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New Method of Analysis 
of Non-Linear Stochastic and Random Vibrations 

Jan KICINSKI 
Institute of Fluid-Flow Machinery, Polish Academy of Sciences (IFFM PAS) 

Fiszera 14, 80-952 Gdansk  
University of Warmia and Mazury, Olsztyn, POLAND 

kic@imp.gda.pl 

Abstract 

Topic discussed in the hereby paper is an assessment of the influence of a random character of certain input 
data – in this case – changes of external excitations of the system. This problem is related to the so-called 
heuristic models often placed in opposition to widely used algorithmic models. The main issue concerned the 
question whether the heuristic methodology can move to the techniques, in this case, the rotor dynamics. The 
objects of investigations were the high-speed rotor of a micro turbine being an element of the micro power 
plant in dispersed power engineering based on renewable energy sources.   

Keywords: rotor dynamics, nonlinear vibrations, heuristic problems, computer simulation  

1.  Research tools and their verification 

The MESWIR computer code, based on nonlinear models of complex systems rotor-
bearings, was applied in research. Theoretical models, basic equations as well as the 
system itself have been presented already several times during the conferences and in 
publications [1, 2, 3]. Due to that and having in mind the paper space limitation and its 
different aims, the MESWIR series code will not be presented here in details. For the 
purposes of this paper we present only a block diagram of computing systems MESWIR 
– Fig. 1. However, it is worth mentioning that the most useful feature of this system is 
the possibility of description of the rotor machine state both in a linear and nonlinear 
range by means of the same tool, thereby describing new vibration forms at transition of 
the stability limit.  The MESWIR code was experimentally verified both at the research 
stand and with using real systems such as large power turbo-sets – Fig. 2, 3 [1]. We can 
see here only one  example of model tuning procedure performed on real large 200 
MW Turboset and the  measurements results and calculation results in the form of so 
called diagnostic cards,  that means in the form of setting-up absolute  vibration  velocity 
and relative shaft displacement  for all 7 bearings. In this picture only for bearing No 6. 

Taking into account that we have to deal with so complicated object, the agreement 
between experiment and theory we can recognize as qualitative and thereby as   satis-
factory. 

2. Object of investigation 

Problems related to ecological energy generation at a small and dispersed scale have 
become very important in recent years. A dispersed power engineering requires building 
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micro power plants which means also micro turbines of a power from a few to a dozen 
or so KW.  The idea of building micro turbines for low-boiling agents ORC, which en-
sures small dimensions of devices and easiness of servicing, has become attractive.      

 

Figure 1. Block diagram of computer program MESWIR. The set of differential 
equations[1] 

  
Figure 2. Experimental verification on real objects of the computer program MESWIR. 

On the left: photo of 200MW turbo-set, right: sample journal  displacements 
in the bearing  No. 1[1] 
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Figure 3. Sample results of the program MESWIR verification  on  the real 200 MW 

turbine set shown in Fig. 2.  

Unfortunately it is obtained at the cost of a high rotational speed of the rotor, ap-
proaching 100 000 rpm. Thus, the main problem becomes ensuring the stable operation 
of the device within the entire rotational speed range of the rotor. This type of devices 
are most often coupled with boilers supplied with renewable energy sources.  

A concept of such micro power plant (100 KW Power) developed in the IFFM PAS 
in Gdansk is shown in Fig. 4 [4, 5, 7]. Another example of microturbines with much less 
power (3 KW) is shown in Fig. 5. In both cases essential elements of the micro turbine 
constitute slide bearings of special characteristics ensuring a high stability of a system.  

 

 

Figure 4. Micro power plant ( 100 KW electric power) with the rotor speed 3000 rpm 
developed in the IFFM PAS in Gdansk. One approach adopted for the analysis [7]. 

Absolute velocity of bearing   Relative shaft displacement  

EXPERIMENT 

SIMULATION  
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Figure 5. Micro power plant ( 3  KW electric power) with the rotor speed 8000 rpm 
developed in the IFFM PAS  in Gdansk. One approach adopted for the analysis [4,5]. 

 

 
 

Figure 6. Two options for lubrication of journal  bearings by means of  low boiling 
agent: as a steam  phase and as a liquid phase.  

Regarding the microturbines, our main idea was to assume the application  of  low 
boiling  agent  both  in the thermodynamic cycle  of  microturbine  as well  as  for  
lubrications  purposes  in  bearings  system – Fig. 6.  
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 For the lubrication purposes we can take the  lubricant from the liquid phase and 
then we should use hydrodynamic journal bearings (classical or foil bearings)  or we 
can take the lubricant from steam phase and then  we can use only the gas bearings.  

In the first stage under consideration  we assume the liquid phase and hydrodynamic 
journal bearings. The micro-turbine is driven of course always  by steam of low boiling 
medium.  

Such idea has the followings advantages:  eliminations of additional system for 
lubrication and isolation problem in bearing interspaces. 

High speed microturbines in which the bearings are lubricated with low boiling 
agents  are particularly sensitive to erroneous data or changes in some parameters. 
Stochastic and random vibration problems becomes in such cases very important. 

3.  Stochastic variability of input data in heuristic modeling of   rotors 

A classic, traditionally applied for many years, approach to the state modeling of various 
kinds of machines is the algorithmic approach, i.e. the one in which for the known set of 
input data we obtain the same, precisely repeatable, set of output data (results). This is 
the obvious consequence of calculation capability of computers and the applied pro-
grams. However, this type of ‘traditional’ research tools, often highly advanced and 
applicable in practice, are neither able to correct the already introduced data nor to modi-
fy the assumed model depending on external conditions during the calculation procedure 
being in progress.  

Meanwhile natural phenomena and a human nature (and thereby objects created by 
it) are of a heuristic character, which means possible feedbacks occurring in processes, 
intrinsic data and the previously assumed methodology of state assessment corrections. It 
also means the necessity of taking into account influences of various errors and the un-
certainty of input data, what is often intuitively done – Fig. 7.  

 

 
Figure 7. Fundamental differences in algorithmic and heuristic approach  
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Figure 8. Real situation taking place in rotor dynamics. Justify the benefits of the use 

 of heuristics. 

Why the introduction of heuristic methodology for rotor dynamics can be fruitful? Be-
cause the two reasons are very important here:  

• the possible work in unstable region – the need of model auto- corrections 
• stochastic variability of  input data.  Random  excitations 

In both cases there is no formal proof of correctness. Despite of this we have to find 
the acceptable solution! 

It is worth to mention that the trial of heuristic modeling means the necessity of hav-
ing highly advanced ‘traditional’ research tools. The so called nonlinear description is 
extremely important since heuristic models are nonlinear by nature. Another substantial 
feature is the possibility of a smooth transition from the linear to nonlinear description 
applying the same research tools (the Superposition Principle cannot be used in this 
case). In consideration of the above, the MESWIR series code was applied in investiga-
tions.  

Figure 9 presents the concept of random changes of external excitation forces acting 
on a bearing and  rotor disc. The randomness of changes was assumed (random-number 
generator was applied) although within limits +/-∆P in proportion to the basic value P. 
Calculations were performed for different ∆P values simulating in this way various pos-
sible situations (e.g.: displacement of rotating masses, influence of magnetic fields, etc.).  
External rotating excitation forces,  which can  randomly change within  limits  +/-20 % 
in proportion to the basic value, P, was assumed for the analysis.  

The calculation results for the rotor shaft rotational speed from 300 rpm to 5550 rpm  
are  shown in  Fig. 10  and 11 [6].  The trajectory of the rotor  centre  loaded by a con-
stant force (basic) – rotating synchronously – is shown for the comparison on the left-
hand side of each figure, whereas the trajectory of the rotor loaded by randomly chang-
ing force – within limits +/-∆P = 20 % in proportion to the basic force P – is shown on 
the right-hand side of the figure. Images of trajectories in co-ordinate systems related to 
the maximum value of bearing clearance are placed in the upper part, while images of 
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trajectories magnified as much as possible to exhibit clearly the phenomena are shown in 
the lower part of the figure.  

 

Figure 9. Concept of random changes of external excitation forces acting on a bearing 
and  rotor disc. From left: traditional calculation, calculation with randomly changing 

vector for relative bearings and disc vibrations.  

The analysis of the figure indicates that influence of randomly changing values of the 
external excitation force is significant in the case of small rotational speeds of the rotor. 
When the speed increases this influence diminishes, what can be explained by the influ-
ence of rotor inertial forces generally attenuating a time-history. At the very stability 
limit a certain increase in the trajectory disturbance can be observed.  However, disturb-
ances caused by the stochastic variability of input data decay when the rotor rotational 
speed increases, it means when the hydrodynamic instability develops Fig. 11.  This is 
rather a startling result, since it could have been expected that such perturbations – after 
exceeding the stability limit – would intensify the instability of the entire system since it 
has been already unstable. Similar conclusions were found when investigations were 
performed for various ∆P values and various algorithms of random excitations. Thus, a 
system defect in the form of the hydrodynamic instability attenuates to a certain degree 
the defect caused by stochastic effects of input data. It is an interesting observation re-
sulting from the performed research.   
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Figure 10. Displacement trajectories of the rotor centre – within a stable operation range 
– calculated for the constant excitation force (basic) P (part A) and for the randomly 

changing – within limits +/-∆P = 20 % (part B) shown at the background  of  the rotor 
amplitude-frequency response  [6]  

 

 

Figure 11. Displacement trajectories of the rotor centre after the system exceeded the 
stability limit calculated for the constant basic force P (part A) and for the randomly 
changing – within limits +/-∆P = 20 % (part B) shown at the background of the rotor 

amplitude-frequency response [6]  
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4.  Final conclusions 

Preliminary considerations concerning heuristic modeling of rotors are included in the 
paper. In such modeling we took into account uncertainty and randomness of the calcula-
tion input data and mutual couplings. It was found that an influence of the stochastic 
variability of input data decreases after the system has exceeded the stability limit. This 
indicates that the defect of the hydrodynamic instability type can attenuate – to a certain 
degree – the defect in the form of a random scatter of input data.   

References 

 Kicinski, J., Rotor Dynamics, IFFM Publishers, Gdansk 2006. 1.
 Batko, W., Dabrowski, Z. and Kicinski, J., Nonlinear Effects In Technical Diagnos-2.

tics, Publishing and Printing House of the Institute for Sustainable Technologies, 
Warsaw 2008. 

 Kicinski, J., Materials and Operational Imperfections in Rotating Machinery, 3.
IFToMM – Seventh International Conference on Rotor Dynamics, Vienna 2006, 
Paper-ID 307.  

 Zywica, G., Simulation Investigation of the Effect of a Supporting Structure Defect 4.
on the Dynamic State of the Rotor Supported on Slide Bearings, ASME Internation-
al Design Engineering Technical Conference, Las Vegas 2007, DETC2007-34415. 

 Kiciński, J., Żywica, G., Banaszek, S., Bogulicz, M. and Czoska, B., Modelling of 5.
Thermo-Elastic Deformations of the Foil Bearing Bush with the Application of Au-
thors’ Own and Commertial Calculation Codes (in polish), Internal Report of the 
IF-FM PAS, no. 22/08, Gdansk 2008. 

 Pietkiewicz, P., Kiciński, J., Czoska, B. and Markiewicz, A., Development of Defect 6.
Models – with Uncertainty of Input Data Taken into Account (in polish), Internal 
Report IF-FM PAS, Gdansk 2008. 

 Artur Fiuk, Sebastian Bykuć, Koncepcja prototypowego stanowiska badawczego do 7.
analizy pracy obiegu ORC o mocy do 100 kw wykorzystującego ciepło z procesu 
spalania i innych procesów technologicznych, Opracowanie wewnętrzne IMP PAN, 
Gdansk, 2011. 

 
 
 
 
 
 
 
 
 
 
 



22 

 



XXV Symposium Vibrations in Physical Systems, Poznan – Bedlewo, May 15-19, 2012 

Damage Induced by Viscoplastic Waves Interaction 

Tomasz ŁODYGOWSKI 
Poznan University of Technology, Institute of Structural Engineering Centre 

for Mechatronics, Biomechanics and Nanotechnology Poznan, Poland 
tomasz.lodygowski@put.poznan.pl 

Wojciech SUMELKA 
Poznan University of Technology, Institute of Structural Engineering Centre 

for Mechatronics, Biomechanics and Nanotechnology Poznan, Poland 
wojciech.sumelka@put.poznan.pl 

Abstract 

Viscoplastic waves interaction plays a fundamental role in a strain localisation phenomenon especially during 
highly dynamic processes occurring for example during car or orbiting space objects crashes (strain rates 
locally reach the values of order 107 s-1 In zones of localised deformation an intensive evolution of damage 
occurs which is undoubtedly directional (anisotropic) and finally may cause failure (loss of continuity). Such 
processes are highly influenced by the temperature (reaching often melting points) and mostly under adiabatic 
conditions. Mathematical description of the mentioned phenomena formulated in terms of Perzyna's thermo-
viscoplasticity is considered in this paper. 

Keywords: constitutive modelling, damage anisotropy, viscoplastic waves  

1. Introduction 

Very short dynamic events whose time duration is of the order of few micro-seconds like 
e.g. car or orbiting space objects crashes are highly influenced by the deformation waves 
and their interactions [3, 4]. In metallic ductile materials, central point in herein consid-
erations, shortly after the beginning of a such dynamic process the deformation wave 
becomes viscoplastic one. Dependently of the geometry, boundary and initial conditions 
and the type of the material in which the wave is induced a strain localisation zones 
occurs. In those zones of severe plastic deformations an intensive evolution of damage 
occurs leading to failure of the material if the amount of the energy causing the defor-
mation is sufficient. 

The phenomena mentioned can be described by the Perzyna's type viscoplasticity 
theory [19], [6] whose development including full range of damage anisotropy influence 
was presented in [23]. This phenomenological model belongs to the class of simple ma-
terials with fading memory, and due to its final form and the way of incorporating the 
fundamental variables, belongs to the rate type materials with internal state variables 
[25]. 

The discussion of the fundamental concepts of the constitutive structure mentioned 
with its example application for dynamic test presented in [8] including HSLA-65 steel 
and the discussion on anisotropic damage induced by viscoplastic waves interaction is 
considered in this paper. 
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2. Constitutive model 

2.1 Fundamental concepts 

From mathematical point of view the constitutive model is a kind of theory, based on 
certain postulates, which ensures that the obtained evolution problem is well-posed, so it 
gives unique solution. Such model should also enable to describe any motion, thus the 
description should be invariant with respect to any diffeomorphism (so called covariant 
model [10]). To achieve such mathematical structure, in continuum mechanics, one 
should apart of fulfil certain conservation laws, choose proper mathematical space, use 
appropriate objective rates and regular material functions. 

From physical point of view, to describe most important phenomena which occur in 
metallic materials during highly dynamic processes one should include: sensitivity to the 
rate of deformation, finite elasto-viscoplastic deformations, plastic non-normality, dissi-
pation effects (anisotropic description of damage), thermo-mechanical couplings and 
length scale sensitivity. To emphasise the importance of  the description of damages as 
anisotropic one, the main add and achievement of the authors to classical Perzyna's 
model, notice that such approach enables us to keep good global damage approximation 
(GDA) (strain-stress curves fitting from experiment and mathematical model) but espe-
cially good local damage approximation (LDA) (GDA plus coincidence in: 
macrodamage initiation time, velocity of macrodamage evolution and the geometry of 
macrodamage pattern) [24] Notice that variable which describes damage, microdamage 
tensor ξ has the physical interpretation that the Euclidean norm of the microdamage field 
defines the scalar quantity called the volume fraction porosity or simply porosity [19] 
while its principal values are proportional to the ratio of the damaged area to the as-
sumed characteristic area of the representative volume element [23], thus they indicate 
damage plane as one perpendicular to maximal principal value of ξ (cf. Fig. 2). Compare 
also experimentally observed damage anisotropy (cf. [21, 20, 7, 11]) observed during 
e.g. plane-to-plane impact test [2]. 

2.2 Adiabatic process 

Kinematics 
 

To include the above mentioned properties of proper material behaviour description we 
propose as follows. 

The abstract body is a differential manifold. To describe the finite elasto-viscoplastic 
deformations we use the multiplicative decomposition of the total deformation gradient 
to the elastic and viscoplastic parts [9] 

 ),,(),(),( ttt pe XFXFXF ⋅=  (1) 

where 
X
XF

∂
∂= ),( tφ  is the deformation gradient, ϕ describes the motion, X denotes materi-

al coordinates, t is time and Fe, Fp are elastic and viscoplastic parts of the deformation 
gradient, respectively.  
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Figure 1. Experimentally observed anisotropy: initial and induced by the process 
of deformation 

 

 
 

Figure. 2 The concept of microdamage tensor 
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Using spatial deformation gradient, denoted by l,   
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we obtain well known additive decompositions 

 ppee wdwdwdl +++=+= , (3) 
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 ( )Tlw −= 1
2
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where υ denotes spatial velocity, x are spatial coordinates, d is the symmetric part and w 
is the antisymmetric part, of l, respectively. 

Now, using objective Lie derivative of the strain we have the fundamental relation 
showing that d describes truly rate of deformation 

 )(L bb ed υ= , (6) 

and simultaneously 

 ),(L),(L bbbb ppee eded υυ ==  (7) 

where Lυ stands for Lie derivative, e for the Euler-Almansi strain, b indicates that a ten-
sor has all its indices lowered [10], indices e and p denotes the elastic and viscoplastic 
parts, respectively.  

 
Constitutive postulates 

 

Assuming that the balance principles hold, namely: conservation of mass, balance of 
momentum, balance of moment of momentum and balance of energy and entropy pro-
duction, we define four constitutive postulates [16, 18]:   

• Existence of the free energy function ψ. Formally we apply it in the following 
form 

 );,,(ˆ µϑψψ Fe= , (8) 

where µ denotes a set of internal state variables governing the description of dis-
sipation effects and ϑ denotes temperature. Notice that we have used semicolon 
to separate the last variable due to its different nature (it introduces a dissipation 
to the model), without µ the presented model describes thermoelasticity.   

• Axiom of objectivity (spatial covariance). The material model should be invariant 
with respect to any superposed motion (diffeomorphism). 
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• The axiom of the entropy production. For every regular process the constitutive 
functions should satisfy the second law of thermodynamics.  

• The evolution equation for the internal state variables vector µ should be of the 
form 

 );,,(ˆL µµυ ϑFem= , (9) 

where evolution function m̂  has to be determined based on the experimental ob-
servations.  

 
Initial boundary value problem 

 

Assuming that the above holds, the deforming body under adiabatic regime is governed 
by the following set of equations. They state the initial boundary value problem (IBVP).  

Find ϕ, υ, ρ, τ, ξ, ϑ as functions of t and position x such that [17, 13, 14, 15]: 

• the field equations 
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• the boundary conditions 

• displacement ϕ is prescribed on a part Γϕ of Γ(B) and tractions (τ · n)a are pre-
scribed on a part Γτ of Γ(B), where Γϕ 1111 Γτ = 0  and Γϕ cccc Γτ = Γ(B) 

• heat flux q · n = 0 is prescribed on Γ(B), 

• the initial conditions ϕ, υ, ρ, τ, ξ, ϑ given for each particle X 0 B at t = 0, 

are satisfied. In above, we have denoted: ρRef as a referential density, τ as the Kirchhoff 
stress tensor, ρ as a current density, Le as an elastic constitutive tensor, Lth as a thermal 

operator, g as a metric tensor, 
τ∂

∂ *g  as the evolution directions for anisotropic micro-

damage growth processes, Tm as a relaxation time of mechanical disturbances, Ig as a 
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stress intensity invariant, τeq as the threshold stress, χ*, χ** as the irreversibility coeffi-
cients and cp as a specific heat. 

The details concerning material functions definitions can be found in e.g. [23, 5, 24]. 

3. Numerical Example 

3.1 Implementation 

The discussed material model is implemented into Abaqus/Explicit finite element code 
by taking advantage of a user subroutine VUMAT, which is coupled with Abaqus sys-
tem [1]. Let us mention that the Abaqus/Explicit utilises central-difference time integra-
tion rule along with the diagonal ("lumped") element mass matrices. We use, so called 
element deletion method to remove damaged elements from mesh [22] – elements in 
which for every integration point fracture porosity was reached. This requires the proper 
density of meshes used in computations to ensure the convergence of the results. 

The details concerning implementation can be found in e.g. [23, 5] – let us emphasise 
that the implementation keeps the Lie objective rate. 

3.2 Identification 

To solve the IBVP defined by Eqs (10), one has to determine material parameters that 
characterise analysed material (steel). In Tabel 1 we present a complete set of parameters 
(identified in sense of numerical calibration) for HSLA-65 steel. The identification pro-
cedure uses the results obtained experimentally in [12] and in general could be the topic 
of a separate paper. 

Table 1. Material parameters for HSLA-65 steel 

λ = 121.154 GPa µ = 80.769 GPa ρRef = 7800 kg/m3 mmd = 1 
c = 0.067 b1 = 0 b2 = 0.5 b3 = 0 
ξF* = 0.36 ξF** = 0 mF – ||Lvξc|| – s-1 

δ* = 6.0 δ** = 1.4 Tm = 2.5 µs mpl = 0.14 
κs

* = 570 MPa κs
** = 129 MPa κ0

* = 457 MPa κ0
** = 103 MPa 

β* = 11.0 β** = 2.5 n1 = 0 n2 = 0.25 
χ* = 0.8 χ** = 0.1 θ = 10-6 K-1 cp = 470 J/kgK 

 
Figure 3 shows the adjustment of the model predictions to experimental data. Notice 

that the numerical solution is obtained from 3D thermomechanical analysis accounting 
for an anisotropic intrinsic microdamage process mentioned – in other words the pre-
sented numerical results – take into account the whole local process. The curve fitting 
shows that using presented material model one can obtain the numerical simulations in 
very good agreement with experimental observations. 

3.3 Results 

Let us consider 3D thermomechanical analysis under adiabatic regime being an idealisa-
tion of the experiment presented in [8]. In the experiment rectangular prism specimen 
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with notch at the center is impacted by the cylindrical projectile with initial velocity 
60 ms-1 (cf. Fig. 4). 

The high impact of the projectile causes viscoplastic wave evolution through the 
specimen, soon after the beginning of the process. Due to notch at the specimen the 
deformation localises near the tip and failure (loss of the continuity) begins to evolve 
with velocity around 250 ms-1. 
 

 

Figure 3. The comparison of the experimental [12] and numerical results for strain rate  
3000 s-1 and initial temperature 296 K 

 

Figure 4. The set-up for dynamic test [8] 

The evolution of HMH stresses, temperature and porosity are presented in Figs 5, 6 
and 7, respectively. It is worth noticing, that temperature can reach locally close to 800 K 
(initial temperature was 296 K). Wave induced damage evolution is clearly proved by 
analysis of near tip porosity evolution due to the fact that failure development is pro-
ceeded by porosity growth slightly ahead of existing failure tip (cf. Fig. 7). 
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Figure 5. The HMH stress wave for time points: 5, 20, 250 µs from left respectively 
 
 

 
 

Figure 6. The temperature evolution for time points: 20, 130, 215 µs from top 
respectively (black arrow indicate time growth) 

 

 
 

Figure 7. The near fatigue tip porosity evolution for time points: 30, 70, 95 µs from left 
respectively (black arrow indicate time growth) 
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4. Conclusions 

Viscoplastic waves interaction plays a dominant role in a strain localisation as well as 
damage phenomena, especially during highly dynamic processes. It was shown that 
those phenomena can be described by the Perzyna's type viscoplasticity theory. The 
interactions of waves in dynamics contrary to some known results for quasistatic formu-
lations causes the choice of the places and directions of localisation patterns. Using the 
proper densities of meshes assures the uniquness and convergence of the results. A re-
sults from a 3D numerical model, being an idealisation of a real set-up presented in [8], 
are used for verification. 
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Abstract  

The unified formalism for description of acoustic and optic properties is developed for directions close to 
degeneracies in absorbing crystals. The absorption splits a conical degeneracy which causes topological trans-
formations in polarization and geometrical features of degenerate branches. Polarization ellipses distributions 
gain singularities at the degeneracy points characterized by the Poincaré indices n = ±1/4. The slowness sur-
faces acquire lines of self-intersection connecting the split degeneracy points where the wedge of intersection 
has infinitely sharp tips. Geometrical and polarization singularities due to absorption create non-trivial features 
in conical refraction. For any direction of propagation in the vicinity of the split axes the ray velocity precesses 
along the universal cone of refraction. Kinematics of this precession appreciably depends on the propagation 
direction. Conditions for experimental observation of the predicted effects are discussed. 

Keywords: Acoustics, optics, absorption, degeneracies, polarization singularities, conical refraction  

1. Introduction  

Basic equations of optics and acoustics are substantially different. Accordingly the most 
characteristics and properties of electromagnetic and elastic waves in crystals differ from 
each other. For instance, along any non-degenerate direction m of propagation in optics 
only two isonormal waves are allowed, both purely transverse, whereas in acoustics 
along m three waves may exist, one quasi-longitudinal and two quasi-transverse. Hence 
in optics we deal with a two-sheet phase-velocity surface, and in acoustics such wave 
surface has three sheets. Along directions m0 of degeneracy of phase speeds (the so-
called optic or acoustic axes) the mentioned sheets have points of contact. In optics all 
crystals are divided into the two groups: uniaxial (with one optic axis related to a tangent 
contact between degenerate sheets) or biaxial (with two optic axes of conical type) [1].  

In acoustics, crystals may have up to 16 degeneracies or none (though only model 
crystals without acoustic axes are yet known). Points of degeneracy are again conical or 
tangent, but in this case degeneracy lines related to intersection of phase velocity sheets 
are also possible and really present in some hexagonal crystals [2]. Tangent acoustic 
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axes must occur along 4- and 6-fold symmetry axes. A conical degeneracy is obligatory 
along a 3-fold symmetry axis [3]. But it may also exist in non-symmetric directions. 

Along the direction m0 of optic or acoustic axis a propagation of any wave polarized 
in the degeneracy plane is allowed. The latter plane is orthogonal, respectively, to optic 
axis or to the polarization vector of non-degenerate elastic wave along acoustic axis. 
Vector polarization fields of degenerate branches near isolated optic or acoustic axes 
form singular patterns. For conical and tangent points they are respectively characterized 
by the Poincaré indices ½ and 1 (in optics) and ±½ and ±1 (in acoustics) [1,3]. 

Absorption splits conical degeneracies not coinciding with a 3-fold symmetry axis. 
This splitting provides non-trivial topological transformations of wave characteristics 
both in optics [4] and in acoustics [5-9]. And in spite of fundamental difference of basic 
equations describing electromagnetic and elastic waves, the main features of the above 
topological changes are remarkably similar. In this paper we shall formulate a universal 
formalism and describe on this basis those transformations in same terms. 

2. Statement of the Problem and Formulation of the Universal Formalism 

Consider in parallel the two plane waves in an absorbing crystal, the wave of elastic 
displacements u and electromagnetic wave formed by electric and magnetic fields (e, h): 
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The first wave field is combined with the dynamic elasticity equation where the elastic 
moduli tensor ĉ  is replaced by ηω ˆˆ ic −  (η̂  is the viscosity tensor) [10]). And the other 

wave field is substituted to the standard Maxwell equations with the inverse permittivity 

tensor 1ˆ −ε  replaced by δε ˆˆ 1 i−− , where δ̂  is the tensor of absorption in optics [11]. 
From the obtained system of Maxwell’s equations we exclude the electric polarization E. 
After these manipulations we obtain two basic wave equations, for acoustics, 
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and for optics, 
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where ê  is the Levi-Civita antisymmetric tensor of 3rd rank and c is the speed of light. 
The derived equations (2) and (3) become identical if to introduce notation 
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In these terms one obtains the extended form of the Christoffel equation describing 
propagation of both elastic and electromagnetic waves in absorbing anisotropic media: 
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 ,)ˆˆ( 2AA v=′′−′ QiQ  (5) 

where the tensors Q′ˆ  and Q ′′ˆ  are defined by 

 .ˆˆ     ,ˆˆ mmmm Λ ′′=′′Λ′=′ QQ  (6) 

Certainly, complex equation (5), in general, determines complex eigenvectors and ei-
genvalues. In other words, we shall deal with complex phase velocities vα and elliptic 
polarizations Aα (α =1, 2, 3 for acoustics and α =1, 2 for optics):  

 .       , αααααα AAA ′′+′=′′−′= iivvv  (7) 

3. Solutions in the Vicinity of Conical Degeneracy 

In this paper we are interested in analysis of eigenproblem (5) in a close neighbourhood 
of the direction m0 of conical degeneracy:  

 .1     ,0 <<∆−=∆ mmmm  (8) 

Let us start our consideration from the choice of optimized reference systems for optics 
and acoustics adequate to the problem of wave description in the vicinity of degeneracy. 
In region (8) polarizations of degenerate branches form vector fields distributed close to 
degeneracy planes D. Fig. 1 shows these planes and polarizations allowed for m = m0 at 

zero damping for acoustics and optics. In both cases A03 ┴ D are eigenvectors of Q′ˆ . 

However only in acoustics A03 has a physical sense of polarization vector of non-
degenerate wave along m0. In optics the eigenvalue corresponding to A03 vanishes. So, 
with phase speed v03= 0 this solution is purely static and has nothing to do with our 
wave problem. Still in both cases the vectors A03 can be chosen as orts of our reference 
systems (Fig. 1). The other two vectors A01 and A02 can be arbitrarily chosen in the 
planes D where any direction is allowed for polarization (when attenuation vanishes). 
 
 
 
 
 
 
 
 

Figure 1. Allowed polarizations along the direction m0 of degeneracy at “switched off” 
absorption and reference systems {A01, A02, A03} for acoustics (a) and optics (b).  

Analysis of eigenproblem (5) under condition (8) may be done in complete analogy 
with known solutions [9] of the purely acoustic equation. We present the results: 

 
 D 

 (a)  

 D 

(b) 
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where the vectors s0, p, q and the small scalar parameters qps ′′′′′′  , ,  are defined by 
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Here v0 is the unperturbed degenerate speed along m0 before switching on the damping. 
One can easily check that s0⋅m0 = v0 and p⋅m0 = q⋅m0 = 0.  

Consider the particular case when the initial direction m0 of the degeneracy belongs 
to the symmetry plane S of crystal. In this case, the polarization vector A03 of the 
nondegenerate branch obviously also lies in plane S. Then, it is convenient to choose 
vectors A01 and A02 so that the vector A02 is directed along the normal to plane S, while 
vector A01 lies in plane S together with m0 and A03 (Fig. 2a). In this case the relations 

 00202 ||      ,||     ,0 mApAq ×=′′q  (13) 

take place. In optics, due to the tensor ε̂  symmetry, even simpler formulae for p and q, 
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are valid even for a triclinic crystal. Here εi are diagonal components of the tensor ε̂ . 

4. Split of Conical Degeneracy due to Absorption 

The condition for a degeneracy v1 = v2 in terms of (9) is reduced to the complex equa-
tion R = 0, which is, by (10), satisfied along the two directions 
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In the particular case m0 ⊂ S when (13) is valid, one has 02)/( Aqp ′′±=∆ ±m  (Fig. 2b). 
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Figure 2. Degeneracy direction m0 in symmetry plane S (a), and its split (b). 

5. Geometrical Features of Slowness Surface near Split Degeneracies  

As follows from (10), at the line connecting the degeneracy points m+ and m- on the unit 
sphere m2 = 1, the radical R is purely imaginary. Hence, on this line, the real components 

)(1 mv′  and )(2 mv′  of the phase velocity should coincide. This defines the lines of self-

intersection both of the phase velocity surface )(2,1 mv′  and of slowness surface 

)(1 2,1 mv ′/ . Figure 3a shows schematically the fragment of the slowness surface with the 

self-intersection line and split degeneracy points situated at its ends.  
 
 
 
 
  
 
 
 

Figure 3. Fragment of the slowness surface with the split degeneracies and self-
intersection line between them (a) and the form of a sharp tip at the end of this line (b). 

Apart from such new topological feature as self-intersection line arising completely 
due to absorption, the geometry of this surface in the near vicinity of the degeneracy 
points at the ends of this line has additional specificity shown in Fig. 3b. The normals to 
the slowness surface in these points form flat “fans” which corresponds to the infinitely 
sharpened “noses” of the slowness surface at the ends of the self-intersection wedge.   

6. Features of Polarization Fields near Split Degeneracies  

Complex polarization vectors A1,2(m) given by (9) describe on the unit sphere m2 = 1 in 
the vicinity of split axes quite non-trivial distribution of isonormal polarization ellipses. 
After a full bypass over a small circle Γ around one of the points m±, the identical trans-
formation of the polarization field A1,2 to itself is realized in the form 
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In other words, each of the two orthogonal polarization ellipses rotates through π/2 after 
going around the singular point, transforming to the polarization of the other isonormal 
wave. Such singularity of the polarization field can be described by Poincaré index [5,9] 

 )(      ,sgn 04
1 qpm ×== ggn  (17) 

(in optics g > 0). After going around a pair of split points, the index becomes twice 
more, gn sgn)2/1(= , and coincides with the index for a conical singularity (Fig. 4a). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Field of elliptic polarizations of degenerate branches in the vicinity of a pair of 
singular points (the case g>0) (a); and cone of internal conical refraction for optics (b). 

7. Internal Conical Refraction in Absorbing Crystals  

In crystal without absorption a circular (or elliptically) polarized wave directed along the 
conical degeneracy m0 propagates as a cone of rays. This is the phenomenon known in 
optics and acoustics as internal conical refraction. It occurs because the ray velocity s of 
the wave is directed along the normal to the slowness surface, and in the conical contact 
point on this surface, the normals to it also form a cone. The corresponding cone of rays,  

 ),(~)( 0 tt sss +=  (18) 

arises when the polarization moves along the circle (or ellipse) in the degeneracy plane 
(Figure 4b). During the wave period, the end of the vector  

 )(2sin)(2cos)(~ ttt ϕϕ qps ±=  (19) 

runs twice along the elliptic (or circular – in optics) cut of the refraction cone (Fig. 4b). 
Both signs are possible and the phase in (19) is just twice more than the wave phase, i.e. 

 .)( 0 tvt ωϕ −⋅= rm  (20) 
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Along split axes m± of an absorbing crystal, formulae (18)-(20) remain valid with ± 
related to m±. In the same crystal beyond the degeneracy points but still in the zone (8), 
equations (18) and (19) retain their form however with an addition of wave indications 

)~ ,~ ,( 2,12,1 ssss →  and with replacing the phase (20) by some appropriate functions ϕ1,2(t). 

Thus in absorbing crystal for any direction m satisfying condition (8) the forms of 
the refraction cone (18) and the cut ellipse (19) remain unchanged. However the kine-
matics of ray precession over the same cone strongly depends on the ellipticity of the 
wave polarization for a given m. The less ellipticity, the less uniformity of precession 
occurs. The motion of the polarization A and ray velocity s will be slowest when A pass-
es the points of maximum curvature on the polarization ellipse. As is seen in Fig. 4a, in 
the middle of the intersection line the polarization is linear (i.e. the ellipticity is zero) and 
the vectors s1,2 become static taking the positions of opposite generators of the cone. 
Hear the conical refraction transforms into wedge refraction. 

8. Conclusions  

Thus, the role of absorption in crystals is not simply reduced to the trivial decay of elas-
tic or electromagnetic waves during their propagation. We have seen that the switching 
on of absorption drastically transforms the geometry of wave surfaces and topology of 
vector polarization fields by splitting the conical degeneracies of the general position. In 
this case, self-intersection line appears on the slowness surface and geometrical singular-
ities arise at its ends (Fig. 3). 

The plane field of linear polarization vectors having a singularity with the Poincaré 
index n = (1/2)sgng at the conical degeneracy point is transformed after the axis splitting 
to the plane distribution of polarization ellipses which has two singular points m± with 
equal Poincaré indices n = (1/4)sgng (see Fig. 4a) and circular polarizations at these 
points.  

Topological changes in wave surfaces and polarization fields give rise to principally 
new features of the internal conical refraction. It must now occur not only along the axes 
m± but also for any direction m in the vicinity of split axes with the same universal cone 
of refraction for ray velocity precession and the same universal ellipse as a trajectory of 
motion of the ray vector end (Fig. 4b). But the kinematics of this motion over standard 
trajectories depends on the choice of the direction m, being rather sensitive to an ellipti-
city of the wave polarization. 

Formally, the discussed effect has no threshold absorption. But the weaker the ab-
sorption, the smaller the solid angle within which all the above described processes pro-
ceed. If this angle is smaller than the divergence angle of an acoustic or optic beam, we 
will see neither the splitting of degeneracies nor the effects related to splitting. There-
fore, to observe these phenomena, the split angle should exceed the diffraction diver-
gence of the beam of the order of λ/d, where λ is the wavelength and d is the beam diam-
eter.  

In the case of acoustics this requirement is reduced [9] to the following condition on 
the frequency ν = ω/2π in future experiments: 
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where cs is the speed of sound, µ is the shear modulus, and η is viscosity. Substituting 
here relevant magnitudes of physical parameters we obtain the estimate of the threshold 
frequency νth ~ 100 MHz. Although this estimate is rather rough, it shows that subtle 
effects discussed in this paper can be observed. 
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Abstract 

This paper presents results of research devoted to tracking human arm trajectories in sagittal plane by means 
of motion capture. One camera tracking system was developed. Co-ordinates of upper limb joints (distincted 
by light reflecting markers) were obtained via tracking software. Markers were illuminated coaxially 
to the optical axis of the lens to obtain maximum of reflectivity. Positions, linear velocities and accelerations 
of a shoulder, elbow, wrist and palm in a sagittal plane were presented. Obtained results in the form of points 
(in Cartesian co-ordinate system) can be adopted for control of mechanism and robots with kinematics similar 
to that of a human arm. The obtained results show that in studied biological systems there are no fixed trajec-
tories. All movement co-ordinates (including velocities, accelerations and joints angles) are slightly different 
for each time selected until movement task is completed. Presented method is relatively inexpensive and non-
invasive and can be adopted for other types of motion capture. 
 
Keywords: human arm, motion capture, joints trajectories, biomechanics 

1. Introduction  

Examination of the animal and human motor system using vision apparatus is carried out 
(see examples [1-2] of coaching application). Significant number of publications and 
research is dedicated to this topic, as for example [3-7], being usually focused on a four 
and two legged moving animal with a particular emphasis on a human biped locomotion 
[1]. Human movement serves often as a model for robots and other mechanisms. Usually 
one camera set is used for motion capture and recognition (see for instance [2]), 
since this is relatively easy and cheap procedure. Computation and tracking 
of movement trajectories of body segments and their parameters can serve for remote 
control (like in the case of reference [8]). 

Five volunteers were examined. Their task was to raise their arm in the following 
manner: (i) start from point on the level of their knees; (ii) finish at a specific point 
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above their heads; (iii) complete the motion while sitting, without standing up; 
(iv) complete the motion ten times. 

Points were marked on the rack. No other restriction in arm movements were applied. 
Luminescent markers were placed on the shoulder joint, elbow, wrist and small finger. 
Markers were illuminated coaxially to the optical axis of the camera. Images were rec-
orded by one camera with following parameters: (i) 50 Hz frequency (50 frames 
per second); (ii) Full HD resolution (1920x1080, 50p); (iii) camera was mounted 
3 meters from the subject; (iv) an rectilinear lens was used to avoid image distortion. 

Recorded videos were analysed using a software to obtain co-ordinates of each 
marker from all recorded frame. On this basis, other parameters were calculated, 
i.e. linear velocities and accelerations of the shoulder, elbow, wrist and palm in a sagittal 
plane. 

2. Results 

Figure 1 shows trajectories of each marker for one of the volunteer. It is clearly seen, 
that each cycle was different from previous one. They were made with different veloci-
ties and accelerations (see Figure 3 and Figure 4). 
 

 

Figure 1. Shoulder, elbow, wrist and finger trajectories (an example) 
 

As expected, the main components of displacements were in Y direction 
in comparison to X direction (see Fig. 2). Repeatability and differences between move-
ments are clearly seen. 



 Vibrations in Physical Systems Vol.25 (2012) 43 

Figure 3 shows markers linear velocities and accelerations computed from the cap-
tured positions. Differences between each cycle are seen.  

Maximal linear velocities and accelerations were obtained for a palm, accordingly 
3.4 m/s and 29.8 m/s2 (during arm lifting). For arm lowering these values were 2.8 m/s 
and 23.6 m/s2, respectively. Table 1 shows mean values of velocities and accelerations. 

 

Figure 2. Shoulder, elbow, wrist and finger displacements in Y (left) and in X (right) 
direction (an example) 

 

 

Figure 3. Shoulder, elbow, wrist and finger velocities (left) and accelerations (right) 
in movement direction (an example). 

 

 

Figure 4. Average velocities (m/s) (left) and accelerations (m/s2) (right) for each 
volunteer (“+” for lifting, “-” for lowering). 
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Table 1. Average velocities and accelerations. 

 Arm lifting Arm lowering 

Shoulder Elbow Wrist Palm Shoulder Elbow Wrist Palm 

v 
[m/s] 

EX 0.27 0.78 1.06 1.27 0.26 0.71 0.98 1.13 

SD 0.05 0.08 0.06 0.1 0.049 0.049 0.072 0.080 

a 
[m/s2] 

EX 1.52 4.36 6.34 8.42 1.59 4.12 4.92 6.31 

SD 0.35 0.55 0.71 0.92 0.28 0.56 0.43 0.7 

3. Conclusions  

The obtained results in the form of points, after some interpolations, can be easily adopt-
ed for control of mechanism and robots, with kinematics similar to human arm. It was 
shown that in biological systems there are no fixed trajectories. Because of many disrup-
tions, imperfection of central nervous system, muscle fatigue and other human 
and environment dependent influences, each trajectory was different. This result 
is similar to the data presented in reference [9] or [10]. In the first paper the movement 
was traced in transverse plane, in the second the movement was dependent from wrist 
position. Also it was clearly seen that each of the volunteers had different movement 
strategy, i.e. in some cases the raising phase was faster and in other the lowering phase 
was faster. This indicates a different muscle cooperation in each movement, 
what can serve as an illustration of muscle indeterminacy collaboration problem 
(see [11]). In each movement the same goal was obtained in a different way 
(with different velocities, different joint bending angles, etc.). In this case we have 
so many solutions as many combination in the system we can obtained to realised the 
goal. In this particular case we have some biological and physiological restrictions like 
maximum muscle force, maximal angle of joint bending and straightening, and many 
others. During analysis of the results a hypothesis was taken under consideration 
that differences in arm velocities during lifting and lowering of the arm (also in other 
types of movement) are connected with muscle system condition, possible injuries 
and diseases. 

Presented method and software can be easy modified for other types of movement 
(like a gait) or mechanisms control. Authors have undertaken the effort to develop three 
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dimensional movement tracking system. However due to our experience only one cam-
era system can be also applied to follow tracking properly. 

Motion capture method is relatively cheap and noninvasive, which indicates 
an advantage in comparison with other methods, where goniometers or EMG electrodes 
are needed (for example [12], [13]). Increase in measurements accuracy can be easily 
obtained by changes in the software or by using a camera with higher frame rate 
(slow motion camera). 

It is also possible to use a method of movement tracking that does not need any 
markers (see [3], [6]). Those methods require some changes in the analyzing software 
(like phase detection algorithm). 
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Abstract 

We are aimed on developing the physical and mathematical model of a novel, spatial, double physical pendu-
lum being coupled by two universal joints. The active part of first joint is axially excited by a non-constant 
periodic torque. In addition, the influence of gravitational field and viscous damping force of joint's bearings is 
taken into account. The numerical simulation, as well as the experimental studies revealed a wide spectrum 
of nonlinear phenomena. Chaotic, quasi-periodic and periodic orbits are detected and studied. 

Keywords: double spatial physical pendulum, chaotic dynamics, universal joint, computer simulation  

1. Introduction 

This work is a part of summary of most important results presented in the author’s3 PhD 
thesis. The concept of this work raised on development of the mathematical model of 
a novel, spatial, double physical pendulum being coupled by two universal joints. 
The active part of first joint is axially excited by a vertically mounted drive with constant 
or periodic angular velocity. The model includes all mechanical properties of all rigid 
bodies in the system. In addition, the influence of gravitational field and viscous damp-
ing force of joint’s bearings are taken into account. Moreover, the experimental setup is 
developed and constructed by the author3 to perform detailed verification 
of the computer simulation results. 

Since the first applications of physical pendulum, e.g. a clock by C. Huygens 
in 1657, a number of research directions based on dynamics of this simple mechanism 
has appeared. The evolution of pendulum analysis starts from the measurement and 
experiment, e.g. Foucault’s pendulum, 1851, showing the effects of rotation of 
the Earth [1] or Kater’s reversible pendulum [2] used for measuring the gravitational 
acceleration. 

Nowadays single pendulums or systems of pendulums (mathematical and physical 
ones) are more often used as components to model (simplify) complex mechanisms. 
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For instance, to develop methods of dynamic vibration absorption and/or control sys-
tems [3]. Important part of research includes also theoretical investigations concerning 
pendulums dynamics [4-5]. Multiple pendulum systems are mostly simplified either 
to planar space [6] or they concerning only mathematical pendulums [7]. Physical pen-
dulums are insufficiently examined in their multiple configurations. 

Here, mathematical model of a 3D double physical pendulums system is introduced. 
The results of numerical computations, as well as possible applications of the original 
simulation program are discussed. A rich spectrum of regular and chaotic dynamics of 
the system is detected. In addition, some results of the experimental setup are presented. 

2. The Pendulum Model 

A multiple pendulum system being proposed is shown on Figure 1. It consists of two 
cylindrical-shaped rigid bodies combined by universal joint O2 and hung on a second 
universal joint O1. This joint is also externally driven so it actuates the entire mechanical 
system axially with either constant or non-constant angular velocity. 
 

 

Figure 1. Coupled pendulums 

Angles of deflection of each universal joint’s shaft have been described by three Eu-
ler angles φi, θi and ψi, where i is an index of each joint. The rotation matrices 
are derived, as well as positions of each body centers, theirs linear and angular velocities 
and energy are defined. Analytically determined set of nonlinear ODEs governing 
the pendulum dynamics follows 
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and M, A, B, C, rg, rω devote matrices and vectors (here not defined explicitly). 
Analytical (symbolic) Wolfram Mathematica® computer package has been carried 

out, during process of derivation of equation (1). 
In the study, simple model of viscous damping of joints is assumed in form: 

 [ ] ,
222121

T
ddddddd MMMMMM ϕθϕϕθθ −−=M  (2) 

where Mi are corresponding damping torques proportional to the angular velocities. 
Angular velocity of the axial excitation is as follows: 

 ( ) ( ),sin01 tqt Ω+== ωωψ&  (2) 

where ω0 is a constant part of velocity, q is the amplitude and Ω states for frequency. 

3. Computations and results 

According to the User manual of Wolfram Mathematica® package, the ODEs solving 
algorithm is based on higher order Runge-Kutta methods with automatic step control. 
Results, as well as the plots, are automatically interpolated to any chosen time steps. 

Results presented in this paper concerns the following fixed parameters: weight 
of the pendulums m1 = m2 = 0.5 kg, length L1 = L2 = 0.2 m, position of the mass center 
e1 = e2 = 0.1 m, viscous damping coefficient c = 0.1, moments of inertia Ix = Iy = 
0.002 kg·m and Iz = 0.0001 kg·m, which correspond to cylindrical shape of both identi-
cal pendulum links. The exemplary angular velocity parameters of the excitation are set 
to ω0 = 0 rad/s and q = 12 N·m (for the periodic excitation) and ω0 = 12.5 rad/s (for the 
constant excitation). The frequency of periodic excitation Ω (bifurcation parameter) is 
described in the figures’ captions. For each Poincaré section 400 time steps were ignored 
as transient motion and 400 were qualified as significant for the analysis. 

The first part of performed analysis concerned finding stable positions of the system 
under constant excitation. The example of the obtained results is shown in Fig. 2.  

  
Figure 2. Time series and phase plots of deflection angle θ1 of first pendulum  

for ω0 = 12.5 rad/s and initial coordinates φ1 = θ1 = 0.35 rad 

Presented position is one of many stable positions found in performed investigation. 
It is expectable that there are infinite number of such configurations possible to achieve 
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from many initial conditions and in many angular velocities. It is also worth mentioning 
that this non-trivial configuration appears only above some value of angular velocity 
of excitation. Lower velocity corresponds to trivial axial rotation, while each pendulum 
hangs freely under the influence of the gravity, without an exhibition of any vibrations. 

The second part of the research concerns analysis of the system subjected to periodic 
external excitation. Since one could predict much more complicated movement, possibly 
a periodic or chaotic one, the driven universal joint rotates axially with periodic angular 
velocity governed by the formula (3). We initiate a study by computations of bifurcation 
diagrams with excitation frequency Ω as a control parameter for each angle 
of deflection. This global method of analysis revealed many interesting nonlinear dy-
namics phenomena (example of regular and chaotic behaviour is shown in Fig. 3). 

 

Figure 3. Bifurcational diagram regarding angle θ1 in range Ω∈〈4.4, 5.8〉 rad/s with step 
-0.005 rad/s, series of phase plots and Poincaré maps (vertical lines (B-D) correspond 

to parameters used in further analysis) 

During the bifurcation analysis we were lowering the value of control parameter Ω 
with constant step size. Over 5.7 rad/s the system performs harmonic vibrations. Chang-
ing the value of Ω one can observe the first bifurcation and double period bifurcation 
(see Fig. 3d, which corresponds to line D in Fig. 3a).  

After a further reducing the value of Ω, the period doubles several times tending 
to chaos. The illustration of one of the periodic windows between chaotic behaviour 
is presented in Fig. 3c. Figure 3b shows an example of chaos (see line B in Fig. 3a). It is 
worth to mention that the performed detailed analysis (with smaller value of control 
parameter steps) shows that changes in the character of movement dynamics occurred 
in each angle of deflection simultaneously. Moreover, in a region of higher angular ve-
locities of excitation a few regions of quasi-periodics have been found and studied. 

4. The experimental stand 

The experimental part of the project consisted of planning, designing and constructing 
the stand to perform verification and validation of the numerical results. In order to 
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compare the numerical results with those obtained experimentally the original measure-
ment and acquisition software has been developed. The photo of the stand and a scheme 
of its construction are shown in Fig. 4. 

The orientation of each pendulum is measured by means of four incremental encod-
ers and the dedicated PCI acquisition card. Special slip ring is used to transmit signals 
between rotating pendulums equipped with the encoders and mounting frame. The exter-
nal angular velocity excitation is provided by the PC-controlled servomotor. 

