2 3)
n—j+1/2 for j>i
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and the generalized forces are determined below:
a) potential forces resulting from gravity

QF =—mgl b, sing, ; @)
b) potential elastic forces

M,-M,, fori=12,...,n-1
T i i+l 5 £ 5
o {M ; for i=n )
where the elastic moment
M, - _2k_T tan(6, /2) ©)
I cos(6,/2)
is expressed in terms of the relative generalized coordinate:
; for i=1
0, - {4"1 . )
@, —¢; for i=23,...,n
c) dissipative (viscous) forces
b l0=0,) for i=1,2,..,n-1 ©
' —cb; for i=n

The system of second order differential equations (2) may be written in the following
concise form:

M(q)q=1(.q.q), ©)
where q denotes the generalized coordinates vector. Additionally, the initial conditions
must be fulfilled:

q(0)=q9, q(0)=u, (10)
After reformulation, the initial value problem has a form convenient for numerical
computation:

M(X) X =f(z, X) (11)
X(0)=X, (12)

0 T R R L RO L 13
Y e I ()

and I denotes the identity matrix.

It should be noted that, due to the matrix M which couples the equations of motion,
the system (11) is classified as an implicit ordinary differential equation (IODE) system.
What is more, the matrix is time dependent, hence, the given problem is numerically
much more demanding than the standard explicit ordinary differential equation (ODE)
systems. In our simulations we use the MEBDFYV solver written by Abdulla and Cash
(Imperial College, London); the code is based on the modified extended backward
differentiation formulae (MEBDF) of Cash (1980) [1, 2].

where:
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3. Numerical experiments

Let us turn now to some examples which show regular motion of the system. We
consider a rope of a total length 1 [m] and total mass 0.5 [kg]. The supposed number of
elements #=20 and the parameters: k=10 [Nm?”], ¢=107 [Nms]. Initially, the rope hangs
down, so that qy= 0 and u,= 0. Vibration of the system are enforced by horizontal motion
of the point P, according to the function:
xo(t) = Asin®(zBt), (14)
where 4 and B are constants. Is it possible to find such values of 4 and B which ensure
periodic or quasi-periodic motion of the discrete system? Is there any method to generate
regular motion of such a complex system, which actually is not a mechanism?
Let us take into account a system which is simpler than the given one — a multiple
physical pendulum whose motion is governed by the equations (2) as Q,/=0,”=0 for

i=1,2, ..., n. If we linearize this system and solve the related eigenvalue problem, we
obtain the following natural frequencies:
@, =3.766[1/s], @, =8.667[1/s], ..., @, =186.127[1/s] (15)

It turns out that applying the kinematic excitation (14) with small amplitude 4 and the
value 27zB nearby w; can produce regular vibrations. In the examples below we take
A=0.05 [m] and:

a) B=0.56[1/s] = 2aB=3.519[1/s],

b) B=0.57[1/s] = 2aB=3.581[1/s].

Figure 2 illustrates the generalized coordinate ¢,y as a function of time in the first
case. As it can be seen, the quasi-periodic motion exhibit two non-commensurable
frequencies: the higher frequency refers to the motion itself, whereas the other one is
connected to the amplitude modulation. The angular velocity versus time graph indicates
similar effect. Consequently, the phase trajectory densely fill the plane (@), @) in a

quite regular manner (see Fig. 3).
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Figure 2. The last generalized coordinate for 4=0.05 and B=0.56
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Figure 3. Phase portrait for 4=0.05 and B=0.56
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Figure 4. The last generalized coordinate for 4=0.05 and B=0.57

There are many values of B which give similar effects but weaker amplitude
modulation. An extreme case is presented in Fig. 4. After some period of transient

motion, when higher harmonics appear, the vibrations become regular and their
amplitude hardly changes.

3. Conclusions

On the basis of our previous papers, the discrete model of a rope with transverse

elasticity and dissipation has been presented. Numerically, the problem leads to implicit
ordinary differential equations.
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Although the hanging rope is not a mechanism and the discrete model has multiple
degrees of freedom, the performed numerical simulations show that the system can
experience regular motion. Coupling the two features, bending stiffness and damping,
plays a key role, since it affects the transverse vibrations of the system. Appropriate
values of the parameters k7 and ¢ in conjunction with specific rheonomic constraints can
ensure rough equilibrium between the energy provided and dissipated, which produces
quasi-periodic behaviour. We feel that the work may be useful for further analysis of the
discrete model, other complex chain-like mechanical systems and their regular motion.
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Ruch regularny wiszacej liny
W pracy rozwaza si¢ ruch plaski liny zawieszonej jednym koncem. Cialo jest zamodelowane jako uktad
dyskretny, ujmujacy sprezystos¢ poprzeczng i dyssypacjg energii. Zaprezentowano model matematyczny
i zarysowano pewne aspekty numeryczne. W symulacjach dynamiki drgania uktadu zostaja wymuszone za
pomoca wigzéw niestacjonarnych. Pokazano, ze odpowiednie wtasnosci modelu, jak i parametry wymuszenia
moga prowadzi¢ do prawie okresowego ruchu liny.
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Abstract

We study parametric oscillations of a torsional pendulum excited by means of varying a moment of inertia of
the rotating body. Motion of the system is determined by the second order differential equation with periodic
coefficients. We have studied stability of this equation and proved that parametric resonance in the system can
occur only if the excitation frequency Q is sufficiently close to the value 2wy/N (N=1,2.3,...), where @y is a
natural frequency of the pendulum, and the damping coefficient £, is sufficiently small. Moreover, for any
positive S, parametric resonance can occur only if the excitation amplitude ¢ is greater than some threshold
value. Using the infinite determinant method, we have found analytically the boundaries of the resonance
domains in the parameter space for N=1,2,3.

Keywords: Parametric oscillations, characteristic multipliers, stability, parametric resonance.

1. Introduction

External influence on a vibrating system is often reduced to varying parameters of the
system with time. In such a case vibrations of the system are called the parametric
oscillations. As a physical example we consider a torsional pendulum excited by means
of alternating its moment of inertia. The pendulum may be realized as a massive disk
mounted on an elastic shaft and two point bodies of equal masses m being placed on its
surface symmetrically with respect to the axis of the shaft. If a distance of each body
from the axis of the shaft oscillates near some equilibrium value r, according to the law
r(t)=ry(1+ &cos(Q)),

where Q and |g|<1 are the excitation frequency and amplitude, respectively, then
moment of inertia of the pendulum alternates as

I(t) =1y +2mr? =1, + 2mrg (1+ & cos(Q1))?, (1)
where [, is a moment of inertia of the disk. Denoting a twist angle of the disk by 9, we
can write equation of motion of the system in the form

d ds dg
dt(l(t)dtj__y_ag’ @)

where y is a coefficient of viscous friction and c is a stiffness of the shaft. Taking into
account expression (1) and introducing the following notations
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2

2mr, 14 2 c
= 2> Po~ 2, @0 = 2
we can rewrite equation (2) in the form
. 2
49 N 2(B, — gpQsin(Qr)(1 + € cos(Q2r))) a3 N ;) 9-0. (3)

dt? 1+ gpcos(Q)(2+ecos(Q))  dt 1+ gpcos(Qe)(2 + gcos(Q))

In the case of £€=0 equation (3) reduces to differential equation with constant
coefficients determining damped oscillations of the pendulum. But for ¢ >0 there may
exist such values of the excitation frequency 2 and amplitude ¢ for which the solution
J(t) increases unboundedly with time. This phenomenon is known as a parametric
resonance. From mathematical point of view parametric resonance corresponds to
instability of equilibrium position of the pendulum. Therefore, seeking the conditions
under which parametric resonance can occur is equivalent to studying the stability of a
trivial solution of equation (3).

It should be noted that equation (3) is a differential equation with periodic
coefficients and general theory of such equations has been developed quite well (see, for
example, [1]). The most general method for studying behaviour of their solutions is the
classic Floquet method which is based on calculation of a monodromy matrix and
analysis of its eigenvalues. Just such approach was realized in paper [2], where a
monodromy matrix was found in the form of power series in terms of ¢ accurate up to
the second order. But if we are looking for such values of the system parameters for
which a trivial solution of equation (3) is unstable the method of infinite determinant
turns out to be more effective [3].

The main purpose of the present paper is to find the domains of instability of
equation (3) in the parameter space and to calculate their boundaries assuming that
excitation frequency Q is given while the amplitude ¢ and the system parameters f, and

®, can be changed. As the corresponding calculations are rather bulky we use the
computer algebra system Mathematica [4] for doing necessary analytical calculations.

2. Characteristic multipliers of the system

Behaviour of solutions of equation (3) is determined by its characteristic multipliers p
which are the eigenvalues of a monodromy matrix X (7)) and, hence, are determined as

roots of the characteristic equation

det(X(T) - pE,) =0, 4)
where E, is the 2x2 identity matrix and 7 =27/Q. Here X(¢) is a principal
fundamental matrix for the equation (3) which is defined as

Yo :[ CICEENG j |
F @) F,(0

where 9,(¢) and 3, (¢) are two linearly independent solutions of equation (3) satisfying
the following initial conditions
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$(0)=1, ¥,0)=0, $(0)=0, ¥, (0)=1. ©)
Calculation shows that characteristic equation (5) can be represented in the form
p? —24p+B=0, (6)

where 4 and B are real-valued parameters given by
1
A= ($(T)+ 9, (T)), B=% (TN, (T) -3, (T)%(T).

Obviously, equation (6) has two roots
pra=At A’ -B . (7
Therefore, characteristic multipliers (7) are either two complex conjugate numbers with
absolute values being equal to /B (if B> A%) or two real numbers of the same sign
satisfying the conditions | p; |2 JB, 0 <p, £ /B (when B < A4%). As functions K@),
3, (t) satisfy equation (3) and initial conditions (5), one can readily show that parameter
B is bounded by the inequality
0<B<l1. (®)
It means that in the case of | p; |<1 a trivial solution of equation (3) is stable and it
becomes unstable when | p; |>1. The case | p; |=1 corresponds to the boundary between
stable and unstable behaviour.

3. Determination of the stability boundaries

In order to simplify calculations let us rewrite equation (3) in the form
2
(I+egcost(2+ gcosr))% +2(f —gpsinz(l+ gcosr))? +0’9=0, )
T T
where B=p0,/Q, o=w,/Q, t=Qt. The boundaries between stable and unstable

behaviour of solutions of equation (3) in the parameter space are determined from the
condition p; =—1 or p; =1 what means that equation (9) must have periodic solution

with a period 47 or 2x, respectively. Hence, we can attempt to determine these
boundaries directly by seeking a solution of equation (9) in the form of Fourier series

S=a, +Z(ak cos(kz /2)+ by sin(kz/2)). (10)
k=1
Note that Fourier series (10) corresponding to 47z -periodic function 9(z) can be also

used to obtain 27 -periodic solution by setting to zero odd coefficients a,;_;, by;_; -
Substituting solution (10) into equation (9) and setting coefficients of cos(kz/2) and

sin(kz/2) to zero, we obtain two infinite sequences of linear algebraic equations

determining coefficients a;, and b, of the Fourier series (10). The first sequence of

equations determines odd coefficients a,,_;, b,;_; and is given by
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2 1 3pe Spe
o - 2-¢ + b, — 4-¢)a, — =0,
( 4 ( ) lay + Bby 16 )as 16 as

— pa, + [a) —%—?(u )]bl—(4+ )by —

2
3ps(4 ) + (wz_z(2+pgz)ja3+3ﬂb3_15p6‘ _21pe

:0’
4 BT e
2
3p8(4+8)bl—3ﬁa3 0 =22+ ps?) by = 12PEp _2PET,
8 4 16
: (an
2 :

)25

o 2k =D(@k=S)ay s + 2k +3)az.s) + [a)z - é Qk-D*(2+ p#)jaz“ +
2k =1y — ”{ (2k —1)((2k = 3)ag_3 + 2k + Day,y) =0,
” £ o (K =D(@k = by s + (2 +Ibyy3) + [wz - % k=12 + pe? )]bzk_l -

&
~ @k =D fayy =T 2k D@2k =3y s + 2k + Dbyy.y) =0..
The second sequence of equations determines even coefficients a,, , b,, and has a form

aowz = O,

2
(0)2 -1- pi Jaz +2pb, —2pea, —

3ps? 3ps?
—2ﬂa2+[a)2—1— p: Jb2—2p5b4— p: be =0,

—2psa, +(a)2 —4—2p82)a4 +4pb, —6psag —2petag =0,
—2peb, —4pa, +\o* —4—2p82)b4 — 6peby

—2p82b8 =0, (12)

kpe

k2e?
((k=2)ay, 4 +(k+2)ay ,4)+ [0) — k? —pz]azk +
+2kpbyy — kpe((k —Dayy_o + (k+1Day,,)=0,

k g2 k2e?
p ((k = 2)byy 4 +(k+2)bzk+4)+(0) - jbzk -

2
—2kPay, —kpe((k —Dbyy_y + (k+1)byy5) =0,...
For a solution of the systems (11), (12) to exist, determinants of their matrices must
vanish, thus giving equations for determination of the stability boundaries

Note that matrices of the systems (11), (12) have infinite dimensions and, of course,
we can not calculate their determinants exactly. So we have to truncate the infinite
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sequences of equations (11), (12) after the nth term, where # is a suitably large number,
and to calculate the corresponding finite determinant analytically.

Calculation shows that in the case of ¢ =0 determinants of the systems (11), (12)
reduce to the product of terms of the form

2
(w2 —k2/4f + k252,
which are equal to zero only if
w=k/2, p=0, k=0,123,... (13)
As determinants are analytic functions of the parameter & we can conclude that the
domains of parametric resonance in the w—f—¢& space may exist only in the

neighbourhood of the points (13). Therefore, for sufficiently small ¢ we can seek the
boundaries of these domains in the form

w=N/2+w¢e+ a)252 +.., f= ﬁ18+/5'282 +.., N=123,..., (14)
where coefficients w,, B, should be found from the condition that the corresponding

determinants of the systems (11), (12) are equal to zero. To find these coefficients we
substitute (14) into the expressions for determinants and expand them in powers series in

terms of & Equating coefficients of gk (k=123,...) to zero, we obtain a system of

algebraic equations giving the coefficients @, , S, in the neighbourhood of each point

(13). In the case of N =1, for example, the first two equations are given by

of + B =p* /16, 128(w0, + B B) + @ (160 = 11287 — p(16-43p)=0.  (15)

Eliminating coefficients w,, ®,, f;, [,from the expressions (14), (15), we obtain an

equation determining the stability boundary in the neighbourhood of the point w=1/2

(w—lf —7ﬁ2[a)—lj+4(w—ljz +44° —”52(16—43,9)(@—1) =ﬁ, (16)
2 2 2 16 2 4

where an error term is O(¢*). The cross-sections of this surface by the planes

P =const and & =const are shown in Figure 1.

Doing similar calculations in the cases of N=2 and N =3 we obtain the
corresponding stability boundaries in the form

pe’ L P
w-1-P5 3_8p)| +p° = , 17
2 (3-8p) B ) (17)
2
3 3pe;2 2 9p4(4+p)256
0> 8-23p)| +p2="P BT PIE 18
( 2 e p)J p 65536 (18)

4. Conclusions

In the present paper we have studied parametric oscillations of the torsional pendulum
with damping which are described by the second order differential equation with
periodic coefficients. We have shown that parametric resonance in the system can occur
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only if excitation frequency Q is sufficiently close to the value 2w, /N (N =1.2,..),
damping coefficient S, is sufficiently small, and for any S, >0 excitation amplitude &

is greater than some threshold value. Using the infinite determinant method and taking
into account more equations from the sequences (11), (12), one can easily increase
accuracy of calculation of the stability boundaries (16)-(18).
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Figure 1. Cross-sections of the boundary surface by the planes £ =0.0005(k —1) and
£=0.05k for N=1, p=0.1, k=123,4,5

References

1. V.A. Yakubovich, V.M. Starzhinskii, Linear differential equations with periodic
coefficients, John Wiley, New York 1975.

2. C. Cattani, E.A. Grebenikov, A.N. Prokopenya, On stability of the Hill’s equation
with damping, Nonlinear Oscillations, 7 (2004) 169-179.

3. AN. Prokopenya, Determination of the stability boundaries for the Hamiltonian
systems with periodic coefficients, Mathematical Modelling and Analysis, 10 (2005)
191-204.

4. S. Wolfram, The Mathematica book, Cambridge University Press 1999.

Drgania parametryczne wahadla skretnego

W pracy rozwazane sa drgania parametryczne wahadla skrgtnego pobudzanego przez zmienny moment
bezwladnosci obracajacego sig ciata. Ruch uktadu opisany jest przez rownanie rozniczkowe rzedu drugiego ze
wspotczynnikami okresowymi. Zbadano stabilno$¢ tego rownania i udowodniono, ze rezonans parametryczny
tego uktadu moze wystapi¢ tylko wtedy, gdy czestotliwos¢ pobudzania Q jest wystarczajaco bliska wartosci
2wy/N (N=1,2,3,...), gdzie @, jest naturalng czgstoscia drgan wahadla a wspotczynnik tlumienia S, jest
dostatecznie maty. Ponadto wykazano, dla dowolnej dodatniej warto$ci [, rezonans parametryczny moze
wystapi¢ tylko wowczas, gdy amplituda pobudzenia ¢ jest wigksza niz pewna warto§¢ progowa. Stosujac
metod¢ nieskonczonych wyznacznikow znalezione zostaly, w sposOb analityczny, granice obszarow
rezonansowych w przestrzeni parametrow dla N=1,2,3.
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Abstract

This work is devoted to results of research wave solid-state gyroscope (WSG) with a metallic cylinder
resonator and piezoelectric systems of excitation and pickup information, which works in the mode of
compensation angular velocity sensor. This type of device becomes more and more attractive thanks to its low
cost, considerable vibrostability, shockproof and enough high precision characteristics. In the work there are
results of design the power balancing channel, which provides functioning of gyroscope in the compensative
mode in the environment of MatLAB-Simulink. Numerical parameters, namely basic mode frequencies of
vibration, which are used in model, were got by means of finite element analysis of real resonator model in the
environment of ANSYS. It is shown that application of integral-position control law gives the desired dynamic
characteristics both to the action of permanent angular speed and to the change of it by harmonic law.

Keywords: resonator, standing wave, vibration loop, vibration node, Coriolis’s force, power balancing channel.

1. Introduction

Wave solid-state gyroscopes (WSG) are perspective information sensors about object
angular motion in many application fields — from navigation systems of middle precision
class, to orientation’s control system for microsatellites. This type of device becomes
more and more attractive thanks to its low cost, considerable vibrostability, shockproof
and enough high precision characteristics.

Principle of WSG’s operation is based on inertial properties of resilient waves, which
are generated in resonator with acoustical frequencies. In the resonator a standing wave
is generated by the second resonance mode of vibration (basic wave), which is
characterized by four loops and nodes of vibration. During the rotation of resonator at a
angular velocity of Q the Coriolis’s forces are affecting and generating additional wave
in the direction of resulting force action. This additional wave is oriented at an angle of
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w to the basic wave. There can be two types of WSG’s resonators — cylindrical and
hemispherical forms.

WSG can work in two modes — in mode of angular velocity sensor (AVS) and in the
integrating mode. The object of research of this work is WSG with cylindrical resonator
in the mode of AVS. There are two methods of such WSG’s construction — method of
the direct measuring and compensative.

Compensative chart in comparison with the method of the direct measuring has some
advantages. Using direct measuring leads to necessity of compromise between frequency
band width and sensitivity. Because increase of mode distributing on frequency and
increase of damping lead to lower values of a long-term response on this angular
velocity. This compromise is removed by realization of compensative method, which is
more precisely. Therefore exactly compensative method was chosen for research.

2. Mathematical Model

The construction of WSG with a metallic cylinder resonator is presented on figure 1. A

basic element is a metallic cylinder resonator with diameter from 20 to 42 mm. The

piezoelectric systems of excitation and pickup information are placed on its diaphragm.
A resonator with a diameter of 42 mm was selected for research (figure 2).

. Foundation
). Bush

3. Electrode
1. Resonator
5. Bearing
5. Cover

7. Stem

8.Screw
9.Spring washer
10. Washer

Figure 1. Chart of WSG with position excitation Figure 2. Resonator of WSG

There are three channels in the base construction chart of compensative WSG [1] —
following the resonator’s eigenfrequency channel, maintenance the vibration’s basic
mode amplitude channel and the wave’s power balancing channel. The last one retains
the turning angle of standing wave on the specified value.

Then it is considered the wave’s power balancing chart (figure 3). Amplitude of
additional wave, generated by Coriolis’s forces, is measured by piezoelectric, which is
set in one of the basic wave vibration node. This signal through power balancing channel
shall be applied to another node of basic wave.

In the capacity of resonator’s model there were used equations in toroidal coordinates
[2] at mathematical simulation. These equations are presented below:
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2 2 22
X+ i+L X + 1.t (tcos26. + ysin26, )+ G o x—u(xcosm%-%—ysinz&w):gx
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G| —t— |+ ——— |~ isin20, + peos20, )+ L% A= (L 16in26, + yeos20, ) = M
T T, T, 2 2

=g, —20x
where x and y — movement of resonator’s nodes and loops, respectively;
g 8y — forces, putted by piezoelectric drive, respectively to the nodes and loops axes
of sensing element, and besides g,=F(¥);
7; and 7, — time constant of main axes good quality;
w; and w;, — eigenfrequencies of main axes;
6, and 6,— parameters which are determined the defects of WSG’s making resonator.

Resonator of WSG
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Figure 3. The wave’s power balancing chart

Equations (1) describe the operation of WSG in the compensative mode. The first of
them characterizes motion in the resonator’s nodes, the second one characterizes motion
in the loops. It is obvious from these equations, that equation of nodes carries
information about angular velocity, which is affecting a gyroscope. Thus in this case
signals g,, and g, are created by piezoelectric (7), located on the bottom of resonator (4)
(see figure 1).

The eigenfrequency vibration value of investigated resonator, used in equations, was
gained as a result of resonator’s model research in the environment of ANSYS. Models
from the environment of ANSYS are presented on figure 4. The sensing element
frequency, which was found is equal to w;=2106,5 Hertz.
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Figure 4. ANSYS models of resonator:
a — eigenfrequency of the second mode of vibration; b —deformation under
piezoelectric.

3. Simulation Data

In the environment of Matlab there was created WSG’s model with taking into account
invariability of resonator’s parameters. It is presented on figure 5. It is necessary to
notice that channel of following the resonator’s eigenfrequency and channel of
maintenance the vibration’s basic mode amplitude are ignored, so long as ideal
resonator’s model was used. For forming supporting signals of phase detectors and
modulators with phases shift 0° and 90° on the additional wave were used output signal x
and its derivative x".
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Figure 5. Simulink model
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Simulation results are presented on figures 6, 7 and 8. They represent the system
behavior with two types of correction in the feedback channel — proportional and
integral-positional. Also there was analyzed the system behavior when angular velocity
is constant and when it changes according to harmonic law.

107
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Figure 6. Diagram of WSG’s output signal with proportional correction
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Figure 7. Diagram of WSG’s output signal with integral- positional correction
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Figure 8. Diagram of WSG’s output signal with integral- positional correction and
change of entrance signal according to harmonic law
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4. Conclusions

The power balancing system with the proportional correction does not provide the
required quality of the transient. In this case overshoot reaches 74%.

For ensuring acceptable characteristics integral-positional correction should be used.
Its use leads to increasing the fast-acting of the system. In this case, the overshoot is
reduced approximately 4-fold to a value of 17,5%.

Question of reducing the dynamic errors requires further consideration.
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Abstract

This paper summarizes the results of the first stage of the project tilted “Multifunctional two person
motoglider driven by an electrical motor” conducted at The Institute of Aeronautics and Applied Mechanics at
Warsaw Technical University, Warsaw, Poland.. The goal of this stage was to build a flying laboratory
including a mechanism with an oscillating flap. According to on the previously published results of research
done by Boldyriev the average drag of a wing with an oscillating flap is much lower than the drag of the fix
wing. The results were so good that we decided to verify them by repeating some of his tests. Discussion of our
experiments, test results and supporting numerical calculations are also presented in this paper.

Key words: oscillating flap, experimental model, numerical simulation.

1. Introduction

The goal that all acronautical designers want to achieve is enhancement of the highest
gilder glide ratio. Traditional approach, which includes application of different laminar
shapes in the wing design requires huge money investment and the results are still
deceiving. Further increase of the already high glide ratio is possible only with the use of
unconventional methods. Multiple flying techniques observed in nature suggest use of a
flapping wing. One implementation of this flying technique is described in a very
interesting, but not commonly known work describing an oscillating flap [1] by
Aleksander Iwanowicz Boldyriev (Department of Aerodynamics of Moscow
Acronautical Institute — MAI) in early thirties of the twenty century. At that time the
book “Hydro- und Aerodynamik™ [2], was published. In this book an interesting
phenomena was investigated: The top surface of a wing was subjected to an intensive
flow rate, which significantly increased the lift force and decreased the take-off distance
of an aircraft. Multiple experiments with models of this type of wing were conducted in
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1940 and beyond. Flying models and tests in a wind tunnel suggested a new
aerodynamical phenomena: the thrust force appeared and the lift force increased when
the flap which was inserted just above and ahead of the leading edge was brought to
oscillations with the £15°amplitude (Fig.1a).

A model in the 1:2 scale was built and tested by Boldyriev in a wind tunnel.
Published results were surprisingly good (Fig. 1b) so good that we decided to verify
them. Moreover, even thou that Boldyriev built an experimental aircraft, his work has
never been commercially implemented and the records related to the plane tests have
been lost. It may suggest that Boldyriev met some technical difficulties that we are not
aware about.

a) b)

Figure 1. Experimental results achieved by Boldyriew

2. Experimental model

To check experimental results made in MAI and to verify numerical simulation, a model
of the oscillating flap was built (fig.2). Technical details of this model are presented
below:

- wing span — 530 mm

- wing chord — 150 mm (with the 200 mm flap)

- angle of flapping movement oscillation - £15deg

- frequency 40Hz (for a short period of time 60Hz)

- wing airfoil NACA23020

Composite structure was chosen for the model. It consisted of a mobile platform with the
vertically fastened object in a wing shape having a movable front flap and a driving
mechanism.
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Figure 2. Experimental model of the oscillating flap: a), on mobile platform, b) in wind
tunnel

All elements were made from polymer composites which were strengthen with carbon
fibers. The driving mechanism consisted of an electrical motor, gear and crank
mechanisms and a connection rod. This driving mechanism allowed oscillation of the
flap with designed amplitude and frequency.

3. Experiments in the wind tunnel

Experimental investigation was conducted in The Institute of Aeronautics and Applied
Mechanics’ wind tunnel. The tested element was fixed to the wind tunnel weight using 8
ties (Fig. 3)

Figure 3. The wind tunnel weight

All the measurement were conducted for the angles of attack ranging from -5 to +20°
with the stream velocity equal to 6m/s. Experiments were conducted using the Reynolds
and Strouhal numbers defined as follow:
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where:

p — air density = 1.225kg/m’

u — free stream velocity = 6m/s

1 — linear dimension =150mm

p — dynamical viscosity = 17,08:10° Pa-s

f— frequency of the oscillations.

As the result of the experiment two diagrams showing dependence between the lift force
and the drag force in the function of the angle of attack for different frequencies of the
oscillating flap were obtained (Fig.4 ).
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Figure 4. Aerodynamical characteristics of the oscillating flap

An increase of frequency of the flap oscillations on the wing drag is evident according to
the Fig.4. It causes increase of the glade ratio. However we have never achieved a
negative value of that force contrary to the results that were obtained at MAI. It may be
at least two reasons for it. Firstly, we couldn’t reach any higher frequency than 60Hz. A
further increase of the frequency caused the resonance of the tested element with the
wind tunnel weight leading to destruction of the test sample. Secondly, small dimensions
of our model prevented us from obtaining higher Reynolds and Strouhal numbers.
What is also worth to mention is the dependency between the lift coefficient and the
angle of attack. It can be easily observed that lift coefficient is lower when the oscillating
flap is used. This observation is quite contrary to what it was obtained in MAL
Comparing our results with the results that are presented on Fig 1, we came into
conclusion that Boldyriev results are too optimistic.
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4. Comparison of the numerical and experimental simulations.

All the numerical simulations were made using commercial software FLUENT. The
results showing pressure and velocity distribution near the airfoil is presented below.
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Contours of Static Pressure (pascal) (Time=3.5600e-02) Feb 03, 2010
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Figure 6. Pressure distribution around the airfoil with the oscillating flap

9.360+00
8.896+00
8.42e+00
7.950+00
7.496+00
7.02e+00
6.550+00
6.086+00
5.62e+00
5.150+00
4.680+00
4.21e+00 -
3.746+00 o
3.286+00

281e+00

2346400

1.87e+00

1.408+00

9.37e-01

4.69-01 X

1.32e-03

Velocity Vectors Colored By Velocity Magnitude (m/s) (Time=3.5600e-02) Feb 03, 2010
FLUENT 6.3 (3d, dp, pbns, dynamesh, S-A, unsteady)

Figure 7.Velocity vectors around the airfoil with the oscillating flap

Dependency between the drag force and the lift force in a function of time are shown on
Fig.8
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Figure 8. The drag and lift forces showing mean values in a function of time

The mean values of the drag and lift forces characteristics Cy(a), C, (o) were obtained,
and compared with the tunnel experimental results (Fig. 9).

4 Cz(Cx)

BN
0,6

0.5 - .
0.4 / //
0,3 /

NO0,2 /

(&) /
0,1 r
O T T
) OK 0,1 0,15 02
'0,1 ‘
0.2
—s— FLUENT — experiment  CX

J

Figure 9. The lift coefficient and the drag coefficient in function of time

Numerical simulation made in FLUENT and the experimental results are comparable. It
proves that the results gained with the finite volume method are correct and very close
to those observed in the experiment.
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Further simulations for different cases were also conducted. We decided to rerun our
simulation for higher Reynolds and Strouhal numbers. To do it, we changed following
inputs of the simulation:
chord = 465mm
Free stream velocity = 6m/s
Frequency of oscillation =60Hz and 120Hz
Received results are presented on Fig. 10.
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Figure 10. Dependency between the lift coefficient and the drag coefficient for different
frequency of the oscillating flap

5. Conclusions

Both the wind tunnel and the numerical simulations results are very promising. They
show the reduction of the drag force and increase of the lift force due to the use of the
flapping wing.. However, we couldn’t obtain as good results as those claimed by
Boldyriev in his publications. In spite of that, the application of the oscillating flap
represents a huge potential for further improvements in the construction of gliders.
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It is also worth to mention that a high frequency of oscillations is essential to obtain a
visible drag reduction and a substantial lift generation. This frequency may lead to an
unwanted transmission of the generated vibrations into different parts of an aircraft. We
think that it is at least a partial explanation to the mechanical failure of the first
prototype that was built and tested in the 40’s.
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Zastosowanie wibroklapy do polepszania charakterystyk aerodynamicznych szybowcéw
Celem pracy podjgtej w ramach projektu ,,wielofunkcyjny dwumiejscowy motoszybowiec z
napedem elektrycznym AOS-71”, a ktdrej wybrane wyniki sa przedmiotem zgtaszanego referatu,
jest zbudowanie latajacego laboratorium, ktdre m.in. bedzie zawieralo urzadzenie z wibroklapy.

Dotad okazalo sig, ze $redni opér skrzydla z wibroklapa jest mniejszy od oporu skrzydta
nieruchomego, co juz daje , zwigkszenie doskonatosci. Jednym z gtéwnych probleméw, ktore si¢
pojawialy byl dobor najodpowiedniejszej czgstosci i amplitudy drgan wibroklapy. Zagadnieniu
temu, jak i samej metodzie obliczen oraz weryfikacji do$wiadczalnej, poswigcony bedzie nin.
referat.
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Abstract

The paper presents a rheological model of a body, which properties are described by means of a fractional
derivative of its deformation. Such a model of a body was used to describe the coupling between a protected
object and vibration eliminator. Then differential equations of motion were solved and effectiveness of
vibration elimination was determined.

Keywords: vibration eliminators, models of rheological bodies, fractional derivatives

1. Introduction

In the task of vibration elimination the forces of reaction of an eliminator on a protected
object may be described as a continuum, which properties are described as follows:

R(z.0.1)=0, 0
where ¢ is deformation, o is stress and ¢ is time.

Basic rheological models of bodies can be described for different forms of Equation
(1). Selected rheolgical models of bodies are shown in Table 1 [1].

Table 1. Basic rheological models of bodies

Model name Model schema Constitutive equation
Hook model J\/\/\/— oc=Es
E
Newton model _|I_ o =n¢

7
E

Kelvin — Voigt _ :
n

E=—0+—-0
E n E n

Maxwell model
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Taking a simple discrete two-degree-of-freedom model of a protected system with an
eliminator (rys.1) into consideration, the force interaction S between the protected object

K %I_x) %I_Y)

HVH v 2 H»

DA

F(t) =F sin(a)t)

Figure 1. Physical model of a protected system with a vibration eliminator

M and the eliminator m is a function of deformation (x— y) and deformation velocity
()% - y) of a coupling object:
s =58[o-y) -y @

Hence, for the first two models one can write that force S is proportional:
- in the Hook model — to the zero derivative of deformation with respect to time -

S~ (x - y) ,
- in the Newton model — to the first derivative of deformation - § ~ %(x - ).

The first case concerns a dynamic eliminator, and the second case — a viscous one.

Properties of both eliminator types may be compared with the assumption that the force

of interaction between the eliminator and the protected system is proportional to the

fractional derivative of coupling element deformation with respect to time
a

S~d—a(x—y), 0<a<I 2]
dt

2. Physical model of a protected system with an eliminator described using a
fractional derivative

Let us consider a simple model of a system protected by a vibration eliminator. The
protected system has been assumed as a linear single-degree-of-freedom system of mass
M, stiffness K and damping C, which is moved by a harmonic force of constant
amplitude (Fig. 2). The eliminator has also one degree of freedom, and the coupling
between the two masses is described as follows:

S=k,D](x-y) 0<a<l, (3)

)

where the operator D" (0) =—
dt
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k(x-y)
< %I_) /%I_y)

7 kD (x—y)
Y =
% M a0<ta<1 m
C ///W/ wel =
. —F—
F(t) =F sm(a)t) e(x-y)

Figure 2. Diagram of a protected system with an eliminator with coupling described by
means of a fractional derivative

At present it is difficult to find a physical interpretation of coefficient k,. It describes
some elastic-lossy properties of the coupling of the two subsystems. For boundary values
of quantity « it has the following interpretation:

e a=0-k, =k - stiffness coefficient,

e a=1-k, =c -damping coefficient.
Equations of motion of the system shown in Fig. 2 for any value of & ( 0 < ¢ < 1) may
be written as:

Mx +Cx + Kx +k,D; (x - y) =F, sin(a)t)

. a “)
my —k,D, (x—y)=0, 0<a<l
where the fractional derivative of function f{?) is defined as follows [2]:
D)= 1 dj’ f(’)v dr, 0<v<I Q)

r(i-v)de(; - 7)
The exact solution can be found using Laplace integral transform. The Laplace form of
solutions to Equations (5) may be written:
2 a
1) ms”~ +k,s

2 2

X(s)=F, ; ;
s to (Ms +Cs+kasa+KXms +ko,s(l)—(ko,s0‘)z

0] k,s®
2 2 2 a 2 a a
S *+@O \Ms* +Cs+kys” +Kms™ +k,s” )-\k,ys
dla D" [x(t)]tzo =0

The solution to equations (5) obtained using inverse Fourier transform is rather
complicated. The paper presents an approximate solution.

Y(s)=F, (6)
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3. Approximate solution to the equations of motion of the system

For limiting values of k, (k, =0 i k, =1) and harmonic forcing F(t)= F, sin(wt) the
stationary solution to Equations (5) are harmonic:
x(t): Asin(at — ¢, ) y(t)= Bsin(a)t—(pz) 7
Taking the above into consideration it has been assumed, that the solution to Equations
(5) for any value of coefficient k, from interval <0,] > will be approximately harmonic:
x=4, cos(a)t)+ A sin(a)t), y=B, cos(a)t)+ B, sin(a)t). ®)
If we substitute the assumed solution (8) in Equations (5), then the unknowns
(amplitude-frequency characteristics) A,.,A;,B,.,B; must satisfy the system of
algebraic equations:
G-A=F )
where:

G=

2 T T T T
1-6 +ka18acos o— 2§§+ka16asin o— —kalﬁacos o— —kalﬁasin o—
2 2 2 2
n 2 n n n
—2E5 —kgyd sin| a— | 1-8" +kgqd cos| a— K0 sin| o —kgqd cos| @
2 2 2 2
T T 2 T T
—kalﬁqcos o— —kalﬁqsin o— - Ho +ka18qcos o— kalﬁqsin o—
2 2 2 2
T T n 2 T
kalﬁasin(a 2] - kqlﬁacos(a 2] kalﬁasin(a 2) —Ho  + kalﬁacos(a 2)

Acl 0
A F,
A Fogto (10)
cl 0
By, 0

The following dimensionless parameters were introduced in Equation (9):

C o K 10} m F,
:7’]{ :k 7’0) = —, é‘:i’ :7’F =—,
d ofkm YT kT w, A=y o Mg
A A B B

“TMe/K Y Mg KT T Me/K T T Mg /K
Hence, the dimensionless solution to the system of differential equations (5) assumes the

Ac]

form:

x; = 4,(8)sin(2767+ B), y; = B,(5)sin(2767 + ) an
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where
A,(5)=1/4; (§)+ A\, ), B,;(6)= (5)+ B\, (5), amplitude-frequency
B, o
characteristics, ﬂ arctg[ j ) arctg[‘”()] phase-frequency
B cl (5)
characteristics, 7 = —,7;, = — dimensionless time
Ty @y

Fig. 3 shows examples of computed dimensionless vibration amplitudes for a protected
object with an eliminator 4; and without an eliminator A4,; for given parameter values.

! e g T T T
-- primary mass wnhpu( eliminator | --- primary mass withput eliminator
|
|

[l

| " N P

| - primary mass wnlh‘ellmmalor - primary mass wi(h‘eliminator
|

QT OSN-O5-BUX) QNTBOMS DS+

‘[ .- prir‘pary mass with[pu(eliminator ‘[ -- pril;wry mass wi(h[put eliminator
é | — prirpary mass with‘eliminalor é | — prirpary mass wilh‘eliminator
| 50 - — — — — = — === = 4= =
[ | =1
| "‘ | |
| | |
b b ! ,‘ I I
o I |
% § 25 - - - -~ I e s B
[ I I
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dimensionless frequency of forcing dimensionless frequency of forcing

Figure 3. Dimensionless vibration amplitudes for a protected object with an eliminator
A; —solid curve, and without an eliminator A,; — dotted curve as a function of
dimensionless frequency of forcing for parameter values
=001, u=0.1k,; =0.05 and various « values

al —

From the presented curses of vibration amplitudes for a protected object it can be
stated that the presented model of coupling between the protected system and the
eliminator enables to observe the change of curve 4; as a two-modal curve (two-degree-
of freedom system with elastic coupling) into a one-modal one (two-degree-of freedom
system with lossy coupling),
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4. Effectiveness of vibration elimination of an eliminator

Effectiveness of vibration reduction in the task of vibration elimination has been
assessed based on the function of effectiveness of vibration elimination defined here as a
ratio of a vibration amplitude for the protected system without an eliminator to the one
for the system with such an eliminator:
4,(5)

If the value is greater than one, £ > I, then the eliminator fulfils its task and we can
observe reduction of the vibration amplitude of the protected system. Comparing curves
A; and Ay; from Fig. 3 one can easily find out that in some ranges of forcing frequency &
vibration reduction can be observed, 4; < 4, (the paper does not present any results of
computation of effectiveness of vibration elimination for an eliminator described using
fractional derivatives).

5. Conclusions
Based on the conducted numerical research the following conclusions may be drawn:

® Description of dynamic properties of mechanical systems using fractional
derivatives makes possible a generalized description of dynamics of classical
vibration eliminators.

For 0 < a <1 we can freely take elastic-lossy properties of the coupling between a
protected system and an eliminator into consideration, and therefore we can freely
model the effectiveness of vibration elimination.
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Wlasciwosci rezonansowych i dynamicznych eliminatoréw drgan
W pracy przedstawiono model reologiczny ciata, ktérego wiasnosci opisano niecatkowita pochodna jego
deformacji. Taki model ciata wykorzystano w opisie sprzgzenia obiektu chronionego z eliminatorem drgan.
Rozwiazano rdzniczkowe rownania ruchu i okreslono skuteczno$¢ eliminacji drgan mechanicznych.
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Abstract

In the paper some aspects of die throw dynamics are presented. Free fall of die as well as their collisions with
table are analysed. Two models of collision are compared: first based on Newton's hypothesis and the second
on Poisson's hypothesis. It is shown that from the point of view of dynamical systems dynamics of die is
predictable.

Keywords: dice throw, collisions, predictability

1. Introduction

The dynamics of popular randomizer based on throw of a die is considered. The
dynamics of this type of gambling can be described in the terms of the Newtonian
mechanics so one can expect that the outcome can be predicted. However, due to high
sensitivity to initial conditions, very precise devices are necessary to predict the
outcome. Therefore, the result is practically pseudorandom. Evidence that the
pseudorandomness in mechanical systems can be fully understood in terms of nonlinear
dynamics as temporal sensitivity to the initial conditions generated by nonsmooth
properties of the randomizers is given in [1].

A throw of a fair die is commonly considered as a paradigm for chance. The die is
usually a cube of a homogeneous material. The symmetry suggests that such a die has
the same chance of landing on each of its six faces after a vigorous roll so it is
considered to be fair. Generally, a die with a shape of convex polyhedron is fair by
symmetry if and only if it is symmetric with respect to all its faces [2]. The polyhedra
with this property are called the isohedra. The commonly known examples of isohedra
are: tetrahedron, hexahedron (cube), octahedron, dodecahedron and icosahedron which
are also used as the shapes for dice. Typical isohedra are shown in Fig. 1.

Two models of collision are used in the analysis: first based on Newton's hypothesis
and the second on Poisson's hypothesis. In Newton's model of an impact tangential
impulses cannot influence on normal impulses whereas Poisson's hypothesis allows an
energy transfer between tangential and normal directions.
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Figure 1. Isohedral dice: a) tetrahedron, b) hexahedron (cube), ¢) octahedron,
d) dodecahedron, ¢) icosahedron

2. Dynamics of coin toss and die throw

Rigid body dynamics equations can be expressed as two equations in matrix form that
describe:
— motion of the body mass centre

M(aB+QrC+QQrC):f’ )
— spatial orientation of the body
J,0+QJ,0+MR a2, =m, 2

In mentioned equations M is the mass matrix of the coin or the die, ag denotes
absolute acceleration of the point B, rc and R include coordinates of the vector rc,
describing the position of centre mass (C) relative to the origin B, Jp is the body moment
of inertia matrix (determined with respect to the body embedded frame &3773¢3 — parallel
to the £77¢ and with origin B), and my is the body force moment with respect to the B, @
and Q are the body angular velocity vectors in the form of column and antisymmetric
matrices. In general case, for nonsymmetric or nonhomogenous coin, the matrix Jp is not
diagonal, because the axes &, 7p, {p are not principal axes (some nonzero inertia
products in J appear).

The column matrices ag and f are expressed by vector components with respect to the
fixed frame (xyz). On the other hand, it is more convenient to describe rotations of the
body by their components with respect to the body embedded frame (£7¢).

The equations (1) and (2) are coupled equations even though free fall of a coin or a
die is considered, i.e. even if the air resistance is neglected.

3. Modelling of a collision

In the analysis of die—table collision impact hypothesis, the laws of linear momentum
and angular momentum of rigid body as well as constraint equations are employed. To
describe a collision of the body with a table we assume that: (i) the table is modelled as
flat, horizontal, elastic body (fixed), (ii) a friction force between the table and the die is
included, (iii) only one point of the die is in contact with the table during each collision.

In most of papers ([1], [3], [4]) the coin collision with the table are analysed using
Newton’s hypothesis. With those assumptions one gets
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Vi =2V ©)
where y is the coefficient of restitution, 4 stands for the coin point that is in contact with

the floor at the instant of impact, V;y and V:;y are projections of the velocity of point 4
on the direction (y) normal to the impact surface respectively before and after the impact.
Such an idealization can be used if the energy balance allows it.

Kane [5] shown, that Newton’s hypothesis used in collision of bodies including
friction leads — for certain values of friction coefficient x# and restitution coefficient y —
to erroneous results. The illustration of such situations is presented in Fig. 2, where the
mechanical energy loss during the collision is shown. For some regions (coloured in
green and yellow) the mechanical energy after the collision is bigger than before.

w=0.125

Figure 2. Energy loss and energy growth after collision (Newton’s hypothesis)

Using Poisson's hypothesis [6], i.e. assuming that the normal components of impulse
vectors in compression phase (S') and expansion phase (S") are proportional we avoid
such difficulties as the energy increase after a collision.

The normal and tangent impulses for the compression phase can be expressed as:

Ic lc
S, = lim [N'dr, Sy =lim [T'dr “
te—ty, 9 te—ty g

and Poisson’s impact law in the normal direction for the compression phase is
characterized by:

Sy =0, Vv, 20 (6))
The impact law for the phase of expansion is described by
Sk =25y, V20, ©)

From Coulomb's hypothesis of friction we get

S7

<us, |S7 <usy ™
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(More details on impacts with friction analysis by Poisson's law can be found in the book
of Pfeiffer and Glocker [6].)

Results shown in Fig. 3 were obtained for the same parameters as used in the cases
presented in Fig. 2. It can be observed that there are no regions where the energy after
the collision is bigger than before.

n=0.125

Figure 3. Energy loss after collision (Poisson’s hypothesis)

3. Simulation results

In Figures 4-6 we present some exemplary results of dice throw simulation. The
trajectory of dice vertices as well as the dice position and orientation during the
collisions are shown. (For numerical simulations we used Mathematica package [7].)

a)

Figure 4. Die throw simulation: a) tetrahedron die, b) hexahedron (cube) die,
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Figure 5. Die throw simulation — icosahedron die

In Figure 6 the outcome results of perfect homogenous cube die throw are compared
with results obtained for imperfect (nonhomogenous) cube die. Simulations were
performed for the same parameters (except of the mass centre position coordinate ;) and
initial conditions for i=30 throws of the dice. Final results of the die throw is depicted by
the colour corresponding of bottom die face. Obviously the imperfection change the
result of die throw. The number of analysed collisions was #=20 and we point out that
there are not changes in outcome results after n>72 collisions (for the assumed
coefficient of restitution and the die parameters). Bar charts illustrate probability of
outcome result for each face (f) of the die.

30
25

20

Figure 6. Die throw final results for: a) perfect cube die,
b) imperfect (unfair) cube die
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4. Conclusions

To avoid the mechanical energy increase due to collisions of the die and the table
Poisson's hypothesis, based on the assumption that the normal components of impulse
vectors in compression phase and expansion phase are proportional, is used. Poisson's
hypothesis allows an energy transfer between tangential and normal directions. It can be
observed that for this model there are no regions where the energy after the collision is
bigger than before.

Die throw simulation results presented in the paper show that there are no changes in
the results after n collisions and that the outcome of the die throw is predictable. The
final result strongly depends on the initial conditions.
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Dynamika rzutu kostki do gry z uwzglednieniem zderzen

Przedmiotem opisanych badan jest analiza zderzen kostki do gry ze stotem.

Przeprowadzone obliczenia numeryczne i analiza rOwnan wykazaly, ze uzycie hipotezy Newtona do opisu
zderzen dla niektorych wartosci wspotczynnika restytucji moze prowadzi¢ do blednych rozwiazan. W takich
przypadkach obserwuje si¢ wzrost wartosci energii mechanicznej ciata po uderzeniu w stosunku do jej
wartosci przed uderzeniem. Wykorzystanie hipotezy Poissona pozwala na uniknigcie takich niespodzianek.

Na podstawie otrzymanych wynikow obliczen numerycznych stwierdzono, ze wynik rzutu jest
zdeterminowany przez warunki poczatkowe, ze kolejne zderzenia powoduja zmiany wyniku rzutu kostka, ale
od pewnej liczby zderzen rezultat rzutu nie ulega zmianie.
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Abstract

The article presents energetic experimental method of verification dynamical model of human under whole
body vibration. There are two phases of this method. Base of the first one is laboratory measurements of
strength stimulation power and energy flow. Measurement is made in point of connection actuator and seat
loaded sitting operator for slow turn of standard frequency band for whole body vibration.

The second phase its digital simulation of power distribution and energy flow in biodynamical structure of
physical model human seated also at this some frequency.

Compare e.g. two energy flow curves into biodynamical structure of human body and energy dose, which
passed in this time to man, allows to assess the correctness of the structure and dynamical parameters of
physical models.

Keywords: Human body model, whole body vibration, energy flow, power distribution

1. Introduction

The average man seems to be safety at work place. Man might think that there are no
more possibilities to improve conditions and safety of work. Nowadays very important is
ergonomic of work environmental. Using its principles man can design places of work
significantly less harmful effects on health workers.

Appreciated are also other areas of technical sciences, a team of specialists invite
medicine doctors of work, anthropologist, constructors, mechanics, mechatronics,
acoustics, etc.

Modern work stations are first tested not by humans, but using dummies and human
models. These stations must compliance with requirements European directives and ISO
standards. Correctness of biodynamical structure, mapping the human body and its
parameters depends on the final success of teem construct equipment work stations. In
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this article proposed energy method of verification physical models of human under
whole body vibrations used in ergonomics.

2. Enerty experimental method of verification dynamical models of human

Energy experimental verification methods of human models based on comparison
energy flow domain at a specific point of experimental stand and point reduction
biomechanical model in time and frequency range. The energy modeling process has
already been widely described in the literature [1-6]. It consists of three phases and the
most important is the real object transformation, which is the subject of research in the
field of power distribution and energy flow in test pattern. In the case of research it was
biological subsystem a human-operator, taking a sitting position of their work (fig 1a).
The real object transformation is to describe the phenomena of the energy in object
biodynamical structure by physical and mathematical energy model. In Figure (1. b)
shows the verified energy physical model of human D-G-HB 2005 seated, an effect of
research. The substitute dynamic parameters as masses, elastic deformation and damping
of 28 degrees of freedom model have been establish in research.

a)
b)
Figure 1. a) The real object — man — operator seated, b) physical model of human D-G-
HB 2005 [6]

Physical model was the basis for elaborate a mathematical model using Lagrange
equations II type. Solve mathematical model constituting layout 28 differential equations
of motion has been done by digital simulation method using special programme
MATLAB/silumink.

The energy model of investigate object is obtained by use of elementary Energy
Processor MWD for each degree of freedom by extending dynamics digital simulation
program. Those Processors enable pass from analysis of the amplitude acceleration,
velocity and displacement to areas: power distribution and energy flow in an investigated
structure. Dynamic and energy analysis synchronously during various dynamic tests.
Selection of dynamic parameters elastic deformation and damping were based on the
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acceleration transmitance module Seat-Head. Its known course of experimental — fig.
4.a, let determine correctness changes values in amplitude and frequency scale.

Known from literature physical model HBMN-3 [8] showed large differences in
dynamic parameters, and its transfer function acceleration (fig. 4. b) significantly differ
from experimental (average 25 measurements): 36% frequency characteristic domain
and 1400% as regards maximum amplitude.

Experimental studies had been done in the Laboratory of Dynamic and Ergonomics
Metasystem: Man — Technical Object — Environment. Figure 2 shows the test site for
dynamic and ergonomic research involving people. It’s the most important element was
electromagnetic inductor DVC 48 from LDS. On the inductor table was piezoelectric
sensor acceleration vibrations fasten as reference sensor join return stabilization
amplitude acceleration the frequency band.

Figure. 2. View of the test stand to test the influence of whole body vibrations on a man
in a sitting position; 1-a two-point security belt, 2-button Stop Energy, 3- amplifier
LDS, 4-seat's Ster company, 5 — sensor force CL 16, 6 — inductor LDS, 7 — mount
vibration sensor head [6].

Scheme of the measuring system, built for experimental research of identification and
allocation of power distribution and energy flow in the human biodynamic structure,
shown in figure. 3.

Dynamic studies had enabled construction of a new physical model of human called
in short D-G-HB 2005 seated (fig 1b).

Constructed structure and its new dynamic parameters were subjected to dynamic
simulation investigation. The values of the acceleration transmittance model of seat-
Seat-Head assistance for D-G-HB 2005 model in a sitting position are presented below
in the frequency range 4 to 80 [Hz] (fig 5).

Comparison of the percentage difference in the values of characteristic frequency and
maximum values of the acceleration transmittance module of Seat-Head assistance
experiment with tests on D-G-HB 2005 model rendered similar results. This mainly
concerned the frequency of vibrations, where both types of transmittance reached
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maximum values. The error here was only 3,64 %. The difference between the maximum
values reached in both cases was also within the error range, it amounted to 12 %. It was
the first successful attempt to adjust the model to the real life object.

>
3 >

Figure 3. The scheme of measuring system built for experimental power distribution and
energy flow in the biodynamic structure of human [6]: 1 — LDS amplifier power 2 —
compressor, 3 — solenoid inducer, 4- digital driver system DVC 48, 5-tensometric
receptor force CL 16, 6 — amplifier CAX 1304, 7- vibration sensor acceleration, 8 - 4391
B&K 4322 acceleration sensor vibrations, 9 — preamplifier NEXUS 2692, 10 — digital
recorder TEAC RD135 , 11-100 MHz Digital oscilloscope 5501 U.

Maodul transmitancji przyspieszeniowe] SIEDZISKO-GLOWA. Eksperyment Modul transmitancii przyspieszeniowe] SIEDZISKO-GLOWA Model HBMN 3
2 i L =
E, \ =
"O 3.5 ” 'U
=1 3 o 40
g  _ \ g .
[} 2 28 [} k]
R= g 15 R=E
g E L
S I 5
fan P =
H mn 20 30 40 a0 Ei;\\ﬂ’tl H o 10 20 30 40 50 B0 70 80
czestotliwsac [Hz] czestatliwosc [Hz]
Frequency [Hz] Frequency [Hz]
Figure 4a. Mean value of acceleration Figure 4b. Mean value of acceleration
transmittance module Seat-Head transmittance module Head-Seat

assistance. Experiment [5] assistance HBMN-3 model [5]
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To definitely confirm the compliance of D-G-HB 2005 model with the real life object,
flow of input energy applied to the tested object in the two cases was calculated within
the tested range of frequency. Fig. 6 present the functions of the energy increase in case
of the experiment and D-G-HB 2005 model respectively.

Modul transmitancji przyspieszeniowej SIEDZISKO-CLOWA, Model MwWD-MG-HE

4

35

3

r
o

n

modul transmitancji

i

o
o

Transmittance module

=]

10 20 0 40 50 60 70 80
czestotliwose [Hz]

Frequency [Hz]

Figure. 5. The acceleration transmittance module Seat-Head performed for model
D-G-HB 2005 for seated at frequencies 4 + 80 [Hz] [6].

Dawka energii wejsciowej do obiektu. Eksperyment Dawka energii wejsciowej. Model WyVD-MG-HE
100
100
0 a0
— —
—_ a0 —_ an
= =
[5Y . 70 [0} _ 7
7] = 2] =
o 5 60 o S 60
e 5 5 o 5 @
3 =
8 i B i
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I ‘HJ/
o
o 1o 20 30 40 50 (=) 70 80
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czestotliwose [Hz]
Frequency [Hz] Frequency [Hz]

Figure. 6a. Dose of the input energy flow  Figure. 6b. Dose of the input energy flow
at the tested object: Experiment [6]. at the tested object: D-G-HB 2005[6].

Comparing the two functions, it may be observed that their courses are similar.
Detailed analysis of both flow performance graphs of the energy flow (energy dose) has
shown slight deviations with regard to the input energy dose applied to the tested object
e.g. in both flow performance graphs in the frequencies of 10 and 80 [Hz]. Difference in
the energy dose in the experiment and in case of D-G-HB 2005 model is ~ 3% for the
frequency of 10 [Hz] and ~ 4,5 % for the frequency 80 [Hz]. The results confirmed the
correctness of the new human body model D-G-HB 2005 in a sitting position as the
input energy depends on the entire dynamic structure of the tested subsystem of man.
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On the basis of the carried out analyses, it was assumed that the structure and
dynamic parameters of the new model are correct. Therefore, we could continue the
research on power distribution and energy flow in the biodynamic structure of man
exposed to whole body vibrations.

3. Summary

Presented in this article energy experimental method verification of human physical
models allows clearly validates the biodynamical structure of new model MWD-MG-
HB 2005 man seated. This method allegations of occupational literature that science has
not yet sufficiently far away to explore energy passing through the human body [7].
Except this, proposed energy propagation method allows to test power distribution and
energy flow in all structural elements: masses, elastic deformation and damping. So far
in studies of the effect of whole body vibrations and its assessment on human overlooked
resilient and damping biodynamical structure, therefore their results may differ from
reality.
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Abstract

The paper introduces an alternative method of modelling and modal reduction of continuous systems.
Presented method is a hybrid one. It combines the advantages of modal decomposition method and the rigid
finite element method. In the proposed method continuous structure is divided into one-dimensional
continuous elements. For each 1D element modal decomposition and reduction is applied. Interactions between
substructures are described by lumping techniques. Presented method enables to obtain reduced, low order
modal model of considered system. The proposed approach is illustrated by selected examples.

Keywords: modelling, model reduction, modal analysis, mechanical system, dynamic systems, vibration.

1. Introduction

In the static and dynamic analysis of the elastic bodies the Finite Element Method (FEM)
is widely used. The conventional discretization (Fig. la,c) yields to a set of ordinary
differential equations. However, to obtain accurate results it is necessary to apply a great
number of finite elements and to solve high order model (a big number of the second
order differential equations). To avoid such problem, different methods of model order
reduction can be applied. Modal decomposition and reduction is one of them [1].
However, in standard approach to obtain modal reduced order model it is necessary to
derive and consider high order model by FEM.

In the paper a new, alternative method of model order reduction is described. It is a
hybrid one and combines two well known approaches: modal decomposition method and
the rigid finite element method.

In the proposed method the body is divided into strips (for 2D system - Fig. 1b) and
prism (for 3D system - Fig. 1c). Each strip or prism represents one-dimensional
distributed system and it is described by appropriate second order partial differential
equation. However, these equations have also terms related to interactions between
strip/prism. Hence, the given system can be described by set of a couplet second order
partial differential equations. For each 1D element modal decomposition and reduction is
applied whereas interactions between elements are described by lumping technique. In
this case no complex FEM model is considered for modal decomposition.

Appropriate mathematical description of 2D system is presented below.
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a) finite element b) strip

Figure 1. Spatial discretization of 2D and 3D body: a), ¢) conventional finite element
method, b), d) proposed hybrid method

3. Hybride model of 2D body

Applying Rigid Final Element Method to 2D body divided into n,xn, finite elements one
obtains appropriate system of ordinary differential equations (n,xn, second order
equations) [1]. Such FEM model can be transformed to the continuum representation by
letting dx—0. In that way small differences divided by dx become derivatives.

a) b) i, j+1
JH 2
Smp{ J N1 2% BV Y\ W tﬁy
/ -1 -
\/ > § ¢Ax>
v i, j-1

Figure 2. Discrete model of the hybrid 2D structure: a) continuous body, b) elementary

Thus, 2D body can be described by the following, n, partial differential equations (after
Laplace transform with respect to time):

) . 2kGb . KkGb xGb KxGb xGb
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" ., kKGb 3
TjAy = pIy(Djsz _Elyq)j - KGbA)”?j +T(§j—l _§j+1)+EKGbAy¢j +

kGbAy )
+ T(goj_] +0.0)s Jj=L23,...,n,

where: £ — Young’s modulus, G — shear modulus, / — areca moment of inertia,
A — cross section area, k — numerical shape factor of cross section,
p — mass per unit volume, & 5 — transverse displacements, ¢ — rotation (angular
displacement), f — distributed force (excitation), r — distributed torque moment
(excitation), i=1,2,...,n, j=1,2,...,n,.

Solution of these equations with appropriate boundary conditions gives accurate
prediction of static and dynamic response (displacement, strain, stresses etc.) for many
2D elastic body. Applying modal decomposition for underlined parts of equations (1, 2,
3) and applying FEM for remained parts one can obtain discrete model of the considered
system written in the form:
xkGb 2kGb xGb
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Y(/)jl(xl) Y(/)jn(x])
D = : :

@] >

Y(pj] (an ) e Y(pjn (xnr\ )
wheras: ¢ — modal coordinates, m — modal coefficients of inertia, kK — modal coefficients
of stiffness, ¥ — eigenfunction, n — number of retained modes, n, — number of ports for

lumped interactions, j=1,..., n,, n, — number of strips, ' — generalized external force,
@' =dd / dx, subscripts x, y, ¢ are related to translations in x, y directions and rotation
respectively.

It is very easy to construct the modal models because eigenvalues and
eigenfunctions related to one-dimensional second order systems are known.
Fig.3 presents general concept of developed hybrid model. Proposed approach can be
applied for modeling of 2D, 3D and 1D continuous systems. Of course, in the case of 1D
system, there are not interactions between strips/prisms. In this case the method can be
applied for modelling of discrete-distributed systems with non-self-adjoined components
— see illustrative example 2 and [2, 3, 4].

HO HO . @

FEM model of interaction

WO A L b

Modal reduced model of j strip/prism

WO A L @

FEM model of interaction

ORI oR—

Figure 3. General block diagram of hybrid model

3.1. Illustrative Example 1

As an simple example let us consider one-strip system - the Timoshenko beam model
(Fig. 4) which is described by the following equations (they can be obtain as the special
case of equations (1+3)):

f—KkAGn' =F = pAs’n —kAGn", (7)

1 - kAGp+KkAGn' =T = pls*p— EJo" . 8)
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x=0.1 |P=1 (input force)
y

B ol N

Figure 4. Simply supported beam with the following parameters: E =2-10",
G=7.93-10", p=8000, h=0.05, ~=0.1, x =1.2, I=1.

The results are presented in Fig. 5. Frequency characteristics of the beam are obtained
for the hybrid models with 6 retained modes and with 12 finite elements. From these one
can see that in the range of frequency related to a number of retained modes frequency
responses for reduced models have the same shape as for the reference continuous one.

-50 — = frequency response for reference continuous Timoschenko beam

m'-100
k= | i , |
8-150 1 ' i
° 1
2 ,‘I ~< /"\ /A\ "\
§-200 A R S~ T “
I f LY2

-250 ! Y !

2300 — frequency response for reduced model Timoschenko beam I

1 2 5  6x10°

frquency [rad/s]4

Figure 5. Verification of the reduced Timoshenko beam model

3.2. Illustrative Example 2

As the second example let us consider the rotor presented in Fig. 6a.
The difficulties in modal analysis of rotor system arise from the non-self-adjointness. To

avoid that problem the following approach is proposed. Modal reduced model is built up
for the system without gyroscopic effect.
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Figure 7. General block diagram of
hybrid model of rotor

Gyroscopic moments are then modeled by application of rigid finite element method.
Because of above reduced modal model must contain an appropriate number of inputs
and outputs needed to connect lumped elements related to gyroscopic interactions
between beams vibrating in X-Z and Y-Z planes.

Frequency characteristics of the rotor (Fig. 8) are obtained for the unit step force input
signal acting at the left disk (Fig. 6) and the displacement output signal observed at the
same point. From these one can see that in the range of frequency related to a number of
retained modes frequency responses for reduced models have the same shape as for the
reference model.

4. Conclusions

In this paper model reduction of continuous systems is presented. Two techniques:
modal decomposition and finite element approach are applied simultaneously. The final
reduced model consists of two parts - the reduced modal model and the finite element
model. General idea of such approach has been presented in simple illustrative examples.
The proposed approach enables to obtain accurate low order lumped parameter model
representation of considered system. Computer simulations and numerical calculations
proved that the proposed method is efficient and can be applied for others, more
complex systems.
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Hybrydowe modele zredukowane ukladow ciaglych

W artykule przedstawiono alternatywna metod¢ modelowania i modalnej redukcji uktadéw ciagtych.
Zaprezentowana metoda jest metoda hybrydowa. Laczy zalety metod dekompozycji modalnej i sztywnych
elementow skonczonych. W proponowanej metodzie uktad ciagly dzielony jest na jednowymiarowe
poduktady ciagte. Dla kazdego poduktadu jednowymiarowego budowany jest modalny model zredukowany.
Poszczegolne modele zredukowane wiaze si¢ ze soba poprzez oddziatywania migdzy nimi modelowane za
pomoca metody sztywnych elementow skonczonych. Zaprezentowana metoda umozliwia otrzymanie
zredukowanego modelu modalnego niskiego rzgdu. Proponowane podejscie jest zilustrowane prostymi
przyktadami.
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Abstract

The trial of the mechanic’s description of material point with variable mass where the classical position vector
was replaced with the static moment vector was presented. In this way, the present position and the current
mass were bound into a single quantity. The description contains: the dynamic motion formulae, the
momentum and the impulse of force, work, kinetic energy, the equivalence of the work and of the kinetic
energy as well as the conservation law of mechanical energy. The example of the fall of the evaporating drop
in the gravitational field was shown.

Keywords: system with changing mass, dynamic system, static moment

1. Introduction

Mechanics with variable mass as classically defined contains the following cases:
- changes in mass in the system,
- changes in mass distribution in the system,
- the changes of mass as well as of its distribution.

History and achievements in the examinations of systems with variable mass are
described in literature [1], [2].

In the paper, the material point in which the change in mass occurs is analyzed. The
vector of static moment joining the position of the point with its present mass is used
instead of the position vector. Such an attitude in authors’ conception constitutes
a formal experiment.

2. The vector of static moment

If the material point has a mass m and the position described with the coordinates x, in

the given system of coordinates, then the vector of static moment is defined with the
following formula:
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Si = mxi . (1)
The derivative of this vector is calculated:
ds; = x,dm+mdx,. 2

It is easy to notice that the above derivative is a vector created from the addition of the
two components:
- x,dm— with the direction of the position vector,

- mdx, — with direction tangent to the trajectory of the point in the given point (in

kinematical understanding).

3. Momentum and the dynamic equations of the motion
Based on the definition (1) the momentum of material point can be calculated in the
form:

mx, =$, — mx, - 3)
The time derivative of the momentum (3) is given with the following expression:

jt(mx)=s—2s—{:—(nm1j }s @

The above result allows to write the dynamic equation of motion:

Ei_mji_|:ﬁ;l_(mj :|Si:.fi’ )
m m m

where £ is a given external force.

The equation (5) is the quadratic ordinary differential equation relative to the time with
the variable coefficients. The equation (5) must be completed with the initial conditions
put on the searched function and its first time derivative. It is also necessary to assume
the open form of the mass evolution.

4. Kinetic energy and differentiated work

Momentum (3) can be depicted in the new form using (1):

myx, :Si_ﬂsi’ (©)
m
then kinetic energy
1
T =—mx,x, 7
Mg, ™)
will get a form:
T 1s's' ms's+1mzss ()
2}’}’[ i m2 7 2 m3 2
so the kinetic energy is the function of variables
T:T(mamssia‘éi)' (9)

The differentiated work is described with the commonly-known expression:
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dL = fdx,. (10)
Thanks to the equation (2) the following can be obtained:
dx; :idsi—%sidma an
m m
hence the differentiated work (10) gets a new form:
dL = if,dsi —%fisidm . (12)
m m

It seems that the equivalence of work and kinetic energy should occur, however, the
authors were not able to show it.

5. Free fall of the drop evaporating in the gravitational field
In case of evaporating drop, in accordance with literature [1], the open form of the
evolution of mass is taken into account:

m(t)=mye ™, (13)
where p, — the initial mass, 4 — the constant parameter of vaporization.
In such case, the dynamic equation of motion (5) is simplified to the form:

5 + A8 = f- (14)

It is assumed that fall is carried out along vertical axis with the direction of

gravitational force. The equation of this matter of contention has a form:

§+As =mg, (15)
where g - gravity acceleration.
Using the homogenous initial conditions:

t=0, 5(0)=0, s(0)=0, (16)
the solutions is obtained:
1, 1 u
s:mog[—ﬂlel +/12(1—el)] a7

The equation (15) and the solution (17) in the formal form refer to the issues of fall in
the medium constituting resistance.

6. Conclusions

The presentation of the benefit of application in the description of the static moment is
difficult to point out at the current phase of the research. However, it seems that this
formal experiment opens new scientific fields. In the continuous systems, mass could
take tensor’s properties what would broaden significantly the theoretical horizons.
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Prawo Newtona dla punktu materialnego o zmiennej masie w opisie momentu statycznego
Przedstawiona zostata proba opisu mechaniki punktu materialnego o zmiennej masie w ktorej zastapiono
klasyczny wektor potozenia wektorem momentu statycznego. W ten sposob potaczono w jednej wielkosci
aktualne potozenie z aktualna masa. W tym opisie przedstawiono : dynamiczne réwnania ruchu, ped i poped,
pracg, energi¢ kinetyczna, roOwnowazno$¢ pracy i energii Kinetycznej oraz zasadg zachowania energii
mechanicznej. Przedstawiono przyktad spadku kropli parujacej w polu sity cigzkosci.
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Abstract

In practical applications of vision systems to mechanical systems vibration measurements, the problem of
image reconstruction on the basis of registered noisy image is frequently encountered [6]. Such problem is an
inverse, ill-posed problem, which means that even small disturbances of the registered image have significant
influence on the accuracy of its reconstruction. For the purposes of image noise reduction, regularization
methods were used. In the current paper (part I), noise reduction of the test image was carried out by means of
the algorithm requiring decomposing matrix modelling noise into singular values, which, in case of images of
significant dimensions, requires significant computational effort. Therefore, for the purposes of regularization
of images of significant dimensions, in the second paper (part II) the iterative approximate method formulated
by the author was used. Obtained results proved that formulated and implemented methods find application to
noise reduction of images, the reconstruction of which is impossible to carry out by means of other methods
because of the excessive loss of information resulting from imposed noise.

Keywords: noise reduction, image reconstruction, regularization

1. Introduction

The problem of image reconstruction on the basis of registered noisy image is an inverse

ill posed-problem [1, 7] (Fig. 1), which means that even small disturbances of registered

image have significant influence on the accuracy of its reconstruction. Therefore, in this

paper, for the purposes of the analysed images noise reduction, regularization methods

were used [1, 2, 7]. Images burdened with noise were filtered by means of the Tikhonov

regularization method, Truncated SVD (TSVD), Damped SVD (DSVD) and Maximal

Entropy (ME) methods [2, 4]. Algorithm of direct image regularization (Fig. 2)

formulated by the author consists in:

1. Transformation of matrix describing registered noisy image {b;.}y«y into column
vector {b; .} nx; by writing consecutive columns one below the other.

2. Estimation of noise matrix [4]y’xy’ modelling disturbances appearing in the process
of image registration.

3. Computing vector describing filtered image {x;.,} by regularization of problem:
[4] Nt {X1reg} nx1=1D15:} a1 By means of the selected regularization method.

4. Computing matrix describing regularized image [X,] wy by transformation of
VeCtOr {Xyeq} Nxi-

At the present stage of development of commonly available PC computers, the
proposed algorithm of noise reduction with the use of regularization methods (Fig. 2)
can not be applied to filtration of images of significant dimensions. Image regularization
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according to that algorithm requires decomposition of matrix modelling noise into
singular values, which in case of matrices of significant dimensions, requires great
computational effort. Matrix modelling noise of image of dimensions NxN is of
dimensions N°xN°.