                  
 

Figure 4. A part of the designed experimental stand 

One should notice that the stand has some limitations in comparison with 
the mathematical model. Due to the construction details it is impossible to realize pendu-
lums rotations in more than about 30 degrees in each direction. Exceeding these limits 
will result in impacts that could damage the stand. For this reason the first measurements 
have been focused on real damping coefficients of the bearing identification 
and verification of the analytically calculated mechanical parameters, like moments 
of inertia, etc. Currently, the procedure of searching stable configurations of pendulums 
is under development and improvement. The measurement data averaged to avoid inci-
dental errors have been shown in Fig. 5. 

 

 

Figure 5. The results for measuring constant angular velocity of excitation (3.7 rad/s) 
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The pendulum has been accelerated to a constant angular velocity and pushed 
out of balance in an accidental way. One can observe damped vibrations transforming 
to more regular movement with growing amplitude due to a centrifugal force, ending 
with impacts that immediately stopped the experiment. The collisions are the main in-
convenience of the measurement. Increasing the damping of the first pendulum 
may improve this situation and is under development. Additionally, the control software 
for the servomotor is developed so as to vary the excitation angular velocity. 

5. Conclusions 

Performed simulation investigation revealed a wide spectrum of nonlinear effects, peri-
odic, quasi-periodic and chaotic orbits have been detected and discussed, among others. 
The experimental research is still being improved, mainly to avoid impacts that can be 
dangerous, where chaotic character of movement is expected. It is also worth mention-
ing, that the experimental work showed potential additional applications, i.e. a real-time 
analysis of some types of driving shafts or robots dynamics. 
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Abstract 

Nonlinear vibrations of the two degree-of-freedom system near resonances are studied. The system is external-
ly and kinematically driven. The dynamical problem is solved by an analytical multiple scales method (MS). 
This analytical approach gives very good results in solving problems of nonlinear dynamics and is more and 
more popular in last decades. The investigations are focused on correctness of MS method using various 
number of considered time scales. Namely, we show that in some cases the use of only two time scales is 
insufficient to detect all possible resonances exhibited by the studied system. 

Keywords: resonances, asymptotic method, multiple time scale  

1. Introduction 

The great advantage of asymptotic methods relies on their analytical character. A solu-
tion obtained by asymptotic methods in contrary to numerical solutions possesses a more 
universal character. This allows to deduce a system behaviour without the need to solve 
very large number of problems. In turn, the powerful computer algebra systems that are 
used to implement these methods, significantly help us to carry out all computations 
using symbolic algebra manipulations. The multiple scales method (MS) is used in the 
paper to solve the dynamical problem of the two degrees-of-freedom mechanical object. 
Many authors take into account only two time scales to simplify the mathematical com-
plexity of the problem. However, in this paper we show that the introduction of the addi-
tional time scale allows to obtain more information about behavior of the system. Similar 
analysis using three time scales has been carried out in reference [1]. Influence of the 
number of time scales in the MS method on qualitative and quantitative properties of the 
solutions is now discussed.  

2. Formulation of the problem 

The spring pendulum having the movable suspension point O is analyzed (Fig. 1). The 
equations of motion in non-dimensional form are as follows [1]: 
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with the following initial conditions for non-dimensional generalized co-ordinates and 
their first derivatives 

 ( ) ( ) ( ) ( ) 0000 0,0,0,0 ωϕϕϕ ==== && vzzz . (3) 

  

Figure 1. Spring pendulum moving on a prescribed path 

3. Multiple scale method 

The multiple scale method is applied to solve the governing equations and to obtain the 
resonance conditions. The amplitudes of vibrations are assumed to be of the order of a 
small parameter 10 <<< ε . Let us introduce some new variables ζ and φ  in the follow-

ing form  

 ( ) ( )ετζετ ;=z , ( ) ( )ετφετϕ ;= . (4) 

The smallness of some other parameters occurring in (2) is also assumed [2]. The func-
tions ζ  and φ  are sought in the form 
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where ττ =0 , 1,...,1, −== Nii
i τετ  are various time scales. 

Derivatives with respect to time τ are calculated in terms of the new time scales as fol-
lows 
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Introducing (4)–(6) into (1)–(2) we obtain two partial differential equations, in which the 
small parameter ε appears. After ordering each of the equations due to the powers of ε 
and omitting all terms of the order higher than εN, a set of N equations is derived. The 
obtained hierarchy sequence is solved recursively [1, 2]. 

4. Approximate analytical solution 

MS method allows to obtain the approximate solution in an analytical form. Its correct-
ness depends, among others, on the number of time scales used in the method. Below are 
presented solutions of equations (1)–(2) using two and three time scales. 

• the solution for two time scales 
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• the solution for three time scales 
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where ( ) ( )τψτητψτη 2211 , +=+= w . 

As we can see higher number of time scales causes that the solution is much more 
complicated in comparison to the results obtained through two scales procedure. The 
carried out numerical tests confirm that the three scales solution improved slightly the 
results. However, in majority of cases appeared in non-linear mechanics and physics two 
time scales are sufficient to describe very well time histories of generalized co-ordinates. 
On the other hand solutions (9)–(10) yield more deep qualitative information about dy-
namics of the studied system, which will be shown further. 

5. Resonance cases 

It should be emphasized that the solutions (7)–(10) are not valid for the cases, when their 
denominator values tend to zero. These cases are responsible for the resonance occur-
rence. All possible resonances can be identified as the external, kinematic, internal or 
combined ones. 

Resonance cases obtained from the two time scales solution (7)–(8) (N = 2) follow: 
p1 ≈ 1, p2 ≈ w, px = 1, py = w, 1 = 2w 

Resonance cases obtained from the three time scales solution (9)–(10) (N = 3) fol-
low: p1 ≈ 1, p2 ≈ w, px = 1, py = w, px = 2w, 1 = 2w, py = ±(1 – w), py = ±(1 + w). 

As we can see some resonance cases cannot be detected by the two time scales ap-
proach. For example, the case wpx 2=  is not exhibited by formulas in (7)–(8), but the 

numerically obtained time history of the z and φ indicates the intensive energy exchange 
proving that such resonance exists in the system (Fig. 2). 

 

   
Figure 2. Time history of the z and φ in kinematical resonance px = 2w 

It is worth to underline that all resonance cases which appear as result of (7)–(8) are 
included in the set of the cases detected using (9)–(10). 

6. Two resonances appearing simultaneously 

Let us examine parametric and primary resonances appearing simultaneously, i.e. 

 21, .xp p w≈ ≈  (11) 
In order to study the resonances, we introduce the new so-called detuning parameters

1σ  and 2σ  as a measure of the distance from the strict resonance: 

 11
~11 σεσ +=+=xp  and 222

~σεσ +=+= wwp . (12) 
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Resonance conditions (12) in equations (1)–(2) yield occurrence of secular terms, al-
lowing for derivation of the frequency response functions: 

• using two time scales 
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where a1 and a2 are amplitudes of the longitudinal and swing vibrations, respectively.  
There are some crucial differences between frequency response governed by equations 
(13)-(14) and (15)-(16). In the first set, equations are simpler and uncoupled but do not 
describe a certain sophisticated behavior of the system in a strict resonance. Especially 
some additional steady state solutions are detected only using more than two time scales 
in the asymptotic approach. 
The resonant responses are presented in Figure 3 obtained from (13)-(14), and in Figure 
4 obtained from (15)-(16).  

  

  
Figure. 3 Amplitude curves versus σ1 for σ2 = -0.03 
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Figure 4. Amplitude curves versus σ2 for σ1=-0.005 

All curves in Figs. 3 and 4 are reported for the same values of parameters. 

7. Conclusions  

The nonlinear non-autonomous two degree of freedom system has been studied. The 
analytical approximate solution has been obtained using multiple scales method in time 
domain.  

The comparison between solutions obtained with the help of two and three time 
scales has been illustrated and discussed. 

Very strong differences have been noticed in the case of a steady state response near 
the resonance. Therefore, it has been shown that in some cases simpler and easier to 
obtain solution with two time scales is insufficient to describe properly very complicated 
behaviour of the system. Moreover, more dangerous resonance cases in the system can 
be detected applying more time scales. 
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Abstract 

This paper article outlines the problems of in situ vibroacoustic testing of low-vibroactive devices. Moreover a 
comparison of selected methods of object's surface velocity mapping was carried out in the paper. Primary 
features, advantages and limitations of these methods are stated here. On the example of tests on a refrigerator 
the methodology and specifics of testing of this type of devices using a laser vibrometer is also shown. 

Keywords: noise of refrigerators, laser vibrometry, vibroactivity assessment,   

1. Introduction  

The competition on the market and growing consumers demands are creating the neces-
sity of minimization of the noise emitted by machinery, devices and especially by 
household appliances. Low vibroactivity of these devices is important primarily from the 
point of view of comfort of use. Bearing this in mind, most of appliances are tested at the 
final stage of production. Besides checking the operating parameters, the level of the 
emitted noise is also checked in some classes of devices. The necessity of measuring the 
noise and the vibrations of devices results mostly from directives or standards. In many 
cases, the noise level can also be treated as a global measure of product quality (e.g. 
quality of assembly, proper operating of device subsystems, etc.). In case of devices with 
high noise levels, the measurement is relatively easy. Then the tests can be carried out in 
situ, in an industrial conditions e.g. in a separated and acoustically adopted area of a 
production hall. To obtain correct results it is necessary to take into account required 
corrections resulting from the influence of the measurement environment. 

On the other hand, carrying out the tests of low-vibroactive devices is problematic. 
The level of noise emitted by them may be in many cases lower than the level of the 
acoustic background. Obtaining reliable results of the tests would require to carry them 
out in an anechoic chamber or at least in the testing environment that takes into account 
the standard's recommendations (general or branch). Practically, it is not possible to 
examine all produced units in the laboratory conditions. It comes out both from the time 
limitations related to the production cycle and economic reasons. This solution is also 
not possible to apply in case of mass production (e.g. the production line). An example 
of low-vibroactivity appliances is a refrigerator. The noise level emitted by the refrigera-
tor should meet the requirements of the branch or company standards. It is also im-
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portant that the average sound level (LA  for steady noise) or an equivalent sound level 
(LA,eq. for unsteady noise) in the living environment (e.g. kitchen)  is lower than the limit 
values of 35 dB in the day and 25 dB in the night time (according to standard PN-
87/B02151/2 [1]).  

This article introduces the method of carrying out the identification vibroacoustic 
tests of refrigerators with a laser vibrometer. The results of tests show that the method 
may be used for comparative evaluation of vibroactivity of this class of devices.  

2. Alternative testing method 

Because of the typically high level of acoustic background in an in-situ testing environ-
ment the measurement of the refrigerator’s noise with microphone or matrix of micro-
phones may be not effective enough. Carrying out the tests even in the near acoustic 
field does not guarantee to obtain reliable measurement results. It is worth to mention 
that there are no subassemblies or elements of the cooling system visible from outside in 
refrigerators produced nowadays. They are covered by the rear wall of the refrigerator or 
they are combined with the rear wall. A refrigerator creates then a quasi-surface source 
of noise. 

Table 1. The ccomparison of the characteristics of measuring systems from the 
viewpoint of velocity mapping  

 Measuring system/ transducer type 
laser vibrometer eddy current probe 

(proximitor) 
accelerometer 

Measuring 
type 

non-contact 
relative vibration 

non-contact 
relative vibration 

contact 
absolute vibration 

Measured 
vibration 
quantity 

Velocity Displacement Acceleration 

Features, 
Advantages  
and 
Disad-
vantages 

•••• High costs of devices 
•••• High sensitivity of the 

measuring system 
•••• Very good linearity of  

signal conversion 
•••• Wide frequency range  
•••• Most effective 

techniques (in case of a 
scanning system) 

•••• A laser head 
vibroisolation and an 
object stabilization   is 
recommended  

•••• Problem with laser beam 
focusing  

 

•••• Low or medium cost  of 
equipment  

•••• Velocity signal is crated 
by displacement signal 
differentiation 

•••• Limited frequency range   
•••• Transducer supporting 

and/or positioning 
system is necessary  

•••• Measurement 
interference of close 
located sources of a 
magnetic field  

•••• Suitable for measuring 
significant vibration 
sources  

•••• Low or medium cost of 
equipment 

•••• Velocity signal is 
created by acceleration 
signal integrating  

•••• Resonances of a 
transducer and its 
mounting systems 
(linearization  of 
frequency characteristic  
is necessary) 

•••• Manual transducer 
positioning or an  
industrial robot is 
needed   

•••• transducer presence on 
the object may interfere 
with measurement 
results 
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One of the ways to solve this problem is an estimation of object's vibroactivity with 
an indirect method. The proposed method includes creation of a velocity map of the 
device's case vibration, then determination of the distribution of a sound power (or the 
sound power level) on the surface of the object. Basing on such a form of a result it is 
possible to estimate the noise in the near field. Mapping could be based on the contact 
vibration measurement. However, practically a non-contact method is better e.g. using a 
scanning vibrometer (see Table 1). 

This approach is also justified by the terms of application procedures e.g. the final 
product quality control. Velocity or sound power level maps created on the basis of the 
identification tests, firstly enables to locate the main sources of noise and vibration in the 
device. Secondly, it allows simplifying the product testing procedures. It means that the 
number of measuring points can be reduced only to the areas with the greatest vibroac-
tivity.  

3.  Testing procedure 

The vibroacoustic identification test of a refrigerator was performed by scanning its case 
using the Polytec laser vibrometer (type OFV-5000). The scanning procedure consisted 
of a multi-point, non-contact measurement (laser beam) of rear wall of the refrigerator. 
In this area the main sources of vibration (condenser, expansion valve, evaporator unit, 
compressor and fans) are located. Manual positioning of the laser beam was used. 

Figure 1. Measuring system used for scannning the surface of the refrigerator 
and VA signal acquisition [3]   

A simplified algorithm of object vibroactivity identification is shown in Fig. 2. The 
testing process was carried out in five stages. In the first stage vibration of refrigerator’s 
rear wall velocity was measured sequentially (according to the grid). The digital signal 
processing of recorded signals was done in the second stage. In the result the set of RMS 
values of vibration velocity in octave frequency bands for all measuring points has been 
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created. The third stage of the procedure included the amplitude correction. It resulted 
from scanning the surface at different angles. In the fourth stage, for each elementary 
surface acoustic power and sound power level were determined. The last stage included 
visualization of the tests results. 

 

 

Figure 2. Simplified algorithm of object vibroactivity identification 

A signal from the laser vibrometer was pre-filtered and AD converted in a dual chan-
nel signal acquisition module. The correction of the RMS vibration velocity was based 
on the equation (1). 
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where: 
vP  is the measured vibration velocity 
vR  is  corrected vibration velocity 
x, y are  horizontal and vertical shift of the laser beam, 
a  is the  distance between refrigerator and sensor head. 
 
The matrix of the corrected vibration velocity vR i,j ( the RMS values) was used to de-

termine the matrix of sound power,  basing on equation (2) 



 Vibrations in Physical Systems Vol.25 (2012) 63 

  
n

S
vcN jiaji ⋅⋅⋅= 2

,, ρ , (2) 

where 
 ρ  is a medium density (air) , 
ca  is the sound speed in the air, 
v i,j  are the RMS values of vibration velocity in the points i,j,  
S  is the total area of the vibration emitting surface, 
n  is the number of measurement points on the surface.  
 
 

 

 
 

γ  is an  angle between VP and VR vectors, 
R   is the distance between point O and 

measurement point, 
k is the refrigerator’s rear wall surface, 
a is a distance between refrigerator and 

sensor head, 
A is the source of laser beam   
O is a reference point. 

 

Figure 3.  Relation between vibration velocity vectors: normal and measured [3]  

The sound power level L i,j was determined in reference to N0 = 10-12W : 
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ji
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The sample of refrigerator’s test results in the form of the sound power level map in the 
hearing range and RMS vibration velocity map is given in Fig. 4.  

4. Conclusions 

Tests carried out in the room without special acoustic adaptation allowed to draw the 
following conclusions: 

• The applied measurement system was very sensitive. Processes such as: a conver-
sation in the room, the floor vibrations caused by movement of personnel, work-
ing elevator or closing the door had been reflected in the vibration signal. The in-
fluence of these effects on final results should be  taken  into account. 
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• The logarithmic scale of the vibroactivity maps is an optimal form of the results 
presentation, especially for identification of both the high-energy and the low-
energy phenomena. (see Figure 3 b). 

• Basing on the analysis of the contour map of the sound power level it is possible 
to localize  the main noise sources of the device. 

• The identification of vibroacoustic processes, the determination of emitted noise 
nature and noise evaluation is possible on the basis of  map sets  created for  each 
octave frequency band. 

• Using additional simulation tools e.g. the SYSNOISE system also creates the 
possibility of the virtual noise analysis and the noise assessment without the use 
of an anechoic chamber. 

 
a) 

 

b) 

 

 Figure 4. Maps of the refrigerator vibroactivity  created on the basis of the vibration 
velocity (a) and the sound power level (b)  (rear wall) [3]   
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Abstract  

The paper presents some problems on thin-walled wooden structures modal investigations. Dynamic experi-
mental method is used to determine Young’s modulus of the chosen wooden specimens. Numerical FEM 
simulations (ABAQUS/Standard) are applied to the Young’s modulus tests, obtained by experiment, as well as 
to simulate modal behaviour of simple wooden plates with arbitrary oriented annual rings.   

Keywords: wooden structures, module of elasticity, modeling, experiment, numerical simulation 

1. Introduction  

Wood and wooden materials have very wide range of elasticity modulus values. Thus, 
precious experimental determinations of the Young’s modulus are necessary to realize 
numerical investigation of the CAD wooden structures. In case of modal investigation of 
thin walled structures the recommended methods used to determine modulus of elasticity 
are dynamical vibration methods. One of them, the free vibration method, is applied to 
determine the elasticity modulus of several wooden specimens.  

Numerical modal simulation of the specimen is used to test the Young’s modulus de-
termined by experiment. 

2. The Method 

The free vibration technique of determination of elasticity modulus is an alternative to 
standard method based on four or three-point static flexure test. The standard test method 
determines the modulus of elasticity within the linear region of the stress-strain curve. 
The vibration method is based on measure of natural frequency (first mode) of the beam 
(see Figure 1b). The Young’s modulus is calculated from the following equation  

 2
3

fb
h

l
mE ⋅⋅







⋅⋅= α  (1) 

where 
f  is measured frequency  (first mode)  
b, h, l are width, height and length of the specimen (beam)  
α is the numerical value  
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Recordings of the specimen free vibration have been made using the Polytec laser vi-
brometer (type OFV-5000). After ADC conversion the signals have been software pro-
cessed. The natural frequency of the specimen has been received from the high resolu-
tion spectral analysis of the captured vibration signal. Elaborated DSP system (created in 
the DasyLab environment) automatically calculates the average value of modulus of 
elasticity. The measuring system, aside from the vibration signal, requires input data 
such as: beam width (b) beam height (h) - beam overall length (lc), active length of the 
beam (l), total mass of the beam (m) to be introduced. 
 

a 
b    

Figure 1. Local coordinate system to which wooden properties are related (a), 
dimensions of the specimen (b) 

 

 

Figure 2. Dynamical method of Young’s modulus determination and numerical 
simulations test algorithm 
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3. Experimental Determination of Wooden Young’s Modulus and Numerical 
Simulation Tests  

Several numerical simulations are done to test Young’s modulus experimental determi-
nation, according to algorithm shown in Figure 2. Spruce, great maple, nut wood, pine, 
beach wood and oaken specimen modal behaviour are investigated. Some of the speci-
mens are modeled as shell models and same as solid 3D models. The specimens are 
modeled as elastic material with the Young’s modulus and the density determined by 
experiment. The basic description of the specimens is shown in Table 1.  
 

 
Figure 3. Three specimens of spruce plate used to build guitar – dimensions in [mm] 

The main orientation of the specimens is LR-plain (see Figure 1a), thickness orienta-
tion is T-direction. All rectangular specimens described in Table 1 consist of 4-node 
shell elements type S4R with the mesh layout as shown in Figure 6. Figure 3 illustrates 
the spurs sheet and positions of specimens N1, N2, N3. Position of specimen N3 is ori-
ented (RL) perpendicular to orientation of specimens N1 and N2 (LR). 

Table 1. Results of Young’s modulus experimental determination and results of 
frequency numerical simulation (ABAQUS)   

 

N2 

N3 

N1 

150 

150  

 700  

35  

specimens 
thickness 

1 -  3,0 
2 -  3,2  
3 -  3,3  
  

L 

R 

   q 

kg/m
3
 

E  [GPa]   fw(1)  [Hz] ∆ 

specimen 
 

material 
 

orient. 
 

exper. reference   exper. ABAQUS [%] 

A(ar) spruce L 499,69 14,011     57,860 57,649 0,36 

B(ar) spruce L 548,57 14,235  7.3 - 21.0    55,660 55,459 0,36 

N1 spruce L 478,82 10,997 16
1)
   104,740 104,54 0,19 

N2 spruce L 431,55 9,268     108,030 107,81 0,20 

N3 spruce R 489,67 0,656 0.701
1)
   27,830 27,776 0,19 

N4 great maple L 645,11 6,296 6.4 - 15.2   31,860 31,834 0,08 

N5 nut L 687,97 5,778 12.3
2)
   71,780 71,624 0,22 

1)
 Aszkenazi 

2)
 walnut        
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Material properties of the specimens are experimentally determined and introduced 
into input files of the numerical models. One of the specimen short edges is clamped as 
boundary condition. In ABAQUS/Standard FEM System the *FREQUENCY procedure 
is used to extract the modes and natural frequencies of the specimens.  

Figure 4. Comparison of Young’s modulus experimental results of the chosen specimens  

Figure 5. 1st mode shape of the spruce specimen No 1 (E = 10.997 GPa) – 104.54 [Hz](a) 
1st mode shape of the spruce specimen No 3 (E = 0.66 GPa) – 27.78 [Hz] (b) 

Figure 6. Comparison of experimental and numerical 1st natural frequencies – 
investigation of the incompatibility reason (see Fig. 7)  

 

a                    b         
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The first natural frequency of the specimen extracted by numerical simulation is 
compared with the specimen frequency measured by experiment. Comparison of the 
frequencies is presented in Table 1 as error ∆. In case when the error is too large the 
investigation of the reason must be done. The example of unsatisfactory frequencies 
comparison is shown in Figure 6 and the reason of incompatibility is shown in Fig. 7. 

Figure 7 Invalid (a) and valid (b) specimen stabilization examples,                                   
a - specimen stabilization in thin-walled steel structure, b - specimen stabilization in 

concrete and metal heavy structure 

4. Examples of Wooden Plates Experimental Investigations and Numerical 
Simulations  

The first example is square plate vibration shown in Fig.8. All edges are free and har-
monic displacement excitation perpendicular to the plate surface is applied at the center 
of the plate.  

Figure 8. Mode III of brazen square plate (100x100x1 mm)                                                              
a – ABAQUS 204,4  [Hz], b – experiment 202,8  [Hz] 

Figure 9. Mode III of wooden (pine) plate - 116x117x5.7 mm. Plate edge is parallel 
to L-dir.; a – ABAQUS 348.8 [Hz], b – experiment 342.3 [Hz] 
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In the next example the boundary condition and the load (harmonic displacement ex-
citation) is the same as in the first one. Material of the plate is pine and two plate edges 
are parallel to L axis direction (see Fig. 1a). Dimensions of the plate and results of nu-
merical and experimental investigations are shown in Fig. 9. 

Figure 10. Mode III of wooden (pine) plate - 116x116x5.7 mm.                                       
Plate edge is 45o skew to L-dir.; a – ABAQUS 313 [Hz], b – experiment 

The third example is the same as previous but edges of the plate are 45o skew to L di-
rection (see Fig. 1a). Dimensions of the plate and results of numerical and experimental 
investigations are shown in Fig. 10. 

5. Conclusions   

Dynamic experimental method that is used to determine Young’s modulus satisfies re-
quirements of wooden thin-walled structures numerical investigation. Graphical repre-
sentation of the method algorithm allows validation experimental and numerical investi-
gation results.  All results of the investigation as well as presented in the paper examples 
confirm practical application of the method. It is necessary to experimentally determine 
wooden Young’s modulus for designed thin-walled wooden structure materials individu-
ally. 
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Abstract 

Beam collision with an obstacle is studied in the work. It is presumed that the conditions, under which the 
motion of the beam before, during and after the collision is planar, are fulfilled. Friction forces between con-
tacting surfaces of both objects are taken into consideration. The problem is solved using the Rigid Finite 
Element Method. Interaction between the beam and the obstacle, taking into account the elastic properties and 
surface roughness of the latter one, is modelled using the elastic element. Three different models of the interac-
tion, corresponding to various conditions governing the process, have been presented. Numerical simulations 
for the three possible variants of collision have been conducted. The results for the three considered cases of 
the collision have been compared with data obtained using Routh method. 

Keywords: collision, modelling, rigid finite element method 

1. Introduction 

The study considers collision of a beam with motionless plane. Before the collision beam 
is in transitional motion at a constant velocity of ��, � is an angle between the beam axis 
and the direction of the velocity. At the initial moment of contact the beam axis is at an 
angle of α measured from the plane. The beam is characterized by its mass m, length L 
and its cross-section is a rectangle which has length h and width b. 

Conditions under which before, during and after the collision, the beam is in planar 
motion are fulfilled. The obstacle with which the beam collides is permanently motion-
less and its surface is rough, what implies that friction forces must be considered during 
the collision. Friction force is modeled basing on Coulomb-Moren friction law.  

Moreover, it is assumed that the contact between the both colliding objects takes 
place at the point O. Gravity is not considered in the model due to its non-pulse charac-
ter. 
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Figure 1. The model of considered collision.        Figure 2. Modelling the contact. 

2. Psysical model of the collision 

The problem is solved using rigid finite element method (RFEM). In this method beam 
is divided into rigid and elastic elements which represent accordingly inertial and elastic 
characteristics of divided segments [2]. The beam was initially divided into n equally 
long pieces in the centre of which elastic element was placed. Between every two subse-
quent elastic elements rigid element was put. The contact between the beam and the 
surface is modeled by elastic element which bending stiffness is zero allowing the beam 
to rotate freely around the contact point (Fig.1). 

Furthermore, it is presumed that slip occurs from the very beginning of the collision, 
which implies that the linear velocity of the beam in the point O projected on the collid-
ed plane is not equal to zero. The slip continues until one of the following events occurs: 

• normal force at the point of collision changes its value to negative, 
• slipping speed, understood as linear speed at the point of collision reaches value 

of zero, which means either that the contact changes its character into non-slip or 
the slip continues but in reverse direction. The first situation happens when ratio 
between tangential and normal force at the point of collision, at the moment of 
zeroing the sliding speed, is below the frictional coefficient. The latter situation 
occurs when the ratio is above this value.     

The stiffness of contact element is described in coordinate system associated with the 
surface, which enables to apply stiffness referring to the normal and tangential to the 
plane directions (Fig. 2). However, the motion of the beam is described in the coordinate 
systems placed in the geometrical centre of rigid elements. Therefore, displacements at 
the contact elements are transformed into to the coordinate system of the first rigid ele-
ment according to the following equations:  

w���k1 = �w11 = q11·cos(α) �  q21·sin(α)

w21 = q11· sin�α�  + q21·cos(α)
w61 = q61

, (1) 

where q11,	q21,	q61 are the generalized coordinates associated with the first rigid element, 
referring accordingly to translation along local x  and y˗	axis as well as rotation around z
axis; w11 w21, w61 are the displacements of contact elastic element.  

Cn 
Ct 

v0 
β 

∆l 

α 

∆l 
∆l/2 

q2k q1k 
q6k 
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Motion equations when slip contact occurs are derived from Lagrange’s equation as 
it follows: 

d

dt
� ∂E����� � � ∂E����+ � ∂V���� 	=	P,			r=1,2,…,u,			k∈{1,2,6}, (2) 

where � � kinetic energy of the system, V�	a potential energy of the system, � force 
derived from the friction, �� 	�	generalized coordinate of r-th element,	� �number of 
rigid elements. 
Kinetic energy of the system can be represented as sum of kinetic energy of particular 
rigid elements 

� = 12� !� ∙ �#�$ + !� ∙ �$�$ +
&
�'#

 (� ∙ �)�$&
�'#

&
�'#

*, (3) 

where !�  mass of element, (� � mass moment of inertia of element. 
Potential energy of the system is expressed as a sum of particular energies of particular 
elastic elements 

+ = 12 ,-. ∙ ∆0#�$ + -1 ∙ ∆0$�$ + -2 ∙ ∆0)�$ 3
4
�'#

, for	k ≠ 1 (4) 

 where -.  axial stiffness of the particular beam segment, -1  shear stiffness of the 

particular beam segment, -2  bending stiffness of the beam segment, ∆0#� , ∆0$� , ∆0)� �	accordingly axial, shear and bending deformation at the r elastic element.  
Potential energy accumulated in the contact element is added to the total potential energy 
and can be written as it follows 

+# = 12 �8 ∙ -. ∙ ∆0�#$ � (5) 

where a is coefficient which characterizes the stiffness of the surface. 
Substituting the equation (1) to (5), potential energy of the contact element takes a form + = 128 ∙ -.�## ∙ sin < + $# ∙ cos <�$ + 12-. ∙ �#$ � ##�$ + 

+-1 ∙ �$$ � )$ ∆>2 � �$# + )# ∆>4 �
$ + -2 ∙ �)$ � )#�$

+ 12 -. ∙ �#� � #	�@#�$
A@#
�'B

+ 12-. ∙ �#A � #	A@#�$ + 

+12 �-1 ∙ �$� � )� ∆>2 � �$	�@# + )�@# ∆>2 �
$ + -2A@#

�'B ∙ �)� � )�@#�$� 
+-1 ∙ �$A � )A ∆>4 � �$	A@# + )	A@# ∆>2 �

$ + -2 ∙ �)A � )	A@#�$ 

(6) 

Friction force is proportional to the value of normal force at the point of O 
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C = 8 ∙ -. ∙ �## ∙ sin < + $# ∙ cos <�. (7) 
In order to substitute the friction force to the set of Lagrange’s equations (2), it must be 
projected on the coordinates of the first rigid element 

� =

EF
FF
FF
FF
G H ∙ I ∙ 8 ∙ -. ∙ �## ∙ sin < ∙ cos < + �$# � )# ∆>4 � ∙ JKL$<��H ∙ I ∙ 8 ∙ -. ∙ �## ∙ LMN$< + �$# � )# ∆>4 � ∙ sin < ∙ cos <�H ∙ I ∙ 8 ∙ -. ∙ �## ∙ sin < ∙ cos < + �$# � )# ∆>4 � ∙ JKL$<� ∙ ∆>4 ∙ sin	<0⋮0 QR

RR
RR
RR
S
, (8) 

where k takes value 1 or 0 depending on the direction of the frictional force.  
Finally, motion differential equations have a form T ∙ U + �- � �∗� ∙  = 0, 
where �∗ �vector of coefficients derived from the force vector according to � = �∗ ∙ ,  T � matrix of inertia coefficients, - �	matrix of stiffness coefficients. 

(9) 

The solution of the equations (2) takes a following form 

WX =  Y�Z ∙ [ZWX\ ∙ LMN�]\ZX^� + _Z ∙ [ZWX\ ∙ JKL�]\ZX^�`
B�.a#�
Z'#

, (10) 

where �Z , _Z � vectors of coefficients dependent on the initial conditions, ]\ZX �	angular 
frequencies of the system,  [ZWX\ �	modes of vibrations.  

As far as non-slip contact is concerned, the motion equation are derived from Lan-
grange’s equation as it follows bb^ ����� � � ����� + ��+�� = 0. (11) 

Further deliberations are similar to slip contact example, therefore it can be written that 
motion differential equations take a form T ∙ U + - ∙  = 0. (12) 

The solution of (12) is as it follows 

W. =  YcZ ∙ [ZW.\ ∙ LMN�]\Z.^� + dZ ∙ [ZW.\ ∙ JKL�]\Z.^�`
B�.a#�
Z'#

, (13) 

where cZ , dZ � vectors of coefficients dependent on the initial conditions. 

3. Numerical experiments 

Let us consider three different situations leading to three different cases: 

• when sliding velocity does not change its direction during the collision, 
• when sliding velocity does change its direction to opposite during the collision, 
• when contact changes its character from slip to non-slip during the collision. 
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Initial parameters were adjusted in other to obtain particular situation. In all three cases, 
the beam is equally long − 0.5 m, has the same cross section (0.02 m x 0.06 m) and is 
made of the same material − carbon steel.  

Firstly, the case when the sliding velocity does not change its direction during the 
collision is considered. The results presented in Fig. 3a have been obtained for the fol-
lowing parameters and initial conditions: �\ = 5	4X ,	]\ = 0	4X  < = 70°,		� = 0°, I = 0.05. Comparing the time history of slide velocity with the normal force during the 
collision confirms that its direction has not been changed during the contact. 

Secondly, the situation when the sliding velocity does change its direction during the 
collision is examined. The results presented in Fig. 3c have been obtained for the follow-
ing parameters and initial conditions: �\ = 1	4X ,	]\ = 0.2	4X  < = 30°,		� = 10°, I = 0.5. Comparing the time history of slide velocity with the normal force during the 
collision confirms that the its direction has been changed during the contact. Further-
more, the ratio between normal and tangent force is compared to friction coefficient in 
order to determine the fact that contact character has not been changed to non−slip. The 
ratio value is greater than the friction coefficient.  

Finally, the case when contact between the beam and the surface changes from slip to 
non-slip during the collision. The results presented in Fig. 3e have been obtained for the 
following parameters and initial conditions: �\ = 30	4X ,	]\ = 0	4X  < = 10°,	� = 0°, I = 0.85. Comparing the time history of slide velocity with the normal force during the 
collision confirms that the its direction has been changed during the contact. In addition, 
the ratio between normal and tangent force is compared to friction coefficient in order to 
determine the fact that contact character has  been changed to non−slip. The ratio value 
is lower than the friction coefficient. 

The results gained by RFEM have been compared with the results given by Routh 
method for the same initial conditions and parameters. Pulses of normal and tangent 
force during the impact have been shown in Fig. 3b, Fig. 3d and Fig. 3f. Comparisons of 
the results by the two method is presented in Table 1. 

Table 1. Comparison of the results obtained by the two different methods. 

Case 
RFEM Routh j [-] k [-] tcol [s] j [-] k [-] 

1. Sliding velocity does not change its 
direction during the collision 

-0,25 4,96 1,03 ∙ 10@l -0,11 2,28 

2. Sliding velocity changes its direc-
tion to opposite during the collision 

-0,05 0,12 5,51 ∙ 10@) -0,09 0,38 

3. Contact changes its character from 
slip to non-slip during the collision 

0,18 1,07 4,45 ∙ 10@) 0,33 4,05 

4. Conclusion 

The results obtained by the RFEM are proved by Routh method as far as the character of 
the collision is concerned. The values of force pulses are similiar.   
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Figure 3. a) Normal and tangential force during the collision when sliding speed does not 
change its direction, b) pulses of normal and tangential force during the collision when 
sliding speed does not change its direction, c) normal and tangential force during the 
collision when sliding speed changes its direction, d) pulses of normal and tangential 

force during the collision when sliding speed changes its direction, e) normal and 
tangential force during the collision when contact changes its character from slip to non-
slip, f) pulses of normal and tangential force during the collision when contact changes 

its character from slip to non-slip. 
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Abstract  

In the paper the problem of a room with a sound source inside is investigated. The effect, an acoustic field 
inside is affected by two factors: the shape and the boundaries of the enclosure. In order to evaluate the acous-
tic field, modal analysis assumption has been applied to describe the room's pressure distribution. Thus, the 
sum over a set of the room's eigenfunctions and proper time components represents the values of the acoustic 
field. Eigenfunctions can be obtained by solving the Helmholtz equation for rigid walls. Time components can 
be determined applying Green’s theorem. This approach allows boundary conditions to be adjoined to time 
components and thereafter obtain a set of ordinary differential equations for each specified time component 
correlated with corresponding eigenfunction. Assuming a harmonic excitation, time components are harmonic 
as well. Therefore, the values of coefficients of each time component (i.e. the modal amplitudes) are required. 
Directly, one can evaluate the modal amplitudes by solving simple algebraic equations. As a result of this 
calculation, the finite set of eigenfunctions of an enclosure and modal amplitudes has been obtained. In this 
case of an additional assumption of high enough boundary impedance, the modal coupling can be neglected 
and consecutive formula reduction is possible. Under frequency limitation, the modal approach to a room's 
acoustic field modelling, involves much less computational effort than the alternative, for instance applying 
Finite Element Method (FEM) or Boundary Element Method (BEM). 
 
Keywords: acoustic field, enclosure, modal analysis, modal amplitudes, harmonic source 

1. Introduction  

An acoustic field in an enclosure is a specific case of acoustic wave propagation. After 
the source of sound starts to emit a signal (sound wave), at the room’s boundaries ap-
pears a loss of acoustic energy caused by absorption. This attenuation in the short term is 
equalized by the energy from the source. After this transient period the steady state be-
haviour dominates in an enclosure. The steady-state of an acoustic field, as characterized 
by the specific acoustic pressure distribution is reached. In order to describe this distribu-
tion inside a room, one can use modal analysis formulation under several restrictions [1]. 
The first factor in modal approach states that the enclosure can be considered a resonator 
and acoustic field distribution inside is dependent on its normal modes (eigenfunctions). 
It was assumed that one can use the eigenfunctions in the case of a room with perfectly 
rigid walls i.e. Neuman’s boundary condition equals zero. Simultaneously, orthogonality 
and normalization of eigenfunctions are required [2]. The second factor is that the time 
components describe acoustic pressure variation in time.  
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On the other hand the acoustic field inside the room with a source describes a linear, 
inhomogeneous wave equation and the specific boundary conditions most often charac-
terized by the wall’s acoustic impedance. In order to solve such a formulated problem, 
the Finite Element Method (FEM) or Boundary Element Method (BEM) is needed. The-
se methods are computationally expensive. Let’s consider a modal approach. 

2.  Mathematical model of an acoustic field in an enclosure 

Let's consider the acoustic field inside an arbitrary enclosure V with a vibro-acoustical 
source which is located in a determinate area (points), characterised by its power or 
outflow f. The field is described by a well-known wave equation: 

f
t

p

c
p =

∂

∂
−∆

2

2

2

1  
(1) 

 
where c is the sound velocity in air. The Neumann’s impedance boundary conditions on 
each i part of the boundary S of the limited enclosure V are in the form: 
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where Zi is the impedance on the surface i. In order to solve the problem described by 
(1) and (2) and eventually obtain p(r,t), a FEM or BEM method is needed. The function 
p(r,t) represents values of acoustic pressure at a point r(x,y,z) of an enclosure in specific 
time t. In some cases modal analysis can be applied and the solution is directly assumed 
in the form: 
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where Tm(t) are the time components, describing variation of an acoustic pressure in a 
time and Ψm(r) are the eigenfunctions of an enclosure, which satisfies  the Helmholtz 
equation in the general form: 

0)()( =Ψ+∆Ψ rr nnn λ  (4) 
 

under the following boundary conditions: 
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In Eq.(4) λn's are the eigenvalues correlated with the eigenfrequencies ωn of an enclosure 
by the formula ω2

n=λnc
2. In this case index n means the particular eigenvalue and eigen-

function of an enclosure. According to Green’s theorem, if one considers an enclosure 
with volume V and boundary S as a bounded, positively-oriented domain, then both 
functions p(r,t) in Eq. (1) and Ψn(r)  in Eq. (4) should satisfy the following equation: 
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In order to get more transparency here, variable t in the time components and r in the 
eigenfunctions were omitted.  
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Modifying Eq. (1) and (4) properly in order to obtain ∆p and ∆Ψn respectively ena-
bles the application of the Laplasians into the left side of Eq. (6). Simultaneously, intro-
ducing the boundary conditions described by Eq. (2) and Eq. (5) into the right side of Eq. 
(6), eventually one can get the formula as follows: 
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The integrand on the right hand side of Eq.(7) contains the boundary condition  formula-
tion for all boundaries of the enclosure. The first and second time pressure derivatives, 
calculated based on Eq. (3) take the form: 
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where mT
•

 and mT
••

 mean first and second time component, Tm, time derivatives respec-
tively. Using both formulae, Eq. (7) it can be rewritten as follows: 
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Simultaneously, modal analysis assumes the eigenfunctions should have been orthogonal 
and normalised. That means: 
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It enables Eq.(9) to be simplified to the form: 
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Grouping factors with time components and its derivatives on the left side hand and 
factors including the source term on the right, using simple algebraic operations, one can 
obtain a formula similar to the equation of the forced vibration with a damping. It takes 
the form: 

dVf
V

c
dS

Z
TcTT

V

n

S

nm

m

mnnn ∫∫∑ Ψ−=
ΨΨ

++
∞

=

••• 2

0

2
0

2 ρω  (12) 
 

The time components Tn can be obtained by solving the sets of Eq.(12). However, the 
eigenvalue problem of an enclosure with volume V, described by Eq.(4) and Eq.(5) has 
to initially be solved. Hence, the correlated eigenfunctions and eigenfreqencies are 
known. Eventually, applying Eq.(3), the values of acoustic pressure and its distribution 
in the enclosure could be determined. But in this case two main problems arise from 
summation on the left hand side of Eq.(12). The first problem appears because of the 
time component derivates summation and the second arises from the infinity of this sum. 
But in some cases one can solve this problem. 
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3. Harmonic excitation 

In many cases properties of a sound source, describe by function f(r,t) and dimension of 
an enclosure V, make it possible to consider this source as harmonic, located at an exact 
point. Let's assume that a harmonic sound source described by function f(r0,t)=fω ejωt. 
Where fω represents the power or outflow of the source with the frequency ω. The source 
is located at point r0 of an enclosure. Considering only the steady-state of the acoustic 
field, the time components have to be harmonic as well i.e. Tn=An e

jωt.  Introducing the 
assumption of the sound source harmonic behaviour enables Eq.(12) to be rewritten  in 
the form: 
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where Ψn0 is the eigenfinction value at a point r0 (the sound source location). It is possi-
ble to extract the factor related to amplitude An from the sum ΣAm and again the rewrite 
takes effect: 
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where δnm=1 if  n≠ m and  δnm =0 if n = m. Solving the Eq.(14) with respect to the An, 
one can obtain the modal amplitudes values in the form : 
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The surface integral represents damping in the acoustic system. One can see that damp-
ing is different for each modal amplitude and is dependent on the factor in the form: 
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Eq.(15) is simplified to: 
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In order to evaluate all modal amplitudes described by Eq.(17), the factor contained in 
the summation has to be computed first. Initially, using an iteration method, all modal 
amplitudes for terms n = m are computed. The modal amplitudes A0, A1,A2,..., in the 
case when the modal coupling is neglected, are determined. Eventually, its values are 
applied in sums in Eq.(17). In some cases, the boundary impedance Z reaches high val-
ues. In that situation one can utilise modal amplitude values without modal coupling. 
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4. Application of the method and limitation 

Evaluating Eq.(3), infinite series need infinite numbers of the eigenfunctions and the 
time components. In the case of the harmonic excitation, the denominator in Eq.(17) 
includes the differences between the specific eigenfrequency and the source frequency. It 
indicates that the modal amplitudes tend to zero for eigenfrequencies, which are signifi-
cantly bigger than the source frequency. It means one can modify formulation Eq.(3) and 
apply finite series: 

∑
=

Ψ=
N

m
mm rtTVtrp

0

)()(),(  (18) 
 

where N is the number of the eigenfunctions taken into consideration. Eq.(18) represents 
the eigenfunctions correlated with the eigenfrequencies ,,be low and above'' the source 
frequency. The values of the modal amplitudes diminish with the eigenfrequency and 
source frequency distance. Hence, for low range of frequency of excitation, there is the 
finite number N of the eigenfrequencies, which allows the acoustic field inside of the 
enclosure to be evaluated with acceptable accuracy. Simultaneously, the higher the fre-
quency of an excitation is the bigger number N is needed. It results from the higher den-
sity of eigenfrequencies in a higher range compared to a low range of the eigenmodes.   

5. Example of the method application and comparison with FEM  

In order to compare accuracy of the method and the formulae, the same problem was 
solved, applying FEM and modal method. As the FEM the commercial software Comsol 
Muliphysics was used. The example object, the room bounded by 15 different walls, was 
shown in the Fig.1. The walls were characterized by the real and complex acoustic im-
pedance. The results, i.e. acoustic pressure distribution, for the simple harmonic source 
characterized by power f=0.00015W, placed inside at two points r01(4.5, 2.51, 1.31) and  
r02 (1.08, 2.51, 1.43) were considered. The two source frequency 100Hz and 300Hz were 
applied respectively.  In the Fig. 1 the dimensions of the object are shown in meters and 
acoustic pressure in Pascal units.  

6. Conclusions  

The both FEM and modal model results comparison, as it is presented in the Fig. 1, indi-
cates high convergence. The simple modal model presented in the paper is based on a 
evaluation of the eigenfunctions and the eigenfrequencies in accordance with Eq.(4) and 
the time components up to Eq.(12) (for the harmonic source Eq.(17)) and next acoustic 
pressure distribution using Eq.(18). Simply one has to solve acoustic eigenproblem for 
the enclosure first, next use the results in order to evaluate the damping in system (damp-
ing coefficients) and eventually evaluate the values of the modal amplitudes. Holding 
this numeric data one can simply simulate the acoustic field in the room in case of the 
different boundary condition and the source configuration. But one has to be aware that 
is not possible evade numerical methods solving this kind of problems. Solution of the 
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egienproblems in case of irregular objects shapes and consequently integration in order 
to get damping coefficients require numerical method. 
 

 

 

Figure 1. The acoustic field inside the example object obtained applying: a) FEM model 
and b) modal model in case of the source with frequency 100Hz at the point r01 and c) 

FEM model and d) modal model the source at the point r02 with frequency 300Hz 
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Abstract 

This work is devoted to vibroacoustical condition monitoring of the gas-turbine engines (GTE) blades and 
diagnosis of the crack-like damages at the steady-state and non-steady-state modes of GTE. For detection of 
the mentioned damages we proposed the application and further development of the low-frequency vibroacous-
tical diagnostic methods which use vibrating and acoustical noise as diagnostic information. The following 
amplitude dimensionless characteristics are used as fault features: probability factor, peak factor and factor of 
background. The evaluation of the crack-like damage of the blades is carried out at the steady-state and non-
steady-state modes by using the generalized likelihood method. The statistical quality of the received estima-
tions is investigated. 

Keywords: nondestructive evaluation, gas-turbine engine, crack-like damage, likelihood method  

1. Introduction  

The problems of condition monitoring of the gas-turbine engines (GTE) at the steady-
state and non-steady-state modes of GTE, on-line crack-like damages detection and 
evaluation may be solved by using the vibroacoustical diagnosis methods. The creation 
of the condition monitoring system is based on improvement and further development of 
the low-frequency (0-25 kHz) vibroacoustical diagnostic methods which use vibrating 
and acoustical noise as diagnostic information [1]. This noise is radiated by the turbine 
and compressor stages during operation of the GTE. The diagnostic information is char-
acterized by complexity and variety, and the measured signals are the local or essential 
non-steady-state processes. In case of the crack-like damages of GTE blades the compo-
nents containing the information on faults are characterized by small vibratory energy. 
This restricts the application of traditional spectral-correlative methods of signal analysis 
for the early fault detection, estimation of their parameters and prediction of the further 
evolution. 

The initiation and increase of a fatigue crack in the blade lead to the instantaneous 
change of its stiffness. Usually the change of stiffness is modeled by the piecewise-linear 
characteristic of the restoring force. Non-linearity leads to variation of the oscillation 
parameters and to the occurrence of local non-stationary component in the measured 
signal. We created the dynamic model of gas-turbine engine as the object for fatigue 
cracks diagnostic in turbine blades and compressors [1]. This model is used for simula-
tion and analysis of vibroacoustical processes which occur at the steady-state and non-
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steady-state modes of GTE in the absence and presence of small fatigue cracks in one 
blade of the turbine stage (the relative rigidity changing at the crack presence is consid-
ered ϑ = 0.01,…,0.1). Three modes of GTE are simulated and investigated: m1 – steady-
state (constant value of the rotor rotation frequency); m2 – non-steady-state (the fast 
increase of the rotor rotation frequency); m3 – non-steady-state (the decrease of the rotor 
rotation frequency). The simulated signals were processed using preliminary Wavelet-
transformation and the amplitude dimensionless characteristics of the vibroacoustical 
signals. The following amplitude dimensionless characteristics are used as fault features: 
probability factor J2, peak factor J3 and factor of background J4 [1, 2]. All features repre-
sent random quantities, the probability distribution law of features is close to normal. 
Pattern recognition of the blades condition may be carried out by way of estimation of 
the current value of fault parameter ϑ, and then making the decision based on compari-
son of the obtained estimations with the values of the reference level established in ad-
vance. 

The purpose of this work is the evaluation of the relative rigidity changing ϑ as the 
fault parameter at the crack-like damage presence in turbine blades during operation of 
the GTE. 

2. Analytic definition of maximum-likelihood estimations of the fault parameter 

The maximum-likelihood method (MLM) is used for estimation of the nonrandom pa-
rameters in practice [3]. Generally, the equation of the maximum-likelihood is of the 
form: 

 0)(ln =
∂
∂

λ
λ

L , (1) 

where L(λ) is the functional of likelihood; λ is the evaluated parameter. 

The maximum-likelihood estimation nλ̂  of the unknown nonrandom parameter is as-

ymptotically effective, the minimum dispersion of an estimation corresponds to Rao-
Cramer boundary and defines a potential precision of an estimation. The dispersion of 
the estimation of the evaluated parameter is used as a measure of precision: 
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where 2
λ̂σ  is dispersion of an estimation; }{⋅m  is sign of mathematical expectation; 

)(λnb′  is a derivative on parameter λ from magnitude of a deviation of the obtained esti-

mation from value of the evaluated parameter; )(λnI  is the information on Fisher which 

is contained in sample; n is the sample length. 
For the estimation of fault parameter ϑ we use the above mentioned features at three 

modes of GTE: 1
3
mJ  and  1

4
mJ  at the m1 mode; 2

2
mJ , 2

3
mJ and 2

4
mJ  at the m2 mode; 

3
3
mJ  and 3

4
mJ  at the m3 mode. 