DIRECT ROBLEM n
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NOISY PICTURE [ B HRE T AR
o
0 O+~ PPt rrE g L
H B AR e H
& H B e [Xrer]
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Figure 2. Algorithm of direct image regularization.

Therefore for the purposes of regularization of images of significant dimensions
(e.g. 512x512 pixels) the iterative approximate method formulated by author was used
(Fig. 3). The idea of the method consists in application of the selected method to
regularization of the following issue:

[A](k)]szMz {xl(k) }Mx] = {bl(fz) }MXI v

where [4,%] is a matrix consisted of elements lying in the vicinity of matrix [4] main
diagonal, corresponding to the ™ fragment of image written in the form of vector.
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Figure 3. Proposed algorithm of regularization of images of significant dimensions.

The issue of image reconstruction on the basis of registered noisy image (Fig. 4) can
be also described by means of the Fredholm integral equation of the first kind [3] in the
following form:

11
[ [ Gr)}-{ o (320} U (o, ety = A1)} 2)
00
where: {ki(x, 5)}, {kx(y, £)} integrands (known), defined for horizontal ({k(x, s)}) and
vertical {ky(y, t)} directions, {g(s, #)}: right side of the equation (known function),
{f(x, ¥)}: solution.
Mathematical proof of the fact that the Fredholm integral equation of the first kind is
always ill-conditioned can be found in [5].

d

] : 1 ] 1 =
0 = 0 >
fay) |- s,
1 1
v, NOISELESS PICTURE t] WOISYPICTURE

Figure 4. Description of the image noise reduction issue by means of the Fredholm
differential equation of the first kind.

Such a description is valid for images burdened with noise distributed uniformly, for
which disturbances in vertical and horizontal directions are independent [3]. As a result
of discretization of relation (2), equation describing the problem of registered image
noise reduction has the following form:

(I, (. s|© K, (v.0))-{F (x, )= {Gls.0)) 3)

where ® : Kronecker product, defined for matrices [4] and [B] as [3]:
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Description of the issue of image reconstruction on the basis of registered noisy
image by the use of the Fredholm integral equation of the first kind was implemented in
the software package MOORe TOOLs (ang. Modular Object Oriented Regularization
Tools) [5] dedicated for MATLAB environment.

1.1. Matrix modelling noise

Reduction of image disturbances by the use of the presented algorithms of image
regularization requires identification of character of disturbances influencing image
registration process. Below there are presented relations making it possible to formulate
matrix [K] modelling frequently encountered disturbances of image registration process
[3,5]:

[k]=[x ]®[x,] 5)

where [K;], [K;]: matrices modelling noise in horizontal ([K;]) and vertical ([K}])
directions.

In the literature [5], under the term of atmospheric blur, the phenomena of blurring
remote objects contours by vibrating air masses is understood. Elements of matrix [K]
modelling noise of that type is described by the following relation [5]:

(K), zl.exp[_ MM} (6)

o o

where o: standard deviation of noise.

2. Filtration of test image burdened with noise of known statistical properties

Test image of dimensions 16 x 16 pixels (Fig. 5a) was burdened with the atmospheric
Gaussian blur of zero mean value and ¢ = 0,7. Regularization of noisy image (Fig. 5b)
was carried out by means of the software realizing the algorithm presented in the Fig. 2
with the use of functions implemented in the Regularization Tools package. Results of
the filtration of the considered test image carried out with the use of different
regularization methods are presented in the Fig. 5c, d, e, f[4].

In order to assess quality of the obtained results, the differences between the
noiseless and noisy image (Fig. 6a) as well as between the noiseless image and images
reconstructed by means of the considered regularization methods were computed
(Fig. 6b, c, d, e). The smallest differences between the noiseless and regularized image
were observed for the Tikhonov (Fig. 6b) and ME (Fig. 6e) methods, the most
significant differences for the TSVD method (Fig. 6¢).
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Figure 5. Image of dimensions 16x 16 pixels: a) noiseless, b) burdened with Gaussian
noise of zero mean value and o= 0,7 and regularized by means of the ¢) Tikhonov,
d) TSVD, e) DSVD and f) ME methods.

Figure 6. Differences between noiseless image and image a) burdened with Gaussian
noise of ¢ = 0,7, and filtered by means of the b) Tikhonov method, ¢) TSVD, d) DSVD,
¢) ME methods and f) assumed intensity scale.

0

In the Fig. 7 there are presented histograms illustrating the number of points of
different intensity values in the noiseless image (Fig. 5a), image burdened with an
atmospheric Gaussian blur of considered statistical properties (Fig. 5b) and noisy image
filtered with the use of the considered regularization methods (Fig. 5¢, d, e, f).

Histograms obtained for images filtered by means of the Tikhonov regularization
method (Fig. 7c¢) and maximal entropy method ME (Fig. 7f) bear most resemblance to
the histogram of noiseless image (Fig. 7a) and are characterized by a slight broadening
of main peaks of noiseless image into side peaks.



160

a) - b)1 " )

0 01 02 03 04 05 05 07 08 085 1 0 01 02 03 04 05 06 07 08 08

9

05|

o o o

Figure 7. Histograms for a) noiseless image, b) image burdened with Gaussian noise of
o=0,7 and filtered by means of the c¢) Tikhonov regularization method, d) TSVD,
¢) DSVD and d) ME methods.

3. Conclusions and final remarks

Obtained results proved suitability of the algorithm of direct image regularization
(Fig. 2) formulated and implemented in the Matlab environment by the author for
filtration of small noisy images [4]. Results of reconstruction of images of significant
dimensions carried out by means of the elaborated iterative approximate method are
presented in the paper under the same title (part 1) that stands for the continuation of this

paper.
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Zastosowanie metod regularyzacji do redukeji zaklocen rejestrowanych obrazow — czes¢ I
Praca dotyczy zagadnienia redukcji szumow pomiarowych obrazéw z zastosowaniem metody regularyzacji
Tichonowa, TSVD, DSVD oraz ME. Rekonstrukcj¢ obrazow przeprowadzono z zastosowaniem
sformutowanych i zaimplementowanych przez autorkg algorytméw. Wykazano przydatnos¢ sformutowanych
metod w przypadku obrazow, ktorych rekonstrukcja nie jest mozliwa do przeprowadzenia innymi metodami ze
wzgledu na zbyt duza utratg informacji spowodowana natozeniem szumow.
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Abstract

In practical applications of vision systems to mechanical systems vibration measurements, the problem of
image reconstruction on the basis of registered noisy image is frequently encountered [6]. Such problem is an
inverse [1], ill-posed problem [2, 7], which means that even small disturbances of the registered image have
significant influence on the accuracy of its reconstruction. The first paper, denoted as part I, concerns the issue
of the test image noise reduction carried out by means of the direct image regularization method. The main step
of the method algorithm consists in decomposing matrix modelling noise into singular values, which, in case of
images of significant dimensions, requires significant computational effort. Therefore, for the purposes of
regularization of images of significant dimensions, in the current paper (part II), the iterative approximate
method formulated by the author was used. Obtained results proved that formulated and implemented methods
find application to noise reduction of images, the reconstruction of which is impossible to carry out by means
of other methods because of the excessive loss of information resulting from imposed noise.

Keywords: noise reduction, image reconstruction, regularization

1. Introduction

The research presented in the paper stands for the continuation of the research presented
in the first paper (denoted as part I) and concerns reconstruction of the image of
dimensions 512 x 512 pixels (Fig. 1a), depicting man eating an orange. The image was
burdened with the atmospheric Gaussian blur of zero mean value, magnitude 4 = 1 and ¢
=2 (Fig. 1b) and regularized [2, 4, 7] by means of the Tikhonov regularization method
(Fig. 1c), Truncated SVD (TSVD, Fig. 1d), Damped SVD (DSVD, Fig. le) and
Maximum Entropy (ME, Fig. 1f) methods. Taking into account significant dimensions of
the considered image, for the purposes of noise reduction, the iterative approximated
method formulated by the author was applied. Detailed description of the method
algorithm is provided in the paper under the same title denoted as part 1. In spite of the
fact that the image filtration was carried out by means of the approximate method, the
overall time of computations carried out in the MATLAB 5.3 environment (for PC
computer equipped with the 2 [GHz] processor and dual 512 MB) amounted to 7 hours.

2. Results of filtration of image of dimensions 512 x 512 pixels burdened with noise
of known statistical properties

In order to assess the quality of images reconstructed with the use of the considered
regularization methods, the differences between the noiseless image and noisy deblurred
images were computed (Fig. 2a, b, c, d).
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Figure 1. Image a) noiseless, b) burdened with the atmospheric Gaussian blur and
filtered with the use of the ¢) Tikhonov regularisation method, d) TSVD, ¢) DSVD and
f) ME methods.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09 1

Figure 2. Differences between noiseless image and noisy images filtered with the use of
the a) Tikhonov regularization method, b) TSVD, ¢) DSVD and d) ME methods,
e) assumed intensity scale.

The smallest differences were observed for images reconstructed by means of the
Tikhonov regularization and ME methods.
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In the Fig. 3 there are presented histograms illustrating the number of pixels of a
given intensity value for noiseless image (Fig. 3a), image burdened with the atmospheric
Gaussian blur of given statistical properties (Fig. 3b) and noisy images reconstructed by
means of the considered regularization methods (Fig. 3c, d, e, f).
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Figure 3. Histogram of images presented in the Figure 2.

The noise imposed on the considered image resulted in the information loss in
the 0,55 + 1 range of the intensity scale. As the result of application of the elaborated
approximate image regularization method most of the previously lost information was
retrieved.

Cutting out of the histograms values from the 0 + 0,3 range of the intensity scale
results from the specific properties of the applied iterative approximate method
dedicated to regularization of pictures of significant dimensions, the essence of which
consists in analyzing only the fragments lying in the vicinity of the image main diagonal.
Therefore obtained regularized images (Fig. 1c, d, e, f) are brighter than the original
noiseless image.

The further research concerned the image of man eating an orange (Fig. 4a),
burdened with the atmospheric Gaussian blur of the zero mean value, magnitude 4 = 3
and ¢ = 2 (Fig. 4b). Introduction of noise of discussed properties resulted in the loss of
image sharpness in such a degree that, on the basis of noisy image, it is difficult to figure
out what was depicted in the original image. In order to reduce the introduced noise, the
consecutive image fragments were regularized with use of the Tikhonov regularization
method (Fig. 4c), TSVD (Fig. 4d), DSVD (Fig. 4e) and maximal entropy (Fig. 4f)
methods. Histograms of images presented in the Fig. 4 are shown in the Fig. 5.
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Figure 4. Image a) noiseless, b) burdened with the atmospheric Gaussian blur of zero
mean value, 4 = 3 and ¢ = 2 and filtered with the use of the c¢) Tikhonov regularization
d) TSVD, e¢) DSVD, f) ME methods.
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Figure 5. Histograms of images presented in the Figure 4.

Application of the elaborated iterative approximate method made it possible to retrieve
information in the 0,3 + 1 range of the intensity scale, lost as the result of imposing the
atmospheric Gaussian blur on the original noiseless image. In the considered case the
classical image filtration methods fail. Therefore, the possibility of image reconstruction
compensates for inconveniences related to application of the elaborated method, such as
long computational time and characteristic brightening of the filtered image with respect
to the original image.

2. Conclusions and final remarks

The paper concerns noise reduction of images of significant dimensions carried out by
means of the elaborated iterative approximate method based on the regularization
method. The paper stands for the continuation of the paper under the same title denoted
as part I, in which the issue of small images filtering with the use of direct application of
the regularization methods was discussed.

On the basis of the obtained results it can be stated that elaborated image filtration
algorithms based on the regularization methods, due to their specific properties such as
e.g. required great computational effort and long time of computations, should not be
applied in cases when application of ‘conventional’ image processing methods leads to
obtaining results of satisfactory accuracy. Their application becomes indispensable in
case of images, the reconstruction of which is impossible to carry out by means of other
methods because of the excessive loss of information resulting from imposed noise.
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Zastosowanie metod regularyzacji do redukcji zaklécen rejestrowanych obrazéw — czes¢ 11

Czgsto spotykanym w praktyce problemem przetwarzania sygnatéw jest rekonstrukcja obrazu na podstawie
zarejestrowanego obrazu zaszumianego. Problem ten jest zagadnieniem odwrotnym zle zdefiniowanym, co
oznacza, ze niewielkie zaklocenia rejestrowanego obrazu maja znaczacy wptyw na doktadnosé rekonstrukeji
obrazu. W pierwszym artykule (oznaczonym jako ,,czg¢$¢ I””) przedstawiono rezultaty redukceji zaktocen obrazu
testowego uzyskane z zastosowaniem sformutowanego przez autorke algorytmu opartego o metody
regularyzacji Tichonowa, TSVD, DSVD oraz ME. Przeprowadzenie regularyzacji obrazu zgodnie z tym
algorytmem wymaga dokonania rozktadu macierzy modelujacej szum na wartosci szczegoélne, co w przypadku
macierzy o duzym rozmiarze wymaga bardzo duzych naktadow obliczeniowych. Z tego wzglgdu w niniejszym
artykule (oznaczonym jako ,czg$¢ II”), do redukcji obrazéw o znacznych rozmiarach, zastosowano
sformutowana przez autorke iteracyjna metodg przyblizona. Na podstawie analizy rezultatow
przeprowadzonych badan nasuwa si¢ wniosek, ze metody regularyzacji nie powinny by¢ stosowane w
przypadkach gdy zastosowanie ,konwencjonalnych” metod analizy prowadzi do uzyskania rezultatow o
zadawalajacej doktadnosci. Ich zastosowanie staje si¢ konieczne w przypadku obrazow, ktorych rekonstrukcja
nie jest mozliwa do przeprowadzenia innymi metodami ze wzglgdu na zbyt duza utratg informacji
spowodowang natozeniem szumow.
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Abstract

The article describes the voice control system. It is based on comparing feature vector sequence, which
represents spoken word, with patters. For this purpose Dynamic Time Warping algorithm was implemented.
Features extracted from voice record are Mel cepstral coefficients. Delta and delta-delta parameters were also
tested. Important part of system is algorithm detecting word boundaries. It uses fundamental frequency and
energy.

Keywords: voice control, Dynamic Time Warping, speech recognition

1. Introduction

For a human the most intuitive way of communication is speech. Meanwhile, in the case
of control, voice commands are seldom used. This is because the developers of such
systems are facing with many problems like noise reduction or speaker independence.
However, there is no shortage of ideas on the use of this type of control. The article [4]
describes a robot control system with a mobile phone. Commands are described in
simple grammar. In [10] such a system is used to control the wheelchair.

An important issue is the selection of appropriate signal features which reflect
differences between words. In this work Mel-frequency cepstral coefficients and their
derivatives are used. Detected word is divided into frames for which the coefficients are
calculated. Other solutions can be found in the literature. In [4] author used vectors with
26 elements: mean power, mean zero crossing and 24 frequency features.

Separate issue is the selection of a classifier which decides, on the basis of features,
what was spoken. In this work a Dynamic Time Warping algorithm was described and
implemented. It calculates the similarity between the data series. These data may be
either single or multidimensional. Series may be of different length and can be shifted in
phase relative to each other. These are very desirable features for speech recognition
because nobody can say the same word twice in the same way.

Undoubted advantage of the algorithm is its simplicity. Currently more advanced
systems can be used such as neural networks or hidden Markov models.
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2. Word segmentation and representation

Extremely important issue in speech recognition is detection of word beginning and end
(word segmentation). In this work a solution based on signal energy and fundamental
frequency has been used.

Fundamental frequency is associated with vibration of vocal folds [7]. It is
characteristic of voiced sounds and it lies in the range between 80Hz and 350Hz [3].
Thus by measuring the fundamental frequency for parts of record we can conclude
which contains a human voice. But the problem remains with voiceless sounds which are
not detected and with some noise that may by recognized as the voice. Therefore a
second parameter was introduces, the signal energy.

The figure below shows the word ‘dziewig¢’ with a part determined by the
fundamental frequency (upper chart, marked in red). At the bottom graph the signal
energy is presented. Energy lower than 10% of the maximum is removed.

Combination of these two parameters allows the better word boundaries detection.
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Figure 1. Word ‘dziewiec’ boundaries set by using the fundamental frequency and signal
energy.

Mel cepstral coefficients are commonly used is speech recognition. The counting
procedure is as follows [9]:
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1. Signal is cut into overlapping frames (20-30 ms length) which are multiplied by
the Hamming window.

2. FFT is computed for each frame.

3. Spectrum power (for each frame) is mapped to set of bands using Mel scale
triangular overlapping windows.

4. Discrete cosine transform (DCT) is computed for logarithm of each band.

The first (delta parameter) and the second derivative (delta-delta parameter) in time

of Mel cepstral coefficient are also used in speech recognition.

3. Dynamic Time Warping algorithm

Algorithm is used to compare the time series which may be of different lengths and
shifted in phase relative to each other. Having two series:

A=ay,a,,...a, neXN
B=b,,by,...b,, me\N )
a,be‘Rk keN
it is necessary to specify the distance function:
d R xR SR )

Most commonly used is the Euclidean distance.

First step of algorithm is to calculate the n-by-m matrix. The (i,j)-element of the
matrix has a value equal to d(a;,b;). Next the warping (alignment) path is determined. It
consists of matrix elements:

P=p,py,...p, max(mn)<qg<m+n+l 3)

This path must meet several conditions [8]. First concerns the beginning and end of
the path i.e. p;=(1,1) and p;=(m,n). The second ensures the continuity and monotonicity
of the path. For two consecutive elements p;=(x,y) and p;.;=(x’,y’) the following relation
is satisfied:

0<x—-x'<1
0<y—y'<l1 “)
There may be more than one such path. Algorithm selects the path with the least

warping cost:
q
Z Pi
DTW(A,B) =min{ ! =1 Q)

q

The figure below show a cost matrix with a sample path satisfying the above
conditions.
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Figure 2. Cost matrix with warping path.

4. Grammar

In order to man-machine communication it is necessary to agree not only vocabulary but
also grammar. For a testing purposes a simple grammar was written. Vocabulary
consists of 16 polish words (in brackets are the English meanings of words): jeden (one),
dwa (two), trzy (trzy), cztery (four), pig¢ (five), sze$¢ (six), siedem (seven), osiem
(eight), dziewig¢ (nine), dziesi¢é (ten), zero, stop, prawo (right), lewo (left), géra (up),
dot (down), kropka (point). These words form the following grammar:

<digit> =  zero | jeden | dwa | trzy | cztery | pig¢ |
sze$¢ | siedem | osiem | dziewigé
<integer> =  {<digit>}+
<float> = {<digit>}+ kropka {<digit>}*

<keyword> prawo | lewo | gora | dot
<command> =  <keyword> <digit>
| <keyword> <integer>
| <keyword> <float>
| <keyword> stop
| <command> stop
| stop

Such a grammar can be used to control a simple robot. It allows to run commands
consisting of direction and distance. The word ‘stop’ can be used in case of operator or
system confusion. It cause the entering of the command is not continued.

5. Results

All calculation were carried out in MATLAB.

Recognition effectiveness of 16 word was tested. In the first experiment feature
vector consisted of 12 Mel cepstral coefficients per frame. In pattern database there was
one representative for each word. Word recognition is based on vector sequence
comparison with patterns using DTW. Next the shortest warping path is chosen. Mean
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efficiency was 95.9%. After redoubling the amount of patterns in database 98.7%
efficiency was obtained. Recognition effectiveness of individual words is presented in
figure 3.

95 =

a0+ =

80 =

Recognition effectiveness %

7ar =

70
zero jeden dwa trzy cztery pigé szesé siedem osiem dziewigé dét gora prawo lewo kropka stop

Figure 3. Recognition effectiveness for system with one pattern for each word (blue bar)
and two patterns for each word (red bar).

Next the delta and delta-delta parameters were added to feature vector in order to
verify whether this will improve the efficiency. Unfortunately it turned out that the
efficiency decreased to 76.5% (figure 4).

80— —

- =

60~ =

50 =

- -

Recognition effectiveness %

- =

20+ —

zero jeden dwa trzy crztery pieé szesé siedem osiem dziewigé dot gora prawo lewo kropka stop

Figure 4. Recognition effectiveness for individual words. Feature vector with Mel
cepstral coefficient (blue bar). Feature vector with Mel cepstral coefficient, delta and
delta-delta parameters (red bar).
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6. Conclusions

DTW algorithm is very simple and well known. As was shown by experiments it gives
good results (98.7%) in recognizing words from a small vocabulary.
It was found that delta and delta-delta parameters deteriorated the effectiveness.
Problem may occur with bigger vocabulary as it involves comparing each word with
all patterns from database. It can lead to system deceleration (what was observed when
number of patterns was doubled).

References

1. P. Senin, Dynamic Time Warping Algorithm Review, Information and Computer
Science Departament University of Hawaii, Honolulu 2008.

2. M. Petroni, A.S. Malowany, C.C. Johnston, B.J. Stevens, 4 new, robust vocal
fundamental frequency (F,) determination method for the analysis of infant cries,
Seventh Annual IEEE Symposium on Computer-Based Medical Systems, 1994

3. B. Plannerer, An introduction to speech recognition, 2005

4. M. S. Haleem, Voice Controlled Automation System, Proceedings of the 12" IEEE
International Multitopic Conference, 2008

5. T. Kubik, M. Sugisaka, Use of acellular phone in mobile robot voice control, SICE,
2001

6. U. H. Langanke, Direct Voice Control — Speech Data Entry and Database Query
Models, International Symposium on Logistics and Industrial Informatics, 2007

7. A. F. Johnson, B. H. Jacobson, Medical Speech-Language Pathology A
practitioner’s Guide, Thieme, 2007

8. E. J. Keogh, M. J. Pazzani, Scaling up Dynamic Time Warping to Massive Dataset,
Principles of data mining and knowledge discovery: Third European Conference,
Prague, 1999

9. S. Molau, M. Pitz, R. Schluter, H. Ney, Computing Mel-frequency cepstral
coefficients on the Power spectrum, Acoustics, Speech and Singla Processing
Proceedings, 1 (2001) 73-76

10. R. C. Simpson, S. P. Levine, Voice Control of a Powered Wheelchair, IEEE
Transactions on neural systems and rehabilitation engineering, 10 (2002) 122-125

Sterowanie glosowe
W artykule opisano system sterowania glosowego. Opiera si¢ on na porownywaniu sekwencji wektorow cech,
ktora reprezentuje wypowiedziane stowo, z bazg wzorcow. W tym celu zaimplementowano algorytm Dynamic
Time Warping. Jako cech ekstrahowanych z nagran uzyto wspotczynnikow Mel cepstrum. Przetestowano
takze parametry delta oraz delta-delta. W sktad systemu wchodzi réwniez algorytm wykrywajacy granice
wypowiedzianego stowa, dziatajacy w oparciu o czgstotliwo$¢ podstawowa oraz energig.
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Abstract

In the paper we compare the explicit and implicit interval multistep methods of Adams type on some
dynamical systems. The methods considered can be used for solving the initial value problem (IVP) for
ordinary differential equations (ODEs). As a results we obtain the interval solution that include the exact
solution of the IVP. The interval methods are examined on efficiency and numerical precision of the results.

Keywords: initial value problem, ordinary differential equations, interval floating-point arithmetic,
interval multistep methods of Adams type

1. Introduction

The development of interval methods for solving the IVP for ODEs started with methods
based on Taylor series. Such methods were introduced by Moore [26]-[27], Kriickberg
[17], Eijgenraam [3], Lohner [18], Corliss and Rihm [2]. Explicit interval methods of
Runge-Kutta type and explicit interval multistep methods of Adams-Bashforth type have
been given by Kalmykov, Sokin and Juldasev [16], [28]. Another approach is
represented by a method based on high-order Taylor series proposed by Berz and
Makino [1], [19]. The research stared by Makino has been continued by Hoefkens [7]-
[8]. An implicit interval Hermite-Obreschkoff (IHO) method for solving the IVP with
predictor and corrector phases has been constructed by Jackson and Nedialkov [23]-[24].

Studies on the explicit interval one-step methods of Runge-Kutta type and the
interval multistep methods of Adams type for the IVP introduced by Sokin [16], [28]
have been going on in Poznan University of Technology since the 1990s. Let us mention
one- and two-stage implicit interval methods of Runge-Kutta type (see Marciniak and
Szyszka [5], [20], [22]) and three- and four-stage implicit interval methods of Runge-
Kutta type (see Marciniak, Gajda and Szyszka [4]-[5], [20]). The explicit and implicit
interval multistep methods of Adams type have been proposed by Marciniak and
Jankowska (see e.g. [5], [9], [13]-[15], [20]). Finally, the explicit interval multistep
methods of Nystrom type and the implicit interval methods of Milne-Simpson type have
been developed by Marciniak [20].

Computer implementation of the methods considered in the floating-point interval
arithmetic (see [6], [10]-[12], [25]), together with the representation of initial data in the
form of machine intervals, let us achieve interval solutions that contain all possible
errors (i.e. the errors of inexact input data that is often obtained through the experiment,
the errors caused by the representation of real numbers in computer, the rounding errors
and the errors of the approximate methods).
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The paper deals with a comparison of the interval multistep methods of Adams type.
Their formulas are not mentioned but can be found in e.g. [9]. Essential notations and
assumptions are given in Section 2. In Section 3 we solve some example dynamical
systems. The results in the form of interval solutions obtained with the interval methods
considered and the widths of such interval solutions are presented and compared.
Comments on the efficiency of the methods and the numerical precision of the results
obtained bring this paper to the end.

2. Notations and Assumptions

Let us consider the initial value problem for ordinary differential equations of the form
v'=s(6y). 0)=y,. (1)
where ¢ € [0,9‘], (eR, y= y(t)e RY, f: [0,5] x RY— R".
We choose a positive integer m and select the mesh points ¢,,¢,...,¢, , where ¢, =nh
for each n=0,1,...,m and h=¢&/m . Moreover, we denote by A, and A the sets in
which the function f (t, y) of the IVP (1) is defined as follows:

A ={teR:0<1<&, EeRY,
Ay :{y:(yl,yQ,...,yN )TERN : Q,Sy,ﬁl?i, l_)i,E,eR, i:1,2,...,N}.

Furthermore, if we denote by y(t,.) ,i=0,1,...,m, the exact value of the function y at ¢,,
then Y(z,) is an interval solution such that y(z,)e Y (). Note that for any interval
A= [g,)_c] we define its width (diameter) in the following way d (A) =X—-X.

The interval methods considered are interval multistep methods. Hence, before we
start the method, we have to know & previous interval solutions obtained with some one
step interval methods. The parameter £ is known as the number of method steps.

We introduce some abbreviations of the names of the interval methods considered.
Namely, the IMA methods for any interval multistep method of Adams type, the EIAB
methods for the explicit interval methods of Adams-Bashforth type, the IIAM methods
for the implicit interval methods of Adams-Moulton type, the IIAPC1 methods for the
implicit interval P(EC)’E predictor-corrector methods of Adams type, and the ITAPC2
methods for the implicit interval P(EC)® predictor-corrector methods of Adams type. For
the interval predictor-corrector methods of Adams type the number k£ of method steps in
the predictor formula is denoted by &, and in the corrector formula by . .

3. Numerical experiments

3.1. The Simple Pendulum Problem
We consider the motion of a simple pendulum given by the equation of the form

p+u’sing=0, )
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where ¢ = go(t), u=4+/g/L,g is the gravitational acceleration at Earth’s surface and L
denotes the pendulum length. Under the assumption of small angles, the above equation
reduces to the equation of simple harmonic motion
p+up=0. 3)

The simple harmonic solution is ¢)(t) =@, cos(ut), where @, is an initial angle.

Denoting y, =¢, y, =@, where y, =y, (t), V=Y, (t), we transform (2) and (3)
with the initial conditions ¢(0)=0, ¢(0)= ¢, into the following systems of first order
differential equations

)'/1=—u25iny2, V2= “4)
and
.)'}l:_u2y2’ =0 )
with the initial conditions
70)=0, 3,(0)=0,. (6)

Let us integrate (5) with (6) for te [0,7.2], where ¢, =7/60 [rad]. Hence,

A, = [0,7.2] and we take
Y,(0)=[0,0], ¥,(0)=[0.05235987755982987,0.05235987755982989 |
Finally, we specify A depending on the stepsize 4 and the number & of method steps
such that the computations could be finished successfully at least for the implicit interval
methods of Adams type. Then, the results of computations are given as follows.
Table 1. Widths of the interval solution ¥,(r) obtained from the integration of (5) with
(6) by the IMA methods for k =k, =k, =1, where h = 1E-4, 1E-5, 1E-6.

1, )
EIAB IAM TAPCI TTAPC2
1E-4 | 6.779460E-07 | 3.527207E-11 | 3.527207E-11 | 3.527207E-11
0.8 | 1IE-5 | 2.135499E-09 | 1.745521E-14 | 1.745571E-14 | 1.745637E-14
1E-6 | 2.141428E-11 | 5.907261E-14 | 5.909413E-14 | 5.911725E-14
1E-4 | 1.660386E-02 | 8.669055E-07 | 8.669056E-07 | 8.669057E-07
4.0 | 1E-5 | 5.252683E-05 | 4.233049E-10 | 4.233187E-10 | 4.233339E-10
1E-6 | 5.266869E-07 | 1.413396E-09 | 1.413917E-09 | 1.414477E-09
1E-4 - 1.953324E-02 | 1.953324E-02 | 1.953324E-02
7.2 | 1E-5 - 9.537963E-06 | 9.538273E-06 | 9.538617E-06
1E-6 | 1.186738E-02 | 3.184684E-05 | 3.185857E-05 | 3.187119E-05
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Table 2. Widths of the interval solution Y; (t) obtained from the integration of (5) with
(6) by the IMA methods for & = kp =k, =2, where h = 1E-4, 1E-5, 1E-6.

1. a0,0)
EIAB IAM TIAPCI TIAPC2
1E-4 | 1.166908E-09 | 1.623019E-14 | 1.623432E-14 | 1.624167E-14
0.8 | 1E-5 | 4.108713E-13 | 8.329776E-15 | 8.331098E-15 | 8.333341E-15
1E-6 | 3.622299E-13 | 7.783052E-14 | 7.783177E-14 | 7.783194E-14
1E-4 | 5.909160E-01 | 2.044427E-09 | 2.044964E-09 | 2.045867E-09
4.0 | 18-5 | 2.097162E-04 | 1.034466E-09 | 1.034675E-09 | 1.035003E-09
1E-6 | 1.848350E-04 | 9.688477E-09 | 9.688654E-09 | 9.688734E-09
1E-4 - 2.445918E-04 | 2.446560F-04 | 2.447641E-04
7.2 | 1B-5 - 1.238637E-04 | 1.238887E-04 | 1.239281E-04
1E-6 - 1.160164E-03 | 1.160185E-03 | 1.160195E-03

Table 3. Widths of the interval solution Y, (t) obtained from the integration of (5) with
(6) by the IMA methods for & = kp =k, =3, where h = 1E-4, 1E-5, 1E-6.

1. a0,0)
EIAB IAM TIAPCI TIAPC2
1E-4 | 2.370461E-11 | 2.341904E-15 | 2.364767E-15 | 2.423415E~-15
0.8 | 1E-5 | 1.483387E-12 | 1.307405E-14 | 1.307453E-14 | 1.307554E-14
1E-6 | 1.196633E-11 | 1.204806E-13 | 1.204787E-13 | 1.204800E-13
1E-4 - 3.464933E-09 | 3.500707E-09 | 3.590804E-09
4.0 | 1B-5 - 1.954756E-08 | 1.954903E-08 | 1.955274E-08
1E-6 - 1.804542E-07 | 1.804522E-07 | 1.804563E-07
1E-4 - 5.069395E-03 | 5.121734E-03 | 5.253552E-03
7.2 | 1B-5 - 2.867079E-02 | 2.867294E-02 | 2.867839E-02
1E-6 - 2.647419E-01 | 2.647390E-01 | 2.647451E-01

Now, let us integrate (4) with (6) for ¢ e [0,1], where ¢, = 7/60 [rad]. We get the
following comparison of the widths of the interval solutions
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Figure 1. Widths of the interval solution Y; (1) obtained from the integration of (4) with
(6) by the IIAM for £ = 1,2,3, vs. the stepsize A.
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Figure 2. Widths of the interval solution Y, (1) obtained from the integration of (4) with
(6) by the IIAM for £ = 1,2,3, vs. the stepsize A.
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3.2. The Two-Body Problem

Let us consider the system of two material points with the masses m, and m,. We put
the origin of the rectangular coordinate system at the material point with the mass m, .

Such a frame is an uninertial one and can be considered as an inertial frame if the mass
m, is significantly larger then the mass m, .

The equations of relative motion of material point with the mass m, with respect to
the material point with the mass m, are of the form

X
>

F=Glm +my) 2 2= Gl ) ™

i==G(m +m,)

~

where x=x(t), y=y(r), z=z2(t), r=+/x* + y* + 2> and G is the gravitational constant.

We assume that the material points are located in the plane, i.e. z=0. Denoting
U =x, U=y, u,=x, u,=y,where u, :ul(t), u, :u2(t), u, :u3(t), u, :u4(t),

r=+lu’ +u,’, we transform (7) with the initial conditions x(0)=x,, »(0)=y,,
)'c(O):vxo, y(O):vyo, into the system of differential equations of the first order as
follows

U =us, U, =uy,, 1"{3:_G(m1+m2)ﬂ9 124:—G(m1+m2)ﬁ, 3

~
~

with the initial conditions
”1(0):xoa u2(0)2y03 ”3(0):on3 ”4(0):";»0‘ )

Now, let us take the mass of the Earth as the mass unit, the astronomical unit as the
length unit, and the sideral year as the time unit. For these units we have the gravitational
constant G = 1.185684121E-4. Now, we assume that the material points with the masses
m; =1 and m, =332958 , where m, is the mass of the Sun in the given mass unit, fulfil

at the initial moment # = 0 the following conditions
u,(0)=1, u,(0)=0, u,(0)=0, u,(0)=G(m, +m,). (10)
The analytical solution of (8) with (10) has the form (see also [21])
u,(t)=cos (Mt), u,(t)=sin(Mt), u(t)=—Msin(Mt), u,(t)=M cos(Mt),

where M =G (m, +m, ).
We integrate (8) with (10) for 7€ [0,1]. Hence, A, =[0,1] and we take
U (0)=[11]. v,(0)=[0.0]. vs(0)=[0.0]
U,(0)=[6.28318549180301535,6.28318549180301537].
Then, we get the following results.
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Table 4. Values of the exact solution and the interval solutions U, (t), i=1,2,3,4, obtained
from the integration of (8) with (10) by the IIAM method for k =2, where # = 1E-5.

”1(1)

U,(e)

0.2 3.09016959257484E-1 [ 3.0901695925747969E-1, 3.0901695925748894E-1]
0.4 -8.09017037782516E-1 [-8.0901703778257027E-1,-8.0901703778246288E-1]
0.6 | -8.09016929263585E-1 [-8.0901692926487735E-1,-8.0901692926229403E-1]
0.8 3.09017134844796E-1 [ 3.0901713483060309E-1, 3.0901713485898777E-1]
1.0 9.99999999999982E-1 [ 19.9999999974702492E-1, 1.0000000002529414E+0]

uz(t) Uz(t)
0.2 9.51056527705508E-1 [ 9.5105652770550377E-1, 9.5105652770551289E-1]
0.4 | 5.87785192547074E-1 | [ 5.8778519254698043E-1, 5.8778519254717017E~1]
0.6 | -5.87785341910564E-1 | [-5.8778534191141762E-1,-5.8778534190971036E-1]
0.8 | —9.51056470653721E-1 | [-9.5105647067212342E-1,-9.5105647063532045E~1]
1.0 | 1.84623428883101E-7 | [ 1.8435716556183061E-7, 1.8488969007326329E7]
”3(’) U}(’)
0.2 -5.97566457676380E+0 [-5.9756645767638517E+0,-5.9756645767637525E+0]
0.4 -3,69316339410842E+0 [-3.6931633941091693E+0,-3.6931633941076792E+0]
0.6 3.69316433258693E+0 [ 3.6931643325702719E+0, 3.6931643326035890E+0]
0.8 5.97566421829684E+0 [ 5.9756642181779058E+0, 5.9756642184157832E+0]
1.0 -1.16002324980522E-6 [-1.1633906352060689E-6,-1.1566558509050039E-6]

”4(t)

U,(0)

0.2 1.94161087512770E+0 [ 1.9416108751276484E+0, 1.9416108751277690E+0]
0.4 -5.08320411441656E+0 [-5.0832041144176589E+0,-5.0832041144154596E+0]
0.6 | -5.08320343257198E+0 [-5.0832034325811353E+0,-5.0832034325628382E+0]
0.8 1.94161197837535E+0 [ 1.9416119781338048E+0, 1.9416119786169041E+0]
1.0 6.28318549180290E+0 [ 6.2831854895478384E+0, 6.2831854940579771E+0]
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Figure 3. Widths of the interval solution U(t) obtained from the integration of (8) with

where h = 1E-5.

(10) by the EIAB methods for £ = 1,2,3, and the ITAM methods for k= 1,23,
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Figure 4. Widths of the interval solution U(t) obtained from the integration of (8) with
(10) by the EIAB methods for & = 1,2,3, and the [TAM methods for k= 1,2,3,
where /# = 1E-6.

3.3. Hill Equations

Finally, we consider the equations of motion of the Moon given by Hill (see e.g. [21]).
We assume that the origin of the frame is placed in the center of the Earth, the plane xy is
in line with the Sun’s orbit plane and the frame rotates with the constant angular velocity
v', where v' denotes the mean motion of the Sun. Moreover, we assume that in the
considered frame of reference the axis x goes across the center of the Sun and the Sun
revolves around the Earth along the circular orbit. The equations of motion of the Moon
(called the Hill equations) are of the form

d’x dy K 2) d*y dx K d*z [K 2)
=2M——| —-3M" |x, = 2M——-—y, —=——+M"|z, 11
dr’ dr (r3 dr’ dr 7 dr? P (an

where x = x(r), y= y(f), z=2z(7), = (v —v)t—1, ), r=4/x"+y’>+z> . Moreover, the

parameters M and x in (11) are introduced as follows

v' my+m
M=——7 7, k=G —"—1, (12)
v—v (v —v')
where v is the mean motion of the Moon, G is the gravitational constant, and m,, m,
denote the masses of the Earth and the Moon, respectively.

Taking into account a small inclination of the Moon’s orbit to the ecliptic, we can
also assume z=0. Finally, denoting u, =x, u, =y, u; =dx/dr, u, =dy/dr, where
u, :ul(z'), u, =u, (z’), Uy =, (r), u, =u, (f),we transform (11) with the initial condi-
tions x(0)=x,, ¥(0)=y,, dx/dz(0)=v,,, dy/dz(0)= v, into the following system of

differential equations of the first order
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=2Mu, —(é—mzjul, %?ZM% _£3u2, (13)
r T r

du, du, du,

—=u,, —==u,, —
dr dr dr

with the initial conditions

”1(0):x0= ”2(0):y0= ”3(0):on= ”4(0):";»0’ (14)

where 7 =qJul +u; .

In order to test the methods considered we determine the initial conditions (14) as
follows

u,(0)=1, u,(0)=0, u(0)=0. u,(0)=1, (15)

and

u,(0)=-0.9447782, u,(0)=-0.2673999,
u,(0)=0.3286969, u,(0)=—0.9500594. (16)
Finally, we specify the parameters M and x in (13) as

= M=0, k=1, and

= M=0.080848933808312, x =1.171418459184516, respectively.

Then, we get the following results.

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
1E+00 . . | . | . . | . . |
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—+ lIAPCTk,=k =1 —« —lIAPC1k,=k =2 —e —lIAPC1k,=k =3

Figure 5. Widths of the interval solution U, (r) obtained from the integration of the Hill
equations (13) with (15), with M =0, x = 1, by the EIAB methods for £ = 1,2,3, and the
IIAPCI methods for k =k, =k, =1,2,3, where h = 1E-5.
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Figure 6. Widths of the interval solution U, (r) obtained from the integration of the Hill
equations (13) with (16), with M =~ 0.08, ¥ = 1.17, by the EIAB methods for k= 1,23,

and the ITAPC1 methods for £ = kp =k, =12,3, where h = 1E-5.

4. Conclusions

Comparison of the numerical results obtained with the explicit and implicit interval
methods of Adams type let us formulate the following conclusions:

The implicit interval methods of Adams type yield better results, i.e. interval
solutions of a smaller width, than the explicit ones applied with the same number k&
of method steps and the same stepsize 4.

For the explicit and implicit interval methods of Adams type the increase in the
number k of method steps for the same stepsize / contributes to the decrease in the
widths of the interval solutions. A similar effect can be observed if we reduce the
stepsize & for the same value of parameter £. Such a behavior of these methods is
true mainly for short integration intervals. Otherwise for each particular IVP the
suitable interval multistep method with the appropriate number k& of method steps
and the stepsize & should be chosen to get the best acceptable result.

For a given stepsize there exists an optimal number of method steps, and for a given
number of method steps the optimal stepsize can be found.

The widths of the interval solutions obtained by the implicit interval methods of
Adams type and both kinds of interval predictor-corrector methods of Adams type
are of the same order. We recommend applying the interval predictor-corrector
methods due to a significant reduction in the number of iterations involved. The
number of iterations is usually reduced by half in comparison to the interval
methods of Adams-Moulton type. Hence, computation time is saved.

The implicit interval P(EC)’E predictor-corrector methods of Adams type yield
interval solutions of somewhat smaller widths then the P(EC)* ones. On the other
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hand the additional computation of Fn(‘y) =F (T Y ) performed in each step of the

n>"n

method makes them a little bit more laborious than the P(EC)® ones.

As numerical tests show, the interval solutions of the smallest widths are mostly
produced by the interval methods of Adams type for £ > 1. For this reason, just the
interval multistep methods of Adams type rather than the interval one-step ones
should be taken into account before the integration of the given I'VP starts.
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Porownanie przedzialowych metod wielokrokowych typu Adamsa na przykladzie

wybranych ukladéw dynamicznych

W pracy poréwnane zostaly jawne i niejawne przedzialowe metody typu Adamsa na przyktadzie wybranych
uktadow dynamicznych. Rozwazane metody moga by¢ wykorzystane do rozwigzywania zagadnienia
poczatkowego dla rownan rozniczkowych zwyczajnych. W wyniku zastosowania wspomnianych metod
otrzymujemy przedzial rozwiazanie, ktore zawiera w sobie rozwiazanie dokladne danego zagadnienia
poczatkowego. Metody przedziatowe zostaly zbadane ze wzglegdu na efektywnos$¢ ich dziatania oraz
doktadnos¢ otrzymanego rozwiazania.



XXIV Symposium Vibrations in Physical Systems, Poznan — Bedlewo, May 12-15, 2010

Interval Multistep Predictor-Corrector Methods
of Adams Type for Solving the Initial Value Problem
for Ordinary Differential Equations

Malgorzata A. JANKOWSKA
Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
malgorzata.jankowska@put.poznan.pl

Abstract

In the paper we propose the interval multistep predictor-corrector methods of Adams type for solving the
initial value problem (IVP) for ordinary differential equations (ODEs). These methods are based on the
explicit interval methods of Adams-Bashforth type and the implicit interval methods of Adams-Moulton type.
The interval methods considered belong to a class of algorithms that allow to obtain the guaranteed result, i.e.
the interval solution that contain the exact solution of the problem.

Keywords: initial value problem, ordinary differential equations, floating-point interval arithmetic,
interval methods, interval predictor-corrector methods of Adams type

1. Introduction

Interval methods have been first proposed for verified computing by Sunaga (see [14])
and Moore (see e.g. [12]-[13]). Growing interest in such algorithms (see e.g. [2], [11])
results from the fact that interval solutions obtained by theses methods include the exact
solution of the problem. Computer implementation of the methods considered in the
floating-point interval arithmetic (for some information on the C++ libraries for floating-
point conversion and interval arithmetic see [4]-[6]), together with the representation of
initial data in the form of machine intervals, let us achieve interval solutions that contain
all possible errors (i.e. the errors of inexact input data that is often obtained through the
experiment, the errors caused by the representation of real numbers in computer, the
rounding errors and the errors of the approximate methods).

The development of the interval methods for solving the IVP for ODEs started with
methods based on Taylor series (the detailed bibliography concerned with all verified
methods devoted for the IVP is available in e.g. [3] and [10]). The interval multistep
predictor-corrector methods of Adams type introduced in the paper are based on the
explicit interval multistep methods of Adams-Bashforth type (see [1], [3], [8], [10]) and
the implicit interval multistep methods of Adams-Moulton type (see [1], [3], [7], [9]-
[10]). In the paper we give the detailed theoretical description of the interval predictor-
corrector methods (the results of numerical experiments can be found in [3]).

The interval methods presented in the paper can be used for solving the IVP that
occurs very frequently in physics and other sciences. For example in the area of
dynamical systems the differential equation is an evolution equation that specifies how,
with a given initial condition, the system will evolve in time.
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2. Initial Value Problem and Interval Explicit and Implicit Multistep Methods of
Adams Type

Let us consider the initial value problem for ordinary differential equations of the form
v'=f(62) 0)=y,, (1)
where ¢ € [0,9‘], £eR, y= y(t)e RY, f: [0,5] x RY— R".
Now, let us choose a positive integer m and select the mesh points ¢,¢,...,¢, , where
t, =nh for each n=0,1,...,m and h=¢/m . Moreover, we denote by A, and A the
sets in which the function f (t, y) of the IVP (1) is defined as follows:
A, :{teR:OStéf, §eR},
A, = {y = (yl,yz,...,yN )Te RY: b, <y, Sl;,., l_),.,I;i eR, i=12,....N }
Let F(7,Y) be an interval extension of f(t,y), and ¥(7,Y), ¥(T,Y) be interval

extensions of functions y/(t, y) and (t, y) (for details see [3]) determined as follows:

v(ny@)= Y (@)= "0). nels, ],
(.30 =" (r.3) =" ), nele, o, ]
We also assume that
. F(T,Y) is defined and continuous for all 7 A, and ¥ A,
. F(T,Y) is monotonic with respect to inclusion, i.e.
T,cT,AY, Y, = F(T,Y,)c F(T,.1,),
= foreach T c A, and foreach Y c A y there exists a constant L >0 such that
d(F(1,Y))< L(d(T)+4d(Y)).
where d(4) denotes the width (diameter) of 4; if 4=[x,x] then d(d4)=x-x; if
A=(4,,4,,...,4,)" then d(A4) is defined by d(4)= I_:g?de(A,.),

‘P(T,Y), @(T,Y) are defined for all 7 < A, and YCAy,

¥(7,Y), ¥(7,Y) are monotonic with respect to inclusion.

2.1. Explicit Interval Methods of Adams-Bashforth Type

Let us assume that y(O)e Yy, ¥, <A, and the intervals ¥, cA , such that y(t,.)e Y.,

i=1,2,...,k—1, are known. An integer k£ =1,2,... states how many interval-solutions Y,

are required to apply the k-step multistep method and it is referred to as the number of
method steps. We obtain Y;,i=12,....,k—1 by applying an interval one-step method
(e.g. an explicit interval method of Runge-Kutta type (see e.g. [10]) or an explicit
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interval method of Adams-Bashforth type with k£ =1). Then the explicit interval method
of Adams-Bashforth type (see also [3]) can be given in the form

k-1
Y, =Y, +h) 7, V‘fF(Tnfl Y, )

Jj=0
1y (T + [~ =D Y, + [~ (k=D ]F (A, ,A,)),

forn=k,k+1,...,m,

2

where ¢, =iheT,, i=0,1,....,m, y,, j=0,1,....,k and V"F(TH ,YH) are given by

vo=1 7, :l,'_[ols(s+l)---(s+j—l)ds, J=12,..,k,
_ J Jj 3)
Vj F(Tnfl ’Ynfl ): z (_ 1)'" (ij(Tnlm ’Ynflfm)'
m=0

The formula of the explicit interval methods of Adams-Bashforth type equivalent to (2)
can be written as follows

k
Y,=Y,_ +hy B, F(T,_,.%, )
j=1

iy (T [ G-Omn)y, [k -DhaF(aa)) @

forn=k,k+1,...,m,
where S, are defined as follows

= m
B=(1" > ( Jym, J=1.2,.. k. (5)

m=j-1 J - 1

2.2. Implicit Interval Methods of Adams-Moulton Type

Let the assumptions about Y, i=0,1,...,k—1,be the same as in Sec. 2.1. Then the
implicit interval method of Adams-Moulton type (see also [3]) can be given in the form
Y, =Y, +h/2 7. viF(T,,7,)
j=0
w027 (T, + w01y, + 017 (4,04, ), ©
forn=kk+1,....m,

where #, =iheT,, i=0,1,....,m, 7;, j=0,1,....,k+1 and V/F(T,,Y,) are given by
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7 =1, 71.:1.' Cs(sH0)(s b j-Dds, =12 k41,
-

,. . (7)
VIF(T,.Y,)- z<-1>m[ij<nm,m.

The equation (6) can be written in the equivalent form

k

k J ;
Yn:Yn—l+h27jF(T ) Z Z( ( j ( nm’Yn—m)
=0 =t =l
W27 W1, +[-kh,01Y, +[-kh,0]F (4,4, ), ®)
forn=kk+1,....m

Another kind of the implicit interval methods of Adams-Moulton type (which are not
equivalent to (6) and (8)) are of the following form

k

Y, =Y, +hB,F ( Y,)+ Z ( J)

9
ch 7, (T, k0], + w07 (,4,)), )
forn=kk+1,....m

where ,E,g are defined as follows

Ekfz(—l)fz(';?jym, =01, k. (10)

m=j

Let us note that (6) (or (8)) and (9) are both nonlinear interval equations with respect
to Y, n=k,k+1,...,m. It implies that in each step of these methods we have to solve

an interval equation of the form
Y =G(T,7), (11)
where
Tella)c R, Y=(Y,Y,,...v,) ella,)=IRY, G:1(a,)x1(a,)— IR,
IR denotes the set of real intervals and [/ (A,), 1 (A y) — the sets of intervals which are
contained in A, and A, (or the sets of subintervals of A, and A ), respectively.

If we assume that G is a contraction mapping, then the fixed-point theorem implies
that the iteration process

Y =g(r,y?), 1=o,1,..., (12)
is convergent to an unique element Y, i.e. lim, Y )~ y*, for an arbitrary choice of

Y9er(a,).
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For the interval methods of Adams-Moulton type given by (6) (or (8)), the iteration
process (12) is of the form

Y=y o+ hi 7, F(Tn ,Yn('))+ hzk: 7, Zj:(— 1)m(ij(Tnm 7,
j=1 m=1 m

=0
en 7 (7, k0], 4 a0l (a4, ).
forn=kk+1,...,m.
Similarly, for the methods described by (9) we have

J

Yy,(Hl) = Yn—l +hﬁk0F(Tn ’Yn(l))—i_hi Ekf F(Tnfj ’Yn7 )
j=1

127 B(T 4 0], 7,0 + [k 0]F (a,4,)),
forn=kk+1,....m.

Note that for the above iteration processes we usually choose Yn(o) =Y

n—-1-°

3. Interval Predictor-Corrector Multistep Methods of Adams Type

The implicit interval methods of Adams-Moulton type described in Sec. 2.2 can be
realized in another way. Let us assume that the iteration processes (12) is initiated by the
interval solution obtained by applying the explicit interval k-step method of Adams-
Bashforth type, instead of Y, |, as we proposed in Sec. 2.2. Such an initialization is

characteristic of predictor-corrector methods. Hence, we define the interval predictor-
corrector methods of Adams type in the following way.
Let the assumptions about Y,, i=0,1,...,k -1, be the same as in Sec. 2.1. Consider

the explicit interval k-step method of Adams-Bashforth type as a predictor and the
implicit interval k-step method of Adams-Moulton type as a corrector. We assume that
both predictor and corrector formulas describe the interval multistep methods such that
the number % of method steps is the same. Moreover, we denote by s (s >1) the number
of iterations that are performed in each step of the method.

The assumptions about £ and s have been made to simplify the notation of the
interval predictor-corrector methods of Adams type and can be neglected while
developing the specific predictor-corrector formulas.

For the interval methods of Adams-Moulton type given by (6) (or (8)), the interval
P(EC)’E predictor-corrector methods of Adams type are of the following form:

P Y”(O) = Y”(ﬁ + hiﬂkj F(Tn*j’Yn(i)j)
! (13)
1y w(T [ (=0Rn), Y9 + [ (k-1)a.n]F (4, .4,)),

E: FV=F(1,v"), (14)



Jj=0
; .
+h27 2y ( j F(1,.,.78),) (15)
Jj=1 =1
+hhe? ka?(Tn + [ #h,0), ¥ + [~k ,0]F (A, A, ),
for/=0,1,...,5 -1,
E: if n <m, then Fn(‘):F(Tn,Yn(‘)), (16)

forn=k,k+1,..., m.

Similarly, for the interval methods determined by (9) we have

p: Y=y +h2/3,g ( Q)

17
h"“n W(7,, +[- (k= 1D)nn], 78+ [ (k-1)m.k]F (4,4, ), "
E: FV=F(1,v"), (18)
c: Y =yY 1np FV +hi B, F(1,_,.v")
nt g (T +[—kh 0], v +[-kn,0]F (, A, ), (12)
for/=0,1,...,s -1,
E: ifn<m, thenF" =F(7, ¥), (20)

forn=k,k+1,....m

For the interval methods of Adams-Moulton type given by (6) (or (8)), the interval
P(EC)® predictor-corrector methods of Adams type are of the form

P YO = +hZﬂk/ F(r, ¥t

+hk+17k w(1,, +[(k=Dhn], ¥8) + [ (k-1)m,]F (a,.4,)),

e2y)

E: FV=F(r,,v"), (22)
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k
c: v =y +ndy FY
j=0

k J i
#hy7, 2 1) [ : ]F(Tnm x)) 23)

m=1
#0727, (T, + [ k0 0], ¥+ [k 0]F (4, ., )
for/=0,1,...,s -1,
forn=k,k+1,...,m.

Similarly, for the interval methods determined by (9) we have

P YOyl hi/}kj F(r,_ vt Y)
=

(24)
Wy (T + - 1)h ) Y+ [ (k-1)m,h]F (4,4, ),
E: FV=F(r,,v"), (25)
k
C: Y=y hB E by B, F(1,_,.x8))
! (26)

05 BT, + [ k0], v + [k, 0] (4,4, ),
for/=0,1,...,s -1,

forn=k,k+1,...,m.
Let us note that the symbol P denotes a prediction that determines the initial interval
solution Yn(o) by the explicit interval k-step method of Adams-Bashforth type. The

symbol C means a correction that performs several iterations using the implicit interval
k-step method of Adams-Moulton type, and E — an evaluation that computes

Fn(l) = F(T,1 ,Yn(l) ) for 1=0,1,...,s —1. Furthermore, for the methods of P(EC)’E type,
after computing the last iteration, the additional evaluation of Fn(‘) =F (T . ,Yﬁ) is
required and used in the next step. Hence, these methods require more work than the
P(ECY’ ones.

Remark 1

For the above algorithms of interval P(EC)’E and P(EC)® predictor-corrector methods of
Adams type, given by (13)-(16), (17)-(20) and (21)-(23), (24)-(26) the following issues
should be taken into account:

1. Since ¥, , = A, then before applying the method we only have to check that
Yo, +[-(k=1)n,r]F(A,,A,)cA,.
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2. From the assumption made on the function F the interval solution Yn(l)obtained at ¢,
n=k,k+1,...,m, is acceptable if for each / =0,1,...s we have
v ca,.
3. Suppose that the interval solution Yn(l) for a given / is such that the above condition is
satisfied. Then, from the assumption made on the function ¥, the computation of Yn(”l)
is allowed if
YO +[kh,0] F(A,.A, )= A,

4. Suppose that Yn(") <A, . Then, from the assumption made on the function ‘¥, the
computation of Y}S)l is allowed if

YO 4 [~ k(e =1h,n ] F(A,,A, ) A, .

Note that in each step of the method it is necessary to check that the above conditions
hold. If one of them is not satisfied then the computation should be aborted.

Remark 2

Note that from the assumptions made in Sec. 2.2. the iteration processes (13)-(16), (17)-
(20) and (21)-(23), (24)-(26) are convergent to Y,, i.e. lim Y® = Y,, where Y,

n=k,k+1,...,m, are obtained from (6) (or (8)) and (9), respectively. Hence, for s — o

the predictor-corrector methods considered turn into the interval methods of Adams-
Moulton type given by (6) (or (8)) and (9).

3. Conclusions

Comparison of the numerical results (see [3]) obtained with the implicit interval methods
of Adams-Moulton type and the interval predictor-corrector methods of Adams type let
us formulate the following remarks:

= The widths of the interval solutions obtained by the implicit interval methods of
Adams type and both kinds of interval predictor-corrector methods of Adams type
are of the same order.

=  We recommend applying the interval predictor-corrector methods due to a
significant reduction in the number of iterations involved. The number of iterations
is usually reduced by half in comparison to the interval methods of Adams-Moulton
type. Hence, computation time is saved.

= The implicit interval P(EC)’E predictor-corrector methods of Adams type yield
interval solutions of somewhat smaller widths then the P(EC)® ones. On the other

hand the additional computation of Fn(s) = F(T,.,Y,) performed in each step of the

n>=n

method makes them a little bit more laborious than the P(EC)® ones.
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Przedzialowe metody wielokrokowe predyktor-korektor typu Adamsa rozwiazywania
zagadnienia poczatkowego dla ré6wnan rézniczkowych zwyczajnych

W pracy zaproponowane zostaly przedzialowe metody wielokrokowe predyktor-korektor typu Adamsa
rozwiazywania zagadnienia poczatkowego dla rownan rézniczkowych zwyczajnych. Metody te oparte sa na
jawnych przedziatlowych metodach typu Adamsa-Bashfortha oraz niejawnych przedziatowych metodach typu
Adamsa-Moultona. Metody przedziatowe naleza do klasy algorytméw, ktore pozwalaja otrzymaé rozwiazanie
danego problemu w postaci przedzialu-rozwiazania, ktory zawiera w sobie rozwiazanie doktadne.
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Abstract

The kinematical problem of a two rigid body general motion is treated. Introduced in the paper the stiffness
condition method for to appoint the relative rigid body motion is based on the absolute rigid body motion
formulae. It allows us to derive the velocity and acceleration distributions in the way by analogy to rigid body
kinematics. Emphasis is placed on the investigation of the stiffness condition in the general motion. In one
place only we have to use the ordinary formulae for the absolute, drift or Coriolis components Examples are
given to illustrate the practical applications to the mechanisms.

Keywords: relativity, drift, Coriolis, stiffness
1. Introduction

The principles of conservations i the Newton dynamics suggest that the description of
the physical phenomena should be of global nature [1]. But the velocity is locally
defined and its relative character means that the every result is of the same importance.
Hence, the physical meaning of the velocity may concern to the fraction of the body only
(locality) and its derivation is acceptable with respect to other bodies only (relativity).
The conception of local-relative velocity, which is with respect to chosen reference
system defined, was named in mechanics absolute velocity. But the subjectivity of the
choice of the reference system question the sense of existence of the conception. Only
the appointment of absolute motion in the same reference system for another fraction,
named observer, allows to receive the results that are comparable for the both bodies.

The difference of this both absolute motions we are called the relative motion.

2. Absolute motion

Let the body model takes the region Q in 3D Euclidean space. Element 4 € Q of the
region is called the place. Similarly, the interval (0,00) of the real numbers in 1D space

is called the time, and its element ¢ € (0,0) is called the instant.

The location r of a place 4 € Q in the space may be expressed by a position vector xA
in the reference frame with a set of orthogonal axes O  e,e;e named Cartesian
coordinate system:

r(A)=xA(), te(0,) €))
The absolute linear velocity vb(A4) of a place 4e€Q is the time derivative of the
position vector:
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vb(A) :%XA(I), t €(0,0) 2

But the absolute linear velocity does not determined unambiguously the motion of the

place A€ [2]. Following Chasles theorem [3] rotation of a rigid body can be
described by a temporary rotation axe where the absolute angular velocity vector

wb(A) of the place A € Q is being. Hence, the absolute motion of the rigid body is
locally determined be the two vector functions of time:

vb(4)=g(t), wb(A)=h(r), t<(0,:0) 3)
Global properties of absolute motion gives the so called stiffness condition:
vb(B) = vb(4) + ab(4)x (r(B)-r(A4)), ab(B)=awb(4), A,BcQ 4

The formulae (3-4) describe the absolute motion of a rigid body. Note that according to
the formula (4) there can be change the place B € Q in the region. It gives a possibility
of determining the absolute motion of the rigid body treated as the set of all the places in
the region. Remaining in that way results allows to define the fields of the absolute linear
velocity and the absolute angular velocity vectors in the region of the considered body.
The graphical representation of this fields are called the velocity time-tables in the
theory of mechanisms.

The derivatives with respect to time of the velocity vectors are called the absolute linear
and angular accelerations of the place 4 Q:

ab(4)=g(t), e(4)=h(), te(0,0) )
The absolute acceleration time-tables we can receive if we will differentiate the formula
(4) with respect to time:
ab(B) =ab(A) + & (A) x (r(B) —r(A4)) + ab(A4) x[ab(A) x (r(B) —r(A4))]
d(B)=éb(A4), A,BeQ
The double vector product follows from the formula (2).

(6)

3. Drift motion

The absolute motion of the observer it is adopt to call the drift motion. Let the model of
the observer body occupies in the space the region ®, which elements C € ® we will
call the points. The location q of a point C € ® in the space may be expressed by a

position vector y in the same reference frame with a set of orthogonal axes O |e,e;e:
q(C)=yC(®), t€(0,0) (7
The drift linear velocity vu(C) of a point C € ® is the time derivative of the
position vector yC. The drift motion of the observer is locally determined by the vector
functions of time:
vu(C)=§(t), ou(C)=h(t), te(0,0) (8)
Global properties of the drift motion gives kinematical stiffness condition:
vu(D) = vu(C)+ aou(C)x (r(D)-r(C)), ou(D)=ou(C), C,De® 9
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The formulae (8-9) describe the drift motion of an observer. The derivatives with respect
to time of the velocity vectors (8) are called the drift linear and angular accelerations of
the point:
au(C)=g(r), au(C)=h(r), 1e(0,0) (10)
Drift linear and angular accelerations we can receive if we will differentiate the formula
(9) with respect to time:
au(D) = au(C) +au(4) x (r(D) —r(C)) + au(C) x[an(C) x (r(D) —r(C))] (1
aD)y=au(C), C,De0®
The formula (9) can be of use as the definition of a new set of points in the space.
The points of this set have some kinematical properties like the points belonging to the

observer. The set we marked ) and called the kinematical region. Hence, the point
E € Q is deriving by the formula:
Vu(E) = vu(C) + a(C) x (r(E) —r(C)), am(E)=an(C), Ce®,EcQ (12)

Note that the point £ € ) is unlimited in the space. Hence we can accept that its
position vector is covered with the position vector of a place in the region:
xE(?) =yE(t), te(0,0) (13)
Hence in every place of the region occupied by the considered body in the space we
can define both absolute and drift velocity vectors.
The global properties of the drift motion are valid in the original version in the
kinematical region. It allows to write the kinematical drift stiffness condition:

vu(F)=vu(E)+ ou(E)x (r(F)-r(E)), au(F)=wu(E), E.Fe Q (14)

Note that the formula (14) allows to replace the choice of a point F € Q in the
kinematical region. It gives a possibility to derive the drift motion for a whole the

kinematical region as the set of all the points £ € Q . The results that are receiving in
that way allows to determine the drift linear and angular velocity time-tables in the
region occupies in the space by the considered body.
The drift acceleration time-tables we can receive if we will differentiate the formula (14)
with respect to time:
au(F) =au(E)+ au(E)x (r(F)—r(E))+ au(E)x[au(E)x (r(F)-r(E))] s
a(F)=au(E), EFeQ (13)
Here the drift accelerations are deriving in all the places of the region occupies in the
space by the considered body on the base of points in the region of the observer.

4. Relative motion

Relative motion is comprehended in mechanics as the motion of some places occupies in
the space by the considered body that is determined with respect to the points of the
observer region, which is treated as the motionless reference frame. Relative linear
velocity vw(A) and relative angular velocity ww(A4) of the place B €Q in the region
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of the body are defined as the corrections to the drift velocities that are necessary to
receive some suitable absolute velocities:
vb(A4) =vu(A4)+ vw(A4), ab(A)=wu(d)+aw(Ad), AcQ (16)
It is worth to notice that the formula is valid locally in the region of the body. Hence,
the definition (16) is inconsistent because of the place B € Q is not the point of the
observer region ® , in which the drift velocity is defined. That is why the drift motion
seems impossible to derive. But the observer region ® can be extend to the kinematical

region Q) , in order to exist the inclusion: Q = Q. Then the definition (16) contains only
the vectors correctly specified. It allows for the symbolical notation:
(vb, wb)(B) = (vu,an)(B) + (vw,cw)(B), AeQ (17)
Inserting the stiffness conditions (4) and (14) into formula (17) one can obtain the
relative linear and angular velocity distributions:

vw(B) = vw(A) + aw(A) x (r(B) —r(A4)), aw(B)=aw(A4), A,BeQ (18)
For the accelerations the symbolical notation (17) should be develop:
<ab, gb)(B) = (au, eu)(B) + <aw, gw)(B) + <ac, 5c>(B), BeQ (19)
because of the Coriolis acceleration presence:
ac(A) =2c0u(A) x vw(A4), e(A)=ou(A)xaow(Ad), AeQ (20)

Then the relative linear acceleration aw(B) and relative angular acceleration ew(A4)
of the place BeQ are locally defined as the corrections to the drift and Coriolis
accelerations that are necessary to receive some suitable absolute accelerations:

ab(A) =au(A4)+ac(A)+aw(4), &(4)=au(A)+a(A)+ew(d), AcQ @2n
The formula (21) is inserting to the absolute linear acceleration time-table
au(B) +ac(B)+aw(B) =au(4)+ac(4) + aw(A4)
+au(A) + se(A) + ew(A)]x (r(B) —r(4)) (22)
+[ou(4) + ow (D] x[{ou(4) + ow(4)} x (r(B) —r(4))]
We use the formulae (14-15) for the drift motion:
ac(B) +aw(B) =ac(A4) +aw(A4) +[ec(A) + ew(A)]x (r(B) —r(A4))
+[aou(A4) + ow(AD]x[{ou(4) + ow(A)} x (r(B) —r(4))] (23)
+ ou(A) x[aou(A4) x (r(4)—r(B))]

Comparing the formulae for the linear and angular Coriolis accelerations and

Equation (18) for the relative linear velocity we observe a simplification:

aw(B) =aw(A4) + ew(C) x (r(B) —r(4))
+ ow(A)x[aw(A)x (K(B) ~r(4)], 4,BeQ
Similarly for the relative angular acceleration time-table in the region:
ew(B)=ew(A), A,BeQ (25)

Changing the place B in the formulae (24-25) we can derive relative linear and angular
accelerations without any determination of absolute, drift and Coriolis accelerations.

(24)
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5. Rigid beam supported to moving cylinder

Let’s find velocity and acceleration of the end A of the rod (Rys. 2). Angles depend on
time.

Figure. 1. The rod connecting with the moving drum by the cylindrical pin

We note that the kinematical region have to have a larger radius b+ d than the
moving drum. Here the relative velocities of the place B are:

vw(B) =0, wow(B)=(f-c,0,0) (26)
The stiffness condition (18) for the relative velocities leads to the result:
vw(A) =ow(B)xd =d - (8 —a)(0,cos f3,sin ) 27)
Similarly, the relative accelerations of the place B have a shape:
aw(B) =0, ew(B)=(f—-a,0,0) (28)

and the formulae (24-25) allow us to determine the relative accelerations of the place
A:

aw(4) = ew(B)xd + ow(B) x[ow(B)xd] = [(8 - &)e + (B — &)*f
ew(A4) = (- d.,0,0)
where e =(0,cos §,sin ), f =(0,—sin f,cos ) .

(29)

6. Concluding remarks

The purpose of this paper is to extend the stiffness condition to be in force for the rigid
body to the case of the relative motion. Consequently, the relative motion can easily be
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solved for all the places of the rigid body without any absolute, drift or Coriolis
components. The applications of the condition to calculate the velocities and
accelerations in the relative motion similarly as for absolute motion is suggested. The
elaborated model is applied to vibrations of rigid beam supported to moving cylinder.
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Plany predkosci i przyspieszen w ruchu wzglednym
Rozwazane jest zagadnienie kinematyczne w ruchu ogdlnym dwu ciat sztywnych wzgledem siebie.
Przedstawiona w pracy metoda warunku sztywnosci dla wyznaczania ruchow wzglednych bryly opiera sig¢ na
wzorach stosowanych w ruchu bezwzglednym. Pozwala to wyznacza¢ plany predkosci i przyspieszen w
sposob analogiczny jak w kinematyce bryly. Jedynie w jednym miejscu bryly nalezy zastosowac znane wzory
dla ruchow bezwzglednych, unoszenia i Coriolisa. Daje to duze mozliwosci zastosowan w analizie
mechanizmow.
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Abstract

The main contribution of this paper is to find the friction moments appear during the bar motion. The
considerations are based on momentum and moment of momentum principles. The introduced friction is
separated into rotating and sliding parts, where the rotating part is divided into rolling and whirling, as well.

Keywords: momentum; moment of momentum; friction; reductions pole

1. Introduction

To express the laws of rigid body dynamics with respect to both possible independence
motions: translations and rotations it is necessary to connect the effect of a moment of
momentum on the mathematical representation of forces and moments appearing to the
motion equations. This is actually the role of an axiom stating that momentum and
moment of momentum are quantities on equal terms and, in a consistent theory, the
motion equations must concern the same reduction pole for the principles of momentum
and moment of momentum. Note that the addition of the reduction pole to these
principles leads to correct description of the rigid body motion.

2. Momentum and moment of momentum principles

Let the body model takes the region Q in 3D Euclidean space Z with the place A € 2
as an element. Absolute motion of the body in a frame of reference [2, p. 7] with the

Cartesian coordinate system O;e;eze can be described with two mathematical objects:
rotation matrix R and position vector x connecting point O with the place 4. Absolute
linear velocity V(A) of the place A € {2 is the time derivative of position vector.
Following Chasles theorem [3, p. 329] rotation of a rigid body can be described by an
absolute angular velocity a)(A) Finally, the motion can be determined locally:

v(4)=g(t;x), o(4)=h(x), te(0,0) (1)
Global properties of motion are described by the stiffness condition:

V(B) = v(A) + w(4)x (AB), (B)=a(d), ABeQ @
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Inertial properties are based on the momentum-velocity relationship [4, p. 207]:

P(:0) = [ p(¥)g(E:x)dx, 1€ (0,) 3)
k(5:0) = [ p(oxx g(t; x)dx, € (0,0) @)

where: p momentum, k moment of momentum, p mass density. Dynamics can be

characterized globally by the influence of all of the forces and the moments acting in an
active and passive way. The definition of equipollent force systems correctly suggests

that we may replace any system, by a total force W and a total moment M at any place

O named the reductions pole. The force-couple pair, W and M is called a resultant of
the load. The influence of all the passive and active loads on the movement is
characterized by a momentum and a moment of momentum changes:

p(¢;0)=W(t;0), t €(0,0) 5)

p(0;0)=p

k(t;0)=M(t;0), (0,0

(£;0)=M(1;0) NG( ) ©)
k(0;0) =Kk

Here p an initial momentum, K an initial moment of momentum and the dot means the

time derivative. The motion is specified here in the place O Ordinary differential
equations, with unknown vector functions, appear as a side effect. A primary aim of the
rigid body dynamics is to find the solutions for the initial value problems (5,6).

The set of points in the space Z connected with the region QO by the stiffness condition

will be denoted by Q) and called kinematical domain.
To avoid the procedure of solving integral equations (3,4) we can use the relation (2).

Thus, we can rewrite momentum-velocity relationship in the reduction pole C € Q:
p(t;C) = mg(;X) +h(;X)xS(C), 1€(0,) (7)
k(#;C) =S(O)xg(t;X) + I(C) o h(£;X), 1€ (0,) ()

where X is the position vector at C € Q. We have introduced the following
denotations:

m= J.,O(X) -dx 9)
S(C) = j P(x)(x — X)dx (10)

S(C’)Oh=J.p(x)(x—§)><[hx(x—§)]dx (11)
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The formulae (9,10,11) define a mass m, a static moment S(C), and a moment of

inertia J(C) according to the reduction pole C € Q. It allows us to rewrite the initial
value problems (5,6) into the coupled system of ordinary differential equations:
d ~ d ~
m-—g(t;X)+—[h(;X)xS(C)] = W(t; C), t (0,00
dtg( ) dt[( )xS(O)]=W(C) (0,0) (12)
mg(0;X)+h(0;X)xS(C)=p

d ~ ~

LIS(O)xg(:%) + H(C) o h(:;D)] =M(5C), 1 (0,00)

dt (13)
S(C)xg(0;X)+ 3(C)oh(0;X) =k

We now fix the axes of the frame to body region so that the inertia properties become

constant. It permits us to calculate the derivative of a vector by adding the cross product:

mg'(t; %) +h'(; %) x S(C)
+h(t; %) x [mg(t; %) + h(t;X) x S(C)|=W(1;C),  1e(0,00) (14)
7iig(0; %) + h(0; %) x $(C)=p(C)
S(C)xg' (%) + J(C) o h'(1:%)
+h(£;%) x [S(C)x g(t; %) + J(C) e h(t; )] = M(1;C), € (0,0) (15)
S(C) x g(0;%) + J(C) o h(0; %) =k(C)

It is clear that the initial value problems system is lengthy and complicated.
Alternatively, we have to calculate the derivative of both the static moment and moment
of inertia with respect to time.

3. Friction

The equations (5,6) relate to all of the external forces acting on the body in an inertial
frame of reference. Some of external forces are known before any analysis is carried out;
we refer to these as loads. The external forces exerted by attaching or supporting bodies
are called reactions. The free-body diagram is a figure where we show, by arrows, all of
the external forces and moments of couples that act on the body. It is important to realize
that each force appearing on the free-body diagram is in fact the resultant of a distributed
force system. The same resultant is also transmitted when the body is in contact with a
surface of surroundings, there being friction at the contact surface. We shall examine the
Coulomb's law of dry friction between a pair of surfaces. For a body in contact with

surroundings the sliding friction T is the component of the resultant reaction force R
that lies in the tangent plane of contact. The other (perpendicular ) component N, is
called the normal force. Similarly, the rolling friction V is the component of the
resultant fixed moment of couple U that lies in the tangent plane of contact. The other

component, perpendicular to this tangent plane, is called the whirling friction W. The
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parallelogram law allows us to decompose both the resultant force and the resultant
moment of couple into two mutually perpendicular parts:

R=T+N, U=V+W (16)
The friction will continue to balance the loads for as long as it is able:
T<u-N, Vf-N, W<v-N (17)

where the constants £4, f,V are the coefficients of static friction, which depend upon

the types of materials in contact and upon the roughness of their surfaces. When the
surfaces slide, or roll, or whirl reciprocally, the reduced values of friction coefficients

M, [, v called the coefficients of kinetic friction fulfil the kinetic Coulomb's law of
dry friction:
T= u-N, V= f-N, W=,v-N (18)

We should remember that usually only one, or two of relative motions may happen.
4. Rolling friction in the socket

The cantilever bar of a length » with a rectangular cross-section ¢ X d shown in Fig. 1

supports a load G in the end 5. The second end is hitched to the cylindrical socket. The
distribution of mass in moving frames of reference is given by the function

p(x,y,z)=p0 -sin[;r(x/6+c/3)/c] (19)

where 0, is density coefficient. The total mass of the bar reads

d/2 b pc/2
m=""[] pdxdydz (20)

d/2

o
Figure. 1. Moving frame of reference

The force Q =mg (g - gravity) acts through C(Cx,c Vsi Z). We are going to find

the differential equation governing the bar motion including the rolling friction moment.
Firstly, we get the equation of momentum for the bar. We find that the momentum has
the following form in moving coordinate system

p(t; 4) = m(7.0,0)x (¢ % 7,0) = m(0,0,¢ y-7) 1)
According to the formula [1, p. 1165]
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p=ptoxp (22)
and the balance of momentum

P A=W 4),  1€(0,0)

p(0: 4)=0 29
we obtain the initial value problem
m(O,—C y-y? (t),c v ;/(t)) = (Q + G)(O, oS ;/(t), sin ;/(t))+ S, te (0,oo)
. (24)
70)=". 70)=0
where S is the reaction force of the socket. The angular moment reads
k(t;A):( 11v121v131)7} (25)
Similarly, as for momentum, we have
k=K'+oxk = (111 VA ER A NN NEV 2 72) (26)
Hence, we obtain the initial value problem
(111 '7(t)>[21 '7(t)_[31 '7}2,131 '77(t)+[21 7/2)
=(cy-0+1-G)-1,0,0)+ U, ¢e(0,) @7

T .
70)=—. #0)=0
There U is the couple of the socket. Let us take the rolling friction moment as

Uy =[S, -sgn(y) (28)
Finally we have
L, -#t)=—(,y-0+1-GX=1,0,0)+ f -8, -sgn(y(t)), ¢e(0,0)

H0)=7, H0)=0

The initial value problem is not linear so we propose the following solving algorithm:

(29)

1) Set he first approximation for U; with

sgn(7(t)) =0 (30)
2) Solve (28) to interpolate U; from (27).
3) If'the difference between U; in two successive iterations is smaller than a given

value, then algorithm is finished. In other case go to Step 2.
the couple of the socket is derived from (26). Rolling friction is presented in Fig. 2.
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Figure. 2. The rolling friction moment acting in the socket

5. Concluding remarks

The main contribution of this study is to characterize the dynamical behaviour of the
rigid body on a base of momentum- moment of momentum balance principles. These
principles depend on the reduction pole. In the paper the kinematical domain was
introduced. When the reduction pole is bounded with the kinematical domain of the rigid
body, then it is easy to rewrite the principles into a coupled system of ordinary
differential equations with coupled initial conditions. The mass moments are the
coefficients in these equations and they are multiplied by the velocities (linear and
angular). The introduced friction was separated into sliding and rotating parts.
Additionally, the rotating friction was divided into rolling and whirling parts, as well.
There are two different kinds of friction laws in both static and kinematic cases. The
final part of this paper is an application of all above mathematical models to the motion
of the bar hitched into a cylindrical socket.
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W

Wplyw obrotu na ruch wahadla
W pracy wyznaczany jest moment tarcia podczas ruchu belki. Rozwazania sg oparte na zasadach pedu i kretu.
Rozwazane tarcie jest roztozone na czg$¢ obrotowa i czg$¢ postgpowa, przy czy w tarciu obrotowym
wydzielono sktadniki wirowe i toczne.
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Abstract

In the paper we consider plates reinforced by ribs. Assuming a periodic distribution of the ribs in the plate, an
averaged model is being constructed. The method used here is not asymptotic. In the modelling equations a
microstructure parameter remains (basic cell size). To test out the model, a case of free vibrations is being
analyzed.

Keywords: ribbed plate, elastodynamics of plates, methods of homogenization, vibrations of plates.

1. Introductory concepts

The object of considerations are rectangular elastic plates reinforced by periodically
spaced ribs, (Fig. 1). A configuration of the plate will be a region Q=(-L,,L,)x
X(=L,,L,)x(=Ls,L;), (x,%,,x;)€Q . If L, = co we will deal with a plate-band. By I
we denote a known time interval, ¢ € <t0 ,t1> =].

The plate will be reinforced by the ribs of thickness /"and /", spaced alternately and
parallel to x, -axis. A distances between the ribs are equal.

Let 2/ be a length of a basic cell which we denote by A =(—/,/). In this case the

! "

distances between the ribs are equal / —%. It will be assumed that /" +/" << 2/ and

20 << L, .

We denote by w, =w, (x,x,,x; 1), k=123, (x,,x,,x;) € Q, t €, components of
the displacement vector field.

Let p(x)), Cypm (xl), x, €(=L,,L,;) be a mass density and the components of the
plate elastic tensor, respectively. These quantities do not depend on remaining spatial
variables.

The elastodynamic equations of the described plate, treated as three-dimensional
body, has the form:
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PO (X155, X3,1) = |_Ck1mn ()W, (31525,.X5 at)JJ =0 )

where k,/,m,n=1,23 and for an arbitrary function f we denote f = 5 fi=="

In this work a summation convention holds.

000 T A ANN

i 1 {
2|
Figure 1.

The functions p(-), C,,,,(-) occurring in the equation (1) are 2/-periodic functions,
discontinuous on junction surface between the plate and the ribs. Moreover p”, p', p”

and C", C', C" have to be jump values of p(), C,,. () for the plate and the ribs,

respectively.
If we define a functional L as

|
L = _E(pwkwk + Cklmnwk,lwm,n) (2)

we can rewrite the equation (1) in the form

L)Ly )
oWy y ow,  Owy

Coefficients occurring in equations (1), (3) are functions. Our aim is to average them.
A method which we will use here is the tolerance averaging technique, [1-3].
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2. Modeling procedure

We assume the decomposition of displacement fields in a form:
Wy (X, Xy, X5,1) = 1, (X),X,,X5,8) + 1 (X)v, (X, %5, X5,) 4)

where u, and v,, are slowly-varying functions and the functions /# are known

fluctuation shape function.
According to the tolerance averaging technique, to obtain an equations for the

functions u, and v,, at first we must substitute the displacement fields (4) to the
functional (2). Then, averaging this functional, we obtain:

r
h' > uk’,vméln +

kimn

<L>=—Ekp>ww+<mf>mw+<cmn>wﬂm+2<q
+< Cklmnh2 > vk,lvm,n +< Cklmn (h,)z > vkvmalnall]] (5)
where h'=0h/0x, and the averaging operator is defined as:

<f>= L F(x)dx, .

Equations for the functions u, and v, have the form:

o<L> _8<L>_8<L>_O

auk sl X aiik aMk
8<L>’E_8<"L>_8<L>:0 6)
0v,.; oV, ov,

where a =2,3.
Substituting the functional (5) into equations (6), we obtain

<p>i,—-<C

klmn

’
>Uy < Couh >v,, =0,

< ph* >V, =< Cgpah® >V, 7zt < ol > 11+ <Cppy(h')? > v, =0 @)

ama m,aa klmn
If the plate and the ribs are isotropic, we have:

Cklmn = j'éklg + #(6km51n + 610161/71)

mn

where A(x,), u(x,) are the functions.
In this case the equations (7) have the form:

.. ! ’
<p>U=<A+u>up—<pu>uy+<(A+h' >v,+<uph’ >v,, =0
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<p>i—<A+u>u, -—<pu>u,

o ,mm

! ’
- <A >vg+<uh >v;, =0

< ph* >3 = <A+ ph* > vy 5= < ph® > v o+ < (A+ wh' > uy, +

+<ph' >u+<(A+2p)(H') > v =0

<ph? >V = <A ph® >4 5 < uh’ >t < ph' >+

+<ph’ >ug +<uh')’ >v, =0 8)
where J,E =23.

4. Example

The set of equations (7) or (8) for the unknown functions u, and v, will be useful only
when we determine the fluctuation shape functions 4. We postulate 2/ — periodic,
fluctuation shape function A(x,) in the form given in Fig. 2, where a is an arbitrary
constant.

X2
,,,,,,,,, al|
1_1 JZ 5
-al
Fig. 2.

Hence all the external loads are applied only in Ox,,x, - plane. The plate material is

homogeneous and isotropic with Lamé module A, u and mass density p™ . Under the
plane stress assumption instead of modulus 4 we introduce with the reduced modulus

2 . . .
Ao = il '; . The ribs are assumed to be slender in Ox,, x, - plane and carried out only
Tp

axial stress. Hence their properties are determined by Young modulus £ and mass
density p'=p"=m.

Denoting a Dirac function of argument x; € R by d(-), the functional (2) in the
isotropic case take the form:
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L =%pv'{/a1?{/a +%M5(xl +nl)yw,(nl, x,,0)w,(nl,x,,t) —%[ﬂoéaﬁéws +u(0,,0,5 +

1
0,50, Wury Wy EOCs + ) (. 1) )
It will be shown that the analysis of the problem being under consideration can be
carried out under some additional assumptions
up =uy(x,1), v =v(x,1), x, €[-L, L],
Uy =uy(X,1), vy =v,(x,,1) , X, €[-L,,L,] (10)

The dynamic equations of the plates after averaging the functional (9) will be as
follows:

mii, — (Ay +2)u,,, =0,
ml*, —4(%y +2u)v, =0 (11)
and two independent equations for u,(x,,?), v,(x,,t), x, €[-L,,L,]

miy, — (4 + 21+ E)u,,,,=0,

2
ml*v, —%(/10 + 2+ E)v,,p+4uv, =0 (12)

where m = p" +m.

Now let us pass to analysis of the equation (12) , . This equation can be rewrite in the
form

. A +2u+E
v, -2 ad \/2,22+—4’u2 v, =0
3m ml

Setting v, (x,,t) = y(x,)(¢) (where &(f)=coswt) we obtain

A+2u+E 4u 2
SRy (At =0
3m ml
We shall consider the following special cases.
4 3m 4
If 'uz >@”, than y"—x’y =0, where K> = ( 'uz — ). Hence
ml A+2u+E ml
w=Ae ™ .
4 3m 4
If 'uz < @, than denoting x> = —————(@° — 'uz) we obtain
ml A+2u+E [
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l//” + K_ZW — 0
It follows that w = 4, coskx, + A, sinxx, and

w(=L) =w(L,)=0
vy(=L,) =v,(L,)=0.

Since 0,w, +0,w, = 0,hv, , we get w(+L,) = 0. Taking solution of " +x’y =0
in form w = Acosxx,, where L, = % +nm, we obtain v,(x,,f)= A, cosk,x, coswt,

T onm
where x, =—+—.
2L, L,

5. Conclusions

The above considerations have shown that the tolerance averaging approach constitutes
an appropriate analytical tool for analyzing the dynamic problems of elastic plates
reinforced by periodically spaced ribs.

The numerical analysis and selected applications of the approach proposed in this
paper will be presented in the Conference.
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Modelowanie nieasymptoytyczne plyt wzmocnionych periodycznym ukladem zeber
W pracy rozwaza si¢ ptyty wzmocnione zebrami. Zaktadajac periodyczne rozmieszczenie zeber w ptycie,
konstruuje si¢ model usredniony. Metoda jaka tu zastosowano nie jest metoda asymptotyczna. W rownaniach
modelujacych pozostaje parametr mikrostruktury (wymiar komorki periodycznosci). W celu przetestowania
modelu analizuje si¢ przypadek drgan whasnych.



XXIV Symposium Vibrations in Physical Systems, Poznan — Bedlewo, May 12-15, 2010

A new method for process description of constructional materials
structural degradation

Henryk KAZMIERCZAK
Industrial Institute of Agricultural Engineering, Poland
kazmhenr@pimr.poznan.pl

Tadeusz PAWLOWSKI
Industrial Institute of Agricultural Engineering, Poland
tadek@pimr.poznan.pl

Jacek KROMULSKI
Industrial Institute of Agricultural Engineering, Poland
kromulsk@pimr.poznan.pl

Abstract

This article presents results analysis of the structural degradation of technical materials samples. The results
have been determined by the analysis of the distribution under dynamic load (a discrete model of structure
dynamic load). The aim of this research is to describe the process of structural degradation of the basic
technical materials. The structural changes of the constructional material samples subjected to impulsive loads
have been measured. Information about the technical condition of the individual material samples have been
obtained on the basis of the energy characteristics of power spectral density under degrading dynamic load.
The results were presented in the form of power amplitude estimation of the dynamic stiffness forces and
damping forces, changing with the ongoing samples degradation process.

Research conducted at the work station by the method of impulsive test helped to determine the initial
load causing the damage in the material structure. Further analysis of the material structural changes allowed
determining the limits of load, which will initiate the process of structural degradation (in. ex. cracking).

Keywords: Energetic characteristic, degradation, impulsive test, dynamic stiffness forces.

1. Introduction

This paper presents the concept of testing structural material fatigue by the method of
determining spectral characteristics describing structural changes in mechanical objects.
Structural changes of a mechanical object are determined by synergy of various
processes (e.g. load types and amplitudes, spatial and time characteristics of such loads,
corrosion and aging processes, mechanics of materials and other properties).
Characteristics of structural parameter changes in materials have been determined by the
powers of damping forces (internal friction) and the powers of inertial forces and
dynamic stiffness forces as well as the work of forces causing degradation of material
samples.

The effects of structural degradation processes taking place in an object include
changes in macroscopic mechanical properties of the material caused by changes in
material structure and microcracks inside the material, as well as by alteration of its
structure (material ageing).
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Very dangerous phenomena in the operation of machines and buildings include crack
propagation within the constructional material, which usually leads to a total,
catastrophic loss of structure functionality and the triggering of further degradation
processes.

Cracks are accompanied by increased damping of vibration as well as changes in
their spectrum composition. Cracking problem escalates together with the application of
structures that are exposed to higher load and constructional materials of higher strength;
their plasticity is naturally lower and so is their resistance against cracking.

In the function of time, the condition of a machine undergoes the process of
evolutional degradation due to excessive load on and fatigue of constructional
components, wear resulting from friction (play) etc.

2. Energy characteristics of structural degradation of a mechanical object

Assessment of constructional material efforts which amounts to analysis of their
degradation process is based on the energy processor model. The concept of energy
processor is the basis for identification of the degradation trend and assessment of
residual durability. The method of analyzing the characteristics of constructional
material efforts by hybrid, energetic method of analyzing spectral characteristics of
degradation processes, as presented in this study, makes it possible to determine spectral
components of structural degradation of materials. It allows for the assessment of impact
of individual power spectral components of degradation forces on material life
characteristics. These characteristics will facilitate the choice of materials used in
building machine components exposed to intensive (including impulsing) dynamic loads.
The total sum of density of dissipation energy and density of elastic strain energy
causing the initiation and growth of fatigue crack has been adopted as a parameter of
material destruction [16].

The work of mechanical object structural degradation forces is the sum of damping
forces work (energy dissipation) and the work of forces changing dynamic rigidity of the
object:

®, @,
[ReGN, (@110 +| [[Im GN, (@) - Im GN, (0, ]|d8| < I, (1)
@, @y
This formula permits the estimation of boundary values of the work of technical
structural degradation forces in mechanical objects.
In the research of degradation process and in the assessment of technical condition of
objects the method of analysis of dynamic load power distribution was used [6]. The
method takes into account spatial power change in individual subsystems and the flow of
energy between the subsystems. The main idea of this method is the fact that the object
load condition can be represented by accumulated, dissipated and transferred energy.
The holistic model of machine load condition is described by the matrix of power
spectral density of the dynamic load power in a mechanical system [6]:
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Gy (0.0)=H,, (j0.0) -Gy, (j0.0) @)
where:  H), (jw,®) — mobility matrix of machine,
G, 1, (jo.©) —spectral density matrix of excitation forces.

The elements of the matrix of dynamic characteristics [6]:

. H,[jo,D,©)] ... H,[jo.D,(O)]
o2l 0= T i i

are the functions of spatial degradation measure D of the mechanical system.

(€))

3. Energetic modes in description of structural degradation of mechanical objects

Changes in the dynamic condition of a mechanical object, described by energetic
characteristics of vibration loads on nodes of a machine, are an important indicator of
differences or changes occurring in its structure.

Research into imaginary parts and real parts of the testing force powers in the
frequency function, permit determination of changes (maxima) in these functions.
The shift of characteristics maxima and the occurrence of minima (anti-resonance) in
energetic characteristics of dynamic rigidity constitutes key information about
preliminary tentions applied to the object or information on degradation state of a
mechanical object which manifests itself in dynamic rigidity changes. A growth in
component frequency of testing signal power amplitude along the change in preliminary
tension marks a change in the structural model of an object. Energetic modes analysis
makes it possible to determine differences or changes in internal tensions in a
mechanical object.

4. Structural degradation of constructional materials

Information about the technical condition and changes in structural properties of an
object are obtained on the basis of energetic characteristics of power spectral densities of
test dynamic loads. They are presented as the estimates of changes in dynamic stiffness
and inertia forces, which change along the progressive process of object degradation.
The method allows for establishing the values of changes in stiffness and inertia as a
result of structural degradation. Analyses run by means of the impulse test method make
it possible to determine the loads which initiate the process of structural damage of a
construction.

Below are energetic characteristics of impulse loads causing structural degradation of
a standard-dimension sample of constructional material. The key element of the test
station was electric impact hammer (Fig. 1).
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Fig. 1. The scheme of test stand to analyze dynamic degradation of constructional
material samples

Torsional moment of force was applied to samples of various constructional
materials (e.g. steel, cast iron) of standard measurements. The state of degradation of the
presented sample manifested itself with a torsional deflexion of 9.5 degrees and changes
in the frequency of energetic modes of degradation loads. Reduction of vibration
frequency of the sample occured due to the reduction of its dynamic rigidity and as a
result of changes in internally dissipated energy. High loads maxima characterised the
process of sample cracking and breaking. The shift of characteristics extremes (Fig.2)
and the occurrence of reduction (or growth) of minima frequency (anti-resonance) in
energetic characteristics, serve as a confirmation of the degradation state of a mechanical
object. Cracked samples are shown in Fig. 3. Based on an analysis of changes in
energetic mode extremes, relative changes (reduction or growth) in dynamic rigidity of
material samples were determined.

Technical degradation process of the sample resulted in either growth of mode
frequency (greater rigidity) or a reduction of mode frequency. Relative change in
dynamic rigidity of a mechanical object due to its structural degradation:

2
ke -2 [y @
k; @y,

Based on an analysis of changes in energetic modes, relative changes (reduction or
growth) were determined in dynamic rigidity of the samples due to structural changes

(Fig.3).
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Fig. 2. The real parts of the power spectral density of the impulse loads power.
Real changes in material samples due to degrading dynamic load application

log{|re(M))

150

200 300 1 [Min]
f[Hz]

Fig. 3. The imaginary parts of the power spectral density of the impulse loads power
Rigidity changes in material samples due to degrading dynamic load application
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The maximum growth of sample dynamic rigidity reached the value of approx. 4.5%
while the lowering of dynamic rigidity was 1 — 10% (Fig. 3).
Reduction of vibration frequency of the sample occurred due to the reduction of its
dynamic rigidity and as a result of changes in internally dissipated energy. High loads
maxima characterised the process of sample cracking and breaking.

Fig. 4. Crossection of fatigue scrap

As a result of the load impact, after the completion of the work of degrading forces
stepwise reduction in torsional rigidity of the sample occurred, a growth in the power of
internal friction forces and periodic changes in the power of degradation forces in the
analyzed sample. In the final phase of the experiment, torsional rigidity of the sample
was virtually reduced to naught.

A picture of fatigue scrap is shown in Figure 4.

5. Conclusions

1. Information about the technical condition of a mechanical object is obtained on the
basis of energetic characteristics of power spectral densities of dynamic loads and
amplitude estimates of dynamic rigidity force power and inertia forces which
change together with the progressive process of its structural changes.

2. Vibration damping, being a factor which determines mechanical energy dissipation,
is a measure of the initial phase of structural degradation of a mechanical object.
Changes in dynamic rigidity manifesting themselves in sample cracking, ocurr in
the second, final phase of technical degradation of a mechanical object. An analysis
of those changes makes it possible to determine boundary values of load powers
which trigger the initiation of structural degradation processes (e.g. cracking) in a
mechanical object component.
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Nowa metoda opisu procesu degradacji strukturalnej materialéw konstrukcyjnych
Artykut przedstawia analiz¢ wynikow badan procesu degradacji strukturalnej probek materiatow technicznych,
wyznaczonych metoda analizy rozktadu mocy obciazen dynamicznych (model dyskretny obciazen
dynamicznych struktury). Celem tych badan jest opis procesu degradacji strukturalnej podstawowych
materiatéw technicznych. Wyznaczono miary zmian strukturalnych probek materialow konstrukcyjnych przy
poddawaniu ich obcigzeniom impulsowym. Informacje o stanie technicznym poszczegdlnych probek
materiatdéw uzyskiwane byly na podstawie energetycznych charakterystyk gestosci widmowych mocy mocy
degradujacych obciazen dynamicznych i przedstawione w formie estymat amplitudowych mocy sit sztywnosci
dynamicznej i mocy sit ttumienia, zmieniajacych si¢ wraz z postgpujacym procesem degradowania tych
probek. Badania stanowiskowe metoda testu impulsowego pozwolity wyznaczy¢ obciazenia inicjujace proces
uszkadzania struktury tych materiatow. Analiza zmian strukturalnych pozwala ustali¢ warto$ci graniczne mocy
obciazen, powodujacych inicjacjg procesow degradacji strukturalnej (np. pekania) wybranych materiatow.
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Abstract

The purpose of this study is to use recurrence plots to investigate the dynamics of an autoparametric system
with an attached pendulum. Recurrence is a fundamental property of dynamical systems, which can be
exploited to characterise the system’s behaviour in phase space. The Recurrence Plots method (RPs) and
Recurrence Quantification Analysis (RQA) is used for analysis of relatively short time series for detection
different types of behaviour including chaotic motions of the considered nonlinear system.

Keywords: Autoparametric vibrations, Chaos, Recurrence Plot, Pendulum-like System

1. Introduction

The autoparametric system represents a special class of nonlinear dynamical
construction. Such a system is composed of at least two subsystems (primary and
secondary), i.e. at least a two degrees of freedom model has to be considered. The
secondary subsystem is coupled to the primary system in a nonlinear way, and moreover
it may become a source of internal parametric excitation. However, under certain
conditions the attached secondary subsystem may play a role of a dynamical absorber, as
well. In a large number of problems we want to reduce vibration amplitude of the
primary system and therefore, to avoid dangerous instability regions, a proper system's
parameter selection is needed.

Dynamical systems with attached pendulums play significant role in many
applications and posing interesting mathematical challenges. The pendulum-like
structures appear in cranes, robots etc. or they can be used for vibration absorption.

Our aim is to propose an efficient method which could identify the type of motion by
time history analysis and on this basis to select regions of various system's behaviours.
We assumed that the time series received from an experimental set used identification
are relatively short, what it is very important from control point of view. It is worth
adding, that the experimental results analyzed by standard nonlinear method have been
presented in the earlier work of authors [1]. Analytical and numerical verification of
these results have been done there, too.
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2. Equations of Motion and Experimental System

The experiment, of the two degree of freedom model presented schematically in Fig. la,
has been performed on an especially prepared experimental test stand. A photo Fig. 1b
shows a main components of real mechanical system. The pendulum which may realize
full rotation is attached to an oscillator mounted to a base by a spring and a
magnetorheological damper. Motion of the system is generated by a motor, and a
mechanism which changes rotation of the motor into translational motion. The frequency
of the vertical oscillations is controlled by inverter. Amplitude of the kinematical
excitation is fixed by a pitch of a drive shaft. Detailed description and more information
about experimental setup and measures apparatus are presented in [2].

CIQISIOIC
1
i
\ 18
L=
i
QOO0

<>

X+yX aX+astanh(eX)

Figure 1. The autoparametric system; model with pendulum (a) and main parts of
experimental system (b).

The governing equations of motions of the autoparametric system are given by non-
dimensionless equations:

X +a X +a, tanh(eX)+ X +yX° + pA(@sinp+¢” cos p) = gcos It (D
p+a,p+A(X +1)sinp =0 )

Definitions of the dimensionless parameters a;, a,, a3, 4 A, g, ¢ and analytical
solutions of equations of motions (1) and (2) received by the Harmonic Balance Method
(HBM) are presented in [1].

3. Recurrence Plot and Quantification Analysis

The standard procedure to perform nonlinear analysis is the phase space reconstruction.
A single coordinate in nonlinear time series can be substituted by a specific vector. The
corresponding vector elements are defined by the same coordinate with a certain time
delay. For the scalar series x; we construct the delay vectors

S, = (xi7xi+d’xi+2d""7xi+(m—1)d) (3)
where parameter m is the embedding dimension and parameter d is the time delay. Each
unknown point of the phase space at time i is reconstructed by the delayed vector s; in an

m-dimensional space called “’the reconstructed phase space’’. This vectors (3) is useful
only if parameters m and d are properly chosen by using appropriate methods. Usually
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the time delay and embedding dimension can be estimated by applied average mutual
information (4MI) [3] and false nearest neighbour method (FNN) [4].

The recurrence analysis is a graphical method designed to locate hidden recurring
patterns, nonstationarity and structural changes, introduced in Eckmann et al. [5] in
1987. A recurrence plot (RPs) is a graph which shows all those time instants at which a
state of the dynamical system recurs. In other words, the RPs method reveals all the
times when the phase space trajectory visits roughly the same area in the phase space. A
recurrence plot can be described by computing the matrix [6]

M, =0(5—|si—sj|) “)
where 6 is the Heaviside step function, ¢ is a tolerance parameter (threshold), to be
chosen, s; is a delay vector of the embedding dimension. This matrix is symmetric by
construction. If the trajectory in the reconstructed phase space returns at time i into the
neighbourhood of & where it was j then M;=1, otherwise M;;=0. This results are can plot
black and white dots respectively. Value of chosen parameter ¢ is very important. If ¢ is
chosen too small, there may be almost no recurrence points and we cannot learn
anything about the recurrence structure of the considered system. On the other hand, if &
is chosen too large, almost every point is a neighbour of every other point, which leads
to a lot of artefacts. A too large ¢ includes effect called tangential motion.

In the Fig. 2a-4a we can see different types of responses of an autoparametric
systems and it’s recurrence plots. The results have been done for data: o;=0.261354,
a;=0.1, a3=0, p=17.2278, 1=0.127213, q=2.45094, y=0 and e=10. All examples presented in
this work were studied numerically, analytically and then verified experimentally by

other methods of nonlinear dynamics [1].
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Figure 2. Time history (a) and its recurrence plot (b) of a swinging pendulum. The time
delay d=25, the embedding dimension m=3 and the threshold £=0.1.

In the example the recurrence for swinging of the pendulum with periodic motion for
9=0.55, (Fig. 2) can be observed. The patterns of the plot are reflected by long and non-
interrupted diagonals. The vertical distance between these lines corresponds to the period
of the oscillation. Recurrence analysis of the rotation of the pendulum, based on the
signal of angular velocity is presented in Fig. 3a, 9=0.9. For RPs analysis 2000 data
points and angular displacement of the pendulum are used. This choice of signal makes
the analysis easier because in the velocity domain the rotation of the pendulum is
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eliminated. The diagonals long line are observed, but the distance between individual
line is different compare to swinging of the pendulum (Fig. 2b). It means that the period
of the pendulum during rotation is smaller comparing to swinging.
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Figure 3. Time history (a) and its recurrence plot (b) of rotation of the pendulum.
The time delay d=8, embedding dimension m=4 and threshold £=0.1
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Figure 4. Time history (a) and it’s recurrence plot (b) of chaotic signal.
The time delay d=15, embedding dimension m=4 and threshold €=0.1

Next type of analyzed response is chaotic motion which consists of both swinging
and rotating of the pendulum. The type of behaviour (chaotic) was established on the
basis of the positive value of Lyapunov exponent and attractor reconstruction [1]. The
recurrence plots of chaotic time history (9=0.7) is presented in Fig. 4b. The diagram
shows different line, much more shorter and dashed. The distance between diagonal lines
is various because this motion include components of rotation and oscillation. In Fig. 5
we observe the recurrence plot constructed from angular displacement of pendulum (the
same experiment test as Fig. 4a, but another signal). In this example we used much more
data points -10 000, therefore the time delay is changed d=53. We can see that time
history consist of swinging, next one rotation and again swinging of the pendulum, it is
clearly visible in Fig. 5a. This effect is observed in recurrence pattern, where areas
(paths) with different length of diagonals but similar distance between them exist. The
paths corresponds to “’chaotic oscillation’’ of the pendulum.
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Figure 5. Time history (a) and it’s recurrence plot (b) of chaotic signal of the pendulum.
The time delay d=53, embedding dimension m=4 and threshold €=0.8

In order to go beyond the visual impression yielded by RPs, several measures of
complexity which are know as “’Recurrence Quantification Analysis’’ (RQA) [7]. These
measures are based on the recurrence point density and the diagonal and vertical line of
RPs. The most important ROA measurements are: Recurence Rate (RR), Determinism
(DET), Laminarity (LAM), Trapping Time (TT), Horizontal and Vertical Diagonal Line
(Linaw Ve, Entropy of Horizontal and Vertical Line Distribution (Lgyy, Ving). The
detailed definition and method of their calculations and more parameter quantifications
one can find in papers [6, 7]. In paper [8] ROA method is used for classical parametric
pendulum analysis. Results of calculation of recurrence quantification are presented in
Table 1.

Table 1. Results of quantification analysis (RQA) for e=0.1 and 2000 data points.

RR DET LAM TT LENTR VENTR Vmax Lmax
Fig. 2b 0.0128 0.9999 0.9996 2.9273 4.5220 1.1571 5 1949
Fig. 3b 0.0334 0.9992 0.9154 2.7569 3.5358 1.0626 6 1856
Fig. 4b 0.0126 0.9994  0.9989 9.7378 3.5900 2.8793 40 1954

Different line structures can be associated with different value of parameter RR.
Note, that parameter RR indicates the fraction of recurrence for the oscillating pendulum
is about three times smaller comparing with rotation. However, the DET and LAM for all
types of motions are very similar. The diagonal and vertical line distribution, measured
entropy (referred to the Shannon entropies) are closely the same (especially for diagonal
line length distribution Lgyzz for rotation and chaotic response). Parameters L, stay
also similar for all types of motions, but V,,,. and 77 for chaotic motions are completely
different comparing to other dynamic responses. This suggests that, these recurrence
quantifications can be used to analyze the chaotic behaviour.
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4. Conclusions

Results received from RP method agreed with results obtained from classical approaches
to nonlinear dynamic analysis (see paper [1]). Very important advantage of this method
is a possibility for a short time series application. But in a case of a rotation of the
pendulum, longer time series give more precise results.

Our main objective in this work was to use RPs and RQA statistics to detect
transitions to chaotic motions and to confirm their effectiveness in a real autoparametric
system. ROA analysis showed that the best parameters to classify of kind of motion are:
Vintge Vimar and TT. In future work we would like to confirmed RQA results for much
longer time series and introduce own original quantifications.
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Analiza ruchu regularnego i chaotycznego ukladu autoparametryczego za pomoca metody
wykresow rekurencyjnych.

W pracy przedstawiono analiz¢ dynamiki uktadu autoparametrycznego z wahadlem za pomoca metody
wykresow rekurencyjnych (RPs) i ich analizy ilosciowej (RQA). Rekurencja jest jedna z podstawowych
wiasnosci uktadow dynamicznych i moze by¢ wykorzystywana w celu scharakteryzowania zachowania
uktadu w przestrzeni fazowej. Metoda wykresow analizowano "stosunkowo" krotkie przebiegi czasowe dla
réznych  przebiegow czasowych. Na tej podstawie wykryto roznorodne odpowiedzi ukladu
autoparametrycznego w tym zachowania chaotycznego.
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Abstract

Using thermodynamical approach the complete set of equations of local gradient model is obtained for
description of coupled mechanical, thermal and electromagnetic fields in nonferromagnetic dielectrics taking
into account the local mass displacement and polarization inertia. For linear isothermal approximation the key
set of equations is written for scalar and vector potentials of displacement vector and electromagnetic fields.
In this case the generalization of Lorentz calibration is proposed. On this base the plane harmonic waves of
displacement, electromagnetic fields and local displacement of mass in media are studied. It is shown that the
process of the local mass displacement is related to the change of volume and scalar electric potential only.
It is shown that the proposed model describes the dispersion of modified elastic wave in the region of high
frequency.

Keywords: nonlocal model, local mass displacement, polarization inertia, mechanic and electromagnetic waves
1. Introduction

Some approaches to the construction of the gradient theory of dielectrics are known.
Such theories are based on the extension of the state parameters space by gradients of the
strain tensor or the polarization vector, and by gradients of the electric field vector or
electric multipoles of higher order (see reviews [1, 2]). Recently the local gradient theory
of dielectrics which takes into account the process of local mass displacement has been
proposed [2, 3]. This work is devoted to the development of the aforementioned theory
with account of polarization inertia [4]. On this base the interaction of the mechano-
electromagnetic wave fields are investigated.

2. Basic set of model description

Let us consider an isotropic thermoelastic polarized nonferromagnetic solid that occupies
a region (V) of Euclidean space and is bounded by a closed smooth surface (2). The
thermomechanical and electromagnetic processes as well as the process of local mass
displacement [3] proceed in the solids due to external loads of thermal, mechanical, and
electromagnetic origins. The process of local mass displacement is related to the structu-
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ral changes of a physically small element of a body. The mechanical and polarization
processes and the process of local mass displacement are reversible.

With account of the process of local mass displacement the velocity vector v of the
center of mass is presented as the sum of convective part v. of mass transport and term
p Lo, /ot caused by structure changes of a physically small element of a solid. Here

IT, is the vector of local mass displacement [3], p is the mass density, ¢ is the time.

Then the equation of mass balance has a typical form: aa—’f +V-(pv)=0 [3].

Let us assume that total energy of the system “solid-electromagnetic field” is the sum

of internal energy pu , kinetic pvz/ 2 energy, the energy of the electromagnetic field

2
o o 1 .
U, and polarization kinetic energy 5 pdg (%j [4]. The total energy change is the
t
result of the convective energy transport through the surface, the work of surface forces
6-v, the heat flux J, the electromagnetic energy flux S, , the work xJ,, related to the
mass transport relative to the centre of the body mass, the work s, 01, /0t related with

structure change, and the action of mass forces F and distributed heat sources R :

2 2
d 1 1 dp 1 1 dp
— +U, +—pV:+—pd, | — | |dV=- +=v2t—d, | — -~
dt(i)[pu e 2,DV 2,0 E(dtj ] ([l]) [p[u 2V 5 E(dtj Jv

z

—6-v+S,+J, +ud, +u,

0
H’"]ndZJr (pF-v+pR)dV . (1)
Ot
)
Here U, = (SOEZ + o H? )/2; S,=ExH; E and H are the electric and magnetic

fields in the laboratory frame; p=P/p, P is the polarization vector; & is the Cauchy’s
stress tensor; &, 4, are the electric and magnetic constants; J, = p(v,—V); u is the
chemical potential; g, is the energy measure of the influence of the mass displacement
on the internal energy [3]; d is the scalar related with inertia of the polarization process
[4]; n is the unit outward normal vector to the surface (X'); d/dt=0/0t+v-V.

Taking into account the formula J, =-0Il,/0t and the balance equations of

electromagnetic field energy [3], mass and entropy [3, 5] from integral equation (1) we
obtain the following local form of balance equation for the internal energy:

du—pT£+6* :ﬁ + pE. -
t

dp
Pa P d

dt

dp dn d*p dp
n_ oy L g AR AP
a P T Ea at

+ Pl
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vr dv N
+J,.-E,-J,-—-To,+v:|-p—+V-6,+pF. +F, |. 2
e - [ r— p j &)

Here s is the specific entropy; T is the absolute temperature; o, is the strength of the

entropy source; 4, = i, — 4 ; € is the strain tensor, =, =IL,/p; p, =—(V-II, )/p is
the specific value of density of induced mass [3]; E, and J,, are the vectors of the

electric field and density of electric current in the reference frame of the centre of mass
moving with speed v relatively to the laboratory reference frame (E,=E+vxB,

J,..=Jd,—p,v [6]); Band J, are the vectors of magnetic induction and the density of

electric current in the laboratory frame; p, is the density of free electric charge; &, =

=6 p(E.-p=p ity ~m, Vi )1s F=F+p, Vi, —m, -VVu,, F,=pE, +(J.+

+@JXB + p(VE*)-p , I is the unit tensor. For nonferromagnetic medium
t

B=,H.

Now let us assume that the body state depends on a local electric field vector EX [4].
Introduce the generalized Helmholtz free energy f =u-Ts—Ef-p+Vu. -m, —u.p,,
and rewrite formula (2) as:

df dr . deé dE" du, v, B
= ps=——46,:— —pp-——pp,, +pm, -—"+ p(E, —Ef -
Pa~ " R
d*p) dp \A ( dv R j
—-dg— | —++J,.-E,-J, —-To,+v:|-p—+V.6,+pF.+F, |. (3
Edtzj dt e q T K pdt P e ()

From the requirement that equation (3) is invariant with respect to translations [7] and
assuming that f = f (T N7 V7 é) (all of these parameters are independent), we

obtain the generalized Gibbs equation, the conservation law of momentum, a relation for
the entropy production and a balance relation for polarization vector

df =—sdT+p~'6, :dé—p-dE* —p,du. +m, -dVu. , p%=V~6*+pF* +F,,

E, vT
O :Je*' T —Jq'F,

2
E*_EL:dE%. 4)

The Gibbs equation and relation for the entropy production are the base for the
formulation of constitutive equations. In particular, from (4;) we obtain the next state
equations:
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Taking into account the equation (44) the last two formulas in (5) in linear

approximation can be written as
2 2

N, d -
7? = ZEE* _ZEmV/uﬂ' > T, t ZEde dT? = _valuﬂ' + ZEmE* . (6)

Here fi, = p, — .o, My is the reduced potential g, in the reference state; yz, ¥z,

P+ xedg

and y, are the material constants. Note that the occurrence in these relations of the
value Vi, exhibits the space non-locality of the state equations.

Assuming that thermodynamic fluxes are the linear functions of thermodynamic
forces and using the Onsager principle from equation (43) for the entropy production,
one finds such kinematic relations [3]

Joo=0,E, +0,nVT, J, = AVT +7,J,.. (7

Here o,, 4,7 and x, are kinetic coefficients [3].
The obtained here constitutive relations (5) and (7), equation (4,), the conservation
laws of momentum, masses, and entropy, the equations of electrodynamics, geometrical

relations & =[Vu+(Vu)T }/2 and formula p, =—(V-II,)/p form a complete set of

equations of electromagneto-thermo-mechanics of the polarized nonferromagnetic iso-
tropic solids taking into account the local displacement of the mass and polarization
inertia. Note that since for determination of the vectors of polarization and local mass
displacement the differential equations, which contain the second time derivative of the
polarization vector were found, the equations obtained here can be effective for study of
acceleration waves, high-frequency processes and behaviour of solids under the impact
loading.

3. The interaction of mechanic and electromagnetic fields

Using the model equations let us investigate the interaction of mechanic and
electromagnetic fields in dielectric isotropic medium. Further for simplicity let us
neglect the polarization inertia (d,; = 0) and accept the isothermal approximation.

Represent the displacement vector u, electric field E, magnetic induction B and body
. A
force vector F by scalar and vector potentials: u=Vg, +Vxy, E=-Vg, —aa— ,
t
B=VxA, F=V@0+VxV¥, (V-\|l=0, V-¥=0, V~A=0) . Introduce also the
general scalar potential @,, =@, + Xemé AL, [8], where & =g, + p, xp is the electric
permittivity of the medium. Then the key set of equations with respect to potentials ¢,, ,

Py > ., w and A can be written in the following form
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Here newly introduced values are the material constants [3]. Note that for obtaining

(De U

equation (9,) we used a condition V-A+ e =0, which generalized the known

condition of Lorentz calibration in case of account of the process of local displacement
of mass. From equations (8) it is obvious that within the framework of the considered
model in the linearized approximation the fields of scalar potentials ¢,,, ¢, and value

[, are coupled. From equations (9) it is clear that the fields of vector potentials y and

A are related neither between themselves nor with the scalar fields. Thus the process of
the local mass displacement is related to the change of the volume and scalar electric
potential only. In particular, the modification of parameters of longitudinal elastic wave
manifests such coupling. A velocity of such a wave propagation becomes dependent on
the frequency (see figure).

Figure. The dependence of the normalized velocity of modify longitudinal elastic wave
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on the normalized frequency Q [8]

It is noted that similar results have been obtained also in [9] where the Mindlin’s gra-
dient theory of piezoelectrics has been used.

4. Conclusions

The complete set of equations of local gradient theory of electro-magneto-thermo-
mechanics of nonferromagnetic dielectrics has been obtained with account of the local
displacements of mass and polarization inertia. It is shown that for the polarization
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vector and vector of local mass displacement the non-stationary and non-local state
equations which contain the second time derivative of the polarization vector have been
obtained due to the polarization inertia accounting. Such a set of equations can be
effective for investigation of quick-change processes. The coupling of mechanical and
electromagnetic fields in isotropic solids has been analyzed. It has been shown that the
model describes the dispersion of the modified elastic longitudinal wave in the high
frequency range. These results agree well with those obtained using the gradient theories
of piezoelectrics.
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Mechano-elektromagnetyczne falowe oddzialywanie w liniowych izotropowych
dielektrykach uwzgledniajace lokalne przemieszczenie masy oraz bezwladnos¢ polaryzacji
Korzystanie termodynamicznego podejscia otrzymano kompletny uklad réwnan gradientnego modelu dla
opisu pol mechanotermoelektromagnetycznych w nieferromagnetycznych dielektrycznych osrodkach, biorac
pod uwagg proces lokalnego przemieszczenia masy i bezwladnosci polaryzacji. W aproksymacji liniowej
izotermicznej system podstawowych rownan modelu przedstawiony stosunkowo potencjatow wektorowych i
skalarnych wektora przemieszczen i pola elektromagnetycznego. Zaproponovana uogoélniona kalibracja
Lorentza. Na tej podstawie prowadzono badania oddzialywania ptaskich fal harmonicznych przemieszczenia,
pola elektromagnetycznego i lokalnego przemieszczenia masy w osrodku nieskonczonym. Wykazano, ze
proces lokalnego przemeszczenia masy zwigzane tylko ze zmiana objetosci i skalarnego potencjatu elektrycz-
nego. Wykazano tez, ze zaproponowany model opisuje rozpraszanie sprezystej fali, zmodyfikowanej oddzia-
tywaniem mechanoelektrycznym i lokalnym przemieszczeniem masy w zakresie wysokich czgstotliwosci,

zgodnie z wynikami znanych z literatury.
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Abstract

The paper is concerned with the effect of pre-stress on the propagation of Love waves in incompressible
nonlinear rubberlike materials with the representation for the strain energy function derived by Yeoh. The
special initial deformations in the form of the large static homogeneous pure strains are assumed in the half-
space and in the layer of the waveguide. It is considered the wave propagation along a principal axis and the
dispersion equation for Love waves along a principal axis of the underlying deformation in respect of a
selected strain energy function is analyzed in details. For two types of homogeneous equibiaxial deformations
the numerical results are obtained. They are quite different as in linear theory, because the equibiaxial static
deformations can lead to reduction or increase of the cut-off frequency of the waveguide. The standard
procedure for the linearization of equations of motion was used. This approach bases on the assumption that,
small time depending motions are superimposed on large static deformation.

Keywords: Love waves, Yeoh material, small motion superimposed on large elastic deformations

1. Basic equations

We consider a layer and a half-space referred to a Cartesian coordinate system. Both the
layer and the supporting half-space are made of different pre-stressed incompressible
nonlinear rubberlike materials and they are rigidly coupled along the plane X, = 0. The
half-space is defined by X, < 0 and the layer of thickness /4, has boundaries X, = 0 and
X, = h. The initial static deformations in both material regions, the layer and the half-
space are the same. Here and below all quantities with the mark “-“are valid for the half-
space. It is assumed that the material has been subjected to an initial static homogeneous
deformation with constant principal stretches and to a different superimposed small
motions uy =u;(X;,X,,t) and u; =u;(X,,X,,t) characterized by a small
displacement field which is time dependent:

xp=hX;, xy=4X,, x3=4X;+u3(X),X,,0),

X=X, =Xy, X=X tus(X), X0

where the incompressibility condition imposes the constraint A,4,4; =1. For an

)

incompressible isotropic hyperelastic material there exists a strain energy function
denoted W =W(F), defined on the space of deformation gradients such that, the

nominal stress tensor S (the transpose of the first Piola-Kirchhoff tensor) is defined as
S = [0V (F))/ 0F ] = 2 FT 4207, (1,FT ~CF" -7, @)
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where F is the deformation gradient, /; are invariants of the deformation tensor
C=F'F, W.,=0W/0l;, i=1,2,and = is the hydrostatic pressure. The linearization of
the constitutive relations gives the following result

S=8"4+S, 7=2"+7, 3)
where the first term in both equations is connected with the static deformation and the
second one with the small wave motion u; =u;(X;,X,,t). Substitution of (1) and (4)

into the differential equations of motion of finite elasticity gives two nontrivial systems
of equations of motion for the superimposed infinitesimal displacement in the layer
u5 and in the half-space u; :

A A

72',1:72',2:0, 77’1:7?’2:()’

A3131 (F )u3 ’11+A3232 (F )u3 2 T pRij3 2 ‘23131 (Fo ﬁ3 11 '“23232 (fo )173 2 = ﬁle3
where 42 (F)=(8S,, / OF, F,,) and by A% (F,) are denoted the values of these

)

derivatives calculated at F=F,, and #, 7 are the corresponding increments in 7,7 .

Assuming now the solutions for infinitesimal motions in both parts of the waveguide in
the form

uz (X1, X, ) =w(Xp)u(X,0),  u3(Xy, Xy,0) = w(Xyu(X,,0). )
The nontrivial equation of motion in the layer takes the form
c //W(XZ)[u(X1’t)]’11+C%J_u(X1’t)[W(X2 )]azz = W(Xz )ii(XI’t) ’ (6)

where ¢, = 2(1/171 +WZA§)/pR and ¢ = 2(1/171 + W, )/pR can be interpreted as
propagation speed of the shear plane waves in initially deformed layer in the direction
parallel and normal to the interface X,=0 and W, =W, (F,),i=1,2.
Suppose now that the displacements in the layer and in the half-space are given by

uy = (X, )explikx, —ar)], @ =w(X, )expliix, —at)]. )

where @, @ are the frequencies and £, k the wave numbers.
Substituting of (7);, into (6) gives two equations for two unknown functions
W(X 2 ), W(X 2 )

[W(X )]azz +k? P w(X,)=0 »[ (Xz )]322 +];21_72W(X2): 0, ®)
where  p* :(a)2 I*c: Y~ (cpy /ery) 2), p’ (52 /(/ngTzL)—(ET// /cp, )2 ), and the
displacements (7) take the forms

= exp[ (kX, — ot + kpX, )] , Uy = exp[i(lg)(1 — ot +kpX, )] ©)

2. Love waves

Combining the four basic solutions (9) obtained earlier, we are able to compose all wave
configurations characteristic for the Love waves. It is easy to see that in the case when
the propagation speed of Love waves ¢ = w/k satisfied the condition ¢>(c,,,c,,),
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both p, p are real. The wave motion characteristic for the Love waves is practically
confined to the thin layer / adjacent to the boundary. The solution #5 in the half-space
X, £0 should decreases rapidly with the distance from the interface, when
X, &> —© . The last condition can be satisfied when we assume that p is an
imaginary number i.e.

c<@y = p=-iv, v=(cy, e P -ctred)”, (10)
The linearized solution of the Love waves problem can be found immediately when the
expressions for the displacements in the layer and in the half-space will become
completed with boundary conditions at the interface X, =0 §,, = §23, Uy =uyand at

the free surface X, =4, 5'23 =0. The possible combination of solutions (9) and the
boundary conditions determine the dispersion relation for Love waves (comp. [1])

_ oy o _ _ ) —p /2

CcrL vV cr.C l-c“/c

tan(kph) = Pr 72"1_ Y _ PrCriCry ( - T//J ’ (11
PrCrL P PrCrilry\ ¢ /cp, =1

It is easy to see that in the case when the initial deformations vanish, the equation (11) is

the same as in the linear theory.

The strain energy function W =W([,,1,) for many models of nonlinear elastic
incompressible materials is independent on the second strain invariant /, of the
deformation tensor ie. W =W(Il,), W, =W, =0 and the expressions for both

propagation speeds (6) in the layer and in the half-space and also the dispersion relation
(11) take the simple forms

c% = C%// = C%L = 2Vf/lp1;1’ Erz = Erz// = ETZL = 21/?1/31;1 > (12)
— 5 1/2
tan(khp) =ﬁ%(%—1} , (13)
R

where the function p has now the form p* = ¢’ /c% —1 and M =c¢; /¢, . The right
hand side of (13) must be real, it should be also satisfied the condition known from the

. . 2_ 2 _=2
linear theoryi. e. ¢; <c” <cj .

3. Yeoh constitutive model

The constitutive modeling of incompressible hyperelastic materials such as vulcanized
rubbers, carbon filled reinforced rubber, polymers and human arterial wall tissues
involves strain energy functions that depend on the first two invariants of the
deformation tensor. The most well known of these is the Mooney-Rivlin model and its
special form the neo-Hookean. In recent years, several constitutive models that capture
the effects of limiting chain extensibility and crystallization have been proposed. The
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Yeoh hyperelastic material is a cubic in /; and involves three material parameters.
Conceptually, the strain energy function proposed by Yeoh is a material model with a
shear modulus that varies with deformation and for this reason the proposed model is
applicable over a wide range of strain. Assuming that 0W /0l, = 0 and that OW /0l is

independent on /, we obtain now strain energy function (comp.[2])
2 3
W(1)=Ciol, =3)+ Coy (I, =3) + Cy (1, =3)" (14)
which is cubic equation in (I | —3) and C,,, C,y, C;, are material parameters. The

ratio M =c; /¢, <1 (comp. (13)) of the propagation speeds of transverse waves is the

basic variable parameter in our analysis. Assuming, that the half-space and overlying
layer are filled with different Yeoh materials and for the assumed initial deformation (1)
which is identical in both material regions we obtain the following condition for the
parameter M

1/2
er_ 1+ 2¢p¢0 (1, =3)+ 3csera (1, -3)

e 142850 (T, -3)+ 38,020 (T, - 3)

<1 (15)

where m=cy; /Cor =((c0Pr )CroPr'))"* and if A=1 then M =m .

4. Numerical analysis

The dispersion relation for Love waves (13) discussed in the previous section is now
examined numerically. Some experimental results for three kinds of silicon rubber (soft,
medium, hard) by utilizing Yeoh constitutive relation were presented in [3]. The greatest
differences for the values of the ratio M(4) occur in the case when the layer of soft
silicone rubber is supporting by the half-space made of hard silicone rubber (m=0.629)
and only this case is presented on both figures below.

Table 1. Yeoh material parameters

Silicone rubber Cyy [MPa] Cy [MPa] Cs3o[MPa]
Soft 0.0231 -0.0000314 0.000195
Medium 0.0335 -0.0019100 0.000937
Hard 0.0583 - 0.0036600 0.001780

Three kinds of initial static deformation are considered:
a) A =A=A4, A, =17, It =22+ A"
by A =A4=4"% A,=4, I} =21+1 (16)
c) A4 =1, 2,3:/1_1, A, =4, If=1+2,2+/1_2.
Fig. 1 presents the ratios M(A) of the speeds of propagation as functions of the initial

deformation parameter A for three kinds of initial deformations (16). The function M(L)
in every case has one local minimum ,,,,(1) = m and two local maximums M|  yax > M.
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The dispersion equation for the value m = 0.629 and for deformations (16),}, is solved
graphically on Fig 2. The right hand side of (13) depends only on the ratio M(X) and on
the density ratio. The solid lines on this Fig. 1 describe the function on the right hand
side of (13) for two values of the deformation parameter A=2 and A=0.5 and for two
kinds of initial deformations described with invariants /;' and / 1b . The dropped line
represents the solution known from the linear theory.

0.6

0.3

M(4)

(.4

Figure 1. The speeds ratio M as function of the parameter A

The branches of the function tan(khp) for the value kh=1.76 are described with
hatches lines. The function of the right hand side of (13) takes the value zero for

p  =vM ™ —1>0. All coordinates P of the points of intersection of this curve with
the n branches of the function tan(/.76p) > 0 belong to the interval 0< p; < p*.
Assuming now that the wave number & can change and that the sequence of n values p;
in the interval (0, p*) exists, then n particular modes of propagation of the waves in the
layer to a given wave number are possible.
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T
e P*

Figure 2. Solutions of the dispersion equation

There are intervals of the values of A for which the graphs on Fig. 1 for /;' and / f’
differ considerable and run away from m = 0.629. This means that the adequate functions

on the right hand side of (13) for /," diverge also remarkable in shapes and contrast with

the standard shape for 4 =1. Opposite for the invariant [/ lb and the in same range of
values of 4 these functions deviate negligibly from the shape for 4 =1.

References

1. M. A. Dowaikh, On SH waves in a pre-stressed layered half-space for an
incompressible elastic material, Mech. Res. Comm., 26, (1999), 665-672.

2. O. H. Yeoh, Characterization of elastic properties of carbon-black-filled rubber,
Rubber Chem. &Technol., 63, (1990), 792-805.

3. T.V. Korochkina and all, Experimental and numerical investigation into nonlinear
deformation of silicone rubber pads during ink transfer process, Polymer Testing,
27, (2008), 778-791.

Fale Love’a we wstepnie odksztalconym materiale Yeoha

W pracy rozpatrzono zlinearyzowane zagadnienie brzegowe dla fal Love’a. Zalozono, ze poOlprzestrzen
sprezysta i spoczywajaca na niej cienka warstwa o grubosci 2 wykonane sa z réznych materiatbw Yeoha i
poddane sa jednorodnej statycznej deformacji wstepnej, identycznej w obu obszarach. Dla materiatu Yeoha
funkcja energii odksztalcenia W zalezy jedynie od pierwszego niezmiennika tensora deformacji tj.
W =W(I;). Ta szczegblna zalezno$¢ moze powodowa¢ w zaleznosci od typu deformacji wstepnej
wystgpowanie duzych lub nieistotnych roéznic jakosciowych migdzy liniowym i zlinearyzowanym podejsciem
do propagacji fal Love’a w niescisliwych materiatach sprezystych
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Abstract

The paper presents an efficient way of the application of the spline-based differential quadrature method for
solving equations of chosen vibrating systems. The efficiency relies on the implementation of some types of
boundary conditions at the stage of the determination of weighting coefficients that approximate the
derivatives in the governing equation. The weights determined in such a way contain information about the
boundary conditions and the discretization of these conditions is not further carried out. In the paper, the spline
interpolation applied to differential quadrature method as well as the procedure for the determination of the
weighting coefficients with built-in boundary conditions are described. The accuracy and the convergence of
the approach is studied on the example of the free vibration of the conical shell.

Keywords: spline interpolation, differential quadrature, free vibration analysis, conical shells

1. Introduction

Many works [1] that use the differential quadrature method (DQM) to solve problems
with computational mechanics have been appeared in recent years. The increase of
interest in the method is caused by its simple formulation, high rate of convergence and
high accuracy. These advantages follows from the way of the approximation of the
solution. The solution is approximated by the interpolation polynomial which uses all the
nodes from the entire domain with respect to appropriate coordinate. On this basis the
weighting coefficients that approximate spatial derivatives are determined. Using these
coefficients the differential equation is reduced to the system of algebraic equations.
This system is completed by the equations arising from boundary conditions.

This approach allows to obtain very accurate results using few sampling points,
however DQM has some limitations. Due to its formulation the method requires a
regular node distribution and therefore it cannot be easily applied to problems with
irregular domains. Further, the method is sensitive to the number of nodes, distribution
pattern and in some applications shows computational instability. To overcome some of
mentioned drawbacks, the spline interpolation has been used to approximate the solution
[2]. The method is referred to spline-based differential quadrature (SDQM) or symbolic
spline-based differential quadrature. The SDQM has been successfully applied to chosen
problems of linear and nonlinear mechanics [2,3]. It turns out that the idea presented in
[2] allows to introduce some types of boundary conditions at the stage when the
weighting coefficients for derivatives appearing in the equation are determined. This
approach facilitates the discretization of boundary-value problem. The details are
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presented in section 3, while the practical application is shown on the example of free
vibration of conical shell demonstrated in section 4.

2. Spline-based differential quadrature method

The idea of the DQM relies on the approximation of the derivatives in the governing
equation by the linear weighted sum of unknown function values from entire domain,
what can be put as

d’ f(x)
dax”

N N

e = 20 ) f () =2 @ f; =1 N (1
Jj=1 Jj=1

i

g

rth order derivative. The key stage of the method is to determine these weights. The

where N denotes the number of grid points and a;” are the weighting coefficients for the

values of a;/.’) depend on the approximation of the sought function f{x) and influence the

accuracy, convergence and stability of the method.
According to [2], the function f{x) is approximated using spline interpolation. If
spline degree is assumed to be odd then the interpolation has the form

f(x)z{sl-(x), xe[xi,xi+1], izl,..,N—l} 2)
where the ith spline section is defined as n degree polynomial
5;(x) = ZCij (3)
j=0

The coefficients c¢; in Eq. (3) are determined from the interpolation conditions, the
derivative continuity conditions and the so-called natural end conditions [2]. Since the

latter are important for further studies they are listed below
1
sO () =0, s, (x,) =0, k:—"; vn—1 )

The unknown function values f; in the interpolation conditions are marked by symbols.
With the aid of symbolic-numeric computations the coefficients c; can be obtained. They
depend on nodes distribution and unknown function values, what can be generally
written as

N
¢; = ZC(/k(xl,...,xN)fk , i=L.,N-1j=0,..,n ®)]
k=1

Using the values of (5) in Eq. (3) and calculating appropriate derivatives of polynomial
piecewise function (2) at the nodes, one can determine the weighting coefficients a!.(].’) by

separating the numbers standing next to appropriate symbols f. The weighting
coefficients are described by the following formulas

n - J ) . n - j
afpzz[q,kxg 11 1}, i=1.,N-1, agv,)c:Z[CNka,{, 11 1} (6)

j=r I=j-r+l j=r I=j-r+l
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If the spline degree is assumed to be even the auxiliary knots are imposed in order to
meet conditions for the spline interpolation and the further procedure for determining the
weighting coefficients is similar. The details are described in [2].

3. Implementation of boundary conditions in SDQM

General way to introduce derivative boundary conditions in the DQM is based on the
discretization of these conditions using rules of the method. The obtained equations are
used to calculate function values at the boundary points. In higher order equation, when
more than one condition is defined at a boundary, remaining conditions are used to
determine function values at the points adjacent to the boundary. This approach is
described in [4] and is referred to the general approach. It has been also applied in the
SDQM [2].

It turns out that in the SDQM some types of derivative boundary conditions can be
introduce during computing the weighting coefficients. To this end a part of natural end
conditions (4) is replaced with these boundary conditions. For the sake of one-
dimensional approximation of the sought function in the method, such boundary
conditions have to fulfill some criterions. They have to be homogeneous with respect to
the considered function and should contain derivatives with respect to only one
independent variable. It means that the boundary conditions should have the general
form

G (}ey, =0 ©)
R-1 r

where G is linear differential operator of the form G = Zbr—r, imposed on the
r=0 X

function at a boundary point x = x; , where, in turn R denotes the order of the governing
equation and b, are the constant coefficients but one at least of these coefficients for
r >0 must not be equal zero.

Assuming that N is the number of the boundary conditions in the form of (7),

imposed at one edge and Nj is their number at the other edge, the modified end
conditions (4) take the form

R L k n+l L
3605 (x)=0, i=1.,Nj, s )(xl):O,k:T+NB,..,n—l (8a)

r=0

R_l—- - R k I’l"rl R
Db s\ (xy) =0, i=1.,Nj, sg,ll(xN)=o,k=T+NB,..,n—1 (8b)
r=0

where b and b denote the constants standing next to appropriate derivatives at the

ith boundary condition defined at one and the opposite edge, respectively.
Using the algorithm described in previous section, where Eqs. (8a) and (8b) are used

(r)
q

Further discretization of boundary-value problem is carried out without these conditions,

instead of Eq. (4), one obtains weights «;’ with the built-in boundary conditions.
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what facilitates the discretization procedure and sometimes reduces it to discretizing
governing equation only.
The presented idea is shown on the example of free vibration of isotropic conical shell.

4. Free vibration of the truncated conical shell

Conical shells are construction elements that are widely used in civil, mechanical and
aeronautical engineering. Therefore the free vibration analysis of these elements has
been the subject of many works, e.g. [5,6]. To solve this problem several approximate
methods have been used. Among them the DQM has been also applied [5]. In the present
work, the method described in previous sections is used to solve free vibration problem
of thin, truncated conical shell. The aim of the work is to examine the possibility of
using the presented approach in the application to this construction elements and some
boundary conditions encountered in the problem. The special attention is focused on the
accuracy and the rate of convergence of the method.

In Fig. 1 the analyzed conical shell with the reference coordinate system (x, 0, z) and
the components of the displacement field in appropriate directions (u, v, w) are shown.

Figure 1. Geometry of truncated conical shell

General relations for displacements in the case of free vibration of the system are
assumed as [5]

u=U(x)cos(m@)cos(wt), v=V(x)sin(mb)cos(wt), w=W(x)cos(m8O)cos(wt) (9)
where m is the wave number in the circumferential direction and @ is the circular
frequency.

Thus, the equation of motion based on Love’s first approximation theory can be
written as

Ly L, Ls|Uu U
Ly Ly, Lyl V|=-pho?|V (10)
Ly Ly Ly |V w

where L;; are differential operators, e.g.
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4 d>  Aysin(@) g Ay sin® (@) + dgem’
= —_ —_
Lll 11 dx2 R dx R2
and bending (Dj) stiffnesses. The details can be found in [5].
For the isotropic conical shell the boundary conditions are given by the formulas

, that contain the extensional (4;)

A, si Dy, si
oo, w=o, 228@ ;o _g Lasi@ 0, po g gy
for simply supported edge and
U=0,V=0 w=0 wh=0 (12)

for clamped edge.

Derivative conditions in (11) or (12) fulfill the requirements described in section 3,
what allows to introduce this conditions during determining the weighting coefficients.
For example, when both edges of the shell are simply supported, Egs. (8a) and (8b),
written for function U, take the form

A4, sin(ax) n+1

$i00)+Aus ) =0, 5 (1) =0, k="——+Ln-1  (132)
1
A, sin(a)
R,
Similarly the derivative conditions for function W are implemented and appropriate
weights are determined. As a result Eq. (10) is reduced to algebraic eigenvalue problem
in the following form

syt o)+ AW (o) =0, 5% () =0, k:”T“H,..,n—l (13b)

P, P, PslU U
Py, Py, P,||V|=—pho|V (14)
P31 P32 P33 W W

where e.g. elements of matrix Py, are as follows

A, sin(@) A,, sin’ (@) + A, m>
P“”_ =A“al(,2,-)j 1 2 al(lll)j - 22 Aos , Lj=L..,N, a,(lri?/ denote the
weighting coefficients for rth order derivative of function U. Vectors U, V, W contain
node function values. The system (14) is modified by deleting appropriate rows and
columns in order to meet remaining boundary conditions. The solution of eigenproblem
(14) is displayed in Table 1 by the non-dimensional frequency parameter

A=R,w\ ph/ 4, . The computations are carried out using several numbers of nodes N,

assuming n=9 spline degree. For the comparison, the table contains also results
obtained with the use of general approach to implement boundary conditions as well as
the results from another work.

The results show that the presented method leads to rapid convergence. Great
accuracy is achieved using fewer nodes than for the general approach.
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5. Conclusions

The paper shows the possibility of the implementation of some boundary conditions at
the stage of the determination of the weighting coefficients in the SDQM. The approach
has been tested in the vibration analysis of the conical shell. The results show that the
method has higher rate of convergence and higher accuracy comparing with the general
approach in implementation of boundary conditions. Furthermore, due to the buit-in
method, the discretization procedure is simplified.

Table 1. Frequency parameter A for axisymmetric vibration (m = 0) of conical shell
(W/Ry=0.01, v=0.3, a=60°, Lsin(a)/ R, =0.25)

simply supported at both edges simply supported R, and clamped R,
built-in approach | general approach | built-in approach | general approach
N = 0.3630 0.3858 0.7853 0.7674
N= 0.3629 0.3721 0.7853 0.7798
N=13 0.3628 0.3671 0.7853 0.7831
N=16 0.3628 0.3651 0.7853 0.7842
[5] 0.3628 0.7853
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Wbudowany sposéb wprowadzenia pewnych warunkow brzegowych dla ukladow
drgajacych w metodzie SDQ
W pracy przedstawiono efektywny sposob uzycia metody kwadratur rézniczkowych opartej na funkcjach
sklejanych do rozwiazywania rownan opisujacych drgania wybranych uktadow. Wspomniana efektywnos¢
polega na wprowadzeniu niektorych typow warunkéw brzegowych na etapie wyznaczania wspotczynnikow
wagowych, ktore przyblizaja pochodne funkcji w réwnaniu. Wagi wyznaczone w ten sposob zawieraja
informacje o warunkach brzegowych i warunki te nie sa brane pod uwage w dalszej czgsci procesu
dyskretyzacji zagadnienia. W pracy przedstawiono zastosowanie interpolacji typu spline w metodzie kwadratur
rozniczkowych, jak rowniez sposob wyznaczania wspotczynnikow wagowych z wbudowanymi warunkami
brzegowymi. Dokladnos¢ i zbiezno$¢ metody zbadano na przyktadzie drgan wilasnych powloki stozkowej.
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Abstract

A wobblestone also known as the Celtic stone or rattleback is usually a semi-ellipsoidal solid with the special
asymmetry in the mass distribution. For most celts, when it lays on a flat horizontal surface, it rotates around
its horizontal axis in a preferred direction, i.e. if it spins in the opposite direction, it becomes unstable, and
reverses its spin to the preferred direction. In this paper we try to model wobblestone as realistically as possible
taking into account the frictional coupling between the translational and rotational motion of the contact patch
and the rolling resistance as well but with simplifying assumption of circular contact patch. The Coulomb-
Contensou-Zhuravlev model of friction is used with the use of the first order Padé approximants.

Keywords: wobblestone, celt, friction modelling, rolling resistance, Coulomb-Contensou friction model, Padé
approximation.

1. Introduction

Since the times of ancient culture of Celts there is known some kind of solid (stone)
which exhibits (seemingly) curious dynamic behaviour. The Celtic stone also known as
wobblestone or rattleback is usually a semi-ellipsoidal solid (or a other kind of body with
smoothly curved oblong lower surface) with the special mass distribution. Most celts
lied on a flat horizontal surface and set in rotational motion about the vertical axis can
rotate in only one direction. The imposition of an initial spin in the opposite direction
leads to transverse wobbling and then to spinning in the “preferred” direction. The Celtic
stone with its special dynamical properties was an object of investigation of many
researchers and the first scientific publication on this subject appeared in the end of the
19" century [1].

One of the widely used assumptions in modelling of the celt is that of dissipation-free
rolling without slip [1-4]. In the work [1] the non-coincidence of the principal axes of
inertia and the principal directions of curvature at the equilibrium contact point was
pointed out as essential in explanation of the wobblestone properties.