 Vibrations in Physical Systems Vol.25 (2012) 85 

We consider the mentioned features mk
rJ  (the index r determines the type of the am-

plitude dimensionless characteristic) obtained in the ith measurement, as random values 

irξ characterized by the normal probability distribution: 
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The mathematical expectations of the fault features mr are the functions of the fault 
parameter ϑ, these dependencies are approximated by the following polynomials: 

• the first-order with respect to ϑ for m1 and m3 modes: 

 ϑµµ 10 rrrm += ; (4) 

• the second-order with respect to ϑ for m2 mode: 

 2
210 ϑµϑµµ rrrrm ++= . (5) 

The dispersions of the fault features 2
rσ  are supposed to be independent from the pa-

rameter of a fault ϑ for all considered conditions. Maximum magnitudes of dispersions 
are:  

• 10-2 for 1
3
mJ   and  ⋅5.2 10-2  for 1

4
mJ ; 

• 10-2 for  2
2
mJ , ⋅5.1 10-2  for 2

3
mJ  and ⋅8.1 10-2   for  2

4
mJ ; 

• ⋅4.1 10-2  for 3
3
mJ   and  ⋅5.1 10-2  for 3

4
mJ . 

Taking into account equation (3), we obtain the following expressions for the loga-
rithmic functional of likelihood: 

• in the ith measurement: 
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• for the general case of n measurements: 
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After transforming expression (6) we obtain the equation of the maximum-likelihood 
(1) in the following form: 
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With due account of (4) or (5), the solution of the equation (7) is the maximum-

likelihood estimation rϑ̂  of the fault parameter ϑ for the mentioned features mk
rJ : 
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• for m1 and m3 modes: 

 
1

0
1ˆ

r

r

n

i
ir

r µ

µξ
ϑ

−

=
∑
= ; (8) 

• for m2 mode estimation rϑ̂  is obtained as a solution of equation: 
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3. Calculation and analysis of the fault parameter maximum-likelihood estimations 

The maximum-likelihood estimations rϑ̂  of the fault parameter ϑ were calculated by 

using formulas (8) and (9) for n = 5. The maximum values of the estimation dispersion 
2
ϑ̂σ  are given in Table 1 for a considered range of values of the evaluated parameter ϑ 

and for each of the considered modes of GTE. Values of the dispersion are defined ac-
cording to the left part of an inequality (2) and they are the measure of precision of the 
received estimations.   

Table 1. The maximum values of the estimation dispersion 2
ϑ̂σ  with respect to mk

rJ   

Mode 
 of GTE 

Fault 
features 

Values of evaluated parameter 
ϑ = 0,01 ϑ = 0,03 ϑ = 0,05 ϑ = 0,07 ϑ = 0,1 

m1 

1
3
mJ  2.5·10-5 8.9·10-4 3.2·10-4 2.5·10-5 8.4·10-4 

1
4
mJ  3.2·10-5 8.1·10-4 9·10-5 1·10-4 8.5·10-5 

m2 

2
2
mJ  1.5·10-5 1.4·10-4 1.6·10-4 6.4·10-5 1.4·10-3 

2
3
mJ  2.2·10-5 2.6·10-5 6.3·10-4 1·10-4 1·10-5 

2
4
mJ  2.4·10-5 1.2·10-4 4·10-6 1.4·10-4 9·10-6 

m3 

3
3
mJ  2.6·10-3 1.6·10-3 1·10-3 1.6·10-3 9·10-4 

3
4
mJ  1.85·10-3 6.8·10-4 1.3·10-3 5.8·10-4 1·10-6 

 For the received estimations we generate the following vectors of fault parameter es-
timations for the considered modes of GTE: 

 }ˆ;ˆ{ˆ
1

4
1

3
1 mm JJт ϑϑ=Θ ; }ˆ;ˆ;ˆ{ˆ

2
4

2
3

2
2

2 mmm JJJm ϑϑϑ=Θ ; }ˆ;ˆ{ˆ
3

4
3

3
3 mm JJm ϑϑ=Θ , (10) 
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which allow defining the mathematical expectation 
Θ̂

m  and dispersion 2
Θ̂

σ  of the esti-

mates of the fault parameter ϑ for the given measurement and each mode of GTE. 
For the statistical analysis estimations we use the statistical parameter Q, which is de-

fined as a ratio:    

 2
)ˆ(ˆ

2
)ˆ(ˆ)(

ΘΘ
= ϑϑσϑ mQ . (11) 

The parameter Q is the inverted signal-to-noise ratio and is directly related to the sta-
tistical stability of the estimate, and values Q << 1 correspond to the smooth estimates 
with small dispersion. Graphs plotting 20lg Q as a function of the evaluated parameter ϑ 

for estimations which are received by using separate features mk
rJ  and for vectors (10) 

are shown in Fig. 1 (for mode m1), Fig. 2 (for mode m2) and Fig. 3 (for mode m3). 
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Figure 1. Dependencies of estimations statistical parameter on ϑ for mode m1 at an 
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One can see that the estimation of parameter ϑ is ineffective for small faults 
(ϑ ≤ 0.05) at the steady-state mode of GTE (mode m1). Let the threshold value of esti-
mations statistical parameter be -20 dB, then the received estimations are tolerant and 

steady for features 2
3
mJ  and 2

4
mJ , and vector 2

ˆ
тΘ  in all range of considered values of 

the evaluated parameter ϑ at the non-steady-state mode of GTE with the fast increase of 
the rotor rotation frequency (mode m2). At the modes m1 and m3 the estimations statis-
tical parameter is not higher than the above-mentioned threshold value for the evaluated 
parameter range ϑ ≤ 0.06. 
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Figure 3. Dependencies of estimations statistical parameter on ϑ for mode m3 at an 

estimation on the basis of  features 3
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 4. Conclusions  

The evaluation of the relative rigidity changing ϑ as the crack-like fault parameter is 
carried out at the steady-state and non-steady-state modes of GTE. The received results 
show that the non-steady-state mode of GTE with the fast increase of the rotor rotation 
frequency (mode m2) is the most informative diagnostic mode of GTE and that the esti-
mations of fault parameter are tolerant and steady in all considered range of small values 
of the evaluated parameter. The received results allow detecting crack-like damages 
based on comparison of the obtained estimations with the values of the reference level 
established in advance. 
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Abstract  

The paper deals with vibrations of the washing machine Samsung WF0804. The motion equations of the 
washing machine drum were derived. The vibration of the drum caused by the unbalanced mass was examined. 
The presented analysis will make up the basis for experimental studies aimed at validating the theoretical 
model and finding the most effective way of balancing of the drum vibration. 

Keywords: washing machine, motion equations, vibrations  

1. Introduction 

The last phase of the washing process is the spin cycle which consists in accelerating the 
drum to about 1200 rpm in order to drain the laundry using centrifugal force. Effective-
ness of this process is directly proportional to the drum rotational speed. The mass center 
of the drum with laundry is displaced with respect to the axis of rotation. As a result the 
unbalanced force occurs and significantly affects the washing machine work. It causes 
noise, mechanical degradation, and drum vibration. In extreme case it can lead to the 
collision of the drum with the frame. The unbalanced force can also be the reason of 
oscillatory walking of the washing machine [2].  

Many models of the washing machine drum have been elaborated. The simplest ones 
describe the drum as a solid body. In the paper [2] the motion of the mass center in the 
plane parallel to the front of a washing machine was analysed. The drum is a solid body 
of two degrees of freedom (dof). The problem of washing machine oscillatory walking 
was analysed too. In the paper [4] the drum was also described as a solid body moving in 
plane motion. More sophisticated model of 6 dof is considered in the paper [3] using 
NLP (Non Linear Programming) method. The results of numerical simulations have 
shown that the stiffness of the drum material may be neglected and, in consequence, the 
drum can be modeled as a rigid body. The papers [1, 5] describe the drum as a mechani-
cal system of 12 dof. The equations of motion are derived using Lagrange’s equations of 
the second type. The kinetic and potential energies are written separately for rotating and 
non rotating parts of the drum unit. The point of difference is that the paper [5] considers 
a front loaded washing machine unit with 4 dampers and 4 springs whereas the paper [1] 
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deals with the suspension consisting of 2 dampers and 2 springs. In [5] the flexibility of 
the drum shaft and bearings was taken into account. In [1] additional four dof were add-
ed to consider the elastic deformation of the drum and tub during the rotational motion.  

The washing machine WF0804 produced by Samsung Inc. is considered in the paper. 
It is the frontloaded horizontal drum type domestic washing machine (Fig. 1). The aim is 
to describe the dynamics of the washing machine drum with an unbalanced mass. The 
support of the drum allows for translational and rotational motions. Analysing the sup-
port conditions and the motor characteristics the drum was modeled as a four dof object 
consisting of the rotating and non rotating parts. The objective of the further researches 
is to validate the model by comparing with experimental results.  

2. The washing machine description 

The motor of the washing machine is BLDC direct drive type without any reduction like 
a transmission belt. The rotor shaft of the motor is connected directly to the drum. The 
maximum allowed rotational speed of the drum is 1600 rpm. The maximum laundry load 
is 8 kg. Suspension of the drum consists of a system with two springs attached at the top 
and two dampers attached at the bottom of the drum. 

 

a)  b)                     

c)  

Figure 1. Frontloaded horizontal drum type domestic Washing machine WF0804 (a). 
The schemes of the washing machine WF0804 (c, b). 
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As illustrated in figure 1, the drum unit of the machine consists of steel drum (2) con-
tained the laundry (10) and connected with the rotor (6) of the motor by the shaft (3). 
The shaft is connected to two bearings (4) and (5) with plastic container tube (1), which 
does not rotate. The stator of the motor (7) is also connected to the tube. Two concrete 
blocks (12) are mounted at the loading front of the drum to increase the global mass of 
the system and reduce the vibration. Nonetheless, the presence of the blocks implicates 
higher cost of transport and increases the size of the machine. The suspension of the 
drum has been designed using two springs (9) attached at the top of the tube and two 
friction dampers (8) mounted at the bottom of the tube. A rubber lip (11) at the front 
window of the drum prevents the tube from the water leakage. 

For the further considerations the origin of the coordinate system has been located at 
the center of the back bearing, as shown in Figure 1. For the purposes of the dynamic 
analysis, the drum system is divided into the rotating part, called the drum unit, and non 
rotating part, called the tube unit. The unbalanced forces are generated by rotating parts 
and transmitted to the tube unit through the bearings. As a result the tube unit sets on 
displacing inside the washing machine frame. If the suspension of the tube is too stiff, 
the frame vibrates and, in the extreme case, a washing machine can even move itself on 
the floor. On the other hand flexible suspension gives a risk of the collision of the tube 
and frame which can damage the machine. 

For the purposes of the object modeling the characteristic of the suspension elements 
must be given. In order to study the damper characteristics, it has been dismounted from 
the washing machine and mounted in the laboratory stand for the automotive dampers 
validation. The result of the research enables to assume that the force is S-shaped func-
tion that achieves b = 40 N when the velocity of the damper rod is non zero: 

 )arctan(
2

)( vbvFtl λ
π

−= . (1) 

λ  is a parameter dependent on many factors, e.g. temperature of the damper. The spring 
stiffness k = 9090.91 [N/m] has been read from the characteristic force – extension. 

3. Derivation of motion equations and numerical solutions 

Theoretical foundations for the derivation of motion equations may be found in [6]. The 
following assumptions were taken to describe the dynamics of the drum: 

• The rotating part of the drum – the drum unit (DU) moves in general motion that 
is the superposition of the translation and rotation about some point. The coordi-
nate system fixed to the DU is referred to as the DUS (Fig. 2). The drum shaft 
does not bend. 

• The mass center of the drum unit does not translate along the drum axis 
• The position of the drum unit is described by: the coordinates of the mass center 

xc1, yc1, ϕ  - precession angle, θ  - nutation angle, ψ - spin angle.  
• The motion of the tube unit (TU) is described by means of the position coordi-

nates of its mass center xc2, yc2, and, introduced above, the nutation and preces-
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sion angles. The tube unit does not spin around its horizontal axis, i.e. 0=ψ& . The 

coordinate system fixed to the tube unit is referred to as the TUS (Fig. 2). 

The global fixed reference frame (GS) is introduced (Fig. 2). The horizontal axis of 
the GS coincides with the axis of the drum in its stationary position. The origin of the 
system and the center of the bearings O(xo,yo) coincide when the washing machine does 
not work. The translational non rotating coordinate system (TNRS) has the origin at 
O(xo,yo) at any instant. The axes of the TNRS are parallel to the axes of the GS. With the 
motor rotating at constant angular velocity, the washing machine drum has four dof: xo, 
yo, ϕ,  θ. 

T is the transformation matrix from the DUS to TNRS. TI = T-1
 is the inverse trans-

formation matrix.  

 xxpzp AAAT = , (2) 

where: 

AZ=

















−

100

0)cos()sin(

0)sin()cos(

ϕϕ
ϕϕ

, Axp=

















− )cos()sin(0

)sin()cos(0

001

θθ
θθ , AZp=

















−

100

0)cos()sin(

0)sin()cos(

ψψ
ψψ

. 

 

a) b)  

Figure 2. The coordinate systems fixed to the drum unit (a) and tube unit (b).  

To determine matrix T’, that transforms from the TUS to TNRS, one has to take ψ=0 
in matrix T. TI’ transforms from TNRS to TUS. 

The angular velocity of the rotating drum has the following components in the DUS. 

 [ ]ψϕθϕψθθψϕψθθψ &&&
&

&
& ++−+= )cos()cos()sin()sin()sin()sin()cos(wbω . 

The angular velocity of the tube in the TUS [ ]ϕθϕθθ &&
& )cos()sin(=nbω . 
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The kinetic energy of the drum unit and tube unit equals to: 

 ( )nbnbnbwbwbwbnbnbnbwbwbwbK MME ωIωωIωvvvv ⋅⋅+⋅⋅+⋅+⋅=
2

1
1  (3) 

where: Iwb and Inb - the inertia tensors of the drum in the DUS and of the tube in the 
TUS, Mwb, Mnb - the masses of the drum and tube, respectively, wbv  - the velocity of the 

drum mass center, nbv  - the velocity of the tube mass center.  

The unbalanced mass mw is attached at the circumference of the drum. The coordi-
nates of this mass in the DUS are ],,[ nznynxn AAA=A . The coordinates of this mass in 

the GS are: noonp yx ATA 1]0,,[ −+= . The kinetic energy of the unbalanced mass is 

( )npnpwK mE AA && ⋅=
2

1
2 .  

The dampers and springs are fixed to the tube at points A11, A12 and A31, A32, respec-
tively. The coordinates of these points in the TUS as well as the versors of the springs 
n31, n32 and dampers n11, n12.are given. In order to determine the deformation of the 
springs one can compute the displacement of the spring pins, by which they are fixed to 
the tube, in the GS. The displacements are computed as the transformation of these 

points from the TUS to the GS: 31
1

31 ']0,,[ ATA −+= oop yx , 

32
1

32 ']0,,[ ATA −+= oop yx . Then, the absolute displacements are: 313131 AAr −= p , 

323232 AAr −= p . Assuming that the displacements are small, the spring deformation is 

computed as the projection of the absolute displacements onto spring axis (in its unde-
formed state): 31311 nrdu ⋅= , 32322 nrdu ⋅= . The absolute displacements of the damp-

ers pins, by which they are fixed to the tube, are: 11
1

11 ']0,,[ ATA −+= oop yx , 

12
1

12 ']0,,[ ATA −+= oop yx . The absolute velocities are: p1111 Av &= , p1212 Av &= . The 

projections of these velocities onto damper axes are: 111111 nvv ⋅=R , 121212 nvv ⋅=R .  
The potential energy of the system is: 

 21
2
2

2
1 )(

2

1
CnbCwb gxMgxMdudukV +++= . (4) 

Qualitatively one can describe the other dissipative forces during machine motion by 
means of Rayleigh function: 

 ( )22222 )(
2
1

ψϕθ ψϕθ &&
&

&& bbbyxbR oorA ++++= , (5) 

where rb , θb , ϕb , ψb  - dissipation coefficients 
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The angular velocity of the motor is constant ωψ =& . The dynamic equations are de-

rived using Lagrange equations of the second type for each generalized coordinate 
ϕθ ,,, oo yxq = . 
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where VEEL KK −+= 21 . In the foregoing equations 
q

vijR

&∂

∂
 is the displacement of point 

Aij caused by the change in generalized coordinate q. Zero initial conditions are taken. 
For the purposes of numerical analysis, the physical properties of the drum and tube 

were determined. The masses, centers of the masses and mass moments of inertia has 
been measured (the coordinates of positions are in [m]). 
Masses: mw = 0.1 kg, Mnw = 28.4 kg, Mw = 8.41 kg.  
The rotational speed of the motor n = 600 rev/min. 
The coordinates of the unbalanced mass fixation in the DUS: An = (0.479;0;0.254). 
The drum unit and tube unit mass centers: C1(0;0;0.092), C2 (0;0;0.289). 
The coordinates of the points of dampers and springs fixation in the TUS are: 
1st damper - A11 (-0.2446;0.1762;0.254), A110 (-0.4173;0.2722;0.2778). 
2nd dampers - A12 (-0.2446;-0.1762;0.25462), A120 (-0.4173;-0.2722;0.2778). 
1st spring - A31 (0.1477;0.2479;0.2546), 2nd spring - A32 (0.1477;-0.2479;0.2546). 
The mass moments of inertia of the drum unit in the DUS are (the axes of the DUS are 
the principal axes of inertia): Ix1 = 0,21 kgm2, Iy1 = 0,12 kgm2, Iz1 = 0.256 kgm2. 
The mass moments of inertia of the tube unit in its TUS are (the axes of the TUS are the 
principal axes of inertia): Ix2 = 1.91 kgm2, Iy2 = 1.91 kgm2, Iz2 = 1.254 kgm2. 
Dissipation coefficients: br = 1000 Ns/m, bϕ = bψ = bθ = 1000 Ns. 

The figure 3 presents the displacements of the points at which the springs are at-
tached to the tube.  

 

 

Figure 3. The displacements of the points of spring fixation to the tube. 
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4. Conclusions 

The authors aim at verifying the model with the data obtained in experiments. If the 
results are satisfactory the model will be used to examine the influence of the suspension 
parameters on the drum vibrations. Using the model one can simulate the drum motion 
in order to examine the effectiveness of various methods of active and semi-active vibra-
tion elimination, e.g. dampers with variable characteristic or force inductors. The solu-
tion, which gives the best result, will be applied to the washing machine and verified 
experimentally. 
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Abstract  

The machine condition monitoring has not been approached by TRIZ2 practitioners, as yet, so the knowledge 
of TRIZ methodology has not been applied there. But it seems to be a need to make such an approach in order 
to see if some new knowledge and new technology will emerge from this study. In doing this we need at first 
to define the ideal final result (IFR). As a next we need to describe the problem of system condition monitoring 
(CM) in terms of TRIZ problem (engineering) parameters and to look for respective inventive principles. This 
means we should present the machine CM problem by the main tool of TRIZ, it means the contradiction ma-
trix. When specifying the problem parameters and inventive principles, one should use analogy and metaphori-
cal thinking, which by definition is not exact but fuzzy, and leads sometimes to unexpected results and out-
comes, especially when doing it first time. The paper undertakes this important application problem and brings 
some fresh insight into system and machine CM problems. This may mean for example the minimal dimen-
sionality of TRIZ engineering parameter set for the description of machine CM problems, and of course the 
ideal final result of TRIZ methodology. 

Keywords: machine condition monitoring, TRIZ, ideal final result, engineering parameters, 
inventive principles, contradiction matrix. 

1. Introduction 

Condition monitoring of machines (systems) is the science and technology for the as-
sessment of condition of running machine by means of observation of machine phenom-
enal field, where some symptom of condition can be captured and measured (see for 
example [1]). This means that we are trying to determine the fault space of the machine, 
its dimensionality and fault advancement, by some observed symptoms of condition, 
creating in this way our observation space. The fault space of a system (machine) can be 
assumed by some prior knowledge taken from the experience with the other running 
machines, and the same concerns with symptom observation space. 

 As fault space of every machine is multidimensional, for example we have unbal-
ance, misalignment, bearing faults, etc., the same multidimensionality is needed in our 
observation space, and as usually it needs some redundancy too. This is because the 
symptom which we measure are interdependent, and by means of some symptom pro-
cessing procedures we can determine the dimensionality of fault space and the intensity 
(advancement) of  the main faults which evolve during the machine lifetime. 

Condition monitoring is mostly applied to critical machinery, where by special moni-
toring system we can monitor thermo and vibroacoustical phenomena carrying the need-
ed information on system condition. This means that by some measurements of these 

                                                 
1 Paper partially supported  by NCN grant No7028/B/T02/2011/40 
2 TRIZ -Russian acronym for Inventive Problem Solving 
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phenomena and respective signal processing we can create symptom of condition, like 
for example the velocity vibration amplitude measured at the bearing pedestal, or some 
other location of machine casing. What is important here that by means of special signal 
and symptom processing procedures, one can determine the type of fault, its advance-
ment, and also the symptom limit value and symptom reliability, which is analogous to 
lifetime reliability of machine. 

In summary one can say, that having some experience on machine life and running, a 
and prior knowledge concerning  processing of received signals and measured symptoms 
of condition, we can asses the current machine condition and make forecasting of future 
condition, the fault type and date of stopping machine for the renewal, etc. 

2. The ideal final result in diagnostics of machinery 

This type of thinking, looking explicit for final ideal result (IFR) in condition monitoring 
is new in machine condition monitoring (MCM). Hence let us imagine, what we really 
need here? Self repairing machine, it seems to be too early. But if we integrate advanced 
CM system with the machine, our resultant IFR can be as follows. 
The machine itself is signaling the approaching system breakdown, a type of fault, 

and the time, when it should be stopped for renewal. 
In order to do this one can imagine that integrated CM system should contain vibration 
transducers with signal preprocessing to form several symptoms of condition Si. In this 
way machine observation space is created, which is monitored continuously, and symp-
tom readings are taken with the proper life time distance, depending on the machine type 
and the wearing intensity [2]. The successive symptom readings form the so called 
symptom observation matrix (SOM) with columns presenting different type of moni-
tored symptoms and rows giving the values of discrete symptom readings. This rectan-
gular matrix is the only source of information concerning the condition of the machine, 
and one can extract this information applying singular value decomposition (SVD) [4], 
or principal component analysis (PCA) [3]. The processing of SOM can give the symp-
tom limit value Sl which control the stopping of the machine [2], and also can give 
symptom reliability R(S) which assesses the potency of running or functional ability of 
the machine. 

Knowing this one can say that by proper SOM processing method, SVD for example, 
we are projecting the observation space to the fault space. In this way we are transfer-
ring the wanted information concerning fault evolution, its type and the advancement. 

As many symptoms of condition depends on the current machine load, which is con-
trolled by production process, special processing of SOM should be elaborated and taken 
into account [6], [5], which gives the results being almost immune against the load vari-
ability and other disturbances as well.  

When these precaution and preparations are successfully applied into the processing 
of signals, symptoms, and the SOM too, the defined above IFR seems to be under the 
reach of contemporary technology of machine monitoring and signal / symptom pro-
cessing and computation. 
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3. The contradiction matrix for machine condition monitoring 

One of the main Altshuller idea is the contradiction matrix enabling to resolve contra-
diction by means of the use of inventive principles and other TRIZ tools and operators 
[9], [8]. The space of contradiction matrix is defined by engineering parameters describ-
ing every innovation problem in given area of engineering. We will take into account the 
39 engineering parameters used in mechanical engineering in its broad meaning, as de-
scribed in many books and articles concerning TRIZ methodology. Introductory analysis 
[7] connected with a broad interpretation convinces us, that out of these 39 parameters 
ten or nine will be enough to describe CM problem properly.  

Special comment should be given to choose new parameters, describing fault space 
and observation space, the most important entities in CM. As normally parameters No 3 
and 4 of TRIZ describes the length of stationary and moving parts of the machine, and 
length is some dimension coordinate. And when the dimension is taken with plural we 
will have fault space of the machine (Dimension–I), the primary entity in condition 
monitoring with the coordinates being the faults evolving in the machine during its life. 
The same reasoning lead us to the second parameter Dimension-II, which symbolizes 
observation space of phenomenal field of the machine, with coordinates being the 
measured symptoms of condition. The rest eight engineering parameters of CM are as 
follows; symptom reliability, accuracy in detection and measurement, information loss, 
energy loss, durability or lifetime, ease of use or running, repairability (maintainability), 
and the temperature. Considering the information carried by thermo field of the machine 
one can notice it is multidimensional spatial information source. While thinking about 
energy loss as an engineering parameter we see it is only one dimensional and in many 
practical cases its dynamics is very low. Hence, we can drop from the consideration this 
engineering parameter and concentrate our diagnostic problem around 9 dimensional 
description of any diagnostic problems. 

This means we will take into consideration here 9 by 9 contradiction matrix, but if 
needed in some special cases, this dimensionality can be extended easily or diminished a 
little (see temperature).  It is well known in methodology of invention and TRIZ as well, 
that the change of one engineering parameter in the direction of improvement may be the 
source of worsening of another one, and the only way outside of this loop is to apply 
some of 40 inventive principles. Which one to use is usually the matter of careful anal-
ogy thinking and the prior knowledge in the given area of science and engineering. Some 
introductory thinking in this direction was given in our last paper [7], but without pre-
senting the definite contradiction matrix. 

To solve contradictions seen in the table above we will use inventive principles of 
Altshuller, giving them the meaning taken with mechanical engineering area and extend-
ed with the knowledge of metrology and the diagnostic signal / symptom processing. 
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Table. Contradiction matrix of TRIZ methodology for vibration machine condition 
monitoring area  

 

The numbering of inventive principles shown in Tab. is in accordance with that given 
in TRIZ references, and its diagnostic meaning and prescribed actions are described 
below.  
1. Segmentation – segmentation of the frequency spectrum of vibration process, band 
analysis and /or Fourier spectral analysis. 
2. Extraction, rejection – rejection filters for cutting of unwanted signal interferences, 
for example the mains frequency 50Hz, the meshing frequency in gearbox diagnosis, etc. 
3. Local quality – the use of thermal, light or acoustic barrier, the hardening of the shaft 
ends,etc.  
5. Integration, merging – the vibration transducers with preamplifier, signal prepro-
cessing, and wireless transmission, integrated with machine at specially chosen points 
and directions. 
9. Prior counter-action – the forecast of signal distortion and compensation before its 
transmission and processing.                 
10. Prior action – introductory analysis of a fault space and symptom observation space 
of the machine in order to chose probable faults, observed diagnostic processes and 
location of vibration transducers, along the machine body. 
11. Prior cushioning – safe shut down procedure in rotating machinery diagnostic sys-
tems. 
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15. Dynamics – elastic mounts or spacers in order to diminish or filter vibration trans-
mission inside a machine body, immunity to the load change.    
16. Partial or excessive action – use SVD / PCA analysis of SOM to filter noise and 
obtain singular components /values, also signal demodulation for detection of diagnostic 
information. 
19. Periodic action – synchronous averaging of signal, signal sampling with prepro-
cessing, over-sampling of vibration process to detect periodicity and reduce the noise.  
20.Continuity of useful action – constant load in a production process, constant use of 
condition monitoring subsystem. 
23. Feedback – monitoring of diagnostic oriented residual processes in the phenomenal 
field of the machine for the assessment of the machine condition and the increase of its 
reliability. 
26. Copying – infrared picture of the machine and / or acoustic map of its surrounding; 
symbolic or mathematical model of machine symptoms evolution to make its condition 
forecast. 
34. Discarding and recovering – self balancing systems in rotating machinery, small 
regulations and repairs during the machine running. 
35. Parameters changes – passive or active change of; mass, stiffness and damping, in 
order to reduce excessive and harmful vibration and noise. 

One can notice from the above that for the solution of 9 by 9 contradiction matrix in 
machine condition monitoring we can use at least 15 inventive principles interpreted in 
terms of machine use and signal / symptom processing knowledge and technology. They 
can be used altogether for the best, or some of them can be omitted due to lack of 
knowledge (see principle 9), technology (see principle 5), or lack of need (see principle 
2 and 15). 

Looking once more for the inventive principles allocated in the contradiction matrix, 
and described broadly in above listing, one can say, they present already known 
knowledge and technology of MCM. This includes the broad meaning of the inventing 
principle No 26, where Copy may mean also the model of the symptoms evolution to 
make condition assessment and forecast. 

What is important here, that first time it was possible to describe MCM problem by 
means of minimal number of engineering parameters, and to notice importance of ab-
stract entities of fault space and observation space. To notice also their common defini-
tion and influence on symptom reliability, the ease of running and repairability (main-
tainability) of the machine. Concerning the problem of minimal dimensionality of engi-
neering parameter set to describe MCM problem, it seems that minimal dimension of 
engineering parameter set, for the TRIZ description of MCM problems, can be reduced 
to a number of nine parameters only. But it is possible to extend this number on other 
engineering parameters like accuracy of production (manufacturability-32), productivity 
(39), or harmful side effects (31) noise and/or other pollution types of the machine.  

Applying TRIZ first time to MCM area it is also interesting to know which engineer-
ing parameters are the most important to define and solve the problem of obtaining IFR? 
To answer this question a special row and column was appended to contradiction matrix, 
which enumerate the number of different inventive principles possible to apply in order 
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to improve, or worsen the given parameter. As we can see from the contradiction matrix, 
there are two of them, the reliability of the machine and its observation space, having 
both 10 and 12 inventive principles as the way to improvement. This is important mes-
sage, which means that we should be very careful in defining and using the observation 
space and calculating (assessing) the machine reliability.  

4. Conclusion 

As it follows from the above it was possible to transfer creatively the current science and 
technology of machine vibration condition monitoring into the formal TRIZ tools that 
means to the ideal final result (IFR) and contradiction matrix. Due to that, the relative 
importance of the definition of machine fault space and observation space has been elu-
cidated, and taken into account. Also it has been proposed that the minimal number of 
engineering parameters for MCM problem description and solution can be taken as nine 
parameters, including the most important observation space and the reliability of the 
machine. And when using proper dimensionality of observation space and software for 
signal and SOM processing we can make machine condition assessment and forecasting 
with a good accuracy. 
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Abstract  

Numerous laboratory experiments indicate that graded materials layers or coatings covering the conventional 
steel body can reduce the magnitude of contact and/or thermal stresses as well as the noise and the rolling 
contact fatigue. The paper is concerned with the numerical solution of the wheel-rail elastic contact problem 
assuming that the surface of the rail consists from layers having distinct constant material parameters and a 
functionally graded material layer between them which mechanical properties are dependent on its depth. The 
contact phenomenon includes friction as well as wear. Quasistatic numerical approach is used to solve numeri-
cally this problem. Numerical results are provided and discussed.  

Keywords: rolling contact problem, functionally graded materials, quasistatic method  

1. Introduction  

This paper deals with the numerical solution of the two-dimensional rolling contact 
problems including friction and wear. The contact of a rigid wheel with an elastic rail 
lying on a rigid foundation is considered.  The friction between the bodies is described 
by Coulomb law [1,2,3].  We employ Archard's law of wear [4]. In the model the wear is 
identified as an increase in the gap between bodies. The elastic or thermoelastic rolling 
contact problems were considered by many authors (see references in [1,3,5,6]).  Nu-
merous laboratory experiments indicate [2,7] that the use of a coating material attached 
to the conventional steel body reduce the magnitude of residual or thermal stresses. It 
leads to the reduction of the rolling contact fatigue and noise. However in a conventional 
coating structure homogeneous materials are used. The abrupt change in the mechanical 
properties of the materials at the surface coating-substrate interface results in stress con-
centration or degraded bonding strength [8].  

Therefore in this paper we solve numerically this contact problem with friction and 
wear assuming more complicated model of coating layer than used in [9].  We assume 
that between the homogeneous coating layer and the homogeneous substrate there exists 
the graded interlayer which properties depend on its depth according to the exponential 
law [8].  In the paper we take special features of this rolling contact problem and use so-
called quasistatic approach [10] to solve this problem. In this approach the inertial term 
is replaced by the stationary term reflecting the dynamics of the body rather than com-
pletely neglected as in classical quasistatic formulation. Therefore, after brief introduc-
tion of the elastic model of the rolling contact problem with friction and wear in the 
framework of two-dimensional linear elasticity theory the general coupled time depend-
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ent system describing this physical phenomenon is formulated. This system is trans-
formed into equivalent stationary system in so-called quasistatic formulation. To solve 
numerically this stationary system we will transform it into equivalent optimization 
problem. Finite element method is used as a discretization method. The numerical results 
are provided and discussed. 

2.  Problem formulation  

Consider deformations of an elastic strip lying on a rigid foundation (see Fig. 1). The 
strip has constant height h and occupies domain Ω ⊂  R2 with the boundary Γ. A wheel 
rolls along the upper surface ΓC of the strip. The wheel has radius r0, rotating speed ω 
and linear velocity V. The axis of the wheel is moving along a straight line at a constant 
altitude h0 where h0< h+r0, i.e., the wheel is pressed in the elastic strip. It is assumed, that 
the head and tail ends of the strip are clamped, i.e., we assume that the length of the strip 
is much bigger than the radius of the wheel. Moreover it is assumed, that there is no 
mass forces in the strip. The body is clamped along a portion Γ0 of the boundary Γ of the 
domain Ω. The contact conditions are prescribed on a portion ΓC of the boundary Γ. 

Moreover, ∅=Γ∩Γ C0  CΓ∪Γ=Γ 0 . 

  

Figure 1. Wheel rolling over the strip 
Figure 2. Three-layers model 

 
We denote by u = (u1, u2), u = u(x, t), depending on the spatial variables x = (x1,x2) ∈  Ω, 
and time variable t∈[0,T],  T > 0, a displacement of the strip. Assume Ω = Ω1 ∪  Ω2 
∪ Ω3 where Ω1, Ω2 and Ω3 denote the homogeneous coating layer, graded interlayer, 
and substrate layer, respectively. The heights of these layers are h1, h2, h3, respectively. 
In the middle layer Ω2 material parameters depend on the height of the layer according to 
the exponential law. The displacement u of the strip satisfies the evolution equation [9] 
in  the cylinder  Ω × (0,T) : 
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The following initial and boundary conditions are imposed:  

 u(0) = u0i ,     u’(0) = u1i ,   i = 1,2,     in   Ω, (2) 

 u = 0  on  Γ0 × (0,T)     and     B*D Au = F  on   ΓC × (0,T),  (3) 

where u(0)=u(x,0), u’ = du/dt, u0i and u1i are given functions, ρ is a mass density of the 
strip material,  Γ0 = Γ \ ΓC.  The operators A, B and D are defined as follows [10]  
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where n = (n1,n2) is the outward normal versor to the boundary Γ of the domain Ω, λ and 
γ are Lame coefficients, A* denotes a transpose of A. In Ω2 operator D is assumed to 
depend on the depth of the graded interlayer according to the exponential law. By 
σ = (σ11, σ22, σ12) and F we denote the stress tensor in domain Ω and surface traction 
vector on the boundary Γ, respectively. The surface traction vector F = (F1, F2) on the 
boundary ΓC is a priori unknown and is given by conditions of contact and friction. Un-
der the assumptions that the strip displacement is small the contact conditions on the 
boundary ΓC× (0,T)  take a form:  

u2+gr + w ≤ 0,   F2 ≤ 0,  (u2+gr + w)F2 = 0,    gr=h-h0+ ( )211
2

0 xur +− ,     (5) 

| F1 | ≤  µ | F2 |,   F1 
dt

du1  ≤ 0,  (| F1 |- µ | F2 |)
dt

du1  = 0,    (6) 

where µ is a friction coefficient. Conditions (5)-(6) describe the non penetration condi-
tion as well as Coulomb law of friction, respectively [1,6]. Assuming that the dimen-
sional wear coefficient k > 0 is given the wear w = w(x,t)  is governed by the equa-
tion [4]:  

 dt

dw
= k V F2. (7) 

In (5) the wear w increases the gap between the contacting surfaces.   

2.1 Material properties of functionally graded materials  

In subdomains Ω1 and Ω3 the operator D characterizing the properties of the material 
occupying strip Ω takes different constant values, respectively (see Figure 2). In the 
subdomain Ω2 the operator D is assumed to depend on the depth of the layer. This de-
pendence is governed by the exponential law [8, 9]:  
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 P(x2) = PΩ1   exp(η 
2

12

h

hx +
),   x2 ∈  [-h2-h1, -h1], (8)  

where η = log(PΩ1/PΩ3), h1, h2 are given parameters, x2 denotes the spatial variable and 
P(x2), PΩ1,  PΩ3 denote the height dependent material property (material density or Young 
modulus) of layer Ω2 as well as  the material properties of layers Ω1 and Ω3, respectively. 
The continuity of the displacements and the stresses along the interfaces ∂Ω1∩ ∂Ω2 and 
∂Ω2∩ ∂Ω3  are assumed.  

3. Quasistatic formulation   

Taking into account the special features of the contact problem (1)-(8) one can reformu-
late it in the framework of the quasistatic approach. This approach is based on the as-
sumption that for the observer moving with a wheel its displacement does not depend on 
time [10].   

Consider an observer moving with the wheel with the constant linear velocity V. We 
introduce the new Cartesian coordinate system O’x1’x2’ hooked in the middle of the 
wheel. The systems O’x1’x2’ and Ox1x2 are related by: x1’ = x1 – V t and x2’ = x2. Since 
by the above assumptions (a)-(d) the displacement u(x1’, x2’) does not depend on time 
we obtain:  

 
dt

du
(x1’,x2’) = 

dt

du
( x1 – V t, x2) = 0.  (9) 

It implies:   

 
dt

du
= -V 

1dx

du
  and   

2

2

dt

ud
= V2 

2
1

2

dx

ud
. (10)  

Using these assumptions the inertial term in equation (1) is replaced by the stationary 
term depending on the wheel velocity and spatial derivatives of displacement and reflect-
ing the dynamics of the moving body rather than completely neglected it as in the classi-
cal quasistatic formulation [1]. Taking into account (10), quasistatic approximation of 
the contact problem (1)-(8) takes the form: find displacement u satisfying:   

 A*D(x)Au – ρV2u1,1 = 0  in Ω, (11) 

as well as  
u = 0   on  Γ0,    B*D(x) Au = F      on  ΓC,  (12)  

u2+gr + w ≤ 0,   F2 ≤ 0,     (u2+gr + w)F2 = 0,    on  ΓC ,  (13) 

 F1 | ≤  µ | F2 |,   F1 u1,1 ≤ 0,   (| F1 |- µ | F2 |) u1,1 = 0,   on  ΓC , (14) 

1dx

dw
  = -k  F2,                        on ΓC ,  (15) 
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where ui, j =  
j

i

x

u

∂
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, ui,jk =  
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i

xx

u

∂∂
∂2

, i,j,k=1,2. Moreover in (2) u0i = u1i = 0 is set.  

3.1 Friction Regularization 

In order to ensure the existence of solutions to the problem (11)-(15) we have to regular-
ize it, i.e., we will consider it as the problem with the prescribed friction. Let ε > 0 be a 
regularization parameter. We use the following formula relating tangential and normal 
tractions on the contact boundary ΓC [10]:  

 F1 = F1(ε, F2, u1 ) =  - µ | F2 | arc tan 
ε

1,1Vu
. (16)  

4. Numerical methods and results    

Finite element method is used to approximate problem (11)-(16) as the approximation 
method. The discretized contact problem is reformulated as a quadratic optimization 
problem in terms of tangent and normal tractions. For details of the method see [10].  

The obtained distributions of normal contact and longitudinal stress along the contact 
boundary for different values of parameter η=0.5, 0, -0.3 are displayed in Fig. 3 and 4, 
respectively. These distributions are strongly dependent on parameter η. As it is shown 
in Fig. 3 and Fig. 4 the decrease of the parameter η reduces the maximum normal contact 
pressure at a cost of widening the contact zone as well as reduces the maximum longitu-
dinal stress.  

5. Conclusions  

The elastic rolling contact problem where the properties of the elastic layer between the 
homogeneous surface coating and the substrate of the rail are dependent on its depth is 
solved numerically using the quasistatic approach. The material properties of the graded 
layer are assumed to be governed by the exponential law. The obtained numerical results 
indicate that the elastic graded layer may reduce the values of the normal contact stress 
in the contact zone comparing to the pure homogeneous case. The dependence of the 
obtained stress distributions on the parameter η is stronger than on the nonhomogenity 
index in power law (see [9]). Remark also, that using the quasistatic approach we can 
observe dynamic phenomena of the rolling wheel.  In future one can consider plastic 
layers in the neighborhood of the rail surface rather than elastic layers considered in this 
paper.  

Acknowledgments 

The research work of the second author is partially supported by the National Center for 
Research and Development of Poland under grant No. NR02-009-06.    
 



108 

  

Figure 3. Normal contact stress distribution 
Figure 4. Longitudinal stress 

distribution σ11 at interface x2 = 0. 
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Abstract  

The vibrations of one-dimensional structures that consist of several interconnected members are conveniently 
analysed by matrix methods that include: the compliance (receptance) method, the mobility approach, dynamic 
stiffness method or the transfer matrix method. The paper presents the generalization of the classical re-
ceptance method to the coupled electromechanical vibrations of piezoelectric rods. Several compliance matri-
ces are derived for piezoelectric rods undergoing longitudinal vibrations. These matrices can then be used in 
the derivation of the characteristic equations of rods with different boundary conditions as well as piezoelectric 
rod assemblies. The approach is illustrated by deriving the characteristic equation for a single piezoelectric rod 
with one end fixed and a spring and capacitor attached to its other end, as well as a two-rod assembly.  

Keywords: vibration, continuous systems, coupled piezoelectricity, matrix methods  

1. Introduction 

In the analysis of one-dimensional continuous systems that consist of several intercon-
nected members, matrix methods show important advantages over an alternative ap-
proach, in which the equations are solved for each member and the boundary and inter-
face conditions are then applied. In any of the matrix method, the matrices that relate 
some quantities specified at the end of a member are derived. Unlike in the finite ele-
ment method the matrices used are exact and do not make use of numerical approxima-
tions. 

Several matrix methods of vibration analysis have been used for studying the behav-
iour of elastic structures, which include the receptance (or compliance) method [1,2], the 
mobility approach [3,4], the dynamic stiffness method [5,6] and the transfer matrix 
method [2]. The receptance and mobility approaches have the same principle, but they 
differ in the measure of vibration used (displacement and velocity is used, respectively). 

The aim of the paper is to discuss the generalization of the classical receptance meth-
od to the coupled electromechanical vibrations of piezoelectric rods. The equations that 
describe the longitudinal vibration problem of piezoelectric rods have been discussed in 
[7], and they consist of two coupled electromechanical partial differential equations.  
Since the necessary compliance matrices of piezoelectric elements are not available in 
the literature, an outline of their derivation is provided in Section 2, for rods with two 
different boundary conditions. The compliance matrices of piezoelectric members con-
tain both mechanical and electrical degrees of freedom. 

In Section 3 the effectiveness of the compliance method in deriving the characteristic 
equations of one-dimensional systems is illustrated on two examples. The first one is a 
single piezoelectric rod fixed at its left end with the other end restrained by a spring. 
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Additionally, a capacitor is connected to the right end to allow modelling of  
a class of electrical boundary conditions. The second example will consider  
a piezoelectric rod consisting of two members with different mechanical and electrical 
properties. 

2. Compliance matrices of piezoelectric rods 

The receptance (compliance) method has been used for rod and beam assemblies in 
[1,2]. For elastic rods that undergo longitudinal vibration the receptance is defined as the 
ratio of the amplitude of displacement at some point of the rod to the magnitude of the 
driving harmonic force. Many receptances have been tabulated for elastic rods and 
beams in [1]. For rods that are described by coupled piezoelectricity theory the corre-
sponding matrices were discussed in the author’s monograph [7]. The essential elements 
of the derivation of these matrices for two different boundary conditions are given be-
low. Since in the analysis of piezoelectric rods the corresponding matrices include both 
mechanical and electrical degrees of freedom, the term ‘compliance matrix’ rather than 
‘receptance matrix’ will be used. 

The set of coupled electromechanical equations of the longitudinal vibration of a 
slender rod has the following form [7]: 
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Here u and ϕ stand, respectively, for the displacement and electric potential, and: 

 .
2

,
2

,
2

1211

2
31

33
1211

3113
33

1211

2
13

33 










+
+=









+
−=











+
−=

cc

e
F

cc

ec
eFe

cc

c
cFc κκ  (2) 

In Eq. (2), c11, c12, c13, c33 are the elastic stiffness coefficients, κ33 is the electric per-
mittivity in the direction of the rod axis, and e31, e33 are the piezoelectric constants of the 
rod (more details about the constitutive equation of linear piezoelectricity can be found 
in [7, 8]). The symbol F denotes the area of the rod cross-section. The boundary condi-
tions relevant to Eq. (1) are prescribed as follows:  
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the rod and the minus sign the left end). N̂ (positive when it acts in the direction of the 
normal) is the applied force and q̂ is the free charge prescribed at a rod end. 

According to the approach used in [2] for elastic rods and beams, in the following 
derivations of the compliance matrices it is assumed that the rod undergoes steady-state 
harmonic vibration with frequency ω. In order to illustrate the derivation of the compli-
ance matrices for piezoelectric rods, we consider a rod that is fixed at the left end and 
free to move at the other end. In steady-state vibration with frequency ω the general 
solution of Eq. (1) is given by: 
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It has been assumed that the longitudinal force pR = N(L) and a charge with ampli-
tude qR have been applied to the right end of the rod. For physical reasons, since the 
electrostatic potential cannot be determined in a unique way, an arbitrary value ϕL is 
prescribed at the left end of the rod. Solving the set of equations (5) for A one obtains:  
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and the solution for U(z) and Φ(z) can be written in the following matrix form: 
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Here, α11, α12, α21, α22 are the components of the compliance matrix defined by the fol-
lowing expressions: 
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The compliance matrix of a free-free rod can be obtained in a similar manner. In this 
case the solution is expressed as follows:  
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Here, pL =  ̵ N(0)  is the component of the force that acts in the positive direction of the z-
axis (the sign convention used here is typical of matrix methods and is the same as in 
[2]). The components of the compliance matrix of a free-free rod are given by the fol-
lowing expressions: 
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It is to be noted that β12(z) ≠ β21(z), but the following symmetry condition holds: 
β12(0) = β21(L). 

3. Applications   

In order to demonstrate the application of the compliance matrices to the derivation of 
the characteristic equations, two examples will be discussed: a single piezoelectric rod 
and an assembly that consists of two interconnected rods. 

 

Figure 1. A piezoelectric rod restrained by a spring with a capacitor attached 
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In the first example, the rod shown in Fig. 1 is considered, where the left end of the 
rod is fixed and the other end is restrained by a spring of stiffness k. Electrically, the left 
end is grounded and the right end is connected to ground through capacitance C. Making 
use of Eq. (7) the displacement and electrostatic potential of the right end of the rod are 
expressed as follows: 
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In writing these expressions the value of the electrostatic potential of the left end has 
been set equal to zero and use has been made of the fact that in order to ensure the con-
servation of electric charge the charge at the rod right end is the negative of the charge at 

the top plate of the capacitor: CR qq −= . Moreover: CR q
C

1)1( =φ , where )1(
Rφ is the poten-

tial of the right end of the rod relative to the ground. Making use of these facts, Eq. (11) 
reduces to:   

 








=







−+

=+

.0
1

)()(

,)()(

22
)1(

21

12
)1(

11

CR

CR

q
C

LpL

uqLpL

αα

αα
 (12) 

Solving this equation for )1(
Rp one finds that:    
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Now, assume that a harmonic external force with amplitude P acts on the right end of the 
rod.  From the balance of forces it follows that: 
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where: kupL =)2(  is the force that acts on the left end of the spring. By solving  

Eq. (14) for u, the characteristic equation is obtained by setting the denominator of the 
resulting expression equal to zero. The characteristic equation has the following form: 

 .0)()(]/1)()[(/1)( 2112221122 =−−+− LLkCLLkCL ααααα  (15) 

Making use of the expressions for the elements of the compliance matrix, the character-
istic equation has the following explicit form: 
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where: 
CL

CL
Ce +

=
)/(

)/(

κ
κ

is the equivalent capacitance of a series connection of capaci-

tance C and that of the piezoelectric rod. A number of special cases that correspond to 
different mechanical and electrical boundary conditions can be obtained from Eq. (16), 
by setting limiting values of k and C.  The characteristic equations for such cases have 
been obtained in [7] by solving the differential equations with appropriate boundary 
conditions. 

As a second example we consider a piezoelectric rod that consists of two intercon-
nected members, shown in Fig. 2. From Eqs. (7) and (9) one finds the 
  

 

Figure 2. A two-member piezoelectric rod  

displacement of the right end of the first member and the left end of the second one: 
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The elements of the compliance matrices are calculated using the properties of the 
respective member.  

Open-circuit electrical boundary conditions are assumed, in which case there are no 
charges at the ends of the composite rod. The electrostatic potential at one point is arbi-
trary, and if potential distribution needs to be calculated, this value can be set as equal to 
zero at the left end of the first member. Considering the second member, since the free 

charge at its right end is equal to zero: 0)2( =Rq , the free charge is also equal to zero at 

its left end: 0)2( =Lq . Using this fact and the conservation of charge at the interface of 

the two rods, the following equation also holds true: 

 .00 )1()2()1( =⇔=+ RLR qqq  (18) 

Using the above argument that concerns the charges, equation (17) reduces to: 
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Denoting the common displacement at the interface point by u, then expressing )1(
Rp and 

)2(
Lp  in terms of u using Eq. (19),  and making use of the force balance in precisely the 

same way as was described in the previous example, one obtains the following equation: 
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The characteristic equation follows by setting the denominator as equal to zero, and it 
has the following form: 
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In Eq. (21), λ1 and λ2 are related to ω by the formulas (see the definition following equa-
tion (4)): 
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The characteristic equation (21) has been derived independently in [7], by finding the 
solution in each member and imposing the boundary and interface conditions.  

4. Conclusions  

The paper has discussed the compliance approach to the calculation of the natural fre-
quencies of piezoelectric rods. Compliance matrices have been derived for two different 
mechanical boundary conditions: the fixed-free and the free-free rod. Two examples 
were given illustrating the usefulness of the method in the calculation of the natural 
frequencies of a single rod and a two-member piezoelectric rod. For more complex as-
semblies, the Holtzer method was proposed for elastic structures in  
Refs. [1, 2]. The compliance approach discussed in the paper can also be used to calcu-
late the steady-state forced response of undamped rod assemblies under mechanical and 
electrical excitation.    
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Abstract  

Complex acoustic climate of urban space is an integral part development of civilization. It is well known also 
that the ambient noise level significantly affect the quality of life in the city. There is also a factor negatively 
affecting your body reducing the comfort of living and productivity. At the same time some of the annoying 
sound sources, we can not eliminate. Because the vibration and noise generated by trams are a regular part of 
urban vibroacoustic climate their impact on the environment must be recognized and minimized. 
In this article author defines the concept of the vehicle vibroacoustic activity and submit use the pass-by test in 
description of vehicle features under normal operating conditions. This paper presents the assumptions and 
methodology of the proposed experimental research. A preliminary study on the possibility of a comprehensive 
description of vibroacoustic properties of various types of trams in the study in situ condition is presented. 
Author also presents selected results of research carried out on trams operated in Poznan (Poland). 