In work [5] an attempt of analysis of the linearized equations of the model assuming
continuous slipping (quasi-viscous relation between the friction force and the velocity of
the contact point) is performed. Another model taking into account dissipation but being
far from reality is analyzed by the use of asymptotic perturbation theory [6]. The model
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assuming rolling without slip and viscous damping (torque about all three axes) is
proposed in paper [7]. More realistic modelling with aerodynamic dissipation and slip
with dry friction force, with addition of experimental validation of the model are
presented in work [8]. In the other paper [9] the perturbation analysis of local dynamics
around the equilibrium points of the model assuming absence of friction as well as the
experimental verification are performed. The closest to reality modelling of the celt is
proposed in work [10], where the possibility of the slip is assumed, but in contrast to all
the earlier works, the Coulomb-Contensou-Zhuravlev (CCZ) friction model is applied,
that is the frictional coupling between the translational and rotational motion of the
contact patch is taken into account. However, since the friction force is the only way of
dissipation in the proposed model, the time of the wobblestone motion (until rest) is
unrealistically long.

In the present work we extend the model [10] by adding the rolling resistance as well
as the friction torque. The coupled model of sliding and rolling friction proposed in the
work [11] is applied to the celt with simplifying assumption of circular contact patch
between bodies. Additionally a constant radius of the contact area is assumed. We also
propose the method of smoothing the governing equations, allowing to avoid numerical
problems.

2. Celt modelling and numerical example

The wobblestone as a semi-ellipsoid rigid body with the mass centre at the point C,
touching a rigid, flat and immovable horizontal surface m (parallel to the XY plane of the

global immovable co-ordinate system X;.X>X3) at point A is presented in Fig. 1.
X3~ X3¢

Figure 1. The wobblestone on a horizontal plane z.

The equations of motion in the movable co-ordinate system Ox;x,x; (with axes parallel to
the central principal axes of inertia — we assume that geometrical axis x;, of the ellipsoid
is parallel to one of them) are as follows

m%+mx(mv):—mgn+Nn+T,
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do

B +0x(BY)=(r—k)x(Nn+T)+M,+M, . ()
%+mxn=0,

where m is the mass of the celt, B=diag(B,B,,B3) is the tensor of inertia of the solid, v is
the absolute velocity of the mass centre C, @ is the absolute angular velocity of the body,
N is the value of the normal reaction of the horizontal plane, n is the unit vector normal
to the plane XY, T (ignored in Fig. 1) is the sliding friction force in the point of contact
A, M, and M; (ignored in Fig. 1) are the dry friction and the rolling resistance torques
applied to the body respectively. Vector r indicates the actual contact point position and
the vector k determines the mass centre position.

The reaction of the horizontal plane due to the dry friction and the rolling resistance
is given by

on-k,—s, @
_ 4 P ,
T e sl
16
v LMo,
" ‘m”‘+g
where
A\
e,
T__ b
TN s
it —|o-n|+e
e, Vs
o o,
TF'B:(TF|C'B+T“S'5)(0:9, Trﬂ:(_TF\\Sﬁ+Trisﬁ)W’
ﬂ 3
1 ®-nks 1 ®-nk.c
T, =zﬂN . > T, =-_uN . ’
‘VA‘ 8 5 ‘VA‘ 32
—+3—\m-n\+g —+F\m-n\+g
P Vd P Vg

where u is the dry friction coefficient, p is the radius of the contact patch (with
simplifying assumption of the constant-size circular contact patch between bodies),
f=pk,/5 is the rolling resistance coefficient (where 0<k,<1 is the coefficient describing
the asymmetry in the normal stress distribution due to the rolling resistance), v, is the
velocity of the body point being in contact with the horizontal surface, @, is the
component of angular velocity parallel to the X; axis, @, is the component of angular
velocity lying in the 7 plane, o is the vector lying in the 7 plane of the same length as
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o, but perpendicular to @, , ¢z and sp are approximated sine and cosine functions of the
angle f (angle between the sliding and rolling direction):

v,=v+ox(r-k) .0, =(o-n), 0, =0-0, ®,=0_Xn, (3)

1% v \4 v
=7ﬂas :#,vﬂ:i.wﬂ_’_g,vﬂz_i.m”.

s
Vi +Vi Vs Vi p P

The T and M, vectors in Eqgs (2) follow the CCZ friction model with assumption of
normal stresses (in the contact domain) satisfying the Hertz law and applying the Padé
approximation in calculating some kind of integrals [11]. The M, vector is constructed
with assumption that the rolling resistance torque opposes the angular velocity
component lying in the # plane (it is equivalent to assumption of rigid z plane and
deformable wobblestone). The parameter & is introduced in order to smooth the
equations and avoid numerical problems around some singularities.

The differential equations of motion (1) are supplemented with the following
algebraic equation

(v+ox(r-k))-n=0, “)

which follows the fact that the velocity v, lies in the plane z. Equations (1) and (3) form
now the differential-algebraic equation set. One way to solve them is to differentiate the
condition (3) with respect to time and then treat it as an additional equation during
solving the governing equations algebraically with respect to the corresponding
derivatives and the normal reaction N.
To complete the model the relation between the vectors r and n should be given.
Taking the ellipsoid equation
2 2 2
i;+r2§+%6=1,, (5)
a b ¢

(where a, b and c are the semi-axes of the ellipsoid) and the condition of tangent
contact between the ellipsoid and the horizontal plane

_An, _An, _ A, (6)

n —<.n
le 2 2e 2 3e 2
a b c

we can find the relation between the components of vectors r and n in the Ox;expex3. cO-
ordinate system. Since the Ox;x,x; co-ordinate system is obtained by rotation of the
Ox1eX20X3. System around the x;. axis by the angle o, the corresponding relation in the
0Ox1x,x3 co-ordinate system can be found easily.

The results presented in Figs 2-3 correspond to the typical behaviour of the celt and have
been obtained for the following parameters and initial conditions: m = 0.25 kg, g = 10
m/s’, a = 1 0.3 rad, B, = 10” kg'm?, B, = 8:10* kg'm’, By = 10° kg'm®, @ = 0.08 m, b
=0.016m,¢c=0012m,k =k, =0,ks = 0.002m, u =05, p=610*m, k, =1,¢
:10_3 rad/s, Vio = Vo0 = V30 = 0 m/S, Ny = Ny = O, n3g = 1.
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Figure 2. The wobblestone response with initial conditions @;y=0, wy=1, w39=5 (rad/s).
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Figure 3. The wobblestone response with initial conditions @;y=0, w,=1, w3y=-5 (rad/s).

4. Concluding remarks

In the paper the extension of the model introduced in the work [10] is proposed. Both
presented model and its simulations are very realistic, when compared with most earlier
works on the celt, since the correct friction models for both the translational and
rotational motion of the contact patch as well as the rolling resistance torque have been
taken into account. The most significant simplification assumed in the presented
modeling is probably that of circular constant-radius contact patch between bodies.

More systematic research of the presented model of the celt is required as well as the
careful experimental validation of the model should be performed. The proposed
smoothing of the governing equations should be treated as temporary and substitute
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method of avoiding numerical problems, but certain extension of the model should be
made in order to join different modes of dynamics (for example stick and slip). In the
next future we are also going to extend presented modeling to elliptical shapes of the
contact patch.
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Modelowanie dynamiki kamienia celtyckiego ze sprzezonym modelem tarcia poslizgowego i
oporu toczenia

Kamien celtycki jest przedmiotem o ksztalcie zazwyczaj zblizonym do poélelipsoidy ze specjalnym
asymetrycznym rozktadem masy. Potozony na poziomej ptaszczyznie tatwo moze zosta¢ wprawiony w ruch
obrotowy dokota swojej pionowej osi w jedna, $ci$le okreslong strong. Wprawiony w ruch obrotowy w
przeciwna strong staje si¢ niestabilny, wpada w poprzeczne drgania i zmienia zwrot obrotu na przeciwny. W
pracy podjgta zostata proba modelowania dynamiki kamienia celtyckiego w sposoéb mozliwie najbardziej
realistyczny ze szczegdlnym uwzglednieniem modelu tarcia, gdzie uwzgledniono sprzgzenie cierne pomigdzy
ruchem postgpowym i obrotowym obszary styku ciat oraz oporem toczenia. Przyjgto zalozenie upraszczajace
kotowego obszaru styku o stalym w czasie promieniu pomigdzy kamieniem i podtozem oraz zastosowano
model tarcia CZZ z aproksymacja Padé’go pierwszego rzgdu.
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Abstract

In this paper authors include the most important information about piezoelectric effect and streaming potential
occurring in bone. In their opinion these phenomena play important role during bone remodeling, so that model
binding them together was proposed. Model describes mechanisms responsible for “sensing” by osteocytes
local changes in stresses and strains and for signal transmissions from sensors to effectors i.e. osteoblasts.
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1. Introduction

These days one can notice very fast technological progress, which to a large extent,
facilitates the development of a wide range disciplines of science. In bioengineering,
which is quite relatively young field of science, this rapid progress is exceptionally
noticeable. Scientists and engineers have possibilities to use reach selection of tools and
methods in order to improve already existing solutions or to invent other. However, lots
of phenomena that occur in human organism have not been yet recognized. Those
hinder and in certain cases prevent the process of modeling the mechanisms that regulate
human body functions. For example a remodeling of bone structure, that actuates when
bone experiences stresses and strains. Implantation brings changes to a stress and strain
distribution, which accordingly entails the necessity of adjustment to diversified
conditions of load applied along with the stress distribution. Therefore, a suitable theory
describing bone remodeling with respect to phenomena occurring during this process is
crucial. Otherwise, the process of designing an appropriate shape and properties implant,
of which load actions are transmitted similarly to a healthy bone, becomes complex.
Previous theories do not bring a full explanation to that mechanism and many questions
remain unanswered e.g. how does bone “sense” different types of stress such as bending,
compression or torsion. Authors of the following work introduce the approach,
according to which mechanisms responsible for bone remodeling can be explained.

2. Piezoelectric effect inducing in bone.

Fukada and Yasuda, who in 1957 published the results of their investigations in the
article titled: “On the piezoelectric effect of bone” are treated as the discoverers of the



252

piezoelectric effect occurring in bone. They demonstrated that in a dry bone under the
proper load applied, charges are induced on the surface of a sample. Basset and Becker
continued their research and in 1962 claimed that charges inducing on the surface of the
specimen during bending are proportional to stresses produced [9]. They stuck when
returning to its normal shape. Moreover, they showed that the polarization sign is
dependent on the type of stresses produced, i.e. negative in case of compression charges
generated on the surfaces and positive in case of tension.

In 1964 Becker proposed a theory that nature of piezoelectric effects induced in bone
does not resemble a classic piezoelectric effect [8]. He claimed that bone is a double-
element consisting of hydroxyapatite crystals and highly directional collagen fibrils.
According to Becker it was similar to P-N junction known from semiconductors and
used in diodes. In subsequent researches he demonstrated that bone has such properties
as e.g. photoconductivity, thus he could claim that apatite-collagen junction has
properties of semiconducting diode.

Becker theory was questioned by Shamos, who declared that he was unable to
observe photoconductivity in bone [7]. The hypothesis he propounded says that induced
charges have influence on the collagen fibrils orientation and ions or polarized molecules
deposition. Its magnitude might depend on the direction of force applied. It was
supposed to identify, that piezoelectric effect occurs only due to presence of directional
collagen fibrils while generated electric field linearly correlates with the stresses
produced.

Subsequent investigations were conducted in an environment highly saturated with
moisture (as it naturally occurs in a human organism). Unfortunately, it did not bring
optimistic results like those obtained of dry specimens. However, hydroxyapatite in spite
of the important role of transmitting external loads also, to a large extent, limits the
access of water to collagen fibrils. These in turn, as first experiments demonstrated
exhibit piezoelectric properties. With respect to piezoelectric effect in moist
environment, stress generated voltage is expressed by the following equations [13]:

V:[%_-L].B.Q(T)

&

M

where:

djjx — third rank piezoelectric tensor,

L — sample thickness,

¢ - dielectric permittivity,

B —load applied to the sample,

t — time

G - solution conductivity.

Looking on hydroxyapatite-collagen structure one can notice, that under forces applied
externally, collagen fibrils exhibit more strains because they are more compliant. That
causes charge generation on their surfaces.
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3. Presence of the streaming potential in porous media.

In porous media when saturated with fluid, a forced fluid streaming potential is created
as a result. The negative charge capillary surface affects the opposite charge ions and in
consequence becomes covered with layer of counter ions. This layer is composed of two
parts: absorptive and diffusive and is called the electrical double layer (EDL) (Fig 1.).
The potential between two contiguous layers (absorptive and diffusive) is called the
electro kinetic potential or zeta potential. In that area also a shear plane exists. Its role is
to separate the movement of ions bound through to the solid surface from other ions that
show normal viscous behavior under the applied pressure. lons located the closest to the
charged surface remain immovable, and in turn bulk the ions flow laminarly with
parabolic profile. It results in the streaming potential occurring in capillary which is
dependent on electro kinetic potential zeta. It can be mathematically expressed as [12]:

Ve ¢ -&-AP

o @)

Where:
C - zeta potential,
¢ - dielectric permittivity ,
AP — pressure gradient acting on sample,
o - solution conductivity,
1 - solution viscosity.
Fluid flow or in this case ions flow is stated as the streaming current, whereas potential
made in such manner is stated as the streaming potential. It affects directly the hydraulic
permeability and conditions the ion transports within porous media.

Particle surface
Stern plane
Surface of shear

1 GB e

Patential

1w Distance

Figure 1. Double layer view and corresponding zeta potential.
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4. Bone structure in microscopic picture.

The following three types of cells take part in remodeling process i.e. osteoblasts,
osteocytes and osteoclasts. Osteocytes are the most frequent group of cells in bone
tissue. They are located inside of bone tissue precisely inside of osteocytic lacuna, and
have numerous cytoplasmic extensions placed in canaliculus used to exchange nutrients
and waste. (Fig. 2). Scientists suppose that osteocytes play significant role in the process
of bone remodeling for the fact they have the ability of communicating each other due to
gap junctions. Hence the received information concerning the stress level is transmitted
through the three-dimensional network on to the second group of cells — osteoblasts.
These are responsible for the bone formation, synthesizing collagen and controlling its
calcification. They receive signals from osteocytes, and by that means, are able to
manage the deposition of successive collagen layers. Placed on internal surfaces of bone
they create a consistent barrier, which limits the access for the third cells group i.e.
osteoclasts. That type of cells is responsible for removing the bone tissue by purging
mineralized matrix and breaking up the organic bone. When the signals from osteocytes
are too weak to activate mineralization, the osteoclasts start resorption processes in bone
tissue.

Figure 2. Osteocytes Network (OC) placed in osteocytic lacuna (LF), and cytoplasmic
extension located inside canaliculus (BF). Bone surface is lined with longitudal
osteoblasts and one big osteoclast.

5. Relation piezoelectric effect with streaming potential.

The two co-existing phenomena, suspected by scientists to play an important role in the
state of stress information transmission should, in a way, influence each other. If so,
signals could be differentiated with respect to stress and strain distribution. In 1984,
Pollack conducted and developed investigations which showed that strain-generated
potential (SGP) present in bone has a twofold nature (Fig. 3). In the Fig. 3B one can
notice that the relaxation time is significantly shorter than in the other cases while spikes
can be observed only in the Fig. 3B and C. These spikes probably can be ascribed to
piezoelectric properties of bone, where relaxation time is smaller approximately of order
of magnitude than in case of electrokinetic phenomena. In Fig. 3 B the absence of
waveform typical for streaming potential can be explained by recording electrode placed
off the axis of fluid flow (normally fluid flow occurs along the axis of osteons). In such
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way streaming potential activity can be easily missed and recorded measurement is
attributed only to piezoelectric effect.

VARIATION IN STEP- LOADED SGP FOR STEEPING SOLUTIONS OF
INCREASING CONCENTRATION
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Figure 3. Different forms of bone SGP as a function of KCL concentration. [11]

Higher magnitude of stress results in higher surface polarization and that basically has
influence on the magnitude of zeta potential. It entails more ionic concentration in the
bone-fluid interface. In effect, it decreases the amount of available agents in fluid, which
are used to transmit information between adjacent osteocytes (Fig. 4). Taking into
account, that canaliculus are turned to many different directions (each osteocyte has
approximately 40 cytoplasmic extensions), charges induced on solid surfaces vary since
piezoelectric properties of bone are determined by piezoelectric coefficient d;; describing
generated charges to an external force applied.

Researches show that bone remodeling starts when loads applied to the osseous
system are dynamic. Following this idea one can conclude that osteoblasts are activated
by signals changed in time which emanate from osteocytes. However, they must exceed
some threshold activation which can be achieved by accumulating appropriate ions in
osteoblasts.

Another case to be considered is how the structure of bone adjusts to different states
of stress e.g. torsion, compression, bending etc. It can be achieved again by certain
threshold activation i.e. accumulation of proper ions by which synthesized collagen
fibrils are directed in some specific manner, so that structure of bone tissue corresponds
to the actual state of stress. In effect, successive collagen lamellae will be oriented
parallel to the osteon axis (Type L), alternating (Type A) and perpendicular to the
osteon axis (Type T) (Fig.5).
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Figure 4. Theoretical relation between piezoelectric effect and streaking potential.
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Figure 5. Types of collage fibrils orientations in successive lamellae [1].

6. Model based on cell interactions.

Having defined a signal induced by externally applied force, it has to be considered on
how a signal sensed by osteocytes is being transmitted to cells that are responsible for
bone formation or resorption. It is known, that during the process of forming subsequent
lamellae, part of the osteoblasts are converted into osteocytes. In this way the newly-
born “cell-sensors” are connected to each other by means of cytoplasmic extensions,
which form three-dimensional network. As a result, it allows transmitting signals
towards executive cells. It is also highly probable, that osteoblastic cells receive signals
from group of osteocytes which are located in its neighborhood. (Fig. 6). Eventually, the
transmitted signal is decayed in correlation to distance between osteocyte and target cell
— osteoblast.



Vibrations in Physical Systems Vol.24 (2010) 257

O Osteocyte
Q Osteoblast

Figure 6. Chart showing singal transmittance from osteocytes with different coordinates
to osteoblast.

In overview, these mathematical relationships illustrating the influence function advance
as follows:

D
(x) (3)
Where:

ry(x) — distance from n osteocyte located in X,
D — characteristic dimension.

Therefore, the signal received by osteoblasts will be correlated with the
influence function, i.e.:

S(x,x,.2) =[S, (x ,,.2)— S J(r, (x)) (4)

where:

S.(xn,t) — signal value, which is received by n osteocyte which has x,, coordinate,
Sy — value of the reference signal, which determines threshold activation,
t — time.

Signals developed from N located osteocytes reach the osteoblast where they are
summed up. In other words, transmitted ions are accumulated. Thus, when signals
exceed defined threshold that determines the state of biological equilibrium S, cells
responsible for the bone formation are activated, and processes of bone matrix synthesis
are started.

7. Conclusions.

The aim of the discussed article was to explain the principles of mechanisms responsible
for the stress state signal transmission back from osteocytes to osteoblasts.
Unfortunately, many processes that occur in bone have not been yet revealed, hence the
hypothesis remains full of gaps until further development. This model is based on
specialized cells interactions whereby remodeling of bone structure is local process
based on signals received from osteocytes located in the specified region. Such system of
signal transmission and reception more closely corresponds to the real biological system.
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The conception introduced in this work provides a solid foundation for a bigger and
more complex system of liaison which is to be developed in future works. This approach
is going to be correlated with the hypothesis of Bone adaptation based on the optimal
response proposed by Lekszycki [1] in order to perform numeric simulations. This will
help to verify the current of thoughts and to move on by extending the model to suit best
in real processes occurring during bone remodeling.
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Znaczenie zjawisk: piezoelektrycznego oraz potencjalu przeplywu podczas przebudowy
struktur kostnych.
W pracy tej zawarto najwazniejsze informacje dotyczace wystgpowania efektu piezoelektrycznego oraz
potencjatu przeptywu w strukturach kostnych, ktore zdaniem autorow tego tekstu, ma odgrywa wazna rolg
przy przebudowie tkanki kostnej. Dlatego zostal zaproponowany model odbierania sygnalow o stanie
mechanicznym ko$ci przez osteocyty i powiazany z modelem oddziatywan migdzykomoérkowych opisujacym
przekazywanie informacji z osteocytow do osteoblastow.



XXIV Symposium Vibrations in Physical Systems, Poznan — Bedlewo, May 12-15, 2010

Identification of parameters of the fractional rheological model
of viscoelastic dampers

Roman LEWANDOWSKI
Poznan University of Technology, 60-965 Poznan, ul. Piotrowo 5
roman.lewandowski@put.poznan.pl

Bartosz CHORAZYCZEWSKI
Poznan University of Technology, 60-965 Poznan, ul. Piotrowo 5
bartosz.chorazyczewski@prometplast.com.pl

Abstract

An identification method for determination of parameters of the rheological model of damper made of
viscoelastic material is presented in this paper. The rheological model of damper has four parameters and the
model equation of motion contains derivatives of the fractional order. The identification procedure has two
main parts. Results of dynamical experiments are approximated using the trigonometric function in the first
part of the procedure while the model parameters are determined in the second part of the procedure as the
solution to an optimization problem. The particle swarm optimization method is used to solve the optimization
problem. Efficiency and accuracy of the proposed method are proof on an example where the parameters of the
rheological model are determined on the basis of artificially generated experimental data with measured noises.

Keywords: viscoelastic dampers, fractional rheological model, identification procedure

1. Introduction

Fractional rheological models of viscoelastic (VE) dampers are becoming more and
more popular. The reason is their ability to correctly describe the behavior of VE
dampers using a small number of parameters. A single equation is enough to describe the
VE damper dynamics. An important problem, connected with the fractional models, is
the estimation of model parameters using experimental data. The process of parameter
identification is an inverse problem which can be ill conditioned. The identification
procedures for the three parameters fractional Kelvin-Voigt model and the fractional
Maxwell model are proposed in [1]. The problem of parameters identification of
rheological models with fractional derivatives is also discussed by Pritz in [2].

A new method for identification of the parameters of the fractional model of VE
dampers with four parameters is presented in this paper. The results of static and
dynamical test are used to identify the parameters of a damper model. The identification
procedure comprises two main steps. The experimental results are approximated by a
simple harmonic function in the time domain in the first step while model parameters are
determined in the second stage of the identification procedure. The validity, accuracy
and effectiveness of the procedures have been tested using artificial experimental data.

2. Description of the rheological model and a steady state vibration of the model

The equation of motion of the considered rheological model is in the following form:
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u(®)+ 7% Difu(t) = koq(t) +k,,z“ D/ q(1) (1
where u(f) denotes the dampers force, g(¢) is the dampers displacement, k,, k., 7

and « are models parameters. Moreover, a symbol such as D ¢(¢) , is the Riemann-
Liouville fractional derivative of the order @ of consecutive function, here ¢(¢), with
respect to time ¢ (please, consult [3] for details concerning fractional derivatives).

Based on the results presented by Lion in [4], it can be demonstrated that this model
fulfils the second law of thermodynamics for 0 <a <1, 7>0 and k, >k, >0.

Equation (1) can be understood as the equation of motion of two mechanical models
shown in Figures 1 and 2. These models consists of springs and springpot elements
connected in parallel or in series. The springpot element can be seen as an interpolation
between the spring (@ = 0) and the dashpot (« =1). The springpot element satisfies the
following constitutive equation (see [1] for details):

u(ty=cDfq(t) . 3

The parameters of mechanical models are related to parameters of the considered

fractional model in the following way:

ko =ky , ko =k +ky ¥ =c)/ky 3)
ko =kiky I(ky +ky) ko =k, % =c, [k +hky) 4)
for the first and the second mechanical model, respectively.

k, k, c, a
k,
c, a

Figure 1. The first mechanical models of Figure 2. The second mechanical models
VE dampers of VE dampers

If the damper executes harmonic oscillations then the damper’s steady state vibration
is described by

u(t)=u, cosAt+u,sin At , q(t)=q,cosAt+q,sin At , (5)
and the parameters shown above fulfil the following relationships
U =219, ¥ 295 » Ug =-24. +2195 » (6)

where
kg + (kg +k,, )T cos(an [ 2)+k,, (1A) >
- 142(z2)% cos(an / 2) +(e4)>
 (ky, —ko)(@)* sin(ax /2)
2 1+2(z0)% cos(ar / 2) +(z1)**

Q)

]

®)



Vibrations in Physical Systems Vol.24 (2010) 261

3. Description of identification method

The identification procedure consists of two main steps. In the first step the experimental
results are approximated by a simple harmonic function in the time domain while the
model parameters are determined in the second stage of the identification procedure.

In the first step, experimentally measured displacements ¢,(¢) of the damper are
approximated using the function:

g(t)=q, cosAt+q,sin At , 9)

The least-square method is used to determine parameters ¢, and g, of function (9).

This method requires minimization of the following functional:
153

1t [la.0-G0Far , (10)
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Jl(acsas):t

where the symbols ¢, and ¢, denote the beginning and the end of the time range in
which the damper’s displacements were measured. Part of the measuring results relating
to a steady state vibration is used as data in this step. From the stationary conditions of
the functional (10), the following system of equations is obtained:
ICC&’C +ISC§/S = ICq b ISCaC + ISS?S = IS[] (1 1)
from which the parameters ¢, and ¢, are obtained and where:
15} 15} 15}
1. :J.cos2 Adt, I :J.sin2 Adt , I, =1, :J.sin/ltcos/ltdt (12)

4 gl 4

ty 15}
I,=[a.@)costdt , I, =[q,(0)sinitdr . (13)
h 4
Similarly, the experimentally measured dampers force u,(f) is approximated by
u(t)=u,cosAt+u, sin it . (14)
Proceeding to a description of the second step of identification method, it is assumed
that a set of results of the above-described first step of procedure given by u,(¢), u,,;,

u; 4q;(t), q, and g, and relating to the different excitation frequencies A,

(i=12,...,n) is known. If the considered rheological model is able to correctly simulate

the VE damper behavior then the relationships (6) must approximately be fulfilled by the
above-mentioned results of the first step identification procedure, i.e.:

Uy =21 + 221G » Ug ==Z34e + 2G5 » i=12.,m . (15)
Solving Equations (15) with respect to z}; and Z; the following is obtained:
UG +igq ~ UGy —Ugq

ES ’ Zi =
~2 | ~2 ! ~2 | ~2
qci +qsi qci +qsi

(16)
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If the rheological model perfectly fits the experimental data then z,; -2}, =0 and

Zy; —2y; =0 for i=12,.,n, where z;; =z,(4;), zy

=z,(4;) are calculated using
formulas (7) and (8). In practice some differences usually exist and parameters, k,, &,
7 and « of the rheological model are determined as the solution of the appropriately
defined optimization problem. However, here it is assumed that the parameter k is

known and determined previously using the experimental data taken from the static tests.
In the paper the optimization problem mentioned above is formulated as follows.
Find the values of k., 7 and & which minimize the functional

PoRl

Sy, t,0) = {[z” (ki) =%y | +zy (ko ti) =2 | } , (17)
i=1
and fulfil the following constraints:
O<a<l, >0, ky,>ky>0. (18)
The above optimization problem is solved with the help of the particle swarm
optimization method described, for example in [5] and briefly in the following Section.

4. Description of the adopted version of the particle swarm optimization method

The particle swarm optimization (PSO) method is a population based optimization
technique inspired by the social behaviour of animals. The populations consist of
possible solutions (referred to as particles) and the search for optimal solutions is
performed by updating the subsequent positions of particles. Each particle explores the
problem space being drawn to current optimal solutions. Moreover, each particle keeps
its best values of functional (17) achieved so far (along with the associated solution

pY (k) = col(pt” (k), p (k), p\/ (k)), where k is the number of the current time
instance, the superscript j is the number of the current particle; ( j =1,2,...,m)) and the
best fitness and corresponding solution achieved in the particle’s neighbourhood
p® (k) = col(p” (k), p3 (k), p? (k)) . 1t was shown that using global neighbourhood

(all particles are fully aware of other particles’ fitness) minimizes the median number of
iterations needed to converge. On the other hand, the neighbourhood of size 2 gives the
highest resistance to local minima.

At each time instances k& of the PSO, the velocities of the particles are changed

(accelerated) towards the p) (k) and the p®” (k) and the particles are moved to new
positions according to the following formulas:
v (k+1) = wlk + ) (k) + el (k + 1)[p§~” (k) —x (k)]/ At+
o) (k+ 1)[p§g> (k) -x (k)]/ At
xD(k+1)=xD (k) +v (k+1)At . (20)

; (19
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where At=1, vi(j) (k)vj and xl(j) (k) are the i-th element of the velocity and the
position vectors of the j-th particle, respectively; w(k+1) is the inertia factor providing
balance between exploration and exploitation, ¢, is the individuality constant, and ¢, is
the sociality constant. To speed up convergence, the inertia weight was linearly reduced
from w,, =09 to w,;, =0.1. In our experiments we have used m =10 particles, a
maximum number of iterations i, =400 and ¢, =c, =2.0. A size 4 neighbourhood
was used as a tradeoff between fast convergence and resistance to local minima.
Moreover, rl(i

information on the selection of the algorithm parameters, constraints handling and

) and ’”2(1] ) are random numbers taken from the range from O to 1. More

selecting the starting vectors x) (0) and v (0) can be found in [5].

5. Results of demonstration applications of identification method

A typical calculation is performed using the artificially generated data. At the beginning,
the artificial data without noises for the second mechanical model are calculated using
formulas (3) and (6) and assuming that: n =14, k; =600.0kN/m, k, =400.0kN/m,
¢=150.0kNs/m, ¢g,; =0.0lm, g, =0.005m and o =0.6. The chosen values of the

excitation frequency are taken from the range 0.5-13.5Hz with the frequency
increment AA =1.0HHz . After applying the identification procedure and assuming that
ky =240.0kN/m is known from the static test, the following results, very close to the

exact  ones, are  obtained: K\ jgen = 601.5kN/m, k3 igen =399.3kN/m,
Cigen =149.9kNs/m , a,,,, =0.5968 .
Moreover, the random noises are added to the artificial data using the formulas:
Uy =(U+7;8) iy, g =(1+78) iy, G =0+736)qy o 4y =0+756)q;  (20)
where ¢ is the noise level, 7;, 7, 7

iden

; and 7,; are random numbers taken from the
range from 0 to 1.
The calculation is made for £=0.02. After several runs of the identification

procedure the following median solution is obtained: k4, =608.7kN/m,
k3 igen =396.2kN/m, ¢4, =151.6kNs/m and «,,,, =0.5866 . It is easy to find that the

accuracy of the obtained values of model parameters is of the order of noises introduced.

A comparison of the storage modulus resulting from the artificially generated data
with noises (small crosses) and from the rheological model (solid curve) is presented in
Fig. 3. It is evident that both approaches are in good agreement.

iden iden

6. Concluding remarks

The proposed identification method can be effectively used to determine parameters of
the rheological model with the fractional derivatives. The mentioned rheological model
can be used to modelling the dynamic behaviour of VE dampers. The identification
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problem is reduced to the nonlinear optimization problem which is solved by means of
the particle swarm optimization method. Based on the demonstration calculation, it was
found that the proposed method is not sensitive to any noises introduced during the
measurements.
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400000 —

360000 —

storage modulus [N/m]

320000 —

280000 T T T T

0 20 40 60 80 100
excitation frequency [rad/s]

Figure 3. Comparison of the storage modulus
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Identyfikacja parametréw ulamkowego modelu reologicznego modelujacego zachowanie
tlumika lepkosprezystego

W pracy omawia si¢ metodg identyfikacji parametrow modelu reologicznego ttumika wykonanego z materiatu
o wiasciwosciach lepkosprezystych. Model reologiczny tlumika ma cztery parametry, a réwnanie ruchu
modelu zawiera pochodne utamkowego rzgdu. Procedura identyfikacji sktada sig¢ z dwoch czgsci. W pierwszej
czescei aproksymuje si¢ wyniki badan do$wiadczalnych za pomoca funkceji trygonometrycznych, a w drugiej
czg$ci wyznacza si¢ parametry modelu jako rozwiazanie pewnego zadania optymalizacji. Do rozwiazania
zadania optymalizacji uzyto metody roju czastek. Efektywnos$¢ i dokiadno$¢ zaproponowanej metody
identyfikacji wykazano wyznaczajac parametry utamkowego modelu reologicznego na podstawie sztucznie
wygenerowanych danych doswiadczalnych z szumami pomiarowymi.
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Abstract

An analytical and computational characteristics of transmission losses of the helicoidal resonator are
compared in this paper. The substitutional transmittance function of helicoidal resonator was proposed based
on amplitude characteristic of electrical band-stop filter. At first approach the analytical model can be
considered as valid for practical silencing systems design calculations in ducted systems.

Keywords: helicoidal resonator, spiral duct, transmittance, acoustical filter, sound attenuation.

1. Introduction

There are several papers about spiral ducts [2-8] where are developed theirs acoustic
attenuation properties in ducted acoustical systems. There is also developed that the
acoustic attenuation for spiral (helicoidal) ducts exists in consequence of an acoustical
resonance [2-7]. Hence, in this paper a helicoidal resonator is considered.

Acoustical properties, mainly attenuation of sound due to an acoustical resonance, of
helicoidal resonators can be modified by doing a change in relations between its basic
geometrical parameters [3], which are shown in Figure 1.

Iz, - outer length of
helicoidal profile

I, - inner length of
helicoidal profile

Figure 1. Basic geometrical parameters of helicoidal resonator.

Very important parameter of helicoidal resonator is the number of helicoidal turns n,
which strongly determines the character of acoustical resonance [3]. This work describes
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a substitutional transmittance function of helicoidal resonator as a first approach for this
question based on computational results in COMSOL Multiphysics [3].

2. Determination of a resonance frequency based on geometrical relationships

To define the substitutional transmittance function of helicoidal resonator placed inside
an infinite long cylindrical duct (Figure 2) of diameter d, there was chosen a case of

helicoidal resonator,
ff”'g
o
Cylindrical duct _ _— —
i > £ %/___,_—f

Figure 2. Cylindrical duct with helicoidal resonator.

Helicoidal resonator

where predominates only one component of transmission loss (TL) [2, 3, 5, 6, 10] in the
resonance frequency and remaining components are almost symmetrically distributed in
the frequency domain, as it is shown in Figure 3.

v
S

40

30

\
. AN

1
1100 1150 1200 1250 1300 1350 1400 1450

Transmission loss [dB]

Frequency, f[Hz]

Figure 3. Transmission loss of helicoidal resonator with only one resonance frequency
£,=1281Hz and almost symmetrically distributed other attenuated frequencies in the
range from 1200Hz to 1365Hz — TL characteristic obtained computationally [3].

In that case there are satisfied relations (1) between basic geometrical parameters of
investigated helicoidal resonator, according to Figure 1, as follows [3]:

221,976, 024, E_go4.n=l. (1)
d d d

It is the case of full spread of helicoidal surface of one helicoidal turn, where attenuated
components of a sound in a frequency domain are almost symmetrically distributed in
relation to the resonance frequency of the helicoidal resonator.

To write the equation for a resonance frequency f, of that helicoidal resonator, there was
used undermentioned relation (2) to obtain frequency f [Hz], which depends on the
length of a sound wave A [m] and a speed of sound in air ¢, (343m/s), in form:
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f= %",[Hz] )

By making precise numerical computations (calculation step 0,01Hz) there was
determined exact resonance frequency, which equals f,=1281,17Hz, of the helicoidal
resonator with ratio s/d=1,976, and other dimensions: thickness of the helicoidal profile
2=0,005m, diameter of the mandrel d=0,03m placed inside infinite long cylindrical duct
(as it is presented in Figure 2.) of diameter =0,125m. On this basis there can be written
a relation (3) between diameter of a cylindrical duct d and the length of a sound wave in
resonance frequency 4, of helicoidal resonator with one full spread of the helicoidal turn,
in form:
% =2,141792268 - 3)
Which means, that the diameter of the cylindrical duct represents a 46,69% of a
resonance wavelength of the helicoidal resonator.
Substituting the previously obtained dimensional relationship s/d=1,976 to the model (3)
we obtain the wavelength dependence for the acoustic resonance frequency of the
helicoidal resonator based on its turn s, in form:
A, =5-1,08390297 [m]. 4
So in this case optimal dimensions of the helicoidal resonator in terms of a sound
attenuation performance is that for which the helicoidal turn s is slightly larger than the
resonant wavelength. Relations (3) and (4) can be expressed in conjunction with the
following dependences [1]:
- to calculate the outer length of the helicoidal profile:

7dl

=20y, = arctan(iJ , (6))
A : md

- to calculate the inner length of the helicoidal profile:

wd.n
L=y =arctan| — |, (6)
tocosy md,

/

On the basis of dependences (5) and (6) we learn that the angle of the helicoid lift lines
(inner and outer) w7 in this case is constant and independent of the dimensions, and it
equals as follows:

w, =69,11464814°, v, =32,16908553

7
y, =69°06'52"73", y, =32°10'08"70" @
Next, we can specify the inner and outer lengths of the helicoidal profile, as below:
d 0,244 0,24
[, =M _TDLTA AL 5.1,070325[m]
Y cosy, cosy/, 1,976 cosy
mdn 7sn ®

I, = = =5-1,8782177[m]
©ocosy, 1976cosy,
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Taking under attention above mentioned relationship (4), it can be assumed that the inner
length of helicoid profile corresponds to the resonance wavelength:

A, =1 . ©)

The formula for the resonant frequency f, of the helicoidal resonator shown in relations
(1) by taking into account relations (9) has the form:

f. =f,[Hz]~ (10)

r

2. Substitutional transmittance function

To obtain a substitutional transmittance function of the helicoidal resonator there have
been made an analysis of different equations of the transfer functions and amplitude
characteristics K, of different band-stop filter [9]. The greatest similarity of the
analytical characteristics and the simulation is obtained as a result of the transformation
for the amplitude characteristics of a band-stop filter of second order [3, 9] in the form:

ol - |

\/ 2[1 J \ (11)
1+Q E—2 +Q

where © = f/f. is an normalized pulsation, k=1 is an excitation signal, and Q=1/4f'is a
quality factor, whereas Af[Hz] is a frequency range, in which the sound is attenuated.

To determine the substitutional transmittance function of the helicoidal resonator the
resonant frequency formula (10) was placed into the formula (11). Then, by squaring
such formula (11) we obtain the most similar to simulation the substitutional

transmittance function 7y, of the helicoidal resonator, in the form:
2

1_(1%}2
3 ¢ . (12)

‘ N 2 4
("2 ()
c 0’ c

Based on transmittance function (12) below can be shown the transmission loss
characteristic of the helicoidal resonator with determined relationships (1), by the use of
equation [10, p. 462]:

‘ u

TL =10 log[l}[dB} 13)

‘ S, hr

A graphical interpretation of the formula (13) together with the simulation results in a
COMSOL Multiphysics computational environment in accordance to the dimensional
relationships (1) and the quality factor Q=8 and difference between these two
characteristics are shown in Figure 4.
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B 2(5] TLmax=57dB

)

2 ;5) — computationally (C) |
2 55 // \ — analitically (A)

; 10 // \\ — difference (C-A)
/' N\

=

N\

0,8 0,9 1 1,1 1,2
I

Figure 4. Transmission loss characteristics of: (C) helicoidal resonator computed by the
use of finite element method (FEM) in COMSOL Multiphysics, (A) band-stop filter
from equation (13) of quality factor O=8 and (C-A) difference between these two
characteristics.

As shown in Figure 4 the TL characteristics of the helicoidal resonator calculated
analytically using the formula (13) and computed by the use of finite element method
(FEM) in the COMSOL Multiphysics environment is quite similar. Maximum TL
differences occur near the resonant frequency, which reach a value of less than 3.5 dB.
The range of attenuated frequencies is closely identical for both characteristics (A and
C), when we look on 3dB level of TL.

3. Conclusions

An analytical model of the substitutional transmittance function of helicoidal resonator
was proposed in this paper. The inner length of helicoidal profile corresponds to the
resonance wavelength and it can be used to calculate the resonance frequency of this
acoustical filter. Transmission loss characteristics of the helicoidal resonator calculated
analytically and computed by the use of the finite element method (FEM) in the
COMSOL Multiphysics environment are quite similar. Maximum TL differences occur
near the resonance frequency. However, at first approach of transmittance function of
helicoidal resonator, the analytical model can be considered as valid for practical
silencing systems design calculations in ducted systems.
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Zastepcza funkcja transmitancji rezonatora helikoidalnego

W  niniejszym artykule dokonano poréwnania charakterystyk tlumienia przenoszenia rezonatora
helikoidalnego uzyskanych na drodze obliczen analitycznych i numerycznych. Zaproponowana zostata
zastgpcza funkcja transmitancji rezonatora helikoidalnego na podstawie charakterystyki amplitudowe;j
elektrycznego filtru pasmowo-zaporowego. Tak wykonany analityczny model transmitancji w pierwszym
przyblizeniu moze by¢ uznany za poprawny dla celéw obliczeniowych praktycznego projektowania systemow
wyciszeniowych w instalacjach kanalowych.
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Abstract

The paper deals with modelling and control of a semi-active seat suspension with magneto-rheological
damper. In order to protect the working machines operators against harmful vibration, the vibro-isolation
properties of conventional seat suspension are improved by using the magneto-rheological damper. In this
paper the vibration isolation characteristics of semi-active damping control strategy are studied, that are based
on the inverse dynamics of magneto-rheological damper and the primary controller. The dynamic behaviour
of passive and semi-active seat suspension is compared on the basis of a seat effective amplitude
transmissibility factor and suspension travel. As results of computer simulation, the power spectral densities
of seat acceleration and the transmissibility functions are presented for random excitation.

Keywords: vibration damping, semi-active system, seat suspension, magneto-rheological damper

1. Introduction

Full active suspensions require large power supply and this is the main disadvantage of
using such the systems extensively in practice. Semi-active suspensions consume much
less power than active suspensions, therefore they have received much attention in the
literature [1]. The desirable performance of suspension systems can be achieved using
semi-active control, especially when some controllable dampers: electro- rheological
(ER) or magneto-rheological (MR) are utilized. In particular, MR dampers are often used
in vibration reduction of the seat suspensions, vehicle suspensions, vibration isolators,
etc. Many control strategies such as sky-hook, ground-hook or hybrid control, H-inf
control and model-following sliding mode control have been evaluated in terms of their
applicability in practice. However, the practical use of the MR dampers for control is
relatively difficult by its inherently hysteretic and highly non-linear dynamics. This
makes the modelling of MR dampers very important for its application. In order to
characterize the performance of MR dampers, several models have been proposed to
describe their behaviour [2], [3], [4]. Active and semi-active suspension systems provide
more effective vibration isolation performance, but their control systems have to be
formulated. The ongoing development of control algorithms indicates that improved
methods of controlling active and semi-active suspension systems is an effective way to
deal with the suspension system performance problem [3].

2. Physical and mathematical model of the semi-active seat suspension

In Fig. 1 a physical model of the semi-active seat suspension system containing a passive
air-spring and a controllable magneto-rheological damper is shown. The magneto-
rheological fluid inside a damper changes its properties (mainly its viscosity) with the
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application of a magnetic field [4]. A magnetic filed is produced by the solenoids which
are placed around the orifices between chambers of the damper. A controllable current,
that supplies solenoids, changes the properties of a fluid flow and in consequence force
of the damper is regulated.

Figure 1. Physical model of the semi-active seat suspension
with magneto-rheological damper

Equation of motion of the semi-active seat suspension takes a similar form as in the
case of the passive seat suspension model, that have been presented in the paper [5]. The
mathematical models of basic forces in the system: the air-spring force F,,, the forces
from end-stop buffers: bottom Fyy and top Fy,, the overall friction force of suspension
system F and the gravity force of suspended mass F, are adequate to the models of
forces in the passive system. However, a description of the damping force Fy, is
different from the passive seat suspension model (F}), because the conventional shock-
absorber has been replaced in the magneto-rheological damper (£,,;). The damping force
is controlled by the electric input signal i.

The Bingham model described in the paper [2] is adopted in this study for the
magneto-rheological damper using the obtained experimental data. In this simplified
model, the hysteresis loop of the MR damper is neglected and a description of the MR
damper force contains components from the viscous damper and friction only (c.f. Fig.
2). The force equation is given by:

F,, =dmr(x;x‘g)+amr sgn(x;’“‘j (n)
d d

where: d,, is the viscous damping coefficients, «,, is the scale factor of the damper
friction.
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(a) , (b)
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Figure 2. Bingham model of the magneto-rheological damper (a), force of the magneto-
rheological damper (b): simulation (solid line), measurement (dashed line)

Based on the experimental data, a least-square approximation method is employed to
determine the appropriate parameters d,,. and ¢, for the analytical model:

. ) .

dmr:amrl+bmr’ amr:emrl +fmrl+gmr (2)
where: a,.,, by, €mrs [ and g, are the polynominal coefficients expressed with respect
to the input current. These coefficients are evaluated based on additional MR damper

measurements that have been presented in the paper [6].

3. Reverse model of the magneto-rheological damper

If the Bingham model is determined than the desirable force F, can be realized by
injecting an appropriate current into the MR damper in accordance with actual piston
velocity of the damper i = f(F,,x — x,) . This input current i is calculated from Eqs. (1),

(2) with measurable velocity x —x,; and is given by:

i= ; (3)

X—Xx

2 sgn| u

S 58 [ 5, J
with function A that is calculated as:
. . . . 2
A: fmr sgn m +amr m -
04 04

4)

X—x X—x X—x
4e, sgn a sgn ~1+b |- F
mr S8 ( é.d j(gmr g ( é‘d ) mr( é‘d j d aj

Graphical representation of the MR damper reverse model is shown in Fig. 3. It
should be noted that the MR damper is a passive device and the desired force F, can be
realized only if this force and damper velocity have the same sign. Than the calculated
input current of the MR damper varies in the range of 0 A (minimum value) and 1 A
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(maximum value) and depends on the actual value of desired MR damper force and its
actual velocity (c.f. 3). If the desired force and damper velocity have opposite sign than
the input current is settled to zero.

Current [A]
o
o

o

0
.15
0.

. o
o 078 15 2000 1000
Velocity [m/s] - - Force [N]

Figure 3. Reverse model of the magneto-rheological damper i = f(F,,x — X,)

4. Desired damper force

A proper design of the vibration isolation systems implies a lot of difficulties for the
designers, because conflicted objectives are involved in this case [3]. Forces transmitted
to the isolated body should be reduced by the suspension system, but this is only the first
objective of a system evaluation. The second objective is that the suspension travel has
to be minimized as well.

On the one hand, the suspended mass velocity x should approach zero, in order to
protect the isolated body against a harmful vibration. On the other hand, the relative
displacement of suspension system x—x, should approach zero as well, in order to

minimize the suspension travel. The desired damper force that deals with conflicted
objectives can be defined as follows:
Fa :Kxf‘Jfofo (x_xs) Q)

where: K is the proportionality factor of absolute velocity feedback loop and K, _, is

the proportionality factor of relative displacement feedback loop. A different selection of
the controller settings allows decreasing the forces transmitted to suspended mass at the
simultaneous increase of suspension travel and vice versa.

In order to check the eclaborated control system, the desired active force and the
predicted MR damper force obtained from the reverse model are compared as shown in
Fig. 4. To check the effectiveness of the reverse model under various operating
conditions, the excitation signal has the random wave form within the frequency range 1-
5 Hz. The results are obtained at first estimation of the controller settings K. =2 x 10’

Ns/mand K, , =20x 10° N/m. In the Fig. 4 is clearly observed that the desired force is

well predicted by the reverse model. Highest discrepancy between the desired force and
the predicted MR damper force are shown while these forces are in opposite signs. In
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this situation the MR damper cannot generate such desired force therefore the input
current is settled to zero and minimum MR damper force is provided into the system.

300
200

-
o
o

0

Force [N]

-100

-200

0% 42 44 46 48 50
Time [s]

Figure 4. Desired damper force F, (solid line)
and realized MR damper force £, (dashed line)

5. Simulation results

The MR damper control is realized by algorithm presented in Egs. (3), (4) and (5). In
Fig. 5 the simulation results obtained for the semi-active seat suspension (variable input)

in comparison with the passive system (constant input i = 0,3 A) are presented.
N (@)

N

o
(&)

Transmissibility

o

4 6 8 10 12 2 4 6 8 10 12
Frequency [Hz] Frequency [Hz]

2

Power Spectral Density [n12/s

Figure 5. Simulated power spectral densities (a) and transmissibility curves (b)
of the semi-active suspension with MR damper control (dash-dotted line) and of the
passive suspension (solid line), power spectral density of excitation signal (dotted line)

The advantage of the semi-active suspension system with continuous damping
control is the attenuation of resonant frequency vibration without the amplification of
high frequency vibration. Simulated Seat Effective Amplitude Transmissibility factors
(SEAT) [7] of the passive and semi-active suspension systems are: 0,618 and 0,462,
respectively. The maximum relative displacements of the passive and semi-active
suspension systems are: 112 mm and 86 mm, respectively.

6. Conclusions

The semi-active seat suspension with magneto-rheological damper effectively reduces
vibration amplitudes in whole frequency range considered. The amplification of
vibration amplitudes for the low frequency range is achieved by means of damping
control using the MR damper device. The reduction of vibration amplitudes is also



276

obtained for the higher frequency range. Such effect of vibration isolation is required in
order to improve the seat suspension performance.
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Modelowanie i sterowanie semi-aktywnym systemem zawieszenia siedziska

z thumikiem magneto-reologicznym
W pracy zawarto zagadnienia zwiazane z modelowaniem i sterowaniem semi-aktywnego uktadu zawieszenia
siedziska z tlumikiem magneto-reologicznym. W celu zwigkszenia ochrony operatorow maszyn roboczych
przed szkodliwym dziatlaniem drgan mechanicznych, wlasciwosci wibroizolacyjne konwencjonalnego
systemu zawieszenia siedziska zostaty poprawione poprzez zastosowanie thumika magneto-reologicznego. W
pracy analizowano charakterystyki wibroizolacyjne semi-aktywnego uktadu tlumienia drgan, dla ktorego
opracowano algorytm sterowania bazujacy na modelu odwrotnym tlumika magneto-reologicznego i
kontrolerze glownym. Whasciwosci dynamiczne ukladu pasywnego oraz semi-aktywnego poréwnano
wykorzystujac wspotczynnik przenoszenia drgan siedziska oraz maksymalne przemieszczenia wzgledne
systemu zawieszenia. Jako wyniki symulacji komputerowej zaprezentowano ggstosci widmowe
przyspieszenia drgan na siedzisku oraz funkcje przenoszenia systemu zawieszenia dla wymuszenia jego ruchu
sygnatem losowym.
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Abstract

In the paper the transversal vibrations of a system of composite annular membrane is studied using analytical
methods and numerical simulation. The two mathematical models are analyzed. At first the motion of the
system is described by two homogeneous partial differential equations. The general solution of the free
vibrations are derived by the Bernoulli — Fourier method and the boundary problem is solved. The second
model is formulated by using finite element representations. The natural frequencies and natural mode shapes
of vibration of the system are determined. The FE model is manually tuned to reduce the difference between
the natural frequencies of the analytical solution and the natural frequencies of the FE model calculations,
respectively. It is important to note that the data presented in the paper have the practical meaning for design
engineers.

Keywords: composite annular membranes, transverse vibration, natural frequencies, mode shapes

1. Introduction

The free transverse vibration analysis of membranes with discontinuously varying
material properties is the subject of many recent investigations. The majority of previous
work in the field present solutions for the free vibrations of the circular, annular and
rectangular membrane systems. Fundamental theory of vibration of simple two —
dimensional continuous systems is elaborated in [3]. Free transverse vibrations of
composite rectangular membranes are studied in the work [1]. In the paper [4] exact
solution for the vibration frequencies of a composite annular membranes with
discontinuously varying density is given by using theory of membrane. In this paper the
free transverse vibrations of a composite annular membrane system with discontinuously
varying density and thickness are analyzed using classical membrane theory and finite
element technique. The analytical solution is used to manual tuning the finite element
model of the system. This work continues the recent author’s investigations concerning
vibrations of membrane systems [2].
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2. Formulation of the problem

The objective of this work is formulation of a dynamic model of an annular composite
membrane. It is assumed that the membrane is thin and it is composed of two concentric
portion of the homogeneous regions. Each region has the constant thickness. The
membrane is uniformly tense by adequate constant tensions applied at the edges. Making
use of the classical theory of vibrating membranes, the partial differential equations of
motion for the free transversal vibrations are

li(rawij 1 0*w, 1 0*w,

il 29 2 9% g =12 1
r or or M

Figure 1. Vibrating system under study

where w; =w, (r, ¢),t) is the transverse membrane displacement, r,@,¢ are the polar
coordinates and the time, b,,c;,d|,h,h, are the membrane dimensions, p; is the mass
density, S is the uniform constant tension per unit length and

ai =S/(pih), a; = S/(pshy) @
The boundary and the compatibility conditions are
Wl(bl,gp,t): 0, wz(dl,(p,t): 0, Wl-(r,(p,t): Wl-(r,gp+ 27r,t), i=12
an(Cla%f):awz(cla(/’af) ®)
or or

Wl(cla(/’»f): Wz(cla%f),

3. Free vibration analysis

Now using the separation of variables method, one writes [3, 4]

w,(r,p,t)=R(r)U(p)T(t),  T(t)=Lcoswt+Msinwt, i=1,2 (4a, b)
where @ is the natural frequency of the system. The boundary and compatibility
conditions in terms of R; (r) become

de (cl ) — dRZ (cl ) (5)
dr dr

Rl(bl):R2 (dl):()’ RI(CI)ZRZ(CI)’
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Substituting solution (4a) into (1) yields
Ro1)= 40, (00 )+ BT, 0]a), U, (p)=C,sinlng)+ D, coslugh =12 ()
where J, and Y, are the Bessel functions of the first and second kinds, respectively.

The constants 4;,, B;,, are determined from the boundary and compatibility conditions.

Conditions (5) yields a system of four linear, homogeneous equations in the constants
A,,A4,, and B,,, B,, , respectively. Finally, a determinantal equation in the natural

frequencies is obtained from the non—triviality condition. It yields the secular
determinant

Jn(bla)/al) Yn(bla)/al) 0 0
Jn(clw/al) Yn(clw/al) _Jn(clw/a2) _Yn(clw/aZ _ )
—m3 — M3 nss3 M3y
0 0 Jn(dlw/a2) Yn(dlw/a2)

where the roots of the determinantal equation (7) @ =w,,, (m = 1,2,3,...) are the free
frequencies of the membrane and

ms :ci‘]n(clw/al)_aﬂJn+l(clw/al)ﬂ msy :ciyn(clw/al)_aﬁynﬂ(clw/al)
1 1 1 1

= 20, e0/as) =T ofas). my =", (o)), o/ v
The general solution of equation (1) takes the form
(.00 = 33 R (U, (0)1,,0)= 3 (KL, cosl,,)+ MY, sin(, e
W)+ 6, ol ) NEL s WL .0 )
W)= X3 R ()0, 0)7,, ()= zz«mﬂwmmw@x
oo ) (o) (K] cosonhs N2, snfon ) 1. 0)
where
lmn(r (elmn il(rwmn/a1)+ n( mn/al))sm (np)
W2 (.0) = et T, (r O f 1)+ Y, (0 Ja)c0S(n0) o)

W2mn (r,p) (ezmn J, (ra)mn/az) 1(ra)mn/a2 ))sm (no)
WZmn r (0 ( Zmn n(rwmn/aZ) Yn(rwmn/aZ))cos n¢))

are the eigenfunctions and
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Clmn = _Yn(bla)mn/al)/Jn(bla)mn/al)> € mn = _Yn(dla)mn/aZ)/Jn(dla)mn/aZ) (11)
Each natural frequency ®,,, correspond two linear — independent mode shapes which

may be plotted from relations

VVlmn = I/Vl(l) W2mn = Wz(l) VVlmn = W(z)

mn? mn> Imn>

Wana =2, (12a,b)

4. The finite element representations

In this section the finite element (FE) models are formulated to discretize the continuous
models given by the equations (1). To find the eigenpairs (eigenvalue, eigenvector)
connected with the natural frequencies and natural mode shapes of the system, the block
Lanczos method is employed [5]. As mentioned earlier, the FE models are treated as an
approximation of the exact systems. In this work the impact of the manner of the
membranes tensile forces application in the FE models on the quality of the accurate
model approximation is analysed. In order to make a comparison of the continuous
system analysis results with the FE models solutions, two finite element models are
prepared and discussed.

The first FE model consists of the composite annular membrane divided into 8964
finite elements. The four node quadrilateral membrane element with six degree of
freedom in each node is used to solve the problem. The uniform constant tension per unit
length is applied to the outer edge by using the ANSYS code system standard procedure.
The prepared model is shown in Fig. 2.

Figure 2. Finite element model

The second FE model of the system taken into consideration is the same as the first,
but the application of the constant tension is different. To each node lying on the outer
edge is imposed a concentrated tensile force S, in the radial direction. The proper value

of the force is selected experimentally to minimize the frequency error [5]

gmn:(a)rj:tn_wfnn) a)rcnnlloo% (13)

where ]

and @, are the natural frequencies of the FE and exact models,

respectively.
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5. Numerical analysis

Numerical analysis results of the composite annular membrane free vibration are
obtained using the models suggested earlier. For each approach, only the first ten natural
frequencies and mode shapes are discussed and compared for these two models. The
parameters characterizing the system used in calculations are shown in Table 1.

Table 1. Parameters characterizing the composite membrane

b, Cy d; hy h; Pi P2 E; E, vi v N
[m] | [m] | [m] | [m] | [m] | [kg/m’] |[kg/m’]| [Pa] [Pa] 1" | [N/m]
0.1]0.3]0.5]0.001/0.0027.85-10° | 2.7-10° [ 2.05-10"" | 7-10' [ 0.29 ] 0.32| 1000

In the table, E; and v; (i :1,2) are, the Young’s modulus of elasticity and Poisson

ratio, respectively. In this paper the continuous model is considered as exact, compared
to the FE models, which are treated as approximation of the precise model.

For the continuous model the natural frequencies are determined from numerical
solution of the equation (7). The results of the calculation of the natural frequencies are
shown in Table 2.

Table 2. Natural frequencies of the composite membrane system w,,, [Hz] (exact model)

n
0 1 2 3 4 5
m| 1 14.8413 | 16.5576 | 20.6931 | 25.7996 | 31.1661 36.553
2 30.8524 | 31.8401 | 34.5752 | 38.5114

The natural frequencies and the frequency errors (see eq. (13)) obtained by using the first
FE model of the system under investigation are presented in Tables 3 — 4, respectively.

Table 3. Natural frequencies of the composite membrane system w,,, [Hz]

n
0 1 2 3 4 5
m| 1 15.849 17.227 20.717 25.247 30.141 35.099
2 32.751 33.498 35.636 38.898

Table 4. Frequency error ¢, [%]

n
0 1 2 3 4 5
m| 1 6.7898 4.0429 0.1155 -2.1419 | -3.2892 | -3.9778
2 6.1538 5.207 3.068 1.0039
In the second FE model case the results presented in Tables 5 —6 are achieved for

S, =8.7[N].
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Table 5. Natural frequencies of the composite membrane system w,,, [Hz]

n
0 1 2 3 4 5

m| 1 15.825 17.201 20.686 25.21 30.096 35.046
32.702 33.448 35.583 38.839

Table 6. Frequency error &,,, [%]

n
0 1 2 3 4 5

m| 1 6.6281 3.8858 -0.0343 | -2.2853 | -3.4335 | -4.1227
2 5.995 5.0499 2.9148 0.8507

For both FE model cases the largest difference between the analytical results and the FE
solutions can be visible for the frequencies w;y, w;y and w,;, respectively. In the second
FE model case only for the frequencies w;3;, w;, and w;;s, the frequency error increased.

6. Conclusions

The present work deals with the transverse vibrations of a composite annular membrane.
The free vibrations are determined by using the separation of variables method and finite
element technique. Due to space limitation the mode shapes are not presented. The exact
solution is utilized to manually tune the FE model. At this stage of search it seems that
the second FE model would be better to simulate the analyzed system. The main
advantage of using the second FE model is the knowledge regarding the value of the
concentrated tensile force applied to all the nodes lying on the outer edge.
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Czestosci wlasne i postacie drgan wlasnych kompozytowej membrany pierscieniowej
Przedmiotem rozwazan niniejszej pracy jest analiza drgan poprzecznych kompozytowej membrany
pierscieniowej. Omawiane w pracy modele matematyczne uktadu opracowano wykorzystujac klasyczna teorig
drgan poprzecznych membran oraz metode elementow skonczonych. Sciste rozwiazanie drgan uktadu
otrzymano stosujac metodg rozdzielenia zmiennych (metod¢ Bernoulliego — Fouriera). W oparciu o uzyskane
rozwiazanie, wyznaczono czgstosci wlasne i odpowiadajace im postacie drgan wilasnych uktadu. Wyniki
rozwigzania analitycznego wykorzystano do dostrajania zaproponowanych modeli elementow skonczonych
uktadu.
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Abstract

Purpose of research work represented in the said paper consisted in fulfilment of analysis of dynamic stability
of a rotor of asynchronous motor. The rotor model of continuous mass distribution and variable rigidity was
assumed for analysis. On the ground of motion equations differential equations binding dynamic deflections of
the rotor with space and time have been obtained. Finally, there have been obtained partial differential
equations, heterogeneous and of variable coefticients which have been solved by application of the variables
separation method. Then the ordinary differential equation describing the vibration of the rotor in time function
have been solved. On the basis of the above mentioned, the characteristic equation have been derived. The
critical values of magnetic tension and axial force have been determined.

Keywords: rotor, dynamic stability, deflection, vibration

1. Introduction

Among in electric machines, the squirrel-cage asynchronous motors occupy a particular
space. These motors have small value of the magnetic gap. For this reason, the basic
problem encountered in the phase of construction of such machines is to estimate the
stability of the rotors. The problem of stability rotors is in relation to the problem of
vibration. On certain values of some quantities, such as rotational speed, magnetic
tension rigidity etc., the effect of unstability can take place. The assesment of the
stability is of particular importance in the case of long rotors loaded by axial force, for
example rotors of motors of deep-well pumps. Such pumps works in deep waters. It
follows that the rotors of such motors are loaded by large forces. In this paper the
influence of axial force and magnetic tension on the frequency of free vibration has been
determined. Estimation, of the stability of transverse motion of rotors is presented in
works [3]+[5]. In these works, the influence of the axial force was not considered. After
analyzing a number of positions of the professional literature (for example [1], [2])
relative to this problem, one can state that the considerations presented there are based
on a simple model of the rotor, reduced to a point mass with spring. The force of
magnetic tension is (assumptioned) as a concentrationed force. This assumption is not
consistent with the reality, because the force is continuously distributed on the surface of
the packet. Influence of axial force and magnetic tension on the free vibration frequency
has been determined in the paper.

2. The dynamic stability of the rotor

In order to estimate the dynamic stability of the rotor, it is necessary to formulate
differential equations, expressing the relation between the dynamic deflections of the
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rotor with space and time. These equations have been derived in a similar way as in the
paper [3]. The force of magnetic tension is continuous load on the surface of rotor and is
acting in direction of a rotor's centre deflection. A load intensity of the magnetic tension
(Fig.1) can be described by following formula [2]:
q(x) = Cy(x) 1)

where: C — coefficient of the magnetic tension, y(x) — deflection of the rotor

The rotor shown in Fig. 1 is loaded with magnetic tension and axial force. In order to
simplify the considerations a vertical position of the rotor has been assumed (position of
rotors in deep-well pumps).

a | a
X2 2
X3 3
| X1 1
“J/ o
F ! ke a © F
- 4t L M—m
mmammmaEnEeEsan .

Fig. 1. The rotor loaded by magnetic tension and axial force

The differential equations of dynamic deflections of the rotor can be obtained on the
basic of the differential equation of a centre line of a beam.
This equation can be introduced in the form:

2
Sa—f =M )
Ox
where: S — flexural rigidity of the section on which acts the magnetic tension (section 2),
M — bending moment.

The bending moment M can be expressed as M = Fy and equation (2) in the form:

o* y
-y 3
ox? !
where q, is load intensity in the section 2 which can be introduced in the form:
dx = q1x T 925 T 43« (4)

where: q; — load intensity taking into account influence of a compressive force F, g, —
load intensity taking into account influence of forces of inertia, g3, - load intensity taking
into account influence of the magnetic tension.
The equation (3) can be then introduced in the form:
4 2 2
,826 f+a6 ;;_}/era ;
Ox Ox ot

=0 )
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where:

=2 a=l S ©)
H H H

1L — unit mass (per unit length) of the section 2, t - time

Equation (5) is a partial differential equation with constant coefficients. It can be solved

by means of Fourier’s method and presented in form of infinite series

y=2.X, ()T, (1) 7
n=1
After a separation of variables and definion of parameter k, the following equations have
been obtained:

1w 1 4
BPX +aX,—kiX,=0 (8)
T,+ T, =0 ©)

where ®, denotes the n — order frequency of free vibrations of rotor.
On the basis of above equations the following formula has been obtained:

o =k =y (10)
The equation (8) can be introduced in the form
w u
X,+aX,-bX,=0 (11)
The solution of the equation (11) can be introduced in the form
X, = C,shmx+ C,,chmx+ Cs, sinnx+ C,, cosnx (12)

where

—a+va*+4b a+\a* +4b
e A (13)

The constants in solution (12) can be determined on the basis of the boundary
conditions. The equations describing the boundary conditions can be written in the
following form:

Sk,)=0 (14)
Is results from the above considerations that equation (14) has an infinite quantity of
solutions. This way, the next frequency of the rotor can be determined. The equation
(14) was solved with an microcomputer.

3. Example of calculations

This chapter presents calculations of a rotor for following data: L=0,7m , 1=0,375m ,
d=0,05m ,D=0,08m. Calculations were done for different values of the coefficient of the
magnetic tension C. Fig. 2 shows the diagram of the frequency o, (the formula 10)
against the axial force F, with different values of magnetic tension coefficients C.

The point of intersection of the curve with the axis of abscissae determines the value
of the so-called critical force. In the presence of this force instability of the rotor occurs.
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Fig. 2. The relations between rotor's natural frequency ®; and axial force F: 1 — C=19,62
MPa, 2 — C=29,43 MPa, 3 — C=31,39 MPa

On the basis of the diagram shown in Fig. 2 one can state that with the value of the
coefficient C=19,62 MPa, the critical force has a value of about F=54-10° N. If
(C=29,43 MPa, the critical force has a value of about F=10° N. However, if C=31.39
MPa, F has a value of about 0,23-10° N. The diagram shown in Fig. 2 demonstrate that
there exist such a magnetic tension called the critical one, at which the frequency of free
vibrations of the rotor is equal to zero. On the basic of the above example of
calculations, the critical magnetic tension has a value of C.,=31,98 MPa.

4. Conclusions

The increase of magnetic tension as well as the increase of the axial force causes the
decrease of the frequency of free vibrations of the rotor. The diagram describing the
dependence of the free vibrations frequency of the rotor on the axial force is a decreasing
function. The diagram of this function remind a parabola with horizontal axis of
symmetry. There exist a critical magnetic tension and a critical force at which the rotor
loses stability of the transverse motion.
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Dynamika wirnika silnika asynchronicznego obciaZonego naciaggiem magnetycznym i sila osiowa
Celem pracy przedstawionej w artykule bylo dokonanie analizy statecznosci dynamicznej wirnika silnika
asynchronicznego. Do analizy przyjeto model wirnika o ciaglym roztozeniu masy i zmiennej sztywnosci. Na
podstawie rownan ruchu otrzymano réwnania rozniczkowe wiazace ugigcia dynamiczne wirnika z przestrzenia
i czasem. Ostatecznie otrzymano rownania rézniczkowe, czastkowe niejednorodne i o zmiennych
wspotczynnikach, ktore rozwiazano stosujac metodg rozdzielenia zmiennych. Nastgpnie rozwiazano rownanie
zwyczajne opisujace drgania wirnika w funkcji czasu.

Na podstawie powyzszego rozwiazano roéwnanie charakterystyczne. Wyznaczono krytyczne wartosci
naciagu magnetycznego i sity osiowe;j.
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Abstract

The paper presents an analysis of dynamic stability of a rotor in two-pole asynchronous motor. A model of the
rotor with continuous mass distribution, with changeable rigidity and with damping have been applied in the
analysis. In order to determine the stability of the rotor transverse motion equations of its transverse vibration
have been formulated. From the equations of motion, differential equations interrelating of the rotor dynamic
deflection with space and time have been derived. Eventually, homogeneous, partial, differential equations
have been obtained and solved by the Fourier’s method. Then an ordinary differential equation (Hill’s
equation) describing the rotor vibration have been solved. An analysis of the solution became the basis for
determining the regions of rotor motion instability. Finally, the critical damping coefficient values at which
parametric resonance occurs have been determined.

Keywords: rotor, dynamic stability, deflection, damping coefficient, vibration

1. Introduction

Among in electric machines, the two-pole asynchronous motors occupy a particular
space. These motors have small value of the magnetic gap. For this reason, the basic
problem encountered in the phase of construction of such machines is to estimate the
stability of the rotors. The problem of stability of rotors is in relation to the problem of
vibration. On certain values of some quantities, such a rotational speed, magnetic
tension, rigidity, etc. the effect of unstability can take place. The assessment of the
stability is of particular importance in the case of long rotors, for example rotors of
motors of deep-well pumps.

Problem of estimation of stability of transverse motion of rotors without damping
are presented in the works [4,6,7]. In this paper the influence of damping in rotors on the
dynamic stability of its rotors in two-pole asynchronous motors have been determined.

2. Dynamic stability of rotor

The model of rotor accepted for calculations is shown in Fig.1.
In order to simplify the considerations a vertical position of the rotor have been assumed.
The basis for describing the dynamic stability of the rotor is the differential equation of
the centre line of the beam. The equation can be written as:
o
5= )
where: S — flexural rigidity of the section 2

y — deflection of the rotor

gx — load intensity

S
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Fig.1. The model of rotor accepted for calculations

The load intensity q, can be introduced in the form:

qx =41« + q2x + q3x
where: q;, — load intensity related to the influence of the forces of inertia,
(2« — load intensity related to the influence of the magnetic tension,
(3x — load intensity related to the influence of the damping.
The load intensity q;, can be expressed as:

%y
Qix =—H ?
where: p — mass of the unit of length of the section 2

t — time
The load intensity g, can be expressed as [1,2]:
92, = (A + Ay cos pt)y

where: A, A,, p — parameters of magnetic tension [2,6,7].
The load intensity g3, can be expressed as:

__, Y
qsx =1, ot

where: 77, — damping coefficient on the rotor

After substituting (2) in (1), the following differential equation in obtained:

o'y %y ., o

2

G 9V on D (4 cos pr)y =0

d ot o ot v Py

where: /32:£ 2h="1 ,}/=—A1, 3=—A2
1 P P P

The above equation is a fourth — order homogeneous equation with time — dependent

2

3)

“

(&)

(6)

Q)

coefficients. It was solved by the Fourier’s method. The solution can be presented in the

form of an infinite series:
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y=3 X, (T, () ®)

n=1
After a separation of variables and definion of parameter k, the following equations have
been obtained:

w I
X, () =k X, () =0 ©)
T,+2h T+ (0 — cos pt)T, =0 (10)
where: @, denotes the n — order frequency of free vibrations of rotor when =0,
17, =0
The equation (10) can be expressed as follows:
T,+2hTq+ o (1-2y, cos pt)T, =0 (11)
where:
9
2, =2 (12)
1)

n

Differential equation (11) is Hill’s equation in the form [3,5]:

T4+ 20T, + Q[1- f(OIT, =0 (13)
If there is no damping in the rotor (h=0) and assuming f(¢) =2y, cos pt, one gets the
following classical Mathieu equation:

T,+ a2, (1-2y, cos pt)T, =0 (14)
Let us now analyse the stability solutions of the differential equation (13) limiting the
analysis to the first (most important) region of instability. By solving of this equation the
boundary lines of the first region of instability has been obtained (Fig.2.).

The relations for the first region of instability are obtained:

2 2
i<2\/ (l_gn) V¥, (15)

Q \1-3¢, -yl -4z, +8¢

22
T R 06
Qn 1_3511 +\/l//5 _4§n +8§3

where:

& =5 a7
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Fig.2. First region of instability (&, =0, without damping, &, # 0, with damping)

Vertex of the first region instability has the coordinates:

[ P
l//lgr:2 61_2612 4 a:‘z 1_351 (18)

1

Relation (15) and (16) describe the upper and lower boundary line, respectively. From
formula (18) the boundary value of coefficient y, at which parametric resonance occurs
has been obtained. If y;< 4, no parametric resonance arises. It follows from the above
that there exist coefficient A, of magnetic tension and coefficient of damping &; at which
the rotor does not lose stability.

3. Conclusions

The magnetic field (described by the coefficients A;, A, and frequency p) in two — pole
asynchronous motor and damping in rotor have a great influence on the rotor stability.
Damping reduces the areas of instability of rotor. Owing to damping, there are certain
values of coefficients of magnetic field at which the rotor does not stability.
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Dynamika wirnika silnika asynchronicznego, dwubiegunowego z ttumieniem.

Artykut przedstawia analizg statecznosci dynamicznej wirnika dwubiegunowego silnika asynchronicznego.
Przyjgto model wirnika z ciaglym rozlozeniem masy, o zmiennej sztywnosci z thumieniem. W celu okre$lenia
stateczno$ci wirnika utozono rownania opisujace jego drgania gigte. Na podstawie rownan ruchu otrzymano
rownania rézniczkowe opisujace ugigcia dynamiczne wirnika w funkcji przestrzeni i czasu. Ostatecznie
otrzymano roéwnanie rézniczkowe czastkowe, ktore rozwiazano metoda Fouriera. Nastgpnie rozwiazano
rownania rézniczkowe Hilla opisujace drgania poprzeczne wirnika. Analiza rozwigzania powyzszego rownania
byta podstawa do wyznaczenia obszarow niestatecznosci wirnika.

Ostatecznie wyznaczono krytyczna warto$¢ wspotczynnika tlumienia przy ktorej ma miejsce rezonans
parametryczny.
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Abstract

In this study the free transverse vibration analysis of the annular membrane resting on elastic foundation with
fixed boundary conditions at the inner and outer edges of the annular membrane is presented on the basis of
the analytical method and numerical simulation. The elastic foundation is described by the Winkler model. At
first the general solution of the free vibrations are derived by the Bernoulli — Fourier method. The natural
frequencies and natural mode shapes of vibrations of system under consideration are determined. Then the
model of the system formulated by using finite element representations is prepared and eigenvalue problem is
solved. Obtained results of calculation are discussed and compared for these two models. It is important to
note that the data presented in the paper is brought the practical advice to design engineers.

Keywords: annular membrane, transverse vibration, natural frequencies, Winkler foundation

1. Introduction

Annular membranes have wide applications in various fields of engineering [3].
Sometimes, they are used as structural elements attached to foundations, such as parts of
pharmaceutical, chemical and biomedical devices [3, 4]. Firstly, the fundamental
vibration theory of two — dimensional continuous systems resting on foundation are
mainly investigated for plates attached to elastic foundation. In work [1] a three —
dimensional free vibration analysis of thick annular plates resting on elastic foundation
of a Pasternak type is presented on the basis of the polynominals — Ritz method. Paper
[5] describes a study of the three — dimensional vibration characteristics of thick circular
plates resting on Pasternak foundation. This paper describes an investigation of the free
vibration of annular membrane resting on Winkler foundation. The complete analytical
solution of undamped free vibrations of this system is derived by using the Bernoulli —
Fourier method. Then the studies focused on the preparation of the appropriate FE
models of the system under study are provided. Some results known for the first time are
reported.

2. Theoretical formulation

Mechanical model of the system taking into account consists of annular membrane
resting on massless, linear, elastic foundation of a Winkler type. It is assumed that the
membrane is thin, homogeneous and perfectly elastic, and it has constant thickness. The
membrane is uniformly tense by adequate constant tensions applied at the edges of
membrane (see Fig. 1). The small vibrations with no damping are considered. The partial
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differential equation of motion for the free transversal vibrations can be written in the
form [2, 3]

myw—SAw+kw=0 (1)

Figure 1. Physical model of the system

where w=w(r,¢),t) is the transverse membrane displacement, r,@,t are the polar
coordinates and the time, 1,7,/ are the membrane dimensions, o is the mass density,

S is the uniform constant tension per unit length, &k is the stiffness modulus of a
Winkler elastic foundation and

2 2
my = ph, W:g_v:’ w=%+%% %272} 2)
The boundary and periodicity conditions are
Wl 1) = wlry,0.1)= 0, wlr,.1)=wlr,p+27.1) 3)
Making use of the classical method of separation of variables [2] one writes
w(r, o, t) = W(r, ¢))T(t), T(t) = Csin(a)t)+ D cos(a)t) (4a,b)

where @ is the circular frequency of the system. Introducing solutions (4) into (1) gives
the following expression

AW+ KW =0 (5)
where

K2 = (mo® ks (6)
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The coefficient k12 is positive when @? > k/m . This condition guarantees the harmonic
type of free vibrations [3]. Assuming the solution of equation (5) in the form
W(r.p)=R(r)U(p) (7)

and introducing it into (5) yields

5 2
a ddfz(r)+rd§£r)‘(n2—(kfr)z)R(r):o, ddzg¢)+an(¢)=0»n=O=L2»~- ®)

The boundary and periodicity conditions takes the form

R(1)=R(r)=0,  Ulp)=Ulp+27) ©)
The general solutions of equations (8) can be easily obtained as
Rn(r): A,J, (klr )+ BnYn(klr ), Un(qo)z L, sin(n¢)+Mn cos(nqo), n=0,L2,... (10)

where 4,,B,,L,,M, are unknown coefficient and J, (), and Y () are the first and

n> n’>—n>
second kinds of Bessel functions of order n. Conditions (9) yields a system of two
linear, homogeneous equations in the constants 4,, B, . Finally, a determinantal equation
in the natural frequencies is obtained from the non — triviality condition. It leads to the
following secular equation

Il 7)Y, (ky 7y )=, (ky 7)Y, (k1) = 0 1D
From the relation (11) it is shown that &k, =k,,, (m = 1,2,3,...) are the roots of the above

equation. Then taking into account equation (6), the natural frequencies of the system
under study are determined from the relation

o’ =, (k,f,nS+k) m, (12)
Finally the general solution of the free vibrations of the system under consideration can
be written in the following form

w(r,go,t): i inn( ) ( ) i i(( sm( )+ D( ) cos(a)mnt))x 13)
m=1n=0 m=1n=0
1) 00)+ () sinfo )+ D) coson 200
where
WrStlr)z (r’ (0) = (em n Ji’l (km n r)+ Yn (km n r))sln(n ¢)) (14)

WrStzn)(r’ (0) = (em n Jn (km n I")+ Yn (km n i"))COS(I’l(D)
are a two linear — independent mode shapes, and

emn:_Yn(kmn rl)‘]n(kmn rl) (15)
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3. The finite element formulation

The discrete models of the system under investigation are formulated using the finite
element technique (ANSYS code). These FE models are treated as an approximation of
the analytical solution of the continuous system given by the equations (12), (13) and
(14), respectively. To find the natural frequencies and natural mode shapes, the block
Lanczos method is employed [4]. The essential problem of this section is built the FE
model of the elastic foundation.

The first FE model is realized as follows. The foundation is modeled by a finite
number of parallel massless springs. The stiffness modulus kg of each spring can be

obtained from the relation [3]
ks =k po)/b (16)

where p, is the area of the membrane large face and b is the number of the springs.

The spring — damper (combin) element defined by two nodes is used to realize the elastic
layer. The damping capability of the element are neglected. The four —node
quadrilateral (shell) element is used to realize the membrane. Application of the constant
tension is realized as follows. To each node lying on the outer edge is imposed a
concentrated tensile force S, in the radial direction. The proper value of the force is

selected experimentally by numerical simulation [3]. The prepared model consists of
9540 shell elements, and 9324 combin elements, respectively.

Figure 2. Finite element model

The second FE model is the same as the first, but the realization of the Wikler elastic
foundation is different. Each massless spring is modeled by using bar (link) element. The
values of the bar dimension parameters are fixed a priori. The proper value of the
Young’s modulus E, of each bar is selected experimentally to minimize the frequency

error defined by [4]
e =0, = 5, )] 05, -100% (17)

where a),{m and @, are the natural frequencies of the FE and analytical models,

respectively.
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4. Numerical computations

Numerical solutions for free vibration analysis of the annular membrane resting on
elastic foundation models suggested earlier, are computed. For all results presented here,
only the first ten natural frequencies and mode shapes are discussed. Table 1
demonstrates the parameters characterizing the system under study.

Table 1. Parameters characterizing the annular membrane

r; [m] 7, [m] h [m] p [kg/m’] E [Pa] % S [N/m]
0.5 0.1 0.002 2.7-10° 7.10" 0.32 500

In the table, £ and v are, the Young’s modulus and Poisson ratio, respectively. In
this work the analytical solution is considered as exact, compared to the finite element
results, which are treated as approximation of the precise solution.

For the analytical model the natural frequencies are determined from numerical
solution of the equations (11) and (12). The results of the calculation are shown in
Table 2.

Table 2. Natural frequencies of the system under study w,,, [Hz] (analytical solution)

n
0 1 2 3 4 5

m| 1 12.0828 | 13.3304 | 16.2846 | 19.8242 | 23.4497 | 27.0413
2 24.0425 | 24.8625 | 27.1393 | 30.3978

Results presented in Tables 3 — 4 are connected with the first FE model and are obtained
for S, =4.8[N].

Table 3. Natural frequencies of the system under study w,,, [Hz]

n
0 1 2 3 4 5

m| 1 12.486 13.516 16.094 19.377 22.861 26.359
24.85 25.486 27.302 30.046

Table 4. Frequency error ¢, [%]

n
0 1 2 3 4 5

m| 1 3.337 1.3923 -1.1704 | -2.2558 | -2.5105 | -2.5232
3.3586 2.5078 0.5995 -1.1573

Tables 5 — 6 show the results connected with the second FE model and are achieved for
S, =4.8[N] and E, =265[Pa].
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Table 5. Natural frequencies of the system under study w,,, [Hz]

n
0 1 2 3 4 5
m| 1 12.485 13.515 16.093 19.376 22.86 26.358
24.849 25.485 27.301 30.045

Table 6. Frequency error &,,, [%]

n
0 1 2 3 4 5
m| 1 3.3287 1.3848 -1.1766 | -2.2609 | -2.5147 | -2.5269
2 3.3545 2.5038 0.5958 -1.1606

For both FE model cases the biggest difference between the analytical computations and
the FE solutions may be visible for the frequencies w;y and w,, respectively.

3. Conclusions

Based on the classical theory of membranes, a comprehensive study of the vibration
analysis of annular membranes resting on Winkler elastic foundation is investigated. The
separation of variables method is applied to derive the eigenvalue problem. Two FE
models of the system under study are investigated. The numerical solution results
demonstrated that the second FE model would be better to simulate the free vibration of
the system under investigation.
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Analiza drgan wlasnych membrany pierscieniowej osadzonej na podlozu typu Winklera
W pracy analizowane sa drgania wlasne poprzeczne membrany pier§cieniowej osadzonej na podiozu
sprezystym typu Winklera. Prezentowane modele matematyczne uktadu opracowano w oparciu o klasyczna
teori¢ drgan membran pierScieniowych oraz metodg elementéw skonczonych. Rozwiazanie $ciste drgan
wiasnych uktadu wyprowadzono stosujac metodg Bernoulliego — Fouriera (metoda rozdzielenia zmiennych).
Uzyskane z rozwiazania $cistego wyniki (czgstosci wlasne i odpowiadajace im formy wiasne) porownano z
rezultatami otrzymanymi z metody elementéw skonczonych.
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Abstract

Development in the direction of future applications of fast and accurate position control systems used in
optoelectronics, computer hardware, precision machining, robotics and automobile industry stimulates high
engagement in creation of non-conventional implementations [1, 2]. The work presents a numerical analysis
devoted to that domain basing on a non-contact (frictionless) fixing of some cylindrical-shape’s mass in an
alternating magnetic field. These considerations precede identification of electromagnet parameter and created
by it magnetic field in the real experimental realisation of the problem shown on a photo in Fig 1. The mass
levitates in field generated by the electromagnet’s system sourced by voltage of 12V. Next to the numerical
algorithm of voltage feedback there has been even used a modified PID control [2] of transition state’s
oscillations of the levitated light mass that are recorded until it reaches the stable equilibrium position. Results
of the experiments have been presented on time-history charts of A(f) displacement measured between
themselves faced surfaces of the electromagnet’s core and surface of the levitated mass.

Keywords: decaying vibrations, magnetic levitation, numerical control, experimental rig

1. Introduction

Magnetic levitation is a known topic and can be realised in some ways [3, 4] but the
most visual effects can be observed after utilization of an electromagnet made of
superconductor.

+@— | Flectromagnet |«

— 0
\_ () - distance
Infrared light Sensor of the > Differential Filter +
emitting — 7| infrared barrier|” | amplifier amplifier
diode
? K_ ___| Current
o Sensor of the, ! limitation
Levitating outside light
cylindrical MOSFET '

bod)

@ transistor |- — — -1

Figure 1. A schematic block diagram of the hardware, signal connections and
the levitating solid body.
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In a simpler way of creation of a system for examination of levitation’s phenomenon one
can use a system with infrared light’s sensor that traces position of the levitated mass
(barrier) placed in the magnetic field generated by the electromagnet.

For the purpose of the experiment presented here the role of sensor is played by the
infrared light barrier that monitors actual position of the cylindrical mass. A schematic
view of the experiment is shown in Fig. 1.

2. The Analysed System

Electronic part of the system uses two light-sensitive resistors of which the first one acts
together with infrared light-emitting diode as a simple barrier tracing the cylindrical
solid body’s position. Because of existence, in the surrounding space, of many infrared
light emitting sources like sun or light bulbs (producing disturbance signals to the
barrier) the second one measures the amount of light coming into the system from
surrounding space. When the barrier’s sensor is partially illuminated (a result of
covering of it by the levitating body) then a voltage difference appears and is inputted to
the differential amplifier for generation of another value of voltage sourcing the
electromagnet’s circuit. Experimental realisation of the diagram presented in Fig. 1 has
been shown in Fig. 2.

Figure 2. Experimental setup of the control system of the levitating cylindrical light mass
(constructed by Piotr Jedrzejczyk, student of the second degree studies
at the Faculty of Mechanical Engineering).

The system shown in Fig. 2 can be modelled (in a simplified dimension) by the
dynamical system of three first-order differential equations (1) describing motion of the
mass levitating in magnetic and gravitational fields and the voltage equation for the
electric circuit with alternating current. One distinguishes the following meaning of the
system state’s vector x: x;—# displacement of the levitating mass measured downward
from the electromagnet’s surface, x,—dh/dt corresponding velocity of the displacement,
x;—i electric current in the electromagnet’s electric circuit.
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x, (1) = x,(1),
5Lt =g —£(x3—(t)] +u(?) [y cse» (1)

m\ x,(¢)

50 = L0 e R0,

where electrical and physical constants are as follows: L =0.002H is the coefficient of
inductance, R =0.29 Q — the coefficient of resistance, k& =10* kg-mz/Cz, C — the magnetic
flux, m = 0.0226 kg — mass of the levitating body.

3. Two Cases of the Numerical Control

Voltage v(¢) and force excitation u(f) are the two control signals. They are considered in
two separate cases, namely: 1) u(?) is a feedback from position /4 in the system with PID
controller having the transfer function PID(s) = kpt(s+k;)/s+kps inserted to the first axis
of the block diagram shown in Fig. 3, while v(¢), a voltage source remaining constant at
12V; 2) the time-dependent control input voltage in Laplace representation V(s) =
—((kyHheasthss®)H(s) — kyho) to the analysed dynamical system working as the plant in the
closed-loop control system with feedback from full state-vector (numerical model of the
control strategy has been shown in Fig. 4). Disturbances coming from any external light
sources have been neglected.

Both presented numerical models include characteristics of operation of the infrared
light barrier IRR(f) = 1—bgph(f) 2. This approximation with bz dumping (sensitivity)
constant measures the amount of the infrared light transferred from the emitting diode to
the light-sensitive resistor with presence of the levitating body working as the barrier.

|._>_ h(t)
t) >..>c(t '
m"e() v S I LU
red h PID _ s - L
require: gm INT1 s
init.ho  INT2

—»

v

h(t)

< i(t) ¢
b_IRR =7e-5 i(t)
or 4e-5 for well dumped case kim €|
on/off RHS.  wm R=0.29
idii 1 0.2|q
>+ |_>
m 1
1(t) L + s
— L=0.002 INT

v0

Figure 3. Feedback from displacement of the levitating mass in P/D control
for kp= 250, k;= 800, kp= 13.
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influence of IRR light |—l‘
VR(t) <..< h(t) ¢
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h(t)1 ¢

U< i) g T
k/m <—m

R.H-S. Km

4—@ e

control input v(t) L=0.002 INT

Figure 4. Closed-loop input voltage control with a usage of full state-vector feedback for
ki =10, k=20, k3= {0.0, 0.2} in a model made in Simulink.
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Figure 5. Time-histories of /(f) obtained from the diagram shown in Fig 3 for different
values of the infrared light’s barrier factor bgg(1 23, = {IRR off, 0.7 10*,0.4-10° } in the
closed-loop position feedback control and for /y= 3cm.

In Fig. 5 there is visible a well-founded effect of introduction of the infrared light
barrier. The case, for a short interval of values of the IRR factor has been described as
the correct one being more realistic in relation to the motion of mass m observed on the
experimental rig. Conducting this experiment one tries to hang the mass at height s, =
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Icm with the initial condition 4, = 3cm. It is visible that the mass is quickly attracted to
the steady-state position but it is achieved in a different manner.

2.8 T T T T T T

2.6 7
gy = 2.46cm

hyy =2.37cm

h(t) [cm]

g 41 = 1.67cm

1.6 T

!

1.2 L L L 1 1 1 I I
0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2

time (t) [sec.]
Figure 6. Time-histories of /() evaluated from the diagram visible in Fig. 4 for different
values bjpp123, = 17, 0.7, 22.2}-1074 corresponding to /¢, 3y (for k3 = 0), respectively.
Infrared light’s sensitivity factor bjgriay = birr3y (for k3 = 0.2), and hy= 2cm.

Frictionless oscillations in the transition to stable position can be pretty damped (see
Fig. 6) with the use of the second case of the control strategy that bases on a feedback
from the full state’s vector as it has been shown in Fig. 4. For a different initial position
(ho=2cm) of mass m there is visible a quicker (because of voltage but not external force
feedback as examined in the first approach) and better dumped attraction of the mass to
the steady-state position. With respect to application of a different method of control
(with a control with feedback to the voltage time variable input v) the whole system is
characterized by a slightly different dynamics so the position of convergence changes
with assumption of bigger values of bjpg(1 23 =17, 0.7, 22.2}~1074. Factor bjggy3, is the
highest available here and the control nicely fixes the levitating mass at 43 = 1.67cm. At
this position the stabilized voltage sourcing the electromagnet equals 13.66V. Time-
history of /4 in Fig. 6 is the unnatural effect of the non-zero coefficient of feedback from
acceleration (k3 = 0.2, see Fig. 4). Desired position is achieved in about 1.2 sec., and it
confirms, the vector component of feedback from acceleration is not necessary in this
application.

4. Conclusions

Dependently on the presence of IRR light’s barrier and values of its sensitivity factor
(bigr) there can be distinguished various shapes of the step response. The convergence is
quite fast and well-damped when the IRR light’s correction exists, and moreover, takes a
correct value of its significance. A choice of the incorrect value of bjpp reflects in
bringing the mass into a small-amplitude weakly-dumped oscillations around its desired
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steady-state position. At some conditions such effect of oscillations is observable on the
real laboratory rig and is undesirable when one needs to fix the levitating mass at a
constant height. Therefore, the introduced feedback from the infrared light barrier with
mass m working as the armature of the electromagnet makes sense. Better shapes of
characteristics of the transition to steady-state responses have been confirmed by the
second strategy. They are faster, more stable, and no oscillations have been reported
after examination of system parameters. Magnetic field has allowed for elimination of
any kinds of friction that are usually necessary in various realisations of fixings. Our
experimental investigations will turn to identification of electro-magnetic parameters of
the whole mechatronic system and the associated magnetic field. It should help in
improvement of numerical adequateness of the presented approach as well as
improvement of the tested strategy of control.
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Lewitacja Magnetyczna Lekkiej Masy o Ksztalcie Cylindrycznym z Kontrola Tlumienia
Oscylacji Stanu Przejsciowego

Rozwo¢j w kierunku przysztych aplikacji szybkich i doktadnych ukladéw pozycjonujacych stosowanych w
optoelektronice, sprzgcie komputerowym, obrobce precyzyjnej, robotyce czy tez przemysle samochodowym
wzmaga wysokie zaangazowanie w tworzenie implementacji nickonwencjonalnych. Praca przedstawia analizg
numeryczna dotyczaca tego obszaru zastosowan bazujaca na bezkontaktowym podwieszeniu pewnej
przewodzacej masy o ksztalcie cylindrycznym w zmiennym polu magnetycznym. Rozwazania te poprzedzaja
identyfikacje parametrow elektromagnesu oraz wytworzonego przez niego pola elektromagnetycznego na
rzeczywistym stanowisku doswiadczalnym pokazanym na fotografii na rysunku 1. Masa lewituje w polu
magnetycznym generowanym przez uklad elektromagnesu zasilany napigciem 12V. Algorytm numeryczny
obok sprzezenia napigciowego zawiera takze zmodyfikowana kontrolg typu PID oscylacji w stanie
przejsciowym lewitujacej masy o maly cigzarze poprzedzajacym osiagnigcie przez nia stabilnego polozenia
rownowagi. Wyniki tych doswiadczen pokazano na wykresach czasowych przemieszczenia /(f) zmierzonego
pomigdzy skierowanymi do siebie powierzchnig rdzenia elektromagnesu i powierzchnia lewitujacej masy.
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Abstract

The paper deals with the eigenvalue problem related with discrete systems, consisting of # identical masses
connected with springs in such a way that the stiffness matrix has the form of a multiband symmetric matrix.
The eigenvalue problem formulated for such systems is characterized by repeated eigenvalues to which linearly
independent eigenvectors correspond. The solution of the eigenvalue problem has been found for an arbitrary,
finite number of degrees of freedom for the fully coupled systems and the systems in which masses are
connected exclusively with the nearest neighbours.

Keywords: repeated eigenvalues, linearly independent eigenvectors

1. Introduction

For undamped natural systems possessing distinct eigenvalues, to every eigenvalue
corresponds one unique eigenvector. The eigenvalues determine, by a suitable formula,
natural frequencies while the eigenvectors determine directly the modes of vibration.
Repeated eigenvalues can appear in discreet systems, consisting of identical masses and
springs — arranged in such a way that every mass is constrained in the same manner. It
turns out, that depending on the degree of coupling, the number of frequencies and their
multiplicity may be different. The eigenvalue problem formulated for such systems is
characterized by repeated eigenvalues to which linearly independent eigenvectors
correspond. Since such systems have regular structure, there is a possibility of deriving
analytical formulae for natural frequencies and modes of vibration for an arbitrary, finite
number of degrees of freedom.

2. System with double frequency

One of the simplest system which possesses natural frequency with multiplicity 2
consists of three identical masses, connected with one another with the use of identical
springs. The schematic diagram of such a system is presented in Fig.1.

k

ko
o, Jo o

Figure 1. Schematic diagram of the system possessing a double frequency
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The mass matrix M and the stiffness matrix K of the system have the following form

m 0 0 2k -k —k
M={0 m 0|, K=|-k 2k —k (1)
0 0 m ~k -k 2k

Seeking the solution of equation Mq+ Kq =0 in trigonometrical form q =usino? we
obtain the eigenvalue problem in the standard form

Au =au 2
where
. 2 -1 -1
A=M'K=2|-1 2 -1/, a=¢? (3)
o 2

a, =0, u=[11 1

azzﬁ, u, =[-1 1 0] 4)
m

0‘3—23 u; =[-1 0 11

The second eigenvalue has multiplicity 2. The eigenvectors u, and u; are linearly
independent and any linear combination of them is also an eigenvector corresponding to
the double eigenvalue so, the system presented in Fig.l can perform vibration with
double frequency in infinite ways.

3. Multi-degree-of-freedom system with double frequencies

The system presented in Fig.1 is a special case of the system composed of identical
masses connected exclusively with the nearest neighbours where the first mass is
connected with the second one and the last one. The schematic diagram of such a
system is presented in Fig.2.

k
L l\ 1
A A - A A A

Figure 2. Schematic diagram of regular system possessing double frequencies

Now, matrix A has the following form
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(2 -1 0 .. 0 0 1]
-1 2 -1
o2
A=) (5)
m
0 0 0 .. 2 -1 0
o o o0 .. -1 2 -1
-1 0 0 .. 0 -1 2]

The location of the eigenvalues of A can be done making use of Gerschgorin’s theorem
which states in this case that all eigenvalues lies within the segment on real axis with

center at 2+ and of length 4% . To compute their exact values, natural frequencies of

the regular system will be calculated first. The system shown in Fig. 2 has its continuous
counterpart in the form of unrestrained prismatic bar with the ends connected with each
other by a rigid weightless link. The natural frequencies and eigenfunctions of such

system have the form
2n(j-1) [E .
v_,:L\P, j=12,.. (6)
l P

2n(j =1 2n(j =1
/

X,(x)=C;sin x+D; cos%x,]’:l,z,.“ )

where / denotes the length of the rod, p — density and £ —Young’s modulus. Making use
of the relation between amplitude of three subsequent masses, the relation between
length of the rod and relative distance between masses in the regular system and the
formula determining location of masses in a rod frame of reference, one can obtain
formulae on frequencies and modes of vibration in the form [1]

. i—1
®, =2 /Esmw, j=12,n (8)
m n
COSM, dla jgjsep
uy =X ;(x;) = 5 o ,i=12,..,n 9)
. 2mi(j-1) . .
sin—————, dla j,, <j<n
n

where
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2l odd

Jsep = n2 (10)
—+1, neven
2

Taking under consideration the second relation of Eq. (3), the eigenvalues of A take the
form

a. =

j 4£sin2 =D ,

m n

j=12,...,n (11)

It appears from Eq. (11) that the smallest eigenvalue o is single, while the remaining
eigenvalues, in the case when n is odd, are double. In the case when n is even, the
smallest eigenvalue o, as well as the biggest one o+ are single, while the remaining
eigenvalues are double. The matrix U composed of elements u; diagonalizes matrix A
[2], 1.e.:

U_IAUzdiag(al,az,...,an) (12)

4. Multi-degree-of-freedom system with one repeated frequency

Let us consider a mechanical system consisting of n identical elements of mass m,
connected — each one with each one — through springs of stiffness & and, additionally
connected with the base through springs of stiffness p. The potential energy of such
system has the form

1 n n 1 n
U=—kY, 3 (=) +5p2a (13)
2 350 23
Matrix A for such system is the symmetric Toeplitz matrix of the form
0 S _k
m m m m m
_k (n—1)£+£ _k _k
m m
A= : : : 5 (14)
K kK onk.r Lk
m m m
_k _k _k (n—l)£+£
m m m m M

The determinant of A can be written as [3]
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k n-1
detA:E(n—+£j (15)

m m m

Since the determinant of the matrix is equal to the product of its eigenvalues, one can
suppose that eigenvalues of A will have the form

oy =
16
k p . (16)
a; =n—+-—, j=2,3,..,n
: m m

As can be seen o, is a single eigenvalue while a, is repeated n—1 times. Analyzing

Eq. (2) for « = a; and o = o, one can demonstrate that matrix U composed of
eigenvectors of A has the form

U=|: = . 1 17)

—
oS O
S =
()

nxn

and the inverse of U can be written as follows

[ 1 1 1 1]
n n n n
_1 nz 1 _1
n n n n
-1 . .. . .
Uu = R : : (18)
11 nel 1
n n n
11 1 ol
L n n n dnxn

The matrix U plays the part of transformation matrix in similarity transformation of
matrix A, determined by Eq. (14), i.e.:

U 'AU = diag (0, a.5,...,0,) (19)

The system presented in Fig.1 can be recognized as a special case of the system defined
by Eq. (13), for n = 3 1 p = 0 and in consequence the eigenvalues calculated from



312

Eq. (16) will be identical with the roots of characteristic equation, presented in Eq. (4)
and the eigenvalues calculated from Eq. (11).

5. Conclusions

The eigenvalues determine, by a suitable formula, natural frequencies while the
eigenvectors determine directly the modes of vibration for undamped natural systems.
Repeated eigenvalues can appear in discreet systems, consisting of identical masses and
springs — arranged in such a way that every mass is constrained in the same manner. In
such systems, to repeated eigenvalue corresponds the set of linearly independent
eigenvectors which determine the modes of vibration. Since any linear combination of
linearly independent eigenvectors corresponding to the repeated eigenvalue is also an
eigenvector, therefore, an infinite number of modes of vibration correspond to repeated
eigenvalue.
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Zagadnienie wlasne w ukladach o dowolnej liczbie stopni swobody z wielokrotnymi
czestoSciami drgan

Praca dotyczy zagadnienia wlasnego macierzy zwiazanych z uktadami dyskretnymi, zbudowanymi z n
identycznych mas potaczonych sprgzynami w taki sposob, by macierz sztywnosci miala budowg
wielopasmowe] macierzy symetrycznej. Zagadnienie wilasne tego typu macierzy charakteryzuje sig
wielokrotnymi warto$ciami whasnymi, ktorym odpowiadaja uktady liniowo niezaleznych wektorow wiasnych.
W pracy podano analityczne rozwiazanie zagadnienia wiasnego macierzy dla uktadu w pelni sprz¢zonego i
uktadu, w ktorym kazda masa potaczona jest wylacznie z dwiema sasiednimi.
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Abstract

The dynamic load is essential for proper working of the skeletal system. The loads affecting skeleton during
practising different kinds of sports and when accidents occur (for example resulting with bone injuries) have
dynamic character, often with periodical or pulse shape. Therefore, from the scientific and clinical point of
view, assignment of the dynamical properties of bone tissues is necessary. In this paper two degenerate
models for description of the bovine bones dynamic properties are presented. The whole femur bone
supported as a cantilever beam with additional mass on the free end is subject of investigations. The excitation
is applied by electro-dynamic shaker. The force sensor is situated between shaker and the bone, and the
reaction of the system is measured by acceleration sensor. On the basis the energy balance and the power
balance equations the models parameters are identified. In this paper is presented a set of parameters
describing chosen models for two cases. In the first case, it is assumed that a value of the additional mass is
not known, and in the second case calculations are performed for known value of the substitutional mass. In
the first case for both models (built on a basis of the Zener model I and the system basing on the general
model of viscoelastic body II), a majority of identified parameters are negative. For a given mass value, in
model I every parameter had positive value whereas in model II only the damping parameter was negative.
The obtained results indicate that the model I is more suitable to describe of the bone dynamical properties.

Keywords: Dynamic properties, bone, degenerate model, identification.

1. Introduction

In human organism the osseous skeleton is acting as a load-bearing structure which
assure possibility of maintaining an appropriate posture. Additionally, the skeleton
as a passive motion apparatus together with the other motion system elements assures
possibility of efficient motion. The loads affecting the osseous elements during body
motion, have key meaning as well from the bone biology as the mechanical point
of view. For the osseous correct system functioning, an appropriate physical activity
is essential to assure occurrence of the dynamic loads (in peculiarity with periodic shape
oscillations) [I, II, IV]. During practising different kinds of sports, forces acting
on the human bones have also a dynamic character. Damages of the osseous tissues
are rarely caused by static load, usually they are a result of working of the external
forces which have pulse shape or are originating from the material fatigue. Therefore
from the scientific as well as the clinical point of view, the recognition of dynamic
properties of osseous tissues is crucial.

As it is shown in literature, there is still lack of models describing dynamic behaviour
of bones. Their properties under static loading are rather well known, but behaviour
under dynamic excitations is still not well recognized. Therefore models describing
bones behaviour in conditions of dynamic loads are still searched.
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2. Material and Method

In this paper two degenerate models are presented which are going to describe
the dynamic properties of bovine bone. Model I is built on a basis of tde Zener model
(parallel configuration of a Maxwell body and a Hooke body - nonlinear in this case)
with a Saint-Venant body connected in parallel (Figure la). Elasticity function
for the nonlinear element is taken as follows:

F(,(x):clx—i-c3x3 1)

Dynamic system II (Figure 1b) is created by parallel connection of the general model

of springy-viscous medium (Hooke’s and Kelvin-Voight body in serial configuration)
with Saint-Venant body.

The purpose of using the models described above is to describe mechanical

properties of the examined osseous element under dynamic loadings.
a)

b)
p() x(t) p(t) x(t)

Figure 1. Models used to the dynamic properties of bones description:
a) model I, b) model II.

The bovine femoral bone is the examined material, because one of the biggest forces
acting on elements of the human skeleton are located in lower limbs. Moreover injuries
of the lower limbs bones are frequent consequence of dynamic loads which occur for
example in road accidents. Also the lack of human bone material decided about taking
the bovine bone for examinations.

The experimental examinations are conducted on constructed research stand, which
is shown in Figure 2. Osseous specimen is examined in a cantilever beam with additional
mass configuration. To restrain investigated object one end of the bone is placed
in the handle and flooded in epoxy resin, whereas at the second end an additional mass m
is fastened. For better restraining examined specimen, some steel elements are put
between the bone and handle walls (also flooded in resin), which partially transfer the
load from bone to the handle and relieve a resin.

During bone examinations the excitation is realized with the help of electro-dynamic
shaker. Between the shaker and specimen a force sensor is placed, which detect a real
load acting on the examined element. The load is applied to the free end in sagittal plane
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of femur, perpendicularly to its long axis. Bone vibrations are measured by the
acceleration sensor seized to the additional mass m (Figure 2). Information about force
and acceleration changes are gathered by HP Analyzer and next sent to PC computer
which collected and stored information obtained from the experiment. These data, are
analyzed in order to determine the parameters describing models I and II.

Figure 2. Scheme of investigation stand, 1- restrained bone, 2- additional mass,
3- shaker, 4- accelerometer, 5- force sensor, 6- handle.

The motion of additional mass fastened on the free end of bone is considered as a mass
vibration in one degree of freedom system (see Figure 1). An identification algorithm
basing on the energy balance and the power balance equations [V, III, VI] is used
to determine the models parameters. For each of the chosen model an equation
of dynamic equilibrium of mass m is derived. On this basis the equation of energy
balance is obtained by multiplying both sides of the mentioned equation by elementary
displacement and integrating it with period 7. Similarly, the power balance equation is
received i.e. equation of mass m motion is multiplied by elementary velocity and
integrated in limits of a full period 7 of the observed vibrations.

For example, an equation of dynamic equilibrium of model II can be described
by formulae (2) and (3), whereas energy balance and the power balance equations take
form (4) and (5), i.e.:
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co(r=8&) =cgé +kyé )
mx =—cq(x—&)—hsgn(x)+ p(?) 3)
Moot sk, v hat®Y rgp _Cagr _gp 4)
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where p means force (excitation signal) whereas x, v, a, adequately represent
displacement, velocity and acceleration of additional mass m. The values of these
integrals are equal to the areas bounded by appropriate closed curves (loops), see Fig 3.

3

pﬂ a

o o
/ X|

Y

Figure 3. Examples of loops for the system investigated.

The obtained formulae (4) and (5) are algebraic equations which are convenient
to identification of material constants: m, ¢y, ¢, k; and 4. In the case of application
periodic excitations during experimental investigation, these constants can be calculated
by help of the linear regression method.

3. Results

On the basis of the data obtained from the experiment, parameters of model I and II
are evaluated. Values of parameters describing these models, for two cases,
are presented in Table 1. In the first approach, it is assumed that the size of an additional
mass in unknown and this value is calculated in the same way as for the other
parameters. For this case most of the appointed parameters have negative values.
In the second approach after appropriate modification of identification procedure,
calculations were performed for a given value of the concentrated mass. In this case all
of the evaluated parameters (except &, in model II) have positive values see Tab. 1.
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Table 1. Results of the identification process for model I and II. *- model parameters
are appointed for set mass value.

Parameter | Unit Model 1 Model I* Model II | Model IT*

¢ N/m | -332:10° 345-10° — —

C3 N/m’ 0 0 — —

Co N/m | -207-10° 457-10° | -1,9-10" | 557-10°
Cq kN/m — — 1,9-10"° | 380-10°
ko N-s/m 76 360 — —

kq N-s/m — — 1,94-107 | -5,2-10°
h N -1,1 1,27 -3,8:10" 16,1
m kg -4,55 2 0,21 2

4. Conclusions

In the case of unknown mass m, most of the identified parameters values are negative for
model I and for model II reasonable doubts occur regarding the order of magnitude of
the appointed parameters. Therefore the assumption of a given magnitude of the
concentrated mass m, is well-founded.

In model I parameter c; takes ”0” value in both unmodified and modified procedures.
It seems that using the non-linear elastic element, in the case of modeling of the osseous
elements dynamic properties, is not necessary. Taking into account that in model II
the k4 parameter has a negative value (for set mass m) while in osseous elements a clear
viscous effects occurs [IV, IX, VII, VIII], it seems that this model is not suitable
to describe of the bone dynamic properties.

Further examinations under dynamic loads are necessary for the ultimate
determination of usefulness of presented models. In order to obtain a description of the
bone dynamic properties further studies in the degenerate models domain are needed.

The identification method of elasto-dissipative properties of long bones, presented in
this paper, does not currently allow for fully automatic evaluation of the models
parameters used to describe the dynamic properties of the bone elements. Further studies
of the models describing the dynamic behaviour of osseous elements are necessary.

It seems that the examined material behaves itself in a more complex manner than
model II proposed and investigated in this paper.
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Identyfikacja wlasciwoSci dysypatywno-sprezystych kosci dtugich na bazie modeli

zdegenerowanych.
Do prawidtowego funkcjonowania ukiadu kostnego niezbgdne jest dziatanie obciazen o charakterze
dynamicznym. Sily dziatajace na kosciec podczas uprawiania roéznych rodzajow sportu oraz podczas
wypadkow, np. prowadzacych do uszkodzenia kosci, takze maja charakter dynamiczny, w tym czgsto o
przebiegu impulsowym lub okresowym. Dlatego tez z naukowego oraz klinicznego punktu widzenia, istotne
jest poznanie wilasnosci dynamicznych tkanek kostnych. W niniejszej pracy przedstawiono dwa modele
zdegenerowane, majace opisa¢ wlasnosci dynamiczne kosci wotowych. Badaniom poddano cata ko$¢ udowa,
ktora mocowana byla w ukladzie belki wspornikowej z dodatkowa masa. Wymuszenie realizowane byto za
pomoca wzbudnika elektro-dynamicznego. Pomigdzy nim a koscig umieszczony byt czujnik sity, natomiast
odpowiedz uktadu rejestrowana byta za pomoca czujnika przyspieszenia. Na tej podstawie za pomoca metody
bilansu energii i bilansu mocy identyfikowano wartosci parametrow wystgpujacych w modelach. Ruch masy
dodatkowej zamocowanej na wolnym koncu kosci, rozpatrywano jako drgania masy w ukladzie o jednym
stopniu swobody. W pracy przedstawiono zestaw parametrOw opisujacych wybrane modele dla dwoch
przypadkéw. W pierwszym zalozono, ze wielko§¢ masy dodatkowej nie jest znana, a w drugim obliczenia
przeprowadzono dla zadanej wielkosci masy zastgpczej. W pierwszym przypadku, zarowno ukladzie w
bazujacym na modelu Zenera I jak i powstalym na bazie ogdlnego modelu osrodka sprezysto-lepkiego II,
wigkszos¢ identyfikowanych parametrow przyjmowata wartosci ujemne. Przy zadanej wielkoSci masy, w
modelu I wszystkie parametry przyjmowaly wartosci dodatnie, natomiast w modelu II tylko parametr thumienia
byt ujemny. Na tej podstawie wydaje si¢, ze model I lepiej nadaje si¢ do opisu wiasciwosci dynamicznych
kosci.
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Abstract

The paper deals with the problem of implementing a genetic algorithm GA to calculate a pareto-optimal
function of voltage powering solenoids, used for controlling a linear electromagnetic motor. The process
assumes two conflicted criteria: minimizing the time of motion of the linear electromagnetic motor (l.e.m.)
and minimizing the energy input. The results have been obtained for a set position with a narrow range of
power supply. The work of electromagnetic motor is based on a electromagnetic repulsion. The device
consists of a two solenoids and a slide control with neodymium magnet bars placed on its end. The paper
discusses also static characteristics of L.e.m., i.e. a current density vs. force, a dependence of a force on
deplacement of the slide control and magnetic flux density. There are also dynamic characteristics of l.e.m.
presented and compared to the results of simulations obtained in the Matlab-simulink program.

Keywords: electromagnetic motor, electromagnetic repulsion, control, genetic algorithm,
optimization

1. Introduction

The device consists of two solenoids and a slide control with neodymium magnet bars
placed on its end (Fig.1). The work of the electromagnetic motor is based on the
phenomenon of a electromagnetic repulsion. One can steer the position of the slider by
changing the force created by the solenoids. The mathematical model of the
electromagnetic motor is non-linear, so we can’t apply conventional controlling systems
with a feedback. By applying a genetic algorithm GA, it is possible to designate pareto-
optimal solutions as control functions of a voltage and current in time domain, with the
criteria of time the movement and absorbed energy defined and then applying the control
functions to the device. This paper focuses on the simulations of the electromagnetic
motor in the Matlab-Simulink environment.



Figure 1. Physical model of electromagnetic motor (a),
3D model of the electromagnetic motor (b)

2. Modelling of electromagnetic motor

The mathematical model of the electromagnetic motor is described by the equation of
motion of the slider (1), the forces F1 and F2 result from the finite element analysis that
has been carried out for the magnet bar and coil system [2]:

(1) 1

x=—(F(x)-Fx)+Fy) M
F, =ki,weight, (x)- Fi,(x) 2)
F,, = k;iy,weight,, (x) (3)
: 1
LW -iR
l I U, -i,R,) 4)
;- —L(U iR, 5
n Ln in in‘‘n ( )
U;, =-xsign(x)weight, (x)k,, (©)
P=ilR, (7
F= TLZE > min (8)

In equations (1) + (8): m is the mass of the slider, n = 1; 2 (left or right coil), 1 and
F> are forces acting on the slider, Fim is the damping force, & and kv are constants
resulting from the researched simulation , in describes the behaviour of current in both
coils, iin is inducted current in coil, weightn(x) is a function describing dependence of a
force acting on the magnet and electromagnetic induction on the position of the slider in
the coil, L» is an inductance in coil, U is a voltage, Uin is inducted voltage in coil, Rx is
resistance, T is normalized time of movement, £ is normalized absorbed energy, P is an
absorbed energy.

By carrying out calculations by means of the Finite Element Method (FEM) we can
observe changes in the magnetic potential and magnetic flux density in the coil and
magnet bar. As a result (Fig.2), we can calculate the forces between the magnet bar and
the coil (2) by using Maxwell Stress Tensor analysis (Fig.3).
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Figure 2. Magnetic potential and magnetic flux density in the coil and the magnet bar

The model, based on the one in the FEM environment was built in Matlab-Simulink.
On the basis of the model device built in FEM environment with transient analyses,
electromagnetic induction was found to be dependent on the magnet velocity in a coil
(6). The model device in the Matlab-Simulink environment was created and based on the
data resulting from the FEM analyses. Its accuracy was found to match the FEM model.
The control system for the model is open, thus there is not a feedback loop to control its

output. Input signals are only time-dependent functions of voltage powering the coils.
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Figure 3. a) Dependance between the force acting on the magnet bar, the position of the
magnet in coil and current value, b) dependance between the force acting on the magnet
bar, the position of the magnet in coil

The objective of the slider is to move from the starting point (marked in Fig.3b as
first red line) to the final point (marked in Fig.3b as the second red line) and stop there
with a required accuracy i.e. 10°m. Time of movement has to be below 0.1s, and the
absorbed energy has to be low one [1].
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3. Formulation of the control problem

The main problem is to find the minimum of two conflicted the local criteria - the
normalized time of movement and normalized absorbed energy (8). The voltage and
current as time-dependent functions are searched for. The genetic algorithm selects
parameters, for the left coil and for the right one, as points of the voltage in starting and
final points of the slider positions. Each of the points may take values from zero to fifty
volts with accuracy to one volt. There are only four parameters necessary to create two
voltage functions dependent on the slider position of the coils. The numeric model
calculates time-dependent functions of voltage on the basis of the four parameters
mentioned above. On the basis of the selected points the interpolated function, i.e. the
voltage from the slider position, is created. The voltage function determines the current
value in the coils (4) and (3).

4. Comparison of the full survey method and genetic algorithm

By applying the method of full survey, where the number of solutions to analyse is over
6,7 million, only 689 solutions fulfil the required constrains. All these solutions are
illustrated in Fig.4. Thus, only 0,0102 percent of all the solutions is acceptable. The best
solutions, marked as blue star, are pareto-optimal (global) solutions. The time used to
analyse all the solutions was 310 hours. As a result of implementing genetic algorithms,
three solutions, marked in the chart as red round points (Fig.4), are obtained after 2 000
iterations with initial population of 50. The time needed to find these solutions is only 2
hours and 48 minutes. Figure 5 shows the position-dependent voltage functions built for
the results marked as the blue star with the arrow pointing at it (Fig.4). The time-dependent
functions used for controlling the electromagnetic motor results from the position-
dependent voltage functions.

a ! ! ' ! ! !
. : L .

s 5",5‘*? vy

<1 || PO “

1= O— ...... - S

cryt. 2. absorbed energy [J]

0 ; ; i ; ; ;
0.03 0.04 0os 0.06 0.07 0.08 009 0.1
cryt 2 time of mowvement [s]

Figure 4. Results from full survey method compared with GA
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Figure 5. Control functions for the one global pareto-optimal solution marked in Fig.4 as
blue star with arrow pointed
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Figure 6. Compared two results marked in Fig. 4 by arrows. Red curves are from GA
optimization, blue one are from full survey method. Positions (a) and velocity (b) of the
slider in time domain.

5. Results and conclusions

If we compare the obtained result with the time necessary to implement the full survey
method, we notice that it is only 0,9 percent of the time spent on calculations. The
locations of the solutions found by the genetic algorithm are close to pareto-optimal
solutions (marked as blue stars). In Fig.6a and 6b the two solutions are compared, the first
resulting from using the genetic algorithm and the second one obtained using the full
survey method (the red line corresponds to the red colour points in Fig.4). The red curve
represents the solution where GA selects four parameters, two for the left coil and two for
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the right one, as points of voltage. The blue curve represents the best solution obtained
from the full survey method for the same constraints (Fig.6).

In this case, the movement time equals 37 miliseconds and the absorbed energy is over
11 Joules. For the red curve, the time of movement equals 40,4 miliseconds and the
absorbed energy is less then 15 Joules. The genetic algorithm is able to calculate a solution
that is similar to the global optimum in a short period of time. Using the genetic algorithm
one can designate pareto-optimal solutions as control functions of the voltage and current
in time domain, with the two conflicted criteria defined: minimizing the time of motion and
minimizing absorbed energy.
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Modelowanie i optymalizacja sterowania sitownikiem elektromagnetycznym

z wykorzystaniem algorytmow genetycznych
W pracy przedstawiono sposob implementacji algorytmoéw genetycznych do wyznaczania pareto-optymalnych
funkcji sterujacych, stuzacych do sterowania pozycja suwaka sitownika elektromagnetycznego. Proces
zaktada minimalizacj¢ dwoch przeciwstawnych kryteriow, tj. czasu ruchu ttoka sitownika i energii pobrane;j
przez urzadzenie. Praca sitownika elektromagnetycznego oparta jest o zasadg wypychania magnesow statych
z pola magnetycznego solenoidéw. Urzadzenie sktada sig¢ z dwoch solenoidow i suwaka na ktorego koncach
sa umieszczone magnesy state. W pracy przedstawiono charakterystyki statyczne jak i dynamiczne
urzadzenia, m.in. zalezno$¢ pradu od sity wypychajacej magnes, zalezno$¢ sity od pozycji magnesu w
solenoidzie.
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Abstract

In this paper we address a group of recent research focused on the semi active control problems in carrying
structures systems subjected to a travelling load. The magnitude of the moving force is assumed to be constant
by neglecting inertial forces. The response of the system is solved in modal space. The optimal control problem
is stated and it is solved by using of Pontryagin Maximum Principle. Switching control method is verified by
numerical examples. The controlled system widely outperforms passive solutions. Due to its simplicity in
practical design, the presented solution should be interesting to engineers.

Keywords: Semi-active control, structural control, optimization, moving load
1. Introduction

An increasing speed requirements in transport and technological processes forces
engineers to apply new and unique solutions for the carrying structures design. From the
last few decades the main role in such a design play an integrated systems of control.
Semi-active methods superiority over active result from its reliability and low power
consumption.

Figure 1. Semi-active controlled guideways.

In this paper we propose two fields of applications of semi-active controlled systems.
The first one is dedicated to technological processes such as cutting or bonding, where
the straight passage of a moving load is essential. The second one is directed to large-
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scale engineering structures like bridges that span gaps or beams that must resist loads
due to heavy and fast vehicles.

Technical difficulties with the rigid support of the bottom parts of the dampers
require new, more practical solutions. One of them is presented in Fig 1.

A good number of semi-active control methods have spread widely and some of them
have been put into practice recently. They are usually based on sky-hook and ground-
hook ideas. These strategies are used for the active suspension of a moving oscillator in
[3, 4]. The idea of a beam vibrations control by dampers and preliminary results were
presented in [5]. The early papers deal with the problem of active control of a beam
vibrations [6]. An active constrained layer is applied in [7].

In this paper we propose an open loop switching control method. The optimal
solution is based on the Maximum Principle [8]. The form of cost integrand depends on
the aim of control.

2. Mathematical background

In this section we present a control method and its optimal solution in a short. The aim of
the proposed strategy is to provide a straight passage for the moving load. We consider
the double-beam system as shown in Fig. 1. The solution scheme for a single-beam

system is analogous.
v
l EIy My x

EI;: l.lz

P

wix, t) |

wix, t)

| 3 _\

Figure 2. Double Euler-Bernoulli beam system coupled by a set of semi-active dampers.

We can write the governing equation for the considered system as follows:

o*w, (x,1) *w (x,t) & [ow(a;,t) ow,(a;,t)
EI 1\ + 1\ - _ ) 1\Y%i»4) WACTE é- —a)+
Tt T ;” o o [T
+ PS(x—vt), (1)
*w, (x,1) d*w, (x,1) 2 ow,(a;,t) owy(a;,t)
EI 2\ + 2 ’ - _ ) PASKE _ 1 i 5 —-a),
Tt T le“ o o o)

together with the boundary and initial conditions:
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w,(0,¢) =0,w,(/,1) = 0,w,(x,0) = 0,%,(x,0) =0,

W, (0: t) = 0: W, (l: t) = 0: W, (X,O) = 0: WZ (X,O) =0.
Here, w(x,f) and wy(x,f) are the transverse deflections of the beams at point (x,f), u;(?) is
the i-th damping coefficient as a function of time, m is the number of viscous supports
and P is the concentrated force passing the upper beam at constant velocity v and 6 is the
Dirac delta function. For the control design we use a representation of the system in
modal space. Respecting the boundary conditions we look for the solution expressed
upon the sine serie base.

Vi (Js) = le(z)(x t)sm = dx W) (X,0) = ZVI(Z)(],t)stT. 3)
f:1

Furthermore, we consider only approx1mate solutions of Eq. 1 by using a finite-
dimensional modal space, i.e. j, k = 1,2,..., M. The transformation (3) yelds the
following system of ODEs

2)

i (o) += Zzu(t)[rf(k £~V (k, t)]sm fsinjl +EI ]1 V.(j,t) = PsmTﬂw,
i=1 k=1 (4)

w, (j,t)+2 Zu A A t)]sm i sin]l +EL jz V,(j, 1) =0.
i=l k=1
Entering the generalized state vector y(f)eR", where y, .(¢)=V(k,1),

Var2 () = V1(k=t) s Yy @) =Vy(k,1) 5y, (1) = Vz(kst) » k=12,..n/4=M, we can
formulate the optimal control problem:

2
v nl4
Minimize J = .[f = /1){2)/4,( 3(t)sm ; } ds, Q)
subject to y(t)=Ay(t)+ZBiy(t)ui(t)+f(t), (6)
i=1

Va3 (0 =N (K0), vy 2(0) =V (k,0), o

Var 1 (0) =V (k,0), yu, (0)=V,(k0), k=12,.,n/4,
u;(t) €[0,u,,0 ], Vie[0,t,], i=12,..m. (®)

Introducing a new state variable Voa@®=1, »,,0)=0 and rebuilding A—)}l,
B — B, f(t) —>f(y) in such a way they respect a new variable, we replace (5)-(8)

with the autonomous optimal control problem so Maximum Principle can be applied
directly. The Hamiltonian function is given by
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2
m n/4
A - A . knvt
H(y,u,m)=(n,Ay) + > (n,B;y)u; + (n,f) - {ka_s sin T} : ©9)
i=1 k=1
The adjoint differential equation and the transversality conditions are as follows:
. OH
n=-—, n@,)=0. (10)
ay

The Hamiltonian (9) takes the maximum value when the controls equal:

w ()= {um (n(.B,y(1) >0

0,  (m@®).B;y(1))<0

However Maximum Principle is only a nessesary condition for the optimal solution. We
suppose the most efficient control method is generated by switching controls.

The implicit solution of stated problem can be solved numerically by the shooting
method for instance. However, it can be extremely difficult due to high dimensional
problem. For the alternate method we assume a priori a number of switchings for every
control and then transform the problem into mathematical programming.

(11)

3. Numerical examples

Here, we present a few numerical solutions of optimal control problem stated in the
previous section. We use Hooke-Jeeves Direct Search Method, where we consider at
least 3 different starting points with 3 reducing step size schemes for each case. The
number of switchings was first assumed as 3, then 2, and finally 1 for every control.
Reduced number of switching actions is a great advantage from the practical point of
view while the cost (Eq. 5) is comparable.

04

Figure 3. Transverse vibration of controlled beam in space-time domain.

The idea of straight-line passage is based on the principle of a two-sided lever. The first
part of the beam which is subjected to a moving load is supported by an active damper
placed on the rigid base. The first damper is active while the second one is passive. At
this stage, a part of the beam is turned around its centre of gravity, levering the right
hand part with a passive damper attached. The temporal increment of displacements on
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the right hand part of the beam enables us to exploit it during the second stage of the
passage. This phenomenon can be observed in the space time-domain (Fig 3).

Below, we present the exemplary optimal deflection trajectories under a moving load
in two different cases. In the first one (Fig. 4), we consider a single beam with two active
dampers placed in the positions 0.25/, 0.75/. In the second one (Fig. 5), four dampers
placed in positions 0.2/, 0.4, 0.6/, 0.8/ are attached to the double beam system.
Trajectories for passive cases (all dampers are on) are added for comparison.

P
E 2 H : 3 < i
$§ 3| ! : = : H : :
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4 ] : “ o —— — passive
: ol - : :
5 i i i i S i i i i
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= 107
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Figure 4. Optimal deflection trajectory and switching controls.

While the cost integrand is calculated with respect to velocities or accelerations of
vibrations we do not observe a significant efficiency of the proposed method. High-
frequency harmonics included in those trajectories can be reduced by high-frequency
switching controls. This is the ongoing research topic of the authors.
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Figure 5. Optimal deflection trajectory and switching controls.



330

4. Conclusions

In this paper, a semi-active control method for linear carrying structures has been
presented. A bang-bang control method has been proposed and its performance has been
verified by numerical examples. The best efficiency is obtained at high travel speeds.
The controlled system can efficiently decrease the mass of the guideway. The control
strategy is simple for practical design. It can be implemented by creating an optimal
control map in the memory of the controller. Integration of a neural network with the
system will be addressed in future works.
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O semi-aktywnym sterowaniu ukladéw nosnych pod ruchomym obciazeniem.

W pracy przedstawiono wyniki badan potaktywnego sterowania w uktadach nosnych poddanym obciazeniom
ruchomym. Obciazenie zostalo przedstawione jako bezinercyjne. OdpowiedZz ukladu zostala wyznaczona
w reprezentacji modalnej. Sformulowano zadanie sterowania optymalnego. Uzasadniono zastosowanie
sterowan typu bang-bang opierajac si¢ na Twierdzeniu o Maksimum Pontryagina. Proponowana metoda
sterowania zostala zweryfikowana na podstawie przykladow numerycznych. Wykazano przewage uktadow
sterowanych nad ukladami tlumienia pasywnego. Opracowana strategia sterowania jest prosta
w implementacji i moze by¢ atrakcyjnym rozwigzaniem dla inzynierow.
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Abstract

The work refers to the problem of free vibrations and global instability of slender system with imperfections
subjected to load by the force directed towards the positive pole. The inaccuracies in the systems are modelled
assuming an initial curvature and the introduction of the eccentricity of an external load. On the basis of total
mechanical energy, equations of motion and boundary conditions are determined. The relationship between
the introduced inaccuracies for which the bending of the free end of the column has a finite value at load
approaching critical load is determined. Curve courses of longitudinal bending are presented. The results of
numerical calculations of the course of the natural frequency against external load for given geometry and
physical constants of the column are presented.

Keywords: elastic column, free vibrations, initial imperfections
1. Introduction

The influence of initial imperfections on the stability and longitudinal bending of
columns loaded by conservative loads was considered in works [1-4]. The initial
geometrical imperfection of the system in the form of the initial curvature was analysed
or the eccentric external load was taken into account separately. The systems subjected
to the Euler’s load or to a force directed towards the positive pole (realised on linear
elements) were examined in [5]. Imperfections in shape and applied external load were
taken into consideration in the systems mentioned above. Mutual interactions between
the introduced imperfections were revealed and proved. The relationships between the
imperfections in shape and load, for which the bending of characteristic points has a
finite value at load P approaching critical load P,, were determined. The static criterion
of stability is insufficient for the evaluation of the system behaviour. The discussed
phenomenon was illustrated by diagrams showing the courses of longitudinal bending
and was confirmed by experimental research.

2. Physical model of the column

In this paper the column loaded by the force directed towards the positive pole [compare
6], realised by loading head built from circular elements is considered. The
imperfections resulting from an initial curvature of the system, described by Wy(x) = ox
function, and from eccentricity of external force P (e — the value of eccentric) are taken
into account.Total transverse displacement of the system was denoted as Wc(x,t), where:
We(x,t) = Wo(x) — W(x,1).
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The direction of external force P is crossing the constant point O (Fig. 1). The point O is
lying at R distance from the point of application of the force and is displaced by the
value e in relation to non-deformed axis of the system. The following relationships are
fulfilled:

AUV AR |
ﬂO_R—r’ﬂ_ R-r M

where S, and g are the angles created by the direction of external force P and non-
deformed axis of the system for the initial state (the initial bending) and state of strain,

respectively.
W (x, 1) /f

ox % ﬂ;Y‘WUI([) ﬁo’q;
T+
7
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Figure 1. Physical model of the considered column
Individual longitudinal displacements of the systems are determined by relations:
i 2 i 2
1 1
dy =5 [ )] s, 1= el @) 2, =5 [l ()] s 2= em 1) @
0 0
3. Mechanical energy of the system, formulation of the boundary problem
The boundary problem is formulated on the basis of the Hamilton’s principle described

for conservative system by the relationship:

153
s[(r-v)it=0 3)
g
The kinetic energy 7 is sum of the column’s kinetic energy and mass m placed at the
end of the column:

r :%j(poA){MTdHler—(“)T )

ot 2 ot
Total potential energy V of the system is described by the formula:
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2

1o, (x) 1

V=_EJ [ |[=—522 | dx—P(4, - 4))- Pe(dy — &)~ —P(B, + I (1,1) )
2 0 Ox 2

Equations (4) and (5) after taking into account relationships (1), (2) are considered in

Hamilton’s principle (3).

The equation of motion and boundary conditions for the considered system, after
taking into account the commutation of variation and differentiation operators and after
integrating kinetic (4) and potential energies (5) of the system are obtained. Using of the
expansion function W(x,?) in the form:

W (x,£) = o (x)+ y{x)cos(ar) ©)
then, by grouping the components of series connected to expressions cos’(a¥) and

cos'(ax), the equation of displacement and boundary conditions necessary to solution of
the longitudinal bending problem was obtained:

cos® (ar): W)+ k2 (x)=0, k2 :% %)
20(0)=0, 33 (0)=0, 5§/ (1) + ke =0 ®)

A0+ 0-al-
and formulation of dynamic’s problem:
cos' (er): 7 (x)+ k% " (x)- 2% y(x)=0 (10)

70)=0,(0)=0, " (1)=0 y’”@”{{y'@)—ﬁ y(l)}:o (1)

- bul0)-alh =0 ©)

4. The solution of longitudinal bending problem, results of numerical computation

The general solution to equation (7), which fulfils adequate boundary conditions in the
form of function described by:
yo(x) = Cy sin(kx)+ C, cos (kx)+ Cyx + C, (12)
is being searched. Substituting solution (12) into boundary conditions (8) and (9)
equation for yy(x) expressing total displacement for considered system is obtained:
yoli)=e Je{x[1 = cos(kt)]— (I = R +r)[1 — cos(kx)]} —sin[k( — x)]— sin(kx)+sin(kZ)
k(I = R +r)cos(kl)—sin (k)

+

(13)
Vhcos(kl)—sin(k )+ sin[k(/ - x)]
7 k(I - R+r)cos(kl)—sin(kl)
Based on dependency (13) between displacement of the column’s end y,(/) and load
parameter k° was determined:

_all - R+ r)ki cos(kl)—sin(kl )]+ ek(R — r)[cos(kl)—1]
)= ) k(l—(R)+ r)cos()cl)—sif(kl) =

+all-R+r

(14)



334

The condition describing interactions of imperfections in form and load of the column
(15) is determined considering relationship (14) as well as the transcendental equation
for the value of critical force for the column loaded by the force directed towards the

positive pole in the form k(! —1, )cos(kl)—sin(kl) =0

a[l—(R—r)]cos(kl)—e[cos(kl)—l]z 0 (15)
The graphical interpretation of form and load imperfections, for the several value of the
Ar" parameter is presented in Fig. 2.
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Figure 2. Curve courses of the interactions of imperfections in shape and load

Exemplary courses of transversal displacements of the end of system y (/) = Wy(])—
vo(J) in relation to the external load were determined (Fig. 3) on the basis of relationship
(14) describing displacement y(/) of the systems, where:

2 2
2 =K22 :i, y:(l):yc_(l), ,1’; :i (16)
EJ / EJ
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Figure 3. Curve courses of longitudinal bending on the plane: A* — y,"(1)

5. The solution of the vibration problem, results of numerical computation

A general solution of equation (10) is:
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y(x)= D, cosh(a x)+ D, sinh(e x)+ D cos( x)+ D, sin(B x)
where D, are integration constants (n =1, 2, 3, 4) and:

an

1 1 2
a? =05k +025k" + 222, p7 =0.5k% +(025k" + 222, 2 :% (18)
Substitution of solution (17) into boundary conditions (11) yields a transcendental
equation to eigenvalues of the considered system.

Numerical computations for the change of natural frequencies in relation to the
external load for several values of the parameter Ar, with the constant length / and
constant value of concentrated mass m has been performed. In Fig. 4 the courses of two

basic natural frequencies change (2" and additional frequencies 2’ characterized by
symmetry of vibrations against dimensionless parameter of load A are presented, where:

_Q* 20214 _ Po szlf m* _ m

(19
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Figure 4. Curves in the plane: loading parameter A" — natural frequency parameter 2"

0

The courses of free vibration frequencies in relation to external load, typical for

divergence (curves 1, 7 — 9) or divergence pseudoflatter (curves 2 — 6) type system were
obtained.

5. Conclusions

Based on theoretical considerations and results of numerical simulations related to the
influence of introduced inaccuracy on the longitudinal bending and free vibrations of
considered system, one can state that:

— the interaction of the imperfections in shape and load was revealed and proved,

— the relationships between the introduced inaccuracies for which the bending of the
column’s end has a finite value at load P approaching critical load P, were determined,

— the system depending of the course eigenvalues curves can be classified as one of the
two types: divergence or divergence pseudoflatter system. Obtained curves allowing
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classify considered column to system realising specific load (L. Tomski) in divergence
pseudoflatter range.

Acknowledgments

The study has been carried out within research project No. N N501 117236 and statutory
funds (BS-1-101/302/99/P) and own research (BW-1-101-207/03/P) of Czgstochowa
University of Technology awarded by the Polish Ministry of Science and Higher
Education.

References

1. L. Tomski, J. Szmidla, Wprowadzenie do problematyki statecznosci i drgan
swobodnych kolumn, rozdziat 1.4, Drgania i statecznos¢ ukiadow smuklych, Praca
zbiorowa wykonana pod kierunkiem naukowym i redakcja L. Tomskiego, WNT,
Fundacja ,,Ksiazka Naukowo-Techniczna”, Warszawa ( 2004 ) 31 — 39.

2. L. Tomski , I. Podgérska-Brzdekiewicz, Drgania swobodne i statecznos¢ kolumn

poddanych obciqzeniu FEulera, rozdziat 3.5, Drgania swobodne i statecznosé

obiektow smuklych jako ukladow liniowych Ilub nieliniowych, Praca zbiorowa
wykonana pod kierunkiem naukowym i redakcja L. Tomskiego, WNT, Fundacja

,,Ksiazka Naukowo-Techniczna”, Warszawa ( 2007 ) 81 — 92.

G. J. Simitses, D. H. Hodges, Fundamentals of Structural Stability ( 2006 ) 19 —47.

4. A. S., Wolmir, Stability of deformable systems, Publishing House ,Nauka”,
Moskwa 1967.

5. L. Tomski, 1. Podgorska-Brzdekiewicz, Wyboczenie globalne oraz interakcja
imperfekcji ksztaltu i obciqzenia stupa przy obcigzeniu eulerowskim lub silg
skierowanq do bieguna dodatniego, X1 Sympozjum Statecznosci Konstrukeji,
Zakopane ( 2009 ) 443 —450.

6. L. Tomski, J. Szmidla, Drgania swobodne i statecznos¢ uktadow poddanych
dzialaniu obciqzenia swoistego, rozdziat 4, Drgania swobodne i statecznosé
obiektow smuklych jako ukladow liniowych Ilub nieliniowych, Praca zbiorowa
wykonana pod kierunkiem naukowym i redakcja L. Tomskiego, WNT, Fundacja
,,Ksiazka Naukowo-Techniczna”, Warszawa ( 2007 ) 114 — 121.

W

Niestatecznos$¢ i drgania kolumny z imperfekcjami poddanej obciazeniu silg skierowana do
bieguna dodatniego

W pracy rozwaza sig¢ zagadnienie drgan wlasnych i niestatecznosci globalnej ukiadu smukiego
z imperfekcjami, poddanego obciazeniu sita skierowana do bieguna dodatniego. Niedokladnosci uktadu
modeluje si¢ zaktadajac wstgpna jego krzywizng oraz wprowadzajac mimosrodowe przytozenie obcigzenia
zewngtrznego. Na podstawie catkowitej energii uktadu wyznacza si¢ rOwnania ruchu oraz warunki brzegowe
rozpatrywanego uktadu. Okresla sig relacj¢ migdzy wprowadzonymi niedoktadnosciami, dla ktorych ugigcie
swobodnego konca kolumny ma warto$¢ skonczona przy obciazeniu dazacym do obciazenia krytycznego.
Prezentuje si¢ wykresy przebiegu krzywych podluznego zginania. Przedstawia si¢ wyniki obliczen
numerycznych dotyczace przebiegu krzywych czgstosci drgan wlasnych w funkeji obciazenia zewngtrznego,
dla zadanej geometrii i statych fizycznych kolumny.



XXIV Symposium Vibrations in Physical Systems, Poznan — Bedlewo, May 12-15, 2010

System for automatic rotor balancing using a continuous change
of the correction mass distribution

Rafat RUMIN
AGH - University of Science and Technology, Dept. of Robotics and Mechatronics
Al Mickiewicza 30, 30-059 Krakow, rafal.rumin@agh.edu.pl

Jacek CIESLIK
AGH - University of Science and Technology, Dept. of Robotics and Mechatronics
Al. Mickiewicza 30, 30-059 Krakow, cieslik@agh.edu.pl

Abstract

This paper presents the proposal design of the active balancing of rotors with correction mass (liquid), whose
relative position to the rotor is changed continuously. Two design versions are adopted for the implementation
- the mechanical models of the system. Proposed models consisted of rings with internal chambers, filled with
fluid in sequence. It has been described a mathematical model of the equivalent correction mass allocation.
There are presented concepts of supply and control of the fluid flow into the selected chamber. There were
elaborated the algorithms of start-up and run-out the rotor. It has been presented the scheme of supplementary
hydraulic manual control. Paper presents the potential scope of use of method for industrial applications.

Keywords: balancing rotor, unbalance, rotor dynamics, balance disc

1. Introduction

Most of rotating machines operate at rotational speeds out of the resonance conditions.
Vibrations of rotor can be amplified by the unbalanced mass. Unbalance is caused by the
rotor deflection or change in mass distribution due to work conditions e.g. dust adhesion
to blower’s blades. Vibrations of rotors with unbalanced masses lead to damage of the
bearings, the rotor fatigue effects and shorten the life of the entire system. The methods
of the unbalance reduction apply electro-magnetic bearings, active dampers and systems
for correction masses motion. Research focuses on the active vibration reduction in rotor
systems, as it was described in the literature [1, 5, 6, 7, 8, 9, 13, 14].

In purpose of rotor balance it was proposed the use of a balancing disks dedicated for
balancing, with channels and various valves separating the liquid storage chambers.
Replacement and storage of fluid in the chambers corresponds to the correction mass
motion within the shaft. By the application of the control system a desired quantity of
fluid can be allocated in each of single chambers. System should actively respond to
changes of unbalance without the need to retain the rotor to adjust the distribution of the
correction mass. The conducted research develops also an algorithm for safe start-up and
run-out of the rotor with a balancing discs and supplementary manual control system.

2. Previous automatic balancing methods

The one of next steps in the development of rotors dynamics was application of
automatic balancing methods. Adverse effect on the rotor machines was making
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substantial changes to the balanced device, which greatly complicated their installation
in existing structures. Selection of balancing technologies of rotating systems derived
from the literature review [4, 13, 14] is presented as follows:

Van de Vegte and Lake 1978 - proposed a procedure for balancing rigid shafts during
their normal work. The system includes a mechanical device with at least two correction
masses. The electric drives were mounted on the disk and provided the change of the
position of correction masses: Majewski 1976, 1994 — the theoretical background to the
automatic balancing of rotors; Bishop 1982 — made a system for flexible shafts
balancing; similar system to the Van de Vegte; Furman 1982 — an additional special
metal disc was placed into the rotor. Locally heated disc undergoes a plastic deformation
leading to the creation of a centrifugal force; Gosiewski 1985 — concept of rotated mass
with electric drive. Instead of single mass numerous elements are used - automatic
continuous balancing; Smalley, Baldwin, Schick 1998, and Smalley, Baldwin, Yuhas
1989 — study about balancing by synchronous projection of metal particles; Jenkins 1996
— active balancing device for machine with large size rotor. The disk with containers
including the liquid was placed to balanced shaft. In the process of balancing the liquid
has been moved from one chamber to the another through the procedure of temperature
gradient generation; Alauze, Der Hagopian, Gaudiller, Voinis 2001 — an active balancing
system consisted of two satellites with own drives (correction masses), located on round
track, specially prepared for this purpose; Felis J, Manka M., Uhl T. 2004 — device for
dynamic balancing of rotors — angular motion of constant masses, external drives.