Keywords: vibroacoustic activity, tram, experimental research 

1. Introduction  

The new tram is placed in service after positive verification of the requirements as to the 
external noise level generated by vehicle. The main document in this area is EN ISO 
3095:2005 Railway applications – Acoustics. Measurement of noise emitted by rail-
bound vehicles. The document gives a detailed methodology for normative testing of 
external noise. There are indicated conditions for locating of the measuring place, the 
measuring points and environmental and other conditions that must be met for the com-
parison of measurements.  

This document also provides a methodology of sound level calculation for a repre-
sentative sample in the pass-by test. An example of determining the sound level generat-
ed by the tram during pass-by test is presented graphically in Fig. 1. 

As is shown on Fig. 1 the reference point is the beginning and end of the tram 
(square marker). The time window set by the length of the vehicle determines the aver-
age sound level. After a first phase of calculation the time window is expand to time 
before and behind the vehicle edges so as to capture a moment when the current sound 
level is 10dB lower than the average level fixed in first step. Only the sound level of 
such an extended time window is assessed and compared as normative value. 

The only thing this rule does not specify is the sound level limits. These values are 
determined in each individual case by the Employer/Contractor. Often Employ-
er/Contractor benefits from the experience of those involved in rail vehicles. In Poland, 
very frequently is invoked of German VDV standard No 154 [1]. They set the sound 
level limits and are treated as a reference point for the construction of new vehicles. 
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Figure 1. Graphical representation of the sound level calculation 
according to EN ISO 3095:2005 

In our cities we can find many types of modern tram which meet the cited standard. 
This does not mean that all trams are equally friendly to the ear of inhabitants and the 
urban environment. Each vehicle is different under real operating conditions and thus 
different influences on the vibroacoustic climate of our cities. Therefore, it is still actual 
question how to choose the best vehicle for our city with taking into account: 

• the geographical specificity of the tram network, 
• the technology of infrastructure, 
• Passenger flows in normal operating conditions, 
• the model of rail/wheel wearing 
• the real dynamic effects as a results of vehicle/infrastructure interaction. 

All these factors affect the general vibroacoustic phenomena accompanying of the 
vehicle under normal operating conditions. This measure, as information about the glob-
al vibroacoustic impact of vehicle on environment is defined by the author as Vi-
broacoustic Activity of Vehicle. This volume - unlike vibroactivity presented in [2] - 
describes tram noise and vibration effects in a quantitative and qualitative way at envi-
ronmental impact aspect and it takes into account: 

• Tram acoustic signature  
• Dynamic wheel-rail interaction at the micro-geometry level 
• Dynamic vehicle interaction with infrastructure – para-seismic vibration. 

The individual elements consist the vibroacoustic activity of the vehicle are presented 
below. 

2. Tram acoustic signature 

Acoustic signature is a unique and characteristic sound fingerprint of a described object 
enabling its identification and location in the space. Originally this term was created for 
the army to describe ships and submarines [3]. Later the idea of acoustic signature was 

Averaging area 

Time history sound 
pressure signal 

Tram’s front and 
and rear marker 
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successfully used in a civil technique to identify sources of vibroacoustic signals and 
machinery diagnostics [4, 5]. The idea of using the acoustic signature for description and 
identification different types of Poznan tram was presented in papers [6, 7]. 

Exemplary results of the investigation and analyses of two characteristic for Poznan 
types of trams: 105 Na and Siemens Combino are presented below. A time-spectrum 
map was the basis to work out the utile acoustic signature. The signals were filtered in 
accordance with weighting curve A. The results are presented in Fig. 2.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Time-spectrum map for a ride of tram type 105Na (left side) and Siemens 
Combino (right side)  

Presented spectrum characteristics of registered signals differ considerably. In Fig. 2 
it is difficult to identify certain wheel sets as main sources of noise. After more detailed 
analysis it is only possible to identify vehicle subsequent bogies. In this signal no charac-
teristic tonal components dominate, except for broadband excitation.  

On the contrary, in case of tram type Siemens Combino, distinct and characteristic 
existence of tonal components, resulting from inverter running in the drive system, can 
be unequivocally identified in the spectrum. Although, just like in the previous example, 
certain wheels cannot be identified, subsequent bogies can be unequivocally pointed – 
especially driving bogies. At the same time it was noticed that unlike in car type 105 Na, 
in tram type Siemens Combino a middle bogie is mostly responsible for generating over-
all noise. This is a rolling bogie and does not transfer driving force into the vehicle. 
Additionally this bogie enables gentle fitting of tram in the curve and that is why it 
should have better possibility to dislocate against the body – bigger construction clear-
ance.  

A common feature of both objects generating analyzed signals is focusing larger part 
of acoustic energy in lower frequency bands. On the basis of comparative analysis it can 
be indicated that wheel/rail cooperation generates noise in the frequency typical for 
mechanical interactions i.e. up to 2 kHz. For tram type 105 Na nearly 85% of signal 
acoustic energy generated during a pass-by is comprised in band up to 2 kHz. Slightly 
different values characterize tram type Siemens Combino. In this case participation of 
mechanical wheel/rail interactions constitutes barely 50% of energy participation in the 
whole signal registered during a pass-by. Electroacoustic sources constitute a considera-
ble energy participation in signal generated by tram type Siemens Combiono at a test 
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pass-by. Inverter is a main source of sounds of harmonic components 3, 6, and 9 kHz, 
high amplitude and inconvenience. Acoustic features of this element of drive system 
perform well the identifying function of this means of transport.  

3. Dynamic wheel-rail interaction at the micro-geometry level 

Generated noise is a secondary effect of processes occurring on wheel/rail contact, par-
ticularly micro-slippages resulting from changeable location of contact point of both 
profiles and changes in meshing area of both elements [8]. Additionally vibroacoustic 
effects are determined by construction of tram bogie. In this case many different details 
influence on quality of rolling and thus sound and vibration generated during tram opera-
tions. Simultaneously these parameters will change during operation because of wearing, 
too. The elements like dumpers, rubber-metal joints and suspension parts, etc. change 
their mechanical properties in service. That mean different construction interact differ-
ently on infrastructure. 

In the case of rail vehicles the primary criterion for assessing the safety of driving in 
the track is Nadal’s criterion. Nadal’s criterion is based on the ratio of lateral and vertical 
forces acting on the wheel and rail just prior to derailment. Probability of derailment is 
higher in quasi-static conditions. So, the value of vibration energy in the two dimension 
in dynamic condition can be a base for assess global, dynamic interaction between wheel 
and rail in normal operational conditions. Because the vibration level strongly depends 
on speed of ride experimental data was collected for different speed. An example of 
comparing the vehicles based on the rail vibration is shown on Fig. 3. 

 
 

 
 

Figure 3. Energy of rail acceleration (lateral and vertical) measured for 7 tram types 

As can be seen on figure 3 the levels of impact on the rail strongly depends on the 
type of tram – design features and construction details. Depending on vehicle type the 
differences range is from 6% to 50% and it is correlated on the speed of ride. These 
results clearly show that it is possible to indicate such a vehicle, which generates the 
slightest impact on the infrastructure at the micro level of inequality (rail/wheel interac-
tion) and has the lowest influence on rolling noise. 
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4. Dynamic vehicle interaction with infrastructure – para-seismic vibration 

Para-seismic vibrations are another, very important and undesirable effect of trams oper-
ating. These vibrations can adversely affect the infrastructure of tramway and buildings 
surrounding the tramway net. The energy of vibration which propagate thru the ground 
layers are endanger for homes and other engineer buildings in the city, like a bridges, 
overpasses, tunnels, water pipes, sewage system, etc.  

In the experiment the level of generated para-seismic vibrations was analyzed. The 
vibrations were recorded for the same types of trams presented in Fig. 3. Seismic accel-
erometer (B&K type 8340) was placed at a distance of 1 meter from the rail. Visualiza-
tion and comparison of chosen measurement results are shown in Fig. 4. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Para-seismic vibration acceleration caused by riding trams 

As can be seen in Fig. 4 the level para-seismic vibrations generated by trams are dif-
ferent. Depending on the vehicle type RMS value of acceleration vibration reaches 
0.47 ms-2 at 20 kmph and exceeds 0.7 ms-2 for speed 50 kmph. Simultaneously is noticed 
the increase of energy para-seismic vibrations generated by the tram, depending on the 
speed. In critical cases (Alfa) is a more than threefold increase the acceleration RMS 
value. 

5. Conclusions  

Noise and vibration generated by tram are unique characteristics of its functional fea-
tures in terms of environmental sustainability. It is appropriate to introduce a new quanti-
tative measure for assessing global impact the tram on the environment under normal 
operating conditions. It is proposed to introduction of the term vibroacoustic activity of 
the tram as a global measure of vehicle quality. This measure can be used for quick di-
agnosis of the vehicle and the dynamic, pro-environmental management of the rolling 
stock [9]. 
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Abstract  

The article concerns the dynamic energy analysis in a Human–Breaker (H–B) system with the application of 
spatial WoSSO vibration damping. The analysis required the development of a spatial mathematical energy 
model of a biomechanical system in which the Constant-Force Vibration Damping (WoSSO) system is ap-
plied; this model was solved by means of a simulation prepared with the use of a special programme created 
with the MATLAB/simulink software. The obtained results indicated that the innovative WoSSO system 
applied in this case effectively dampens the flow of energy to the human operator while retaining the full 
energy of blows to the base under the breaker. 

Keywords: power distribution, energy flow, biomechanical systems, energy damping, WoSSO system 

1. Introduction 

Large mechanical hand tools (breakers) are often part of the 
equipment used in the building construction industry or for 
the construction and repair of roads and bridges – see Fig. 1. 
The breakers are characterised by the high blow energy re-
quired to perform the given task, e.g. break concrete. The 
impact of these tools on the human operator is also high and 
results in the vibration-induced white finger syndrome. Re-
ports of occupational medicine institutes contain a quantita-
tive and qualitative documentation of the cases of vibration-
induced white finger syndrome amongst the operators of these 
tools. The disease usually results in damage to upper limb 
joints. According to the reports, the most commonly damaged 
joints are the elbow joints – 69%, wrist and carpal joints – 
25% and shoulder joints – 4%. For many years, attempts have 
been made to reduce the levels of vibration in the handles of 
these tools. Simple classical methods of vibration damping 
did not produce the expected results. Permissible weighted 

acceleration values on the handles of these tools were never achieved. 
At the Division of Vibroacoustics and Biodynamics of Systems (ZWiBDS) of the In-

stitute of Applied Mechanics at the Poznan University of Technology, an attempt was 
made to provide the spatial damping of breaker vibrations using the innovative WoSSO 
vibration damping method. This method had already proven effective in the reduction of 
vibrations in smaller tools, with the mass of 5.6–8.5 kg and with the energy of breaker 
ram blows ranging from 10 to 30 [J]. 

 

Figure 1. Breaker 
during laboratory tests 
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In order to obtain the design guidelines for the design of large mechanical hand tools 
(LMHT) which are innovative in terms of vibration damping and energy-safe, virtual 
experimental simulative investigations of vibrations, power distribution and flow of 
energy in the biomechanical Human – LMHT system (see Fig. 1) have been performed. 
Such investigations at the ZWiBDS precede the implementation of the production of 
innovative tools. The implementation begins with the preparation of technical documen-
tation, development of the investigative model and performance of experimental tests. 
The results of these investigations allow for final modifications of the design and for the 
creation of a production prototype for specific type of batch production. 

The results of the virtual investigations concerning the dynamics, power distribution 
and energy flow in the investigated H – LMHT biomechanical system with the applica-
tion of the innovative vibration damping system are the subject of the present article. 

 2. Description of investigations 

The procedure of the energy investigations of biomechanical systems begins with the 
analysis of the dynamic structure of the actual object and sources of vibrations and the 
structure of its physical (Fig. 2) and mathematical model [2]. The physical model of the 
human submodel was prepared on the basis of dynamic human parameters for three 
directions, specified in ISO 10086 [4]. 

Then, through the application of two 
energy principles developed by the author 
[1], an energy model – in the form of 
integral equations of the energy flow in 
the entire structure of the investigated 
biomechanical system – is obtained [2]. 

In the investigated case, the energy 
model consisted of 18 integral equations 
describing the flow of energy in the entire 
structure of the biomechanical H – LMHT 
system [2]. 

The energy model was solved using 
the method of digital simulation of energy 
flow, with the use of a specially developed 
programme for the dynamics, power dis-
tribution and energy flow in the biome-
chanical H – LMHT system with WoSSO 
vibration damping. In this programme, the 
power distribution, energy flow and dy-
namics of the system are solved synchro-

nously, allowing for the advanced dynamic analysis of the investigated system. 

3. Results of investigations 

The simulation was preceded by experimental tests in order to identify the sources of the 
vibrations of the breaker and its dynamics, including the determination of the accelera-
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Figure 2. Physical model of the Human–
Breaker system with WoSSO vibration 

damping 
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tions of the vibrations of breaker motor body. The obtained functions of instantaneous 
accelerations in time and their RMS values were used to fine-tune the developed physi-
cal model to the actual investigated object, i.e. H – LMHT [2]. The values of the dynam-
ic parameters for the physical model of the human submodel were adopted on the basis 
of ISO 10068 [4]. The RMS values of accelerations, velocities and displacements in 
three directions obtained in the digital simulation of the dynamics of the investigated 
system are included in Table 1, and Figs. 3–6 depict sample energy portraits of the indi-
vidual points of reduction along the most important direction – “z” [2]. 
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Figure 3. Energy portrait of the point 
of reduction “Motor Body z” (MBz) in 

the H–B System with WoSSO 
vibration damping – direction “z” [2] 

 

Figure 4. Energy portrait of the point of 
reduction “Handle-Hand z” (H-Hz) in 

the H–B System with WoSSO vibration 
damping – direction “z” [2] 
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Figure 5. Energy portrait of the point 
of reduction “Forearm-Elbow z” (F-
Ez) in the H–B System with WoSSO 
vibration damping – direction “z” [2] 

Figure 6. Energy portrait of the point of 
reduction “Arm-Shoulder z” (A-Sz) in 

the H–B System with WoSSO vibration 
damping – direction “z” [2] 

Subsequent rows of Table 1 include the energy doses and mean power calculated on 
the basis of these doses for the Motor Body (MB) point of reduction, as the synchronous 
sum of three types of doses: dose of inertial energy, loss energy and elastic strain energy. 
The motor body in the investigated case is separated from the human operator by the 
spatial WoSSO vibration damping system – Fig. 2. 

Mean power values in the part of the physical model related with the human body are 
specified in subsequent rows. These are, successively: Casing and two hands (C–H), 
Forearm–Elbow (F–E) and Arm–Shoulder (A–S). Due to the symmetrical position of the 
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human operator, the mean power values for the left hand and right hand are identical. 
The comparison of mean power values indicated that for BC – H points of reduction, the 
mean power is highest for the point of reduction in direction “x,” then in direction “y” 
and finally in direction “z.” 

The sequence of directions for points of reduction is different in case of F–E and A–S 
points. In these points of reduction, the most dangerous direction for this case of WoSSO 
vibration damping is direction “y,” then direction “x” and finally direction “z.” The 
influence of WoSSO vibration damping is evident, particularly in direction “z.” This 
dominant direction for the motor of a conventional breaker after the application of WoS-
SO vibration damping system is characterised by the smallest load measured as synchro-
nous mean power in [W]. This testifies to the high effectiveness of energy damping of 
the WoSSO vibration damping system. 

Higher value of mean power in the F–E point indicates the concentration of energy 
flow in this point – this is consistent with the reports concerning occupational medicine 
[3]. In this point, the highest percentage of elbow joint damage – i.e. 69% of the damage 
to all joints of the upper limb – was recorded. 

Table 1 also includes the values of the total dose of energy in [J] flowing through all 
points of reduction for the 30 [s] duration of the simulation of energy flow in the investi-
gated system. The mean power calculated on the basis of the energy confirms the results 
obtained on the basis of the sum of mean power values from all points of reduction spec-
ified in the table above. 

4. Risk assessment in the energy domain 

In the conducted investigations, the key problem was to achieve mean power values in 
the individual points of reduction lower than the permissible level of power established 
for a human operator within 8 hours of work. The permissible mean power value was 
determined based on the knowledge of energy flow and permissible duration of exposure 
to vibrations in case of an MS13 pneumatic hammer commonly used to clean off cast-
ings in foundries and steel mills [1]. The permissible value of mean power is 0,1 [W] – 
this value is also specified in Table 1. 

The simulated mean power values for the individual vibration directions divided by 
the permissible power value that the ratio of calculated mean power to permissible pow-
er is lower than 1. The following values have been achieved for x, y and z directions, 
respectively: 0,71, 0,82 and 0,14. This means that the breaker equipped with WoSSO 
vibration damping system fulfils the energy damping criteria for all vibration directions 
and that this innovative breaker is energy-safe for human operators. 

The mean power values for the source of energy and the sum of the power in the 
point of reduction of the human protected by the WoSSO vibration damping system can 
be used to calculate the energy damping effectiveness (EDE) of the vibration damping 
system. The calculated values of the EDE were as follows: for direction “x” – EDEWoS-

SO X = 0,43/0,072 = 6, for direction “y” – EDEWoSSO Y = 0,52/0,082 = 6,3 and for direction 
“z” – EDEWoSSO Z = 0,5976/0,014 = 42,7 – see last row in Table 1. 
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Table 1. Results of digital simulation of the dynamics and energy flow in the 
biomechanical Human–Breaker System with the application of innovative WoSSO 

vibration damping system 

DIGITAL SIMULATION OF THE DYNAMICS – VIBRATION DIRECTIONS  

Points of reduction Vibration directions 

Motor Body – MB x y z 

Acceleration (RMS) 48.82 79.17 150.5 

Velocity (RMS) 0.067 0.074 0.1986 

Displacement (RMS) 0.00043 0.00102 0.0046 

DIGITAL SIMULATION OF POWER DISTRIBUTION AND ENERGY FLOW  

ENERGY DOSES in [J] and POWER in [W] 

Pneumatic motor body x y z 

Energy dose [J] 13.01 15.59 17.93 

Mean power [J/s] 0.43 0.52 0.5976 

Points of reduction / Left 
hand and right hand 

Left 
hand 

Right 
hand 

Left 
hand 

Right 
hand 

Left 
hand 

Right 
hand 

Body-Casing – Handle–
Hand (H–H) [W] 

0.042 0.0383 0.00632 

Forearm–Elbow (F–E) [W] 0.0152 0.0152 0.036 0.036 0.0021 0.0021 

Arm–Shoulder (A–S) [W] 0.000005 0.000005 0.0003 0.0003 0.0018 0.0018 

Synchronous sum of mean 
power values in [W] 0.072 0.082 0.014 

Energy dose in [J] within 
30 [s] 

2.165 2.472 0.4281 

Mean power [J/s] = [W] 0.072 0.082 0.014 

Permissible level for 8 h of 
work [W] 

0.10 0.10 0.10 

Ratio of calculated mean 
power to permissible 

power 
0.72 0.82 0.14 

Energy damping effective-
ness (EDE) of WoSSO 

vibration damping 

 
5.9 

 

 
6.3 

 

 
42.7 

 

At this point, we can observe the high effectiveness of energy damping in direction “z,” 
where the innovative WoSSO subsystem was used. In effect, the lowest flow of energy 
was achieved in this direction, despite the fact that this direction is exposed to the 
strongest pulse source of vibration energy. This testifies to very good damping properties 
of the WoSSO system. 
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5. Conclusions 

The conducted energy investigations of the H – LMHT system demonstrated that the 
innovative spatial WoSSO vibration damping system applied in this case effectively 
protects human operators against the excessive flow of vibrational energy generated by 
the operating breaker through their body. 

In all directions, the achieved mean power values were lower from the permissible 
value established for 8-hour work [2] at the level of 0.1 [W]. The energy damping effec-
tiveness of the vibration damping system in directions x, y and z are as follows: EDEWoS-

SO X = 6, EDEWoSSO Y = 6.3, EDEWoSSO Z = 42.7. This is equivalent to the development of 
energy-safe and ergonomic breakers. 

The commenced investigations, intended to develop entire ranges of energy-safe and 
ergonomic large powered hand tools, will be continued as part of further research pro-
jects. Their purpose will be to develop the design of such tools, commence production 
and implement them for actual use. The tools should prevent the vibration-induced white 
finger syndrome amongst operators, which is currently a major social problem around 
the globe. 
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Abstract  

This paper deals with the question of applying a new energy method in fatigue strength. The concept of using 
the equations of vibrations theory and two energy principles of Dobry to describe the process of material 
degradation was proposed. The main idea of this approach with the indication of these features which differ it 
from the other energy method was presented. The way of using MATLAB/Simulink models to carry out the 
simulation and the general idea of real experiment were described. 
 
Keywords: fatigue strength, energy method , energy flow , power distribution 

1. Bases of the new energy approach 

Energy method which is described in the paper below bases on analysis of energy flow 
in mechanical systems. What is very important, this is such an analysis which take into 
consideration instantaneous values of energy. It will be conducted basing on energy 
principles of Dobry. The detailed description of this method one can find in [1], where 
the application of such a type of analysis was presented. It is necessary to underline, that 
in those article the application of these principles to carry out the analysis and energy 
assessment of the vibroisolation system for pneumatic hammer in whole system human 
being – tool – base was described. So this is completely different application than this 
one which determines the subject of this paper. Nevertheless, the results obtained by 
Dobry were in accordance with the results of experimental energy investigations, what 
places this kind of energy approach in the line from the point of view of the other appli-
cations. The leading idea of this paper is the conception of application of the computa-
tional procedures which were verified while vibroisolation systems designing and com-
puting to analyze the process of materials fatigue. 

The attempt of finding the connections between fatigue strength and the quantity of 
energy which flow by system in the whole balance will be undertaken. This is the feature 
which make the fundamental difference between this method and the other methods 
called “energy method of fatigue strength” in commonly accessible publications. The 
method described below could be defined as “macro” approach to fatigue process. “Mac-
ro” means: without the connection with fracture mechanics methods and without connec-
tions with method involving microscopic researches. This approach, which is for the 
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moment on the stage of preparing and elaborating simulation models (with use of 
MATLAB/Simulink program), will be verified during the experiment which is planned 
in the near future. 

The two energy principles, which will make the base of investigations, run as fol-
lows: 

First Principle of Energy Flow in Mechanical System [1]: 
“The sum of increment the internal energy of mechanical system and the energy in 

the output of system is equal to work of external forces which act on system in the input 
diminished by the increment of energy of dissipation” 

While using the principle above, it is necessary to take in consideration the following 
assumption [1]: there is no accumulation and no heat flow in its pure form in the system. 

Assuming that the increment of heat provided to system is equal zero ( 0=dopQ ) one 

can write the first Thermodynamic Principle for mechanical system as follows [1]: 

strkwyszsyst EUEELE ∆++∆=∆−=∆ )(  (1) 

 The equation above can be rewrite in the other form [1]: 

wykstrsz EUEEL ∆++∆=∆− )(  (2) 

In this formula one can distinguish: 
kE  - kinetic energy (internal), U  - potential en-

ergy (internal), )( UEk +∆  - the increment of internal energy, 
szL  - work of external forc-

es on the input to system, 
wyE∆  - increment of output energy. 

The consideration above can be written down with use only of energy increments. 
Below, one can find the equation which is mathematical note of First Principle of Energy 
Flow in Mechanical Systems [1]:  

wyodstrwe EEEE ∆−∆=∆−∆  (3) 

odE∆  - the increment of reflected energy 

What called attention is the term: reflected energy, which is the sum of inertial ener-
gy and spring energy. First Principle of Energy Flow, after double-sided differentiation, 
and its application to system with one degree of freedom, enables to show the instanta-
neous values of energy flow i.e. the power. One can obtain in such a way the equation 
(4) which shows the power distribution in mechanical system: 

)()()()()]([)()( 2 txtkxtxtxmtxctxtW
••••••

+=−  (4) 

The equation (4) expresses the First Principle of Power Distribution in Mechanical 
Systems [1]. This principle can be derived from First Principle of Energy Flow in Me-
chanical Systems and it was demonstrated above. 

As far as the general form of energy equation is concerned, it is necessary to remark, 
that this is the increment of dissipation energy which poses the biggest problem to be 
identified. Input energy, output energy and reflected energy are possible to be observed 
by using the vibrations measurements. On the contrary, the dissipation energy must be 
calculated from the equation, what is possible when one know the value of these three 
mentioned above. The basic problem, which must be solved before using the both prin-
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ciples is to elaborate the proper dynamic model. Before simulation, it was necessary to 
prepare the conception of real system which will be subjected to vibrations. Than the 
reduction point was chosen and the physical and mathematical model were elaborated. 
The problem of reduction point concerns the problem of replacing the system with the 
continuous parameters by the system with discrete parameters. The point on the end of 
semi-beam subjected to vibrations was chosen as reduction point. 

 
 

METASYSTEM 
MECHANICAL SYSTEM 
SUBSYSTEM, ELEMENT, 
 POINT OF REDUCTION 

∆Ewe – ∆Estr = ∆Eod + ∆Ewy 

∆Ew
e 

∆Estr 

∆Eod 

∆Ewy 

M.W. DOBRY, 
17.02.1996 

 

 
METASYSTEM 

MECHANICAL SYSTEM 
SUBSYSTEM, ELEMENT, 
  POINT OF REDUCTION 

Pwe(t) – Pstr(t) = Pod(t) + Pwy(t) 

Pwe(t) 

Pstr(t) 

Pod(t) 

Pwy(t) 

M.W. DOBRY, 
17.02.1996 

 
Figure 1. At left side: graphic interpretation of First Principle of Energy Flow in 

Mechanical System; at right side: graphic interpretation of First Principle of Power 
Distribution [1]  

The physical model of the system is the spring-mass-dissipative system with one de-
gree of freedom excited to movement by kinematic input function. The rate of dissipa-
tion is depending on internal dissipation in material and on the dissipation in the holder. 
In the investigated system the damping ratio were assumed to be equal ξ = 0,01, that is 
the standard value for steel.  

The differential equation of motion for the system runs as follow: 

)()()()()( 00111 txctxktxktxctxm zzzzz

••••
+=++  (5) 

The idea of practical application of the principles described above consist on using 
the equation (4) for harmonic input function[1]: 

∫ ∫ ⋅==−==
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π

ϕπϕ  (6) 

0P  – Force amplitude, 0A – Velocity amplitude, ϕ –Phase shift, 

By multiplying the instantaneous value of force which is exerted on reduction point 
by instantaneous value of velocity, one can obtain the instantaneous input power which 
in the moment fall on the reduction point. Then, by integrating such a product of instan-
taneous values, one can obtain the value of energy dose which flowed in the specified 
period of time. 

The term “flowed” does not determine if the energy was dissipated, accumulated or if 
maybe it leave out the system. To could conduct this analysis it is necessary to divide the 
whole energy into three types of structural energies. Viz. in the mechanical system one 
can distinguish: spring energy, inertial energy, and dissipation energy.  
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The distribution of input energy on three types mentioned above and the proportion 
of this distribution depend on the proportion of force function frequency to natural fre-
quency of the system (nondimensional frequency) and it depends on the dynamic param-
eters of system. The range for which δ > 1 is called above-resonance, the range for 
which δ < 1 is called under-resonance and the exact value δ = 1 means the movement in 
resonance. This terminology will be used in the next part of article. 

The correlation of terminology used in energy principles of Dobry with commonly 
known theory of damped oscillator may require some additional explanations. While 
considering the damped oscillator the terms of kinetic energy, potential energy and work 
of friction force are used. It is very important to underline the difference between kinetic 
energy and inertial energy in Dobry meaning. The first one depends from velocity and 
mass while The Principles of Dobry concern the acceleration. Inertial energy depends on 
mass and acceleration and there is no direct connection with velocity. Noticing this fun-
damental difference is very important to proper comprehension of the energy discussion 
below. 

3. Simulation models  

In order to implement the new energy method the simulation models in Matlab/Simulink 
were prepared. On the input to model the data concerning the sample are introduced. 
These data are: the length of beam, the height and the width of cross-section (for rectan-
gular section), the degree of damping (which covers internal damping in material and in 
the holder) and the weight of the mass which is attached to the tip of the beam. The pa-
rameters of kinematic function are defined (the frequency of vibrations and the ampli-
tude of displacements exerted by vibrator). The main element of the program created in  
MATLAB/Simulink is MWD Elementary Energy Flow Processor. On the input of this 
subsystem the dynamical parameters of the system are introduced. The second sort of 
data are signals representing the instantaneous values of displacements, velocities and 
accelerations which are the results of solving the differential equation of motion. The 
suitable operations make it possible to calculate (basing on these data) the instantaneous 
values of power. The analysis of percent share of every type of structural energy is pos-
sible too. So far, the simulations experiments that were conducted, confirmed the con-
ception of change of share of every type of energy in the whole energy depending on the 
range of work (above-resonance or under-resonance). It can be noticed on the chart (fig-
ure nr 2). One can observe that if the sample is subjected to vibration that the frequency 
is lower than its natural frequency, the biggest share in all power is for spring power. It 
is worth to say, that the emergency situations taking place during the operating processes 
of many technical objects, confirm this energy theory. The damages take place very 
often in low frequency range. The energy methods provide the possibility to explain this 
phenomena by the fact that in the low frequency range there is the biggest share of 
spring energy in the whole energy dose. The chart shows that the share of spring power 
and inertial power is equal for the resonance. 

The future aim of experiment is to calculate the exactly dose of energy that is intro-
duced to the system by the specified way of exerting load on the system. It is necessary 
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to underline that the energy which flows by system depends not only from the parame-
ters of exciting function but from the dynamical parameters of investigated system also 
(investigated system is the sample subjected the experiment). The simulation models 
make it possible to calculate the dynamical stresses in material. For example for the steel 
sample: length of 250 mm, height and the width of cross-section (rectangular section): 
2,5x25 mm one can obtain the stresses about 200 MPa for the frequency of 8  Hz. 

 

Figure 2. Chart showing how the share of every kind of structural power depends on 
non-dimensional frequency  

As it was mentioned, as far, the experiment which is conducted only as the simula-
tion is planned to be conducted in reality. At the beginning, it is planned to carry out the 
experiment with use of materials for which the fatigue parameters and the load curves 
are known and accessible in literatures and publications. It will be some kind of valida-
tion of the method. The main idea which is tied up with implementation of new energy 
method is to indicate, that the term “dose of energy” can be equivalent to the term of 
quantity of cycles for the specified level of stresses. In that way the energy method could 
be treated as alternative in relation to the approach employed up to now, and consisting 
on conducting the classical fatigue analysis. The term “Classical fatigue analysis” means 
all the measures having on aim to find the relation between the quantity of cycles that 
material can support and the value of stresses, the type and the shape of exciting force 
function. 

Commonly accessible literature concerning the fatigue process employs the terms: 
energy of plastic strain and energy of elastic strain. The object of conducted fatigue 
investigation will be subjected the loads evoking the stresses below the yield point. Nev-
ertheless it does not permit to neglect the plastic strain. It is known and very well de-
scribed in literature that the process of material degradation bring about the structure 
change, which manifests itself by the change of dynamic parameters of sample [6]. The 
fracture mechanics provides the knowledge about how is the structure of the front of 
fracture [5], [7]. There is the zone of plastic strain. This problem can be taken into con-
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sideration by the appropriate approach to energy of dissipation. The fatigue process 
evokes the increment of damping ratio and the dissipation energy depends on this ratio. 

 
 
 
 

Figure 3. The test stand scheme  

3. Conclusions  

In the paper above the new concept of approach to fatigue calculation was presented. 
The look from the new point of view is expected to bring the possibility of work out the 
new energy criterion of material fatigue assessment. One of the main aim of the investi-
gations will be the recognize the range of unlimited fatigue strength. As it is very well 
describe in the literature some materials (for example: many non-ferrous alloys) do not 
have the range of unlimited fatigue strength. The Wohler Diagram for these materials is 
descending in the whole range. Meanwhile the steel for example is the material, for 
which it is possible to indicate such a value of load, for which even the infinite quantity 
of cycles will not bring about its destruction. The look on this problem from the point of 
view of energy flow may provide the possibility to make this phenomena more clear. 
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Abstract 

The paper deals with vibrations of structures under a moving inertial load. The space-time finite element 
approach has been used for a general description of the moving mass particle. Problems occur when we per-
form computer simulations. In the case of wave problem numerical description of the moving inertial loads 
requires great mathematical care. Otherwise we get a wrong solution. There is no commercial computing 
packages that would enable us direct simulation of moving loads, both gravitational and inertial. 

Keywords: space-time finite element method, moving mass, vibrations 

1. Introduction 

Engineering structures under moving loads is the important research topic in many di-
verse fields of engineering. Moving loads are widely used i. a. in transportation. 
A vehicle travelling along a road plate or airfield plate is one of numerous practical ap-
plications. A complete description of the problem should contain both gravitational and 
inertial action of moving load. Implementation of gravitational moving forces is simple 
in analytical and numerical approaches. Since it does not depend on solution, it requires 
only an ad hoc modification of the load vector. Much more complex are moving inertial 
loads. Inclusion of inertia of the moving load requires not only modification of the right-
hand side vector, but also affects selected parts of global matrices of inertia, damping 
and stiffness of the system. Acceleration of the moving mass particle is described by the 
well known Renaudot formula 
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Adequate terms correspond to the transverse, Coriolis and centrifugal acceleration. 
Several papers [1, 2, 3, 4] discuss a numerical description of the moving mass in the 
finite element formulation, applied to the Euler beam and Kirchhoff plate. Interpolation 
of displacements by 3rd order polynomials is simple. It facilitates the derivation of the 
matrices describing the traveling mass particle (1). Matrices known from the literature 
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are not comprehensive. They are not suitable for general applications. In the case of the 
wave equations (string, Timoshenko beam, Mindlin plate) we take into account a linear 
relationship between displacements and angles of rotation in neighbouring nodes. In the 
paper [5] classical finite element formulation of the moving mass travelling along the 
Timoshenko beam was proposed. 

This paper presents a space-time approach to the moving mass problem. Characteris-
tic matrices in the case of thin and thick plates were derived. 

2. Finite element carrying a moving mass 

Numerical formulation of a moving mass is performed by space-time finite elements 
method [6, 7, 8]. This method consists of discretization of equations of motion both in 
space and time. In this case velocity variant and stationary mesh was used. Finally we 
obtain the system of algebraic equations K* v + e = 0 with velocities as unknowns. In 
order to calculate nodal displacements vector we use the following formula 

 ( )[ ]11 1 ++ −++= iiii h vvww ββ . (2) 

Let us consider space-time finite element carrying mass m moving at a constant 
speed v. Virtual energy in the domain Ω = {(x,t): 0 ≤ x ≤ b, 0 ≤ t ≤ h}, is written by the 
equation 
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Dirac delta δ defines the position of the moving mass. v* is the virtual velocity. How-
ever, the acceleration of the moving mass is given by (1). We apply linear interpolation 
of the nodal velocity 
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where the shape function takes the following form 
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Displacement function is a result of the integration of (4) 
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The virtual velocity is described with Dirac function 
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Linear interpolation of nodal physical parameters with shape functions unables determi-
nation of a centrifugal acceleration of the moving mass particle. We rewrite (1) in the 
equivalent form 

 .
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We assume the backward difference formula to the third term of (8).  We have then 
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The upper indices indicate time at which the respective terms are defined.  At~time of 
transition of the moving load between the elements k and k + 1 (Fig. 1), the current 

 

Figure 1. The transition mass between elements. 

displacements are computed based on displacements the neighbouring element k + 1 
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however, the initial displacement in the element k equals 
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The lower indices indicate the number of nodes. According to (2), (10), and (11) the 
finite difference scheme (9) is written as follows 
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The accurate solution is obtained with β = 1 – α [9]. Therefore, we can write 
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Classical minimization of the energy (3) results in the following matrices 
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and vector of nodal forces at the beginning of the time interval 
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The coefficient κ describes the instantaneous position of the mass in the spatial element 
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We must emphasize here that the centrigugal forces are contributed in the vector em 
and is not described by a separate term. In the case of direct differentiation of (1) we lose 
information of nodal forces represented by (16). Vector em has nonzero values during the 
transition of the mass between neighbouring space-time elements. It can not be omitted 
since it contributes vital mathematical quantity, even if it mostly equals zero. The matri-
ces (14)-(15) and the vector (16) contribute only the moving inertial particle effect. The 
matrices of the mass influence in a finite element of a structure must be added to the 
global system of equations. 

3. Numerical examples 

First we will consider a thin plate. Respective finite element formulation related to the 
plate can be found for example in [10]. We use thin plate elements in the simulation of 
a plate vibrations under a mass moving along the symmetry axis of the plate. The data 
assumed: thickness t = 0.4 m, dimensions lx = ly =12 m, Young modulus E = 30 MPa, 
Poisson coefficient ν = 0.2, mass density ρ = 2400 kg/m3, the moving load composed of 
the mass m = 104 kg and related force P = 9.81 · 104 N. 

In the case of thick plate we consider the Mindlin model of the plate. We use the 
formulation given for example in [11, 12]. We assume linear distributions of both dis-
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placements and rotations along the element, according to the interpolation functions. 
Comparisons of numerical and semi-analytical solution were done. The excellent coinci-
dence is exhibited. Influence of inertia of the moving load solutions are depicted in 
Figs. 2 and 3. Displacements of the contact point and the center of the plates are depict-
ed. w0 denotes the static displacement of the center of the Kirchhoff plate. 
 

 

Figure 2. Vertical displacements at the contact point and at the middle of the Kirchhoff 
plate (thickness = 0.1 m, v = 360 km/h) 

 

 

Figure 3. Vertical displacements at the contact point and at the middle of the Mindlin 
plate (thickness = 1 m, v = 360 km/h) 

4. Conclusions 

Original finite elements carrying a moving mass particle were elaborated. The presented 
approach is general and allows the accurate modelling of the point mass traveling with 
a constant velocity in numerical computations by using the space-time finite element 
method. The results confirm the significant influence of the inertia of the moving load on 
the solutions. 
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Abstract 

In the paper the spring-mass system describing the moving load, determined with the Hertz theory, was re-
placed with the spring-mass system with an inertial part being in contact with the beam, rail, or a track. Com-
putational problems can be reduced significantly. Results are qualitatively and quantitatively improved, espe-
cially at higher range of the speed, related to critical values. 

Keywords: wheel/rail contact, train-track system, moving loads 

Introduction 

Numerical dynamic analysis of engineering problems nowadays successfully replace 
experimental or real scale investigations. Unfortunately there exist several problems that 
can not be easily treated by computer means. Such are problems with moving loads, 
especially with inertial moving loads. There are two main reasons of difficulties. The 
first one concerns problems with numerical description of inertial particles moving along 
finite elements. Despite the massless load can be applied to the system in an extremely 
simple way, the inertia attached to the moving force vector require modification of ma-
trices in the system of differential equations describing the motion of the whole system. 
The second problem occurs when we compute frequencies of the response of the struc-
ture subjected to a moving load system with required accuracy. In engineering practice 
quantitative results start to be essential in numerical simulations. This is a fundamental 
reason why we push our research from cost experiments towards numerical analysis. 

Preliminary calculations exhibit significant difference of results obtained with the use 
of a massless load acting to the track and with the use of the inertial moving load. The 
point mass increasing the inertia of the continuous track significantly changes the dy-
namic response. The fundamental question then is what part of a wheel or wheelset can 
be attached to the track to give more realistic response. More realistic means in our case 
more accurate amplitudes of displacements or accelerations, and more accurate frequen-
cies of vibrations under the load moving at high speed, comparing with experimental 
measurements. We consider the speed in the near critical range, both under and over-
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critical. The contributing numerical observations must last a few seconds of the real time 
to enable the vehicle pass a few hundred meters. The dynamic analysis of a long-term 
response of the track to a moving vehicle or a train can be successfully carried on with 
the use of multi-scaled numerical computations. The analysis of the wheel-rail system 
allowed us to determine the partition of the wheel between the part moving along the 
rail, being in contact with the rail, and a part that subjects the rail through an elastic 
massless element, considered as a part of the spring-mass system that describes the vehi-
cle. 

In the paper we intend to demonstrate the dynamic analysis of vehicle–track system, 
with the influence of the inertia of the load. The monograph by Fryba [1] treats problems 
of structures only under moving massless loads. The theoretical analysis of the problem 
of an inertial load is presented in [2, 3, 4]. Numerical analysis could not be previously 
efficiently performed. Existing examples of a beam vibrations published in literature 
concern relatively low moving velocity and even in this case exhibit significant errors. 
At higher speed presented solutions differ significantly with accurate results. In the case 
of pure hiperbolic differential equations which describe a string or a bar vibrations, inte-
grated numerically by the step-by-step schemes resulting solutions diverge. In a series of 
papers [5, 6, 7] we explain how to derive elemental matrices that carry a moving mass 
particle and apply them to the finite element method or space-time finite element meth-
od. In all cases displacements of the contact point in the static equilibrium state are 
equal, although dynamic responses differ. 

The next important feature is related to the interesting property of the differential 
equation describing the Timoshenko beam or simpler case, the string. The detailed anal-
ysis of the solution exhibits discontinuity of the inertial particle trajectory in the neigh-
bourhood of the rear support, in the case of simply supported span. The phenomenon 
was first analysed in the case of a string, mathematically proved and published in [2]. It 
is also observed in the case of of a Timoshenko beam or a thick plate. We can discuss 
whether this effect of the shock is noticably in reality. Practics gives the positive answer. 
Examples of the effect can be noticed in the case of electric cables of the train traction 
being in contact with a moving pantograph power receiver. As another example we can 
consider road plates. During the motion of vehicles significant force jumps are registred 
at final stage of the passage. 

Let us compare trajectories of contact points under the load. Figure 1 depicts the 
comparison of mass and massless load moving on the Euler and Timoshenko beam. In 
this comparison dimensionless unitary data were assumed. 

Left-hand side plot exhibit the mass trajectory while the right-hand side plots depict 
deflection in the middle of the span. Results obtained for the case of both types of beams 
differ considerably. Other structures, i.e. strings, plates etc. exhibit similar differences in 
the case on pure force and the force with a point mass as a load. 

In the paper we will demonstrate, that the computational model should be assumed 
with attention. Detailed analysis of one phenomenon in micro-scale could be less valua-
ble if the model of a whole structure is far from the real one. We will demonstrate that 
results obtained with different numerical tools differ significantly and, what is more, 
differ from the real registered signal. The classical track will be considered. However, 
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the identical analysis can be performed for the ballast-less track and track with Y-type 
sleepers. 

 
 

 

Figure 1. Comparison of the load trajectories on the (a) Euler and (b) Timoshenko beam 
in the case of inertial and massless load for the speed v = 0.5. 

2. Analysis of the attached mass 

Classical approach to the whel-rail contact analysis is based on the Hertz theory. The 
contact between the rail and the wheel is then nonlinear and is massless (Fig. 2a). The 
contact stiffness between the wheel ring and the rail head depends on the type of the 
wheel and equals 500–580 MN/m. The wheel disc has the rigidity equal 500 MN/m in 
the case of tyred wheel and overpass 900 MN/m in the case of the monoblock wheel. 
The averaged stiffness of the entire wheel equals 250 MN/m for tyred wheel and 
355 MN/m for monoblock wheel.  

At the first stage we must establish the percentage of the wheel that influences the 
track motion. The aim is not easy. We should solve the inverse problem to determine 
parameters of the problem: attached mass, sprung mass, and spring stiffness. Moreover, 
the identification of parameters depends on the velocity of the motion and may be influ-
enced by other vehicle and track parameters. We must emphasize here that the contact 
between the wheel and the rail is non-linear. 

 

 

   Figure 2. Replacement of a continuous system with a rigid-body system: a) classical 
Hertz contact model, b) and c) proposed approach. 
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We solved two problems to determine unknown parameters mL, mU, and the stiffness 
k of the alternative simplified model of the wheel placed on the rail (Fig. 2). In the first 
one we assume the velocity v = 0. In this case displacements in time of the contact point 
A uA(t) and accelerations üA(t) are registered. In the simplified model excited with the 

same initial conditions appropriate quantities )(~ tuA and )(
~

tuA&& are measured in the same 

point, i.e. in the point of a beam at the center of the mass mL. The objective function that 
estimates the quality of the selection of parameters is as follows: 

 dttututdttututI
ff t
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α(t) and β(t) are weight functions that determine validity of consideration of displace-
ments and accelerations in time. 

In the second problem we assume rolling of a wheel. Appropriate objective function 
is similar: 
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3. Numerical model 

We assume the spring-beam system model of a vehicle. This is a simplified model, how-
ever it sufficiently represents the dynamic properties of the real vehicle. Proper stiffness, 
inertia and damping allows us to obtain dynamical response coinciding with a real re-
sponse. 

The track model can be composed of plates, beam, grid or frame elements and 
springs. Simple or complex track structure can be considered. Below we will consider 
the simplest classical track, built of grid elements placed on the elastic Winkler founda-
tion, springs which model elastic pads and grid elements describing the geometry of 
rails, straight or curved. 

4. Examples 

Now let us have a look at a real example of vibrations of a carriage moving on a classical 
track. We use custom computer software implementing the numerical approach present-
ed in this paper. We assume geometric and material data from [8]. In the Fig. 4 in the 
case of a non-inertial load (lower diagrams) we can notice the strong influence of the 
sleepers. In the case of the inertial load (upper plots) this influence is moderate and the 
dynamic response is more realistic. 

We can compare our results with the reference [8], Fig. 3. Both the inertial load in 
Fig. 4 and Fig. 3 exhibit a similar range of accelerations of the axle box. The signal in 
Fig. 3 shows a low frequency mode which is difficult to explain. The response of our 
simulation has the same level of accelerations and is characteristic of more realistic 
higher frequency oscillations.  
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Figure 3. Acceleration of the axle box 290 km/h taken from [8] 
 

 

Figure 4. Vertical acceleration of the axle box at 290 km/h with inertial and non-inertial 
load assumed in the model with rigid ballast: a) inertial load, b) non-inertial load 

5. Conclusions 

In the paper we explained why the massless load should not be taken to computer simu-
lations. Moreover, the rigid Hertz spring in computational practice is usually chosen 
arbitrary. Qualitative results can be obtained, but they differ quantitatively in all ranges 
of vehicle velocity. The inertial load in rigid body models is recommended. 
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Abstract 

The paper deals with the problem of stabilization of vibrations of the load carrying structure via adaptive 
damping performed with a smart material. The properties of such a material must ensure reduction of vibra-
tions, especially accelerations and displacements of selected stationary or follower points in a higher range 
than in the case of the material with homogeneous bilateral characteristics. Analytical calculations and numeri-
cal simulations proved the efficiency of the approach. Results obtained with the testing system equipped with 
magnetorheological controlled dampers will allow us to prove experimentally assumed control strategies and 
rheological properties of the filling material. 

Keywords: control, moving inertial load, vibrations, smart materials 

1. Introduction 

Historic buildings and buildings founded on grades are particularly vulnerable to vibra-
tions. Historic brick buildings are fragile, very susceptible to deformation. The low sus-
ceptibility of the material, which does not succumb to excessive momentary or long-term 
deformation is the main reason of damages. The negative impact of infrastructure on the 
surrounding buildings, particularly historic, forces us to take action to reduce the adverse 
external effects. In this aim, we assume the concept of modification of the track struc-
ture, to enable influencing its dynamic properties. 

Pioneering concepts of integration semi-active control systems with engineering de-
sign, transportation and robotics date back several decades. Systems based on semi-
active electro or magnetorheological dampers are an attractive alternative to passive and 
active systems. Correctly designed algorithms for semi-active control systems produce 
better results than the passive ones. The low power requirements are a strong competi-
tive with active control systems. Over the years, semi-active systems are replacing pas-
sive and active systems. This is thanks to the emergence of more and more interesting 
design solutions of semi-active vibration absorbers. Today, not only rheological fluids, 
but also significantly cheaper air foam can be used as a medium of such absorbers. 
Wealth of properties of actuator opens up new possibilities in the design of control algo-
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rithms. Problems associated with optimal control methods of semi-active systems are 
still open. Mainly due to their nonlinear (bilinear) characteristics. 

One of the first concept of semi-active control in mechanical systems was proposed 
by Karnopp, Crosby and Harwood [1]. In their work they presented the idea of active 
suppression of the oscillator with one degree of freedom, moving over uneven ground. 
Damping coefficient was a decision parameter. Solutions developed by the Skyhook 
algorithm is today one of the most widely used in active suspension control systems for 
vehicles. The idea was designed to improve comfort of passengers. Giraldo and 
Dyke [2], and Chen, Tan, Bergman, Tsao [3], showed that Skyhook method also gives 
good results for the oscillator moving over the simply supported continuum. Semi-active 
systems have also found numerous applications in structures subjected to seismic excita-
tion. We should mention here works, e.g. Soong [4], and Yoshida, Fujio [5]. The task for 
semi-active control system was to stabilize the system when lost the equilibrium state. 

The paper deals with the concept and the preliminary development of optimal control 
strategy of a track. Practical verification of received control algorithms requires dynamic 
measurements on the test stand. The description of the test stand has been done. 

2. Optimization of the semi-active track 

In this section we present in brief the methodology for solving optimal control problem 
for the semi-active track. For more details see [6]. 

The governing equation for the track system is given as follows  

 ∑
=
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Here x, u stand for the state vector (composed of vertical displacements and velocities) 
and the input vector (composed of damping coefficients), respectively. The impact of a 
moving load on the system is described by F(x). Matrices A and Bi result from both the 
method of discretization and dampers placement. In (1) the decision parameters ui are 
given in nonlinear (bilinear) terms and therefore, none of the standard optimal control 
method, that leads to close loop solution (for instance LQR), can be here applied. In this 
project, at first we use the gradient methods to obtain the open loop optimal solutions. 
As preliminary results showed, the structures of these solutions are in fact the copies of 
some simple switching patterns. Therefore, it might be possible to synthesize them later 
in order to get the close loop system. However, experimental validation will be crutial 
here.  

Now we give a general procedure to obtain the open loop solutions. We consider the 
following optimal control problem 
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By x  we denote here the vector of displacements, velocities or accelerations, depending 
on the objective of control. Under the assumption, that the problem (2) is convex and the 
optimal solution u* is in the interior of U we can apply the first order necessary condi-
tion. For that purpose we introduce the Hamiltonian H and the adjoint state p as follows 
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The necessary optimality condition states that 
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Numerical computations, based on the method of steepest descent, can be performed by 
proceeding the following steps 

 
S1  Guess initial control u0, set k ← 0. 

S2  Solve the state x equation (1) by substituting u ← uk. 

S3  Solve the adjoint state p equation (3) by backward integration. 