Currently used automatic balancing systems have various disadvantages that restrict
their use. This is the main reason for further development of automatic balance system
for rotary machines [2]. Current research investigate a new, efficient and less expensive
mechanical balancing systems for use in specific environmental conditions.

3. Equivalent of correction mass

According the theoretical assumptions of automatic balancing system is equipped with
additional discs placed onto the rotor. Each disc includes hydraulic system supplying the
small amount of fluid (correction mass) to the proper chambers.

/
/ Equivalent correction mass Equivalent correction mass

Corection mass m2 Correction ma

/ <

Corection mass m1 v Correction mass m1
d @Empw chambers

Unbalance mass’ Unbalance mass

Figure 1 Principle of equivalent correction force generation through two mass
components: a) constant mass motion; b) fluid filling the appropriate single chamber.
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The mechanism allows the use combination of at least two correction masses (liquid),
placed concentrically with respect to the axis of rotation of the system. The entire
balancing ring with several chambers may be filled in the same time. Each chamber can
be filled partly or in full in order to obtain the exact effective balancing mass.

Balancing is performed in several steps: by measuring the shaft vibration at the
synchronous speed of the system (actual work of system), then by calculating which
chamber should be filled by fluid (new position of equivalent correction mass) and
controlling valve which determine the flow of the fluid from starting position to
correction position. The automatic balance process changes the fulfillment of the
chambers to gain the angular position of the partial mass (correction masses m;, m,) and
thus the position of equivalent correction mass. This causes the corrective force of equal
magnitude but opposite in phase (relative angular position with respect to an axis of
rotation) relatively to unbalanced force identified in the system.

4. Active balancing theory

Previously there were developed a lot of methods for rotor’s active balancing e.g.: modal
method, method of influence coefficients (IC) and the combination of these two. The
method of influence coefficients is widely used active balancing method in industrial
applications [10]. This method describes change of response of the unbalance in function
of rotating speed and point out the dynamic characteristics. The response to the
unbalance for k-th iteration is expressed by the formula [11]:

{Vik=[A(@){U} +{D(w)} 1)
where:
{V}  —measured signal of vibrations for k"™ iteration,
[A(w)] — matrix of influence coefficients determined for the rotating speed o,
{U}y  — vector of unbalance for the k™ iteration,

{D(w)} — vibration signal for the initial unbalance at speed ®.
Response to unbalance system for k+1" iteration is represented by the formula:

{Vin = [A(@){U} ka + {D(0)} )
Subtracting the equation (1) from the equation (2) we obtain:
{Vhe - {Vh= [AM@) {Ulk - {Uli} (3)

In order to balance it is necessary to find a vector of correction mass {U}+; such the
response of vibration will be minimized after the completing of control sequences.

Correction vector take the form:

(U = (U - [A@)] (Vi )

Equation (4) may be used only if the number of measurement planes is equal to the
number of balancing planes. This condition is satisfied when the matrix of influence
coefficients is a square matrix and the inverse matrix exists.

If the number of measurement planes is larger than the balancing planes, the solution
is related to the optimization problem. Correction vector should minimize the system
response to the unbalance.

Cost function is defined in following form:

T = Ve (Vi ©)
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The correction vector can be written as follows to minimize the cost function:

{Ubhien = {Ubi- (A@)]" [A@)]) [A@)]"{V}i = {Uk - [K(0)]{V i (6)
where: [K(®)] — is the control gain.

The correction vector as the result of IC method determining the location of the
correction mass and minimizing the vibration amplitude can be obtained from equation
(6) when the current vibrations signal and the rotor’s position are known. The influence
coefficients matrix of the rotation speed is obtained by additional run the rotor with trial
mass. The value of the correction mass is acquired by re-launching of the rotor.

Any influence coefficients which are used to create a influence coefficients matrix
for active rotor balancing may be calculated by the following equation:

;= [(Vi- (V] / [(Upic - (U] (7)
where: Ajj - means a change of the vibration signal of i plane to unbalance of j balancing
plane.

If the predicted influence coefficients are more closer to the currently calculated, the
vibration responses are increasingly minimized. An important element of active
balancing is the choice of appropriate minimizing method. In the literature is reported
the use of the following methods: LAD - Least Absolute Deviation, LS - Least-squares
(LS), Chebyshev, or minmax - minimization of the maximum vibration amplitude.
Previous studies have shown that using the plain least-squares method does not always
bring the optimal solution [12].

5. Measurement and computational rules of IC

In the IC method we can distinguish two main parts [3, 4]: the measurement and the
consecutive computation. During the measurement part are performed three
measurements of vibration amplitude and phase. The first measurement is made in the
natural state of the rotor. The measured vibrations at the chosen points must be linearly
dependent on the unbalance. In order to perform the dynamic balancing of rotating
machines is necessary to use at least two correction planes. It is necessary to measure
vibrations in the bearings 1 and 2, which are generated by the action of an unbalance.
Then at the first correction plane is positioned trial mass and measurements of vibrations
are made again. At the next step the trial mass is removed from the first correction plane,
and then it is positioned in the second correction plane to make consecutive vibration
measurements. In case the measured vibrations in the system are caused by an
unbalance, the location and size of the correction mass could be calculated through the
use of influence coefficients method. Obtained influence coefficients are vectors and
determine the impact of trial masses placed in the correction planes on the amplitude and
phase of vibrations measured at the measuring points.

The method is based on the impact factors determining the sensitivity of the vibration
amplitude to balancing mass placement in the correction plane. The amplitude of
vibration is measured at the point of sensors attachment. Using this method requires the
following conditions to be fulfilled: (1) vibration amplitude measured at the chosen
points are linearly dependent on the unbalance present in the rotor; (2) distribution of the
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masses in the system during the measurement does not change, including the changed
position of the trial masses; (3) balanced object is considered as a rigid body.

Among described methods of calculating the location of the correction mass the best
results gives modal method allowing to precise rotor balancing, regardless of its speed of
work. In most cases it is sufficient to balance on one speed — speed of the system. The
most suitable method seems to be the method of influence coefficients.

6. Draft of balancing system with fluid as correction mass

The proposed solution is based on the concept of modification of existing with
minimization of rebuilding of rotor systems. In this model balancing the rotor element is
done by continuously changing of correction mass distribution. Proposed system gives
the possibility of shaft balancing at arbitrary chosen plain. Main mechanical element is
the balancing ring. Inside this element are specially designed and arranged chambers
(slots, cells). The fluid will flow through them and concentrate in special correction
volumes.
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Figure 2. Concept of balancing system: (a) I-st version: The hollow shaft with cells,
(b) II-nd version: The balancing disc connected with rotor

Distribution of cells at the periphery of the balanced shaft should be symmetric so the
flow of the liquid can be controlled into each tributary cell independently. This will
enable the unbalance reduction by change of concentrated correction mass location.
Authors bring up that the particular design of system is the patent pending.

Conclusion

The main target of presented study and research was to find opportunities for active shaft
balancing at an arbitrary chosen plains, possible to apply in existing unbalanced rotors.
Innovative approach was use to elaborate of the concept of system with liquid medium
as a correction mass for system balancing. There was considered the concept of rotors
balancing method with continuous gaining mass. The use of this concept will take full
advantage of control of balancing of rotating systems in industrial application e.g. rotors
of ventilation system, laboratory centrifuges, and water or wind turbines.
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Uklad do automatycznego wywazania wirnikéw przy pomocy ciaglej zmiany rozkladu

masy korekcyjnej
Artykut przedstawia projekt uktadu do aktywnego wywazania wirnikoéw za pomoca masy korekcyjnej (ptynu),
ktorego potozenie wzgledem osi wirnika zmieniane jest w sposob ciagly. Dla realizacji uktadu przyjgto dwie
konstrukcje — dwa modele uktadu. Zaproponowano modele ztozone z pierscieni z wewngtrznymi komorami,
wypelianymi sekwencyjnie przez plyn. Przedstawiono matematyczny opis zastgpczej masy korekcyjnej.
Opracowano koncepcje uktadu sterowania dostarczaniem i przeptywem pltynu do wybranej komory.
Opracowano algorytmy rozbiegu i wybiegu wirnika. Przedstawiono schemat hydrauliczny dla rezerwowego
uktadu sterowania recznego. Przedstawiono potencjalny zakres wykorzystania uktadu w zastosowaniach
przemystowych.
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Abstract

The paper focuses on experimental investigations of ossicular chain vibrations using Laser Doppler
Vibrometer. Measurement of stapes velocity in case of intact, damaged and reconstructed with Partial
Ossicular Replacement Prosthesis ossicular chain is presented. A typical transfer function between an input
and an output signal is completed by other methods applied in dynamics such as Lyapunov and Hurst
exponent. The main aim of the study is to find the most efficient method of ossicles reconstruction and
measurements analysis. Apart from a classical approach based on the transfer function which gives an
information about vibrations amplitude also analysis of vibration types exhibiting nonlinear behaviours is
presented.

Keywords: ossicles vibrations, middle ear prosthesis, middle ear mechanics

1. Introduction

Middle ear surgery techniques, known since middle of the last century, can improve
hearing destroyed by a disease. There is a huge number of ossiculoplasty prostheses to
choose from. Additionally, each of them has several factors that a surgeon can vary
during prosthesis placement. On the other hand, also prosthesis designers are able to
decide about prosthesis shape, size or length. Recently, the study which examines
another key variable — the size of the prosthesis head has been published [3]. The results
point out no essential difference in vibration transmission from the eardrum to the stapes
footplate. Generally all prosthesis head size exhibit worse transmission properties than
intact ear that is quite obvious and should motivate to improve existing prostheses. In
case of damaged incus reconstruction of the ossicular chain can be done using the incus
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replacement prosthesis (IRP). The main problem that must be solved is proper
prosthesis length which provides optimal tension between the tympanic membrane or
malleus and stapes. Different types of a cement incus replacement prosthesis (CIRP) in
temporal bone were tested in [1]. The best tension and an acoustical efficient as well
give the narrow Y-CIRP. Similar problem of optimum tension for partial ossicular
replacement prosthesis (PORP) reconstruction is presented in [6]. Tension has a very
significant effect on stapes vibration. Loose prosthesis result in the best overall vibration
transmission, especially for lower frequencies. While tight prosthesis has a slight
advantage in the higher than 2 kHz frequencies. The same conclusions are shown for
adjustable-length titanium ossicular prosthesis [10]. Some authors report that an
anatomically shaped incus prosthesis used for reconstruction of the ossicular chain is
better than PORP [5]. The important decision for surgeon during prosthesis placement is
to choose the best site on a stapes footplate that is discussed in [2]. The results prove that
the centre site is the best location on the footplate. A separate problem is prosthesis
material which must fulfill a lot of requirements such as: stiffness or force transfer
function. In publication [9] teflon, polyetheretherketone, polysulfone, gold, Al,Os
ceramics, carbon and titanium were examined. Finally, titanium prosthesis with open
head was chosen.

Most researchers (presented above and others) use Laser Doppler Vibrometer (LDV)
as a tool to measure vibrations of human middle ear ossicles [4;7;8]. Usually, results of
measurements are provided as a transfer function which most often is stapes velocity or
displacement response to the sound stimuli. It gives us information about ossicles
vibrations amplitude but not about the type of motion or regularity. Therefore, this study
is an attempt to find another way of signal analysis engaging Lyapunov and Hurst
exponent. The objective of the paper is to assess an effectiveness of middle ear
prosthesis with various length compared to other method of hearing defects treatment
and to the intact middle ear.

2. Material and measurement methods

Measurements are performed on fresh human temporal bone specimens. The specimens
are subjected to extended procedure to visualise ossicular chain and to attach the
microphone (ER-7C Etymotic Reserch) and the sound source (ER2 Etymotic Reserch) to
external ear canal. The artificial canal is closed with a glass plate to create a sound seal
chamber. Pieces of a retroleflective tape (0,5 mm2 squares) weighing less than 0,05 mg,
are placed on the footplate of the stapes Detailed preparation of the temporal bone are
described in [8]

The measurements are performed on a antivibration table inside a sound booth.
Sound stimuli are frequency sweeps from 0,2 to 8 kHz at 80-120 dB signal pressure level
(SPL). The sound source is connected to power amplifier to produce an adequate signal
output. The measurements have been recorded using processing board (National
Instrument) and DasyLab software and the experimental data analyzed with the MatLab
package.
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Stapes footplate velocity is measured with Laser Doppler Vibrometer (LDV) system
composed of OFV-5000 controller with VD-06 velocity decoder (Polytec). OFV-534
sensor head is connected to a joystick operated micromanipulator, which is mounted on
the operating microscope. The helium-neon laser beam is directed with the
micromanipulator onto retroreflective targets on the stapes footplate through the artificial
ear canal or on the stapes through the posterior tympanotomy approach.

After baseline measurements of stapes in the intact ossicular chain the incus was
removed and series of trials were made. Then, titanium PORP prosthesis (Kurz Vario)
was placed, instead of the original incus, between the stapes head and the eardrum.
Three lengths of the prostheses are tested. Optimum length (3mm) set by experienced
surgeon then 0.5mm lengthen and 0.5mm shorter prostheses are introduced.

3. Results

The difference in vibrations velocity, measured at the stapes footplate, between the intact
middle ear, incus removed and titanium prosthesis for three various length (3mm -
optimum, +0.5mm and -0.5mm) is presented in Figure 1 as velocity normalized to SPL
of the input signal.
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Figure 1. Velocity response in case of intact middle ear, incus removed and titanium
prosthesis

The acoustic transfer function of the optimum length prosthesis is of course not as
good as the baseline intact middle ear particularly above 4 kHz. Higher frequencies are
important, especially for understanding speech in noise. Generally, using this type of
prosthesis causes a meaningful improvement compared to situation with incus
completely removed or destroyed. Interestingly, tight mounted prosthesis (length
optimum +0.5mm) gives better results for higher frequencies (>2kHz) then optimum
length. For frequencies below 2 kHz optimal prosthesis length is the most appropriate.
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Looking at the problem in details, it must be noticed that the transfer function say
only about vibrations amplitude but nothing about regularity and possible motions which
stapes perform. Some symptoms of regular or irregular behaviour can be obtained just
from time series of velocity (Table 1) made for chosen frequencies.

Table 1. Time series of the stapes velocity
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Figure 2 Lyapunov and Hurst exponent versus frequencies for intact middle ear, incus
removed and three length of Kurz prosthesis

All prostheses show subhrmonical nature for lower frequencies (0.6 and 1kHz) while the
intact ossicular chain is characterized by harmonic motion. Additionally, the loose
placement of prosthesis seems to work worse than optimal (3mm) and longer (3.5mm)
assembly. Middle ear vibrations without incus are irregular specially below 2kHz. It
suggests that another tools like Lyapunov and Hurst exponent (Figure 2) should be used
to estimate hearing results after various kind of treatment including PORP
reconstruction. Both the intact middle ear and the ear with optimal and long (+0.5mm)
prosthesis can be easily distinguishable from the damaged ossicles chain, when
Lyapunov exponent is bigger that 0.7. Only the loose fitted prosthesis (-0.5mm) gives
higher Lyapunov exponent, what is consistent with Figure 1 and speaks volumes for
worse features of short prostheses. Similarly, Hurst exponent shows that the time series
of reconstructed ear with prosthesis are more predictable (persistent) because the
exponent is distinctly bigger.

3. Conclusions

Proper prosthesis tension is essential for excellent reconstructed middle ear sound
transmission. The best tension is produced by prosthesis length of 3mm although, for
higher frequencies 3.5mm length seems to be better. General conclusion obtained on the
basis of the transfer function can be completed by time series of vibrations or replaced
with Lyapunov exponent analysis.

Interestingly subharmonic vibrations for low frequencies are observable when PORP
prosthesis is applied. This effect cannot be shown looking only at transfer function
therefore, further analysis of phase space should be helpful to disease diagnosis and
specially to estimate method of reconstruction.
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Analiza drgan kosteczek stuchowych czlowieka

Praca przedstawia wyniki pomiaréw drgan kosteczek ucha $rodkowego wykonane Doplerowskim
wibrometrem laserowym w przypadku zdrowego tancucha kosteczek, uszkodzonego i naprawionego z
uzyciem protezy tytanowej Kurz. Przeanalizowano drgania kosteczek stuchowych w przypadku trzech
roznych dlugosci protezy i oceniono ich skuteczno$¢ klasycznie stosujac funkcje przejScia oraz z
zastosowaniem wyktadnika Lyapunowa i Hursta do oceny zastosowanych protez.
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Abstract

The study covers the identification of model parameters of a sandwich (three-layered) cantilever beam
incorporating magnetorheological (MR) fluid. The beam comprises two outer layers made of aluminium and a
MR fluid layer in between, sealed with silicone rubber. The beam finite element (FE) model is created using
the ANSYS software. Interactions of the magnetic field are taken into account by varying the FE model
parameters. Data required for identification are collected from results of measurement of the beam’s free
vibration. The identification procedure assumes the good agreement between the frequencies of the beam’s
free vibrations and dimensionless damping factors obtained from research and computation data.

Keywords: MR fluid, beam, vibrations, damping, identification

1. Introduction

Control of vibration of flexible structures using smart fluids has received a great deal of
attention since the early 1990s. The literature on the subjects abounds in reports on adaptive
features of beam and plate structures incorporating electrorheological (ER) fluid. Fewer
reports are available that explore similar applications of MR fluids [3, 4, 5, 6, 7].

The distinctive feature of such structure is that their structural behaviour can be
controlled by the magnetic/electric field which activates the smart fluids present in them.
Interactions of the magnetic/electric field cause the stiffens and damping characteristics
to change, hence enabling vibration reduction.

At this stage of the research programs, the authors focus on a three-layered cantilever
beam, incorporating MR fluid layer of 140CG type of Lord Corporation [8] in between two
flexible layers. The purpose of the research program is to reduce the free transverse vibration
of the beam under the applied magnetic field.

The paper is concerned with identification of model parameters of a beam incorporating
MR fluid, assuming the fluid is represented by finite elements in the form of a rheological
structure of the Voigt-Kelvin type and of the modified Bingham structure. The model is
intended to be used for testing the control algorithms of beam vibration.
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2. Model

The structure of the beam with a MR fluid layer, is shown in Figure 1. Development of the
beam model involves three stages. The beam considered in the first stage is made of a
single layer of aluminium 400 mm in length, 30 mm in width and 2 mm in thickness
(Beam1). The beam modelled in the second stage comprises two aluminium layers and a
silicone rubber sealing 2 mm in thickness (Beam2). Finally, the beam modelled in the
third stage has a MR fluid layer in between the aluminium layers (Beam3).

The beam is modelled using the finite elements readily available in the ANSYS library:
solid45 (aluminium layer), solid185 (silicone rubber sealing), combin40 and mass21
(MR fluid). The schematic diagram of the finite element combin40 is shown in Figure 2a.
The MR fluid layer is modelled by the rheological Voigt-Kelvin structure (Figure 2b) and
the modified Bingham structure (Figure 2¢) assuming shear mode of MR fluid operation.

In order to assure the shearing mode operation it is required that vertical displacements of
relevant cross-sections of the upper and lower aluminium layers should be the same [2]. Thus
the relative displacement of modes of the element combin40 is confined to direction
coinciding with the beam’s axis.
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‘ Fsige , K1 Cpo
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Fsiide
T 1
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| rubber ! WWWWVY J
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Figure 1. Beam structure Figure 2. combin40 element and its modifications

3. Identification experiment

Experiments were performed in the set-up shown schematically in Figure 3. Data for
identification were collected by testing the beam’s free vibration and recording the
displacement z of the point P.

Experiments were performed on the beams: Beam1, Beam2 and Beam3.
Experiments were performed in the absence of magnetic field and under the applied field.
The free end of the beam was deflected from the equilibrium state and displacement z of
the point P was registered with the laser vibrometer. The height of the slit between the
poles of an electromagnet was 20 mm.

Of particular interest is the relationship between the electromagnet’s position and
dimensionless damping coefficient. The electromagnet position was measured by the
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distance y,, between the beam attachment point and the slit centre. The following values
of y,, were assumed: 43, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140 mm.

Figure 3. Experimental set-up: 1— beam; 2— electromagnet; 3— laser vibrometer

In each position of the electromagnet, it was supplied with current /=5 A. The current
induced the magnetic field with flux density 0.16 T. Figure 4 shows time histories of
displacement of the point P for the Beam1 and Beam3 with no magnetic field and
under the applied field, for y,=80 mm.
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Figure 4. Displacement of the point P

Thus obtained time histories yield natural frequencies f and dimensionless damping
coefficient { of the beam’s vibration, depending on the position of the electromagnet
for the current /=5 A. Computation data, obtained for selected positions of the
electromagnet, are compiled in Table 1. Frequency and the dimensionless damping
coefficient for Beam3 with no activated magnetic field become 8.63 Hz and 0.0075,
respectively.
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Table 1. Frequency and dimensionless damping coefficient

Y [mm] | 43 60 80 | 100 | 120 | 140
f[Hz] | 882 | 890 | 898 | 9.02 | 9.07 | 8.94
C[-1 | 0.016 | 0.018 | 0.023 | 0.030 | 0.041 | 0.049

4. Identification procedure

The main purpose of identification was to find the values of major model parameters: the
internal damping factor for aluminium and the rubber sealing, Young modulus for
aluminium and the rubber sealing and, most importantly, of model parameters of the MR
fluid layer.

Identification of parameters of the MR fluid layers involved two procedures.
In accordance with the procedure 1, parameter values of the Voigt-Kelvin structure c,, £,
(Figure 2b) are determined basing on the equality between experimental and calculated
values of natural frequencies and dimensionless damping coefficients obtained for the
electromagnet position y,=80 mm. In the procedure 2 we sought such values of
parameters c,, k, that the error defined by the formula (1) takes minimum value:

11 RS 11 2
min Z(QVJ(CWI‘ )‘gj) +W'Z(fj(cp=kp)‘fj) )
ptpl =1 J=1
where: f ;, f; — nmatural frequency, experimental and theoretical; & ;,;’ i
dimensionless damping coefficient, experimental and theoretical; j=1, 2, ... ,11 — index
corresponding to successive positions of the electromagnet; #W=0.001 — weighting

coefficient.

Values of ¢, and k, obtained in the first procedure are equal to ¢,=19.2 [N-s/m],
k,=2544 [N/m] and in the second procedure are equal to ¢,=21.1 [N-s/m],
k,=2162 [N/m]. These values yield the relationship between frequency and the dimensionless
damping coefficient and the electromagnet’s position, shown in Figures 5 and 6.

The values of ¢, and k, calculated for various current levels are compiled in Tables 2 and 3.
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Figure 5. Frequency as the function of electromagnet’s position
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Figure 6. Dimensionless damping coefficient as the function of electromagnet’s position

Table 2. Values of ¢, and k, in Table 3. Values of ¢, and k, in
accordance with the procedure 1 accordance with the procedure 2
I=3A I=5A I=9A I=3 A I=5A I=9A
¢,[N's/m] 7.9 19.2 32.6 ¢, [N's/m] 8.7 21.1 35.9
k, [N/m] 1000 2544 3670 k, [N/m] 900 2162 3303

The proposed model correctly predicts the changes of parameters { and f for
successive position of the electromagnet along the beam axis. A good approximation of
the dimensionless damping coefficient is achieved for all electromagnet’s positions.
Frequencies are well predicted for the electromagnet in the position y,,<100 mm, which
might be associated with enhanced interactions of a non-homogenous magnetic field at
the edges of the space between the poles of an electromagnet [1]. The influence of non-
homogeneity of the field on the beam s motion enhances with amplitude increase. It was
observed at points of the beam at a larger distance from the attachment point. At higher
amplitudes of vibration, points of the beam are temporarily placed in the space where
concentration of magnetic field lines is so high that attraction of ferromagnetic particles
causes the natural frequency to be vastly reduced.

5. Summary

A model of a sandwich beam incorporating MR fluid is proposed and its parameters are
identified. The model enables us to accurately predict the vibration damping capability
over the entire range of electromagnet’s positions. Natural frequencies of beam vibration
are established with sufficient accuracy for the electromagnet in the position given as
V<100 mm. Phenomena due to non-homogeneity of the magnetic field in the slit of the
electromagnet can be neglected for the electromagnet positions y,,< 100 mm. In the light
of the assumptions made, the predictions of the beam ’s motion are sufficiently accurate,
enabling us to the test the control algorithms of beam s vibration.
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Identyfikacja parametréw modelu tréjwarstwowej belki z ciecza magnetoreologiczna

W pracy dokonano identyfikacji parametrow modelu trojwarstwowej belki wspornikowej z cieczq
magnetoreologicznq (MR). Belka sktada si¢ z dwoch zewngtrznych warstw aluminiowych, pomigdzy ktorymi
znajduje si¢ warstwa cieczy MR uszczelniona guma silikonowa. Model belki zbudowano przy wykorzystaniu
elementow skonczonych dostgpnych w programie ANSYS. Oddzialywanie pola magnetycznego na belke
uwzgledniono przez zmiang wartosci parametrow uzytych w modelu elementow skonczonych. Dane
do identyfikacji pozyskano z badan drgan wiasnych belki. W procedurze identyfikacji kierowano sig zgodnoscia
wartosci czgstotliwosci drgan wiasnych belki oraz bezwymiarowych wspotczynnikow thumienia uzyskanych z badan
i obliczen.
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Abstract

In rail vehicles, because of higher and higher ride speeds, there are works carried out to upgrade braking
systems to stop the vehicle at shortest possible braking distance. It is required that in braking systems the
condition of friction set is periodically controlled and the wear of braking system parts is constantly monitored.
The purpose of this article is to present possibility to diagnose the friction set of disc brake by using selected

amplitude characteristics of vibration signal generated by brake holder with friction pads.

Keywords: wear, friction pad, railway disc brake, point parameters, amplitude characteristics

1. Introduction

In rail vehicle, because of constantly rising ride speed and to obtain required braking
distance, disc brakes are used as primary brake. Additionally, according to UIC 546,
speed of passenger trains of over 160km/h triggers application of disc brake. Few
disadvantages of disc brake include a lack of possibility of controlling the condition of
the friction set: brake and pad in the whole operation time. It is particularly observable in
rail cars, where disc brakes are mounted on the axle of the axle set between the wheels
[3]. To check the wear of friction pads and brake discs it is necessary to apply
specialistic station e.g. inspection channel to carry out inspections, and to carry out
replacement of friction parts in case they reach their terminal wear.

In rail technique, rail track stations are used to diagnose the wear of friction pad. At
these stations friction set consisting of disc brake and friction pad is photograhed during
train ride. However is not a very precise metho because, on the basis of registered
pictures the thickness of frction pads of disc brake is only assessed. When pads’
thickness amounts to approx. 10mm tram driver receives information that terminal
acceptable wear of pads on a certain axle of axle set has been reached. Rail track stations
to diagnose the wear of friction pads are used by German, British and French railways.

In railway vehicles, systems signaling braking process and easing process, visible for
the service from the inside and outside of the vehicle, are the most often applied. Those
systems enable to check during train ride in which car braking system is bloked.
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Nevertheless, rail technique lacks an objective method of quantitive assessment of the
wear of friction pads.

The purpose of this research is to apply vibration signal of pad calipers to assess the
wear of friction pads of disc brake.

2. Methodology research

The research was carried out at inertial station for tests of railway brakes. A brake disc
type 610x110 with ventilation fans made by Kovis and three sets of pads type 200
FR20H.2 made by Frenoplast constitute the research object. One set was new - 35 mm
thick and two sets were worn to thickness of 25 mm and 15 mm.

A reasearch program C (fast ride) according to instructions of UIC 541-3 was
applied. The brakings were carried out from speed of 50, 80, 120, 160 and 200 km/h.
During the research pad’s pressures to disc N of 28 and 44kN were realized as well as
braking masses per one disc of M=4.4T and 7.5T [5]. Vibration converters were
mounted on pad calipers with a mounting clip, which is presented in Figure 1a [6].

Figure 1. Interial station for tests of railway brakes; a) pad calliper with accelerometer,
b) view of measurement set of vibrations generated by calliper with pads;
1-accelerometer, 2-measuring case type B&K 3560 C, 3- System software PULSE 12.5

During the research signals of vibration accelerations were registered in three
reciprocally orthogonal directions. To acquire vibration signal a measuring system
consisting of piezoelectric vibration accelerations converter and measuring case type
B&K 3560 C with system software PULSE 12.5. was used. Figure 1b presents the view
of the measuring track.

Vibration converters type 4504 made by Briiel&Kjar were selected on the basis of
instructions included in papers [1], the linear frequency of converters transit amounted to
13 kHz. During diagnostic tests signals in frequency from 0.7 Hz to 9 kHz [1] were
registered. Sampling frequency was set at 32 kHz. This means that the frequency that
was subject of the analysis in accordance with Nyquist relation amounted to 16 kHz.

This research was carried out in accordance with principles of active experiment.
After carrying out a series of brakings at set speeds at the beginning of braking, pads’
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pressures to the disc and braking masses, the friction pads were changed and values of
instantenuous vibration accelerations were registered.

3. Research results

In domain of amplitudes, the most common are the point parameters [2], which are used
to describe displacement signals, speed signals and signals of vibration accelerations.
Characterizing vibration signal with one number is an advantage of point parameters,
thanks to which it is easy to define changes in vibroacoustic signal resulting from
changes in technical condition of the tested object.

To diagnose the wear of friction pads of railway brake the following dimensional
point parameters are applied:
- average amplitude, described with dependence:

T
1
S AVERAGE :_”S(f]df (1)
T 0
where: T - means average time [s],
s(t) - means instantaneous value of vibration accelerations [m/s?].

- RMS amplitude, described with equation:

1
7{[5(1 )Far
- square amplitude, describe with dependence:

o T

- peak amplitude, described with equation:

2

Sgus =

’ 1
S prak :[%ﬂs(tlwdt}n dla n— o (4)
0

Before calculating point parameters from signals of vibration accelerations in
program Matlab 7.0, a preliminary processing of signal in time domain was carried out.
The reason of this processing was to select from the whole registered signal a part
connected only with braking process. This process was also carried out to obtain
required dynamics of changes essential for diagnostic purposes. Defining dependence of
friction pad’s thickness on selected point parameters was carried out through
determining dynamics of changes for a certain parameter, which is presented in
dependence (5) [4]:

D= ZOlg(S—zj (5)

51

where:s; - means the value of point parameter determined for pad G; or G, [m/s*],
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S; - means the value of point parameter determined for pad G, [m/s?].

The analysis of results of vibration tests showed that obtaining dependence of friction
pads’ thickness on the value of point parameters is possible by measuring vibration in
directions Y, and Z, on a sensor mounted from the side of brake cylinder’s case.
Diagnostic tests with application of point parameters showed that inference about the
wear of friction pads is dependant on type of braking with pressure N to the disc and on
braking mass M. Realizing pressure N=44kN on the disk with M=4.4T enables
determining dependence of the wear of friction pads on the value of point parameters in
the whole speed range at the beginning of braking i.e. from 50 to 200km/h. Moreover
vibration tests showed that combinations of brakings with N=44kN and M=7.5T,
N=28kN and M=4.4T, N=28kN and M=7.5T preclude assessment of pad wear on the
basis of values of point parameters for considered speeds at the beginning of braking.

The greatest values of dynamics of changes were noticed by using from point
parameters the RMS value and square value. Figure 2 present dependence of (RMS)
value of vibration accelerations in direction Z, on braking speed for various values of
pad wear G with N=44kN and M=4,4t.

&
% B Brake padG1=35mm
o 12 1O Brake pad G2=25mm
=
o
93]

O Brake pad G3=15mm
10 - |
ol T |

50 80 120 160 200
Speed at the beginning of braking, v [km/h]

Figure 2. Dependence of (RMS) value of vibration accelerations in direction Z2 on
braking speed for various values of pad wear G with N=44kN and M=4 4t

Because of increasing values of selected point parameters in the speed function at
the beginning of braking, which was found out for each tested friction set, in the further
analysis calculated point parameters were approximated against three friction pads’
thicknesses. Dependences were approximated with the polynomial function or the linear
function (depending on the speed at the beginning of braking) receiving the largest
values of correlation coefficient R°. As a result of approximation mathematical models
were obtained, which enable to calculate value of selected point parameters in the
function of friction pad’s thickness. In the measurement’s orthogonal direction to the
friction surface of the disc (Y3) and tangential direction (Z,), approximation was carried
out for RMS value, average value and square value, which resulted from the greatest
dynamics of changes in enumerated point parameters.
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In case of measurement of instantaneous values of vibration accelerations in
direction Y5, it was found out that for lower speeds at the beginning of braking (to
80km/h), approximation of point parameters can be effected with linear functions, which
was confirmed for each calculated parameter i.e. for, RMS value, average value, square
value and peak value. Higher braking speeds cause that the value of point parameters
should be approximated with the polynomial function. In direction Z, of measurement of
vibration accelerations of calipers with pads, average value should be approximated with
the polynomial function in the whole range of speeds at the beginning of braking.

During station research, dynamics of changes of analyzed values of point
parameters according to dependence (5) was defined, which is presented in table 1. On
this basis it was found out that RMS value of vibration accelerations shows the best
sensitivity towards change of pad’s thickness against other point parameters at vibration
measurement in directions Y, and Z,.

Table 1. Dynamics of changes of selected point parameters in direction Y, and Z,

Point paramiters | Symbol | Unit Measuremen\t/ Z:ilil;Zc?foiy;?mﬁigsﬁlizilisdirection Z,
RMS value Sruts m/s’ 4.8 53
Average value | Syyzrace m/s? 4.3 4.5
Square value Ssovare m/s? 4.1 5.1
Peak value Spea | /s 3.9 4.4

Fundamental aim of station research of diagnostic character is to determine the
wear of friction pads on the basis of values of vibration accelerations by applying
approximating functions, on the basis of which, measured value of point parameter
enables to define the wear of brake’s friction pad. The wear of pads determinates pads’
thickness, which in the carried out tests were diversified. Calculations were carried out
for RMS value obtained in measurement direction Z,. For RMS value of point
parameter, also obtained from measurement in direction Z, by using linear
approximating functions described with dependences (6-10) for five speeds at the
beginning of braking, the following equations defining friction pads’ thickness were
introduced:

GRMS, (v=50) = -10,312- SRMS,(V:SO) +80,974 (6)

G russ. (v=s0) = =9-9328 - 8y (1=50) + 89,157 (7)

G rugs, (v=120) = —8,0383 - Sy (1120) +85,929 8)

G russ. (v-160) = 0,08 Spss (1160) T 89,416 9)

G rass, (v=200) = —0,3409 - Sy (,-200) + 80,448 (10)

where: Gpys ., - means pad’s thickness calculated on the basis of RMS value of

vibration accelerations Sgs [mm]
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4. Conclusions

In the diagnostics of the wear of friction pad of disc brake, point parameters obtained
from amplitude flows of vibration accelerations are easier to interpret. Analyzing results
in the range of applying point parameters of signals of vibration accelerations to
determine friction pads’ wear determinated by current pads’ thickness in the moment of
measurement, it can be found out that selected parameters allow to determine friction
pads’ thickness..

Measurement of vibration accelerations in direction Z, tangential direction to friction
surface of the disc and mounting vibration converter from the side of brake cylinder’s
case, is characterized as the most sensitive towards direction Y and X, which is
confirmed by values of coefficient of dynamics of changes defined with dependence (5).
During verification of regression diagnostic models determined on the basis of point
parameters of signals coming from pad caliper, differences in determining pads’
thickness did not exceed 14% for RMS value in direction Z,.
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Szacowanie zuzycia okladzin ciernych tarczowego ukladu hamulcowego pojazdu szynowego
przy wykorzystaniu wybranych charakterystyk amplitudowych sygnalu drganiowego
W pojazdach szynowych ze wzglgdu na coraz to wigksze predkosci jazdy prowadzi sig prace nad
udoskonalaniem ukfadéw hamulcowych tak, aby zatrzymanie pojazdu odbylo si¢ na mozliwie najkrotszej
drodze hamowania. Wigksze wymagania stawiane ukladom hamulcowym wymusza nie tylko okresowe
kontrolowanie stanu pary ciernej, ale réwniez stalego monitorowania zuzycia elementow ukladu
hamulcowego.
Celem artykutu jest przedstawienie mozliwosci diagnozowania pary ciernej hamulca tarczowego
wykorzystujac wybrane charakterystyki amplitudowe sygnatu drganiowego generowanego przez obsadg
hamulcowa z oktadzinami ciernymi.
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Abstract

The paper presents an active vibroisolation system with two magnetic springs. Force exerted by the magnetic
spring is a result of interaction of magnetic fields formed by magnets and coils. The stiffness of the spring can
be modified by changing the current in coils. Static characteristic of the spring were determined using results
of calculations and experiments. Magnetic springs were applied in two degrees of freedom system.

Keywords: vibration control, switching stiffness, magnetic suspension, controlled magnetic spring

1. Introduction

Magnetic springs are very useful elements in design of vibroisolation systems. The
principle of operation of magnetic spring consists in automatic control of spring force by
the current in coils. The current modifies the magnetic flux and simultaneously the
spring force.

Recently the active vibroisolation systems with magnetic springs are used in many
applications for instance in vehicle suspensions [1], [2]. Traditional suspension systems
are often replaced by active magnetic suspension systems. Operating principle of
magnetic suspension were discussed in [3], [4] and [5], where authors considered
mathematical models and result of experiments.

Paper presents the new design of controlled magnetic spring. The assumed
characteristic of spring was obtained by the appropriate arrangement of magnets and
coils.

2. Operating principle of magnetic spring

Schematic sketch of magnetic spring is shown in Figure 4. Main parts of the magnetic
spring are: magnetic core, magnets, coils, shaft and covers. Two upper neodymium
magnets are fixed to the end of the shaft and the next two magnets are fixed to the lower
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magnetic core in the spring axis. Four coils are used to change the magnetic field in the
space between magnets.

linear bushing

upper cover

/Mm

upper neodymium magnets

upper magnetic core

coils

$——____ side magnetic core
lower magnetic core
lower neodymium magnets

lower cover

Figure 2. Axis section of magnetic spring

3. Spring characteristics
In order to determine the magnetic field distribution and spring forces the finite element

(FE) model was prepared using ANSYS 11.0. The FE model of spring and its section are
shown in Figures 2 and 3.

Figure 3. FE model of magnetic spring Figure 4. XZ section of FE model

Calculations were done for various positions of the shaft. The result of calculations
of spring force is presented in Figure 4.
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Figure 5. Force vs distance between magnets

The force is a non-linear function of distance between magnets. As it was expected
the force decreases for larger distances between magnets. The force tends to very large
values if the distance tends to zero.

The prototype of magnetic spring was made and using this prototype the series
experiments were conducted in the Laboratory of Dynamic Structures and Systems in
Department of Mechanical Engineering and Robotics AGH. Displacements and forces,
measured for various sequences of active coils, were the base for determination of
magnetic spring characteristics..

Results of calculation and results of experiments are shown Figure 8. Both relations
between force and distance were approximated by third degree polynomials.

calculated force

measured force | |

600

distance between magnets [m]
Figure 6. Calculated and measured forces

The relative error between calculation and experiments results does not exceed 13 %.
The highest value of error is attained for small value of displacement between magnets.

4. Vibroisolation systems with controlled magnetic springs

The system considered in this study is a simple two-degree of freedom system. It is
shown in Figures 6 and 7. For instance such system can be used as a model of truck and
cabin suspension system.
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system

magnetic
spring

magnetic

Switching n
spring

system

Switching Conrol signal

system

Figure 7. First version of the system Figure 8. Second version of the system

The coordinate system introduced previously, for the presentation of the force as a
function of distance between magnets (Figure 5), is replaced with a new, more
convenient coordinate system as shown in Figure 8.

700 one coil with current
two coils with cument

|
|
600 H four coils with current [E—
|
|
P

one coil with reverse current

two coils with reverse cument

5001 — fourcoils with reverse curent

without current
T

4001~~~

-0 rZF—

3001 - - ——— - 4 <]
200F - A o h oo

0 0.005 0.01
displacement [m]

Figure 9. Force vs. displacement for various configuration of active coils

The principle of operation of vibroisolation system reduces to adequate switching
between two characteristic of the spring. In each period of oscillation the energy of the
system decreases. Two versions of vibroisolation system are considered. In the first
version, the system consists of only one controlled magnetic spring (Figure 6) and in the
second version, the system contains two controlled magnetic springs (Figure 7).
Depending on the wvelocity sign the switching system selects the appropriate
characteristic of magnetic spring.

In the system with one magnetic spring the magnetic force Fj(x;,x;) depends on

switching function f(x;) which takes the value 1 (whenx; <0) or 0 (when x; >0).
The force can be calculated from the following formula:

F = £ R 0)+ 0= fiG) AP () )
Functions Fl(l) (x;) and Fl(z) (x;) describe spring forces for assumed combinations of
active coils. In the system with two magnetic springs the first force F(x;,x;) depends

on switching function f;(x;) as it was described in (1) and the second force
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F,(x, —x|,%, —x;) depends on switching function f,(x, —x,) which takes the value 1

(when x, —X, <0) or 0 (when X, —x, >0). The second force can be written in the form:

. 1 . 2
Fy = f2(x, ‘xl)'Fz( )(xz —x)+ (1= f5(x ‘xl))'Fz( )(x2 —Xx) 2
Forces Fj(x;,x;) and F,(x,—x,x,—X;) are independent. As a result of spring
action, the energy is reduced in each cycle of vibration. The implementation of control
algorithms in Matlab environment enables us the simulation of vibrations decrease.
The following parameters of the system are assumed in numerical calculations: the
lower mass m;=30 kg, the upper mass m,= 10 kg, stiffness coefficient k,= 10° N/m.
Results of calculations are shown in Figures 9 and 10. All displacements of masses
are related to equilibrium positions.

a) b) ©)
s 3
X 10 . x 10
. . x10° 3 T T
4l =+ = =+ = {—— lower mass { 4 ‘ | | lower mass
umpor mase lower mass ! upper mass
—— upper mass ‘

2 —k-—F--F-—4

CeoRoa3 053 —
N o

Q4T3 53—
o

- 1 1
4 ! | L L 0 01 02 03 04 05 06 4 |
0 02 0.4 0.6 0.8 1 time [s] 0 01
time [s]

Figure 10. Displacements: a) one active coil, b) two active coils, c) four active coils.

time [s]

As long as the lower mass is not in equilibrium state the energy of the system is
dissipated. Amplitudes of displacements of each mass decrease. When the lower mass is
near equilibrium position the amplitude of displacement of the upper mass is almost

constant.

Q0 TBO03 053 —

lower mass

lower mass ||
j upper mass

0.4 ) 0.05 0.1 0.15 0.2
time [s]

——— upper mass

I I -

0.1 0.2 03 0.4 0.5 0 0.1 0.2 03
time [s] time [s]

Figure 11. Displacements: a) one active coil, b) two active coils, c) four active coils.

Q0 TBO03 053 —
b & A b o N

In the second version of vibroisolation system both mass attain equilibrium positions at
almost the same time. Dissipation of energy is more effective than in the first version of

vibroisolation system.

8. Conclusions

In the paper the new design of magnetic spring was proposed. Active vibroisolation
systems with magnetic springs were studied analytically and experimentally. Vibrations
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of two degrees of freedom system were reduced by vibroisolation systems with one and
two magnetic springs. Various configurations of active coils were used in applied
algorithms of vibroisolation. Numerical and experimental studies can be reassumed as
follows:

1. Magnetic spring characteristics are nonlinear. Difference between spring
characteristics obtained by measurement and FE calculations is very small.

2. The variation of the current in coils allows for modification of the spring force
up to 33%. The force changing in this range can be exploited by control
algorithms.

3. The number of active coils is the base for more effective damping of the upper
mass in both versions of vibroisolation system,

4. Due to the range of effective force the magnetic springs should be designed for
definite masses constituting the system.
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Sprezyna magnetyczna, jako element aktywnego ukladu wibroizolacji

W pracy przedstawiono badania symulacyjne uktadu wibroizolacji z wykorzystaniem spr¢zyny magnetyczne;j
ze sterowalnym polem magnetycznym. Analiz¢ pola magnetycznego sprezyny magnetycznej wykonano
metoda elementéw skonczonych wykorzystujac pakiet ANSYS. W pracy przedstawiono symulacj¢ uktadu
wibroizolacji z zaprojektowana sprezyna przy zastosowaniu odpowiedniego algorytmu przetaczajacego.
Wyniki symulacji przedstawiono na wykresach. Proponowany uktad wibroizolacji moze by¢ wykorzystany w
uktadach zawieszenia kabin pojazdow roboczych, foteli operatorow maszyn oraz w uktadach mocowania
stabilizowanych platform.
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Abstract

The problem of the dynamic stability of a beam with different boundary conditions and with undamped
oscillator is formulated and solved in this work. Oscillator can be mounted at any chosen place along the beam
length. The beam is axially loaded by a force in the form P(f)= Py+Scosvr. The problem of dynamic stability is
solved by applying the mode summation method. The obtained Mathieu equation allows the influence of
oscillator on the position of solutions on a stability chart to be analysed. This analysis relies on testing the
influence of oscillator on the value of coefficient 4 in the Mathieu equation. The considered beams were treated
as Euler- Bernoulli columns.

Keywords: Dynamic stability, beam, harmonic oscillator

1. Introduction

A lot of works dealing with the dynamic stability of beams with additional discrete
elements can we find in the literature. Evensen and Evan-Iwanowski [1] carried out
analytical and experimental research on the influence of a mass mounted at the end of a
beam on the dynamic stability of this beam. Sato et al. [2] investigated the parametric
vibrations of a horizontal beam loaded by a concentrated mass, which showed the
influence of the beam weight and the inertia of a rotational mass on the beam vibrations.
Giirgéze [3] analysed the influence of a mass mounted at the end of an elastically
supported beam along its axis. The dynamic stability of an elastic beam was analysed by
Cederbaum and Mond [4]. Majorana and Pellegrino [5] analysed the dynamic stability of
an elastically supported beam (rotation and translation springs at the ends). In [6]
Sochacki has investigated a simply supported beam axially loaded by a harmonic force,
showing the destabilising effect of the concentrated mass, spring and harmonic
oscillator.

This paper takes into account beams at different types of boundary conditions
(clamped-free C-F, clamped-sliding C-S, clamped-clamped C-C and clamped-pinned
C-P). An undamped harmonic oscillator was connected to the beams at a chosen position
between the supports. The considered beams are treated as Bernoulli-Euler beams and
solved according to the small bending theory. The dynamic of the system was described
with the use of the Mathieu equation. The problem of dynamic stability was solved using
the mode summation method. The influence of additional an undamped harmonic
oscillator (its values and positions) on the value of coefficient b in the Mathicu equation
was investigated. In this way the possibility of a loss in dynamic stability by the
investigated system was determined.
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2. Mathematical model

A scheme of the considered C-F beam is presented in Fig. 1.

lC
—1 ll N R lZ T —
)C1 P(t) X,
N - et -
k
! w (%)
m
- Twx)

Figure 1. Model of the C-F beam with additional undamped harmonic oscillator
mounted in selected positions along the beam length.

The equations of vibrations:
6w-4(x-,t 6w-2(x-,t o%w, X, t
EJ, lax.“l )+P(t) lax.zl )+ i@%:() (1a,b)

1 1
where : P(f) = Pyt+Scosvt, v- forcing frequency, EJ; — flexural rigidity of beam,
p; — density, A; — cross-section area, i = 1,2 ith part of the beam
together with the boundary and matching conditions:

w(0,£)=0, w(0,£)=0 (2a-b)
EyJywi 1y, )+ P(e)w5 (1,,1)=0,  wi(l,,1)=0 (2¢-d)
EJywi (1, 0)+ Pewi (1, 0)+
—myi—E,Jywil (0,2)— P(t)w3 (0,£)=0
wi(l,6)=wy (0,0),  w{(l,0)=wi(0,0),  EpJywi’ (1y,0)= EyJ,w3 (02)  (2f-h)
m2+k(z—wl (ll,t))zo (21)
where: the Roman numerals denote differentiation with respect to x, and dots denote
differentiation with respect to time ¢,

made the formulation of the boundary value problem of the investigated beam.
During the vibrations the displacement of the beam and oscillator mass take the form:

w, (x;,0) = W, (x; Jeos(@1), (i=1,2) 3)
and z= Zcos(a)t) )

where W,(x;) and Z are displacement amplitudes w; and z, while @ is the natural

(2¢)

frequency of the beam with discrete elements.
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For the nth mode the natural frequency @, and eigenfunctions of the beam W,,(x;) are
determined by solving the boundary value problem.

Analogical procedure in case of remaining beams C-C, C-P and C-S after introducing
the appropriate boundary conditions, leads to determination of the natural frequency and
eigenfunction of these beams.

2. Solution of the dynamic stability

The solution of equation (1a,b) is assumed to be in the form of eigenfunction series [7].

Wi('xt’t z ln(l) () (12192) (Sanb)

where: 7, (t) are unknown time functlons and W, (x

free frequencies of ith parts of the beams.
Substituting solution (5a,b) into equation (1a,b) one can obtain:

3 £t 51, (0 S 5 ), )5, )7, 0] o

l-) are normalized eigenfunctions of

Q)
After multiplying by W, (x) one can receive from equation (6):
30| B W) 7,0+ B G W ()T, )+ o
n=1

+ Scos v I (5, W, (5 )T, (6)+ ¥ (i W (), (0)] = 0

From equations (1a,b) for the nth eigenfunction W, ( ,) for free vibrations of the beam,

after separate variables and multiplying by W, (x,- ), one can obtain:
EJ; WIV( I)VVim( )+ POWH( z)W (xi) = piAiwr?VVin(xi)VVim (xi) (i = 192) (8)

= rtim

Then (7) takes the following form:

S ot Wi ()T, () scosme Wl s ()T, O
n=1

PAW, e W0, (5, )T, ()]0
After integrating equations (9), the following form was obtained for the whole beam and
the first term:

! l !
n (t{wlzpiAi 2 s s+ Scossa [ 1, W, s, )djr (s, 35 ), =0 (10
0 0 0

Appropriate transformations of equation (10) and the substitution of ¢ by a new variable
7= 1t lead to the following form of Mathieu equation.

T(c)+(a+bcost)(r)=0 an
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2 1
5 ZJWAH (xi )Wil (xi )dxi
0

s 5
2 2 /

Y Y ZpiAijWilz(xi )dxi
i=1 0

The periodical solutions to the Mathieu equation (11) are known (e.g. [8]). These
solutions allow us to determine the stable and unstable regions of solutions. The
numerical values of a and b each time decide the position of solution in the stable or
unstable region. However, it must be stated that the probability of obtaining stable
solution is higher in case of lower value of coefficient b, at the determined value of a.

(12a,b)

4. The results of numerical computations and discussion

The solution to the problem of dynamic stability of the tested beams allowed to
determine the values of coefficient » in the Mathieu equation at changeable values of
the elasticity coefficient of oscillator K (Fig. 2) and mass of oscillator M (Fig.3).
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b P N
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0.04 — —
0.25
020 \ \ \ \ 0 | \ \ \
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
! /
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0.2 ‘ ; 03 ‘ ‘ : :
S ~ — — —
L — |
0.16 ~ 7
L ~ — -
- | 02— 4
012
b — b
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Figure 2. The influence of oscillator mounting location on the beams and the value of
the elasticity coefficient of oscillator K on the value of coefficient b for a =1
and M=02: k=10 ————; K=100
(forCFbeamK=1 ————, K=10 —— )

E)
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Calculations were carried out assuming the following dimensionless quantities:

3
ki m
= @ M=—, (13)
2
E\J,
ZpiAili
i=1
0.70 0.3
L _ - .
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Figure 3. The influence of the oscillator mounting location on the beams and its
mass M on the value of coefficient b for @ =1 and K = 100 (for CF beam K = 10):
M=02——— M=0.6 ————.

Analysis of the research results of the influence of the oscillator (K and M) and its
placement on the beams on the value of coefficient b allows the following conclusions to
be drawn: an increase in the elasticity coefficient K of the oscillator leads to a decrease in
coefficient b (Fig.2), while an increase in oscillator mass M leads to an increase in the
value of coefficient b (Fig. 3).

Analysing the influence of the oscillator placement on the beams it can be stated that,
independently of the values K and M, the closer oscillator mounting in places for which
the amplitudes of first modes are the highest leads to an increase in the value of
coefficient b.
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Stateczno$¢ dynamiczna belek z oscylatorem harmonicznym

W niniejszej pracy rozwaza si¢ belki o réznych warunkach brzegowych, obciazonych sita wzdluzna postaci

P()

= PytScosvt. Dodatkowo w dowolnym miejscu pomigdzy podporami do belek dotaczono liniowy

oscylator harmoniczny bez tlumienia. Badane belki traktuje sig¢ zgodnie z teoria Bernouliego — Eulera i
rozwigzuje zgodnie z teorig matych ugigc. Zagadnienie statecznosci dynamicznej rozwiazano, stosujac metodg
sumowania funkcji wiasnych i opisano za pomoca roéwnania Mathieu. Zbadano wplyw oscylatora
harmonicznego na stateczno$¢ drgan belek. Badania polegaty na okresleniu wptywu oscylatora dotaczonego do
belki zardwno co do jego wartosci jak i miejsca mocowania na belce na warto$¢ wspotczynnika b w rownaniu
Mathieu. W ten sposob okreslono mozliwos¢ utraty stateczno$ci dynamicznej przez badane uktady.
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Abstract

The paper describes some new vibration features which had been successfully applied and could be
recommended for more effective vibration monitoring and incipient fault detection. These features known as
the vibration non-dimensional S-discriminants are now calculated in parallel way for a set of narrow frequency
bands and represented in format convenient for interpretation and documentation. This cartography kind of
vibration data visualization enables localization of increased vibroreactivity sources, an early fault detection
and prompt estimation of the machinery degradation speed in a very sensitive manner, in contrast with other
current methods. The point is that this approach allows to emphasize not only common used changes (growth)
of powerful vibration signal components (event of vibroactivity), but also variability of weak, though just
informative vibration components (event, called “vibroreactivity”). One of the practical example of successful
application of this method is given for incipient burn-out of turbine nozzle.

Keywords: machinery, sources localization, incipient fault detection, vibration non-dimensional discriminant.

1. Introduction

Generally, most of machinery monitoring and protection system algorithms are based on
estimation of vibration velocity RMS (root mean square) values within 10 to 1000 Hz
frequency band, or of current amplitude divergences (for specific narrow frequency
bands) from baseline meanings collected under the good machinery condition [1]. There
are well-known conventions accordingly to which RMS level increase by a factor greater
than 10 (20 dB) is classified as “not permissible”, which suggests the crash condition.
This approach is based on an assumption that rotary machines, having similar power,
axes location height, shaft rotation speed, foundation and amortization types may be
unified in a particular class with the same alarm thresholds of vibration RMS levels: for
its good, allowable and not permissible status, without taking into account some
difference in their operation, excitation of oscillation, fault symptoms in the vibration
signal. The conventional frequency band for such high-speed machinery as gas turbine
units (GTU) contains only several first shaft rotation frequency harmonics which are
affected only by rough machinery malfunctions like an unbalance, a part breakage, and
so on). Meanwhile, technique of an incipient fault detection (such as erosion, pitting and
so on) bases on some other principles, because their symptoms lie in higher frequency
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range. Obviously, an application of common vibration monitoring technique for high-
speed machinery is not effective. This is the reason to address to more effective methods.
The proposed one is the fresh machinery vibration monitoring technique, which is built
upon usage of parallel narrowband S-discriminant analysis of clipped vibration signals
[2-3]. This method provides localization of machinery heightened “vibroreactivity”
sources in bands with signal dispersion dramatically grown in comparison with reference
measurement data due to arising and then developing defects [4]. An example of this
novel vibration monitoring technique practical application is given for an early detection
of gas turbine engine part damage.

2. A new approach to the vibration monitoring of high-speed machinery

There are several well-known common laws of vibration waveform changes along
machine operational time. Firstly, the amplitude and amount of signal overshoots are
increasing; secondly, noise level is growing; and at last, waveform changes become
irregular, unstable and non-linear. The specific signal changes depend on an operational
damage nature, but a mandatory feature of an incipient fault influence is appearance of
single or multiple signal overshoots deriving from interaction conjugate parts format
changes due to erosion, corrosion, pitting, contact surfaces local welding and so on.

As a matter of fact, the informative components of vibration signal changes that
really describe a process of machine deterioration, especially at its early stage, are too
weak. So, these negligible amplitude changes are masked by vibration background,
making the detection of any fault very difficult. To properly realize the “critical”
machine condition monitoring and incipient fault detection it is suggested to use the
algorithm of estimation of some dimensionless S-discriminant magnitude declining from
the value equal to unit which corresponds to machinery normal (reference) condition:

Ie=—t
jlijzl[(xj-)(n)—P]C

Here (xy)q and (x)q) are values of vibration amplitude components, calculated for
current and reference machine conditions, correspondingly; P = A6, , (A=0.5-3.0) —
amplitude clip-threshold, o, - standard deviation (RMS) of vibration signal for normal
machinery condition; C — power (equal to 2 for dispersion index I; of threshold
exceedings); K and K, - are numbers of spikes above the threshold P for current and
normal vibration signals. Thus, it is dimensionless amplitude S-discriminants, featuring
high sensitivity to instability, caused by machinery operational imbalance, resulted from
any fault, and noise immunity to internal machinery masking interference.

For normal condition, discriminant meanings are equal to 1, and become much
bigger than 1, if amplitude overshoots (spikes) and their amount increase due to
deterioration process development. These properties permit to use them in machinery
condition monitoring systems not only for emergency protection aim, but for heightened

K

N
;,lzl[(xi)(z) -pf -(K(’)j
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vibroreactivity sources localization, caused by incipient faults influence, and hence, for
early machinery operational damages detection.

3. GTU condition monitoring technique based on multidimensional visualization of
vibration S-discriminants

The method was used for condition monitoring of avia derivative gas turbine engine PS-
90 of gas transportation compressor stations. GTU case measurement points disposition
is presented on figure 1. Further only results for point 5 are considered.

Figure 1. Vibration sensor locations on engine PS-90 case were as follows: 1, 2 —input
compressor flange; 3, 4 — combustion chamber area; 5 — high pressure turbine (HPT) of
gas-generator (GQG) area (measuring point is TGG-H); 6 — power turbine area.

GTU condition monitoring results are known to depend on some factors that reduce
degree of diagnosis accuracy. Remoteness of case sensors from vibration sources;
instability of load and high speed of rotor revolution; anisotropic construction and
temperature deformation susceptibility; using for monitoring aim vibration velocity
information, contained in 0-4.0 kHz, - are the factors which make the standard vibration
monitoring methods ineffective. For example, Figure 2 shows the case vibration velocity
spectrum for damaged inner race of HPT roller bearing with relative frequency
BPFI=15.2 Fr. This spectrum includes only first harmonics of shaft rotation frequency.

e F=15 2016 o7 o6 01346 m/c
CK3=96872 /e

1 S it . -
1 2 3 4 ‘5 ] 7 8 3 |h "2 13 U 1‘5 B 17 18 13 \Jamma,muﬁupmnnﬂ

[ Dara [ MiMOSA kag [arperar [ Tun [ Ouanason [Fas.. | cK3[ O6patiorea [
AST2IBTIEIE  RIIBRNER  TTMANT  CIEKTP 213-39%44 165 96972 He orpeaensna

Figure 2. Case vibration velocity spectrum of PS-90 for HPT roller bearing damage.
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The proposed machinery vibration monitoring technique is based on parallel
narrowband S-discriminant analysis of clipped vibration signals for the machinery
heightened “vibroreactivity” sources localization, i.e. definition of the frequency bands
with significant growth (in comparison with reference measurement data) of signal
dispersion and overshoots amount originated from arising and then developing defects.
Presentation of the multidimensional information in a table form, where array colour
cells are S-discriminant meanings (in accordance with coloured bargraph), which is
convenient for further interpretation, provides a good tool for incipient fault detection,
primary identification of flaws and on-the-fly estimation of its development rate. An
example of this technique usage is shown on Table 1 (in reduced form).

Table 1. The trend of vibration velocity S-discriminant values calculated within several
frequency bands: a broad one (0...4.0 kHz) and eight narrow (0.5 kHz) ones, as for GTU
case horizontal vibration under the HTP nozzle set burn-out development.

(65-128) (129-256) (257-512) 513-1024

Frequency band AF= AF ~0.5 kHz
4.0 kHz
Dates & 2 = 3 = & = i &
' Tlals|alela]3 |2
< (= (= — — o] o] e e

26.12.06 _18.02 - Reference

16.04.07 18.00 — Defect arise
17.04.07_18.02

18.04.07_18.00

27.04.07_18.00

10.05.07_06.00 — Full-blown defect
13.05.07_06.00

13.05.07_18.00 — Max defect
14.05.07_06.00

14.05.07_18.00

20.05.07_18.00— Secondary damages
24.05.07_06.00

Out of operation (25.5- 27. 05.07)

28.05.07_08.32— Secondary damages
29.05.07_06.00
31.05.07_18.00
06.06.07_18.00
12.06.07_06.00
12.06.07_18.00
14.06.07_18.00

Out of operation (19.06 - 24.06.07)

25.06.07_18.00
07.07.07_18.00
11.07.07_06.00
11.07.07_18.00
18.07.07_18.00 — Multiple faults

Out of operation (19.07-23.07.07)

27.07.07_18.00 — Engine shutdown
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Table 1 with vibration velocity S-discriminants peak values colour presentation for
case measurement point TGG-H (in narrow frequency bands) within operational dates
Dec 26, 2006 through Jul 27, 2007, when the nozzle set of HPT was burning up,
demonstrates case vibroreactivity changes during the nozzle degradation. Given
vibroreactivity table allows visual estimating of current machinery condition and
malfunction development rate to promptly make decision about further machine
exploitation. As it could be seen from the table a nozzle burn-out (the stationary part of
HPT) essentially affects 3.0-3.5 kHz frequency band vibration features with maximum
discriminant value 1;=802 as early as on May 13, 2007, i.e. 2.5 months beforehand the
engine final breakage. Obviously, neither wide frequency band (0-4.0 kHz), nor rotation
frequencies narrow band (0.1-0.5 kHz) show any reaction to this machinery damage.

Figure 3 represents a narrowband (3.0-3.5 kHz) S-discriminant trend. To understand
the origin of its changes, see Figure 4.

OB 230107 OTO20F 220207 090307 240307 ORDANT 230407 OSOSD7 230507 OTUSOF 220807 0TNOFMY 2207M7
sl

Figure 3. Dependence of narrowband (3.0-3.5 kHz) S-discriminants on operational
time when the nozzle set of HPT was burning up, with max 1d=802.2 of 13.05.07.

= I
2|»|afz

| @« oas

Figure 4. Waveforms and corresponding spectrums in wide (top) and narrow (bottom)
bands) for date 13.05.07, when the second stage HPT nozzle set of engine PS-90 is
burning up. (Max I3 =802.2).
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It could be well seen at the bottom part of Figure 4 where spectra for wide frequency
band (0...4.0 kHz) — upper, and for narrow frequency band (3...3.5 kHz) — lower,
respectively, are presented. It is significant that the high frequency component is not
synchronous with rotation frequency. Presumably, with regard to the other vibration
spectrum data, the real source of the vibration is self-excitation oscillations generated by
high pressure flow going by reach-through holes due to whirls arising at their edges and
producing something similar to a whistle. The positive results of the novel vibration
monitoring technique practical application were also obtained for some other parts
operational damages (bearing faults, damages of compressor and turbine blade set) of
avia- and navy-derivative gas turbine engines.

Conclusions

The paper shows that in order to effectively monitor machinery condition, detect
incipient faults and localize heightened vibroreactivity sources, the condition monitoring
procedure has to deal with the vibration features susceptible to vibration signal
overshoots and even slight changes of its amplitude. These requirements are met by the
proposed vibration condition monitoring algorithm based on conception of
dimensionless vibration S-discriminants presentation such as multidimensional trend plot
which is convenient tool for fulfillment of different tasks: organization of automatic
machinery condition monitoring; incipient fault detection; preliminary faults
identification and definition of cause-and-effect relations along the operational time.

As it is seen from practice, the more complicated a machine unit is, the bigger is the
dispersion of measured parameters within general scope of similar machines. Thus, it is
important to use the individual approach when the vibration monitoring is on.
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Abstract

The nonlinear spring pendulum externally and parametrically excited has been tested. The approximate
analytical method was adopted to solve the equations of motion. Dimensionless variables are introduced into
the equations of motion. The conditions for all the third order resonances were detected. The modulation
equations and the frequency response functions for chosen cases of resonances have been derived and
presented graphically. Calculations were made in the computer algebra system Mathematica. The elaborated
procedures are in a general form and can be used to investigate the other systems in the similar way.

Keywords: nonlinear dynamics, asymptotic analysis, resonances

1. Introduction

Nonlinear dynamics of mechanical system with two degrees of freedom near the
resonance is the subject of the paper. This system is the pendulum with changing length
moving on circular path (Fig.1). There are many papers investigating various kinds of
single, multiple or spring pendulums [2, 3, 5], because they can simulate the dynamics of
various engineering systems and machine parts.

The coupling in the equations describes energy exchange between modes of
vibrations and possibility of autoparametric excitation. Energy transfer in nonlinear
systems is well known in nonlinear dynamics of multi degree-of-freedom and is widely
discussed by many authors [1, 4].

In our work we introduce the equations of motion of the pendulum in the
dimensionless form. The asymptotic method of multiple scales was applied both to
solving equations of motion and to determine resonances conditions. All calculations
were performed with the help of the computer algebra system Mathematica, in which
several procedures were elaborated in order to automatize most operations. The
procedures have general form and enable researching other nonlinear systems.
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Fig. 1. Spring pendulum moving on circular path

2. Formulation of the problem
The studied system is presented in Fig. 1. The motion is planar and X and ¢ are the
generalized co-ordinates. The pendulum is loaded by external force F (t) = F,cos Q¢
and moment M ()= M, cos Q,¢ . Moreover, linear viscous damping is assumed.
The governing equations of the system in non-dimensional form are as follows:
2(0)+c,2(r) = (1 + 2(0) N (2) ] + z() + )
+w? (1= cos(p(r)))-r p*cos(z p — p(7)) = f, cos( p,r) ’

(1+2(0)) () +(e2 + 21+ 2(0))2(0))p(r) + @
+wsin(p(0))1+2(0) =7 p*(1+ 2(2))sin(z p = 9(2)) = f, cos(py7)

zZ R k
WhereL:L0+mg92=_9r=_9a)12=_3 W:‘a)zngz:g:
k L L m o, L
B, B, F, M, 0, o, o)
¢ = ,C_ B = B = B = B = B = ’T:a)t'
! mao, o ) Y mLa)l2 /> mLza)l2 b o) P , P o) :

L denotes length of the statically stretched pendulum at ¢ =0, m is its mass, k£ denotes

stiffness of the spring, g is the Earth acceleration, B, and B, are the viscous coefficients.
The equations (1) - (2) should be supplemented by adequate initial conditions.
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3. Solution Method

The asymptotic method of multiple scales is used to obtain the solution and to determine
resonances conditions. Trigonometric functions in Egs. (1)—(2) are approximated by the
power series of 3™ order. The amplitudes of vibrations are assumed to be of the order of
a small parameter &, where 0 < ¢ << 1, and hence z = &x,¢ = &g . The generalized forces,
damping coefficients and radius of the path are assumed in the form:
¢, =%, f,=&f.,r =&, i=1,2. The parameters f,,¢,,7 are of the order of 1.

The functions x and ¢, are sought in the form

x(t;6)= Zg (1.1, 1)+ O(™), #lt;6) = Zg ¢ (1.1, T5) + O(™), 3)
k=1 k=1
where Ty =7, Iy =¢7 and T, = ¢”¢ are various time scales.

Substituting the definitions (3) into Egs. (1)-(2) and then arranging them according to
the powers of the small parameter, we obtain the set of the partial linear differential
equations. First order solutions have a form

x, = Al eiTO+Z e’iTO , ¢1 — Az eiTOw_"_IZ2 e’iTOW , (4)
where 4; and 4, are unknown complex functions of slow time scales.
After eliminating secular terms we get the following second and third order solutions
IT(Jp ~Q2 3 2iTyw AZ
ML Mol (5)
2(p 1) 2w 1)
ie'"” 7p? eifoli+) w(2 + w)A1 A, e!foli-) w(2 - w)AIZ2
¢ =—— - + +CC, (6)
2(p* -w?) L+2w 1-2w
where CC stands for the complex conjugates of the preceding terms.
The third order approximation is given by

ie'? 7pt 4, e h(p- w)rp“Az

2Ap?-w? XP+W ) R PENC) (P ey

)
X, =w A, A, -

X3 =

. A (N
L w3 PN e whwa a7 G
42w+1) 42w-1) 2pi -1)
gt lelTO(p+l) p A le1T0(p 1)~ p A N 3310w szg .
02w o+ 1F —w) 2P —w X wz) 16(1-4w?)
eiTolp+) rp(p —1+w? eifolo—w) 3 "plp? —1+w? 4 B e!hop2 ]72
24 2o (8)
2p? ~1fp+2w) 2p? ~1fp-2w) 2(p2 —w?)
N e T(2+m) w(2+3w+ wz)AzAlz B eif(2w) w(2—3w+ w? )ZZAlz L cC
42w+1) 42w-1)

The functions 4, and 4, can be calculated from secular terms and initial conditions
related to Egs. (1)—(2). In the further part of the work we make the polar representation
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of the complex amplitudes

a1 (13,T,) oM7)
2 b

A4(T.T,) =

a,(T,,T,) ;
AZ(TI,TQ):%eWz(Tbrz)

, Where a, =u. .

1

4. Parametric and External Resonances

The resonances detected from the solutions (5)—(8) can be classified as: primary external
p, =1, p, =w, parametric p=1, p=w, internal 1=2w and combined p = i(l - w) ,
p==%(1+w). Two cases of simultaneously occurring resonances are discussed below

and then solved for chosen parameters.
Case 1 — Parametric spring resonance p =1 and external resonance with pendulum

P, = w. Resonance conditions are reflected in the secular terms when we introduce the
detuning parameters o, and o, in the following way p=I1+¢06,, p,=w+éo,,
where o, = £0,. Using above substitutions into equations of motion and eliminating the

secular terms we can obtain the modulation equations. After labor—consuming
transformations we get autonomous modulation system

i&+a o-+£ ——liac+ 17w wra,a’
a '\ ar 27 afl—an?) ©

2
+£(1—%)(cos€ +isiné,),

1£+a — 0. +d62 ——liac + 1_7W2 wa a2
r LT ar 2 2 4ll—an?) 10)

aw’ 1+8w? fz(
16 il 4wi 2w
where 6/(7,,T,)=T1,6, -v,(T,.T,), 6,(T,.T,)=T1,6, -, (T;.T,).

Amplitude modulations according to (9, 10) and time history obtained numerically
from eq. (1) are presented in Fig 2.

z @

il S

Ml
il ‘ L i W

Fig 2. Amplitude modulations (thick line) and time history (thin) obtained from (1).

cos 6, +isiné,).