S4 Compute the descent direction ukd ∂
∂= H . If ||dk|| < ε, then u* ← uk and terminate  

      the procedure. 

S5 Choose step size λk such that uk+1 = uk + λk dk respects the constraints i.e.  

      uk+1 0 [umin,umax]
m. Optionally perform the line search. 

S6 Set uk+1 ← uk + λk dk,  k ← k + 1 and go to S2. 

3. Experimental research 

The numerical model was first elaborated. It should enable verification of both real ob-
jects and our model stand. A simplification of a moving vehicle to a single point load is 
excessive. In practice we require much more complex mathematical model to approach a 
physical object. Vibration of wheelsets and the coupling of vibrations through wheelsets 
must be taken into account. Analytical solution of the extended model is practically 
impossible. Approach methods applied to the correct numerical model enable us to ob-
tain sufficiently accurate results. In the project we developed and applied the numerical 
formulation of the inertial moving load to wave problems [7, 8, 9], at the variable speed 
of motion. For this purpose, we applied the space-time element method. It allows us a 
relatively simple and direct description of the moving point mass in time. Numerical 
simulation in the case of wave approach, i.e. in the case of around critical speed, requires 
great mathematical care. Otherwise we obtain wrong solutions. Commonly used com-
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mercial software packages do not support simulations of the inertial moving load prob-
lems. 

Models of a track are based on a system of continuous beams (Euler or Timoshenko 
model). Semi-active dampers are placed between two parallel beams – a supporting and 
a contact one. They are spread over the length of a track or placed just in selected points. 
Forces generated by dampers are proportional to the relative speed of its two ends. 
Damper can generate at least two different values of damping, so parameters in the sys-
tem can be switched. In addition, the switching possibility should be performed within a 
short distance of the load passage, several to tens centimeters.  

Verification of optimal control algorithms for MR dampers requires experimental in-
vestigation of the real object. For this purpose, the concept and design of the experi-
mental test stand has been developed. The model of a boogie was accelerated to a fixed 
speed, then travelled with a constant speed and after a certain distance decelerated to 
zero on the final support. Due to the deflection of the rail guideways are selected without 
the supporting beams. The stiffness of the rail results in the vertical displacements in the 
range ±17 mm for the mass load 6 kg moving at the constant speed 4 m/s. The limit 
displacements of the dampers are ±25 mm and the same are limit displacements of the 
guideway. The efficiency of the experiment is ensured when the amplitude of damped 
points increases 5 mm. In such a case we can fix our dampers directly to the beams, 
without supplementary leverage increasing their range of work. The LORD's magneto-
rheological dampers were used in the stand. Manufacturer of the dampers provides only 
minimal information about his product. All the other required dynamical data must be 
determined experimentally at start, i.a. the longitudinal stiffness of the damper caused by 
gas cushion located in its interior. The gas spring stiffness of the damper was Ks = 
2.66÷9.47 kN. The largest value of the rigidity corresponds to the displacement of 
12 mm and the smallest one corresponds to the maximum range of motion of the piston 
50 mm.  

In addition, the analysis of boogie carrying a moving inertial load was done. The rel-
atively large deflection of the rail could jam the trolley. The drive will be performed with 
a stepping motor. It is powered by pulse electric current, which means that its rotor is not 
rotating in a continuous movement, but does the rotation angle of a strictly fixed at every 
time step. The advantage is the possibility of very rapid acceleration and braking the 
moving object. This engine via a toothed belt would enable to disperse and stop the 
weight of 6 kg through 4 m. 

The foundation of the test stand is the steel frame. The proposed design of the frame 
is a multi-section truss. It consists of two-meter components. This allows a simple modi-
fication of the test stand, adjusting them to the longer track. In this case, we only need to 
replace the guide rail and a toothed belt and add a simple truss segment. In the case of 
foundation plate would not have such possibilities. In addition, taking a lighter frame 
with the independent ballast will provide greater mobility of the test stand. 

The results obtained by numerical simulation enabled the selection of appropriate 
displacement and acceleration sensors in the track measurement in the test stand. Com-
plete diagram of the measurement sensors has been developed. Measurement of the 
vertical rail displacement caused by the moving mass will be used laser displacement 
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sensors. These transducers are the best solution. This follows from the fact that laser 
sensors measure the non-contact method, so it does not introduce disorders into the in-
vestigated system. In addition to the laser displacement sensors will be used acceleration 
sensors with very low weight. Computer model of the test stand with the measurement 
instrumentation is performed on Fig. (1). 

 

 

Figure 1. Scheme of the test stand 

4. Conclusions 

As a result of the project we will elaborate a proposal for a new design of a track. Well 
designed semi-active control system can be an attractive solution for building protection 
against surrounding infrastructure. In particular for many priceless monuments, located 
in town centers and exposed to destructive action of the public railway transport, only 
the additional smart damping system can be a successful solution to maintain their via-
bility. The low susceptibility of the material, that the monuments are built of, does not 
succumb to excessive momentary or long-term deformation. The solution for this prob-
lem is a concept of modification of the track structure. Semi-active damping layer incor-
porated into the track can reduce vibration levels propagating into the ground in more 
efficient way than the traditional vibroisolation. 
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Abstract  

The paper presents the research aimed at effectiveness of elimination of the mechanical system vibration with 
the use of a nonlinear dynamic vibration eliminator. The considered object has been modeled as a discrete 
system with two degrees of freedom subjected to force excitation. Nonlinearity of elastic and dissipative prop-
erties of the protected object and the eliminator is defined by 3rd order polynomials. Solutions of the equations 
of motion have been obtained by simulation research with the use of MATLAB® software. Effectiveness of 
the vibration reduction has been assessed based on the function of the elimination effectiveness defined as the 
ratio of rms values of the vibration amplitudes of the protected object without the eliminator to the ones occur-
ring with it, in the case of steady motion. 

Keywords vibration eliminators, dynamic eliminator, nonlinear vibration, simulation investigation 

1. Introduction  

The task of elimination of the mechanical vibration consists in minimizing the vibration 
of the protected object by joining it to an additional mechanical system [1]. Considering 
a simple model (a discrete one, with two degrees of freedom) of the protected object 
with the eliminator (Fig. 1) the elastic and dissipative properties R of the protected object 
depend on the deformation x and the deformation velocity x& , while the forces S acting 
between the protected object M and the eliminator m is a function of deformation of the  

 

Figure 1. A physical model  of protected object with vibration eliminator 
coupling element (x-y) and the deformation velocity ( )yx && −  of the coupling element 
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According to the form of the R and S relationships various models of the protected ob-
jects and various models of the vibration eliminators may be formulated [2,3,4].  
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2. Physical model of the protected object provided with dynamic vibration 
eliminator 

The considered object is modeled as a discrete system of two degrees of freedom, with 
harmonic force excitation (Fig. 2). 

 
Figure 2. Physical model of the protected object provided with 

nonlinear dynamic vibration eliminator 

The elastic and dissipative properties of the protected object are described by 3rd order 
polynomials, being the functions of the deformation and deformation velocity: 

 ( ) ( ) ( )22 11, xWxCBxKxxxR &&& +++= , (2) 

while the elastic and dissipative properties of the coupling between the protected object 
and the eliminator are described by 3rd order polynomials, being the functions of the 
deformation and deformation velocity of the coupling element  

 ( ) ( ) ( )[ ] ( ) ( )[ ]22 11, yxwyxcyxbyxkyxyxS &&&&&& −+−+−+−=−−  (3) 

where K, C and k, c are the stiffness and damping coefficients of the protected object and 
the eliminator, respectively, while B, W and b, w are coefficients of nonlinearity of stiff-
ness and damping of the protected object and the eliminator, respectively 
Hence, equations of motion of the whole system take the form: 
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They make a basis for the simulation model of the system. 

3. Simulation model of the main system provided with vibration eliminator 

The simulation model is constructed based on the dimensionless equations of motion: 
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where the following dimensionless denotations are adopted: 
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The simulation model of the considered system has been developed based on the equa-
tions of motion with the use of the MATLAB® software with SIMULINK package 
[5, 6] (Fig. 3) 

 
Figure 3. Simulation diagram of the protected object provided  

with dynamic vibration eliminator 
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The model allows to investigate dynamics of the system with varying parameters of the 
forcing– δ  ,F1  of the protected object – ,  , , M,M βαξ  and the eliminator – . , , , , mm βεαγµ  

4. Efficiency of vibration reduction of a nonlinear dynamic vibration eliminator  

Efficiency of vibration reduction for the task of vibration elimination has been estimated 
on the grounds of the function of vibration elimination effectiveness defined in the pre-
sent paper, being equal to the ratio of rms values of the vibration displacements of the 
protected object without the eliminator to the ones occurring with it, in the case of steady 
motion. 

 

( )

( )∑

∑
+=

=

+=

==
rnj

nj
j

rnj

nj
j

x

x

E

τ

τ

2
1

2
01

, (6) 

where τ∆τ ⋅= jj  

It was found during the tests that steady motion of the system for various values of the 
dynamic parameters occurs for the simulation time: 

 τ∆τ ⋅= nn  for n = 90000 and 01.0=τ∆ , with r = 10000. 

The investigation includes analysis of the system dynamics and effectiveness of vibra-
tion elimination with the use of nonlinear dynamic vibration eliminator for the following 
values of the dynamic parameters: 

• dimensionless amplitude of the exciting force – 1,  ,1.0F1 =  

• dimensionless frequency of the excitation – 1.1,   1.0,   ,9.0=δ  
• damping degree of the protected system – ,01.0=ξ  

• dimensionless parameter of damping nonlinearity of the protected system – 
0.1,   0.05,   0.01,   ,0M =α  

• dimensionless parameter of stiffness nonlinearity of the protected system – 
0.1,   0.05,   0.01,   ,0M =β  

• dimensionless damping of the eliminator – ,0.1=γ  

• dimensionless parameter of damping nonlinearity of the eliminator – 
0.1,   0.05,   0.01,   ,0m =α  

• dimensionless parameter of stiffness nonlinearity of the eliminator – 
0.1,   0.05,   0.01,   ,0m =β  

• dimensionless mass of the eliminator – .1,0=µ  

as the functions of the dimensionless stiffness of the eliminator 2.004.0 ≤≤ ε . 
Results of calculation of effectiveness of the vibration elimination E for exemplary con-
stant values of the system parameters:  
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 1.0   0.1,   ,0    0.01,    ,1.0F MM1 ====== γµβαξ  

and the other parameters varying as follows  
 1   0.05,   0.01,  ,0    1,   0.05,   0.01,  ,0    1.1,   1,   ,1.0 Mm === βαδ  

are presented below as the functions of dimensionless stiffness of the eliminator.  

a) δ = 0.9    b)  

 
 δ = 1.0 

 
 δ = 1.1 

  
Figure 4. Effectiveness of vibration reduction attained with the help of dynamic 

eliminator in the case of linear protected system ( )0MM == βα  as the function of ε; 

a) linear damping of the eliminator; b) linear stiffness of the eliminator for  
various values of dimensionless excitation frequency δ 
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4. Summary 

The numerical research allows to formulate the following conclusions (related to the 
above presented results): 

• nonlinear stiffness of the coupling between the protected system and the elimina-
tor results only in inconsiderable changes in effectiveness of the vibration reduc-
tion of the dynamic eliminator (with linear damping of the coupling 0m =α  – 

Fig. 4a); 
• nonlinear damping of the coupling between the protected system and the elimina-

tor results in remarkable changes in effectiveness of vibration reduction of the 
dynamic eliminator (with linear stiffness of the coupling 0m =β  – Fig. 4b);  
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Abstract  

Theoretical and experimental analysis of a set of four double pendula located on a vertically excited platform is 
analysed. The pendula can rotate in different directions. The main interest is concentrated on the phenomenon 
of synchronization. It has been shown that different types of phase synchronization between pendula can be 
observed. The experimental results are confirmed by the numerical simulations.  

Keywords: synchronization, rotating pendulum, kinematic excitation  

1. Introduction  

Synchronization is understood as an adaptation of the system's dynamics due to the in-
teraction between its subsystems, which is achieved by coupling the system's variables. 
For the first time the synchronisation of two pendulum clocks hanging on the wall was 
observed by Huygens [1]. The phenomenon of coupled harmonic oscillators is studied 
nowadays by many authors [2, 3, 4]. The synchronisation of horizontally moving beam 
and n identical mathematical pendulums hanging from the beam has been presented 
in [5].  

In this work the system of four almost identical physical double pendula located on a 
common base is analysed. We investigate possibility of the synchronization of the rotat-
ing motion of the pendula. We give experimental evidence that the rotating pendula can 
synchronize even in the case when some of them rotate in different directions. We show 
that the appearance of the particular synchronous state strongly depends on the system 
parameters and its initial conditions.  

2. Mathematical model of double pendulum kinematically excited 

Figure 1 presents experimental rig and 3-D model of n = 4 double pendula kinematically 
excited. One of the double pendulum from the set is presented in Fig. 2, where the main 
dimensions and parameters are shown.  

Excitation of the pendulum in the considered case is performed through driving the 
base vertically. Pendulum's horizontal axis throw the point (C1) moves but its motion is 
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not given directly nor analytically. Equations of dynamics of the double pendulum excit-
ed kinematically (yA1 =A cos ω t) attempt: 
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a)   b)  

Figure 1. Experimental rig (a) and 3-D model of 4 kinematically excited 
double pendula (b) 

 

 
Figure 2. Model of the system of two bodies (pendula) elasticallly supported  

and kinematically excited  
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3. Experimental observation and numerical results 

The system parameters have been identified as: ξi1 = 0.153 m, ξi2 = 0.078 m, ηi1 = 
0.315 m, ηi2 = 0.145 m, mi1 = 0.4 kg, mi2 =0.0166 kg. The estimated values of the stiff-
ness coefficients: k1s = 4664 N/m, k2s = 4115 N/m, k3s = 4535 N/m, k4s = 4325 N/m, and 
the damping coefficients: k1c = 0.070 kg/ms, k2c = 0.035 kg/ms, k3c = 0.035 kg/ms, 
k4c = 0.050 kg/ms.  

Using the experimental rig we have identified different types of synchronization of 
rotating pendula, i.e., we have observed synchronization of pendula rotating both, in the 
same or opposite directions, respectively. The most interesting case is when all four 
pendula rotate. In this case one can observe various types of pendula synchronization. 
For the qualitative classification of the pendula behavior we use the following nomencla-
ture: the pendula which rotate clockwise or counterclockwise are marked respectively by 
+1 (blue points) and –1 (red points), the pendula which are at rest are marked by 0 (yel-
low points). An example of synchronization observed is shown in Fig. 1(a) where yellow 
arrows indicate direction of rotation. Figure 1(a) presents the case when two pair of 
pendula rotate in the opposite direction, i.e. (+1,+1,–1,–1) and the values of the angular 
velocities of all pendula are the same.  

Some examples of numerical solution results are presented in Fig. 3–5. Figure 3(a) 
shows different types of individual pendulum's behaviour on the A and ω plane and 
synchronization map for the system. 

a)  

b)     

Figure 3. Different types of pendula's behavior on the A and ω plane for φ2(0) = π/2 (a) 
(blue regions – clockwise rotation, red regions – counterclockwise rotation, yellow 

regions – no regular rotation) and synchronization map for the system (b) 
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In Figure 4 the regions of synchronized rotation (+1,+1,+1,+1) and (–1,–1,–1,–1) for 
values of initial angular speed equal to 10, 15 and 20 are compared for two cases of 
initial rotation: clockwise and counterclockwise. We have found that for nonzero initial 
pendula’s angular speed the synchronization region of rotating pendula expands and 
shifts up in the assumed coordinate system. 
 

 
 

  
 

 

Figure 4. Different types of pendula's behavior on the A and ω plane for nonzero initial 
angular speed (blue regions – clockwise rotation, red regions – counterclockwise 

rotation, yellow regions – no regular rotation) 

 



 Vibrations in Physical Systems Vol.25 (2012) 163 

Time series of rotating pendula position (φ) and angular speed (ω2) are depicted in 
Fig. 5 for equal initial phase (0.024 rad) and different initial angular speed (for three 
pendula 40 rad/s and fourth 27 rad/s). In this case three pendula rotate with mean angular 
speed ω2 = 60 rad/s and rotation speed of the fourth (Fig. 5(c)) is ω2 = 20 rad/s. 

 

a)   b)  

c)   
d) 

Figure 5. Time series of rotating pendula position (φ) and angular speed (ω2) 

4. Conclusions 

The existence of experimentally observed synchronous states is confirm in the numerical 
simulations. We have observed synchronous motion with all pendula rotating in the 
same direction (clockwise and counterclockwise rotation), the case when two pairs of 
pendula rotate in the different directions (clockwise and counterclockwise rotation), and 
the case when 3 pendula rotate in the same direction, while the fourth in the opposite 
one. Rotating pendula can be 1:1 and 1:2 synchronized with the oscillations of the plat-
form.  

We have found the extreme sensibility of the synchronized state on the system pa-
rameters and initial conditions. 
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Abstract  

This paper presents an evaluation of the technical condition of the belt conveyor FAGOR 20943. The four 
bearing nodes had been diagnosed. Vibration measurement in these nodes was performed according to the 
standard PN-ISO 10816:1.  Comparing the results with standard criteria, the condition of conveyor was defined 
as a state B - satisfactory condition. Machinery whose vibrations are in this zone can work long term without 
restrictions. Diagnostic of machine and it result showed the management board of the company, how important 
is regular evaluation of technical condition of machinery. This can reduce the cost of production downtime 
caused by equipment failures.  

Keywords: technical condition, PN standard, reduce of cost 

1. Introduction 

Any break down of machinery in production companies is associated with downtime 
costs. This applies to small as well large companies. Every break in production process 
is equal to delay of realization date of orders. In consequence the brand of company 
loses on its value.  

Systematically control of the technical condition of machinery is very important in 
order to maintain continuity of production. The management of a large manufacturing 
company around Września has been convinced to the benefits of such controls. The 
management reserved the protection of data including information on production profile. 

The research and analysis of the results were made in the thesis.  

2. Evaluation of technical condition of belt conveyor FAGOR 20943  

2.1. Characteristic of production 

The company works on producing large quantities of flat steel elements [1]. Work is 
performed in three shifts. In production are used various parameters presses, finishing 
equipment and conveyors for the transportation of blank. The evaluation of technical 
condition has been done for belt conveyor FAGOR 20943. Its immobility would stop the 
entire production process.  

2.2. Belt conveyor FAGOR 20943 

Device was presented on Fig. 1. It construction is easy. The main element is the belt 
tension by two rollers: active and passive. The active roller was driven by an external 
electric motor. Fig. 2 shows the data plate of the motor. The whole construction was 
mounted in a steel frame [1]. 
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Figure 1. Construction of belt conveyor 
FAGOR 20943 [1] 

Figure 2. The data plate of  motor  [1] 

2.3. Classification of the device due to the power and installation method 

In order to properly assess the state of the conveyor first the device had been classified 
on the base of standard PN-90/N-01358 (table 1). The power of the motor was taken 
from its data plate. It was 5.5 [kW]. 

Table 1. The division into groups of machines due to their size and power [2] 

Grupe Power and installation methode 
1 Machinery, including engines up to 15 [kW] 

2 
Machinery, including engines up to 15 till 75 [kW] without special foundation and  
machinery up to 300 [kW] placed on foundation 

3 
Machinery up to 300 [kW], including engines up to 75 [kW], founded on the 
foundations satisfy the stiffening conditions  

4 
Machinery up to 300 [kW], including engines up to 75 [kW], founded on foundations  
satisfy the conditions of setings of elastic 

  
Due to the standard the belt conveyor had been classified to the firs group – machin-

ery up to 15 [kW]. This information was very helpful when the evaluation of the device 
had been done. 

2.4. Criteria for evaluation the condition of the machine due to the generated 
vibration 

The evaluation of the technical condition of device has been done due to criteria from 
the standard PN-ISO 10816:1 (tab. 2).Below is an explanation of letter designations 
contained in Table 2: 

A – very good condition – in this area should be vibration machines newly placed in 
service, 

B – satisfactory condition – machinery whose vibrations are in this zone can work 
long term without restrictions, 
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C – temporarily allowing condition – machinery whose vibrations are in this zone is 
usually considered not suitable for long–term continuous operation. In general, the ma-
chine can operate for a limited period of time until it is able to take preventive action, 

D – unacceptable condition – vibration values in this zone is generally regarded as 
sufficient serious and indicated the possibility of damage to the machine. After reaching 
this level of vibration, the machine should be switch off immediately.  

Table 2. Criteria for the evaluation of technical condition of the device 
due to the generated vibration [3] 

The RMS value of velocity 
V[mm/s]x10-3 in the 

10 ÷ 1000[Hz] 
Group 

up to till 1 2 3 4 
 0,71 A 

A 
A 

A 
0,71 1,12 

B 
1,12 1,80 

B 
1,80 2,80 

C B 
2,80 4,50 

C B 
4,50 7,10 

D 
C 

7,10 11,20 
D 

C 
11,20 18 

D 
18  D 

2.5. The study of vibration level in bearing nodes used in belt conveyor 

According to the standard PN-90/N-01358, the study had been done for all bearing nodes 
used in belt conveyor. Figure 3 shows one of the bearings nodes and bearing used in it. 
As you can see, access to the bearing wasn’t difficult. There was possibility to make 
measurement directly on bearing or its housing. Figure 4 shows diagram of typical roll-
ing bearing. 

Wideband measurements of velocity V [mm/s] performed in frequency range 10 ÷ 
1000 [Hz], in three orthogonal directions (horizontally, vertically and axially). Research 
work was done during normal use, five times for each measuring point. The time of 
single measuring was 5 [s]. Works were made according to the plan of measure shows in 
Table 3. 

The diagram of measurement system is shown in figure 5. The four bearing nodes 
(point 1, 2, 3, 4) were marked on this diagram. 

At node No. 3 was mounted electrical motor driving the active roller of belt convey-
or. Measurements were made by using CMD-3vibration meter. Figure 6 shows velocity 
measurement in axial direction [1]. 
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Figure 3. The bearing node and bearing 
used in conveyor FAGOR 20943 [1] 

Figure 4. The construction of rolling 
bearing [4] 

 

Table 3. The plan of vibration measurement at the workplace [1] 

Place of measurement Przedsiębiorstwo produkcyjne we Wrześni 
Goal of measurement Diagnostic of technical conditio of device  
Object of reaserch Belt conveyor FAGOR 20943 
Measured values Velocity in horisontal, vertical and axial direction 
Equipment of measurement Vibration meter CMD-3 

Proces of measurement 
Vibration measurement V [mm/s] in 4 bearing nodes; 5 
series of measurement for each bearing, measured in 3 direc-
tions; duration time of single measurement about 5 [sec]  

 

 
 

Figure 5. The diagram of device and 
measurement system [1] 

Figure 6. The velocity measurement 
in axial direction [1] 
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2.6. Analysis of the results 

The results of measurement shows Fig. 7. The diagram of values results in every direc-
tion was made for each measuring point.  

Measuring point: node 1 – the highest 
value: 1,11 [mm/s] 

Measurning point: node 2 – the highest 
value: 1,13 [mm/s] 

Measuring point: node 3 – the highest 
value: 1,18 [mm/s] 

Measuring point: node 4 – the highest 
value: 1,12 [mm/s] 

Figure 7. Summary of results velocity measurements at all nodes [1] 

According above the highest velocity values were measured in vertical direction for 
each node. The results of velocity for bearing nodes No. 1, 2, and 4 were very similar 
(1,11 ÷ 1,13 [mm/s]). The highest value, 1.18[mm/s], was measured for node No. 3. The 
cause of this value could be an electric motor driving an active roller. 

Based on this result and evaluation criteria of technical condition of machine, the 
state of investigated belt conveyor has been evaluated for acceptable (B), which allows 
for long work without restrictions. 

3. Conclusions  

The regular evaluation of technical condition of machine can prevent long-term disrup-
tions in production caused by the sudden failure of machines. Such research has underes-
timates the factory, where the vibration of bearing nodes were measured. 

The management of company considered it advisable to introduce a cyclic diagnostic 
of machinery. The more that proposed method proved to be simple to make and ma-
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chines does not have to be stopped, as in the case of three shift system of work is very 
valuable. Prevention of accidents was much cheaper than repair or replace any machine. 
The economic results and the company’s marked has not been shattered. 
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Abstract 

Micropolar continuous medium theory from the beginning was modeling theory. It predicted in that medium 
existing of mass angular momentum, asymmetrical stress forces, stress moments and mass force momentum. 
On the beginning there was no able to interpret angular momentum, stress moments and mass force momen-
tum on physical matter known base. In 70’s of XX age there were provided an examples for ferromagnetic, 
paramagnetic and dielectric bodies. This paper gives attention to interpret those effects in biological struc-
tures. On example of human blood there is showed application of Langevin’s paramagnetism classical theory 
and its mechanical results. In the paper there are presented interesting examples of biological structures which 
had mechanical results using electric dipole moments. 
 
Keywords: micropolar continuous medium, couple stress 

1. Introduction 

In the paper the two processes are analyzed: implants’ bio-degradation in human cardio-
vascular system and gecko’s paw moulting in biotic process. These processes can be 
modeled as an environmental impact on material medium. In mechanical modeling this 
impact means that forces and force moments act on the examined medium and its mass 
changes. In thesis a closed dynamic system model is used, where subsystems exchange 
mass, momentum, angular momentum and energy. Integrated component systems which 
occupy the same finite volume are: electro-magnetic field and material continuum. Ac-
cording to mechanics principles it is known that when forces act, then momentum 
changes. Next, when forces moments act, angular momentum changes as well as the 
energy of loaded system changes. What is more, in the description of these actions it is 
essential to study the balances of mass, momentum, angular momentum and energy. 

Implants’ bio-degradation in human cardiovascular system occurs in a process, where 
erythrocytes having mass create electro-magnetic field. Implants’ bio-degradation prod-
ucts are absorbed by cardiovascular system. [2], [3]. Therefore, there is the process of 
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mass exchange between the subsystems: implant – cardiovascular system. In modeling 
this process the characteristics of electromagnetic field should be taken into account. 

 
Figure1. Stent – visible polymer releasing antibiotic influenced by corrosion  

(source: http://www.elektro-oxigen.pl/nowa/stenty_zolciowe.php) 

Figure2. Practical application of stents (source: Wikipedia) 

In gecko’s paw moulting process there is a situation, where moulting process causes 
the reduction in number of dipoles creating the force field. There is the decrease of mass 
creating electric field (hairloss means that electrical dipoles create electrical field. Ad-
herence is the effect of the force of hair close contact action – dipoles with induced elec-
trical dipoles of material medium). Decreasing mass is not, however, transmitted to sub-
system – material medium, where gecko climbs. In this process, the mass creating elec-
tromagnetic field drops and leaves all the system. 
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Figure3. Gecko’s paw structure (source: Wikipedia) 

In the considered processes, the mass change of system proceeds in two different 
ways. In the process of implants’ bio-degradation in human cardiovascular, the change in 
mass of material medium occurs, while in the process of gecko’s paw moulting there is 
the decrease of mass in the external field. 

The process of implants’ bio-degradation in human cardiovascular system there is 
material medium mass change, but in gecko’s paws moulting process there is external 
field mass decrease. 

In the mathematical modeling, there is a popular and experimentally proved in physi-
ochemical processes law [1], [4]: 

Let’s assume the decrease in mass continuum. It is known that the mass  is mass de-
crease  in mathematical modeling, very popular and confirmed by experiments in physi-
cal-chemical processes [1], [4] is the law:   

,αm
dt

dm
−=  (1) 

where: 
][kgm =  - current mass,  






=
s

1
α  - process characteristic constant value. 

Let’s assume the decrease in material continuum. It is known that the mass is deter-
mined by the density of medium in the determined volume. Hence, the following equa-
tion based on equation (1) is obtained: 
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,∫∫ −=
VV

ρdVαρdV
dt

d  (2) 

where 
ρ – medium density,  
V – deformable domain volume. 
Applying [9] on p.85 it is obtained: 

( ) ,∫ ∫−=






 ∂+

∂
∂

V V

kk ρdVαdVρv
t

ρ  (3) 

where 

kv  -  the component of the current velocity of the point in medium,  

t - time. 
Transforming the above equation the following form is obtained: 

( ) .dVαρρv
t

ρ
kk∫ =








+







 ∂+

∂
∂

V

0  (4) 

which effects (towards the freedom and finiteness of the area) in the differential form 
mass decrease: 

,αρvρ
Dt

Dρ
kk 0=+∂+  (5) 

 
hence mass decrease can be  presented finally as the equation of the form: 

.αρvρρv
t

ρ
kkkk −=∂+∂+

∂
∂  (6) 

Equations (5) and (6) are assumed as the differential (local) of the mass balance form. 
From the balance equation point of view: 

( ) ( ) ( ) ,ρrρσρjvρ
Dt

Dρ
llll 0=−−∂−∂+

  
( ) .αρρσ −=  (7) 

As a result, the above equation takes a form: 
The same mechanism of mass decrease, according to equation (6), can be applied to 
external field, where the following is assumed: 

( ) .βρρσ extext −= . (8) 

It means that balance equation: 
( ) ,extext βρρσ −= . (8) 

0)()()( =+−∂−∂+ extextext
llll

ext
ext

rjv
Dt

D
ρρσρρ

ρ
, (9a) 

 
gets a new form: 

0)()( =++∂−∂+ extextext
llll

ext
ext

rjv
Dt

D
ρβρρρ

ρ
. (9b) 
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The above assumptions have a big influence on the form of the balance equations of 
system in the described processes. It is later analyzed more specifically. 
 

2. Implants’ bio-degradation process in human cardiovascular system 

The mass balance – in this process mass exchange between subsystems has a balanced 
character [7], it means that mass balance is described by equation: 

0)]()([)()( =+∂−∂+++ ρρρρρρ l
ext

llll
extext jjv

Dt

D . (10) 

The momentum balance – [6], [7] takes a form: 

0)()()]()([ =+−+∂−+−∂+ mech
k

ext
kklkllllk

k fftTrjv
Dt

Dv
ραρρρ .. (11) 

 
The angular momentum balance – it takes the following form: 

[ ] [ ] ( ) ( )[ ] ( ) ( )
.ρkfxε

mMtTερrαρρjχχχχ
Dt

D
ρ

i
ext

kjijk

ilillklklijkssi
(ext)
ii

(ext)
i

0=++

++∂−+++−∂+++
 (12) 

 
The energy balance – it gets a form:

 

 

( )

( ) ( ) ( )[ ] .ωmvtρrαρρjIωωv
2

1

Dt

D
ρΕjv

Dt

D

lilklklsskllk
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k

ext
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ext
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 +++
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E

E
Ε

Ε

 (13) 

The precise description of symbols is presented in [8]. 

3. Gecko’s paw moulting process 

The mass balance – in this process there is mass decrease (the number of electric di-
poles), so in balance equations it is assumed that: extext βρρσ −=)( . 

This modifies the mass balance: 

0)()]([)()( =−∂−∂+++ extext
kkll

extext jv
Dt

D
ρσρρρρρ ,  

(14a) 

 
 leading to a following form: 

0)]([)()( =+∂−∂+++ extext
kkll

extext jv
Dt

D
βρρρρρρ . (14b) 

The momentum balance – in momentum balance the influence of the external field is 
omitted with the following effect: 

( ) .ftT
Dt

Dv
ρ mech

kklkll
k 0=−+∂−  (15) 
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The angular momentum – in angular momentum balance we take into account the spin 
angular momentum of external field, taken from inducing electrical dipoles. The form is 
presented below: 

0)()(][ )( =−+∂−+++ iilillklklijki
ext

i kmMtT
Dt

D
ρεχχρ , (16) 

The energy balance – a form is obtained: 

llklklkl
ext

kk
ext

ext

mvt
Dt

DE
v

Dt

D
ωρσ ∂+∂=+Ε−∂Ε+

Ε
)( . (17) 

Equations (15) and (16) are dynamical motion equations of material body. The energy 
balance (17) describes work and energy equivalence. 

4. Conclusions 

In the obtained equations it can be observed how the classical Cosserats’ theory equa-
tions evolved in the described processes. The cause of moment impacts is electro-
magnetic field thanks to local angular momenta. Additionally, mass change mechanisms 
expand balance equations. The balance equations creating basis system dynamics are 
achieved.  It is a wide foundation where different ideas can be raised thanks to constitu-
tive equations. The authors are conscious that formulating the above equations is not 
easy, however, it can be useful to apply the suggested theory in the areas difficult to 
foresee. The similar problems would occur while formulating the boundary conditions. 
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Abstract  

The paper deals with some constitutive equations for arterial walls subjected to uniaxial and biaxial extension 
tests. In spite of a great number of various approaches to development of the strain-stress relations, the models 
selected for presentation seems to be good representatives of the most characteristic and fundamental ones. 

Keywords: constitutive equations, arterial walls, uniaxial and biaxial extension  

1. Introduction 

A great many constitutive relations for arterial walls were proposed for a few last dec-
ades. We can start studying them from some comparative positions in the literature such 
as e.g. [Humphrey, 1995], [Humphrey, 2002], [Fung, 1993] or [Holzapfel, Grasser and 
Ogden, 2000]. Most of constitutive relations are phenomenological. Hence, they are 
strongly dependent on the experimental data. Specific forms of the appropriate mathe-
matical expressions are also closely related to a kind of experiment performed and de-
scription of stress and strain state used in the model. In the paper we limit our considera-
tions to the constitutive relations corresponding to the most common types of stretching 
tests, i.e. uniaxial and biaxial loading experiments. 

2. Fundamentals of the Arterial Walls Structure and its Mechanical Behaviour 

Blood vessels, in particular arteries considered, belong to the class of soft tissues. The 
mechanical behavior of arterial walls is first of all featured in Hooke’s law disobeying, 
the nonlinear stress-strain relationships and the existence of hysteresis. Such behavior 
has some structural bases.  

The basic structural elastic materials present in the arterial walls are elastin and col-
lagen [Fung, 1993], [Holzapfel, 2001]. They are both proteins. Elastin is arranged in 
a form of thin strands. It is essentially a linearly elastic material. A three-dimensional 
network of long flexible elastin molecules may be stretched to about 2.5 times the initial 
length in the unloading configuration. Furthermore, it displays very small relaxation 
effects. Collagen is the main load carrying element in the arterial walls. Its molecules are 
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wound together into fibrils and the fibrils are organized into fibers. In the arterial walls 
structure collagen appears as concentrically arranged fibers. 

Consider the structure of the arterial wall. From the microscopic point of view the ar-
terial walls consists of three layers [Fung, 1993], [Holzapfel, Gasser, Ogden, 2000]. The 
innermost layer is the intima. It is a single layer made of endothelial cells lining the 
arterial wall and located on a thin basal membrane. There are elastin and collagen fibers 
present in the intima. The orientation of collagen fibers is dispersed. The intima is very 
thin in young healthy individuals and its contribution to the mechanical behavior of the 
arterial wall is insignificant. Nevertheless, this layer stiffens and thickens with age. Note 
that in the intima we can also distinguish a subendothelial layer. Its thickness varies with 
such factors as topography, state of health and age. It almost does not exist in healthy 
young muscular arteries. 

Next we have the middle layer of the artery called the media. It consists of a complex 
three-dimensional network of elastin, collagen fibrils and smooth muscle cells. The con-
stituents considered are organized in a varying number of medial lamellar units (e.g. an 
average of 40 in the human abdominal aorta). The number of elastic laminae decreases 
toward the periphery and in muscular arteries the elastic laminae are hardly present. Note 
that the media is separated from the intima and the adventitia (i.e. the outermost layer of 
the artery) by the internal and external elastic lamina, respectively. The medial layer is 
concentrically fiber-reinforced and well-defined. Such a specific structure [Holzapfel, 
2002] makes it the most significant layer in a healthy artery. It has the ability to resist 
high loads in the longitudinal and circumferential direction. 

The outermost layer of the artery is called the adventitia. It consists of fibroblasts and 
fibrocytes (i.e. the cells producing the collagen and elastin), ground substance and thick 
bundles of collagen fibrils that form a fibrous tissue. It is surrounded by loose connective 
tissue [Holzapfel, Gasser, Ogden, 2000], [Holzapfel, 2002]. The thickness of the layer 
depends on the physiological function of the blood vessel, its type (elastic or muscular) 
and the topographical site. The collagen fibrils, arranged in helical structures, reinforce 
the arterial wall and contribute to its stability and strength. 

From the experimental results is was concluded that biological tissues, with the arter-
ies included, are not perfectly elastic. Their behaviour can be described by the following 
characteristic features [Fung, 1993]. The stress is affected by the history of strain and we 
can notice a significant difference in the stress response between loading and unloading. 
They show hysteresis. When they are held at a constant strain, they show stress relaxa-
tion (i.e. decreasing stress) and when are held at a constant stress, they show creep (i.e. 
increasing strain). The arterial walls are anisotropic and their stress-strain relationship is 
nonlinear. Their properties differ along the arterial tree and they also depend on age, 
state of health, lifestyle and many different environmental conditions. 

3. Constitutive Models for Arterial Walls 

Constitutive equations specify the properties of materials and can be determined by 
experiments. Knowledge of constitutive equations of biological tissues is also of great 
importance because of their necessity for boundary-value problems formulation, making 
the appropriate detailed analysis and evaluation of some predictions. 



 Vibrations in Physical Systems Vol.25 (2012) 179 

3.1. Stress-Strain Relationships in Uniaxial Extension 

Description of the stress-strain state 
Consider the arterial wall as a membrane. We can study its behaviour under uniaxial 
extension experiment of a longitudinal or circumferential strip of tissue with the shape of 
a rectangular parallelepiped [Tanaka and Fung, 1974], [Fung, 1993], [Hayashi, 1993]. 
Let us denote by L0, W0 and H0 the length, the width and the thickness of the specimen, 
respectively. Under the load F, the length becomes L. Hence, we can define the stretch 
ratio λ as, λ = L/L0. Furthermore, the tensile stress T is given as T = F/A0, where A0 is the 
initial cross-sectional area. With the assumption about incompressibility of the arterial 
walls [Chuong and Fung, 1984], when the length of the specimen is increased by a given 
stretch ratio λ, the cross-sectional area of a specimen is reduced by 1/λ. Hence, for the 
Eulerian stress σ we have σ = F/A = (F·λ )/A0 = T·λ. 
 

Stress-strain relationship by Fung et al. 
Consider the relationship between the load and the stretch ratio in the uniaxial extension 
process. The stress-strain relationship of the artery wall can be of the form [Fung, 1967], 
[Fung, 1993] 
 ( )λfT = . (1) 

We can examine the function f if we plot dT/dλ against T (i.e. the variation of the 
Young’s modulus with stress at a given strain). The experimental curve can be fit, as 
a first approximation, by a straight line given by the equation 

 ( ) γαβαλ +=+= TTddT / , (2) 

where α, β, γ = α·β are some constants; α represents a rate of increase of the Young’s 
modulus with respect to increasing tension, γ is the intercept of the straight line segment 
to T = 0. Note that α, β can be determined with the experimental data, see [Fung, 1993]. 

An integration of (2) gives 

 ( ) ( ){ } βλλαβ −−+= ** expTT , (3) 

where T*, λ* correspond to one point on the curve in the region of validity of (2).  
Furthermore, let us note that it is also a good practice to represent the experimental 

data with several straight line segments [Fung, 1993].  
As pointed out in [Tanaka and Fung, 1974] the relationship considered is valid only 

if the stress is sufficiently large. For low stress levels the experimental data are fit with 
a power law [Wylie, 1966]. Tanaka and Fung examined the experimental data obtained 
from the uniaxial extension tests of longitudinal and circumferential strips of aortic wall 
tissue of the dog. The exponential stress-strain relation (3) were used for the description 
of the elastic behaviour of the aortic wall if 20 < T < 60 [kPa] (i.e. within a physiological 
range but much below the breaking strength of the aorta). 

3.2. Constitutive Equations in Biaxial Extension 

Although in the section we study constitutive equations for arterial walls in biaxial ex-
periments, we start from the description of the three-dimensional stress-strain states on 
the basis of a rectangular plate. Such plate can be treated as a model of a rectangular 
element of an arterial wall. Then, we introduce the fundamentals of the strain-energy 
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function. Finally, the assumptions and mathematical formulation of the constitutive 
equations for arterial walls proposed in [Fung, Fronek and Patitucci, 1979] are given. 
 

Description of the stress-strain state 
Consider a rectangular plate (see Figure 1) of uniform thickness, made of orthotropic 
material as in [Fung, 1993], [Tong and Fung, 1976], [Fung, Fronek and Patitucci, 1979].  

In the zero stress state the original size of the rectangle is determined by L10, L20. Fur-
thermore, its thickness and density are equal to h0 and ρ0, respectively. If we impose 
forces F11, F22 to the plate, then its edge lengths become L1, L2. The thickness and the 
density of the deformed plate are h and ρ, respectively. Since there is no shear stress 
acting on the edges of the plate, then the coordinates x, y are the principal axes. 

 

Figure 1. Deformation of a rectangle membrane subjected to tensile forces in 
a load-free (left) and a deformed (right) configuration 

We can define the stress components of the Cauchy stress tensor σ, the first Piola-
Kirchhoff stress tensor T and the second Piola-Kirchhoff stress tensor S. Hence, we have 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).//,//

,/,/,/,/
2
222022222

2
111011111

010222202011111222221111

ρλσρλρλσρλ

σσ

====

====

TSTS

hLFThLFThLFhLF
 (4) 

Furthermore, the deformation can be measured by the principal stretch ratios λ1 = L1/L10, 
λ2 = L2/L20 and the strain components of the Green-Lagrange strain tensor E and the 
Euler-Almansi strain tensor e, i.e. 

 ( ) ( ) ( ) ( ) .2//11,2//11,2/1,2/1 2
22

2
11

2
22

2
11 λλλλ −=−=−=−= eeEE  (5) 

Furthermore, we can use infinitesimal strains given as follows 

 ( ) ( ) .1/,1/ 22020221101011 −=−=−=−= λελε LLLLLL  (6) 

Strain-energy function (strain potential) 
As we know (see [Fung, Fronek and Patitucci, 1979], [Fung, 1965]), if there is a one-to-
one relationship between stresses and strains, then within the theory of elasticity, it can 
be shown that there exists a strain-energy function from which stresses can be computed 
from strains by differentiation. 

We denote by W and ρ0 the strain energy (per unit mass of the tissue) and the mass 
density in the zero stress state, respectively. Then, ρ0W is the strain energy (per unit 
volume) in the zero stress state. Let W be expressed in terms of the nine strain compo-
nents Eij, i,j = 1,2,3, and in a form that is symmetric in the symmetric components E12 
and E21, E13 and E31, E23 and E32. If such a strain-energy function ρ0W exists, the 
stress components Sij, i,j = 1,2,3 can be obtained as derivatives of ρ0W. We have 

F22 

L20 

F22 

F11 L1 F11 
L2 

L10 
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 ( ) ijij EWS ∂∂= /0ρ , (7) 

where the strain components Eij are treated as independent variables [Fung, 1965]. 
 

Remarks [Fung, 1993] 
Note that not all elastic materials have a strain-energy function. Such a function exists 
for perfectly elastic materials (the justification can be based on the thermodynamics). 
Living tissues, including arteries, are not perfectly elastic and we cannot obtain a strain-
energy function in the thermodynamic sense. They are inelastic. As pointed out in e.g. 
[Fung, 1993], after preconditioning the stress-strain relationship does not vary very 
much with the strain rate. Moreover, if we also ignore the strain-rate effect, then the 
loading and unloading curves (which are not equal) can be treated separately as a 
uniquely defined stress-strain relationships. Such relationship is associated with a strain-
energy function. Each curve is called a pseudoelasticity curve. Similarly, each strain-
energy function is called a pseudoelasticity strain-energy function. 

 

Constitutive equations by Fung et al. 
For the constitutive model proposed in [Fung, Fronek and Patitucci, 1979], [Fung, 1993] 
an artery is represented in a form of a circular cylindrical tube. The artery is subjected to 
a biaxial loading of an internal pressure and a longitudinal stretch. The description of 
stress and strain state is given in accordance with polar coordinates (r,θ,z) in the radial, 
circumferential and axial directions, respectively. Note that the z axis is located at the 
center of the tube. 

The simplifying assumptions are made with respect to stress distribution, i.e. the 
normal stress σrr in the radial direction is negligible in comparison with the normal stress 
σθθ in the circumferential direction. The stresses σθθ and σzz are approximately uniform 
throughout the wall thickness. The transverse shear stresses σzθ, σrθ and σrz are assumed 
to be zero. The reasoning behind such assumptions can be seen in e.g. [Fung, Fronek and 
Patitucci, 1979], [Fung, 1993]. 

Then, the problem can be reduced to a two-dimensional case and we have 

 ( ) ( ) ,//,// 0
2

0
2

zzzzzzz EWSEWS ∂∂==∂∂== ρλσρλσ θθθθθθθ  (8) 

where ρ0W is the strain-energy function given in terms of Eθθ, Ezz and λθ, λz are the 
stretch ratios of the middle surface of the arterial wall in the circumferential and axial 
directions, respectively. Furthermore, we have 

 ( ) ( ) .2/1,2/1 22 −=−= zzzEE λλθθθ  (9) 

We introduce the following notations: Ri, R0 and ri, r0 are the inner and outer radii in 
the load-free and deformed configuration, respectively; H = R0 – Ri, h = r0 – ri, are the 
thicknesses of the wall in the load-free and deformed configuration; Pi, P0 are the inner 
and outer pressures; F is the force applied at the ends of the artery. We also take P0 = 0. 

The pseudoelastic stress-strain relationship [Fung, Fronek and Patitucci, 1979], 
[Fung, 1993] for an artery subjected to an internal pressure and a longitudinal stretching 
within the physiological rage is given in the following exponential form 

 ( ) ( ) ( )[ ]**
4

2*2
2

2*2
10 2exp

2 zzzzzzzz EEEEaEEaEEa
C

W θθθθθθθθρ −+−+−= , (10) 
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where C is a stress-like material parameter and a1, a2, a3 are dimensionless material 

parameters. Moreover, *
θθE , *

zzE  are strains corresponding to an arbitrary pair of stresses 

(usually chosen in the physiological range) *
θθS , *

zzS . 

 
Figure 2. Deformation of a circular cylindrical tube subjected to an internal pressure and 

tensile longitudinal forces in a load-free (left) and a deformed (right) configuration 

Note that there is another form of the constitutive equation (10) given as follows 

 [ ]zzzz EEaEaEa
C

W θθθθρ 4
2

2
2

10 2exp
2

++
′

= . (11) 

In the constant C′ used in (11) the quantities with the asterisk from (10) are included. 
The constants C or C′, a1, a2, a3 are calculated on the basis of the mean values of 

stresses obtained from the equilibrium condition, see [Fung, Fronek and Patitucci, 1979]. 
Defining λθ = ro/Ro, we have 

 ( ) ( ) ( ) ,//,/ 2
θθθθθθθ λλλσ ioiioi PHrPSPHrP −=−=  (12) 

 ( )( ) ( )( ) ( ) ( ).2/2/,2/2/ 222
zzzozzzozz SHRHFSHRHF λλπλσπσ θθθ +−=+−= && (13) 

In [Fung, Fronek and Patitucci, 1979], the constitutive equation (10) is used to de-
scribe the mechanical properties of rabbit arteries along the arterial tree. 

3.3. Multi-Layer Constitutive Models by Holzapfel et al. 

Now we describe multi-layer constitutive models proposed by Holzapfel at al. In the 
approach presented in [Holzapfel, Gasser and Ogden, 2000] the artery is treated as 
a two-layer thick-walled nonlinearly elastic circular cylindrical tube, with residual 
stresses, subjected to axial extension, inflation and torsion. Two layers represent the 
media and the adventitia. Each layer is composed of a non-collagenous matrix (treated as 
an isotropic material) and two families of collagen fibres (helically wound along the 
arterial axis, symmetrically dispersed with respect to the axis). The anisotropy in the 
mechanical response is induced by these fibres. In this way the overall response of each 
layer is orthotropic and can be accounted for the constitutive theory of fiber-reinforced 
solids. Since the model involves two layers and within each of them we consider infor-
mation about the orientation of the collagen fibers obtained from histological tests, then 

Pi Pi 

Ro 
Ri 

F 

F 

ri 
ro 
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we can say that the model is structural. Finally, for each arterial layer we assume that it 
is incompressible. 

With details concerning the stress-strain state [Holzapfel, Gasser and Ogden, 2000], 
the constitutive equation that models each layer of the artery can be given as follows 

 ( ) ( )[ ]{ }∑
=

−−+−=Ψ
6,4

2
2

2

1
1 11exp

2
3

2 i
iIk

k

k
I

c
, (14) 

where Ψ is the isochoric strain-energy function (per unit volume), c > 0, k1 > 0 are stress-

like material parameters, k2 > 0 is a dimensionless parameter and 1I , 4I , 6I  are some 

invariants defined in [Holzapfel, Gasser and Ogden, 2000]. Since each layer responds 
with similar mechanical characteristic, we can use the same constitutive equation (14) 
with different sets of three material parameters (c, k1, k2). 

Another approach is proposed [Holzapfel, Sommer, Gasser and Regitnig, 2005]. As 
previously, we assume that each arterial sample is incompressible, which require that 
λr λθ λz = 1, where λr, λθ, λz are the principal stretches of the deformation corresponding to 
the radial, circumferential and axial directions (when there is no shear). The general 
mechanical characteristic of the arterial walls can be modelled with the strain-energy 
function Ψ (per unit volume) that is an extension of the constitutive model proposed in 
[Holzapfel, Gasser, Ogden, 2000], [Holzapfel, Gasser, Ogden, 2004]. We have 

 ( ) ( )( ) ( )[ ]{ }( )1131exp3 2
4

2
12

2

1
1 −−+−−+−=Ψ IIk

k

k
I ρρµ , (15) 

where ( ) 222
1

−++= zzI λλλλ θθ , ϕλϕλθ
2222

4 coscos zI += , I4 > 1 are invariants, k2 > 0, 

ρ ϵ [0,1] are dimensionless parameters and µ > 0, k1 > 0 are stress-like parameters. Note 
that φ is a phenomenological parameter and it is equal to the angle between the fiber 
reinforcement and the circumferential direction in a layer. Similarly as before, we can 
use (15) with different sets of five material parameters (µ, k1, k2, φ, ρ) for each layer. 

In [Holzapfel, Sommer, Gasser and Regitnig, 2005] the modified constitutive equa-
tion (15) is applied for determination of layer-specific mechanical properties of human 
coronary arteries with nonatherosclerotic intimal thickening. The arteries from the indi-
vidual layers in axial and circumferential directions are subjected to cyclic quasi-static 
uniaxial tension tests. 

4. Conclusions 

The paper presents some constitutive equations for arterial walls by Fung and Holzapfel 
et al. subjected to uniaxial and biaxial extension tests. Since the constitutive relations 
provide a useful tool for investigation of some biomaterial properties, then it seems of 
great importance to acquaint with the well-known models. The most recent approaches 
are directed towards taking into consideration also the specific architecture of arterial 
walls. Hence, the models are based on data obtained from some statistical analysis of 
histological sections. The direction seems to be very promising. Nevertheless, from the 
authors point of view, a complex nature of arterial walls with anisotropic and nonlinear 
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elastic behaviour, makes the subject of the constitutive relations very important and still 
not well-known area of scientific research demanding continuous investigations. 
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Abstract  

In the paper, we will present certain method of modelling of elastic, heterogeneous, anisotropic and periodical-
ly multicomponent plates. The method is called the microlocal homogenization or the homogenization with 
microlocal parameters.  It differs from the currently known methods in the fact that it does not consist in solv-
ing the problem on the basic cell. The system of assumptions and set of modeling relationships is different 
from that in the classical method of asymptotic homogenization. There occur not only displacement and stress 
fields in a body, but also some new fields – microlocal parameters − that describe the behavior of a plate inside 
the basic cell. In the constructed model, there is 1 + n coupled equations, corresponding to three displacements 
and n microlocal parameters. Moreover, the model equations depend on some postulated functions called 
shape functions, which must be known. In the paper, we will propose such functions and carry out an analysis 
of free vibrations of multicomponent plates. 

Keywords: elastodynamics of plates, methods of homogenization, periodically compound plates  

1. Introduction 

Let the reference configuration of the plate be a region ( )h,0×Π=Ω , where 0>h  and 
2

21 ),(0),(0 RLL ⊂×=Π . The Cartesian coordinate system will be assumed in such a 

way that Π∈αx , 2 ,1=α , ),0( hx ∈ . Moreover, we assume that the plate is periodical-

ly heterogeneous and a repeating element is a rectangle determined by straight lines

11 nlx = , 22 mlx = , 1 ,...2 ,1 ,0 nn = , 2 ,...2 ,1 ,0 nm = , and αα Ll << , 2 ,1=α . 

A basic cell in a point ),( 21 xx  will be the set 
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Furthermore, let the basic cell ( )22 2 /,/ ll∆  be divided by straight lines aalx 11 = , 

bblx 22 = , 021 aa  ,... ,= , 021 bb  ,... ,= , into rectangles ab∆ , for which we assume that 

their material is homogeneous (Fig. 1). 
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Figure 1. A multicomponent plate 

We define the stiffness moduli as  
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where αβγδC , 33αβC , 3333C  , 21,,,, =δγβα  are the material functions.  

The mass density and moduli (1) of the plates under consideration will be defined as: 
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where abab Bαβγδρ  , , 021 aa ,...,,= , 021 bb ,...,,= , 21,,,, =δγβα  are constant for all 

combinations of subscripts and superscripts. 

If there exist at least two rectangles ab∆ , cd∆  for which cdab ρ≠ρ  or cdab BB ≠  

where )( αβγδ= BB , 21,,,, =δγβα  then the plate will be called multicomponent.  

Let ),,( 21 txxww = , Π∈),( 21 xx , 10 ttt ,∈  be a plate deflection.  

The equation describing dynamic problems in multicomponent plates has the form 

 pwB =+ γδαβαβγδωρ ),,(&&  (3) 

where ρ is the mass density and p is an external load of the plate.    
After defining a functional  

 ( ) pwwwBwL −−= γδαβαβγδρ ,,
2
1

2
1 2

&  (4) 

the equation (3) can be written in the form of the Euler-Lagrange equation 

 0
,

'

=
∂
∂

−
∂
∂

∂
∂

+










∂
∂

w

L

w

L

tw

L
&

γδαβ

 (5) 



 Vibrations in Physical Systems Vol.25 (2012) 187 

For the multicomponent plates, the solution of the equation (3), also numerical, is 
difficult. It is reasonable, in this situation, to search for simpler models, where the equa-
tion coefficients are constant. In this paper, we count averaged coefficients by the use of 
the method of microlocal parameters [1-2]. 

2. Averaged model of multicomponent plates 

According to [1] we assume the plate deflection in a form  
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Substitution of the decomposition of plate deflection (6) to the functional (4) and its 
asymptotical averaging gives: 
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where, for an arbitrary function f, we denoted by f : 
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The Euler-Lagrange equations in this case assume a form  

 

0

0
',

=
∂

∂

=
∂

∂
−

∂

∂

∂
∂

+










∂

∂

A
k

kkllk

v

L

u

L

u

L

tu

L

&  (9) 

thus the equation of motion for multicomponent plate assumes a form  
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Let us introduce denotations  
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then the coefficients appearing in the equations (10) are equal   
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and the equations (10) can be written as 
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Let a matrix ABD  be a nonsingular matrix; then we can determine fluctuation Av  from 
the equation (13)2 

 αβαβ ,)( 1 uDDv BABA −−=  (14) 

Substitution of (14) to the equation (13)1 gives    

 0, =+− puDu effeff
αβγδαβγδρ &&  (15) 

where  

 BABAeff DDDDD γδαβαβγδαβγδ
1)( −−=  (16) 

The quantities defined by the equations (16) are the effective stiffness moduli ob-
tained as a result of microlocal averaging. The equation (15) has the analogical form to 
the well-known equation of plate deflection, but there occur not stiffness moduli Bαβγδ, 
which are functions, but the efficient stiffness moduli, which, due to averaging process, 
are constant.  

3. Example of a four-component plate 

As a special case of multicomponent plate we consider a representative element consist-
ing of four components. The component dimensions are denoted in Fig. 2.  

The decomposition of plate deflection (4) will be assumed in a form, [2]: 
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where the shape function h1: 
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The function )x(hh 2
22 =  can be defined analogically to )x(hh 1

11 = . The func-

tions Ah , A = 1, 2, are periodic and oscillating.  

 

Figure 2. Four-component element 

The quantities (11) appearing in the equations (13) are then equal 
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 (18) 

The remaining coefficients are equal 0. 
Now let us assume that the plate is heterogeneous only in the x1 direction, Fig. 3. 
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Figure 3. Two-component element 

This means that  
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The coefficients (11) have now a form  
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Substitution the quantities (19) to the equations (13) gives 
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The equation (20)2 enables to determine the fluctuation v1:   
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then the equation (18)1 assumes a form  

 puBu effeff =+ αβγδαβγδρ ,&&  (22) 
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where  
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If 21
αβγδαβγδ BB =  and 21 ρρ =  (homogeneous cell), the equation takes the form of 

the classical plate equation.  
In the case of a cell consisting of isotropic components we have  
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where αα ηλ ,  are the Lamé parameters. 

The coefficients  effB  are equal  
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 The components in the square brackets in the formulas (24) describe the impact of the 
microlocal parameter v1 on the plate behavior.   

Now let us assume that the plate heterogeneity is of a chessboard-type (Fig. 4). It 
means that  

 12211
αβγδαβγδαβγδ BBB == , 22121

αβγδαβγδαβγδ BBB ==  

 12211 ρρρ == , 21221 ρρρ == . 

The coefficients (11) are in this case identical with the coefficients (18) and the quanti-
ties (12) are then equal  
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Substitution of the quantity (25) to the equations (13) gives  
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Figure 4. Representative element with the chessboard-type heterogeneity 

From the equation (26)2 we can conclude 01 =v , 01 =v . In this case, the heterogeneous 

and anisotropic body behaves like a homogeneous anisotropic body, considering the fact 
that the mass density and material constants of this homogeneous body are the arithmetic 
means of the mass density and material constants of the heterogeneous body compo-
nents. 

4. Conclusions 

The method of averaging of discontinuous function coefficients of the equation of plate 
deflection, used in the work, led to a model with n+1  equations with the constant effec-
tive coefficients. The unknowns in this set of equations are the averaged deflection u and 
n microlocal parameters describing the plate heterogeneity. This system is convenient for 
the analysis of dynamic problems in plates, particularly free vibrations, which will be 
discussed at the conference. 
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Abstract 

Functionally graded plates with a microstructure are considered. The size of the microstructure is assumed to 
be of an order of the plate thickness. To take into account the effect of the microstructure on vibrations of these 
plates the tolerance modelling method is applied. Using this method we obtain model equations with smooth 
functional coefficients involving terms dependent of the microstructure size. 
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1. Introduction  

In this note plates with constant thickness d made of two materials are objects under 
consideration. On the microlevel these materials are tolerance-periodic distributed along 
only one direction x≡x1, cf. Figure 1. Averaged properties of these plates are assumed to 
be slowly-varied along this direction, which is normal to interfaces between the materi-
als. Hence, these plates consist of many small elements on the microlevel. Every element 
is treated as a plate band with a span l, called the microstructure parameter. Moreover, 
adjacent elements are nearly identical, but distant elements can be very different. Hence, 
plates of this kind are treated to be made of a certain functionally graded material 
(FGM), cf. [8], and are called functionally graded plates, cf. [4, 5]. The thickness d is 
assumed to be the same order of the microstructure parameter l, d∼l, cf. [3, 2, 7, 1], and 
material properties of these plates to be tolerance-periodic functions in x and independ-
ent of x2.  

 
 

Figure 1. A fragment of a functionally graded plate under consideration 

Plates of this kind can be analysed using various kinematic assumptions. In this con-
tribution two various model equations are presented – one based on the Kirchhoff-type 
plates theory relations and other – based on the Hencky-Bolle-type plates theory rela-
tions. Unfortunately, obtained governing equations have highly-oscillating, tolerance-
periodic, non-continuous functional coefficients of x. These equations are not good tools 
to analyse various special problems of these plates. However, in order to investigate 
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thermomechanical problems of FGM-type structures (also for plates) modelling methods 
for periodic structures can be used, cf. [8, 6]. Unfortunately, the effect of the microstruc-
ture size is neglected in governing equations of these models. 

The main aim of this contribution is to show averaged equations of tolerance models 
of functionally graded plates, having smooth, slowly-varying coefficients of x. These 
equations are obtained in the framework of the tolerance modelling, cf. [10, 9, 2], and 
involve terms describing the effect of the microstructure size. Similar tolerance models 
for thin transversally graded plates under the condition d<<l is shown in [4, 2, 5]. 

2. Fundamental relations  

Let x≡(x1,x2), x=x1 and z≡x3. The undeformed plate occupies the region denoted by 
},2/2/:),{( Π∈≤≤−≡Ω xx dzdz , where Π is the midplane and d is the constant plate 

thickness. Denote by ∂α derivatives of xα, and also ∂α...δ≡∂α...∂δ. The “basic cell” on 
Ox1x2 is defined as }0{]2/,2/[ ×−≡∆ ll , with cell length dimension along the x-axis 

equal l, cf. Figure 2. The length l satisfies conditions d∼l and l<<min(L1,L2), and is called 
the microstructure parameter. All material and inertial properties of the plate, as mass 
density ρ=ρ(⋅,x2,z) and elastic moduli aijkl=aijkl(⋅,x2,z), are assumed to be toler-
ance-periodic functions in x, even functions in z and independent of x2. Let aαβγδ, aαβ33, 
a3333 be the non-zero components of the elastic moduli tensor. Denote 
cαβγδ≡aαβγδ−aαβ33aγδ33(a3333)

−1.  

 

Figure 2. “Basic cell” of the plate under consideration 

Properties of these plates are described by tolerance-periodic functions of x: a mass 
density per unit area µ, a rotational inertia ϑ and stiffnesses bαβγδ, dαβ, defined as: 
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Let us denote plate displacements by ui (i=1,2,3), loads normal to the midplane by p. 
Applying the kinematic assumptions of the Kirchhoff-type plates theory, dynamics of 

the functionally graded plates under consideration is described by the following equa-
tion: 
 ,)()( pwwwb =∂∂−+∂∂ αββαγδαβγδαβ δϑµ &&&&  (1) 

d 

l 
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for the plate deflection w=u3. 
However, from the kinematic assumptions of the Hencky-Bolle-type plates theory the 

system of three equations is derived: 
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where w is the plate deflection and φα, α=1,2, are rotations. 
The governing equations (1) and (2) have highly-oscillating, tolerance-periodic, non-

continuous functional coefficients of x. Hence, these equations are not good tools to 
analyse special problems of the plates under consideration. To derive model equations 
with smooth continuous coefficients the tolerance averaging method is applied. 

3. Tolerance modelling 

Basic concepts of the tolerance averaging method are presented in [10, 9, 2]. There are: 
an averaging operator, a slowly-varying function, a tolerance-periodic function, a highly-
oscillating function, a fluctuation shape function. Here, we mention only two of them. 
Let ∆+≡∆ xx)( , })(:{ Π⊂∆Π∈=Π∆ xx , be a cell at ∆Π∈x . The averaging op-

erator for an arbitrary integrable function f is defined by 

 .)()(
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1 ∫∆=><
x

dyyfxf l  (3) 

For the tolerance-periodic of x function f its averaged value by (3) is a slowly-varying 
function in x. The important concept of this method is also the fluctuation shape func-
tion, which is assumed in the form shown in Figure 3. 

 

Figure 3. A fragment of fluctuation shape functions 

Using the aforementioned concepts the fundamental assumptions of the tolerance 
modelling for the plates under consideration can be formulated. 

The main assumption is the micro-macro decomposition of a basic unknown field in 
the problem under consideration. Here, there are formulated two independent those as-
sumptions, which lead to various tolerance models of functionally graded plates. 
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The micro-macro decomposition for the Kirchhoff-type plates. 

Displacements of the plate midplane ui (i=1,2,3) are assumed that they can be decom-
posed in the form similar to that for periodic plates, cf. [7], or functionally graded shells, 
cf. [3, 2]: 

 u3(x,z,t)=w(x,t)=W(x,t),      uα(x,z,t)=−z[∂αW(x,t)+h(x)Vα(x,t)], (4) 

with new unknowns: a macrodeflection W and fluctuation variables Vα (α=1,2), which 
both of them are slowly-varying functions in x; and the known fluctuation shape function 
h, assumed in the form of a saw-like function, cf. Figure 3. 

The micro-macro decomposition for the Hencky-Bolle-type plates. 

Displacements of the plate midplane ui (i=1,2,3) are assumed to be decomposed in the 
form similar to that for periodic plates, cf. [1]: 

 u3(x,z,t)=w(x,t)=W(x,t),     uα(x,z,t)=z[Φα(x,t)+g(x)Θα(x,t)], (5) 

with new unknowns: a macrodeflection W, macrorotations Φα (α=1,2), fluctuation vari-
ables Θα (α=1,2), which all of them are slowly-varying functions in x; and the known 
fluctuation shape function g, which has the form of a saw-like function. 

The next main assumption of the tolerance averaging method is the tolerance averag-
ing approximation in which it is assumed that in the modelling terms of an order of the 
tolerance parameter δ are negligibly small, e.g.: 
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where f is a tolerance-periodic function of x, F is a slowly-varying function of x and h is 
the known fluctuation shape function. 

Using the above concepts and assumptions we can make some manipulations by us-
ing various tolerance modelling procedures, cf. [11, 10, 9]. Here, the procedure shown in 
[11] is applied, which can be divided on four steps. The first of them is to substitute 
micro-macro decompositions (4) or (5) to equations (1) or (2), respectively. In the se-
cond step these equations are averaged by using the averaging operator (3). The third 
step is a formulation of the problem to find the fluctuation variables. In order to obtain 
these unknowns the orthogonal method can be used, i.e. the governing equations (1) or 
(2) are multiplied by the fluctuation shape function and then averaged by formula (3). In 
the fourth step micro-macro decompositions (4) or (5) are substituted into obtained equa-
tions. 

4. Governing equations of tolerance models 

Using the aforementioned tolerance modelling procedure, after some manipulations 
governing equations of two different tolerance models are derived. 
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4.1. The tolerance model equations of the Kirchhoff-type functionally graded plates 

The tolerance averaging procedure leads from thin plates equations (1) to the following 
governing equations: 
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Equations (7) stand a system of differential equations – one for the macrodeflection 
W(·,x2,t) and two equations for the fluctuation variables Vα(·,x2,t). 

4.2. The tolerance model equations of the Hencky-Bolle-type functionally graded 
plates 

The tolerance averaging procedure applied for medium-thickness plates equations (2) 
makes it possible to arrive at the following governing equations: 
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This is a system of differential equations – two for the macrorotations Φα(·,x2,t), one for 
the macrodeflection W(·,x2,t) and two equations for the fluctuation variables Θα(·,x2,t). 

It can be observed that in the above equations (7) and (8) the effect of the microstruc-
ture size is described by the underlined terms, which depend on the microstructure pa-
rameter l. Moreover, conditions of application of the both models are formulated, i.e. 
equations (7) or (8) have physical sense for unknowns W, Vα or W, Φα, Θα, respectively, 
being slowly-varying functions in x, for every t. These conditions can be treated as a 
certain a posteriori criterion of physical reliability for the models of dynamic problems 
for functionally graded plates under consideration. Boundary conditions have to be for-
mulated only for macrofunctions: the macrodeflection W and the macrorotations Φα on 
all edges. However, boundary conditions for the fluctuation variables Vα and Θα can be 
defined only on edges x2=0, L2. 

5. Conclusions  

Using the tolerance averaging method for governing equations of various functionally 
graded media with a microstructure we can pass from the equations with tolerance-
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periodic, non-continuous functional coefficients to equations with averaged, smooth, 
slowly-varying functional coefficients. 

It can be observed that both the derived systems of the governing equations together 
with the aforementioned conditions for the unknowns and the specified fluctuation shape 
functions stand the tolerance model of functionally graded plates with microstructure. 
Using various kinematic assumptions we arrive at: the system (7) – for the Kirchhoff-
type plates, the system (8) – for the Hencky-Bolle-type plates. Coefficients of these 
equations are slowly-varying functions in x. 

Moreover, it has to be emphasized that these equations involve the underlined terms, 
which describe the effect of the microstructure size on dynamics of functionally graded 
plates under consideration. 

Some applications of these models will be presented separately. However, to obtain 
some calculational results in the framework of these models, e.g. free vibrations fre-
quencies – lower and higher, some known approximation methods can be applied, e.g. 
the Ritz method, the orthogonalisation method. 
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Abstract 

In this note there are considered three-layered plates with periodic structure. These plates consist of many 
small elements, called periodicity cells. The size of the cell is assumed to determine the microstructure parame-
ter. In this paper the tolerance modeling is applied to derive governing equations with constant coefficients, 
which take into account the effect of the microstructure size. 
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1. Introduction 

The main objects under consideration are three-layered plates with a periodic micro-
structure. In this plate it can be distinguished a small repetitive element called the perio-
dicity cell. The diameter of the cell is assumed to determine the size of the microstruc-
ture of these plates. 

Plates of this kind are described by partial differential equations with highly-
oscillating, periodic, non-continuous functional coefficients, cf. [5, 2, 1]. Hence, these 
governing equations are not a proper tool to investigate special engineering problems of 
these plates. In order to obtain equations with constant coefficients there are proposed 
various methods. Among them it is necessary to mention models which are based on the 
asymptotic homogenisation method, cf. [5]. Extended list of publications of applications 
of this method is shown in monographs [11, 2, 10, 9]. However, the equations of these 
asymptotic models usually neglect the effect of the microstructure size on the overall 
behaviour of periodic structures under consideration. 

In order to take into account this effect the tolerance averaging method can be ap-
plied. This method was proposed for periodic composites and structures by Woźniak, cf. 
[11], and was developed and used to various problems of these media and also so called 
functionally graded structures in a series of papers. It can be mentioned applications of 
this method for: thin periodic plates by Jędrysiak [2, 3], wavy-type plates by Michalak 
[6], medium thickness periodic plates by Baron [1], thin periodic shells by Tomczyk [8], 
thin functionally graded plates by Kaźmierczak and Jędrysiak [4]. The extended list of 
papers can be found in [10, 9]. 

Hence, in this contribution the tolerance averaging method is applied to investigate 
vibrations of three-layered periodic plates. It is assumed that the plates under considera-
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tion are made of three layers. The upper and the bottom layers are identical and treated 
as thin plates. However, the middle layer is assumed to be made of an elastic Winkler’s-
type material. Hence, we can distinguish the symmetry plane, which is equally distance 
from the upper and the bottom planes of the plate. 

 

Figure 1. Illustration of three-layered plate with periodic structure 

The main aim of this contribution is to formulate governing equations of three-
layered periodic plates under consideration in the framework of the tolerance averaging 
method. These equations are based on a simplified approach of these plates, proposed by 
Szcześniak [7]. It has to be emphasised that these equations describe the effect of the 
microstructure size on the overall behaviour of the plates. 

2. Fundamental relations 

Let Ox1x2x3 be an orthogonal Cartesian coordinate system. The time coordinate is denot-
ed by t. Subscripts i, j, k, l run over 1, 2, 3; α, β, γ, δ run over 1, 2 and A, B, K, L=1,…,N. 
Setting x=(x1,x2) and z=x3 it is assumed that the undeformed plate occupies the region 
Ω≡{(x,z):d/2≤z≤d/2, xΠ}, with midplane Π and plate thickness d. 

The periodicity cell is defined as a plane region ∆≡[−l1/2, l1/2]×[−l2/2, l2/2], with l1, l2 
being the cell dimensions along the x1- and x2-axis, respectively. The diameter of the 
periodicity cell, given by l=[(l1)

2+(l2)
2]1/2, is called the microstructure parameter. It is 

assumed that d<<l<<min(L1,L2), where L1, L2 are characteristic dimensions of the plate 
along the x1- and x2-axis. Here and further the partial derivative with respect to a space 
coordinate is denoted by ∂α=∂/∂xα, and the derivative with respect to time t is denoted 
by an overdot. 

Denote deflections of the upper and the bottom plates by u1(x,t) and u2(x,t), respec-
tively, and loads along axis z as p1(x,t) and p2(x,t), the mass density of the plate material 
per unit area by: 
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the elastic module tensor by Cijkl and bending stiffnesses tensor by 
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Taking into account the effect of the elastic Winkler’s middle layer, with the Win-
kler’s coefficients k(·), under Kirchhoff-type plates theory assumptions we can write two 
equations of motion for the upper and the bottom plate, respectively: 
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Deflections uα(x,t), α=1,2, Π∈= ),( 21 xxx , ),( 10 ttt ∈ , have to satisfy regularity condi-

tions. We assume p2=0 and denote p=p1. Hence the system of equations (3) can be writ-
ten in the form: 
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Equations (4) are partial differential equations with highly oscillating, periodic, non-
continuous functional coefficients. They stand a starting point for our considerations. 

3. Tolerance modeling 

In order to obtain averaged equations with constant coefficients for the periodic plates 
under consideration we apply the tolerance averaging method in the form presented in 
Woźniak and Wierzbicki [11] and for plates by Jędrysiak, [2]. Introductory concepts of 
tolerance modeling defined and explained in these books are used. Some of them are 
recalled below. 

One of the introductory concepts is an averaging operation, which can be defined for 
arbitrary function f in the form: 
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dff ll  (5) 

For periodic function f its averaging value is constant. 
Other introductory concepts of the tolerance modeling are: slowly-varying function, 

periodic-like function, highly oscillating function, fluctuation shape function, cf. [11, 9, 
8] and for plates cf. [2, 1]. 

Using the aforementioned concepts two fundamental assumptions of the tolerance 
averaging. 

The first of them is micro-macro decomposition for deflections of thin plates uα(x,t), 
α=1,2: 
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where the basic kinematic unknowns wα, α=1, 2, are called the macro-deflections, and 
additional basic kinematic unknowns vα

A, A=1,…,N, are called the fluctuation ampli-
tudes; hα

A are the known fluctuation shape functions. It is assumed that the basic un-
knowns wα, α=1, 2, and vα

A, A=1,…,N, are slowly-varying functions. 
The tolerance averaging approximation is the second modeling assumption, in which 

it is assumed that some terms are negligibly small, e.g. in formulas: 
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where ϕ is a periodic function of x, Ψ is a slowly-varying function of x, h is the known 
fluctuation shape function and δ is a tolerance parameter. 

The above assumptions are fundamental for the tolerance modeling of the plates un-
der considerations. 

4. Model equations 

4.1. Tolerance model 

Using the tolerance modeling procedure, cf. [2], and introduce denotations of averaged 
coefficients: 
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as a result we arrive at equations: 
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(9) 

The above equations are the system of 2N partial differential equations for the basic 
unknowns – macrodeflections wα, α=1, 2, and fluctuation variables vα

A, , A=1,…,N. 
Coefficients of equations (9) are constant. These equations together with micro-macro 
decompositions (6) stand the tolerance model of three-layered periodic plates. It can be 
observed that boundary conditions have to be formulated only for macrodeflections wα. 

4.2. Asymptotic model 

In order to evaluate obtained results we also write equations of the asymptotic model: 

 

,0

,0ˆ)ˆ(

,0

,ˆˆ)ˆ(

2222

2222

1111

1111

=+∂

=++∂∂

=+∂

=++∂∂

LKLK

KK

BABA

BB

vBwB

wvBwB

vBwB

pwvBwB

αβαβ

αβγδαβγδαβ

αβαβ

αβγδαβγδαβ

µ

µ

&&

&&

 (10) 

Equations (10) stand the system of two partial differential equations for macrodeflection 
wα, α=1, 2, and 2N algebraic equations for fluctuation amplitudes vα

A, A=1,…,N. These 
equations can be derived using the formal asymptotic procedure, cf. [9, 4]. It can be 
observed that they can be also obtained from equations (9) by neglecting the underlined 
terms. 

5. Remarks 

For three-layered periodic plates the simplified modeling approach can be used, cf. [7], 
which leads to the system of differential equations for two deflections of thin plates. This 
system can be starting point to analyze vibrations of these plates in the framework of the 
tolerance averaging method. This modeling procedure makes it possible to replace the 
aforementioned equations with highly oscillating, periodic, non-continuous coefficients 
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by equations with constant coefficients. The resulting equations take into account the 
effect of the microstructure size on the overall behaviour of the plates under considera-
tion. 

Some applications of the proposed tolerance and asymptotic models to special prob-
lems will be analyzed in the forthcoming papers. 
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Abstract  

The investigations concern neoprene behaviour with contact of impact tools. Experimental method is used to 
solve nonlinear Young’s modulus of neoprene. The results of numerical simulation in FEM System 
ABAQUS/Explicit are compared with experimental results.   

Keywords: FEM, neoprene, contact, numerical simulation, experiment 

1. Introduction  

Experimental investigation of soil consolidating tools, in the real conditions (progressive 
soil consolidation) can not guarantee obtaining repeatable results which are necessary to 
carry on comparative analysis of investigated tools. This is why investigations are per-
formed on substitute soils. Neoprene is one of the materials enabling the performance of 
comparative investigations in conditions similar to the real work conditions of the tool. 
This material has been applied for several experimental investigations, presented in [3].  

2. Experimental determination of neoprene Young’s modulus.  

Neoprene is elastomeric foam and has a property of nonlinear Young’s modulus. Com-
pression of uniaxial test data method is used to determine the neoprene modulus of elas-
ticity. Formulation details of this experimental method are given in [5]. The neoprene 
test piece has dimensions of 20x20x20 mm. Results of experimental test are shown in 
Fig. 1. 

3.   Numerical investigation of a free fall of a rigid sphere onto neoprene plate  

This numerical investigation simulates vertical impact of a rigid spherical surface onto a 
round neoprene plate with thickness of 20 mm. Discrete models of the sphere and the 
neoprene are shown in Fig. 2. The sphere has a diameter of 20 mm and is assumed to be 
rigid, with a mass of 0.2 kg localized in the sphere center. In initial condition the center 
of the sphere is at the distance of 210 mm above the neoprene surface and has zero ve-
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locity. Gravity acceleration of 9.81 m/s2 initiates vertical free fall of the sphere mass in 
direction perpendicular to the neoprene center. Investigation is completed in the time of 
0.9 second. 
 

 
Figure 1. Force versus displacement curve. Neoprene compression test  

 

 Figure 2. Spherical rigid surface and neoprene discrete model 

Figure 3. Deformed shape and Mises stress distribution at 146 milliseconds 
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The spherical rigid surface three times falls down onto the neoprene plate at the analyzed 
time of 0.9 second. Deformed mesh of the neoprene plate center and Mises stress distri-
bution at 0.146 second is shown in Fig. 3. 
The contact between the top of exterior surface of the neoprene plate and the rigid sur-
face representing the point mass is modeled with *CONTACT PAIR option. Contact 
stresses distribution at the point time of 0.146 second is shown in Fig. 4.  

Figure 4. Contact stresses distribution at 146 milliseconds 

Figure 5. Vertical displacements of 0.2 kg point mass (center of rigid surface) at time 
range of 0.0 – 0.9 second 

Figure 6. Frictional dissipation of energy (a), viscous dissipation of energy (b).  
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Vertical displacements of the rigid surface and the top center of the neoprene are shown 
in Fig. 5. Amplitudes of the point mass decrease during analysis time history. The rea-
sons of the amplitudes decreasing are frictional and viscous dissipations of energy [1]. 
The histories of frictional energy dissipation and viscous energy dissipation are shown in 
Figure 6a and in Figure 6b, respectively.  

4. Numerical simulations of cooperation the ram with neoprene  

The base of numerical simulation of cooperation the ram with the neoprene were inves-
tigation results presented in [3]. The compatibility of numerical investigation results with 
experimental test results significantly increases investigation fields for chosen problems.  
 

  

 

Figure 7. Discrete model of the tobol and neoprene plate 

Numerical model of ram for soil consolidation as well as neoprene plate is shown in 
Fig. 7. Axisymetric elements of CAX4R type are applied. The ram is made of steel with 
elasticity modulus of E = 207 GPa, ν = 0.3 and density of ρ = 7850 kg/m3. In the model, 
instead of real soil the neoprene with density of ρ = 350 kg/ m3 is applied. 

Young’s modulus of the neoprene – the elastomeric foam material is defined through 
the *HYPERFOAM option using experimental uniaxial test data – see Fig. 1. 
Boundary conditions are described as: 

• Vertical motion of the ram, 
• Axisymetric motion of the deformed neoprene, 
• Lower neoprene plate surface is fixed. 

The piston (connected with ram) is forced by varying in time pressures: p1 – upper pis-
ton surface, p2 – lower piston surface. Gravity of 9.81 m/s2 is applied for whole model. 
Variation of p1, p2 pressures in time domain is presented in Fig. 8.  
Comparison of ram displacement in the form of three curves is presented in Fig. 9. The 
curves are obtained as: 

• By experimental way [3] – described as   „h – exper” 
• By numerical simulation without hysteresis – described as „U2 abaqus” 
• By numerical simulation with hysteresis – described as „U2 abaqus-hyst” 
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Comparison of ram velocity obtained by experimental way [2, 3] with numerical simula-
tions is presented in Fig. 10. 

Figure 8. Comparison of pressures p1, p2; Abaqus - experiment 

Figure 9. History of tool vertical displacements 

Figure 10. History of tool vertical velocities 
  

 

 

 

comparison of pressure p1and p2 - Abaqus - experiment 

 file=f180p1D15p2_dyna2aa_grav_cons

0

2

4

6

8

0 0,02 0,04 0,06 0,08 0,1

time (s)

p
re

s
s
u

re
 (

1
0

E
5

 P
a

)

p1 exp p2 exp p2 abaqus p1 abaqus

Plots of tool vertical displacements U2  -  ABAQUS - experiment
 file  = f180p1D15p2_dyna2aa_grav_cons

0

50

100

150

200

250

0 0,02 0,04 0,06 0,08 0,1

time (s)

d
is
p
ll
 (
m
m
) 
 e
x
p
e
ri
m
e
n
t

-0,194

-0,144

-0,094

-0,044

0,006

0,056

d
is
p
ll
 (
m
) 
 A
B
A
Q
U
S

h -exper U2  abaqus U2  abaqus - hist

Comparison plots of vertical velocity V  -  ABAQUS - experiment

plots of load pressure p1, p2  -  experiment

 file  = f180p1D15p2_dyna2aa_grav_cons

-6

-4

-2

0

2

4

6

8

0 0,02 0,04 0,06 0,08 0,1

time (s)

v
e
lo
c
it
y
 (
m
/s
)

-6

-4

-2

0

2

4

6

8

p
re

s
s
u

re
 (

 0
.1

 M
p

a
 )

V - ABAQUS V - ABAQUS - back p1 p2 V - experiment



210 

5. Conclusions  

Presented investigation results are of a great compatibility of numerical investigations 
with experimental ones [3]. It was necessary to consider neoprene hysteresis in simula-
tion investigations. The curves „abaqus hyst” (Figure 9) and „ABAQUS – back” (Figure 
10) confirm the necessity of hysteresis consideration. Additional important conclusion is 
the necessity of determination the neoprene hysteresis (in the dynamical way) which is 
used to determine the nonlinear elasticity modulus of the investigated material. Consid-
eration of displacement changes frequency has also influence on the proper determina-
tion of the hysteresis concerning the material elasticity modulus. 
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Abstract  

Plane motion of a rope is considered.  Two approaches to rope modelling are presented: the one based on 
classical concepts of analytical mechanics and the rigid finite element method. In both cases equations of 
motion are derived within the framework of the Lagrangian formalism, without the small displacement as-
sumption. In a numerical experiment parameters matching of the two models is attempted, which cannot be 
performed in a straightforward manner. The rigid finite element method allows to consider the internal forces 
related to tension, shearing and bending, whereas the other approach, based strictly on rigid body mechanics, is 
much simpler. 

Keywords: discrete model, ropes, numerical simulation, rigid finite element method  

1. Introduction 

Derivation of the partial differential equations describing dynamics of continuous sys-
tems may be a burdensome task, especially when dealing with bodies which undergo 
large displacements/deformations, e.g. ropes, cables, belts. In such a case the approach 
based on a discrete model approximating the continuous system seems to be very attrac-
tive.  

The discrete model can be obtained by applying various theoretical formulations. In 
case of the rope, one can use classical concepts of analytical mechanics: a chain-like 
model is composed of rigid links connected by joints of different types. Then, equations 
of motion can be derived through the Lagrangian formalism. This approach, for instance, 
has been applied in the papers [1, 2]. On the other hand, the discretization may be em-
bedded in a certain computational technique. For further purposes, we focus on the Rigid 
Finite Element Method (RFEM) developed by Kruszewski et al. [4, 5]. A physical model 
is composed of rigid bodies connected by massless elements, whose elastic-dissipative 
properties restrict motion of the non-deformable ones. The method has been used by the 
authors in [3]. 

In what follows, we compare the two approaches to rope modelling: (i) the one based 
on analytical mechanics, further referred to as AM approach, and (ii) the rigid finite 
element method, further referred to as RFE approach or simply RFEM. 
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2. Mathematical formulation 

Consider a uniform rope of length L and mass M suspended from a support in 
a gravitational field. For sake of simplicity, we shall stick to the case of plane motion 
and neglect air resistance forces. 

Let us firstly describe the discrete model derived in the framework of AM approach. 
The rope is approximated by a system of n identical rigid members connected by rota-
tional joints (see Fig. 1). The rigid elements are assumed to be prismatic rods of a length  
l = L/n and mass m = M/n. The joints, in turn, determine elastic-dissipative properties of 
the mechanical system: as a combination of a spring and damper, each joint is described 
by stiffness k and damping c. The stiffness coefficient k is equivalent to the flexural 
rigidity of the rope EI. 
 

 
Figure 1. The discrete model of a rope based on AM approach  

Using the angular generalized coordinates  q = [φ1, φ2, ..., φn]
T and generalized veloc-

ities, one can express kinetic energy of the system T, potential energy of the system V, 
the dissipation function D, and apply the Lagrange equations: 
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For the given problem, the resulting equations of motion can be written concisely as 

 ),,()( qqfqqM &&& t= . (2) 

The time-dependent mass matrix reflects inertial coupling of the system members. The 
right-hand side vector function f includes the components coming from generalized 
potential and dissipative forces.  

It should be noted that the mathematical model (2) is an implicit system of ordinary 
differential equations (IODEs) and numerical integration may require some sophisticated 
strategies. A full description of the model can be found in [1, 2].  
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In the RFE approach a physical model of the system is created in two steps. First, the 
rope is divided into n~  sections of equal length nLl ~/= . Their elastic-dissipative prop-
erties are concentrated in their centers and captured by massless spring-damping ele-
ments (SDEs). Next, 1~ += nn  rigid finite elements (RFEs) are added: they are inter-
connected and connected to foundation via the SDEs as shown in Fig. 2. All the SDEs 
are characterized by stiffness and damping coefficients, while mass and inertial moments 
are associated with RFEs. The two elements RFE0 and RFEn+1 can be regarded as a 
foundation or can be used for realization of rheonomic constraints. Motion of the rope 
with a free end is obtained as stiffness parameters of SDEn+1 have zero values. 

 

 
Figure 2. The discrete model of a rope in the framework of RFEM 

In the case of plane motion, every RFE has three degrees of freedom and its position 

is specified by the generalized coordinate vector T],,[ iyixii qqq ϕ=q ; the entire system 

has N = 3n degrees of freedom. However, to restrict freedom of the elements and make 
them create the coherent system, one should form the potential energy V, considering 
deformation of SDEs due to tension, shearing and bending. The respective stiffness 
coefficients are: 
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where E denotes the Young’s modulus, G is the shear modulus, A denotes the 
cross-sectional area of the rope and I is the second area moment the rope’s cross-section. 
The subscripts x, y, φ correspond to the local coordinate systems associated with RFEs 
(see Fig. 3). 
Similar, the dissipation function D can be expressed in terms of deformation velocities of 
SDEs and the following damping coefficients:   
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where η  and η  are material constants of normal and tangential damping, respective-

ly.  
Equations of motion can be derived using the Lagrange equations (1). Since the as-

sumption of small vibrations is not introduced, the mathematical model is non-linear and 
is given by 

 ),,( qqFqA &&& t= , (5) 

where the mass matrix A is diagonal, because the local coordinate system associated 
with a RFE overlaps with its principal central axes of inertia. Hence, the system of dif-
ferential equations (5) can be easily transformed to the explicit form 

 ),,(
~

qqFq &&& t= , (6) 

where FAF 1~ −= . 

 
Figure 3. Local coordinate system and degrees of freedom of a RFE;                             

the axes ix and  iy are related to the directions of normal and shear forces 

3. Numerical experiment 

The presented models have been derived in different theoretical frameworks. Conse-
quently, the problem of parameters matching arises in comparative studies of these ap-
proaches. Below we show results of an attempt to select such parameters values that 
ensure possibly highest agreement of the two systems motion. 

Table 1. Rope parameters 

Quantity Symbol Unit Value 

Rope density ρ kg/m3 6000 

Rope length L m 1.0 

Rope diameter D m 0.005 

Young’s modulus E Pa 35·106 

Shear modulus G Pa 14·106 

Material constant of normal damping η Ns/m2 104 

Material constant of tangential damping η  Ns/m2 4·103 
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Consider motion of the rope which is initially deflected aside: the deflection angle 
°= 75α  is equal for all the elements. Table 1 includes the rope parameters which relates 

directly to the RFE model. The damping material constants fulfil the relation [4, 5]: 

 
E

G
=

η
η

. (7) 

In case of the AM model, the stiffness coefficient is calculated according to the for-
mula k = EI. Selection of the damping values, c, has been performed by trial and error.  
 

 

Figure 4. Distance between free ends of the two different physical models 
 

 

Figure 5. Total energy of the two systems: the model based on AM approach (blue)  
and the model based on RFEM (red) 
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Figure 4 illustrates the distance d(t) between free ends of the two compared systems 
as c = 2·10-2 [Nm s]. The distance values are relatively high during the transient phase of 
motion, then the distance decreases gradually. However, the free end of the rope does 
not represent the entire mechanical system. Therefore, total energy of the systems 
E = T+V is shown in Fig. 5. To make the two cases fully comparable, the initial energy 
E0 is regarded as the zero level. The difference between energy of the systems should be 
minimized in more systematic comparative analysis. 

4. Conclusions  

The two approaches to rope modelling have been presented: the one based on classical 
ideas of analytical mechanics and the rigid finite element method. Without the assump-
tion of small vibrations both the formulations lead to non-linear equations of motion. 
However, in the RFEM case the mathematical model is comprised of ordinary differen-
tial equations in the standard (explicit) form, which is advantageous from the numerical 
point of view. On the other hand, each RFE in a plane is assumed to have all three de-
grees of freedom, which increases the number of the unknown generalized coordinates.  

When comparing behaviour of the two different models, parameters matching is not 
so straightforward. The rigid finite element method allows to consider the internal forces 
related to tension, shearing and bending, whereas the other approach, based strictly on 
rigid body mechanics, is much simpler. All in all, the comparative studies merit further 
attention. 
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Abstract 

In this note there are considered functionally graded plates. To describe vibrations of these plates and take into 
account the effect of the microstructure, the tolerance averaging method is applied, cf. [7, 8]. There are formu-
lated governing equations of the asymptotic-tolerance model, cf. [8]. Calculational results obtained for a func-
tionally graded plate band using the proposed model, are compared to results by the known – tolerance and 
asymptotic models. 

Keywords: thin functionally graded plates, tolerance-periodic microstructure, tolerance modelling  

1. Introduction 

The main objects under consideration are thin plates with functionally graded macro-
structure in planes parallel to the plate midplane. These plates have a tolerance-periodic 
microstructure along two directions on the microlevel, cf. Figure 1. 

 

Figure 1. Fragment of a functionally graded plate 

Plates of this kind are consisted of many small elements. Adjacent elements are near-
ly identical, however distant elements can be different. Every element is treated as a thin 
plate with spans l1 and l2 along the x1- and the x2-axis, respectively. The size of the mi-
crostructure is described by the microstructure parameter l defined as l≡[(l1)

2+(l2)
2]1/2. In 

various problems of these plates the effect of the microstructure cannot be neglected. 
The effect of the microstructure can be taken into account using the tolerance aver-

aging technique, cf. [7-8]. Some applications of this method to the modelling of various 
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periodic structures are shown in series of papers, e.g. [1,5,6]. In last years the tolerance 
modelling was adopted to functionally graded structures, e.g. [2-4]. 

The main aim of this paper is to show a new asymptotic-tolerance model of function-
ally graded plates. Equations of this model can be derived using both the asymptotic and 
the tolerance modelling procedures. Moreover, this model makes it possible to analyse 
macro- and micro-vibrations. 

2. Modelling foundations 

Denote a plate deflection by w(x,t), loads normal by p. Set x≡(x1,x2) and z≡x3. The region 
of the undeformed plate is defined as },2/)(2/)(:),{( Π∈≤≤−≡Ω xxxx dzdz , with 

the midplane Π and the plate thickness d(·). The “cell” on Π is denoted by 
]2/,2/[]2/,2/[ 2211 llll −×−≡Ω .  

Define tolerance-periodic functions of x: a mass density per unit area µ, a rotational 
inertia ϑ and bending stiffnesses bαβγδ in the form: 
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From the Kirchhoff-type plates theory assumptions the equation for deflection w(x,t) of 
functionally graded plates with highly oscillating, tolerance-periodic, non-continuous 
coefficients is described by  

 .)()( pwwwb =∂∂−+∂∂ &&&& ααγδαβγδαβ ϑµ  (2) 

Averaged equations for functionally graded plates will be obtained using the com-
bined asymptotic-tolerance modelling, cf. [8], where basic concepts of these modelling 
procedures are defined and explained, e.g. an averaging operator, a tolerance-periodic 
function, a slowly-varying function. 

In tolerance modelling two fundamental modelling assumptions are introduced, cf. 
[2,8]. The first of them is the micro-macro decomposition: 

 ,,,,1),,()(),(),( Π∈=+= xxxxx NAtQhtUtw AA
K  (3) 

where functions U(·,t) and QA(·,t) are kinematic unknowns, called the macrodeflection 
and the fluctuation amplitudes, respectively, hA(·) are the known fluctuation shape func-
tions. The second assumption is the tolerance averaging approximation, i.e. terms of an 
order of O(δ) are negligibly small. 

3. Asymptotic-tolerance modelling 

In the asymptotic-tolerance modelling we have two fundamental steps, cf. [8], [2]. 
The first step is the application of the asymptotic procedure. Using the asymptotic 

decomposition ),(),(
~

),(),,( 2 tQhtUtw AA yyxyyx εε ε+=  in equation (2) and bearing in 

mind the limit passage ε→0 terms O(ε) are neglected in final equations. Making some 
manipulations we arrive at the system of equations: one differential equation for the 
macrodeflection U:  
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and the system of algebraic equations for fluctuation amplitudes QA:  

 .1 UhbhhbQ ABAB
αβγδαβγδγδαβαβγδ ∂>∂<>∂∂<−= −  (5) 

Equations (4) and (5) stand the asymptotic model of thin functionally graded plates. 
However, this model does not describe effects of the microstructure size. 
Solving the equations of asymptotic model we have the known function which is the 
complete deflection of plate by the asymptotic model, i.e. w≅w0  

 ).,()(),(),(0 tQhtUtw AA xxxx +=  (6) 

In the second step we apply the tolerance procedure. Using the known tolerance-periodic 
function w0(·,t) and the known fluctuation shape functions gK(·), K=1,…,N, we assume 
the plate deflection as w(x,t)=w0(x,t)+gK(x)VK(x,t), where VK are slowly-varying un-
known functions in x. After some transformations we arrive at the following system of 
differential equations for functions VK: 
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Equations (4) and (7) represent the asymptotic-tolerance model of thin functionally 
graded plates. Equation (7) contains the microstructure parameter l which makes it pos-
sible to analyse the effect of the microstructure size. 

3. Applications – free vibrations of transversally graded plate bands 

Let us consider a thin plate band with span L along the x1-axis, neglecting the loading p, 
p=0. The plate band has a functionally graded structure along its span, cf. Figure 2. The 
material properties of this plate are independent of the x2-coordinate. 

  

Figure 2. A fragment of the plate band 

Denote x=x1, z=x3, x[0,L], z[-d/2,d/2], d – the constant plate thickness. The basic cell 
is defined as ∆≡[-l/2,l/2] in the interval Λ≡[0,L], where l is the cell length.  
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It is assumed that the plate band is made of two different component materials. Their 
properties are described by Young’s moduli E″, E′ and mass densities ρ″, ρ′: 

 




+∪−∈′′

+−∈′
=⋅

],,2/))(1[(]2/))(1(,0[for,

),2/))(1(,2/))(1((for,
),(

λγγ
γγ

lxlxzE

lxlxzE
zE  (8) 

 




+∪−∈′′

+−∈′
=⋅

],,2/))(1[(]2/))(1(,0[for,

),2/))(1(,2/))(1((for,
),(

llxlxz

lxlxz
z

γγρ
γγρ

ρ  (9) 

where γ(x) is a distribution function of material properties, cf. Figure 3; the Poisson’s 
ratio ν ≡ ν″= ν′ is constant. 

   

Figure 3. A cell of the plate band 

To obtain the approximate formulas of free vibrations frequencies the known Ritz meth-
od can be applied, cf. [4]. In this method relations of the maximal strain energy Υmax and 
the maximal kinetic energy Κmax are determined. For the plate band solutions (the 
macrodefletion and the fluctuation amplitudes) applied in the Ritz method can be as-
sumed in the form: 
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where α is a wave number, ω is a free vibration frequency. The function U(·) satisfies 
the boundary conditions for the simply supported plate band for x=0, L. Using the condi-
tions of the Ritz method: 
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and make some manipulations we arrive at the following formulas: 
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of the lower frequency AT
−ω  of free macro-vibrations and the higher frequency AT

+ω  of 
free micro-vibrations, respectively, in the framework of the combined asymptotic-
tolerance model, where coefficients are: 
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Figure 4. Diagrams of parameters Ω, AT
−Ω  for lower free vibration frequencies 

  

Figure 5. Diagrams of frequency parameter AT
+Ω  for higher free vibration frequencies 
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Calculational examples are made for simply supported plate bands for one distribu-
tion function of material properties γ(x) given as  

 )./(sin)( 2 Lxx πγ =  (14) 

Let us also introduce dimensionless frequency parameters defined as: 

 22)1(12222)1(122 )()(,)()(
22 AT

E
ATAT

E
AT LL +′

′−
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′−
− ≡Ω≡Ω ωω ρνρν  (15) 

Results of calculations are shown as diagrams in Figure 4 and Figure 5; Poisson’s ratio 
ν=0.3, ratio l/L=0.1, ratio d/l=0.1. 

4. Conclusions  

In this paper the combined asymptotic-tolerance modelling procedure is applied to the 
known differential equation of Kirchhoff-type plates with functionally graded macro-
structure. This procedure makes it possible to replace the governing differential equation 
with non-continuous, tolerance-periodic coefficients by the system of differential equa-
tions with smooth, slowly-varying coefficients.  

The equations of the tolerance model and the derived equations of the combined as-
ymptotic-tolerance model describe the effect of the microstructure size in opposite of the 
equation of the asymptotic model, which neglects this effect. 
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Influence of Nonlinear Damping on Dynamics 
of Mechanical System with a Pendulum  
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Abstract  

Investigations of regular and chaotic vibrations of the autoparametric system suspended on a nonlinear coil 
spring and a magnetorheological damper are presented in the paper. Application of a semi-active damper 
together with the nonlinear spring allows controlling the dangerous motion and additionally gives new possi-
bilities for designers. The investigations are curried out close to the main parametric resonance in the neigh-
bourhood of the instability region which can appear inside the resonance. Obtained results show that the semi-
active suspension may reduce dangerous motion and it also allows to maintain the pendulum at a given attrac-
tor or to jump to another one. 

Keywords: chaos, MR damper, control, attractor 

1. Introduction  

Autoparametric systems represent a special class of nonlinear systems. Two or more 
degree of freedom systems with, so-called, inertial coupling sometimes characterized by 
vibration appearing without external source of energy supply.  In such a case we deal 
with self-parametric vibrations called’’autoparametric’’. Autoparametric vibration 
systems have an interesting dynamics that result from at least two nonlinearly coupled 
subsystems interacting each other in order to transfer the energy. Mass-spring systems 
with an attached pendulum are common in many mechanical and civil engineering 
problems [1]. Gantry cranes, lifts or special dynamical absorbers, mounted in buildings 
and working as dynamical dampers against earthquake, are classical examples where 
interactions between the support and the pendulum occur [5]. Vibrations absorption of 
the mass-spring oscillator is possible in the system due to the pendulum swinging. 
However, for some parameters the situation may worsen and pendulum vibrations may 
increase dramatically, and then the protection of the structure (modelled as a mass-spring 
oscillator) is lost. Motion of the system can be regular or in some circumstances may 
become chaotic [2].  