Considering steady state motion, frequency response functions can be obtained
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(1) for parametric resonance
2 2 4
C 2 r
QgL (11)
4 4
(i1) for external resonance
2
w(l 7w’ )azaf w3(1 +8w? )ag a5 fy
—0,a, — St 7 +—a, == (12)
A-4w?)  16(1-4n?) 47 4w
Some families of resonance curves are shown in Figs. 3 and 4.
0.30
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Fig. 3 a) Amplitudes a; vs. detuning parameter for different » .b) Amplitudes a, vs.
detuning parameter for different c,.

~0.05 0.00 0.05 I

Fig. 4 a) Amplitudes a, against detuning parameter (effects of natural frequency w
variation) b)Poincare map in resonance.

The change of character of resonance from ‘“hard” to “soft” (Fig. 4a) is a
consequence of changing sign of the coefficient standing at a® in Eq. (12). For some
parameters the motion is very complicated (see Fig. 4b).

Case 2 — Parametric spring resonance p, =1 and external resonance with pendulum

p ~w. In order to consider that case we introduce the detuning parameters o; and o,

in the following way p, =1+&0,, p=w+¢06,, where o, =¢0,.
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Fig. 5. a) Amplitudes a, vs. detuning parameter (effects of natural frequency w
variation) b) Amplitudes a, vs. detuning parameter for different ¢,

6. Conclusions

The dimensionless equations of motion were introduced and successfully solved with the
multiple scale method. General solutions, including the third order of approximation,
were achieved in analytical form. Dimensionless solutions are universal and valid for
many systems of the same scale of similarity. The amplitude modulations presented in
Fig. 2 well agreed with time history obtained numerically. Frequency response functions
for the chosen resonances are presented graphically. The complicated motion of the
pendulum near resonance is illustrated in the Poincare map. Most operations were
performed with the help of procedures elaborated by authors in Mathematica.
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Metoda wielu skal dla wymuszanego kinematycznie nieliniowego ukladu z wahadlem
Badana jest dynamika wahadta spre¢zystego z zewngtrznym i kinematycznym wymuszeniem. Do
rozwiazania réwnan ruchu zastosowano metodg wielu skal. Okreslono warunki pojawienia si¢
rezonansu 1 przedstawiono wykresy krzywych rezonansowych oraz funkcje modulacji dla
wybranych parametrow. Obliczenia przeprowadzono w systemie algebry komputerowej
Mathematica.
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Abstract

Multilobe journal bearings with 3 operating lobes of cylindrical profile and 3 oil pockets are applied in
different types of rotating machinery. The design of 3-lobe journal bearings, the number of lobes and oil
grooves improves thermal state of bearing at higher speeds and the stability of operation.

The paper describes the results of the calculations of dynamic characteristics and determination of
stability ranges of simple symmetric rotor operating in 3-lobe journal bearings of cylindrical profile. The
dynamic characteristics of supporting bearings are defined by four stiffness and damping coefficients of oil
film. The iterative solution of Reynolds, energy and viscosity equations allows the obtaining of the load
capacity of bearings and the required coefficients of oil film. Adiabatic, laminar oil film and the static
equilibrium position of journal were assumed. The oil film pressure, temperature, viscosity fields and the oil
film forces were the basis of the bearing dynamic characteristics and stability determination.

Keywords: multilobe journal bearings, stability of rotor

1. Introduction

The 3-lobe journal bearings [1-4] applied in the turbines and turbo generators should
assure long and reliable operation of this responsible rotating machinery. They are
characterised by good stability in the range of higher rotational speeds assuring very
good cooling conditions for the oil film. Any failure occurring during operation of these
bearings can cause very high power losses. The static and dynamic characteristics of the
journal bearings are the basis for the determination of the stability of rotor operating in
the journal bearings.

In the turbogenerators, the lemon bearings are very often applied. The ,,half-lemon”
bearing (Fig. la) has been used with success in the bearing systems of rotating
machinery, too [4]. This has a lower half with the normal radial clearance, the bearing
and the shaft centres coincide if the shaft spins centrally. The top half has a difference in
radii between shaft and bearing surface, about 2,5 to 3 times that of the bottom part. Its
centre is however dropped, so the actual top clearance equals the bottom clearance, but
that of the side is larger. This ensures that the shaft is always running eccentric to the top
half, which therefore exerts a downward force on it. Some unpublished experiments at
Imperial College have shown that this puts up the vibration frequency by some 20 per
cent [4].

The design that is mentioned in [4] can be applied for the 3-lobe journal bearings
(cylindrical profile, Fig. 1b), i.e. the bottom lobe as the cylindrical and both upper lobes
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with the difference in radii between shaft and bearing surface (multilobe profile, Fig. 1c).
For such solution there are no publications and this situation generates the need for more
results to obtain better knowledge on this type of bearing. However, for the cylindrical 3-
pockets bearing little publication are known, only. Hence, more investigation on the
static and dynamic properties of this type of bearings can be useful.

The 3-lobe bearings are represented by the 3-lobe cylindrical bearing [1-4] (Fig. 1b),
classic bearing [1-4] and with the pericycloid profile [3]. All these types of bearings
have three lubricating grooves placed each 120°. The 3-lobe bearing is designed as three
parts bearing of cylindrical non-continuous profile [1-4]. The single lobes of this bearing
are designed as the arc of the circle with the centre points placed on the symmetry line of
the single lobe. In the symmetric multilobe bearing the circle inscribed in the bearing
profile is tangent to the lobe exactly at the middle point of each lobe.

The paper introduces theoretical investigation into the stability of rotor operating in
3-lobe cylindrical journal bearings (3-pocket). The Reynolds, energy and viscosity
equations were solved numerically on the assumption of incompressible lubricant, the
laminar and adiabatic flow of oil in the lubricating gap of finite length bearing. The static
equilibrium position of the journal was assumed in the calculations. Finite difference
method was applied for the solution of all hydrodynamic equations.

The stability of rotor running in considered journal bearings is investigated on the
basis of bearing dynamic characteristics [5]. On the assumption of very small
displacement of journal centre from its static equilibrium position, the oil film forces
were linearized. Characteristic equation of the system rotor-bearings obtained in the
form of an algebraic polynomial of 6-th order with the coefficients, which are functions
of oil film stiffness and damping coefficients, was applied. Application of the Routh-
Hurwitz criteria has allowed knowing whether or not; the characteristic equation has a
positive root with positive real part.

2. Oil film pressure and temperature distributions

The geometry of multilobe journal bearing (Fig. 1) describes Eqn. (1) on the assumption
of the parallel axis of journal and bearing sleeve. In this equation, the first member gives
the geometry of multilobe bearing [1,3] and the second member describes the geometry
of cylindrical bearing.

H(p)=H ;(p)—&-cos(p—ar) (1)

where: a - attitude angle, (°) , € - relative eccentricity, ¢ - peripheral co-ordinate, (°)

The first member of the right side of Eqn. (1) determines the gap geometry of 3-lobe
journal bearing, at the concentric position of journal and bearing axis. It has the
following form [1, 3]:

Hyi(p) =y + (s; —1)-cos(p— ;) )

where: y; - angle of lobe centre point, (°), w; - lobe relative clearance.
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a) b) c)

Fig. 1 Examples of multilobe journal bearings: a) half-lemon, b) cylindrical 3-
pockets, ¢) 3-lobe asymmetrical (combined profile)

The journal bearing performances for laminar, adiabatic model of oil film can be
determined by the numerical solution of the oil film geometry, Reynolds, energy and
viscosity equations on the assumption of static equilibrium position of the journal [6-9].
The oil film pressure distribution was defined from the following, transformed Reynolds
equation:

30D 2 g3op| 6H J°H
EA il Ny A ] P o
op\ n 0@ L) dz| n 0z 2 2

where: D, L - bearing diameter and length (m), H = h/(R-r) - dimensionless oil film
thickness, 4 - oil film thickness (um), p - dimensionless oil film pressure,

p=p W/ ), p - oil film pressure (MPa), r, R - journal and sleeve radius (m), ¢ — time

(sec), @, z - peripheral and axial co-ordinates, ¢ =@t - dimensionless time, @ - angular
velocity, 77 - dimensionless viscosity, y - bearing relative clearance,  =AR/R (%o),
AR - bearing clearance, AR=R-r (m).

It has been assumed for the pressure region that on the bearing edges the oil film
pressure p( @, z)= 0 and in the regions of negative pressure, p( @, z) =0. The oil film

pressure distribution computed from Eqn. (3) has been introduced in the transformed
energy equation [6-9]. The boundary conditions for the oil film pressure and temperature
take into account the inlet pressure and temperature. Temperature values T( ¢, z) on the

boundaries (z = * L/2 ) were determined by means of the parabolic approximation [6].
Temperature and viscosity distributions were found by the iterative solution of equations
(1) through (3) and energy one [6-9].

The equations of motion for the journal and the centre of elastic shaft are given in
matrix form by Eqn. (4). All the stiffness and damping coefficients were calculated by
means of perturbation method [1-3].
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The motion of simple symmetric rotor can be described by the following equation

[5]:
M -5+B-5+C - x =acos wt+bsin ot “)

where: M, B, C —matrices of mass, damping and stiffness, &,I; - coefficients of dynamic

constraints.

After transformations of Eqn. (4) the real and imaginary part was obtained [5]. The
stability of elastic rotor-bearing system is analysed on the basis of the following
characteristic frequency equation of 6-th order with regard to (A/w) [5]:

c( Ao +es(Ala)Y +eg(Aa) +es(Ao) +e (Ao ) +o (Alo)+e=0. (5)

The coefficients ¢, through to ¢4 of Eqn. (5) are given by the Eqn. (6):

C():Ao Clel C2:A2+30(2A0+b0144)
e3=ag (2 4, + by 43) cs=2ag Ay + ad (b + Ay +bg - Ay) (6)
c5=a§(A1 +b0'A3) c6=ag Az

where: ay - ratio of angular velocity to the angular self-frequency of stiff shaft,

a= o> /cof,,. , by - ratio of Sommerfeld number to the relative elasticity of shaft, So/c; , c¢*

— shaft stiffness, (Nm™) , ¢, — relative elasticity of shaft, c,=f/4AR = g /(> -AR) , f- static
deflection of shaft, (m), F - resultant force of oil film (N), F, - static load of bearing,
(N), g - acceleration of gravity, (ms?), m - mass of the rotor, (kg), So - Sommerfeld
number, So=F -y /(L-D-n-w), So - critical Sommerfeld number, So o/, T - angle
determining stability range, (°) , @¢- - angular self frequency of stiff rotor,
@ cr= Jexim .

As the result of the transformations of Eqn. (6), the expression that determines the

ratio of boundary angular speed o, to the critical @, one, and determines the stability of
rotor, has the form [3, 5]:

2

{wb j: 1 o ™
2 2

(% l+b0'j3 Al +A1‘A3'A4 +A0‘A3

1

where: 4, + A, are the combination of eight coefficients (four stiffness gy and four
damping by,).
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3. Results of calculations

The stability of simple elastic, symmetric rotor was determined based on the calculated
dynamic characteristics. These calculations included the non-dimensional load capacity
So and journal displacement € as well as the static equilibrium position angles o, too.
The 3-lobe cylindrical journal bearings under consideration have the length to diameter
ratio L/D=0.5 and L/D=0,8. The rotational speed of journal was n=3000 rpm. The
feeding oil temperature was 40°C and the corresponding thermal coefficients K7 [1,6]
were 0,014 at the bearing relative clearances w = 2,7%o. Exemplary results of the
calculations of journal displacement & versus Sommerfeld number S, and the static
equilibrium position angles o.q are showed in Fig. 2 and Fig. 3.

The journal displacements ¢ that were obtained at different Sommerfeld numbers of
bearings with different operating surfaces can be observed in Fig. 2. The values of these
displacements are different for the bearings under considerations. In case of bearing with
the operating surfaces having the lobe relative clearance y; =1 (cylindrical 3-pocket
bearing) the displacements are larger at larger Sommerfeld number as compared to the
bearing with the lobe relative clearance y; =1,5 or w;, =3,0 (Fig. 2; denotations in this
figure are: 3LC — three lobe cylindrical profile, 3LM — multilobe profile). An increase in
the lobe relative clearance and at assumed journal eccentricity €, causes the decrease in
the Sommerfeld number (Fig. 2). The static equilibrium position angles o.q for all types
of operating surfaces (i.e. at y; =1 and ; =1,5 and w; =3,0) shows Fig. 3; the difference
between these angles results from the profiles of considered bearings.

1,2 420 I
T € L/D=0.8 400 aell) | Kr=0.014
1 =2.7%  — 7 n=3000 rpm — |
K;=0.014 v 0 P
08 - . 380 - —e—3LC _ys=10
—m 3LM ys=15
0,6 +— 3LC 1'//3=1 0 | 360 - —h— SL‘M - ‘//s=3'0 —
—m—3LM ys=15 240 L/D=0.8
0,4 - —h— 3LM ‘//s=3_0 — B [ l//=270/00
0,2 — 1 320 So—|
’ — S e
n=3000 rpm 0 ~——o—|
¢ —» —>
0 ‘ | 300 ! ‘
0 1 2 3 0 05 1 15 2 25

Fig. 2 Load capacity versus Sommerfeld  Fig. 3 Static equilibrium position angles
number versus Sommerfeld number

Exemplary results of the calculated stiffness g; and damping b; coefficients are
showed in Fig. 4 and Fig. 5.
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The run of all coefficients is similar for the considered values of the bearing length to
diameter ratios L/D. Among the stiffness coefficients that were obtained at L/D=0.8, the
coefficient g,; shows the largest values in the range of Sommerfeld numbers from 0
through 0,8 (Fig. 4). However, at higher values of Sommerfeld numbers, the coefficient
g has the largest values (Fig. 4 — see the range of S, over the value 0,8). The smallest
values show the stiffness coefficients g, (e.g. Fig. 4). The values of stiffness coefficient
g1 are placed between the values of the coefficient g, (they are smaller than the values
of this coefficient) and g;, (the values greater than the values of g;, ) (Fig. 4).

Among the damping coefficients, the coefficient b,, has the largest values (Fig. 5). In
the range of Sommerfeld numbers from O through about 0,75 the smallest values have
the coupled damping coefficients by, and b,; (Fig. 5). However, for the Sommerfeld
numbers larger than 0,75 the coefficient by; shows the smallest values (see the curve of
by; in Fig. 5). The coupled damping coefficients have very close values with the values
of coefficient by, larger than coefficient b,; in the range of Sommerfeld numbers over
0,75 (Fig. 5).

i l//3=1.0 - —e l//s=1'0
M| e~ w=27% 1M
911 1
Ky=0.014 —k
—— 912 A 22 L/D=0.8
7 L —— 921 | 7L | y=2.1%, _|
922 // T,=40°C K,=0.014
—_ 0
3 To—4‘0 C // [ 3 )ée/ j
SO
= S >
—.‘ T T T ‘
-1 -1 04 08 12 16 2 24

o 04 08 12 16 2 24

Fig. 6 Stiftness coefficients of the oil of  Fig. 7 Damping coefficients of the oil film of
3-lobe cylindrical journal bearing 3-lobe cylindrical journal bearing

The stability charts of rotor operating in the 3-lobe cylindrical journal bearings at
different relative stiffness of rotor can be observed in Fig. 6 and Fig. 7 for two
considered bearing length to diameter ratios. The stability properties of rotor are
characterized by the angle t that is different for different types of journal bearings [2];
better stability occurs at larger angle t. Very small values of the relative elasticity
correspond to very stiff rotor and very high values of relative elasticity ¢, correspond to
the very elastic rotor.

There is a difference in the stability of symmetric rotor operating in the bearings with
the bearing length tot diameter ratio L/D=0.5 and L/D=0.8 (Fig. 8 and Fig. 9). The rotor
running in the bearings that are characterized by the value of L/D=0.8 (Fig. 9, © =
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63°27°) shows better stability then for the bearings with L/D=0.5 (Fig. 8, T = 26°30" ).
The ranges below the curves are the stability ranges and the ranges over the curves are
the ranges of instability (e.g. Fig. 7 the curve for ¢, = 0.5). An increase in the relative
elasticity of rotor causes the increase in the stability — better stability for the rotor with
larger relative elasticity.

4 ‘ 4 ‘ |
—-—c,=0.1 —e— c,=0.1 . A
Op /(DC /\i_w
T ~ mc=05 wa /oy —B— C=0.5 A
—&— =10 — = =10 A
—>%—¢=10 —>— ¢=10
3]  Fe=100 ‘ 3 -+ ¢=100 A,
—=—¢.=10000 ‘ —=+— ¢,=10000
Instability _ Instability
=1
‘ C 7 .
2 1 = = 2 Y 0
| f = =
n=3000 rpm Cs |
n=3000 rpm
"././ /4 T,=40°C P
400
1 Cs Kr=0.014 — 1 # Tg=40°C
L/D=0,5 N/ L/D=0,8 Kr=0.014
w=2.7 % w=2.7%,
T SOk T SOF
Stability — ‘ Stability | —p,
O T T 0 T T T
0 0,5 1 1,5 2 0 2 4 6 8
Fig. 8 Stability chart of rotor operating in  Fig. 9 Stability chart of rotor operating in
3-lobe cylindrical journal bearings at 3-lobe cylindrical journal bearing at
different relative stiffness of rotor different relative stiffness of rotor

4. Conclusions

The calculations of the dynamic characteristics of 3-lobe cylindrical journal bearings

with three lubricating pockets and the determination of stability ranges of simple

symmetric, elastic rotor allow to present the conclusions given below.

1. At assumed value of Sommerfeld number an increase in the lobe relative clearance
causes the increase in the journal displacement.
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2. The static equilibrium position angles show the increase at the increase in the lobe
relative clearance.

3. The runs of stiffness and damping coefficients that were obtained in this
investigation are typical for the multilobe type of bearings with the coupled damping
coefficients having very close values.

4. In case of considered journal bearings, an increase in the bearing length to diameter
ratio causes the increase in the stability of rotor.
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Stateczno$¢ wirnika lozyskowanego w lozyskach cylindrycznych z trzema kieszeniami
smarowymi

Przedstawiono wyniki obliczen charakterystyk dynamicznych oraz wyznaczenie obszardéw statecznosci
prostego wirnika symetrycznego pracujacego w lozyskach cylindrycznych z trzema kieszeniami smarowymi.
Charakterystyki dynamiczne tozysk wirnika okreslone sa przez 4 wspotczynniki sztywnosci i 4 wspotczynniki
thumienia filmu smarowego. Podstawowe roéwnania hydrodynamicznej teorii smarowania, rownanie
Reynoldsa, energii i lepkosci rozwigzano numerycznie otrzymujac no$nos¢ oraz wymagane wspotczynniki
filmu smarowego. Zatozono laminarny, adiabatyczny film smarowy oraz statyczne polozenie réwnowagi
czopa. Obszary statecznej pracy wirnika wyznaczono w oparciu o réwnanie charakterystyczne 6-go rzedu.
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Liquid sloshing in baffled tanks
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Abstract

The paper concerns the natural frequencies and mode shapes of a liquid sloshing in three dimensional baffled
tanks with arbitrary geometries. The hydrodynamic pressure of the liquid is described by the boundary
integral equation. The boundary element method is used to solve it. In the present formulation the baffles are
treated as double layers. Numerical results are presented.

Keywords: sloshing, tanks with baffles, BEM

1. Introduction

The liquid sloshing phenomenon in a tank is an important field of the fluid dynamic
research. Liquid tanks are considered as important parts of municipal facilities systems,
oil industry, naval and aerospace systems. Hydrodynamic forces acting on walls of the
tank as a result of sloshing of the liquid inside may damage the whole system. The
baffles in tanks are used to increase the damping of the liquid sloshing and usually cause
changes of sloshing frequencies and can be treated as a passive control system.

This paper presents the application of the boundary element method to determine the
natural frequencies and mode shapes of a liquid sloshing in three dimensional baftled
tanks with arbitrary geometries. Triangular curvilinear 6-node boundary elements are
applied. In the present formulation the baffles are treated as double layers. A similar
problem of liquid sloshing in tanks with baffles was considered in the papers [1, 2, 3], in
which the zoning method was introduced. The domain of the liquid was divided into
zones. The baffles were than located at boundaries of the zones and compatibility
conditions between zones were applied. In the present formulation such an approach is
not necessary.

2. Problem formulation

Let us consider a tank of an arbitrary shape with a liquid free surface §;, a bottom

surface S, and baffle S (Fig.1). It is assumed that the fluid is incompressible and

inviscid. The perturbation fluid velocity potential @(x, y,z,t) satisfies the Laplace’s
equation:

V20(x,y,2,t)=0 (1)

The solution of the Eq. (1) may be expressed as a single-layer and a double-layer
potential:
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2

where C(P) is a coefficient defined as:

1 P inside the domain,

=1 P on the smooth partof the boundaryliquid,

@'(Q',t) is the resultant velocity potential at a point O’ on the surface S,
. 1 1 . . . .

() (P, Q):—— is the fundamental solution, r(P,Q) is a distance between an

4z r(P,Q)

arbitrary point P and a point O on the surface, ¢ is the time.

[ z S, free surface

y X

S' baffle

S, bottom

S=8,+8,

Figure 1. A tank of an arbitrary shape with a baftle.

The last part of Eq. (2) represents a double-layer potential of the open surface S’
immersed in liquid. Boundary conditions on the surface S and S* are of the Neumann

type:

= bottom condition: 2—¢:O on S, 3)
n
. o 100
= free-surface condition: 6_:__6_2 on S; 4
0Oz g ot
.. oP ,
= baffle-surface condition: 6—=0 on S %)
n

where g is the gravity acceleration.
The boundary condition (4) is known as the linearized surface wave condition.
Coming with the point P onto the surface S’ (see point P’, Fig.1) and calculating the
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derivative of the velocity potential in the direction normal to the surface at this point,
Eq. (2) with the boundary condition (5) can be rewritten as:

OB(P',t) 0 z ) 00" (P' o*o* (P,

(0 [ Q ,Q) as(0)- [a(0.) =22 y5(0)

on(P") ) 3 an(Q)an(P)
62¢* P’, ' .
. Jw(g-,oMczs (©)=0
3 on(Q')on(P)

The boundary integral equation (2) with the boundary conditions (3) and (4) and the
boundary integral equation (6) allow us to solve the sloshing problem of any tank with
baffles.

The hydrodynamic pressure is expressed as:

(6)

P==pP—" @)

where p s the fluid density, p = pe'®, wis the circular frequency.

Differentiating (2) and (6) with respect to time and using (7) we can rewrite (2) and
(6) in the form:

cP)olp.1)= [ 22 g (p. 0 has(0)- jto )20 s5(0)-

5 on(Q) on(Q)

s (r.0) v

+ _[P'(Q'J)TQ’,)“’S'(Q'),

&
p0.0) 00" (P,0) o o0 [ p(0. 12 (P0) 4o

Faie) o) SO 175Gy ©O )

] ] 62@ ( ’Q’) ] "

+§[lp (0 ,t)WdS (©)=0
Using (7) the boundary conditions (3) and (4) can be expressed in the form:
Py =0 on S, (10)
n
. B s, (11
0z g

On the free surface the hydrodynamic pressure p; can be approximated by assuming

the actual surface to be at an elevation w; relatively to the mean surface.
. . 0D  ow .
Using (4), (7) and the relation — 5 6_1 on S; we can write down:
z t

P =pPEW (12)
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3. Solution of the problem

The surface of the liquid boundary and the baffle surface were discretized using 6-node
isoparametric curvilinear triangular boundary elements. The curvilinear elements located
at the baffle were subdivided into four planar triangular constant type elements. The
collocation points were the centroids of the planar triangles. It was necessary because the
last part of Eq. (9) contains the hypersingular integral. The boundary element
discretization of Egs. (8) and (9) results in the following matrix equations:

Cp=Af-Bp+Dp' (13)

A f-D,p+D;p'=0 (14)

where P,p'and f are the amplitudes of nodal vectors, p=pe’™, f =fe'™, f :Z—p ,
n

C is the diagonal matrix of coefficients C(P).
The majority of the elements of the matrices A, B, Dy, A;, D,, and D;, is computed
numerically using Gaussian integration formulae. The exception is with the diagonal

elements of matrices A and D;, which have the singularity of 1/r and 1/ 3 types,
respectively. Calculations of such integrals are discussed in the papers [4] and [5],
respectively. Using Eq. (13) and (14) we get:

Bp=Af, (15)
where B, =B, -D,D;'D,, A, =A-D,D;'A;, B,=C+B.

From Eq. (15) we obtain:

p=B/A,f, (16)

where B is the pseudoinverse of B, . The matrix B, is singular, so we calculate the

Moore-Penrose pseudoinverse matrix using the SVD procedure [6]. After the
substitution of (10) and (11) into Eq. (16) we get:

L2

a)2

p=—E;p;, (18)
g

or:

where E = B:AS , Eq1 1s the MxM submatrix of the matrix E, M is the number of free

surface nodal points.
Substituting of Eq. (12) into Eq. (18) gives the standard eigenvalue problem:
(D— A1), =0, (19)

1 1 . . .
where D=—E;;, 4=—,Is the unit matrix.
@
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The eigenvalues and eigenvectors of Eq. (19) allow us to determine the sloshing
frequencies and their corresponding modes. The eigenproblem is reduced to the free
surface degrees of freedom only.

4. Numerical examples

Basing on the problem formulation given in Sections 2 and 3, computer programs were
developed. The calculations were performed for several types of tanks.

4.1. Example 1. The cylindrical tank

The calculations are performed for the cylindrical tank with H#/R=1.0 and H/R=0.5,
where R and H are the cylinder radius and the liquid depth, respectively. The boundary
element mesh is as follows: 60 curvilinear elements on full domain, 18 curvilinear
elements and 43 DOF on the free surface.

Table 1 presents the first three dimensionless sloshing frequencies in comparison
with the exact values.

Table 1. The first three dimensionless sloshing frequencies in the cylindrical tank

(@ =wyR/g)

H/R=1.0 H/R=0.5
mode
present BEM analytical present BEM analytical
2] 1.318 1.323 1.152 1.156
W, 1.740 1.744 1.665 1.667
23 1.941 1.957 1.901 1.915

4.2. Example 2. The cylindrical tank with the ring baffle

We consider the cylindrical tank with the ring baffle [2]. The geometry of the tank and

the baffle position is shown in Figure 2.

0,5m

0,5m

@I@ <

0.5m

0,5m |
>

Figure 2. Cross-section of the cylindrical tank with the ring baffle.
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The boundary element mesh of the fluid domain is similar as in Example 1. The
baffle surface is discretized by 18 curvilinear elements.
The first natural frequency of the liquid is: present BEM - f; = 0.613Hz ; Reference [2] -

/1 =0.605Hz . The agreement of results is good.

3. Conclusions

The method of calculation the natural frequencies and mode shapes of liquid sloshing in
three dimensional baffled tanks with arbitrary geometries is presented in the paper. The
hydrodynamic pressure of the liquid is described by the boundary integral equation and
the boundary element method is applied to solve it. The triangular curvilinear 6-node
boundary elements are used. In the present formulation the baffles are treated as double
layers and it is not necessary to introduce the zoning method. Some examples
demonstrate the effectiveness and efficiency of the proposed method.
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Drgania swobodne cieczy w zbiornikach z przegrodami
W pracy zaprezentowano metodg obliczania drgan swobodnych cieczy w zbiornikach z zainstalowanymi
przegrodami. Przegrody w zbiornikach stosuje si¢ w celu zmniejszenia dynamicznego oddziatywania cieczy
na $ciany zbiornika. Do rozwigzania problemu zastosowano metodg elementéw brzegowych. Do dyskretyzacji
brzegu obszaru cieczy wykorzystano trojkatne 6-cio weztowe krzywoliniowe elementy brzegowe. Sztywna
przegrodg w zbiorniku traktuje si¢ jako warstwg podwojna. Pozwolito to zrezygnowaé z podziatu obszaru
cieczy na strefy w celu uwzglednienia obecnosci przegrody. Zamieszczono przyktady liczbowe.
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Abstract

The results of numerical computations and experimental research into the free vibrations of a column loaded
by a follower force directed towards the positive pole — the case of the specific load — are presented in this
paper. The total mechanical energy of the column was formulated by taking into account the physical model of
the system and constructional solution of the loading head. The curve courses of changes in the eigenvalues in
the plane: load — natural frequency are shown on the basis of the solution to boundary problem which is
obtained by considering kinetic criterion of the stability. The changes in natural frequencies were determined
for the chosen values of the geometrical parameters of the loading head. The distribution of bending rigidity of
the column, accepted for the numerical computations, corresponds to the systems with maximum values of the
critical load at the assumed constant volume of the structure.

Keywords: column, specific load, free vibrations

1. Introduction

Many scientific publications have been dedicated to analysis of free transverse vibrations
of columns and beams with jumping changeable cross-section. There are works where
the problems of free vibrations of systems consisting of segments with changeable cross-
sectional area [1-3] or works where the cross-section was changed continuously along
the length [4, 5] were considered. Additional discrete elements, such as translational and
rotational springs and bodies of concentrated masses, were taken into account in the
models of beams and columns. The added discrete elements were mounted at the ends of
the system [3, 5] or at points marking changes in the cross-section [1, 2, 4]. The solution
to the vibration problem is also considered in research into the optimisation of slender
system forms [3, 6].

2. The physical model of the column

The physical model of the column for the chosen specific load which was first
formulated by L. Tomski [7] is presented in Fig. 1a. Column 3 is loaded by the follower
force directed towards the positive in constructional solution [7 - 9] of the loading head 1
and receiving head 2 with circular profile (constant curvature). Direction of force P
passes through the constant point O, place at distance R from the end of the column. The
column is rigidly mounted from one side (x; = 0) and is connected to receiving head at
the free end (x, = /) by rigid element of /, in length (elements of the loading head are
infinitely rigid). The system is divided into smaller segments (Fig. 1b) with flexural
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rigidity (EJ;) (indexes i = 1.. n), where J; is a moment of inertia of the cross section of
the i — th segment of the column in relation to neutral bending axis. Segments are
described by the length / and by transverse displacement W(x; ¢). The following
assumptions and denotations are applied in work [9, 10]:

- constant total length of column L and constant length of its elements ;= /(L =n[),

- constant value of Young’s modulus £ and material density p of all segments of the
column,

- constant total volume of all segments describing form of the column.

x, =1

M (x,,1)
ox,,

P10

|
T o ED,

N Tk T s
! | X /I,ﬁg-})”.z Zn 1(X%-1.0)
L ! X, [(E))3 ”in-Z(xn»Z' )
! X ESa W, 5(353.0)
T ! xn-S‘ | (EJ),.5 ”2.4(3‘".4' 1)
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Figure 1. The physical model of the column: a) loaded by the follower force directed
towards the positive pole, b) division of the columns into segments

Exemplary denotations of the columns considered in this paper are introduced:

- DO(R,, 0.3) — optimized column with changeable bending rigidity at the parameter
of the loading and receiving head R,= 0.3,

- DP(R,, 0.2) — comparative column with bending rigidity constant along the length of
the system at the parameter of the loading and receiving head R,= 0.2, while:

R == (1)

Volume of the column DP(R, j) is identical to the total volume of all segments describing
the form of the system DO(R, ).
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3. Formulation of and solution to the boundary problem

The boundary problem is formulated on the basis of the Hamilton’s principle which for
conservative systems takes the form:

153
s[(r-v)dt=0 )
4
where: O is operator of variation.
Kinetic energy T of the considered column DO(R, /) is a sum of kinetic energy of its
individual segments and kinetic energy of a body with mass m.

" (od) ([ oW, (x. )T, m[ow,(L.6)]
P > >
T= ! D — dx; +— 4 3

; 2 -([[ ot 2l o ®)
The total potential energy V is described by the relationship :

V:é(EJi)J'{a VVi(xi’t):| dxi_gij'{awi(xist)} dx. +

2
2 0 6xi =10 6xi

“

X, =l

L PR=1y)| 9, (x,.1)
2 ox

n

Commutation of integration (in relation to space coordinates x; and time #) and
computation of variation is used in Hamilton’s principle (2). After computing variation
of kinetic energy (3), variation of potential energy (4) and separation of variables of
function W(x; #) in relation to variables x; and ¢ :

Wilax;.1)=y; (x; )Jeos(er) )
one can obtain:
- equations of motion for the considered system:

yz'IV(xi)+kz‘2 yiH(xi)_Qizyi(xi):O’ i=l.n (6)
- boundary conditions for the column in relation to mounting point (xo = 0), at the free
end (x, = /) and continuity conditions between individual segments:

1(0)=»{(0)=0, y;(1)=y,,(0). y;(1)=y%,,(0) (7a-d)
)=z, 0) y7 ()= 2,7 0) (Te-D)

val)=(R=1g )y () v, (1)~ R—lq

where: j = 1,...(n-1), k2 = PIEJ,), 7 = (pd ) (ET,). 770 =BT 0 )/(ET;).
Substitution of equation solutions (6) into the boundary conditions (7a-h) leads into
transcendental equation for natural frequency .

2
v (1)+ (mE—w) v, (1)=0 (7g-h)
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4. Results of numerical computations and experimental research

Results of experimental research and numerical computations applied to the values of
natural frequency of optimized system [9] for chosen geometry of the receiving head (R
=0.059 [m], /o= 0.051 [m]) are presented [8, 9]). Physical and geometrical parameters of
the tested column are given in Table 1.

Table 1. Geometrical and physical parameters of the column DO(R;, 0.0125)

Quantity Symbol | Unit | Value
Young’s modulus of column material | £ N/m? [7.5%10™
Density of column material P kg/m® | 2790
Length of optimized column L m 0.6
Concentrated mass m kg 0.39
Dimension of the cross-section b m 0.008

The results of computations concerning optimization of the column DO(R, ;) are
presented in works [9, 10]. The rectangular cross-section of the tested column with @ and
b in dimensions was assumed in research by taking into account static criterion of the
stability and modified algorithm of simulated annealing. The width of the cross-section a
(a; — decision variables of optimization) was optimized at its constant thickness.

The following condition was additionally considered in computations:
a;2b+0.001 [m] i=1,..,n ®)

Geometrical inequality limitations (8) of the optimized column were justified due to
buckling plane of the system assumed in numerical computations and experimental
research. This plane is described by the minimal moment of inertia in terms of neutral
axis in the bending plane. The form of the optimized column DO(R, 0.0125) (full lines),
at division of the system into n = 128 segments is presented in Fig. 2. The profile of
adequate comparative column DP(R}, 0.0125) is shown by broken line.

O
}‘uumkf,mlzm’zs-” Z:
a Xocpa 00125720.2 3!
e 8,724.3% [
E—— _ ___‘;__/_—A‘_—:______E_\___ 1
o
e x8
L _ _ e W P g
- 600

Figure 2. Form of the column DO(R,, 0.0125), DP(R,, 0.0125)

Experimental research was carried out at the test stand designed and built in the
Institute of Mechanics and Machine Design Foundations of Czestochowa University of
Technology [11]. The results of numerical computations (full lines - system
DO(R, 0.0125)) and experimental research (points) in relation to changes in natural
frequency are presented in Fig. 3. The course of changes in the eigenvalues of the
comparative column DP(R,, 0.0125) are marked by broken line. Range of changes in the
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first three natural frequencies f'in relation to the external load P was given. It was stated
that the results stay in good agreement after comparison of numerical computations and
experimental research of the column DO(R, 0.0125). At the basic natural frequency,
maximal relative error between experimental results /¢ and frequencies obtained
theoretically /' is equal to 7.24%.

Natural frequency f [Hz]

6000
o= DO(R;0.0125)
= =DP(R;0.0125)

5000 —
Z 4000 —
L -
2 3000 <
=}

— -

2000 —

1000 —

(M2)

0

0 100 200 300 400 500 600

Figure 3. The curves in the plane: load P —natural frequency f
(system DO(R,, 0.0125))

5. Conclusions

Regarding the influence of the external load and the geometrical parameters of the
loading and receiving heads on the changes in natural frequencies, the considered
column was rated as a divergence or divergence pseudo-flutter type of the systems. The
accuracy of the assumed mathematical model of the system was confirmed by the results
of original experimental research.
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Drgania swobodne kolumny o optymalnym ksztalcie ze wzgledu na wartos¢ obciazenia

krytycznego poddanej obciazeniu silg §ledzaca skierowang do bieguna dodatniego
W pracy przedstawia si¢ wyniki obliczen numerycznych i badan eksperymentalnych dotyczacych drgan
swobodnych kolumny realizujacej obciazenie sifa $ledzaca skierowana do bieguna dodatniego - przypadek
obciazenia swoistego. Biorac pod uwage model fizyczny ukiadu oraz rozwiazanie konstrukcyjne glowicy
realizujacej obciazenie, formutuje si¢ catkowita energi¢ mechaniczng kolumny. Na podstawie rozwiazania
zagadnienia brzegowego, ktore uzyskuje si¢ przy uwzglednieniu kinetycznego kryterium statecznosci,
prezentuje si¢ przebieg krzywych zmian warto$ci wiasnych na ptaszczyznie: obciazenie — czgstotliwo$é drgan
wihasnych. Zakres zmian czgsto$ci drgan wilasnych wyznacza si¢ przy wybranych wartoéciach parametrow
geometrycznych glowicy realizujacej obciazenie. Przyjgty do obliczen numerycznych rozktad sztywnosci na
zginanie kolumny odpowiada uktadom, dla ktorych uzyskano maksymalne wartosci obciazenia krytycznego,
przy przyjetym warunku optymalizacyjnym statej objgtosci struktury.
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Abstract

Theoretical research into and numerical computations of free vibrations of a rectangular two rod frame for the
chosen case of a specific load are presented in this paper. A column of the frame is loaded by a follower force
directed towards the positive pole. The equations of motion and boundary conditions of the considered system
are determined by taking into account the total mechanical energy and Hamilton’s principle. The solution to
the boundary problem leads to adequate relationships in changes in natural frequency in relation to the external
load. The results of numerical computations are presented for the chosen physical and geometrical parameters
of the system. The obtained results were verified on the basis of original experimental research.

Keywords: frame, specific load, free vibrations

1. Introduction

The free vibration problems of slender systems including planar frames are very
significant from the point of view of mechanical structural designs. Theoretical and
numerical research into the stability of planar frames was carried out for different types
of loads. The determined values of critical load (comp. [1 — 4, 6]) and the course of
changes in natural frequencies in relation to the external load (comp. [3 — 6]) at the
accepted structural solutions of the systems were the results of the above research.
The structures of frames in square form (I type) (comp. [1, 2, 5, 6]), three rod frames
(T type) (comp. [1, 4]), or systems built up from a certain number of straight frames —
portal frames (comp. [7]) have been considered in many scientific publications.
The results of theoretical research into and numerical simulations of changes in natural
frequency for the chosen cases of the conservative load for the planar frame were
confirmed by experimental research in works [4, 6].

2. The physical model, mechanical energy of the system

Loading and mounting method of the considered system of I type is presented in Fig. 1.
The frame consists of two rods with flexural rigidities (EJ,), (EJ,) and mass (pA4,), (pA4,)
per unit length. A frame bolt with flexural rigidity (EJ,) and a frame column with
flexural rigidity (£J;) were mounted in rigid way. Additionally, the frame bolt is able to
displace in longitudinal direction. The frame column is subjected to the one of specific
load types formulated by L. Tomski (comp. [8]). In the considered case of the load by
the follower force directed towards the positive pole (comp. [6, 8]), the rods of column
and bolt were connected to a head, which received the load by a rigid element ® with /,
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in length ensuring equality of the bending angles of the frame two elements. Direction of
the loading force action crosses the constant point O — the centre of curvature of the
loading @ and receiving @ heads, described by radius R. In the body of concentrated
mass m, the total reduced mass of receiving head elements @, ® was taken into account.

x, =/

W, (xy,0)
ox,

Wy(l,,1)

j Waxy,0)

T W,(x,,0)

Figure 1. The physical model of the system

Kinetic energy 7T of the considered flat frames is a sum of kinetic energy of
individual rods of the frame and kinetic energy of element with concentrated mass m
(transverse inertia towards the frame column) :

2 l; 2 2
T:Z(pA,)J'[GVVZ(x,:t)} dxl+ﬂ|:au/l(ll’t):| (1)
o 20 ot 2 ot

Bending elasticity of the individual rods of the system and the direction of the
external load are taking into account in potential energy V :

i 2 X=h 2
V:i(EJi)}{aZWi(XM)} dx'—gﬂan(xl’t)del+P(R_IO) an(xlvt)| l )
il

2 6x,-2 ' 0Ox, 2 0ox,
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3. Formulation of the problem, equations of motion, boundary conditions

The boundary problem is formulated on the basis of the kinetic criterion of the stability.
This criterion relies on finding such a load at which free motion of the system stopped
being restricted. Hamilton’s principle is taken into consideration :

5!
S[(r-v)dt=0 3)
4
Geometrical boundary conditions and continuity conditions are as follows :
VVI(O,t):Wz(O,t):aWI(x“t)' _ aWz(sz)| =0, (4a-d)
1 x,=0 axz x,=0
1 2
xXy=l, x =/

oW (xls’)rl:ll _om, (xz,t)|

o] )~ (-1 2L (4e-f)
X, 0x,y 0x,

Geometrical relationship between elements of the loading head @ and receiving head @,
® (comp. Fig. 1) is given by equation 4f. After substituting equations (1), (2) into the
Hamilton’s principle (3), using adequate boundary conditions (4a-f), one can obtain :

- equations of motion

oW, (xy,t) 0P (x.1) W, (x,,1)
) 1\ P 1\ A L
Tt T ol +loh) or

(EJ, =0

(5a-b)

oy or?
- natural boundary conditions in the connection point of the column and the frame bolt
(1=l x2=1)

=
63VVl(xl’t) - +

o
- - (6a)
BRI N A A el AT I
R-1y| o2 | (E)) & | (E,) o
3 x,=l,
0 WZ(;CZJ) =0 (6b)
0x;

4. The results of numerical computations and experimental research

The constructional solution to the frame (comp. [6, 10]) loaded by the follower force
directed towards the positive pole is presented in Fig. 2. Experimental research into the
course of changes in natural frequency in relation to the external load was carried out by
taking into account geometrical and physical parameters of the applied head realising the
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load (R = 0.059 [m], /= 0.019 [m], m = 2.24 [kg]). The research was carried out on a
stand designed and built in the Institute of Mechanics and Machine Design Foundations
at Czestochowa University of Technology (comp. [9]). The frame is composed of bolts
6(3), 6(4) and columns 6(1), 6(2). The loading head (comp [11]) consists of an element
(1) with mounted external ball race 9(1). An internal ball race 9(2) is mounted in
enclosure (2) and attached to a rigid beam (10). The elements of receiving head are
assumed to be infinitely rigid with regard to construction. The ends of the bolts 6(3),
6(4) and columns 6(1), 6(2) are attached to the beam (10) in such a way that bending
angles of the frame rods are identical. Rigid support of the frame column is realized by
element 5(1). Support structure of the frame bolt 5(2) is built of the beam (7) with
mounted pivots of rolling bearings (8). The beam (7) can be shifted in guides (8) of
mounting (4). Measurement of the loading force is realised by the dynamometer (3).

9(1), 9(2)

=

6(4

Figure 2. The constructional solution to the tested system

The results of numerical calculations (lines) and experimental research (points) are
presented in Fig. 3 at the given geometrical and physical parameters of the frame
elements (table 1). The range of the first three M1, M2, M3 natural frequencies f in
relation to the external load P is also presented. The course of two additional natural
frequencies for the column M2s° and the frame bolt M2r° was determined. The presence
of additional natural frequencies, characterised by symmetrical form of the vibrations, is
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connected to slender systems which component elements are built of even number of
identical rods (comp. Fig. 2).

Table 1. Geometrical and physical parameters of the flat frame

Quantity Symbol | Unit | Value
Bending rigidity of the column (EJ)) Nm® |282.26
Bending rigidity of the bolt (EJ,) |Nm® [152.68

Mass per unit length of the column | (p4,) | kg/m | 0.859
Mass per unit length of the bolt (p4,) | kg/m |0.631

The length of the column I m 0.59
The length of the bolt b m 0.61
Natural frequenc Hz
— quency f” [Hz]
(M1) M2 (M2
8000 — { (M2s°)
—6000 - : b s :
& - - :
a, N N .
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Figure 3. Curves in the plane: load P — natural frequency of the system f°

Conclusions

The flat frame, considered in this paper, is one of the two types of systems: a divergence
or divergence pseudo-flutter, depending on the parameters of the loading head. The

conducted experimental research confirmed the correctness of the assumed mathematical
model of the system.
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Drgania swobodne ramy typu I' obciazZonej sila §ledzaca skierowana do bieguna dodatniego
W pracy prezentuje si¢ badania teoretyczne oraz obliczenia numeryczne dotyczace drgan swobodnych
prostokatnej dwuprgtowej ramy przy wybranym przypadku obciazenia swoistego. Stup ramy realizuje
obciazenie sita §ledzaca skierowana do bieguna dodatniego. Biorac pod uwage catkowita energi¢ mechaniczna
uktadu oraz zasad¢ Hamiltona wyznacza si¢ rownania ruchu i warunki brzegowe rozpatrywanego uktadu.
Rozwiazanie zagadnienia brzegowego prowadzi do odpowiednich zalezno$ci na zakres zmian warto$ci
czestosei drgan whasnych w funkcji obciazenia zewngtrznego. Wyniki obliczen numerycznych prezentuje si¢
przy wybranych parametrach fizycznych i geometrycznych uktadu. Otrzymane rezultaty weryfikuje si¢ na
podstawie przeprowadzonych badan eksperymentalnych.
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Abstract

In the paper there is performed an analysis of transient and steady-state electro-mechanical vibrations of the
laboratory micro-drive system driven by the stepping motor. The main purpose of these studies is to indicate
significant differences between the dynamic responses obtained for the considered object regarded respectively
as electro-mechanically coupled and uncoupled. These theoretical investigations are based on a hybrid
structural model of the mechanical system as well as on the classical circuit model of the stepping motor. From
the computational results it follows that these differences are qualitatively and quantitatively essential from the
viewpoint of possibly precise and reliable operation of the micro-drive systems.

Keywords: Electro-mechanical vibrations, micro-drive system, stepping motor, hybrid model

1. Introduction

The drive systems of machines, vehicles as well as of precise micro-mechanisms are
commonly driven by electric motors of various types, e.g. asynchronous motors,
synchronous motors, direct-current motors or stepping motors. During nominal and
steady-state operating conditions these motors generate more or less significant variable
components of the electromagnetic torques which are sources of severe torsional
vibrations of the entire mechanical drive system. The torsional vibrations of the drive
system usually result in significant fluctuation of rotational speed of the rotor of the
driving electric motor. Such oscillation of the angular velocity superimposed on the
average rotor rotational speed cause more or less severe perturbation of the magnetic
flux and thus additional oscillation of the electric currents in the motor windings. Then,
the generated electromagnetic torque is also characterized by additional variable in time
components which induce torsional vibrations of the drive system. According to the
above, the mechanical vibrations of the drive system become coupled with the electrical
vibrations of the currents in the motor windings. An importance of the electromechanical
coupling effects taken into consideration is particularly severe when possibly very exact
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simulation results are required for investigation of extremely responsible drive systems
or for analyses of their sufficiently precise motions, realized by e.g. micro-drive systems,
as well as in order to elaborate for them proper active vibration control algorithms.

In the presented paper there is studied an influence of electro-mechanical coupling
effects on dynamic responses of the laboratory precise micro-drive system driven by the
stepping motor. Since in such case a possibly exact rotational motion of the micro-
mechanism must be assured, it is necessary to introduce sufficiently accurate models of
the micro-drive system and of the electric motor, where dynamic electro-mechanical
coupling effects are going to be taken into consideration. The fundamental purpose of
this study is realized by investigation of dynamic interaction between the stepping motor
and the micro-drive system during its start-ups, run-downs and steady-state operation.

2. Assumptions for the electromechanical model.

In the paper there is considered the laboratory micro-drive system driven by means of
the stepping motor shown in Fig. 1. This system consists of the driving motor, direct-
current micro-generator, rotational angle encoder, three elastic couplings of the Oldham-
type, inertial disk representing a rotor of the power receiver (impeller), one-stage rubber
teethed-belt gear and of the connecting shaft segments properly supported by the roll-
bearings.

inertial disk

stepping
maotor

gear

micro-
generator

coupling
|

foundation coupling Il encoder

Figure 1. Laboratory micro-drive system

Since the fundamental excitations generated by the driving motor as well as the
retarding torques produced by the power receivers are torsional in character, the
torsional vibrations of the micro-drive system are going to be regarded as predominant.
In order to perform a theoretical investigation of the electro-mechanical coupling effects
in this system, a reliable and computationally efficient simulation model is required. In
this paper dynamic investigations of the entire micro-drive system are performed by
means of the one-dimensional hybrid structural model consisting of continuous visco-
elastic macro-elements and rigid bodies. In this model by the torsionally deformable
cylindrical macro-elements of continuously distributed inertial-visco-elastic properties
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there are substituted successive cylindrical segments of the stepped shafts. The rigid
bodies represent gear wheels as well as the rotors of the of the power receiver, micro-
generator and of the rotational angle encoder, as presented in Fig. 2. Apart of numerical
simulations of coupled electro-mechanical vibrations, this model is employed here also
for torsional eigenvalue analysis of the drive train.

electric motor

power

receivel\o

Figure 2. Hybrid mechanical model of the laboratory micro-drive system

Torsional motion of cross-sections of each visco-elastic macro-element is governed
by the hyperbolic partial differential equations of the wave type. Mutual connections of
the successive macro-elements creating the stepped shaft as well as their interactions
with the rigid bodies are described by equations of boundary conditions. These equations
enclose geometrical conditions of conformity for rotational displacements of the macro-
element extreme cross-sections as well as linear conditions of equilibrium for external
torques and for inertial, elastic and external damping moments. The solution for the
forced vibration analysis has been obtained using the analytical-computational approach
demonstrated in details e.g. in [1]. Solving the differential eigenvalue problem for the
orthogonal system and an application of the Fourier solutions in the form of series lead
to the set of modal equations in the Lagrange co-ordinates &,,(¢):

) . !
(1) + (B4 102) (1) + 02y (1) = O, m=012.... 0

Ym

where ®,, are the successive natural frequencies of the drive system, B denotes the
coefficient of external damping assumed here as proportional one to the modal masses
v,.2, T is the shaft material retardation time and Q,,(¢) are the modal external excitations.

In the considered micro-drive system there is applied a quite typical four-cycle,
double-phase stepping motor with the fundamental step angle 1.8 deg, which means that
its rotor is characterized by Z,=50 poles. According e.g. to [2], the mathematical model
of such stepping motor is described by two voltage equations:

+Ri - KUQ(t) . sin(@E (t))z -U(1)- sgn{sin(@E (t))},
di, (¢

di (£)
Ly

Ly

) +Riy 0+ KUQ(t) . cos(@E (t))z U(t)- sgn{cos(@E (t))}, 2)
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where #1(¢), i,(f) denote the electric currents in both motor phases, L, is the phase
inductance, R denotes the resistance of each phase, Ky is the motor voltage constant,
Q(?) denotes the instantaneous angular velocity of the rotor, U(?) is the slowly varying
control voltage and ®g(#) denotes the rotor electric angle. The electromagnetic torque
generated by the double-phase stepping motor is expressed by the following formula

Tp()=Kp|- iy (1) sin(© . (0))+ i5 (1) cos(® . o) 3)
where Kt denotes the stepping motor torque constant. Assuming a uniform distribution
of the motor electromagnetic torque along the rotor, by the use of the virtual work
principle the modal external excitations for the hybrid discrete-continuous model of the
considered micro-drive system have been determined in the following form

!
T.(t) 2
O () = 12 (f)sz(x)dx Mlg(t) Xl&m(O) M28(t) Xz&m(lzg),m 0,1,2....,(4)

where X;,(x) denotes the local m-th eigenfunction of the macro-element (2)
corresponding to the electric motor rotor, Xis,,(0), Xos.(los) are the m-th eigenfunction
values for the model cross-sections to which there are imposed the retarding torques
M 5(t) and Mpg(f) generated by the power receiver and the micro-generator, respectively.

By substituting expression (3) into (4) and (1) and upon a proper combinations of the
modal equations (1) with the voltage equations (2) one obtains the coupled set the
parametric ordinary differential equations

ME () + C(@E(t))- )+ K(@E ) r()=Fei@®), ()
where: ClO(1))=Cy+CglOL (),  KlOL0))=K)+KglO51)

r(¢) = colliy (1), i5 (1), £ (1, & (1), (), |

~U(1)-sgnisin(@g (1))}

U(t)- sgn{cos(G)E (t))}
Mg (6)+ Mg (F(0)
~X151(0)- Mg (1)~ Xpg1(pg) Mag(E(®) |
~X15.2(0)- Mg (1)~ X5 5 (Ipg)- Mg (F(1))

F(1,i())=

The symbols M, C, and K, denote respectively the constant diagonal modal mass,
damping and stiffness matrices, Cg(®g(?)) is the band matrix of the inductant-electro-
magnetic effects and Kg(®g(f)) denotes the band matrix of the resistant-electro-magnetic
effects, both of periodically variable coefficients with the electric rotation frequency
Z,Q(f). The symbol F(z r'(r)) denotes the external excitation vector due to the control
input voltage and the retarding torques. The unknown co-ordinate vector r(f) consists of
the electric currents in both motor phases and of the unknown time functions &,,(¢) in the
Fourier solutions. In order to obtain the system's dynamic response Egs. (5) are solved
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by means of a direct integration. The number of equations (5) corresponds to the number
of eigenmodes taken into consideration in the range of frequency of interest. These
equations are mutually coupled by the parametric terms corresponding to the
electromagnetic interaction with the stepping motor. A fast convergence of the applied
Fourier solutions enables us to reduce the appropriate number of the modal equations to
solve, in order to obtain a sufficient accuracy of results in the given range of frequency.

3. Computational example

In the computational example there is performed a simulation of the run-up, steady state
operation and run-down of the considered geared micro-drive system shown in Fig.1 and
driven by means of the stepping motor of the nominal voltage and current 4.8 V and 1.5
A, respectively, and the maximal braking torque 0.8 Nm, where the reduction gear ratio
is equal to 1:3. This mechanical system of the entire mass moment of inertia reduced to
the motor axis 9.34-10” kgm® has been uniformly accelerated from its standstill to the
constant average rotational speed 300 rpm within 3 s in order to operate for next 1 s
under the constant retarding torque 0.35 Nm generated by the micro-generator. Then,
within successive 3 s the micro-drive was uniformly stopped back to the standstill.

In order to study the influence of electro-mechanical coupling effects on the
considered system dynamic response, the numerical simulation of the assumed above
motion has been carried out in the form of two modes: For the coupled electro-
mechanical mode the full system of equations (5) was solved. In the case of the
uncoupled mode only the first three equations (5) have been solved, i.e. two electrical
equations coupled with the third one describing the rigid body motion of the drive train.
Then, using (3) the electromagnetic torque was ‘a priori’ determined and substituted into
the modal equations (1) in the form of an external excitation of the mechanical system
torsional vibrations. In Fig. 3 by the black and grey lines, respectively for the coupled
and uncoupled mode, there are presented time history plots of the stepping motor
electro-magnetic torques. From this figure it follows that in the case of coupled mode the
driving torque generated by the motor is characterized by greater fluctuation during run-
up and run-down phase than in the case of the uncoupled mode. However, during the
steady-state operation the latter has greater amplitudes of predominant frequency close
to the first system natural frequency equall03.4 Hz. In Fig. 4 there are shown plots of

torque [Nm]

0 1 2 3 4 5 6 7

time [s]
Figure 3. The retarding (dashed line) and electro-magnetic torque in the coupled (black
line) and uncoupled (grey line) electro-mechanical system
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Figure 4. The rotational velocity and the dynamic torque in the coupled (black line)
and uncoupled (grey line) electro-mechanical system

the system dynamic response corresponding appropriately, i.e. by the black and grey
lines, to both compared modes of the problem solutions. In this figure the time histories
of the angular velocity and of the dynamic torque in the shaft at the input to the power
receiver are depicted. Here, the significant differences of the transient fluctuations of the
velocity and of the steady-state oscillations of the dynamic torque are worth noting.

4. Conclusions

The performed investigations enabled us to indicate essential qualitative and quantitative
differences between the computational results obtained using the coupled and uncoupled
modes of the vibrating electro-mechanical micro-drive system. The electromagnetic
torque generated by the stepping motor is characterized by more regular time history in
the case of the traditional uncoupled mode. Then, the induced resonant effects during
steady-state operation are artificially more severe than in the case of the much realistic
coupled mode, where the velocity dependent parametric coupling terms result in
significantly greater transient states and weaker or even negligible resonant responses.
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Analiza przej$ciowych i ustalonych sprze¢zonych drgan elektro-mechanicznych w ukladzie
mikro-napedu

W pracy przeprowadzono analizg przejsciowych i ustalonych elektro-mechanicznych drgan laboratoryjnego
uktadu mikro-napgdowego napgdzanego silnikiem skokowym. Gléwnym celem badan byto wykazanie réznic
odpowiedzi dynamicznych uktadu potraktowanego jako elektro-mechanicznie sprzezonego i rozsprzezonego.
Rozwazan teoretycznych dokonano dzigki zastosowaniu hybrydowego modelu uktadu mechanicznego oraz
klasycznego obwodowego modelu silnika skokowego. Uzyskane jakosciowe i ilo§ciowe znaczace roznice
badanych odpowiedzi sa istotne z punktu widzenia precyzyjnego dziatania uktadow mikro-napgdowych.
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Abstract

The paper deals with the stability problem, longitudinal bending and free vibrations of a geometrically non-
linear cantilever column loaded by Euler’s load. Imperfections, resulting from the omission of the assumption
that the external load is perfectly axially applied, were taken into account in the physical model of the column.
An initial curvature of the rods was introduced. The problem of free vibrations and stability was formulated on
the basis of Hamilton’s principle and then solved by applying the small parameter method. Local or global
instability of the system specified by free vibrations (the plane: load — natural frequency) is presented in the
first part of the paper. The second part concerns the influence of imperfections in shape and load on the
stability of the system. The interactions between the introduced imperfections were analysed.

Keywords: column, free vibrations, initial imperfections, local and global instability

1. Introduction

Theoretical considerations and solutions of numerical computations referring to stability
and transverse free vibration geometrically non-linear columns, subjected to Euler’s load
are included in many scientific publications [1-9]. Distinguished are to be works dealt
with:

— rectilinear form of static equilibrium (determination of bifurcation force) [1-7, 9],

— curvilinear form of static equilibrium (determination of critical force) [3, 7, 8, 9],

— local and global non-stability [5-7],

— pre-stressing of the system [3, 4, 6, 7],

— course of characteristic curves in the plane: load — natural frequency [3, 4, 6, 7, 9],

— influence of eccentrically fixed external loads [8, 9].

In works [6, 7] are presented results of experimental research dealing with the vibration
frequencies in relation to the external load, which confirms local and global non-stability
of geometrically nonlinear column.

2. The physical model of the column

A geometrically non-linear column N and linear column L, subjected to Euler’s load are
considered in this paper. The physical models of these columns are presented in Fig. 1.
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The initial curvature of the system described by function Wy(x) was introduced.
Innacuracy in the external load application was modelled by introducing the eccentric
action of a force with value dentoted as e. The geometrically non-linear column was
built of three rods with a symmetrical distribution of flexural rigidity (£J);, compression
rigidity (EA); and mass per unit length (pA4); (for i = 1+3),while:

(EJ)y =(EJ),, (EA), =(EA);, (pA); =(pA), (1)
Rods of the system are rigidly mounted for x = 0 and connected to each other in point x =
[ with the help of the body with mass m in such a way that transverse and longitudinal
displacements and bending angles of every rods are identical. Linear column L was only
built of two rods with total bending rigidity (EJ);+(EJ), compression rigidity
(EA)+(EA), (without the middle rod). Flexural rigidity asymmetry factor u is defined
during description of the stability of a geometrically non-linear column N assuming that
sum of flexural rigidity of rods is constant:

(£7); 2
= EJ). =const 2
4 e S @
The rigidity of rods of column L is the same as for rods with indexes 1, 2 of column N at
the assumed flexural rigidity asymmetry of the geometrically non-linear column
described by coefficient s

o (x, !
ox
N - geometrically L - linear
non-linear system system
f
— —
Wy(x) !
Wes(x, 1) !
1| We (1), i
Wey(x,1) (EJ), i
W,(1,0) 1 i
* (ED)s i
E))y P RED
N !
(B (ED), e e

NN
NN

Z W (x,1)

Figure 1. The physical model of geometrically non-linear column N
Total transverse deflection of the i—th rod of the system was denoted as: We(x,£) = Wy(x)
+ Wix,t), while function of the initial deflection was accepted in the form: Wy(x) = ax.

Longitudinal displacements of the system were determined by relationships: A= e W,'(]),
Ay =e We, (L),
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3. Mechanical energy of the system, equations of motion, boundary conditions

The problem of stability and vibrations is formulated on the basis of Hamilton’s
principle. Kinetic energy 7 is a sum of kinetic energy of its individual rods and kinetic
energy of mass m:

I owe,(x,1) 2 1 | owe (l,t) g
TZEZ.([(POA){—} dx; +Em[+} 3)

ot

The total potential energy V' consists of energies of: internal forces, bending elasticity
and action of the external load components:

:_Z EJ J‘{a WC( )} dx+ PU,(1)+
“)

2
3 ] 2
1 oU,(x) 1(owe,(x)
+— EAAJ. A2 b —P(4 -4
2 ]| g ) | o
Taking into account equations (3) and (4) in Hamilton’s principle, using commutation of

integration (over x and ¢) and variation computation, the equations of motion of the
considered system in transverse (5a) and longitudinal (5b) directions were obtained:

o*we,(x,1) o*we, (x 1) *we,(x,1)
EJ) ! +5S,; A) ———~=0,
(7), ox* () +od), or* (5a)
2
0 an(x,t)+l[6Wci(x,t)j ~0, i=12.3 (5b)
Ox Ox 2 ox

Known geometrical boundary conditions of the considered system, after taking into
account relationships describing function Wj(x) and its adequate derivatives:

,(0.0)=1,(0.6)=W5(0.6)=U,(0,£)=U, (0.1)=U;(0.¢) =0,

6W1(x,t)| _om (x,t)| _ oW, (x,t)

-0
ox |, ox |, ox | 420 ’
(©)
Wi (1,6)= W, (1,6) =W (1,1), Uy (L6) = U, (1) = Us (1,1),
an(x,t)r:l oW, (x,t)|x:l _ oW, (x,t)|x:l
Ox | o | o

considered in the Hamilton’s principle, make it possible to obtain the remaining
conditions necessary to solve the problem:
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The problem of stability and free vibrations of a geometrically non-linear column L was
solved by applying the small parameter method. The values of bifurcation force were
determined on the basis of solution to equations of displacements. Transcendental
equation for natural frequency ® was obtained substituting the solutions to motion
equations into boundary conditions after previous separation of variables in terms of
time and displacement.

4. Results of numerical computations and experimental research

The results of research into the stability were partly worked out on the basis of work [7].
Diagram of changes in bifurcation load of column N and in critical load parameter of
column L in relation to flexural rigidity asymmetry function x is presented in Fig. 2.

The value of external load, concentrated mass and obtained values of bifurcation load
and natural frequencies are expressed in dimensionless way:

3
2 2 > (o) a5t
/’L* _ Pcl , ﬂ* _ Pl ’ _Q* _ =l ’ m* _ m (8)

oY) Xe) YE) 3

i=1 i

Flexural rigidity asymmetry factor pu[]

T 27 N
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3= ! ! PSS
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Figure 2. The value of dimensionless parameter of bifurcation force 4. in relation to
flexural rigidity asymmetry factor u



Vibrations in Physical Systems Vol.24 (2010) 421

For coefficient value z4 in the range of changes from 0 to 14, parameter of bifurcation
force A, for geometrically non-linear column N is lowest than for linear column L.
Increase in parameter A, is obtained by removal of the rod with flexural rigidity (EJ)s
from the system. The global loss of stability takes place at the coefficient value 1 > 14,

Numerical computations of changes in value of natural frequency in relation to the
external load was carried out for the geometrically non-linear system characterised by
the local stability loss and corresponded to it linear system. The results of numerical
computations are presented in Fig. 3.

Table 1. Geometrical and physical parameters of the column

Quantity Symbol Unit ?’:allug for ?’:al?,“e for
Flexural rigidity of the i—th rod (EJ); Nm® |792.4 0.568
Mass per unit length (pA); kg/m | 0.598 0.012
Flexural rigidity asymmetry factor u / 0.00036
(€255
2.5 o

I AN A AT AT AT AT A

Dimensionless parameter of load 1" []

o
<}

1 10 100
Dimensionless parameter of natural frequency Q[]

o

Figure 3. The curves in the plane: loading parameter A" — natural frequency parameter (2

The results of numerical computations and experimental research into the stability and
natural vibrations as well as influence of imperfection in form and load on instability of
the system will be presented during Symposium.

5. Conclusions

The considered system, being dependent on the value of the distribution of flexural
rigidity asymmetry factor, is characterised by a local or global loss of stability. The term
with lower flexural rigidity is responsible for the local loss of stability.
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Niestateczno$¢ i drgania kolumny wspornikowej, geometrycznie nieliniowej
z imperfekcjami poddanej obciazeniu eulerowskiemu
Praca dotyczy zagadnienia statecznosci, podluznego zginania i drgan swobodnych wspornikowej,
geometrycznie nieliniowej kolumny poddanej obciazeniu eulerowskiemu. W modelu fizycznym kolumny
uwzgledniono niedoktadnos$¢ wynikajaca z pominigcia zatozenia idealnie osiowego przytozenia obciazenia
zewngtrznego oraz wprowadzono wstgpna krzywizng pretow. Zagadnienie drgan wilasnych i statecznos$ci
sformutowano na podstawie zasady Hamiltona, a nastgpnie rozwiazano wykorzystujac metodg malego
parametru. W pierwszej czgsci pracy, poprzez drgania swobodne (plaszczyzna: obciazenie — czgsto$¢ drgan
wlasnych) opisana jest niestateczno$¢ lokalna lub globalna uktadu. Druga czgs¢ pracy dotyczy wplywu
imperfekceji ksztattu i obciazenia na stateczno$¢ uktadu. Analizuje si¢ interakcje wprowadzonych imperfekc;ji.



XXIV Symposium Vibrations in Physical Systems, Poznan — Bedlewo, May 12-15, 2010

Divergence and flutter instability of a column subjected to Reut’s
generalized load with regard to rotational elasticity

Lech TOMSKI
Czestochowa University of Technology, Institute of Mechanics and Machine Design
Foundations, ul. Dabrowskiego 73, 42-200 Czestochowa
sekr@imipkm.pcz.czest.pl

Janusz SZMIDLA
Czestochowa University of Technology, Institute of Mechanics and Machine Design
Foundations, ul. Dabrowskiego 73, 42-200 Czestochowa
szmidla@imipkm.pcz.czest.pl

Sebastian UZNY
Czestochowa University of Technology, Institute of Mechanics and Machine Design
Foundations, ul. Dabrowskiego 73, 42-200 Czestochowa
uzny@imipkm.pcz.czest.pl

Abstract

Boundary problem of free vibrations of an elastically mounted slender system subjected to Reut’s generalized
load is formulated in the paper. A finite elasticity of kinematic pair connecting column to beam was
considered. The beam was directly affected by external load. On the basis of the kinetic stability criterion,
critical load of divergence and flutter type was determined for different rigidities of the kinematic pair
connecting the column to the beam. The boundary value of the rigidity dividing the divergence and flutter
instability area and the characteristics curves in the plane load — natural frequency were also determined.
Computations were carried out using different parameters of the considered system including: coefficient
describing the place of external force application, rigidity of mounting, and rigidity of the kinematic pair
connecting the column to the beam.

Keywords: Flutter instability, divergence instability, column,

1. Introduction

All systems, loosing stability due to divergence instability or flutter instability in
dependence on values of parameters were called hybrid systems by Leipholz [1].
Parameters, having influence on the method of stability loss, are as follows: structural
parameters and parameters connected to application of the load. Translational springs [2,
3, 4, 5, 6], rotational springs (comp.[2, 3]), systems of viscoelastic and elastoplastic
dumpers [7, 8], and the concentrated mass [9] are the structural parameters. Flexural
rigidity asymmetry factor [10] and initial pre-stressing [11, 12] are the structural
parameters in the case of complex slender systems. Major parameter defining character
of load is a load following factor [4, 10, 13] (Beck’s generalized load) and coefficient
describing the place of load application (Reut’s generalized load) [10]. Reut’s
generalized load is coupled with Beck’s generalized load [14].
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2. Formulation of boundary problem

The considered system is presented in fig. 1. The column is elastically mounted (rigidity
of mounting C,) and subjected to Reut’s generalized load . The place of external force
application is determined by 7 coefficient. Additionally, the finite rigidity of kinematic
pair connecting the column to the beam was considered in the system, while the beam
was directly affected by the external load. Rigidity of the kinematic pair connecting the
column to the beam was modelled by the rotational spring with rigidity C.

Y SUAC )

W(x.0)

Fig. 1. Diagram of the considered system

The described above system is a hybrid system and the kinetic criterion of stability
was used to determine the critical load. The boundary problem regarded free vibrations
of the system was formulated on the basis of Hamilton’s principle:

5J.(T—V+Ln)dt:0 (1)

where: T — kinetic energy, V — potential energy, L, — work of non-conservative forces.
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Equations describing the kinetic (2) and potential (3) energies and work of non-

conservative forces (4) were substituted into Hamilton’s principle (1). After application
of geometrical boundary conditions:

w(0,£)=0 ®)
the following was obtained:
— angle @ equation
x=l
UL T ®)
Ox c
— the natural boundary conditions
2
EJa W(;c,t)| _¢, 6W(x,t)| _0 )
ox - ox |
P x=[
EJaW—(f”) + P (1,1)=0 ®)
Ox
3 x=l x=l 2 2 ) x=l
50 W(ic,t) L pW ) PPy W(1.0)-m W(zx,t) o ©
ox ox | C ot
— differential equation of motion
64W(x,t) O*W (x,1) "W (x,1)
EJ P A =0 10
at o a PTar (10
By separating the variables using the relationship:
W(x,t)=Y(x)cos(w?) (11)

the differential equation was obtained, which must be fulfilled in the range x € (0, /) and
at every time of interval ¢:

d*Y(x) ,dY(x) .,
+k -027Y(x)=0 12
dxt dx? ( ) (12)
where: k*=P/EJ; Q%= pAw® | EJ

Substituted formula (11) into the equations (5) and (7-9) the boundary conditions
were obtained, which must be fulfilled by solution to equation (12).
The solution to equation (12) is as follows:
Y(x) =D, cosh(ax)+ D, sinh(ax)+ D, cos(Bx)+ D, sin(ﬂx) (13)

where: a= \/—O.Sk2 +40.25k + 2% |, B = \/O.Sk2 +4/0.25k* + 27

Taking into account solution (13) in the boundary conditions, the system of equations is
obtained where determinant of matrix coefficient equated to zero is a transcendental
equation for natural frequency:

la,[=0 (14)

y
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On the basis of equation (14) one can determine the relationships between the load
and natural frequency. The critical divergence load takes place when the first natural
frequency equals zero (@, = 0). The critical flutter load is when the first natural
frequency equals the second natural frequency (@ = ).

3. Results of numerical computations

Figure 2 presents dimensionless parameter of the critical load in dependence on
dimensionless parameter of the rigidity of rotational spring. This spring is present in
kinematic pair connecting the column to the beam. If coefficient 1 is in the range
1 € (0.5 — 1.0) for spring rigidity values ¢ = cgr , “snap through” occurs - from critical
divergence force to critical flutter force.