Intelligent and adaptive material systems and structures have become very important 
in engineering applications. A new class of materials with promising applications in 
structural and mechanical systems is the magnetorheological dampers (MRD). 
Application of a smart damper to regular and chaotic dynamics control and also for 
reduction of the force transmitted on the ground is investigated in this paper. It is shown 
numerically and experimentally that MR damping can effectively reduce chaotic 
oscillations without a lost of the dynamical vibration absorption. 
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2. Model and the Problem Formulation 

The investigated system is shown in Fig. 1. The system consists of a pendulum and a 
body of mass suspended on a coil spring with linear or nonlinear characteristic and 
magnetorheological damper. The damping coefficient of pendulum is assumed viscous. 
The body of mass is subjected to a harmonic vertical excitation by linear spring – 
kinematic excitation. In Fig. 1 the scheme of an autoparametric pendulum-like system is 
showed. 
 

 
Figure 1. Model of an autoparmetric pendulum-like system with MR damper. 

Based on dimensional form of equation of motion in paper [3], the non-dimensional 
equations can be written as: 

( ) ( )3 2
1 3 tanh sin cos cos ,X X eX X X qα α γ µλ ϕ ϕ ϕ ϕ ϑτ+ + + + + + =&& & &

&& &      (1) 

 
( )2 1 sin 0.Xϕ α ϕ λ ϕ+ + + =&&

&& &

 
 (2) 

In eqs. (1) and (2) α1, α3 and e describe the MR damper, α2 denotes damping 
coefficient of the pendulum, γ is nonlinearity of oscillator’s spring. Parameters µ and λ 
describe pendulum’s parameters, while q and ϑ identify parameters of excitation. Due to 
coupling of both coordinates, x and ϕ, by sinus and cosines functions, the system is 
strongly nonlinear. Particular strong interactions between vibration modes occur if the 
natural frequency of the oscillator is twice higher than the pendulum frequency. 
Damping of the oscillator is studied in two variants, as linear viscous and nonlinear 
magnetorheological. Our concept on nonlinear damping is realized by application of the 
magnetorheological (MR) damper. I propose to use a smooth function of modified 
Bingham’s model, to describe of MR damper behavior, suggested in paper [4].  In di-
mensionless form the dynamic force Fd in MR damper is expressed as 

                                     
( )3 1tanh .dF eX Xα α= +& &

                                          
(3) 
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The detailed derivation of equations (1) and (2), and transform them in dimensionless 
form you can find in book chapter [3]. This model consists of a combination of viscous 
damping (α1) and a Coulomb friction (α3). An analytical solution of equations (1)-(2) by 
harmonic balance method (HBM) is presented in [1]. 

3. Laboratory Pendulum-Like System with MR Damper 

The experiment was performed on an autoparametrically two degree of freedom system 
presented in Fig. 2a and schematically in Fig.1. The laboratory rig consists of two main 
components: the pendulum which allows for full rotation and the oscillator. A main part 
of a nonlinear component of suspension i.e. MR damper RD 10-97-01 is presented in 
Fig. 2b. 

Figure 2. Laboratory rig of an autoparametric system (a) and MR damper RD (b). 

The spring which connects the oscillator and the base is considered in two variants, 
linear or nonlinear with different soft or hard stiffness characteristics. Nonlinearity of 
springs has been reached by designing of a special shape of springs: barrel shape and 
spiral hourglass helical shape. For data acquisition and for control the DasyLab system is 
used. The angle of rotation ϕ of the pendulum and the displacement x of the oscillator 
are measured in the considered system. 

4. Influence of MR Damping  

The presence of chaos in physical systems is very common and is a key feature of 
nonlinear systems. The parameters of an autoparametric system can be tuned in such a 
way that a small perturbation of initial conditions transits its response to dangerous 
motion, like a chaotic dynamics. If the pendulum plays a role of a dynamical absorber, 
this kind of motion is unwanted. In Fig. 3a, near the main parametric resonance, the 

(a) 

 

(b) 
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three chaotic regions are discovered. In these analyses the following parameters are 
used: α1=0.3054, α2=0.1, µ=14.6863, λ=0.1342, q=2.3239 and γ=0. 
                                       (a) (b) 

  
Figure 3. Bifurcation diagram (a) and Lyapunov exponents (b) versus frequency of 

excitation. 
 

Chaotic regions are verified by positive value of Lyapunov exponent. Shape of strange 
attractors in Figs. 4, are presented. Comparing the attractors’ set we can see that the 
pendulum motion reaches the highest velocity in the widest second chaotic region, the 
smallest velocity is obtained in the first chaotic zone. 

         (a) (b) (c) 

     
Figure 4. Strange attractors in chaotic regions for ϑ=0.7 (a) ϑ=1.1(b) and ϑ=1.32(c). 

 
Introducing MR damping during first chaotic motion (ϑ=0.7), we can observe that this 
irregular motion can be eliminate for α3≈0.25 (Fig. 5a), while in second chaotic region 
this value is higher and equal α3≈0.3(Fig. 5b). This result from the fact, that in second 
chaotic region has a higher angular velocity of pendulum, therefore this motion is 
difficult to reduce. Additionally, the new chaotic region near the MR damping α3=0.8, 
appears. Theretofore, magnetorheological damping applied to elimination of dangerous 
motion should be earlier studied and checked. 
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         (a) (b) (c) 

     
Figure 5. Influence MR damping of chaotic regions  ϑ=0.7 (a) ϑ=1.1(b) and ϑ=1.32(c). 

The autoparametric systems are very sensitive for initial and working conditions. 
Therefore, even very small and temporary change in working conditions or slight 
disturbance may influence on obtained response. Additionally, in this type of nonlinear 
systems, the existences of two or more solutions are possible. Dynamics control of an 
autoparametric structure is very important to keep the pendulum at a given, wanted 
pendulum, or if necessary change it. For this purpose, the MR damper is proposed.  

 

(a) (b) 

     
Figure 6. Basins of attractions for α3=0 (a) and experimental time histories with impulse 

activation of MR damper (b). 

Figure 6a shows basins of attractions for two sets of initial conditions of the pendulum, 
that is, its angular displacement (ϕ) and angular velocity (dϕ/dτ). The diagram indicates 
more than one coexisting attractor for the same set of parameters. For each attractor, the 
set of initial conditions leading to long-time behaviour is plotted in corresponding 
colours. Attractor no. 1 (dark grey colour) and no. 2 (pink colour) represent negative 
(clockwise direction) or positive rotation of pendulum, respectively. The attractor no. 3 
(blue colour set of initial conditions) represents a chaotic motion consist of a swings and 
rotation of pendulum. This kind of motions is represented by chaotic attractor, in Fig. 4a, 
and by blacked colour in Fig. 5a, confirmed by positive value of Lyapunov exponent 
(Fig. 3b). This example emphasises a very important aspect of the existence of possible 
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multiple solutions in nonlinear structures. This observation has practical meaning in 
engineering and physical problems. Figure 6b shows experimental time histories of 
pendulum with impulse MR damping activated (α3=0.3). We observe that impulse turn 
on of MR damper (value α3=0.5, activation lasts τ≈10) causes change kind of motion 
(jump one attractor into another). The response of systems depends on moment (actual 
initial conditions of pendulum) in which MR damper is turn on.  

5. Conclusions and Final Remarks 

The paper presented the numerical and experimental results of the autoparametric system 
with applied MR damper. Activation of the MR damper allows for an open loop control 
of the system. Obtained results show, that the application of nonlinear damper may be an 
effective method of elimination of the chaotic motion, or if necessary to change one 
attractor into another. Moreover, by applying simple open-loop control, it is possible to 
fit on-line the structure response to the frequency and amplitude of external excitation. 
This suggests that MR damper can be used as special device in engineering applications 
as a system of dangerous motion preventive or as special control dynamics device of 
harvesting energy applications.  The future work is planned, to use MR damper together 
with shape memory spring (SMA spring) and apply a closed loop control to prepare a 
smart dynamical absorber.   
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Abstract 

This research deals with the study the dynamics of the spacecraft with the deployed flexible ring antenna. The 
deployment is performed after placing the spacecraft into orbit and completion of the preliminary damping by 
a special jet-propelled system, and after uncaging the gyros of the stabilization system. Primarily the antenna is 
a pre-stressed tape wound on a special drum. When the drum starts deploying the tape, it takes the shape of an 
elastic ring of variable diameter. The objective of the study is the mechanical and computational modelling of 
the spacecraft dynamics. The equations of motion are derived with the use of the Eulerian-Lagrangian 
formalism with the help of Mathematica 5©. Numerical simulations of the operational mode of the system are 
conducted.  Numerical results indicate that the system used for attitude stabilization ensures the shape of the 
deployed design and prescribed accuracy of the orientation. Simulation results are presented for the spacecraft 
model in order to show the effectiveness of the spacecraft and deployment process stabilization.  

Keywords: spacecraft, flexible ring antenna, deployment, gyro-gravitational stabilization.  

1. Introduction  

Spacecraft delivered into orbit in a compact form are one of the basic components of 
modern space systems. The deployment of the flexible appendages perturbs the attitude 
motion of the transformed spacecraft. The study of such configurations is required for 
minimization of deployment duration, weight, and power resources, for analysis of the 
effect of such constructions on the spacecraft attitude motion. There exist a large number 
of studies in the literature dedicated to the deployment of elastic appendages from the 
fixed basis as well as from a rotating spacecraft. A short review of these publications is 
contained in [1]. A special class of large structures to be deployed in space concerns the 
tethered spacecraft. Levin [2] gives a detailed analysis of basic aspects of this problem. 

Here a spacecraft that includes gyro-gravitational system of stabilization is studied 
during deployment of a flexible ring antenna structure according to a commanded 
motion. The deployment mechanism dynamics is also taken into consideration. The 
spacecraft (SC) includes two gyro-dampers (GD) which are installed in order to reduce 
amplitudes of attitude oscillations. It includes also the elastic preliminarily stressed tape 
with memory of shape. The spacecraft is placed in a circular orbit about the Earth of 
radius 6600 km. Fig. 0 shows the spacecraft under consideration with the mechanism of 
the tape deployment and the gyro-gravitational system of stabilization. 
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Figure 1. Basic elements of the 

spacecraft. 

Here, element 1 is the SC main module, 2 is the 
gravi-stabilizer, 3, 4 are the GD, 5 is the tape 
wound on the drum, 6 is the case of the 
deployment device, 7 is the ring to be formed of 
the pre-stressed tape, 8 is the external end of the 
tape, 9 is the direction of flight, 10 is the direction 
along the orbit binomial, 11 is the local vertical. 
Deploying from the drum according to a 
commanded motion into the circular flexible 
antenna in the orbital plain, the tape takes the 
shape of an elastic ring of 30 meters in diameter. 
The external end of the tape is fixed close to the 
point where the tape leaves the drum. This point 
comes nearer to the drum surface as the tape is 
reeling out. 

2. Mechanical model of system  

For the case under consideration the generalized mechanical model may be represented 
as a main rigid body S1 and body S2 of variable configuration attached to it. The body S1 
is the gyro-static part and includes the GD, which do not change the rotational body 
inertia.  

The following frames of reference may be useful for the problem statement: CXYZ is 
an earth-cantered inertial reference frame; C1xyz is the body S1 fixed reference frame 
(Fig. 1) with C1z  along the design position of the GS axis; the orbital frame of reference 

or or orCx y z is fixed in the SC mass centre. These frames are introduced in a traditional 

way [4].  
The position vector r  defines the location of the arbitrary point P  with respect to 

the reference frame CXYZ , and the position vector 'r  – with respect to the reference 
frame Oxyz. In contrast to the problem of dynamics of relative motion of carried bodies 
described by Lurie [5], the problem under consideration is the more general one when 
the expression for 'r  depends on time t explicitly, not only through the generalized 
coordinates:  

 1' '( , , , )nq q t=r r K  (1) 

as the deployment of the tape takes place in accordance with the prescribed in time law. 
As a result, 'r changes in time in the process of deployment even when the magnitude of 
the generalized coordinates, which determine the relative elastic motion of the ring, are 
identically zero.  
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Since the deployment is supposed to be rather slow as compared with the maximal 
period of ring natural oscillations, the ring antenna may be modelled with use of 
classical modal analysis. Further, the relative displacements for two oscillation modes of 
the elastic ring fixed in one point in its plain and for its two modes in transversal 
direction are to be chosen as the generalized coordinates, which determine the relative 
motion of the ring.. The angles of rotation βi (i=1,2) (Fig. 1) of gyro-dampers also must 
be considered as additional generalized coordinates.  

3. Mathematical model of system  

The equations of motion of the system under consideration become the most compact 
and convenient for numerical integration, if one chooses the instantaneous position of 
the mass centre C as an origin. Then one can obtain the following Lagrange’s equations 
of the second kind for the generalized co-ordinates, sq : 
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The equation of the attitude motion may be obtained as the Euler-Lagrange equation 
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The following notations are used here: CΘ is the inertia tensor of the whole system 

with respect to point C ; 
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' ' ' 'C
r C C

m

dm M= × − ×∫K r r r r  is the relative moment of 

momentum of the deployed part with respect to point C; '
Cr  is position vector of the 

instant position of the mass centre C in the main body fixed frame of reference; the 
symbol * denotes time differentiation in the reference frame C1xyz; M is the total mass of 
the system; 1C

rT is the kinetic energy of the relative motion of the carried bodies 

calculated under condition of definition of relative velocities of their points with respect 

to C1; 
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is also the 

Euler’s operator, but the time differentiation is performed in the reference frame C1xyz; 
Qs are generalized forces that take into account the elastic and dissipative characteristics 
of the construction, and Cm is the gravitational torque.  

If to supplement Eqs. (2), (3) by the kinematical equations, one obtains a closed 
system of equations of motion. The parameters of Rodrigues-Hamilton were chosen as 

the attitude parameters. Further, it is necessary to determine expressions for c
′r , CΘ , 

C
rT , C

rK , Π , sQ  and all their derivatives with respect to time and generalized co-

ordinates, which appear into expressions for coefficients of the equations (2), (3) . All 
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this values may be defined if one knows the expressions for ′r  and 'v  for all points of 

the system under consideration. 
During deployment, the material points of the tape make a compound motion. All 

these point are disposed always close to a ring of variable radius. Its centre is defined 
uniquely by three co-ordinates axr(t), ay, az in the main body fixed reference frame. 
Velocity of any material point of the tape which is passing through any point Mi of the 
circular trajectory with respect to this point at the given instant can be written in 
projections to C1xyz as the following: 

 '  =  (2    ) sin( ) ; '    0; '  =  (2    ) cos( ) .x k k k y z k k kv r v v rπ ϑ ϑ π ϑ ϑ− = −% & % % &  (4) 

One can write the following expression for the position vector of the material point 
M of the tape  in the reference frame C1xyz: 
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 (5) 

Here 1 ( ), 2 ( ), 1 ( ), 2 ( )k k k kuv cs uv cs uv sc uv scϑ ϑ ϑ ϑ  are the first and second modes of 

oscillations of the ring with one fixed point in its plane in  projections to the axes C1x 
and C1z taking into account both radial and tangential motions,  1 2( ), ( )k kw wϑ ϑ are the 

first and second modes of transversal oscillations of the ring in  projections to the axis 

C1y. Now one can write  
*

' ' 'i i ir= +v v% , where the last term is obtained as a result of 

time differentiation of the expression (5) in C1xyz.  
The original computation package was developed for the numerical integration of the 

obtained ordinary differential equations in the frame of the Cauchy problem. The 
majority of operators of the program was obtained in the form of Fortran-expressions in 
Mathematica5© with help of codes written specifically for the system studied, and after 
using a set of replacements of the bulky expressions obtained, by simple enough 
variables. 

4. Simulations  

Key system parameter values are: mass of main body m1 = 1400 kg, tape bending 
stiffness EJ = 1.5 N m2, EJ1 = 366,4 N m2, decrement of oscillations ϑ  = 0.001, 
components of the main body inertia tensor Jxx = 10000 kg m2, Jyy = 12000 kg m2,  
Jzz = 2000 kg m2, angular momentum of one GD rotor hrot = 20 kg m2/s, GD damping 
coefficient 

1 23 ,k β β = 40 N m / s2, duration of deployment Tf  = 500 s. The initial values of 

the attitude angles are taken to be zero, the initial values of the SC angular velocity 
components in orbital reference frame before the deployment are to be used within the 
range 0.0 – 0.0005 s-1, the smooth enough law is taken as a basis for the deployment law 
in time that corresponds to the optimal slewing of the flexible SC with the minimal 
dynamic overloads of elastic elements in a relative motion, as is described in [6]. In the 
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case under consideration, such a law also creates the minimum possible perturbations, 
inducing elastic oscillations, during the deployment. 

The orbit parameters were accepted to be arbitrary. Though the SC movement along 
an orbit is not considered here, the orbit parameters are required to calculate the 
gravitational torque and for the monitoring of errors of the numerical integration of the 
initial value problem.  

During deployment the diagonal components of the SC inertia tensor increase. The 
component 2,2

CΘ  increases the most. If one tries to deploy the antenna on an SC, which 

does not contain the gyro-dampers, the SC begins to rotate around its pitch axis. This is 
visible in Fig. 2a, where the time history of the projections of the absolute angular 
velocity for such a case (Fig. 2a) is shown. Projection 2ω  becomes strongly less of its 

initial value and SC performs long-term spatial motion. But if GD are switched on, the 
SC does not enter into rotation around the pitch axis; here are only oscillations around 
this axis. With increase of the GD inertial and damping characteristics, the process of 
stabilization with regard to a local vertical considerably improves. Fig. 2b shows that the 
angular velocity of rotation around the pitch axis starts to oscillate about the orbital 
angular velocity in process of damping of the elastic and pitch oscillations. Oscillations 
of other two projections 1ω  and 3ω  also decrease step-by-step. 

 

Figure 2. Time histories of absolute angular velocity projections 

The plane vibrations of the ring (Fig. 3) have the maximum amplitude of 
approximately 1.8 m for the first oscillation mode 1uq  (Fig. 3a), which then decreases as 

a result of the constructional damping and remains at a nearly constant level as a result 
of interaction with the SC attitude motion.  The behaviour of the amplitude 2uq  of the 

second plane mode is the same. The nature of the in-plain vibrations is not depends on 
the presence or lack of the GD. The transversal oscillations of the ring behave 
differently, though their amplitudes are much less in view of the higher bending 
stiffness. In Fig. 3b one can see difference in 1wq  behaviour when the GD are absent 

(solid line) and when the GD are switched on (dot-and-dash line). During the 
deployment process these oscillations behave identically but with time as a result of 
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interacting with the SC damped oscillations around the yaw axis they also are damping. 
The analyzed graphs show that deployment of the ring antenna from the SC in the 
presence of the gyro-gravitational stabilisation reduces to the nominal conditions of the 
SC motion. 

 

 

Figure 3. Relative elastic displacements 

9. Conclusion  

The present research deals with the exploration of the dynamics of the gyro-gravitational 
stabilized spacecraft in the mode of the deployment of the elastic ring antenna. The 
mathematical model developed for this case may be regarded as the generalization of the 
theory of a flexible multi-body system with the time dependent configurations. The 
approach may be successfully extended to the modelling of the dynamics of other space 
construction deployments with the significant change of the configuration in the process 
of exploitation. The computational Fortran-package developed for the numerical 
simulation has common characteristics, which may be easily adopted for other deployed 
systems. The obtained data permit to select the most appropriate deployment and gyro-
dampers parameters. 

References 

 V. Dranovskii, V. Khoroshylov, A. Zakrzhevskii, Spacecraft dynamics with regard 1.
to elastic gravitational stabilizer deployment, Acta Astronautica, 64 (2009) 50-513. 

 E. Levin, Dynamic Analysis of Space Tether Missions, Advances in the 2.
Astronautical Sciences, 126, Univelt 2007. 

 V. Dranovskii,  A. Zakrzhevskii, A. Kovalenko, V. Khoroshilov, On the Dynamics 3.
of Deployment of an Orbital Structure with Elastic Elements, International Applied 
Mechanics, 42 (2006) 959-965. 

 V. Beletsky, Motion of an Artificial Satellite about its Center of Mass, Israel 4.
Program for Scientific Translations, Jerusalem 1966. 

 A. Lurie, Analytical mechanics, Springer 2002. 5.
 A. Zakrzhevskii, Slewing of Flexible Spacecraft with Minimal Relative Flexible 6.

Acceleration, J. of Guidance, Control, and Dynamics, 31 (2008) 563-570.  



XXV Symposium Vibrations in Physical Systems, Poznan – Bedlewo, May 15-19, 2012 

Numerical Analysis of Vibration in a Brake System  
for High Speed Train 

Robert KONOWROCKI 
IPPT, Polish Academy of Sciences, Department of Intelligent Technologies 

rkonow@ippt.gov.pl 

Roman BOGACZ 
Krakow University of Technology,  Department of Civil Engineering 

rbogacz@ippt.gov.pl 

Abstract  

The paper is devoted to a computer simulation of brake pad/brake disc dynamic interaction. The main purpose 
of the studies is a numerical analysis of friction pair dynamics, aiming at describe generation of vibration 
related to the process of transition phenomena associated with braking. To investigation will be used 
environment of Automatic Dynamic Analysis of Mechanical Systems. In the analysis is used two-dimensional 
friction model. The results show the slip-stick and creep phenomenon.  
 
Keywords: vibrations excited by friction, self-excited of vibrations, slip-stick, creepage.  

1. Introduction  

Self-excitation of vibrations due to dry friction commonly found in brake systems. Many 
research connected with determination of causes of vibrations have been undertaken. In 
questions of that nature it is necessary to determine criteria for modelling such 
phenomena, considering the principal factor such as dynamic non-linear friction. 
Developing models of interact friction pair of brake systems in an era of increasing 
vehicle speed and increase their weight is very important. In the case of braking systems 
for high speed train introduced sintered pads (Fig. 1).  

 
 

Figure. 1. Brake system for high speed train and sintered brake pads (source: 
www.gobizkorea.com). 
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Such a segmented structure can faster conduct and radiate the heat from the brake pad. 
The dynamic interaction between elements of the brake pad may increase or decrease the 
vibration depending on configuration. It seems to be dependent on mode of pad elements 
vibration (in-phase or out of phase). 

Elaboration of a method of decrease and damping of unfavourable vibrations 
requires, among others, building of correct numerical model simulating, as far as 
possible, accurately the system under investigation. To identify the interactions of 
friction pairs requires understanding the dynamics of the friction transient process [1, 2]. 
Numerous investigation in research units all over the world are engaged in analysis of 
the  
self-excited vibration in brake systems. Problem of “squeaking” brakes has been 
investigated to considerable extent in automotive industry. Author in paper [3] gave 
comprehensive preview on that phenomenon with regard to vibrations and contact 
forces. He presented both experimental and numerical study. Majority of projects 
connected with modelling of brake systems was based on finite elements method. The 
authors of paper [4] adopted the model with two degrees of freedom for disc brakes 
where the disc and pads are modelled as particular kinds of connections through the 
interface of friction and stability. In their approach also analysis of limit cycles was 
executed. Some methods of brake discs vibration analysis are presented in the studies [5] 
and [6]. Brake disc components were modelled with application of the plate finite 
elements. The influence of non-linearity of contact forces on generation of low and high 
frequency noise in brake discs was subjected to experimental and analytical investigation 
by authors [7]. The researchers observed that time-frequency analysis is very useful in 
identification of character of generated noise.  
 

 

Figure. 2. Model of brake system. 

 2. Model of brake system 

The model (Fig. 2) consider consist of 11 moving parts (friction elements, disc and 
plate); therefore  the number of parameters describing configuration is 11 x 3 = 33 used 

ω 

Fpressure  
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by the pre-processor to build the set of equations of motion. The model of brake system 
contains: one revolution joints, one translation joint, nine planar joint and one rotation 
joint motion. The total number is 11, what make together 20 degrees of freedom. The 
friction elements are flexibly connected between each other. Outer elements are flexibly 
connected with a plate. A force F directed along the Z axis operates by the plate on all 
friction pairs. 

2.1. Equations of motion 

The brake model is based on a Cartesian coordinates approach for the assembly of the 
equations of motion. The Euler parameters are used to represent the rotational degrees of 
freedom and Lagrangian formulation for the assembly and generation of equations of 
motion. The joints between bodies are expressed in a set of algebraic equations, 
subsequently assembled in a second derivative structure, obtaining finally  
a set of Differential Algebraic Equations in the following packable form: 
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The symbols M is the mass matrix, q, λλλλ and F denote, respectively, the generalized 
coordinates, the Lagrange multipliers and the generalized forces applied to the rigid 
bodies vectors. Symbol χ the right-hand-side of the second derivative the constraint 
equations. 

2.2. Description of contact 

Model of contact used in our analysis lets you define a two-dimensional contact between 
a pair of geometric objects. Using the contact as a unilateral constraint, as  
a force that has zero value when no penetration between the specified elements exists, 
and a force that has a positive value when exists penetration between elements friction 
and disc. The model of contact describes the following  formula (2).  

Both the static and quasi-static equilibrium analysis modes use Newton-Raphson 
(NR) iterations to solve the nonlinear algebraic equations of force balance. The NR 
algorithm ensures that the system solution moves in the direction of most compliance 
(least stiffness). When a contact is active, the stiffness in the direction of the normal 
force is high, so the NR algorithm modifies the system states to decrease this force.  
If a contact is inactive, there is no stiffness in the direction of increasing contact.  

 

_ = m max�H�qr � q��s � Jq� , 0�							for					qr ≤ q�	0																																																						for						qr > q�,                                    (2) 
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J�v� = � 0																																														for														w ≤ 0J4xy Y Bz{ w$ � $z| wB` 														for							0 } w ≤ >		J4xy 																																									for																w > > .                               (3) 

To describe the contact model following parameters are used: c is damping parameters 
of contact, k is contact stiffness, xp initial displacement of contact, xk is displacement of 
the penetration (b=xp- xk), p is the maximal value of penetration. Parameter of damping 
coefficient c corresponds to energy dissipation during the contact. From the above 
mentioned formula (3) it follows that the value of coefficient c depends on the 
penetration b the friction element in the disc. Damping coefficient c can reach  
a maximum value after reaching required penetration l. During the further penetration 
the damping is constant (c = cmax). 

2.3. Friction model 

In order to determine the contact friction force in investigations used a velocity-based 
friction model of contact. The figure below shows how the coefficient of friction varies 
with slip velocity.  

 
Figure. 3. Model of Friction. 

In this model:  

µ(-vs) = µs 

µ(vs) = -µs 

µ(0) = 0 

µ(-vd) = µs 

µ(vd) = -µd 

µ(v) = -sign(v)·µ d                                              for  |v| > vd 

µ(v) = -step(|v|,vd, µd, vs, µs) ·sign(v)                 for vs <|v|<vd 

(4) 
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µ(v) = step(v,-vs, µ s,vs,- µs)                               for -vs < v < vs  . 

 
Parameter vs is the velocity at which full value of the static friction coefficient is applied. 
vd is the velocity at which the value of the dynamic friction coefficient has fully 
transitioned from the static friction coefficient. 

3. Computational example 

The study on the numerical model provided us with some interesting observations shown 
in following graphs. For all results presented below assumed constant values of 
parameters: coefficients friction, stiffness of spring, force of pressure on the friction 
elements (normal force). They are µs=0.6, µd = 0.3, kspring = 400 N/mm, Fpress= 300 N. 
During the tests changed angular velocity of the disc ω, stiction friction transition 
velocity vs and friction transition velocity vd. Because the interaction of neighboring 
friction elements the amplitude of vibration of some the elements under consideration 
decreases with time (Fig. 3). Such behavior is confirmed by studies [1]. The authors 
introducing an external excitation, to reduce the vibration amplitude of the masses 
moving on the conveyor.  

It was also found that reducing the angular velocity of the disc causes the 
phenomenon of stick-slip. Stick-slip phenomenon is also dependent on the value of the 
parameter vd included in the model of friction. In case of increase in vd above the 33 
mm/s, this phenomenon disappears passing to periodic oscillations (Fig. 4). 

 

Figure. 3. Phase trajectory and time-histories of oscillation friction element no 1. 
 

 

Figure. 4. Phase trajectory by different angular velocity of disc. 
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Figure. 5. Phase trajectory with creep effect at different velocity (vs, vd) describing curve 
of friction model– differences of  creepage marked by dot and dashed lines. 

In between the range of stick-slip and periodic vibration, creep phenomena can be 
observed (Fig. 5). This creepages is marked by dot and dashed lines. Differences in the 
creep process marked by straight lines on graphs phase trajectories (Fig. 5) are caused by 
different value of the velocity vs and vd of friction model. The values of these velocity 
affect on different slope of the curve of friction model (Fig. 3). 

4. Conclusions  

Stick-slip and creepage phenomena obtained in the numerical model of brake system has 
been presented. The studies also confirmed that introduction of an additional excitation 
to the system can reduce the amplitude of vibration of the system. In many papers the 
authors introduced external harmonic excitation  into the system to reduce vibrations. In 
our case excitation generated by vibration of neighbouring friction elements of the model 
may reduce amplitude vibration depending on configuration of elements (Fig. 4). 
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Abstract  

The paper deals with the free vibration analysis of irregularly shaped plates using differential quadrature 
method (DQM). In the paper some effective approaches to deal with the problem of mapping irregular area 
into regular one are presented. These approaches are used in conjunction with a branch of the DQM based on 
spline interpolation to solve the free vibration problem of thin, isotropic plates. The use of this type of 
interpolation in the DQM ensures the stability of the method. As the results, the convergent tests of the natural 
frequencies are presented and compared with the results from conventional DQM. 
 
Keywords: differential quadrature, irregularly shaped plates, blending functions, free vibration   

1. Introduction  

The differential quadrature method (DQM) is the discretization technique used to solve 
differential equations. It is characterized by very high rate of convergence, similar to 
spectral methods. In some particular cases, the method is identical to pseudospectral 
collocation method and finite difference method of the highest order of accuracy. 
Besides high rate of convergence, the DQM is characterized by high accuracy, little 
computational effort and is easy to implement due to its simple formulation. But this 
method has some limitations and drawbacks including computational instability and 
difficulties in handling the problems with irregular domains.  

One of the ways to improve the stability of the method is the use of the spline 
functions to approximate the sought solution [1], instead of conventional interpolation 
polynomial [2]. There are also attempts to use the DQM in the case of problems with 
irregular domains. In paper [3], serendipity shape functions have been applied to map 
between regular and irregular area, similarly to finite element method. Another approach 
that allows exactly to map computational area into irregular one is the use of the 
blending functions, proposed by Gordon [4]. This approach, associated with the 
conventional DQM, has been employed to analyze thin, isotropic plates [5,6]. The aim of 
the present work is to examine the DQM based on spline interpolation in vibration 
problem of plates with irregular geometries. In the paper, the comparison between two 
ways of implementation of the DQM in this type of problems is also taken up.        

2. Short description of the DQM  

The basic idea of the DQM lies in the fact that the spatial derivative of a function at a 
given point is approximated by a linear weighted sum of the function values at all 
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discrete points along the line that pass through the point of interest. It can be put as fol-
follows 

 ( ) ( )
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where N denotes the number of grid points and ( )r
ija  are the weighting coefficients of the 

rth order derivative.  
By approximating all derivatives in the governing equation and/or boundary 

conditions according to formula (1) and collocating these equations at appropriate 
sampling points in the domain one obtains a set of algebraic equations. A key stage of 
the method is to determine the weighting coefficients. These coefficients depend on the 
way the sought solution is approximated. Therefore, they influence the convergence, 
accuracy and stability of the method. 

The conventional DQM uses interpolation polynomial. On this basis the weighting 
coefficients are determined [7]. The latters are described by simple algebraic formulas, 
what makes the method very efficient. To overcome the main disadvantage of the DQM 
– computational instability – author proposed to approximate the sought solution by the 
spline functions [1]  

 [ ] }{ 1( ) ( ), , , 1,..., 1i i if s i N+≈ ∈ = −ζ ζ ζ ζ ζ  (2) 

In Equation (2) N is the number of nodes and the ith spline section si(ζ) of n degree 
can be written as 
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where cij are spline coefficients. Expression (2) is correct for the odd spline degrees. In 
order to determine the weighting coefficients ( )r

ija , one has to calculate spline coefficients 

at first. To this end, the set of algebraic equations has to be solved. The lack of explicit 
expressions for weighting coefficients is an inconvenience of the method comparing to 
conventional one. The spline-based DQM has been successfully applied in various 
mechanical problems including these where conventional DQM fails [8]. All details 
about spline-based DQM can be found in [1,9].        

3. DQM for irregular geometries 

Plates analyzed in the present paper are represented in general by curvilinear 
quadrilateral region, shown in Fig. 1a), called as physical domain. To employ the DQM 
in this case, a mapping between this region and computational regular area, presented in 
Fig. 1b), is required. To this end, the advantage of the blending functions [4] is taken and 
the mapping can be described as  
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Figure 1. Domains: a) physical domain, b) computational domain 
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where [ , ]Tx y=s , is  are parametric curves that represent the boundaries and si are 

Cartesian coordinates of the corner points of the quadrilateral region.  
There are two approaches to use the conventional DQM in this case. One of them is 

known as partial transformation [3,5] and transforms the weighting coefficients ( )r
ija  for 

the DQM from computational domain to irregular one by the use of Equation (4). 
Further computations are carried out in original, physical domain.  The second approach, 
known as complete transformation [6], transforms governing equation and associated 
boundary conditions from physical domain to computational one and uses original DQM 
weighting coefficients to discretize the problem in computational, rectangular domain. 
This approach requires less computational effort to obtain the solution but the stage of 
transformation is much more complicated. Below are the basic details of both methods. 

Partial transformation       

Taking advantage of the chain rule of differentiation 
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where J  is the determinant of the Jacobian, given as 
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   In Equation (6)-(7) , ( 1) , 1,..., , 1,...,m n i N j j N i Nη η ξ= − + = =  and N N Nξη ξ η= ⋅ . 

Taking into account that higher order derivatives obtained by the chain rule (5) are given 

by complicated formulas, weighting coefficients ( )r
mnb , ( )r

mnb  for these derivatives and 

mixed one ( )rs
mnc  are obtained by matrix multiplication formula 

 ( ) (1) ( 1) ( ) (1) ( 1) ( ) ( ) ( ), , 2,3,..., , , 1, 2,...,r r r r rs r sB B B B B B r C B B r s− −= = = = =  (8) 

Once the weighting coefficients in physical domain are determined, the DQM analog 
of governing equation and boundary conditions can be easily written.  

Complete transformation 

The governing equation end associated boundary conditions are transformed to 
computational domain. In the case of square, thin, isotropic plate, for which free 
vibrations are governed by the formula 

 
4 4 4

2
4 2 2 4

2
W W W

W
X X Y Y

∂ ∂ ∂
+ + = Ω

∂ ∂ ∂ ∂
 (9) 

the transformed equation is as follows 

 

(41) (42) (43) (44) (45) (31)

(32) (33) (34) (21) (22) (23)

(11) (12) 2

, , , , , ,

, , , , , ,

, ,

D W D W D W D W D W D W

D W D W D W D W D W D W

D W D W W

ξξξξ ξξξη ξξηη ξηηη ηηηη ξξξ

ξξη ξηη ηηη ξξ ξη ηη

ξ η

+ + + + +

+ + + + + +

+ + = Ω

 (10) 

In Equation (10), the coefficients D(ij) depend on x, y coordinates that are taken from the 
mapping formula (4). The detailed description of these values is given in [6].  
Similarly the boundary conditions are transformed, e.g. equation for clamped edges takes 
the form  
 , 0, where ornW W n ξ η= = =  (11) 

Using the DQM weighting coefficients determined in computational domain the 
discretized equation for (10) and (11) can be easily written. 

4. Numerical example 

In the work, the numerical experiment has been carried out in order to confirm 
usefulness of the spline-based DQM in vibration problems of plates with curvilinear 
boundaries. The plate presented in Fig. 2 has been considered. The physical domain from 
Fig. 2 can be described by the use of Equation (4), what yields 

 
( , ) (0.6255 2.6255)cos(( 1) 4)

( , ) (0.8755 1.8755)sin(( 1) 4)

x

y

ξ η = η + ξ + π

ξ η = η + ξ + π
 (12) 

Two approaches presented in section 3 have been employed to discretize the governing 
equitation of the plate as well as the clamped boundary conditions. 
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Figure 2. A quarter section of an elliptical plate 

The weighting coefficients ( )r
ija  have been obtained by the use of the spline functions of 

eleventh degree. The computation has been done applying Gauss-Lobatto pattern of 
point distribution. The results, depending on the number of points in both directions 
N=Nξ=Nη, are shown in Table 1. The results from the conventional DQM are also 
provided for comparison.  

Table 1. Convergent test on the base of natural frequencies of the clamped plate 

 Ω1 Ω2 Ω3 Ω4 

N SDQM DQM SDQM DQM SDQM DQM SDQM DQM 

Partial transformation 

11 10.756 10.757 14.209 14.204 18.625 18.722 23.615 24.587 

18   9.955 9.955 13.171 13.171 17.342 17.343 23.091 23.093 

22   9.826 9.826 13.008 13.008 17.126 17.126 22.794 22.794 

26   9.756 9.757 12.920 12.920 17.009 17.009 22.635 22.635 

Complete transformation 

11 9.600 9.598 12.722 12.742 16.712 16.910 22.261 22.145 

18 9.595 9.595 12.717 12.717 16.744 16.743 22.276 22.275 

22 9.595 9.595 12.717 12.717 16.743 16.743 22.275 22.274 

26 9.595 9.595 12.717 12.717 16.743 16.743 22.275 22.274 

The results contained in Table 1 show almost identical convergence even though 
different types of approximation are applied in the DQM. Moreover, the complete 
transformation approach leads to significantly higher convergence then partial 
transformation one. Only a few sampling points in each directions (e.g. N = 11) are 
sufficient to achieve acceptable accuracy. The same calculation has been carried out for 
simply supported plate and the same conclusion has been drawn. It should be noted that 
although complete transformation provides higher quality results and requires less 
computational effort [6], partial transformation seems to be more general method since 
only weighting coefficients are mapped to physical domain.     
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5. Concluding remarks 

In the paper, the DQM based on spline interpolation is examined in the free vibration 
analysis of plates with curvilinear boundaries. Two approaches of handling this type of 
problem are presented. Although complete transformation approach gives faster 
convergence and requires less computational effort, this approach is more complicated 
since governing equation and boundary conditions have to be mapped to computational 
domain. In the second approach only DQM weighting coefficients are mapped, what 
simplifies problem definition. 

The obtained results show the same rate of convergence of the spline-based DQM in 
comparison with conventional DQM. The present results and the fact that spline 
interpolation improves the stability of the DQM make this method competitive to 
conventional one in this type of problems.      
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Abstract 

The work presented in this paper emphasis the modeling and simulation of the dynamic interaction between the 
pantograph and a catenary system. The main aim of the paper is to present the influence of catenary stiffness 
on the overhead system dynamics. To investigate the effect of the catenary stiffness on the system vibration a 
new formula describing stiffness has been introduced. The limit uplift force which does not cause the contact 
loss was determined. General results are illustrated by numerical examples in which the effect of contact wire 
stiffness is observed. The comparison of the result of simulation and experiment, performed on especially built 
stand, is provided. 

Keywords: dynamics, pantograph, catenary, stiffness 

1. Introduction  

At present, the collection of current from the overhead equipment is a problem of 
primary importance for high speed railway systems, and has become a challenging task 
for the development and exploitation of current electrical railway lines. It is generally 
known that the pantograph-catenary system, with its dynamic behaviour, is a crucial 
component of railway transportation. Therefore, research into understanding the current 
collection system dynamic characteristics is needed.  

The dynamics of the pantograph-catenary system was studied mainly theoretically by 
simulation methods with numerical calculations. The pantograph was modelled as two - 
or three – dimensional lumped – mass system of two or four degrees of freedom. The 
catenary was considered as a continuous model, first of all as string or Bernoulli-Euler 
beam models. A review paper describing the pantograph-catenary systems has been 
presented by Poetsch et al. [2] and Kumaniecka [1]. In the present paper more attention 
is paid to catenary-pantograph models including contact wire stiffness.  

The paper is organized in five sections. Following the introduction, the models of the 
catenary and pantograph are described in Section 2. The influence of contact wire 
stiffness on dynamic performance is discussed in Section 3. A comparison of the results 
of simulation and experiment is presented in Section 4. The concluding remarks are the 
subject of the Section 5. 

2. Model of the catenary-pantograph system  

The catenary is one of the most important parts of a railway electrification system. In 
railway transportation two types of catenary are in use, a simple catenary and compound 
catenary. The compound catenary is used for high-speed trains (above 250 km/h) and the 
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simple catenary for mid-speed trains (below 150 km/h). In Poland the simple catenary is 
still in use. Many different pantograph designs have been proposed, see Fig. 1. 

 

    

Figure1. Pantograph system: symmetric with one strip and asymmetric with two strips 

The pantograph and the catenary together form a dynamically coupled vibrating 
system mutually affecting each other through the contact force. The contact force is 
composed of the static force that it called uplift force, and the dynamic force which 
depends on the running speed and the vibration of system.  

The major source of vibration is the spatial stiffness variation of the catenary along 
the span in which this value is a minimum value in the middle and maximum value near 
the supports. The previous studies on the response of catenary-pantograph have shown 
that the variation of the contact force between the pantograph and the contact wire is 
principally caused by the stiffness variation along the span and the wave propagation in 
the catenary wires. Wu et al. [4] proved that the compound catenary has a smaller static 
stiffness variation in comparison with the simple catenary. 

If the stiffness variation between the vertical droppers is omitted and the train is 
travelling at constant speed v, then the stiffness k(t) can be approximated by the formula: 
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where L is the length of one span and kmax, kmin are the largest and smallest stiffness in 
the span, respectively. k0 can be regarded as the average stiffness and α as the stiffness 
variation coefficient. It should be mentioned that several authors used the type of 
approximation shown in Eq. (1).  

In Fig. 2 the physical model of the pantograph type WBL-85/3kV, which is 
commonly used in many countries in Europe, Asia and Africa, is shown. Displacement 
of the pantograph pan-head is the main factor for dynamic performance and it is related 
to the contact force directly. The static uplift force is applied to the pantograph to keep 
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the proper working height. A smaller static uplift force may induce a contact loss, arcing 
and sparkle.  

 

Figure 2. Model of the pantograph 

To limit the scope of the problem of the dynamic pantograph behavior, in the 
presented study, only the vertical vibration in surrounding of static equilibrium state 
have been considered. It was assumed that damping in kinematic connections has a dry 
friction characteristic, and elastic connection elements of reduced masses of contact 
strips and upper arm have nonlinear characteristics. The aerodynamic force is taken into 
account. Some details are presented in the monograph [1]. The mathematical model for a 
physical model of the pantograph, adopted in Section 2, was discussed in [3]. To predict 
the dynamic behaviour of the system in question, the time varying static stiffness k(t) 
should be replaced by the dynamic stiffness. 

3. Influence of contact wire stiffness on the system dynamics  

A proper description of stiffness needs unilateral constraints in the contact between the 
pantograph strip and wire to be taken into account. The function describing the contact 
force F(t) should be written as follows: 
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In Figure 3 the program of simulation of minimal limit of uplift force Fstat, which 
does not cause a contact loss, is presented. 

 

 
Figure 3. Minimal limit of uplift force Fstat = 560 [N] and at Faer = 30 [N] with no loss of 

contact 

Taking into account the limit value of uplift force Fstat = 560 [N] the calculations of 
the values of the contact forces on the strips of the pantograph were done.  

To investigate the phenomena of the contact loss in the overhead system numerical 
simulations for the contact force less a limit force have been carried out. In Fig. 4 the 
contact force in the form of peak-to-peak and the range of loss of contact is shown. 

 

Figure 4. Contact forces on strips at too little value of uplift force Fstat = 500 [N] 
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The stiffness variability plays a key role at high speeds and it is responsible for 
higher contact force. The contact force is always positive, there exists contact between 
the catenary and pantograph, or zero when there is a contact loss.  

Contact losses can be found when the peak-to-peak contact force is smaller than the 
minimum contact force. 

The value of uplift force Fstat = 500 [N] is too little and the phenomena of contact loss 
appear. In order to highlight the influence of the train speed calculations for different 
values of operational speeds have been provided. 

4. Experimental investigation  

Theoretical models of the overhead system need to be verified experimentally. The 
testing facility for laboratory experiments was designed and built at the Faculty of 
Mechanical Engineering, Cracow University of Technology.  

The main part of experiments was connected with the interaction between the 
moving oscillator and contact wire. Plan of the experiments included also testing of 
catenary stiffness.  

The goal of the experiment provided was the measurement of forces between the 
pantograph strip and contact wire in different conditions of the given motion. 

The analysis of the experimental results shows periodical variability of the local 
flexibility along the wire. The maximum value of variability is 40% of the mean 
flexibility value. In Fig. 5 the acceleration of vertical vibration of pantograph strips and 
spectrum of acceleration for vertical excitation are presented. 

The measurements of dynamic vibration and interaction force between the 
pantograph and contact wire were taken for different initial loads and different velocity 
of the rail car. As a result, we could state that the loss of contact between pantograph and 
catenary is possible. 
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Figure 5. Acceleration of vertical vibration of pantograph strip and spectrum of 
acceleration for vertical excitation 
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5. Conclusions 

On the basis of theoretical investigations and experiments the following conclusions can 
be drawn:  

• Widely used formula (1) is too simple as a representation of the stiffness. 
• The new formula describing stiffness proved to be introduced. 
• The stiffness of the catenary varies significantly with train speed. 
• Parallel analysis of results of investigation carried out on the physical and 

experimental model enables their mutual verification. 

The computer simulation performed on the base of relevant theoretical models, 
verified in experiments with physical models are a useful tool for designers, both of the 
catenary and the pantograph.  
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Abstract   

A mathematical model of the process of linear free vibrations of layer plates with components pliable to 
transversal shear and compression is proposed. The analytical expression for the spectrum of natural 
frequencies of two-layer plate-strip is obtained. The influence of parameters of pliability to transversal shear 
and compression on their values is investigated. 

Keywords: Layer plates, vibrations, natural frequencies, composite plates 

1. Introduction   

Composite plates of layer structure with regulated characteristics of strength and 
materials consumption are one of the most abundant bearing elements of constructions 
and technical means of different purpose. In most cases they are subjected to intensive 
dynamic, cyclic in particular, loadings. Therefore the reliable estimation of such 
dynamic characteristic as a spectrum of natural frequencies is an actual problem at their 
designing in order to prevent the resonance phenomena in operating conditions. 

The pliability to transversal shear and compression is the most typical peculiarity of 
deformation of thin-walled elements from modern reinforced composites on the 
polymeric basis (both in static and dynamic cases) along with anisotropy of elastic 
characteristics [1]. It should be noted that today there are not many works on vibrations 

of composite plates with simultaneous accounting the pliability to transversal shear and 
compression, especially for their layer structure by the thickness when considering 
discretely the layers. The prevailing majority of our results have been obtained by means 
of numerical methods. In general same research conducted using the refined theories 
with the exact elastic characteristics of thickness [2, 3].  
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Below, basing on the variant of refined theory of plates, which takes into account 
explicitly the pliability to transversal shear and implicitly – to compression [4], we have 
suggested a mathematical model of the process of free vibrations of layer plates-strips to 
consider discretely the components of such structures. In the case of two-layer plate-strip 
an analytical expression for a spectrum of natural frequencies under condition of 
elongated edges, hinged on the lower face plane of the structure, has been obtained. The 
influence of physical-mechanical characteristics and geometric parameters of the 
structure components on the magnitudes of values of natural frequencies has been 
analyzed. The expression for a spectrum of natural frequencies of free vibrations of 
plate-strip with a thin protective coating, covered on the upper face surface, has been 
obtained as a special case [5]. 

2. Problem statement 

Consider a layer structure consisting of thin composite plates with brought physical-
mechanical characteristics and thickness 2hi and densities ρi, respectively. If one of the 
tangential dimensions of the structure considered exceeds essentially the other then we 
have a two-layer plate-strip, the characteristics of the stressed-strained state of which can 
be considered to be dependent on two local coordinates of each plate only (Fig. 1). 

 
Figure 1. Layer structure of composite thin plates-strips 

It is assumed that between the plates the conditions of perfect mechanical contact are 
satisfied. Due to the action of normal and tangential contact stresses on the interplate 
plane for the transverse vibrations of such a structure each component undergoes both 
bending and longitudinal deformations. The vibration process of each plate is described 
[4] by: 

a) equilibrium equations (motion) 

 02 =+′ −
iiN τ ,   02 =+−′ +

iiii hQM τ ,   iiiii whQ &&ρσ 22 =+′ − , (1) 

where 

 )],,(),,([
2
1 )(

1
)(

13
)(

1
)(

13 thxthx i
ii

i
ii

i −±=± σστ ,  



 Vibrations in Physical Systems Vol.25 (2012) 255 

 )],,(),,([
2

1 )(
1

)(
33

)(
1

)(
33 thxthx i

ii
i

ii
i −−=− σσσ ; 

b) elasticity relations  

 0
1iii BN ε= ,    1

1iii DM ε= ,    0
13iiiQ εΛ= ; (2) 

c) deformation relations  

 ii u′=0
1ε ,     iii h γεε ′== /1

1
1
1 ;     iii w′+= γε 0

13 . (3) 

In equalities (1) – (3) the conventional notations are used for tensile iN  and 

intersecting iQ forces, bending moments iM  in each plate, components of tensors of 

stresses )(i
knσ , displacements iu  of points of the midplane of the i  th plate in 

tangentional direction, angles of rotation iγ  of  the normal elements to the midplane 

before deformation, displacements of points of the midplane along the normal coordinate 

iw , longitudinal  0
1iε  and  bending  1

1iε  deformations, deformation of transversal shear 
0
13iε  and also for the introduced rigidity characteristics of the plate: 

)1(3/)1(2 2
iiiii hEB να −+=  – the generalized tensile rigidity, 3/2

iii BhD =  – the 

generalized bending rigidity, iii Ghk ′′=Λ 2  – shearing rigidity, 

)/))(21/())(1(( 2
iiiii EE ′′−−′+= νννννα , iiE ν,  – Young’s moduli and Poisson’s ratios 

in the midplane and plane equidistant to it, iiE ν ′′,  – the same values in the planes 

perpendicular to the midplane, iG′  – transversal shear moduli, 15/14=′k , ni ,1= , 

where n  is the number of layers. The stroke denotes the coordinate derivative )(
1

ix , and 

the dot – the t  derivative. 
The boundary conditions at the ends lx ±=  of a hinged lower plate along the 

elongated sides on the lower face surface read 

 0),( =± tlNi ,   0),( =± tlM i , 

 ==±=−± ...),,(),,( 2
)2(

1
)1( thlwthlw 0),,()( =−± thlw n

n . (4) 

The equation (1), together with relations (2), (3) and boundary conditions (4) form a 
mathematical model of the process of small free vibrations of layer plate-strip. The 
pliability of material of the ith component to transversal compression is taken into 
account in this model due to the presence the coefficients depending on the transversal 
elastic constants iE′  and iν ′  in the expressions for their rigidity characteristics. 
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3. Construction of solution of the problem 

Then consider in detail a case for n = 2  (Fig. 1).  