2 1. . i
by 43, = bl 1, 10, 9 8 7 4 5108 Detail A
184 " EJ L A31
64 ¢ %
=07 In=0.0 -
14 £J 2m=0.1 Tn=06 8
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27 4M=03 9=038 o
10 - 1()\( Sn=04 10m=0.9 %
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Fig. 3. The characteristics curves in the plane: load — natural frequency.
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Exemplary characteristic curves in the plane: load — natural frequency are presented
in figure 3. The characteristic curves, independent on the rigidity value of rotational
spring C, are intersecting in the one point (fig. 3 — point S).

4. Summary

In the paper the critical load of a column subjected to Reut’s generalized load was
determined on the basis of the kinetic criterion of stability. The finite rigidity of
kinematic pair connecting the column to the beam was considered. Divergence and
flutter instability areas were dependent on rigidity of kinematic pair connecting the
column to the beam, rigidity of system mounting and on coefficient describing the place
of load application. The characteristic curves in the plane: load — natural frequency were
determined. Numerical computations were carried out for different values of the
parameters characterizing the considered system.
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Niestatecznos$¢ dywergencyjna i flatterowa kolumny poddanej uogélnionemu
obciazeniu Reuta z uwzglednieniem sprezystosci rotacyjnej

W pracy sformutowano zagadnienie brzegowe dotyczace drgan wilasnych sprezyscie zamocowanego
smuktego uktadu poddanego obcigzeniu uogdlnionemu Reuta. Uwzgledniono skonczong sprezysto$é wezta
faczacego kolumng z belka, na ktora oddziatuje bezposrednio sita zewngtrzna. Na podstawie kinetycznego
kryterium statecznosci wyznaczono obciazenie krytyczne zaréwno dywergencyjne jak i flatterowe
rozwazanego ukladu przy roznych sztywnosciach wezta taczacego kolumng i belke. Wyznaczono rowniez
graniczna warto$¢ sztywnosci rozdzielajaca obszary niestateczno$ci dywergencyjnej i flatterowej oraz krzywe
charakterystyczne na plaszczyznie obcigzenie — czgsto$¢ drgan wirasnych. Badania numeryczne wykonano

przy

roznych parametrach rozwazanego uktadu. Parametrami uktadu sa: wspotczynnik okreslajacy miejsce

przylozenia sity zewngtrznej, sztywno$¢ zamocowania oraz sztywnos$¢ wezta taczacego kolumng z belka.
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Abstract

Slender system is considered in the paper. While using this system two cases of specific load (generalized
load with the force directed toward the positive pole and load by follower force directed toward the positive
pole) occur at the same realization of the load. These two cases of the specific load exist at determined values
of rigidity of rotational spring which is mounted in the considered system. The rotational spring generating
adequate case of the specific load is mounted in kinetic pair connected infinite rigid elements. Infinite rigid
elements create loading system. Constructional diagram of the considered system is presented in this work and
theoretical and numerical research into free vibrations and stability in dependence on geometrical and physical
parameters as well as on a location of kinetic pair with the rotational spring was carried out.

Keywords: divergence instability, column, free vibration, specific load

1. Introduction

Specific load for the first time was formulated and introduced to literature by L. Tomski
in 1994 (comp. [1]). Two basic kind of specific load are presented: generalized load with
the force directed toward the pole (comp. [1, 2, 3]) (positive or negative) and load by
follower force directed toward the pole (comp. [4, 5, 6]) (positive or negative).
Realization of the considered load is possible by usage of appropriately designed loading
heads built of linear or circular elements. Geometrical parameters of heads loading the
specific load have an influence on a critical force as well as on natural frequency. One
can obtain new course of characteristic curves in the plane: load — natural frequency
appropriately selecting mentioned above parameters. These curves have been called by
L. Tomski and R. Bogacz as the curves of divergence pseudoflutter type (comp. [7]).

2. Formulation of the boundary problem

The system, considered in this work, is presented in fig. 1b. This system is loaded by
properly designed loading heads built of linear elements. Additionally, rotational spring,
with the rigidity C modelling the finite rigidity of the considered kinetic pair, is placed in
kinetic pair which joins rigid elements with / and /¢ in length respectively. At limiting
value of rigidity of spring C (C =0 and 1/C = 0), two classical cases of the specific load
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are obtained. If C = 0, the slender system is subjected to generalized load with the force
directed toward the positive pole (fig. 1a). If 1/C = 0 (infinite rigid element with /p + /¢
in length), the slender system is subjected to a load by follower force directed toward the
positive pole (fig. 1¢).

WA i) d WAt e d WAL Wi nf !
a) b) ¢

load by follower
force directed
toward the
positive pole

generalized load
with force

directed toward

the positive pole

W(x.1) W(x.1) W(x.1)
7, Z ’ Z

Fig. 1. Diagram of the considered system

Boundary problem of free vibrations of the considered system is formulated on the
basis of the Hamilton’s principle:

§I(T—V)dt:0 (1)

where: T — kinetic energy, V' — potential energy.
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The equations determining kinetic energy (2) and potential energy (3) are substituted
into the Hamilton’s principle (1). After giving consideration to the geometrical boundary
conditions:

W(O,t):M =0 4)
ox |
the following equations were obtained:
— differential equation of motion
o*W(x,t)  o*W(x,1) W (x,1)
EJ <+ P — + pA =0 5
o P ©)
— natural boundary conditions
) x=l x=l
g0 W(f’t) | ple_cleth EID (. +1, )LV(M) -w(L,t)|=0 (6)
Ox Iy 5 Ox
3 x=l x=l
EJaW—(j"’) drlicliq, +1D)M —w(Le)|-
Ox I I Ox
x=l (7)
2 X
_ma W(Qx,t) —0
ot
Separation of variables with the help of relationship:
W(x, t) = Y(x)cos(a) t) ®)
leads into differential equation, which must be fulfilled in the range x € (0, /):
4 2
V) 424 Y(x)—QQY(x):O ©)

dx* dx®
where: k*=P/EJ; Q% = pAw* | EJ
Substituting formulae (8) into the equations (4), (6, 7), the boundary conditions were
obtained, which must fulfil the solution to equation (9).

The solution to equation (9) is presented as follows:
Y(x) =D, cosh(ax)+ D, sinh(ax)+ D, cos(ﬂx)+ D, sin(ﬁx) (10)

where: =\ 0.58> +70.25K* + 27, f=y0.5k> + 025K + ©2°

After considering the solution (10) in the boundary conditions, the system of
equations was obtained where determinant of matrix of coefficient was equated to zero.
This is the transcendental equation for natural frequency:

|a ,.j.| =0 (11)

Relationships between the load and natural frequency was determined on the basis of
the equation (11). The critical load occurs when the first natural frequency is equal to
zero (the kinetic criterion of stability @ = 0).
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3. The results of numerical computations

Dimensionless parameter of the critical load in dependence on a rigidity of spring C was
presented in fig. 2. Numerical calculations was carried out for different values of the
parameter ¢z ({3 = 0.01; 0.25; 0.5; 0.75; 0.9) and for parameter ; = 0.5. The parameters
¢y 1 ¢p were defined in a way presented in Fig. 2.
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Fig 2. Dimensionless parameter of the critical load 4, in dependence on dimensionless
parameter of the rigidity of spring ¢
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Fig. 3. Parameter of the critical load Ay, in relation to parameters ¢ and ¢, at {3 = 0.5
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Maximum differences in the value of critical force with changes in the spring rigidity
was observed at higher value of parameter 3. Dimensionless parameter of the critical
load in dependence on rigidity parameter of spring ¢ and parameter ¢, was presented in
fig. 3. In computations it was assumed that length /- and /p were identical. Maximum
critical load was when sum of length /- + I, was equal to a half of the column length (&
= (.5) (independently on rigidity of spring C).
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Fig. 4. The characteristic curves in the plane: load — natural frequency

Exemplary characteristic curves in the plane: load — natural frequency were
presented in fig. 4.

4. Summary

The critical load of a column subjected to compression load generated by adequately
constructed system built of linear elements was determined in this paper. Rigidity of
kinetic pair, in which rigid bolts were connected, was taken into consideration. The rigid
bolts made loading system. The rigidity of the kinetic pair was modelled by a rotational
spring with rigidity C. Generalized load with the force directed toward the positive pole
and load by follower force directed toward the positive pole was obtained by selecting
boundary values of the spring rigidity (C = 0 and 1/C = 0, respectively). The
characteristic curves in the plane: load — natural frequency were also determined in this
work. Numerical computations were carried out at different parameters of the considered
system.
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Wybrane uklady smukle w aspekcie mozliwosci realizacji obciazenia swoistego

W pracy rozwazaniom poddano pewien uktad smuktly, za pomoca ktorego przy tej samej realizacji obciazenia
generuje si¢ dwa przypadki obciazenia swoistego (obciazenie uogodlnione z sita skierowana do bieguna
dodatniego oraz obciazenie sita Sledzaca skierowana do bieguna dodatniego). Te dwa typy obciazenia
swoistego wystepuja przy okreslonych warto$ciach sztywnosci sprezyny rotacyjnej umiejscowionej w
rozwazanym ukladzie. Sprezyna rotacyjna, za pomoca ktorej generuje si¢ odpowiedni przypadek obciazenia
swoistego znajduje si¢ wezle laczacym nieskonczenie sztywne rygle wchodzace w sklad ukladu
wywolujacego obciazenie. W pracy zaprezentowany zostanie schemat konstrukcyjny rozpatrywanego uktadu
oraz przeprowadzone zostana badania teoretyczne i numeryczne dotyczace drgan swobodnych i stateczno$ci
w zalezno$ci od parametrow geometrycznych i fizycznych oraz w zaleznosci od potozenia przegubu ze
sprezyna rotacyjna.
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Abstract

This paper describes the application of the method of fundamental solutions to the solution of the initial-
boundary value problems of the dynamic torsion of functionally graded rods. The time derivation is
approximated by finite differences method. For the obtained by this way boundary value problem the
interpolation of an inhomogeneous term in governing equation is done by the radial basis function. The very
basic step of the calculations of dynamics of rod torsion is solution of boundary value problem with the method
of fundamental solutions.

Keywords: Method of fundamental solutions; Radial basis functions; Functionally graded materials

1. Introduction

Functionally graded materials (FGMs) are materials with continuously varying material
properties designed for specific engineering applications. FGMs have recently been
applied in variety of fields, including aircraft, acrospace and automobile technologies.
Although the torsion problem for homogeneous linearly elastic bars is a classical one
in the elasticity, there has been relatively little attention for case when material is
inhomogeneous. Recently, research activity on functionally graded materials has
stimulated investigation also on the torsion problem for inhomogeneous material. In
1964 Chen presented a study on torsion of inhomogeneous bars [1]. He presented
governing equations and boundary conditions of the torsion problem of inhomogeneous
bars in terms of stress function. Then, he applied a semi-inverse method and found a
specific distribution for shear modulus of rigidity in a specific geometry of cross section.
By this method, he could find simple solutions for stress function and torsional stiffness
of circular and elliptical shafts. An analytical formulation for torsional analysis of
functionally graded elastic bars with circular cross sections was presented by Horgan and
Chan [3]. They supposed the shear modulus of rigidity to be a function of radius, just as
in [2]. Using the axisymmetric geometry of the cross section of the circular bar, they
found an exact analytical solution. The Saint-Venant’s torsion problem of linearly
elastic, isotropic, non-homogeneous cylindrical bars was considered in paper [4]. The
novelty of this paper is that the shear modulus of the investigated non-homogeneous bar
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is a given function of the Prandtl’s stress function of a homogeneous bar, which has the
same cross-sections as considered non-homogeneous bar.

In paper [5] an analytical formulation was presented for torsion of functionally
graded hollow tubes of arbitrary shape. Authors assumed that thicknesses of all segments
of the cross section are the same and shear modulus of rigidity changes continuously
across the thickness. In this way the simple but relatively accurate formulas for stresses
and torsional stiffness were obtained on the base of analytical integration of governing
equation for stress function.

As the above short review shows, by far, the uniform torsion problem of functionally
graded materials has been solved by analytical methods and traditional mesh methods
such as FEM [5], and FED [6]. The purpose of this paper is the application of Method of
Fundamental Solutions (MFS) to the dynamic torsion problem of functionally graded
materials. This method belongs to so-called meshless methods which have been more
and more popular in the two last decades. The MFS was first proposed by the Georgian
researchers Kupradze and Aleksidze [7]. Its numerical implementation was carried out
by Mathon and Johnston [8]. The comprehensive reviews of the MFS for various
applications can be found in [9-10].

2. Formulation of the problem

We consider an infinitely long cylinder with a solid circular cross-section of radius a.
The displacement components in the cylindrical coordinates are u,, ug u. and the
components of stress are o;,, 0,4 0;., ctc. The torsional waves propagating in a cylinder
involve only a uy - circumferential displacement which is independent of 6.

The dynamical torsions of cylinder made with functionally graded materials in the
axi-symmetric case is described by the equation (given in [12]):

2 2 2
G(r)[a 13—i+a—Ju9+aG(” (2L -0t 1)

——+
ot ror rr 22 or \or r ot

for (r, z) €Q and >0, where Q= {(r,z) :0<r<a, ze ‘J?}, G(r) is a shear modulus of
functionally graded material.
The initial conditions are defined as:

uy(r,2,ty) =u,(r,z) )
and
au&(g;zst) . :LZO(V,Z) (3)
for (r,z2)e Q.

The cylindrical surface is free of tractions which gives boundary condition:

o,4(a,z,t)= [G(r)(a - ljug (r, z,t)j =0 for (r,z) e 0Q 4)
or r

r=a
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where 0Q) is the boundary of the region Q.
Also we assume that the displacement at » = 0 is finite.

3. Numerical approach

The considered problem is solved in the time period (to,tMAX), which is descretized. And
the solution is obtained in chosen time steps ¢, where i = 0,1,2,...,.Nand ¢, =¢,,,, . The time
subinterval has length h =t —¢,_, for i = 1,2,...,N. For every time step the time derivation is
approximated by finite difference (see [11])as

62u9(r,z,t)‘ :ug(r,z,tifz)—2u9(r,z,t,.71)+u0(r,z,t,) fori=23. N (5)
e e ,3,...N.

s
So, the initial-boundary problem (1-4) is written as a boundary value problem in axi-
symmetric case

e 1o 1 8 oG(r(o 1 uy(rz,t,) _
G(r)[6r2+r6r_r2+ jug(r,z,ti)+ P [ - jub,(r,z,ti)—p =

(6)
(2,8, 5) = 2uy(r2,0,)
for (r, z) € Q, and
o 1
[G(r)( —jug (r,z,ti)j =0 for (r,z) € 0Q )
or r .

fori=273,...N.
To start the calculations, the solution of the boundary value problem (6, 7) for ¢ =¢, has
to be obtained. The equation for this case is:

2 2
G(r)(a w1 aJug(r,z,a)+ G2z prelrezt)
r r

or? or 0z* or \or r h )
ug(r,z,to)—flug(r,z,tl)
h2
for (r,z) e Q.

The quantities u, (r,z,to) , U (r,z,tl) are described by the initial conditions. So,
u, (r,z,to) is directly given by equation (2). To obtain u, (r,z,tl) the finite difference of
first order is applied as:

au&(rszst)‘ u&(razatl)_ué’(razato)
‘ = )
ot 1=ty h
and finally from equation (3) and (9) the solution for ¢, is given by
uy(r,z,t,) = hi,(r,z) +u,(r,z,t,) . (10)

For the next time step i.e. ¢ =¢, the governing equation (6) has the form



2 2
G(r) 6—+l£—%+6— ug(r,z,t3)+ Grfao _1 ub,(r,z,t3)—p7u9(r’zz’t3):
r z or \or r h (an

for (r,z) e Q.

The ug(r,z,tl) is defined by formula (10) and «, (r,z,tz) is the solution of the boundary
value problem (8, 7).

The equation (6) is the linear one with variable coefficient. The proposal of this paper is
to solve the equation in an iterative procedure. The equation (6) is rewritten in the
iterative fashion as

? 10 1 ) Uy, z,t,
G(r)(arz+rar_r2+az2 Jué’)(nz,t,-)—p% (,:zz )
_uy(rzt )= 2u,(rzt,) 0G0 1Y (i

—r n or or r o (V’Z’ti)

which is the modified Helmholtz equation in axi-symmetric case.
For the equation (12) the boundary condition (7) has form:

[G(r)(; —ijugf)(r,z,t,)j

So, at each iteration at every time step the boundary value problem is to solve. The
problem is described by inhomogeneous modified Helmholtz equation in axi-symmetric
case and the boundary condition. This problem is solved by the Method of Fundamental
Solutions (MFS) supported by the approximation with Radial Basis Functions (RBF)
(see Ref. [13]).
Lets write the equation (12) in a general form

Lu(r,z): f(r,z) for (r, z) el (14)
where L is a linear operator, which can be modified Helmholtz one, as well.
The boundary condition (13) is rewritten as:

Bu(r,z): g(r,z) for (r,z)e 0Q (15)
where B can describe Dirichlet, Newman or Robin boundary condition.
The approximation of the right-hand side function is done by

Nw NI
f(r,z): Zaigp,(r,z)+ Zb,pi(r,z) (16)

for (r, z)e Q  (12)

=0 for (r,z) € 0Q). (13)

r=a

Nw

) is a Radial Basis Function and {(rl.",z,.“ )}_1 is a set of

where ¢,(r,z)= goq‘(r -rlz— zl")
points of the region Q (see Fig. 1) and p,(r,z) fori=1,2,..., N, are monomials.
The approximation given by (16) is written for each point chosen in the region as

f(rjf’,zj“.)zTVZ‘:aiwi(rjfl,z;)+ibipi(rj“,zj) forj=12,...,N, (17)
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Additionally, the condition is to fulfill

Nw

> ap,i,z)=0 forj=12,..,N,. (18)
i-1

Nw

The solution {a,}

i=l1

of system of the linear algebraic equations (17, 18) gives the

particular solution of the boundary value problem (14, 15) as

w 1
up(r,z)zNZai¢i(r,z)+ ibif}(r,z) for (r,z)eQ (19)
i=1 i=1
where
L@(r,z)zgo,(r,z) for (r,z)eQ andi=1,2,..,N, (20)
LPl.(r,z):pl.(r,z) for (r,z)e Qandi=12,..,N,. 21

The implementation of the Method of Fundamental Solutions is based on assumption
that the solution of the boundary value problem is a sum of particular solution given by
(19) and homogeneous one written as

uh(r’z)zfciﬁi(r’z)’ (22)
[
where f5, (r,z) = fsq‘(r -rz—z; )‘) is the fundamental solution of the equation

, is a set of points outside the region €. The points

Lu(r,z)zO and {(}f,zf)}f

Ns . . .
{(r,.‘,ziv )},.:1 called source points are presented in Figure 2.

i

™~

oQ oQ

boundary point

—

approximation points
source point

Figure 1. The set of approximation points Figure 2. The sets of boundary and source points

The set of boundary points {(};b,zib )}fibl is chosen (see Fig. 2). The boundary condition

(15) is written at every boundary point, which gives the system of linear algebraic
equations:

fciBﬁi(rf,zf): g(;f;’,zj?)—Bup(rf,z‘l;) forj=1,2,...,N,. (23)
i=1

The solution of the system (23) gives the homogeneous solution of the boundary value
problem (14, 15). Therefore, the numerical procedure of solution of the initial-boundary
value problem (1-4) is completed.
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4. Summary

The numerical experiment has been performed to check the convergence of the proposed
algorithm of numerical calculations. The influence of the method parameters on the
convergence is investigated. Due to complexity of the proposed combined numerical
procedure the very strong and complicated dependence of the accuracy and convergence
of the calculations on the method parameters is observed.
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Abstract

A boundary problem concerning the stability and free vibrations of a geometrically nonlinear cantilever
column subjected to Euler’s load (one end of column is free) was formulated in the paper. The boundary
problem was formulated on the basis of the Hamilton’s principle and the small parameter method due to
nonlinearity. Internal forces in the individual elements of a system (both in the case of rectilinear and
curvilinear form of a static equilibrium), the regions of local and global instability, bifurcation load and
characteristic curves in the plane: load — natural frequency were determined in this work. Numerical
calculations were carried out for different values of parameters of the considered system. These parameters
are: flexural rigidity asymmetry factor and the rigidity of element connecting the rods of the column .

Keywords: divergence instability, column, free vibration, Euler load, nonlinear system

1. Introduction

Geometrically nonlinear slender systems are the systems where mathematical description
of the stability and free vibrations problem relies on nonlinear differential equations
(nonlinearity is connected with geometrical parameters). Nonlinear differential equations
are obtained by applying theory of moderately large deflections to formulate the
boundary problem. Complete solution to the stability of slender system consisting of two
different elements was presented for the first time by L. Tomski in work [1]. The
presented solution concerned a behaviour of the considered system after attaining the
bifurcation load. Research into geometrically nonlinear systems included the different
cases of the load: both conservative [1-6] and non-conservative [7] as well as local and
global instability [2, 3] and the initial prestressing [4-6].

2. Boundary problem — formulation and solution

Complex geometrically nonlinear system considered in the paper is presented in Fig.1.
This system consists of three symmetrically placed rods of the flexural rigidities (EJ);,
(EJ)> and (EJ); (EJ)> = (EJ)s), compression rigidity (EA),, (EA); i (EA)s (EA), = (EA))
and mass per the unit length (pA4),, (p4), and (pA4); ((p4), = (pA);3). The finite rigidity of
element connecting the individual rods of the column at x = / was modelled with the use
of rotational spring of rigidity C. The system was subjected to Euler’s compressed load
and was rigidly fastened. The boundary problem was formulated on the basis of
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Hamilton’s principle and the small parameter method. Kinetic energy 7 and potential
energy V of the considered system are as follows:
=/ 2
] O]

1 2 x:
1 oW (xt)) 1 [ oW (x|
T= ZZ(pA)i‘([( o j dx + zm[ o

V=% Z(EJ)il‘[GQngT(j"’)szx+Z(EA)I.JZ'(6U5(;”)+%[6Wé(;"t)j2]2dx +

] "

! 0

2

x=l

x= x=l
PUl(l,t)—%c[aWé(xv’)| _ aWza(x,t)| J
X X

x=1
,(0.) wien|*
, x =/
Win|*

Uy(Lo)

(E))y = (E))3

rods2i3

W(x.t)

Z

Fig. 1. Diagram of the considered nonlinear system

The internal force in the i-th rod is defined by formula:

S,(1)= —(EA),-[aU" (1) +1(6W"("’t)n 3)

ox 2 ox

Further discussion into the boundary problem was carried out with the use of
dimensionless quantities:

e A T

where: S{7) — internal force of i-¢h rod of the column, @ — natural frequency
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The geometrical boundary conditions of the column are written in the following
form:
w(0,7)=w,(0,7) = wy(0,7)=0; o (£.7) = ow,(¢.7) = ow,(&.7) =0 (5
o oy 0 |, %

&=l 5 1
e ©
ul(O,T)zu2(0,1)=u3(0,1):u4(0,1)=0 @)
w(l,7)=u,(1,7)=u;(,7) =, (1,7) (®)

Using Hamilton’s principle and considering the geometrical boundary conditions
(5-8) one can obtain:
— differential equations of motion in the transversal direction to axis of the column

S wler) o @lr) (ot Pwler)

; 7) p ©)
o& o0& (EJ), ot
— differential equations of longitudinal displacement
0 ou(er) 1famlen)) | (10)
o&| o0& 2 o0&
— natural boundary conditions
(EJ)1 62wl(§,r)|§:l L C 6wl(§,r)| = 6w2 § z' (1
[oee | o¢ |
= (E), w o) [ aw(en)” aw2 (&r | -
> — (12)
= o0& o& | & |
; = &=l
Z(E,‘f)’ 0 vgg,r) Vs(c )awlé(g o) 5,(2) a( &)
" (13)
+8,(z o€ T)| —m@QW(é’T)| =0
APy | or* |
S5,(r)+S,(z)+S,(z)-P=0 (14)

Equations of longitudinal displacement after double integration and application of the
boundary conditions (7) were written as follows:

ule.o)= —(SE"—S)?i - H_awa(? T)jzdé (15)

Equations (15) are nonlinear. The small parameter method was used to finally
formulate the boundary problem. This method relies on expansion of all nonlinear
components of differential equations into the power series of small parameter. Nonlinear
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components of differential equations are: transversal displacements w;(&,7), longitudinal
displacement u,(&,7), internal forces of individual rods Sy7) and natural frequency .
Complex geometrically nonlinear column is characterized by two form of static
equilibrium: rectilinear and curvilinear. The component of transversal displacement
independent on time occurs in the case of curvilinear form of static equilibrium in
expansion into power series of small parameter. This component is characterized by
static displacement around which free vibrations appeared for curvilinear form of static
equilibrium. Expansions into the power series of small parameter are substituted into
differential equations and the boundary conditions. Thus, the differential equations and
boundary conditions connected to appropriate power of the small parameter were
obtained. On the basis of the solution to the formulated boundary problem, the
distribution of internal forces in the individual rods of system, bifurcation and critical
load and natural frequency were determined.

3. The results of numerical computations

The dimensionless parameter of bifurcation load in dependence on flexural rigidity
asymmetry factor x for different values of parameter ¢ defining the rigidity of rotational
spring is shown in Fig. 2. The results of numerical computations concern geometrically
nonlinear 4, and linear 4,; system. Geometrically linear system is built only of two rods
denoted by indexes 2 and 3 (Fig. 1). At a certain value of flexural rigidity asymmetry
factor y , the relationship 4, < 4, took place. In this case system is characterized by
local instability. The global instability 4, > A,; occurs in the remaining range of flexural
rigidity asymmetry factor.

3.0+
y, [ Geometrically linear system (Ay;) | —==—=—=—- |
M| ‘ Geometrically nonlinear system (A;) l e ‘
s T
| le=0 RN
] .c= ~
20 2. ¢=0.0005 N
1 3.¢=0.001 N
15 4.¢=0.002 AN
' 5.¢=0.005 N
1 6.¢=0.01 cl »
= c=
1.0 — 7.c=00 Z(EJ):
0.5 -] . bl
[ Local instability [ %5 > &y | g Z(EJ)
[ Global instability | % < Ay - g
0.0 I B AR L1 B S T
0.0001 0.001 0.01 0.1 wol

Fig. 2. Dimensionless parameter of bifurcation load 4, in dependence of coefficient of
asymmetry flexural rigidity u at different value of parameter rigidity of spring ¢

The initial prestressing is a way of increase in bifurcation load of geometrically
nonlinear system which is characterized by local instability. The initial prestressing
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relies on the initial stretching and compressing rods of the column. The influence of the
initial prestressing on bifurcation load was presented in Fig. 3.
3.0+

Initial prestressed Agg_; Initial prestressed Agr.» 3
Ay J rod 1 - compressed rod 1 - stretched
rods 2, 3 - stretched rods 2, 3 - compressed
25 -
i \}“hum.\‘
2.0+
1.5+
1.0 H n=0.001
) N . lLe=0
0.5 So-Inital S, . 2.¢=0.001
prestresse TN N
c . 3.¢=0.005
il force Z (EJ) Momax e
00 T T |IIHHI1 “IHHII ‘ T IIHIH' T I\IHH‘ T \WIIIII‘ T 1I\HH| T I\IHH‘
0.1 Apr;  0.001 0 0.001 0.01 0.1 1 Agras 10

Fig. 3. Parameter of bifurcation load A, in relation to parameters ¢ and ¢, at {3 = 0.5

Characteristic curves in the plane: load — natural frequency were presented in figure
4. Numerical computations were conducted for different parameters of the considered
system.

w=0.001 T.e=
A 6.c=0.01
5.¢=0.005
1.6 4. ¢ =0.002
3.¢=0.001
2. ¢ = 0.0005

0.8 _rr
i )
0.4 > (p4)
Q =2t -
1 DY)
0.0 R e B E R T B A e e R A aat]
0.01 0.1 1 10 100 ©F 1000

Fig. 4. Characteristic curves in the plane: load — natural frequency

4. Summary

The boundary problem concerning free vibrations of a geometrically nonlinear system
subjected to Euler’s load was formulated in the paper. The bifurcation load, influence of
the initial prestressing on value of the bifurcation load and characteristic curves in the
plane: load — natural frequency were determined. Numerical computations were
conducted for different values of parameters of the system (such as flexural rigidity
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asymmetry factor, torsional rigidity of element connecting individual rods of the column
and the initial prestressing of the system). On the basis of numerical calculations was
found that the increase of the stiffness of rotational spring causes the increase of
bifurcational force at smaller value of parameters y and Agr,;. First free vibration
frequency is not depended on the stiffness of rotational spring at smaller value of
external force.
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Niestateczno$¢ lokalna i globalna oraz drgania wspornikowej kolumny geometrycznie
nieliniowej z uwzglednieniem skonczonej sprezystosci elementu laczacego poszczegolne
czlony kolumny
W pracy sformutowano zagadnienie brzegowe dotyczace statecznosci i drgan wiasnych wspornikowe;j
kolumny geometrycznie nieliniowej poddanej obciazeniu Eulera (jeden koniec swobodny). Do sformutowania
zagadnienia brzegowego wykorzystano zasad¢ Hamiltona oraz ze wzglgdu na wystgpujaca nieliniowo$¢
metod¢ matego parametru. W pracy wyznaczono sity wewngtrzne w poszczegolnych cztonach uktadu
(zar6wno w przypadku prostoliniowej jak i krzywoliniowej postaci réwnowagi statycznej), obszary
niestatecznosci lokalnej i globalnej, obciazenie bifurkacyjne oraz krzywe charakterystyczne na plaszczyznie
obcigzenie — czgsto$¢ drgan wiasnych. Obliczenia numeryczne przeprowadzono przy réznych wartosciach
parametrow rozwazanego uktadu do ktorych zalicza si¢ wspotczynnik asymetrii sztywnosci na zginanie oraz

sztywnos$¢ elementu faczacego cztony uktadu.
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Abstract

Thanks to great progress that has occurred in technology in the past twenty years many
engineering issues which were difficult or even impossible to solve in the past, now are
worked out with use of the modern numerical technology tools. Such tools consist of
systems supporting calculations with Finite Element Method. This method is currently
the main tool used to solve many mechanical problems. What is more, dominates among
all the calculations performed in the field of biomechanics. In the paper, the alternative
methods of solving differential equations was presented — Method of Fundamental
Solutions (MFS). It is a meshfree method which in the last years is becoming more and
more popular as it is very effective and easy to determine solutions of the differential
equations of many engineering solutions [1-6]. However, it is not as commonly used in
three-dimensional issues of theory of elasticity or heat conduction. The aim of the paper
is to show that the method can be successfully implemented in order to determine the
spatial stress pattern or displacement distribution in case of biomechanics.

Keywords: Biomechanics, Method of Fundamental Solutions, Spine, Cervical Segment, Stresses
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1. Introduction

Method of Fundamental Solutions belongs to the meshfree numerical methods serving to
solve the differential equations describing many engineering issues. It has already been
used in problems of heat conduction, theory of elasticity, plasticity and fluid mechanics.
Its main advantage is its relatively easy computer implementation and in comparison to
other methods very little complexity of calculations.

In MFS the solution of problem (differential equation + boundary condition) is
approximated with help of linear combination of fundamental solutions of governing
equation. The fundamental solutions are the functions of the source points occurring
outside the examined area.

In order to obtain the solution of examined problem in the given area, it is enough to
define one algebraic linear equations system in which the coefficients standing before
the fundamental solutions in their linear combination are the unknown. These linear
coefficients are determined based on boundary conditions. It allows to estimate easily
the calculation error and approximation thanks to the standard tools of linear algebra.

Determining stress patterns in the model implant of the intervertebral disc is an
example of the method’s use. The chosen object has a homogeneous structure, therefore
the classical equations of Cauchy-Navier were used to describe the fundamental
mechanical parameters (stresses, displacements, strains).

2. Governing equations

On the basis of linear theory of elasticity for a homogeneous body with constant material
parameters in three-dimensional area €, the Cauchy-Navier equations for displacements
u;, Uy, uzhave form:

2 2 2 2 2
(2 2vj6ti1+8uzl+8uzl+( 1 j@uz +( 1 jau3 o )
1-2v ) ox;, 0Ox, Ox; 1-2v)ox,0x, \1-2v)ox0x,
with the boundary conditions defined on 6Q form:
Bi[u]91’l291"3,allal2’l‘3]:J(zj fOV i:192939 (2)

where 0Q is the boundary for the Q area and an operator B; for i-1,2,3 defines boundary
condition by Dirichlet, Neumann or Robin. Defining a stress ¢; as:

1| Ou, Ou,
g =—| —+—L or i,j=123, 3
Y 2[8)(]. ﬁxi] £ / )
stresses can be obtained from the Hook’s law:
oy =Adu, +2ue,  for i,j=123. 4)
And thanks to them, interacting forces ¢; can be expressed in the form:
t,=oun;  for i=123. 5)
In the above formulae the Lame constants A and x are determined with relations:
VE
A=y (6)

(1+v)i-2v)
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_E
"= 2(1+v) @
where £ is the module of elasticity and v is the Poisson coefficient. For a source point Z
placed outside the examined boundary acting on a point PeoQ, the fundamental
solutions of system of equations Cauchy-Navier have a form:

3—4vhl +lx, —x, f
G”(P, ):16 1 l:( V)rpz 3(xlp xl;) :l’ (8)
ﬂ:u(l_v) Tpz
1 (x1 X sz X )
G,(P,Z)=G, (P,2)= e V2 72
2(P.2)= G, (P.2) 16”#(1_”{ > } ©)
1 (xl X Xx3 X3 )
G,(P,2)=G, (P, Z)= SRV TR
5(P.2)= Gy (P.Z) IW(H){ > } (10)
_(3—4v)rlfz+(x2 - X, )2_
G, (P, Z)= b %
2(P.Z) 167u(1-v) oy ’ an
1 (xz X Xxs X3 )
G,\P,Z)=G,,\P,Z)= a AN z
23( > ) 32( ) ) 167[;1(1—1/) ) } (12)
1 _(3—4V)rlfz+(x3 - X, )2_
G.\P,Z L Z
a(P.Z) 167u(1-v) o ’ (13)
where:
oy = \/(xlp X, )2 +(le1 —xzz)z +(x3f X, )2 (14)

The solution (the searched displacements) is obtained as the linear combination of
fundamental forms’ solutions:

N N N

uw, (a.b,c,Z;P)=7 a,G,(P.Z)+ Y bG,(P.Z)+ Y ¢,Gy(P.Z), (15)
i=1 i=1 i=1
N N N

Uy, (a,b,c,Z;P)= >.a,G, (P,Z)+ Y b,Gy(P,Z)+ Y ¢,Gy(P,Z,), (16)
i=] i=1 i=1
N N N

uy (a.b,¢,Z;P)=>"a,G, (P,Z)+ Y .b,Gy,(P,Z)+Y.c,Gy(P,Z), (17)

i=1 i=l i=l1
where 3N-dimensional vector § contains the coordinates of the source points Z;, however
N-dimensional vectors a, b, ¢ contain the unknown coefficients. After solving the above
system of linear equations with 3N unknown coefficients, the stresses, displacements
and strains in any point of the considered area can be determined according to the
formulae presented above.

3. Example and conclusions

In the paper, the problem of determining the stress pattern in the corpus vertebrae of
cervical spine of human was used as an example of the application of the Fundamental
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Solution Method. In the Figure 1 the outline of the structure of the spinal vertebra
(C5-Cy) is shown.
processus transversus
corpus vertebrae

spinous process
Figure 1. The structure of the spinal vertebra (Cs-Cy)

The maximum strains in the corpus vertebrae of a patient with a degenerative disease
of the segment of cervical spine were examined. They were determined for two
conformations of a spine: before and after surgery. The load consisted only of the mass
forces and the geometry of the corpuses was determined based on the X-ray photography
of a patient. The examined patient was 170 cm high and his mass was 78 kg. Material
parameters of the bone tissue was taken from literature [8]. In the below Table 1 the
maximum stresses in the C; to C¢ corpuses vertebrae are presented.

Table 1. The maximum stresses [MPa] in the sagittal section in the corpuses vertebrae

spinal vertebra C3 C4 C5 C6
after surgery 1.84 2.10 2.64 2.97
before surgery 1.80 2.15 3.13 3.59

A minor improvement can be observed — the decrease in the maximum stresses
especially for C5 and C6 vertebrae. It is caused by the change in the conformation of a
cervical spine. As a result of placing the implant between the vertebrae C5 and C6, the
geometry of the cervical segment has changed which leaded to different stress pattern.
The increased stresses present in the vertebrae as a result of improper conformation are
the reason for the deformation of the bone tissue which contributes to pain complaints
and demands surgery.
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Zastosowanie metody rozwiazan podstawowych w biomechanice kregostupa szyjnego
Duzy postgp jaki dokonat si¢ w informatyce w przeciagu ostatnich dwoch dekad spowodowal, ze wiele
zagadnien inzynierskich trudnych badZ wrecz niemozliwych niedawno do rozwiazania, zostato opracowanych
za pomoca nowoczesnych narzedzi numerycznych. Do takich narzedzi zaliczy¢é mozna wszelkie systemy
wspierajace obliczenia metoda elementow skonczonych (MES). Metoda ta jest w tej chwili gléwnym
narzedziem rozwiazywania wielu probleméw mechaniki, a szczegélnie dominuje we wszelkich obliczeniach
prowadzonych w dziedzinie biomechaniki. W pracy zaprezentowano alternatywna metodg rozwiazywania
réwnan rozniczkowych - metodg rozwiazan podstawowych (Method of Fundamental Solutions MFS). Jest to
metoda bezsiatkowa, ktora w ostatnich latach zyskuje coraz wigksza popularnosé jako wyjatkowo skuteczna i
prosta do wyznaczania rozwigzan rownan rozniczkowych wielu zagadnien inzynierskich [1-6]. Metoda ta, nie
jest jednak powszechnie stosowana w trojwymiarowych zagadnieniach teorii sprgzystosci czy przewodzenia
ciepta. Celem pracy jest pokazanie, ze mozna ja skutecznie zastosowa¢ do wyznaczania przestrzennego
rozktadu naprgzen czy przemieszczen w zagadnieniach biomechaniki.
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Abstract

In the paper the model of the cervical segment of the human’s spine based on the theory of strongly curved
beams was proposed. Suggested model was used to biomechanical analysis of cervical segment of the spine
before and after its stabilization by cage. The stress patterns in centra around stabilizer among chosen patients
suffering from discopathy in the cervical segment were described.

Keywords: Biomechanics, Spine, Cervical Segment, Stresses

1. Introduction

Degenerative changes in the spine develop in case of every human. They intensify with
the age and very often may lead to the deformation of the vertebrae and of intervertebral
discs, to the narrowing of the vertebral canal as well as of the intervertebral openings and
even to the instability of the spine. The spine which is distorted with disease can not
fulfill the basic functions correctly as the organ protecting the spinal cord, responsible
for the movement or as the support for the body. The degenerative changes which
significantly disrupt the basic functions of a spine may contain different changes of the
physiological curvatures, scoliosis, twists and improper positions if vertebrae. In the
paper, the cervical spine segment is analyzed, where the physiological lordosis has
changed as the result of degenerative disease. The method for determining stresses
present between the vertebrac was presented and it was used to compare the stresses for
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the certain vertebrae for the patients who were operated on. The treatment considered the
remove of the degenerated intervertebral disc and substituting it with the implant. As the
result of the surgery, the spine conformation and the stress pattern change.

2. Mechanical model of the cervical spine segment

The cervical spine segment consists of seven vertebrae (from C; to C;) where each of
them has different characteristic dimensions. The vertebrae from C, to C; have a similar
structure presented schematically in the Figure 2.

a) b)

processus transversus
corpus vertebrae cortical bone
trabecular bone ]

spinous process

Figure 1. The scheme of the structure of cervical vertebrae C2- C7: a) section of
vertebrae in sagittal plane, b) section of vertebrae in cross-section

The vertebrac C; and C, belong to the upper part of a cervical spine and have
different structure from the other vertebrae. The links with the scale of the occipital
bones are called the cranial-spinal junction and their structure and compound system of
the ligaments assure the proper motion of head. The corpus vertebrae for C, to C; are
responsible for the transfer of stresses such as the force caused by the contraction of
muscles or by the weight of the head. In order to determine the stresses, there are
possible different approaches because the corpuses are made of different substances [1]
(Figure 2b). The assumption that the corpus is a homogenous body consisting of
substance with averaged properties of the cortical bone and the trabecular bone is
frequently used and is the approach which most simplifies a model. In the paper, the
model illustrates the reality as much as it is possible, which means treating every corpus
as the heterogeneous body made of the two different substances. Some simplifications
were also introduced, such as omitting the trabecular bone as the one which transfers a
minor part of stresses in comparison to the cortical layer of corpus. The stresses
determined for the posterior and anterior planes of the corpuses vertebrae for C, to C; are
the field of the examinations in the paper. This is why, every vertebra is treated as the
elliptical beam with the elliptical hollow.
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Figure 2. The scheme of the loads of cervical spine

The forces causing stresses in the corpuses vertebrae are the weight of head and the
vertical component of the net force of the muscles acting on its posterior part
(Figure 3). The data considering the forces and the arm of the forces on which they act
and the geometry of the cervical spine segment as well as the dimensions of the
characteristic vertebrac were taken from literature [2]. For every examined case, the
centre of the coordinate system was chosen in the centre of vertebra C; (as in Figure 3).
Furthermore, the coordinates of the centre of corpuses of every vertebrae from C, to C;
were used as the bends of interpolations. In order to obtain a curve y(x) representing the
conformation of cervical spine segment the method of the interpolation with the spline
functions [7] was used. The value of an axial force F acting on the system is the sum of
the weight of head and the force originated in neck muscles

F=0+5. (1)
While, the bending moment derived from these forces is determined from formula
M, =1(0+S), i=2,.7, )

where M; —bending moment acting on i vertebra, [, — y-coordinate of the centre of the
corpus of i vertebra. Moment acting on the vertebra C, is equal to 0. Knowing the loads
on every vertebra the stresses which are the field of interest can be determined. In order
to do this, the radius of the curvature in every x point of y(x) curve must be defined, in
which the stresses are to be known. It is determined from the formula:
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dy o
1+(xj:l
[ “) ] 3)

Having a radius of the curve r , the position of the neutral axis e is determined (on
which the stresses coming from the bending moment are equal to zero) [3]:

VO(x):

ofx)=rfo)-—2 “

where A, — the fields of the cross-section of the i vertebra and the integral in the above
expression is on the cross-section area of the i" vertebra, r(x) — distance from fiber to the
centre of the curve y(x) (Figure 3).

research fibre . XIS of spine: y(x)

neutral axis

center of curvature

Figure 3. Basic geometric parameters in sagittal section.

For such defined parameters, normal stresses o, in the i” section of vertebra in the
distance s from the neutral axis of vertebra can be derived from the formula:

F M. s
o, =——+—= or =123, 5
"4 Ader s )
where r=ry-e+s is the distance between the examined fiber and the centre of the of the
curvature of curve y(x) [3].

3. Conclusions

In the paper, the two conformations of cervical spine before and after surgery on a
patient were studied. Parameters such as the coordinates of the centers of corpuses
vertebrae, the diameters (characteristic dimensions) of corpuses vertebrac were read
from patient’s X-Ray photography, the value of the force S was derived based on the
data considering the moment of neck’s muscles’ force [4,5,6,9,10,11]. The mass of the
patient was 68 kg, however, the material parameters of bone tissue were taken from
literature.
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In Table 1, the values of normal stresses for the anterior and posterior plane of
corpuses vertebrae from C, to C; measured in the middle of corpuses’ heights are
presented. The normal stresses were determined for the conformation of cervical
segment before and after surgery which was characterized by placing between Cs and Cg
vertebrae an implant substituting the intervertebral disc. As the result of the geometrical
change, the stress pattern has changed.

Table 1. Normal stresses determined for anterior and posteriori C,-C; vertebral margins

Normal stresses o; [MPa]
place of
determining Cz C3 C4 C5 C() C7
stresses
anterior body | -0.45 0.83 0.96 1.33 0.39 -1.55
before margin
burgery | Posterior -1.79 -2.64 -2.90 -3.14 -2.47 -0.64
body margin
anterior body | -0.48 0.84 1.27 2.00 1.04 -1.40
after margin
surgery Posterior -1.85 -2.53 -2.97 -2.79 -2.22 0.03
body margin

Based on the results shown in the Table 1, it can be observed that the biggest stresses
in the corpuses vertebrae occur in Cy, Cs, Cy vertebrae before as well as after operation.
Even a minor change of the relative distribution of cervical vertebrae after the surgery
caused change in stress pattern. It can be noticed that the reduction in the absolute value
of stresses in the operated segment is connected to increased stresses in the neighbouring
segments. X-Ray photographies are usually taken a few weeks after operation. In order
to have a full picture of the situation, the measurements should be repeated after a longer
period of time e.g. after a year. After such a time, as the result of the introduction of
implant, the conformation of the cervical spine segment can differ significantly from the
original conformation.

Data about the stresses occurring in cervical vertebraec can provide valuable
information specifying the assessment of the deformations of spinal axis. In the
presented method, determining the geometrical parameters as well as the loads of the
segment of cervical spine cause that the model is individualized. Additionally, the
calculations can be implemented to the common use and processing big amount of data.
What is more, this method of determining stresses is very fast and easy, which is a great
advantage of such an approach.
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Model odcinka szyjnego kregoslupa oparty na teorii silnie zakrzywionego preta
W pracy zaproponowano model odcinka szyjnego kregostupa czlowieka oparty na teorii mocno
zakrzywionego prgta. Opracowany model zostal wykorzystany do biomechanicznej analizy krggostupa
szyjnego przed i po jego stabilizacji cage’em. Opisano panujace rozktady naprezen w trzonach kregowych
wokot stabilizatora u wybranych pacjentéw cierpiacych na dyskopati¢ w odcinku szyjnym.
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Abstract

The aim of this paper was to develop and validate a model of controlled drug release from hydroxyapatite in
the form of a cylinder, using cellular automata. In the course of working there were analyzed many main
parameters of shapes and medicine, as well as various models of the inflow buffer, diffusion and dissolution
of particles.
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1. Introduction

Hydroxyapatite belongs to a group of so-called biomaterials. In a biological environment
material this degrades into biocompatible substances. However, the time of this process
is longer than the time of the release of the drug and it is a reason why the model
assumes that the structure of delivery does not change during the simulation.

In the study a cylindrical shape with a hole in the shape of a smaller cylinder was
analyzed. In this hole there was a drug (heterogeneous model). The device was secured
at the top with wax to prevent the escape of the medicament (Figure 1).

" Drug

- Hydroxyapatite
cylinder

Figure 1 The model of hydroxyapatite device in cylindrical shape

2. Cellular automata

Cellular automata are a tool for modeling changing in time the various physical,
chemical, and biological phenomena, in which many systems interact together [1].
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Using this simple model it can be simulated a lot of complex processes taking
advantage of a simple algorithm. A cellular automaton is a dynamic mathematical
model, in which time, space and states are discrete values

At each step, a cellular automaton changes the state of its cells. A step is called a
system’s evolution. Each cell is assigned a state from a finite set of states. In order to
make the cellular automaton reflect the simulated phenomenon correctly, it should:

— define initial states of all cells at t =0,

— designate a set of rules by which the automaton can evolve.

3. Model of dissolution

Dissolution is a complex process, which is influenced by physicochemical properties of
drug and solvent. The first step is to contact the solvent with the surface of solid
substances. The next step is to break the molecular bonds (merger) and salvation (impact
created after dissolving ions with solvent’s molecules). The last stage is a transfer
molecules within the solvent (diffusion) [2].

The process of dissolution, although quite complex in terms of physico-chemical
properties, is usually presented in a simple way of simulation. In work [3] [4] the authors
applied a simple rule of transition, describing the process of dissolving the drug, which
lies in the fact that the cell can alter the state of permanent drug to dissolved drug if it
has at least one neighbor with solvent state.

In created application each cell with permanent drug’s state is assigned a “solubility”
parameter, which determines the life span of such cells. In subsequent iterations, in
which at least one of the neighbors is in the buffer state this parameter is able to
decrement. At the time when it will be zero, the state of the cell changes to the drug
dissolved. Thus, the smaller the parameter value, the quicker the drug is soluble.

4. Model of diffusion

Diffusion is a process by which matter is transported from one part of the system to
another, due to the random motion of molecules [5].

The description of the basic laws of diffusion was developed by Adolf Fick. Fick's
first law describes the relationship between the quantity of substance released per unit
time from the unit area of the media and the gradient of the concentration of this
substance. When the system is heterogeneous, Fick's law takes the form [8]:

Jo DKeAc )
)
where J — the change of the quantity of drug in time, D — the diffusion coefficient, Ac -
the difference in concentration, T — the tortuosity of pores, € — the porosity, 1 — the
thickness of the material, K — the coefficient of medicine distribution between the liquid
surrounding and contained in the pores of delivery system.

Fick's second law, assuming that the diffusion coefficient does not depend on the

concentration, can be written:
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Molecules in the medium move in an irregular manner. These movements are
referred to as Brownian motion [6]. Although Brownian motion is really complicated
process, often it is simulated using simple models. One of them is called a random drunk
walker [2]. In each iteration, the transfer of molecule is the same (regardless of direction)
and after each step a new direction (all are equivalent) is chosen. If all particles are in
one agglomeration at the initial moment, after several iterations the area of molecule
occurrence will be much greater. It turns out that the spatial distribution of particles in
this model corresponds to the Gaussian decomposition. Also calculated that the average
displacement at time t is proportional to .

The Block rotation method bases on Margolus’s neighborhood. In the model there is
a separation of iterations into odd and even, for which the transition rule is the same. It
consists in the fact that the 2x2 block of cells can be rotated clockwise or
counterclockwise. The probability of rotation in both directions is the same [9]. It
required numerous modifications to apply the block rotation algorithm to simulate a
diffusion, where obstacles may get in the way of particles (eg. hydroxyapatite). After
entering the appropriate changes, in some cases, a cell in the dissolved drug’s state does
not change its position. This happens when in the block is not a single cell in the buffer
state, which the drug molecule could switch places. If in the block there are two cells
representing the moving drug molecules and one obstacle, it may happen that only one
drug molecule changes the position. The examples of rules used in the method of Block
rotation are shown in Figure 2.

= — = —_—
r . —t
Figure 2. Samples of transition rules in modified algorithm for Block rotation. Symbols:

green cells - cells which are an obstacle for moving medicine, violet - a cell capable of
dissolving drug, the red arrow points the direction of rotation.

T

5. Model of flow buffer

The problem of simulating the flow of buffer through a porous material is not a new
issue. Using the Navier-Stokes’s equations [10] the principle of conservation of mass
and momentum of a moving fluid was described. According to them, changes of the
element of fluid momentum depend only on external pressure and internal viscosity in
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fluid. The first Navier-Stokes’s equation for incompressible fluid compares acceleration
to the vector sum of forces acting on the particle:

%+(V.V)V=—lvp+W2V+f 3)
Yol

where p — the fluid(liquid) density, V — the flow speed, p — the pressure, v — kinetic
viscosity, f — main force acting on the particle, e.g. gravity and [J - the del operator.

The second Navier-Stokes’s equation looks as follows:

1% +V-V=0 4)
p ot
However, it should be noted that these equations apply to an incompressible fluid and
the time derivative of the density is equal to zero, so the equation will reduce to the
form:
V-V=0 (&)

The above equation (5) is the law of conservation of mass. As a result, there are
additional restrictions on the equation of motion of the first Navier-Stokes (3).
Therefore, three components of velocity are closely linked. By identifying two
components of speed, it can clearly identify the third component.

With the advent of the gas lattice model’s cellular automata [11], there has been a
huge breakthrough in simulating the flow of water in the pores. The main method of this
group of models is a Lattice-Boltzmann method (LBM) [12]. In gas lattice models space
and time are discrete. Particles can move on two or more dimensional grid with the
nodes located in the same distance from each other. Time steps are equally divided. The
location of particles is represented by the coordinates X = (X, Xy,..., X,), Where n is the
dimension of the space grid. Number of particles in a given node is presented by n’s,

s = (Sg, S1,--.,Sn), Where sg is the number of fixed particles, while s,...,s, [1 {0,1}, where
0 - presence or 1- lack of particles moving in the direction of the velocity vector [, [1,,
Os. ..., Oy

If algorithm based on the model of the gas lattice is implemented, a defect should be
taken into consideration, namely, a defect consisting in that the time, the position and
velocity of particles are natural numbers. The advantages of this model are the speed and
the slow accumulation of numerical error.

6. Results

The measure of successful simulation is the best match between the results obtained and
their experimental results. For this purpose the criterion was introduce, the so-called
index differences [7]:
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where: E, - experimental result at t, S; — simulation results at t, t - time, N — number of
points.

This index is a number ranging from 0 to 1. The better the fit of simulation results to
the experimental data, the smaller is the number. In [7] the authors suggest that Ic < 0.2
means a good fit. Figure 3 shows the release profiles for different drugs together with
examples of simulation results after calibration. The values of the index differences for
each pair of curves are provided. Apparently the match is on a very good level, since
indexes are much lower than 0.2 and are in the range of 0.1040 to 0.0577.

Laboratory data together with simulation calibrated results

B
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Figure 3. Laboratory data, together with simulation calibrated results. Next to simulation
results are index values differences.

7. Conclusions

For each model of the diffusion the relationship between the parameter of solubility and
the speed of release have been determined. Each time it had the exponential character,
but it differed in scope adopted values. For the diffusion based on Brownian motion it
was examined how the number of changes in position of diffusive molecule decreased
the rate of drug release. In the work it was found that models using Margolus’s
neighborhood are characterized by several adverse features such as a very slow process
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algorithm, the ability to block the drug inside pores and unpredictable results on the
basis of preset parameters.

Thanks to these tests, the choice a particular model of diffusion can be consciously
made on the basis of the advantages and disadvantages of the different methods
presented in the work.
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Symulacja uwalniania leké6w z hydroksyapatytowych ksztaltek przy uzyciu automatow
komorkowych
Celem pracy bylo opracowanie oraz walidacja modelu kontrolowanego uwalniania lekow z
hydroksyapatytowego nosnika w formie walca, przy uzyciu automatow komorkowych. W toku pracy
dokonano analizy najwazniejszych parametrow ksztattki oraz leku, a takze réznych modeli naptywu buforu,
dyfuzji oraz rozpuszczania czasteczek.
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Continuous connection method in dynamic analysis
of composite tall building structures
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Abstract

The continuous connection method has been extended for the dynamic analysis of composite tall buildings
structures, which contain substructures of different materials. The example of free vibration analysis of
79-storey building has been included. The results obtained by the present method have been compared with
those of the finite element method program and field measurements, given in the literature, and a good match
has been observed.

Keywords: dynamic analysis, tall buildings, coupled shear walls, continuous connection method

1. Introduction

In tall buildings the lateral loads that arise from effects of wind and earthquakes are
often resisted by a system of coupled shear walls acting as vertical cantilevers. It is
possible to perform the analysis of shear wall structures using either the discrete method
or the continuous one [5]. In the continuous approach, the horizontal connecting beams,
floor slabs, and vertical joints are substituted by continuous connections. In recent years
the use of continuum models in structural analysis has received considerable attention.
These models offer an attractive, low cost method for analysing large structures and they
represent the useful tool for the design analysis.

For the dynamic analysis it is convenient to use a hybrid approach based on the
analysis of an equivalent continuous medium and a discrete lumped mass system [1, 3,
6]. This paper presents the extension of the method and the computer program based on
it allowing for computations of the tall buildings constructed from different materials.
The description of a structure and loads applied to it is made with the use of the global
coordinate system, OXYZ, with axes X and Y assumed arbitrarily on the level of fixing
shear walls, and with vertical Z axis (Fig.1).

2. Equations of equilibrium

An equation of equilibrium of resultant shear forces and torsional moment in the cross-
section of a shear wall system ty, with shear forces and flexure-torsional moments acting
in the cross-sections of shear walls tgy can be presented in a matrix form (L is matrix
defining the transformation from the global coordinate system of the structure to local
coordinate systems of shear walls):

2 T
t(z) = L' tg(2) 1)

An equation of equilibrium of normal forces in shear walls ng with forces in
continuous connections ny and vertical loads acting on those elements ng is expressed
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by a matrix relation (Sg - matrix related to the interaction between the continuous
connection and the adjoining shear walls; Sk - matrix related to the action of vertical
loads on shear walls)

H H
ng(z) = sEjnN(z)dr + stﬁR(z)dr ()

A differential relation in bending constitutes an equation of equilibrium of bending
moments and bimoments my for segments dz of shear walls. After taking into account
the forces my in continuous connections and loads ng acting on the shear walls with
eccentricities of those forces described by coordinates collected in matrices Cy and Ckg,
the equation in a matrix notation takes the following form:

A A}
tg(2) —Cyny(2) -Crng(z) = mg(2) 3)
z
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Figure 1. Three-dimensional shear wall structure: 1 — three-dimensional shear wall,
2 — continuous connections which substitute connecting beam bands, 3 — floor slabs

3. Compatibility equations

The equation of compatibility of horizontal displacements of shear walls vy, (on the
assumption that floors are undeformable in their planes) is expressed by the following
relation (vg - vector of global horizontal displacements of the structure)
vi(2) = Lvg(2) 4)
The equation of compatibility of vertical displacements of connecting beams (Fig. 2)
has the following form:

di(2) +d,(2)+d3(z) = 0 &)
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where the following relation expresses components of those displacements resulting
from bending and torsion of stiffening elements

T

di(z) = =Cy V(2 (6)

and components resulting from vertical displacements of stiffening elements due to
shortenings and settlement are presented as follows

d,(z) = S§ vz (2) (7)
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Figure 2. Components of a vertical displacement of connecting beams:
d1 — from bending of walls, d2 — from vertical displacement of walls,
d3 — from bending of connecting beams
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The relation between shortenings of shear walls u, assumed foundation settlements z,
and vertical displacements of shear walls vz is expressed by the following equation

vz(2) = u(2) + z, (®)

4. Physical relations

A differential equation of deformations in bending of stiffening elements has the
following form

mg(z) = Ky VL(Z) 9)
and an equation linking normal forces ng with axial shortenings of shear walls u can
be presented as follows
[ne(w)dw = K" u(z) (10)
0
The relation defining bending stiffness of connecting beams Ky (the remaining
stiffnesses, i.e. compression and torsion stiffness, are of no importance due to the
assumption of floors undeformable in their planes) is as follows

ny(z) = Ky d3(2) (1D
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5. Boundary conditions

The assumption of fixing the stiffening elements at the base, on one level, directly yields
the boundary conditions:
vip(0)=0, vi(0)=0, v,(0)=2%,. 12)
The assumption of free ends of stiffening elements at the top of a building allows us
to write the following relations
ng(7,)=0, mg(h)=0, (13)
where: hy, - height of the shear wall system.

6. Equations of motion and computer program

Dynamic solutions have been obtained by treating the structure as a lumped parameter
system with discrete masses in the form of rigid floor slabs arbitrary located along the
height, having flexural and torsional inertia [6]. A dynamic model with masses in the form
of rigid floor slabs has been adopted since over a half of building total mass is concentrated
on the floor levels. The coupled torsional-flexural vibrations have been considered because
torsional response of buildings during ambient and earthquake response is
significant. For shear wall multi-storey structure it is more natural to determine the
flexibility matrix D than stiffness matrix K. The vibration of a structure is described by the
following relation [2]:
DMx+DCx+x=Df (14)
where: D - flexibility matrix, M - mass matrix, C - damping matrix, x - d-element
vector of generalised coordinates (d - number of dynamic degrees of freedom of the
calculated structure), f- d-element vector of generalised excitation forces, corresponding
to generalised coordinates.

Calculations were made using DAMB program (Dynamic Analysis of Multistorey
Buildings) [7], which gives a possibility to carry out linear dynamic analysis of three-
dimensional shear wall structures.

The involved stages are as follows: (1) Determination of natural frequencies and
mode shapes, (2) Evaluation of modal participation factors and calculation of modal
loading on the structure (using an appropriate design spectrum), (3) Determination of
response estimate taking into account the contribution from the given number of modes
for various parameters of interest.

7. Numerical example

Di Wang Tower (Shun Hing Square) is a 79-storey office building, built in Shenzen
City, China in 1996 year. The main structure of Di Wang Tower is about 325 m high and
now it is the eighth tallest building in the world. The aspect ratio of height to transverse
width is about 9. This example has been chosen in order to demonstrate the potential of
the presented method in the free vibration analysis of non-planar composite shear wall
structures.
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The plan of standard floors in this tower (Fig.3) includes a rectangular section (53.5m
x 35.5 m) and two semi-circles (12.5 m radius) [4]. The composite structural system
consists of central reinforced concrete core wall and perimeter frames connected by rigid
steel outriggers.
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Figure 3. The floor plan of Di Wang Tower [4]

The results of the free vibration analysis obtained by finite element method and by
presented method are listed in Table 1. The field measurements results given by Li [4]
and Xu [8] are also presented for comparison purposes.

8. Conclusions

In the present paper the continuous-discrete approach to the free vibration analysis of
non-planar coupled shear walls has been extended to composite structures.

The results obtained by the present method have been compared with those of the
finite element method program and field measurements, given in the literature, and a
good match has been observed.
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Table 1. The first two translational natural frequencies (Hz)

in each direction obtained using FEM software [4],
from the field measurements and by the presented method (CCM)

The 1" mode | The 2" mode | The 1™ mode | The 2" mode
in longitudinal | in longitudinal | in transverse | in transverse
direction X direction X direction Y | direction Y
SATWE (FEM) 0.201 0.676 0.159 0.592

Field measurements:

Li [4] 0.208 0.688 0.173 0.540
Xu [8] 0.203 0.660 0.171 0.682

Present method (CCM) 0.190 0.636 0.166 0.636
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Metoda ciaglych polaczen w obliczeniach dynamicznych konstrukeji budynkéw wysokich

z r6znych materialow

Przedstawiono rozszerzenie metody ciaglych pofaczen umozliwiajace analizowanie budynkéw wysokich,
ktorych konstrukcje zawieraja poduklady z roéznych materiatow. Zawarto przyklad liczbowy analizy
dynamicznej budynku o 79 kondygnacjach. Uzyskane przy uzyciu zaproponowanej metody wyniki wykazuja
dobra zgodnos¢ z wynikami metody elementéw skonczonych oraz wynikami eksperymentu na rzeczywistym
obiekcie.
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Abstract

The paper presents results of preliminary experimental tests carried out on a demolition hammer. The hammer
has a T-shape symmetric handle to be operated with two hands. [1], which forces an operator to assume a
symmetric and vertically erect position. The measurements were performed using standard equipment at the
Laboratory of Dynamics and Ergonomics of the Metasystem: Human Being — Technical Object — Environment
of the Department of Vibroacoustics and Bio-Dynamics of Systems of Poznan University of Technology.
Values of vibration acceleration in three directions X, y and z were measured on the tool handle. The tests have
shown, that the tool generates impulse forces during work. It concerns particularly the ‘z’ direction along the
axis of symmetry of the tool, which is simultaneously the main direction of motion of the tool.. The
identification research on the tool are to be used for verification of the model of a Human Being — Demolition
Hammer system [3].

Keywords: vibrations, a biomechanical model

1. Introduction

The paper presents results of experimental tests carried out at the Laboratory of
Dynamics and Ergonomics of the Metasystem: Human Being — Technical Object —
Environment of the Department of Vibroacoustics and Bio-Dynamics of Systems of
Poznan University of Technology. The research is part of a research project funded by
the Ministry of Science and Higher Education.

The main goal of the research conducted within the confines of the project mentioned
above is to adapt a vibroisolation system to a tool with a T-shape handle and to achieve
in this way a reduction in vibration energy flow from the tool into a human operator. A
demolition hammer with mass of 15.5 kg with a stiff symmetric handle for two hands
was bought for the received means. At an earlier stage of the project was built a spatial
dynamic model of a Human Being — Demolition Hammer system [3]. The conducted
identification research have been used to verify the developed model as to the
correctness of its dynamic structure and the forces exciting the hammer to vibrations
during work. The correctness of the model will allow wide-ranging analysis of
dynamics, power distribution and energy flow in the investigated structure, which is
planned as the next stage of the research project.
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2. Demolition hammer

A tool with mass of above 15 kg with a T-shape symmetric handle to be operated with
two hands (Fig. 1) was used for identification research. It is a heavy pneumatic hammer
with a monolithic casing, a built-in lubricator, and an outlet air silencer.

TECHNICAL DATA OF THE PNEUMATIC HAMMER:

Tool grip: 25x108 mm
Mass: 15.5 kg

Air consumption: 1.5 m*/min

Length: 590 mm

Number of strokes per minute: 1470 strokes/min.

Standard demolition hammers are used for such works as crushing of asphalt,
concrete, frozen soil, driving posts, consolidation of subgrade etc.

1-

air inlet
lubricator
oil plug
handle
silencer
trigger

tool retainer

cylinder

Figure 1. Demolition hammer used for identification research

The investigated tool is not equipped with any vibroisolation system. It is a pneumatic

tool with 1470 strokes of the ram per minute.

3. Test stand

Experiments were carried out on a test stand for hand-held impact tools with use of a
variant for measurements performed with participation of a human operator [1] (Fig. 2).
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Test stand

Impact energy absorber

Figure 2. Test stand for hand-held impact tools

Conditions of interaction of a hammer with a substrate are defined precisely by
international standard ISO 8662 [4]. A standard substrate in the form of an impact
energy absorber was introduced — Fig. 2. The substrate consists of a 150 mm high pile of
four-millimeter steel balls closed in a thick-walled casing with the internal diameter of
60 mm. The energy absorber is fixed to a concrete foundation with mass of about 500
kg.

Using a standard equipment for measurement of vibrations [2] (Fig. 3) accelerations
on the handle were measured. The following equipment was used for measurements:
B&K 4384 and 4374 accelerometers, a B&K 2513 vibration meter, RFT measuring
apparatus consisting of a signal amplifier, a low-pass filter, a high-pass filter, an
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oscilloscope and a power unit. Signals were recorded using a digital oscilloscope RIGOL
DS 1102CD.

RFT apparatus

Research object
RIGOL DS 1102CD digital oscilloscope

Figure 3. Diagram of measuring equipment used for research

4. Measurement results

The instantaneous runs of vibration acceleration of the handle are shown in Fig. 4.Initial
tests showed that the actual frequency of work (of stroking) equals 20 (+/- 2) Hz, which
differs from the data given by the manufacturer, who declares it at a level of 25.5 Hz.

During the identification research the running demolition hammer generated impulse
forces. This was particularly the case for direction ‘z’ along the axis of symmetry of the
tool, which is simultaneously the main direction of motion of the ram and tool body.
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Figure 4. Signals of vibration acceleration recorded for three directions X, Y and Z
during work of the tool held down by a human operator

For directions x and y was observed a significant influence of changing working

conditions on the recorded values of acceleration.
Weighted values, RMS values (Lin) and peak values of vibration acceleration were
obtained by means of a B&K 2513 integrating vibration meter (Tab.)..
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Table. Weighted values, RMS values (Lin) and peak values of vibration acceleration for

each direction

Measured value direction | direction | direction
o y o
Aeighted [M/S’] 26 24 30
apums [m/s?] 48 81 152
Apea [MVS7] 50 94 177
Peak factor CR 1.04 1.16 1.16

The values shown in the table are mean values from five tests conducted for one
operator. The values of the peak factor confirm occurrence of impact forces.

5. Conclusion

Work with a demolition hammer having a percussive character of running is very hard,
requires a lot of effort, and strains a human operator strongly by vibrations. Practically, it
is impossible to hold down the tool with a constant force in the given direction. For
further research it is planned to fix the hammer in a special fixture developed specially
for this purpose.
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Badania identyfikacyjne Mlota Wyburzeniowego

W pracy przedstawiono wyniki wstepnych badan eksperymentalnych zakupionego miota wyburzeniowego.
Miot posiada symetryczny, dwurgczny uchwyt w ksztafcie litery T, co wymusza u operatora pozycjg
symetryczna i wyprostowana. Pomiary wykonano przy wykorzystaniu standardowej aparatury w Zaktadzie
Wibroakustyki i Bio-Dynamiki Systemow Politechniki Poznanskiej w Laboratorium Dynamiki i Ergonomii
Metasystemu: Czlowiek — Obiekt Techniczny — Srodowisko. Wykonano pomiary przyspieszen drgan na
rekojesci miota w trzech kierunkach x, y, i z. Badania wykazaly, ze narzedzie generuje w czasie pracy sily o
charakterze impulsowym. Szczegoélnie dotyczy to kierunku ,z” wzdluz osi symetrii narzedzia, ktory jest
jednoczesnie gtoéwnym kierunkiem ruchu bijaka i korpusu narzgdzia. Badania identyfikacyjne narzedzia
przeprowadzono w celu weryfikacji modelu dynamicznego systemu Cztowiek — Mtot Wyburzeniowy.
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V.I. ALSHITS
Institute of Crystallography RAS, 119333 Moscow, Russia
Polish-Japanese Institute of Information Technology, 02-008 Warsaw, Poland

V.N. LYUBIMOV
Institute of Crystallography RAS, 119333 Moscow, Russia

A. RADOWICZ
Kielce University of Technology, 25-314 Kielce, Poland

Lamb waves in elastic anisotropic plates are characterized by an infinite set of dispersion
curves. Generally, their intersections are forbidden. However degeneracies in Lamb
wave spectra become possible when the plate medium has a symmetry plane parallel to
the sagittal plane or to the surfaces. The first symmetry provides splitting of the
eigenwaves into the sets of SH waves (polarized orthogonally to the sagittal plane) and
in-plane waves (polarized in the sagittal plane). The second leads to their decomposition
into the wave systems symmetric and anti-symmetric with respect to the middle plane of
the plate. In both cases the wave sub-systems are independent and their dispersion curves
may cross each other. It is clear that even infinitesimal perturbations eliminating a
symmetry of the problem must exclude infinite number of intersections of the dispersion
branches of initially independent systems. Such branch repulsion will mix wave fields
with qualitatively different characteristics. A transformed spectrum is formed by new
dispersion branches which consist of multiple fragments of initial curves belonging to
different sets.

The paper presents three examples of perturbation of a symmetry of initially
transversely isotropic elastic plate with the surfaces parallel to the fundamental
symmetry axis and the sagittal plane coinciding with the basal symmetry plane: 1) a thin
coating of one of the surfaces; 2) a small trigonal perturbation of elastic moduli; and 3)
an addition of a weak piezoelectric coupling. These perturbations eliminate a horizontal,
or a vertical symmetry plane, or both of them. We shall find for all considered cases the
relations between perturbations and branch splittings.

The paper is supported by the Polish Foundation MNiSW (grant No. N N501 252334).
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Interfacial Elastic Waves at Twist Boundaries in Transversely
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The conditions for existence of Stoneley-type waves localized at the twist interface in
the transversely isotropic medium are studied. The considered bi-crystalline structure is
formed by the two semi-infinite medium with non-collinear principal axes parallel to the
interface. The implicit form of the dispersion equation in terms of the Stroh formalism is
found in a general statement. Its approximate analysis is accomplished for the limiting
case of small twist angles between principal axes. It is proved the existence theorem for
the Stoneley wave solutions in the sector of propagation directions close to the
transverse isotropic orientations in the both halves of the structure. The basic parameters
of the appropriate localized solutions are found both inside of the sector and on its
boundaries.

The paper is supported by the Polish Foundation MNiSW (grant No. N N501 252334).
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