 
  

 

                      

 

 

 

 

 

 

Figure 2. Two-layer plate-strip 

For free vibrations of the layer structure under study on its face planes we have: 
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The relations  
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are the consequence of conditions of perfect mechanical contact between the plates at 

matching the origins of coordinate axes )1(
1x  and )2(

1x .  

The eguations (1) of motion, after substitution the relations (5) and (6) into them, 
yield 
 01 =−′ τN ,   02 =+′ τN ,  

 0111 =+−′ τhQM ,    0222 =+−′ τhQM ,  

 1111 2 whQ &&ρσ =−′ ,    2222 2 whQ &&ρσ =+′ . (8) 

Since on the face planes of each plate the tangential )(iu  and normal )(iw  
displacements are determined by the formulas [4] 
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from equalities (7) we find: 

 221121 γγ hhuu ++= ,    www == 21 . (9) 

The relations (9) enable the elimination of the contact interlayer stresses τ  and σ  
from equilibrium equations (8) and obtaining a system of three resolving equations: 
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If the sought for functions w  and 21, γγ  we present in the form 
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then the boundary conditions (4) are satisfied. After substitution (11) into (10) we obtain 
an infinite system of algebraic equations to determine the coefficients wn, γ1n, γ2n, which 
consists of independent third order subsystems 
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∞= ,1n ;   nω  is the n  th natural frequency. 

The expression for the squares of the values of natural frequencies 
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where 
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is the consequence of condition for non-triviality of solution of the subsystem (12). 

4. Special cases 

4.1 Plate-strip with a thin coating 

If the upper plate is assumed to be a thin protecting coating in comparison with the lower 
one then we can neglect the bending moment M1 in it. Having introduced into 
consideration the expression for a spectrum of dimensionless frequencies by the formula 
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from (13) for their values we obtain: 
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4.2 Plate-strip pliable to transversal shear and compression 

This case is obtained setting h1 / h2 = 0. Then from (13) for the spectrum of 
dimensionless frequencies (14) we obtain 

 ,
/)/)(1(

1

222
222

22

kGEk
k

n
nn ′′++

+
=

αεδ
α

εω  (16) 

where )1(3 2
2

2 νδ −= . 

 



 Vibrations in Physical Systems Vol.25 (2012) 259 

4.3 Timoshenko shear model 

Timoshenko shear model is obtained putting the values 0/ 22 =′EE  into the 

expression for coefficient α2. Then the spectrum of dimensionless natural frequencies is 
determined by the formula 

 .
/)/(

1

22
222

2

kGEk
k

n
nn ′′+

=
εδ
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4.4 Classical theory 

If the plate material is not pliable to transversal shear, that is 0/ 22 =′GE , then for nω  

we have  

 ./2 δεω nn k=  (18) 

5. Analysis of results and conclusions 

Numerical calculations are performed for a two-layer plate-strip for ,2,0/ 21 =EE  

,2,01 =ν  ,375,02 =ν  )1(2/ iii GE ν+= , ,2,0/ 21 =ρρ  ,0,1/ 21 =hh  05,0=ε . In 

the Table in the first line the values of dimensionless frequencies nω  for 2,1,0=n , 

calculated by the formula (17), are presented using the rigidity characteristics deduced 
by the thickness that is neglecting discreteness. The second line shows the values of the 

same natural frequencies calculated by the formula (13) for .0/ =′ii EE  The third line 

presents the same natural frequencies calculated by the formula (13) but for .1/ =′ii EE  

 
 

  Nos              nω  

of the variant   

 

0ω  

 

1ω  

 

2ω  

1 0,1465 1,2089 2,9247 

2 0,1288 1,0124 2,4822 

3 0,1350 1,0956 2,6204 
 

From comparison of the 1st line with the 2nd one, we see that accounting the 
discreteness of construction by thickness causes the decrease of the values of natural 
frequencies, whereas accountig the pliability increases their values. 
   



260 

References 

 R.M. Christensen, Mechanics of composite materials, New York : Wiley, 1979. 1.
 S. Latheswary, K.V. Valsarajan, Y.V.K.S. Rao, Free Vibrations Analysis of 2.

Laminated Plates using Higher-order Shear Deformation Theory, IE (I) J.-AS, 85 
(2004) 18–24. 

 Huu-Tai Thai, Seung-Eock Kim, Free vibration of laminated composite plates using 3.
two variable refined plate theory, International  Journal of Mechanical Sciences, 52 
(10) (2010) 626-623. 

 V.A. Osadchuk, M.V. Marchuk, Mathematical model of dynamic deformation of 4.
pliable to shear and compression composite plates, Applied Problems of Mechanics 
and Mathematics, 3 (2005) 43-50. 

 V.S. Pakosh, Fundamental frequencies of pliable to transversal shear and 5.
compression plate-strip with a thin coating, Applied Problems of Mechanics and 
Mathematics, 7 (2009) 94-98. 



XXV Symposium Vibrations in Physical Systems, Poznan – Bedlewo, May 15-19, 2012 

Dynamics of Mechanical Model of Implant-Tissue System                      
in Ventral Hernia Repair 

Izabela LUBOWIECKA 
Gdansk University of Technology, ul. Narutowicza 11/1, 80-233 Gdansk, Poland 

lubow@pg.gda.pl 

Abstract 

The paper deals with a finite element modelling of implants in the problem of ventral hernia repair. The 
synthetic mesh implanted in the abdomen during surgery is here modelled as a membrane structure. The 
system undergoes the internal abdominal pressure that occurs during the postoperative cough, the load 
identified in the literature as the main cause of the connection failure and hernia recurrence. The model can be 
used to estimate the forces appearing in the connections of tissue and implant for different materials of 
implants and different number of tacks. This can help to predict the fixing system, such as the number of tacks 
etc. to be provided during the surgery in order to resist the cough pressure and avoid the hernia recurrence. The 
dynamic analysis of the structure is compared to the laboratory experiments in a pressure chamber to 
demonstrate the accuracy of the proposed model. 

Keywords: biomechanics, synthetic implant, membrane, dynamic analysis  

1. Introduction  

A hernia occurs when part of an internal organ protrudes through a weak area of muscle. 
Most hernias occur in the abdomen. Especially, the incisional hernias as large abdominal 
wall defects have been shown to have recurrence rates of between 25 to 52% when 
primarily repaired [1]. The usual treatment for a hernia is a repair surgery where the 
synthetic implants are fixed to the tissue called fascia in the human abdomen.  

Even though the ventral hernia repair surgery is a common procedure, the mechanical 
properties of the tissue-implant system are unknown so the implantation of the repairing 
mesh depends on the surgeon knowledge and practice. Unfortunately, the recurrences of 
the illness still take place as shown e.g., in [2]. The number of the joints (called tacks) 
required for holding the implanted mesh correctly is undefined and their optimal position 
is only intuitive (Fig. 1). Moreover, the high number of joints can affect nerves and 
result in chronic pain, so the minimising of the tacks number standing the abdominal 
pressure is required.  

For that, a mechanical model based on finite element method of implanted mesh is 
proposed here and its dynamic behaviour is studied to provide a methodology for the 
repair assessment. The model contains an orthotropic membrane structure of the material 
properties identified within the laboratory tests. The simple cable implant model of 
implanted mesh has been previously studied and presented in [3]. Also some attempts 
were undertaken to model implant behaviour as a membrane structure as shown in [4]. In 
addition a membrane model for a herniated rabbit abdominal wall with hernia orifice and 
implant was previously proposed and discussed in [5] but and any assessment method 
for the repair persistence was provided. 
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Figure 1. Hernia repair in human abdomen 

The author pays considerable attention to the forces that appear in the connection 
between tissue and implant. These forces compared with the repair failure load identified 
in [6] are analysed to estimate the hernia repair persistence. For that reason, the 
mechanical model of whole abdomen is not necessary here. These forces should not 
exceed the experimental value of the strength of the tissue-implant connection that 
would mean that the hernia recurrence will not appear due to the appropriate load. 

The finite element dynamic analysis of the system is performed and the results are 
compared to the laboratory tests on the implant-tissue system sample subjected to a 
pressure load in a specially prepared pressure chamber. 

2. Mechanical model of implant. Materials and experimentation. 

The surgical mesh Dual Mesh Gore® was taken to the analysis. Its material properties 
were identified on the basis of the one dimensional tensile tests on the machine Zwick 
Roel 020 as presented in [3-4] and [7-8]. 

 

a) b)          

Figure 2. a) Scheme of repaired hernia; b) Implant model 

The orthotropy of the surgical mesh material was observed as indicated in [9]. The 
material stiffness was described by bilinear elastic moduli E1 = 28.03 N/mm and 
E2 = 25.54 N/mm when the strain ε ≤ 0.3 and E1 = 4.17 N/mm and E2 = 2.84 N/mm 
when ε > 0.3.  
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The model geometry (Fig. 2) refers to the clinical case of hernia with the 5 cm large 
orifice. As the common distance between joints differs from 2 to 4 cm, the largest as 
unfavourable one was considered in the model and also in the experiment. The 
membrane is a polygonal structure stretched out on 9 elastic supports every 4 cm, with 4 
cm tissue overlap. This gives the membrane span equal to 0.12 m. The elastic supports, 
of the stiffness assuring the joints horizontal displacement observed within the 
experiment, represent the zone of interaction of the tissue and implanted membrane. 

 

 

a)    b)  

Figure 3. a) Experimental stand; b) Operated hernia specimen 

The experiment was performed in a specially prepared pressure chamber where the 
air impact representing the cough pressure was applied to the specimen of implant fixed 
to the porcine tissue (Fig. 3). The pressure value was growing during 0.1 s until the value 
270 mmHg identified in [10] as the cough pressure and then decreasing to 0 within next 
0.1 s. The size and the fixing type referred to a real clinic case of hernia repair. The 
details of the experiments are presented in [8]. 

3. Finite element analysis and results  

The nonlinear dynamic analysis was carried out by means of the MSC.Marc finite 
element commercial system. 469 (symmetric part) 4-node membrane element of type 18 
(MSC.Marc) containing 3 translational degrees of freedom in each node was applied (see 
e.g. [11-12]), Fig. 4. The large strains and Total Lagrangean formulation were 
considered in the study. The implicit single step Houbolt algorithm (see e.g., [13]) was 
used to simulate the structure dynamics. 

The dynamic analysis demonstrates relatively strong damping in the tissue-implant 
system, so the Rayleigh damping parameters were introduced also to the mechanical 
model. The parameters were estimated on the basis of modal analysis according to the 
formula (1) 

 
2 2

i

i

i

βωα
ξ

ω
= +  (1) 

where α and β are respectively the mass and stiffness damping ωi represents i-th natural 
frequency of the system [14]. For the tested implant, these two coefficients were 
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estimated as α = 2 and β = 0.01, for which the simulation corresponds to the experi-
experimental results.  
    

    

Figure 4. Finite element model of implant (symmetric part) 

The dynamic analysis representing the experiment was conducted within the time of 
2 s. The experimental and simulated results were compared on the example of the 
displacement functions.  

 

 

Figure 4. Dynamic analysis of the implanted mesh. Simulation vs. experiments 

The registered and calculated values of the maximum deflection of the implant and 
the displacement of the hernia orifice are shown in Fig. 5. Relatively good accordance 
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between laboratory tests outcomes and the finite element analysis results means that the 
mechanical model can be applied for modelling of the tissue-implant behaviour. 

The junction forces calculated in the points of tacks as the product of the spring 
stiffness and the tack displacement are used to the assessment of the repair persistence. 
In the studied case, these extreme forces are Rmax = 2.25 N and Rmin = 3 N respectively to 
the directions of the higher and lower elastic modulus E1 and E2 of the orthotropic 
implant. The difference between both forces is not very significant due to the fact that in 
this type of implant, the mechanical properties do not differ considerably. The maximum 
force does not exceed the limit identified for the tissue-implant connection identified in 
[6]. 

3. Conclusions  

The author developed an orthotropic membrane model of a mesh implanted in a human 
body in the hernia repair surgery. The model can simulate the behaviour of the ventral 
hernia repair process under the intaabdominal pressure. The junction forces in the tacks 
points compared with the limit identified and documented in literature are used to 
estimate the repair persistence.  

The proposed model behaviour matches accurately with the experiment. The 
maximum reaction forces achieved in this simulation and thus the largest expected 
values of the junction force in the tissue-implant system do not exceed the limit, what 
means that the repair should stand the cough pressure.  

The presented solution can be applied to estimate the necessary joints number before 
the laparoscopic surgery when the synthetic implant is used in order to avoid the illness 
recurrences. 

Even if the orthotropy of the implant is not strong, it is reflected in the reaction 
forces. This fact, together with the anisotropy of the human abdomen observed and 
described e.g., in [7] should be considered as clinic recommendations when planning the 
surgeries. 
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Abstract  

This paper presents the results of aeroacoustic numerical simulations for three types of helicoidal resonators 
placed inside straight cylindrical duct. The same ratio s/d = 1.976 is considered for three numbers of helicoidal 
turns n = 0.671, n = 0.695 and n = 1.0. Also three types of transmission loss characteristics are represented. 
Three-dimensional models were calculated by the use of a finite element method in Comsol Multiphysics 
Acoustics Module – Aeroacoustics with flow, Frequency Domain. The change of transmission loss 
characteristics of helicoidal resonators is presented for different air flow velocities in the range from 1 m/s to 
20 m/s for cylindrical duct of diameter d = 0.125m. 

Keywords: helicoidal resonator, sound attenuation, aeroacoustics.  

1. Introduction  

Speed of a main flow of air inside ducted system can affect on acoustical properties of 
applied there passive noise control devices [7,8]. Stronger influence could be observed 
for resonators. As it has already been well described [3-6], by using helicoidal resonators 
in ducted systems one can obtain numbers of acoustic resonances inside helicoidal 
profile, which results in sound reduction at the systems outlet. Also this paper takes 
under consideration the first approach of solving the problem of helicoidal resonators 
acoustic attenuation characteristic change due to assuming different speed of a main flow 
of air inside a straight cylindrical duct. Investigated in this paper models of helicoidal 
resonators are presented in Fig. 1, where s denotes the length of one helicoidal turn. 
 

   
Figure 1. Helicoidal resonators with ratio s/d = 1.976 and number of helicoidal turns 

n = 0.671 (a), n = 0.695 (b), n = 1.0 (c) 

a) b) c) 
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Helicoidal resonators consist of a central axis mandrel with ratio dm/d = 0.24, where 
dm denotes the diameter of mandrel, and d is the diameter of cylindrical duct. Helicoidal 
profile has the ratio g/d = 0.024, where g denotes the thickness of helicoidal profile. The 
cylindrical duct diameter d = 0.125 m. Small difference for two selected helicoidal 
resonators in number of turns n = 0.671 and n = 0.695 results from representation of two 
different acoustic attenuation characteristics obtained in previous work [6], which are 
presented in Fig. 2 and Fig. 3, respectively.  

 

 
Figure 2. Acoustic attenuation performance parameters levels for helicoidal resonator 

inside pipe (d = 0.125 m) with the number of turns n = 0.671 [6] 

 
Figure 3. Acoustic attenuation performance parameters levels for helicoidal resonator 

inside pipe (d = 0.125 m) with the number of turns n = 0.695 [6] 



 Vibrations in Physical Systems Vol.25 (2012) 269 

In Figs. 2 and 3 are presented comparisons between two acoustic attenuation 
performance parameters, Insertion Loss (IL) and Transmission Loss (TL), obtained in 
numerical computations (computation) and experimentally (experiment) [6]. 

2. Basic Characteristics of Numerical Aeroacoustic Simulations 

Three-dimensional models were calculated by the use of finite element method in 
Comsol Multiphysics Acoustics Module – Aeroacoustics with flow, Frequency 
Domain [1]. Schematic view of investigated cylindrical duct with helicoidal resonator is 
presented in Fig. 4. 
 

 
Figure 4. Schematic view of investigated cylindrical duct with helicoidal resonator 

To solve aeroacoustic problem in COMSOL flow is assumed to be compressible, 
inviscid, barotropic, and irrotational [1]. In this paper, for investigated velocities of air 
flow in range from 1 m/s to 20 m/s, the Reynolds number varies from Re~8333 to 
Re~166670, respectively. In that case the turbulent flow should be considered [2], but 
due to fact that COMSOL can solve only CFD turbulent flow without acoustic, the 
aeroacoustics was used as a weak solution for coupling acoustic with flow, in this case. 
Also obtained in this paper results can strongly differ from real results, but the aim of 
this work is to obtain an overview of helicoidal resonators transmission loss change due 
to different velocities of air flow. 

As an acoustical attenuation performance parameter is used the transmission loss 
(TL) [1, 3-5, 7, 8], which is obtained by integrating the incident nominal acoustic 
pressures squared at the inlet (w_in) and actual transmitted acoustic pressures squared at 
the outlet (w_out) all anechoically terminated, and solving equation: 

 TL = 10log(w_in/w_out), dB (1) 

Boundary conditions are described as in COMSOL Multiphysics [1]: 

• hard boundary condition - all surfaces of cylindrical duct and helicoidal 
resonators are hard, 

• slip velocity equals zero at all surfaces of cylindrical duct and helicoidal 
resonators, 

• normal flow at the outlet equals zero, 
• mass flow at the inlet varies from 1 m/s to 20 m/s, 
• plane wave radiation - at the inlet and outlet, while at the inlet the velocity 

potential equals 1 m2/s. 

Finite element mesh is automatically generated as a free tetrahedral and controlled by 
physics. The stationary solver is used. 

inlet 

outlet 
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3. Results 

In Fig. 5, Fig. 6 and Fig. 7 are presented transmission loss characteristics of helicoidal 
resonators with s/d = 1.976 and n = 1.0, n = 0.695 and n = 0.671, respectively, for 
different velocities of air flow. Results are presented in the range of frequency from 
1200 Hz to 1350 Hz, which is the specific frequency range for investigated models. 
 

 
Figure 5. Transmission loss characteristics for helicoidal resonator with s/d = 1.976 and 

n = 1.0 for different velocity of air flow v 

 
Figure 6. Transmission loss characteristics for helicoidal resonator with s/d = 1.976 and 

n = 0.695 for different velocity of air flow v [m/s] 



 Vibrations in Physical Systems Vol.25 (2012) 271 

 

Figure 7. Transmission loss characteristics for helicoidal resonator with s/d = 1.976 and 
n = 0.671 for different velocity of air flow v [m/s] 

4. Conclusions  

In general, for investigated helicoidal resonators, when the velocity of air flow becomes 
greater the resonance frequencies as well as TL levels become lower.  

For helicoidal resonator with n = 1.0 can be observed the biggest frequency 
difference between velocities v = 1 m/s and v = 20 m/s and it equals about 18 Hz. TL 
level reduces in this case for about 10 dB. 

However, for helicoidal resonator with n = 0.695 in frequency domain can be 
observed small difference, which equals about 4 Hz, and similar small difference for TL 
levels which equals about 5 dB. 

For helicoidal resonator with n = 0.671 can be observed bigger change for the second 
resonance frequency, which equals about 7 Hz, than for the first resonance frequency, 
where the difference equals only about 2 Hz. In this case the reduction of TL levels is 
similar for both frequencies and it equals about 10 dB. Here interesting is fact, that for 
the lowest TL level between resonance frequencies, which equals about 21 dB for v = 1-
5 m/s, it increases for about 1 dB for v = 20 m/s. 

Globally, up to 5 m/s of air flow velocity inside ducted system the resonance 
frequency does not change. Also, when applying helicoidal resonators for typical 
ventilation system, where the velocity of main air flow varies up to 5 m/s, there is no 
need to include any velocity corrections. But for higher velocities, typically in industrial 
applications, there should take place some air velocity corrections. 

In this paper, the obtained numerical results can strongly differ from real results, but 
the aim of this work was to obtain an overview of helicoidal resonators transmission loss 
change due to different velocity of air flow, which was here realized. Hence, the 
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experimental researches of the influence of air flow velocity on acoustic attenuation 
characteristics change of helicoidal resonators should give the exact results. 
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Abstract 

The paper deals with the design and optimisation of a control system for active vibration isolators. This paper 
presents a control system structure that is based on the inverse dynamics of active force actuator and the 
primary controller. The primary controller settings are evaluated using the multi-criteria optimisation 
procedure. In succession, the proposed method of control system design is investigated by using an active seat 
suspension, as an exemplary vibration isolation system. 

Keywords: vibration isolation, active suspension, control system, optimisation 

1. Introduction 

The design of vibration isolators, constructed at present, is a big challenge for engineers, 
because of the conflicted criteria that are involved in their design [7]. For example, in the 
automotive industry it is desired to reduce the vibration of cabin’s floor transmitted to 
operator’s seat. On the one hand, the dynamic forces transmitted from the cabin’s floor 
to the seat should approach zero to protect driver’s health. On the other hand, the 
suspension deflection should approach zero as well in order to ensure the controllability 
of working machines [1, 4]. 

The active systems provide more effective performance in the vibration isolation, but 
they are used hardly ever, because of their high constructing costs and complicated 
structure. However, the permanent development of control algorithms confirms that the 
control of active systems using the optimisation of multi-objective functional is an 
effective way to deal with the conflicting suspension performance problem [3]. 

2. Control system design 

A simplified suspension model that consists of the single degree of freedom body mass, 
the linear spring and damper is shown in Fig. 1a. Such a model has been discussed 
extensively in the literature and captures many essential characteristics of the real 
vibration isolators. The passive subsystem is utilized to describe visco-elastic 
characteristics of the suspension system. The active subsystem is used to determine 
desired force Fa that should be introduced into the visco-elastic suspension system 
actively. 

The state space model of the hybrid suspension system (Fig. 1a) can be obtained by 
using the LFT (linear fractional transformation) technique [2] and by grouping signals 
into sets of external inputs, outputs, an input to the controller and an output from the 
controller. 
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Figure 1. Simplified model of the active suspension with ideal force control (a) 

and with force tracking control system (b) 

Choosing the state variables as: x1 ꞉꞊ x – xs, x2 ꞉꞊ ẋ, the disturbance caused by road 
roughness: w1 ꞉꞊ xs, w2 ꞉꞊ ẋs and the external input force of the suspension system Fa, the 
state space equation of the hybrid suspension is presented as: 
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In order to satisfy the performance requirement, the acceleration of suspended mass 
z1 ꞉꞊ ẍ and the suspension deflection z2 ꞉꞊ x – xs are defined as controlled outputs. Then 
the output equation reads: 
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If the suspension deflection y1 ꞉꞊ x – xs and the velocity of suspended mass y2 ꞉꞊ ẋ are 
measurable, then the measurement equation can be written as: 
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A controller is determined by formulating the state feedback control problem in the 
following form: 

 )()()( 2 txKCtKytFa ==  (4) 
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where: K = [k1, k2] is the output feedback gain vector to be designed. 
If the desired active force is determined than such force has to be reproduced by the 

active actuator. This can be achieved using the force tracking control system that adjusts 
the controllable drive. The force tracking control system can be handled by applying an 
internal force feedback or else by applying a reverse model of the active element [6]. 
The second approach is employed in this study and the graphical illustration of such 
principle is presented in Fig. 1b. 

The actual control signal u  is calculated using a reverse model of the active element 
in the following form: 

 ( )asas FxxFxxfu &
&& ,,, −−=  (5) 

where: Fa and Ḟa are the desired active force and its first derivative over the time, x – xs  
and ẋ – ẋs are the actual displacement and velocity of the controlled actuator, 
respectively. The reverse model of an active element has to be calculated for the specific 
force actuator and its parameters should be evaluated experimentally. 

The actuator displacement, the actuator velocity, the desired active force and its first 
derivative over the time are the reverse model inputs. The model outputs are the control 
signals to the actuator that should generate the desired active force in the suspension 
system. Unfortunately, very often efficiency of the force tracking control system is 
lowered by a phase shift in the feedback loop [6]. This effect might be caused by 
actuating time of the active element. Therefore the proportional-derivative (PD) 
controller is utilized in order to speed up the overall control system. The output signal uc 
of the PD controller, that controls the active element, finally is described as follows: 

 uutu cc += &  (6) 

where: tc is the actuating time of the actuator, u  is the control signal calculated in the 
basis of a reverse model (input to PD controller). 
 

 
Figure 2. Block diagram of the proposed active control 
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The block diagram of overall control system of the active suspension is presented in 
Fig. 2. If the desirable active force is obtained according to the primary controller 
(Eq. (4)), then the desired force has to be approximately achieved by the active element 
with calculated input signal using the reverse model (Eq. (5)). The actuating time of the 
actuator is eliminated because the PD controller speeds up the control signal (Eq. (6)). 

3. Multi-criteria optimisation procedure 

A different selection of the primary controller settings: 21,kk  allows decreasing the 

forces transmitted to suspended mass at the simultaneous increase of suspension travel 
and vice versa. The optimization criteria that correspond to the conflicted system 
requirements are defined as follows: 
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where: ẍRMS is the effective acceleration of suspended mass, (x – xs)max is the maximum 
relative displacement of suspension system and t is the current computation time instant. 

In order to optimize the suspension system vibro-isolating properties, the 
optimization procedure with the objective function is proposed as: 

 ( )21
,

,min
21

kkxRMS
kk

&&  (8) 

where: k1, k2 are the set of decision variables. The function (Eq. (8)) contains the first 
criterion ẍRMS only, because the second criterion (x – xs)max is transferred to a nonlinear 
inequality constraint as follows: 

 ( ) ( ) ( )css xxkkxx −≤− 21max ,  (9) 

where: (x – xs)c  defines a constraint value of the second criterion. An appropriate 
selection of such value allows to choose the vibro-isolation properties of the suspension 
system. 

4. Example: Optimisation of the active seat suspension vibro-isolation properties 

In Figure 3 a model of the active seat suspension system containing the controlled 
pneumatic spring and the hydraulic shock-absorber is shown. The active control of an 
air-flow to the pneumatic spring is applied by means of the directional servo-valve 
which regulates the inflating/exhausting of the pneumatic spring. Inflating of the 
pneumatic spring is supplied from an external compressor and its exhausting is driven 
directly to the atmosphere. In such a solution, the pressure in the pneumatic spring can 
be changed very fast, and therefore the active force for the suspension system is 
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provided. The equation of motion of this seat suspension has been shown in the author’s 
previous papers [4, 5]. 

 
Figure 3. Model of the active seat suspension 

In order to enable controlling the vibro-isolation properties of active seat suspension, 
the primary controller settings and their ranges are taken as follows: 

• proportionality factor of the rel. displacement feedback loop 

N/m 10  20020 3
1 ×−=k  

• proportionality factor of the absolute velocity feedback loop 

Ns/m 10  202 3
2 ×−=k . 

 
Figure 4. Pareto-optimal points distributions (a) and corresponding transmissibility 

functions (b) obtained for the active suspension system 

The minimization of the constrained objective function (Eqs. (8) and (9)) has allowed 
finding ten Pareto-optimal points distribution in the conflicted criteria domains. The set 
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of non-dominated solutions is presented in Fig. 4a. A highest limiting of the maximum 
relative displacement of suspension system is obtained for the Pareto-optimal point 
number 1, and a highest reduction of the effective acceleration of suspended mass is 
achieved for Pareto-optimal point number 10. These marginal Pareto-optimal points 
determine a set of the compromising solutions that are assigned for the Pareto-optimal 
points from number 2 up to number 9. In Fig. 4b dynamical behaviour of the active 
suspension system is compared for different Pareto-optimal configurations (point 
number 1–10). These simulation results are obtained for the random excitation signal 
(band limited noise) in the 0,5–5 Hz frequency range and for the mass load of suspension 
system of 100 kg. 

6. Conclusions  

The obtained results show, that the proposed control method allows to define the overall 
system structure of active vibration isolators. Moreover, the presented multi-criteria 
optimisation procedure assists an appropriate selection of the primary controller settings 
(defined by Pareto-optimal solutions) and allows adjusting the vibro-isolation properties 
of active suspensions. The very stiff suspension system can be transformed easily to the 
very soft suspension system only by a change of the controller settings. Each of the 
Pareto-optimal configurations ensures the optimality of the active vibration isolator in 
the conflicted criteria domains. 
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Abstract  

In this paper there is proposed a semi-active control technique based on the linear actuators with the magneto-
rheological fluid (MRF) connecting the drive system planetary gear housing with the immovable rigid support. 
Here, control damping torques are generated by means of the magneto-rheological fluid of adjustable viscosity. 
Such actuators can effectively suppress amplitudes of severe transient and steady-state rotational fluctuations 
of the gear housing position and in this way they are able to minimize dangerous oscillations of dynamic 
torques transmitted by successive shaft segments in the entire drive system. The general purpose of the 
considerations is to control torsional vibrations of the real power-station coal-pulverizer geared drive system 
driven by means of the asynchronous motor. The investigations have been carried out using the experimental 
test rig based on the real object, where the measurement results were compared with analogous theoretical ones 
obtained by the use of computer simulations. 

Keywords: torsional vibrations, magneto-rheological dampers, semi-active control 

1. Introduction 

Active vibration control of drive systems of rotating machines, mechanisms and vehicles 
creates new possibilities of improvement of their effective operation. Torsional 
vibrations are in general rather difficult to control not only from the viewpoint of proper 
control torque generation, but also from the point of view of a convenient technique of 
imposing the control torques on quickly rotating parts of the drive-systems and rotor 
machines. Unfortunately, one can find not so many published results of research in this 
field, beyond some attempts performed by an active control of shaft torsional vibrations 
using piezo-electric actuators, see [4]. But in such cases relatively small values of 
control torques can be generated and thus the piezo-electric actuators can be usually 
applied to low-power drive systems.  

Thus, for drive systems of high-power machines, mechanisms and vehicles  in this 
paper there is proposed the semi-active control technique based on the linear actuators 
with the magneto-rheological fluid (MRF) connecting the drive system planetary gear 
housing with the immovable rigid support. The control torques are generated by means 
of the magneto-rheological fluid of adjustable viscosity. They interact with reaction 
torques transmitted by the planetary gear housing due to torsional vibrations of the drive 
system. Such actuators can effectively suppress amplitudes of severe transient and 
steady-state rotational fluctuations of the gear housing position and in this way they are 
able to minimize dangerous oscillations of dynamic torques transmitted by successive 
shaft segments in the entire drive system.  
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Figure 1. (a) – Scheme of the of the coal pulverizer drive  system, 
(b) – planetary gear support frame with two MR dampers mounted 

The general purpose of the considerations is to control torsional vibrations of the 
power-station coal-pulverizer drive system driven by means of the asynchronous motor 
and the double stage planetary gear, as shown in Fig. 1a and 1b. The planetary gear 
housing is visco-elastically connected with the immovable foundation by means of two 
or four linear actuators with the magneto-rheological fluid, which is illustrated in Fig. 
1b. The actuators support the gear housing at both ends of the proper reaction arm 
enabling it bounded rotational displacements around the drive system rotation axis. 
Using such suspension of the gear housing control forces generated by the linear 
actuators can be imposed on the drive system in the form of control torques.  

 

 

Figure 2. Measurement-control system of the coal pulverizer  

In the considered drive system of the coal pulverizer power is transmitted from the 
asynchronous motor to the driven machine tool by means of the three elastic couplings, 
double-stage planetary reduction gear, the two torque-meters, electro-magnetic overload 
coupling and by the shaft segments. Whole stand is observed and controlled in the real-
time by the use of dedicated control and data acquisition systems. This setup enables us 
to perform measurement of dynamic torques and rotational speed fluctuation signals in 
the input and output shaft, respectively. When needed, additional sensors can be added, 
as for example the sensor measuring the planetary gear arm position. In dedicated PC 
units, the real-time processors make use of recorded data, and by means of the user-

a) b) 
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supplied control algorithm, they generate control signal which is immediately applied to 
the linear actuators with the magneto-rheological fluid. 

2. Assumptions for the mechanical models and formulation of the problem 

In order to perform a theoretical investigation of the semi-active control applied for this 
mechanical system, a reliable and computationally efficient simulation models are 
required. In this paper dynamic investigations of the entire drive system are performed 
by means of two structural models consisting of torsionally deformable one-dimensional 
beam-type finite elements and rigid bodies. These are the classical finite element model 
and the discrete-continuous (hybrid) model. Both models are characterized by the 
identical structure resulting in the same division into cylindrical beam elements 
representing successive drive train components, which can be illustrated in common 
Fig. 3. 
 

 

Figure 3. Mechanical model of the coal pulverizer drive system 

These models are employed here for eigenvalue analyses as well as for numerical 
simulations of torsional vibrations of the drive train. In the hybrid model successive 
cylindrical segments of the stepped rotor-shaft are substituted by the cylindrical macro-
elements of continuously distributed inertial-visco-elastic properties, as presented in 
Fig. 3. However, in the finite element model these continuous macro-elements have been 
discretized with a proper mesh density assuring a sufficient accuracy of results. In the 
proposed hybrid and FEM model of the coal pulverizer drive system inertias of the gear 
wheels, gear housing with the reaction arm, coupling disks and others are represented by 
rigid bodies attached to the appropriate macro-element extreme cross-sections, which 
should assure a reasonable accuracy for practical purposes. The time- and response-
dependent external active and passive torques are continuously distributed along the 
respective macro-elements or imposed in the concentrated form on the given macro-
element cross-sections. 

For the assumed analogous linear finite element model the mathematical description 
of its motion has the classical form of a set of coupled ordinary differential equations 

 ( ) ( ))(),(,)()()()(0)( tststtttstCt &&&&& FsKsCsM =++  (1) 

where: s(t) denotes the vector of generalized co-ordinates s(t), M, C and K are 
respectively the mass, damping and stiffness matrices and F denotes the time – and 
system response – dependent external excitation vector. By means of Eqs. (1) numerical 
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simulations of the forced torsional vibrations for the passive and controlled system can 
be carried out. In order to determine natural frequencies and eigenvectors for the FEM 
model of this drive system it is necessary to reduce (1) into the form of standard 
eigenvalue problem. The mathematical description and solution for the mentioned hybrid 
model of drive system have been demonstrated in details in [2]. It is to notice here, that 
the dynamic responses and their control are going to be investigated in the domain of 
generalized co-ordinates in the case of the FEM model application and in the space of  
modal functions in the case of the hybrid model.  

Apart from the sufficiently realistic mechanical models of the vibrating object, it is 
also necessary to introduce a proper mathematical model of the electric motor. In the 
considered case of the symmetrical three-phase asynchronous motor electric current 
oscillations in its windings are described by four Park’s equations, which can be found 
e.g. in [3]. Then, the electromagnetic torque generated by such a motor can be expressed 
by the following formula: 

 ,
2

3





 ⋅−⋅= r

qi
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di
sipMelT αβ  (2) 

where: M denotes the relative rotor-to-stator coil inductance, p is the number of pairs of 
the motor magnetic poles and  iα

s, iβ
s are the electric currents in the stator reduced to the 

electric field equivalent axes α and β and id
r, iq

r are the electric currents in the rotor 
reduced to the electric field equivalent axes d and q, see [3]. From the system of Park’s 
equations as well as from formula (2) it follows that the coupling between the electric 
and the mechanical system is non-linear in character, which leads to complicated 
analytical description resulting in a rather harmful computer implementation. Thus, this 
electromechanical coupling has been realized here by means of the step-by-step 
numerical extrapolation technique, which for relatively small direct integration steps for 
motion equations derived for both applied drive system yields very effective, stable and 
reliable results of computer simulation.  

3. Computational and experimental examples 

Many experiments have been performed using the experimental test-rig, based on the 
real coal pulverizer drive system shown in Fig.1. In first step, the measured data was 
used for system parameter identification, results of which are presented in Fig. 3. The 
FFT analysis of the measured torque signals provided information about the system 
natural frequencies, see Fig. 3a. To validate the FEM and hybrid models, the modal 
analysis was carried out. In result, the estimated system structural spectrum was 
obtained, see Fig. 3b. The good correlation of numerically computed spectrum with that 
determined from measurement, ensures us that the proposed models sufficiently 
approximate the real object. Upon an identification of the system, further experiments 
were performed in order to investigate the worst and the best MR damper efficiency case 
scenarios. In the sequence, the system has been runned-ahead with several increasing 
levels of an operational speed. According to the fact that the excitation frequency of the  
coal pulverizer strictly depends on its rotational speed, the variety of load case scenarios  
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Figure 3. The spectrum: (a) – of the dynamic torque obtained from measurement, 
(b) – of the system obtained from the FEM model eigenanalysis 

  

Figure 4.The input and output torque meter signals, with and without MR damper: 
(a) – obtained from measurement, (b) – obtained from simulation 

have been analysed in this way. In Fig. 4 the following example of the MR damper 
efficiency scenario is presented. As one can see, in this case an application of the linear 
damper with the MR fluid has benefited in about 60 % measured decrease of dynamic 
torque amplitude reduction on the real object, Fig. 4a, and in about 65 % in the case of 
numerical simulation performed using the both applied theoretical models.  

  

Figure 5. The averaged dynamic torque oscillation amplitude vs. the system average 
rotational speed (a), the second mode shape of the drive system 

a) b) 

a) b) 

a) b) 



284 

The next figure, i.e. Fig. 5a, presents the relationship between the level of the output 
shaft dynamic torque oscillation amplitudes and the system average nominal operational 
speed influencing the frequency of system excitation generated by the driven machine. 
From this figure it follows that the drive system is damped in the most efficient way in 
the vicinity of 40% of the motor nominal speed. At this speed the second system natural 
frequency f2 = 9.7 Hz is being excited the most remarkably. Because the second mode 
shape shown in Fig. 5b is characterized by a significant modal displacement value at the 
location of the MR damper in the considered drive train, the attenuation of torsional 
vibrations is very efficient in this case. 

4. Conclusions 

In the paper a semi-active control of transient and steady-state torsional vibrations of the 
coal pulverizer drive system driven by the asynchronous motor and the planetary 
reduction gear has been performed by means of the linear dampers with the magneto-
rheological fluid (MRF). Here, such dampers are able to suppress the torsional vibrations 
by means of mechanical energy dissipation during relative rotational motion between the 
planetary gear housing and the immovable foundation. As it follows from the carried out 
experiments and numerical simulations, such reduction results in a minimization of 
vibration amplitudes up to 60% in comparison with the passively damped system. 
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Abstract  

The aim of this study was to evaluate the recognition process of driver’s voice commands spoken in car cabin 
using Sphinx-4 – the speech recognizer written entirely in Java language. Sphinx-4 recognizer was tested in 
real-time conditions in standalone car with engine on/off. The speech material consisted of sentences spoken 
directly to the microphone. Results showed significant differences in recognition accuracy obtained in different 
conditions (engine on/off). 

Keywords: speech recognition, car cabin, telematics systems  

1. Introduction 

The car interior noise is still problematic and impacts the recognition rates. It has been 
proposed many solutions to resolve the problem of background interior noise. The 
automatic speech recognition (ASR) performance degrades substantially when the 
speech is corrupted by the background noise not seen during training. The reason for this 
is that the observed speech signal does no longer match the distributions derived from 
the training material. This mismatch between training and testing conditions is one of the 
most challenging and important problems in ASR. The main techniques for removing the 
mismatch fall into the following approaches: robust features, compensation of the noise 
effect over the representation of the speech, and adaptation of the models to the noisy 
conditions [1][2].  

The first approach is focused on parameterization methods that are fundamentally 
resistant to noise or minimize the effect of the noise. Cepstral coefficients are not equally 
affected by noise in linear predictive coding (LPC) cepstrum based representations. The 
mel-frequency cepstral coefficients (MFCCs) provide significant better results than 
LPC-cepstrum under noise conditions, and similar results to those provided by 
parameterizations based on auditory models [3]. Discriminative feature extraction has 
also been successfully applied to robust speech recognition [4]. High-pass filtering of the 
speech features tends to remove slow variations of the feature vectors representing 
speech, which increases accuracy of speech recognizers under noise conditions.  

The second approach is based on noise reduction by transforming noisy speech into 
clean speech – the noise is removing/reducing from the representation of speech. The 
clean speech is recognized using models trained under clean conditions. This approach 
includes parameter mapping, spectral subtraction, statistical enhancement, and 
compensation based on clean speech models.  
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The third approach includes methods that are based on adoption of clean models to 
the noisy recognition environment in order to contaminate the models. The mismatch is 
minimized using a hidden Markov model (HMM) decomposition – also called Parallel 
Model Combination (PMC), a state dependent Wiener filtering, a statistical adaptation of 
HMMs, and a contamination of the training database[5, 6]. 

The Lombard effect is another aspect of the noisy environment [7]. This Lombard 
effect impacts the performance of speech recognizer and is highly dependent upon the 
speaker, the context, and the level of noise. As a result, the pronounced sounds are 
modified in the noisy environment. Mainly for this reasons, robust speech recognition 
has become an important focus area of speech research.  

The aim of this study was to evaluate the recognition process of driver’s voice 
commands spoken in car cabin using Sphinx-4 – the speech recognizer written entirely 
in Java language [8]. 

2. Methods 

Automatic recognition of speech in car environment was performed in real conditions in 
standalone car with engine on/off by a single driver. The equipment (Fig. 1) used in the 
experiment consisted of headphones connected directly to the net book with installed 
Sphinx-4 framework for speech recognition.  
 

 

Figure 1. The measuring equipment used in the experiment 
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Sphinx-4 provides variety of feature extraction methods. These implementations 
include support for the following: reading from a variety of input formats, preemphasis, 
windowing with a raised cosine transform, discrete Fourier transform (via FFT), mel 
frequency filtering, bark frequency warping, discrete cosine transform (DCT), LPC end 
pointing, CMN, MFCC, and PLP. The components that make up a particular HMM state 
are Gaussian mixtures, transition matrices, and mixture weights [8].  

Speech material consisted of isolated words and sentences spoken in English 
language. The material included three categories of commands: Internet browsing 
commands /search Google, go to page …/, navigation commands /my position, find a 
road to …, give the distance from  … to …/, and steering multimedia devices commands 
/open track, play track, find track digit, close track/. In order to switch between 
categories of commands, the speech material also included single words such as 
/navigation, browsing, cd-player/. After choosing the category, the speaker repeated 
commands relative to the category in a random order.  

The speech sounds were transmitted via microphone with 22 kHz sampling rate, and 
16-bit signal resolution. The collected speech material was recognized using MFCCs and 
HMMs applied in Sphinx-4 speech recognizer written in Java language. Sphinx-4 was 
trained in laboratory conditions with the same speech material. 

3. Results 

Recognition accuracy obtained in a standalone car with either engine on/off is presented 
in Table 1.  

Table 1. Recognition accuracy obtained in experiment in conditions with engine on/off 

Recognition Accuracy (RA) - % 
 Categories of commands Mean RA 
Engine Browsing Navigation CD-Player All 

categories 
Off 89% 78% 83% 83% 
On 67% 56% 58% 60% 

 
As presented in Table 1, the recognition accuracy for engine off was higher than for 

engine on conditions. In conditions with engine off, the highest recognition accuracy was 
obtained for the commands in the browsing category. The lowest recognition scores 
were obtained for the commands in navigation category. The recognition accuracy in 
each category exceeded value of 75%. For the conditions with engine on, the highest 
recognition accuracy was also obtained for the browsing category commands, and the 
lowest for the navigation commands. The recognition accuracy in each category 
exceeded value of 50%. 

The mean recognition accuracy obtained for engine off conditions (83%) was 
significantly higher than the mean recognition accuracy obtained for engine on 
conditions (60%) – the difference (23%). Higher recognition rates were obtained for the 
browsing commands in both conditions.     
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4. Discussion 

The aim of this study was to evaluate recognition accuracy of sentences spoken by a 
single driver in standalone car in conditions with engine off/on. The obtained results 
suggest that longer sentences obtain lower recognition accuracy than shorter sentences in 
car cabin. The recognition accuracy hurts and still needs to be improved in the noisy 
conditions – the value of 60% of mean recognition accuracy with engine on. Higher 
recognition rates are obtained for browsing commands. 

Regardless, it is clear that more automotive companies – both auto manufacturers as 
well as Original Equipment Manufacturers (OEM) - are implementing speech 
recognition technology into their systems to provide high-end products to drivers. 
Speech recognition systems are becoming more and more sophisticated with OEMs 
combining navigation, media control, point-of-interest search capabilities and phone 
control. There is strong need to reduce driver distraction. The speech platform must be 
flexible enough to process both static and dynamic grammars efficiently. This means 
concealing the complex systems that work together to provide a seamless and complete 
offering, including speech recognition and text-to-speech capabilities. 

Future work will be related to evaluations of recognition accuracy in different noise 
conditions. It will be tested on how and which of the noise sources influence mostly the 
recognition accuracy using long sentences speech material in different conditions.  
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Abstract 

Following article  presents a solution of  Mathieu and Hill differential equation describing the vibrations of 
mechanical systems submitted to force variable in time with damping and without damping. An examples of 
above systems were presented and selected parameters was set at which the respective solutions of differential 
equations are unstable. 
 
Keywords:  partial Mathieu and Hill equation, dynamic stability 

1.Introduction 

Vibrations of many mechanical systems are described by Mathieu or Hill differential 
equation.  An example here might be the lateral vibrations of electrical machines rotors 
[5,7] or the transverse vibrations of spacer rods [6,8].Variability in time during the 
magnetic tension (in the case of the rotors) or variability of compressive force (in the 
case of spacer rods) is redacted to examination of issue to solving a differential equation 
with time variable coefficients.Depending on adopted model  differential equations may 
contain same function (the model without damping) or it first derivative (the model with 
damping). In this article own methods of solution above differential equations were 
presented. 

2. The solution of Mathieu and Hill differential equations  

The issues described in the preceding paragraph reduced to solution of differential 
equations whose form depends on adopted model of the problem.In the case of adopting 
the model without damping considered issue reduced to solving the Mathieu differential 
equation in a form: 

    (1) 

where 
Tn - function of time describing dependences of the analised value (eg, deflection) 
from time t. 
ωn - frequency of a n-th order system for a case when p = 0 
p - frequencies of changes, ψn – parameter 
ψn - function which is a ratio of modulation depth. 
 

0 cospt)T 2 ψ(1T 2
n n =−+ n n ω &&
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In the case of adopting the model with damping analogically to (1) differential 
equation has the form 

 0Tf(t)][1ΩTh2T nn
2

nn =−++ &&&  (2) 

This is a Hill's differential equation. Here coefficient h is the damping factor. 
 
In case absence of damping (h = 0) and after the adoption the function f (t) in form 

f(t)=2ψn cos pt obtained by the classical Mathieu equation in the form: 

 0Tcospt)ψ2(1ωT nn
2

onn =−+&&  (3)  

where  
ωon - is frequency for the n-th order of system without damping at ψn = 0 
 
A first and also the widest area of instability was obtained by adopting a solution of 

the differential equation (3) in the form: 

 
2

pt
sinB(t)

2

pt
cosA(t)T(t) +=   (4) 

where 
A(t), B(t)- slowly changing functions of time such that 

 AU ≪ 	A� ≪ A    and    �U ≪ �� ≪ �  (5)  

Analyzing further the solution of the differential equation (3) dependence describing   
boundaries of the first area of instability was obtained. 

 0z)ψz
4

1
z)(ψz

4

1
( nn 〉−+−−−  (6)  

where 

 � = Y���r `$ (7)  

After taking into account the substitution (7) dependence describing the boundary 
lines of the first area of instability were obtained  

 n
on

n ψ12
ω

p
ψ12 +〈〈−   (8) 

This area is shown in Figure 1. 
Identical to the dependence (8) were obtained dependences administered inmany 

textbooks, such as in [1,4]. In a similar way the solution of the differential equation (2) 
for a system with damping was obtained. For this purpose the solution of above equation 
was adopted as 

 �. = �@�1�. (9) 
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Figure 1. Boundary lines of the first area of instability 

Finally a new differential equation describing the function φn was obtained 

  (10) 
where 

  (11) 

   (12) 
Equation (10) resembles Mathieu equation without damping. 
It follows from above that by analyzing this equation can be based on solving the 

basic Mathieu equations by substituting  f1(t) inspire  f(t) and Ωn
2 – h2 in a place of ωn

2. 
Proceeding similarly as in the case of Mathieu equation term of the instability for 

Hill's equations was obtained in form. 

  (13) 

Proceeding simmilar as in the absence of damping obtained dependences describing 
boundary lines of the first area of instability 

  (14) 
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Boundary lines describing the first area of instability was shown as visual aid in 
Fig. 2. 

 
Fig.2 First area of instability 

Dependence (14) describes the upper lines, whereas the dependence (15) describes 
the bottom line. 

The solutions outlined above have been used in earlier work of the author [6, 7, 8] 

3. Conclusion 

As a result of solving the problem described by Mathieu equation without damping a 
series of so-called. areas of instability is obtained Inclusion of damping insert considered 
question down to the Hill equation. Here also, areas of instability are obtained which are 
much narrower. There is a limit value of damping at which parametric resonance occurs. 
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Abstract 

In the article dynamic analysis of the pendulum whose mounting point performs the vibration was presented. 
Equation of motion was written and then the stability of this motion was examined . Finally Mathieu equation 
without suppression was obtained, which solution allowed to designate the frequency bands at which the force 
of the pendulum motion was unstable. 
 
Keywords: mathematic pendulum, dynamic stability 

1.Introduction 

The movement of many mechanical systems is described by the Mathieu differential 
equation. An example here might be the lateral vibrations of electric machines rotors, 
bipolar [5,6] or transverse vibrations of spacer bars  [7,8]. Variability of some 
parameters like eg. the magnetic tension force in the case of rotors or compressive force 
in the case of rods, such a issue can be checked by the Mathieu differential equation. As 
a result of its solution is obtained a range of enforce frequencies at which there is a 
phenomenon of instability (parametric resonance). Similar situation occurs in the case of 
a mathematical pendulum with oscillating point of suspension. Differential equation 
describing such a motion is Mathieu differential equation with coefficients depending on 
the amplitude forcing and frequency of change. Stability of motion such a pendulum 
depends on whether the parameters of this work are contained in sedate or unsedate 
interval. So it was necessary to determine the boundary lines describing a motion 
stability of an increased  pendulum. Based while on our own method of solution of 
Mathieu equation. 

2.Equation of pendulum motion 

Considered pendulum is shown in Figure 1. It was assumed that the point of 
suspension performs vibrations described by dependence 

 cosptζζ(t) o=  (1)  

where   oζ -vibrations amplitude 
   p- vibration frequency 

 
The motion equation of the pendulum at the direction perpendicular to its length has 

the form 

 ϕϕϕ mgsin)lsinζm( −=+ &&
&&  (2) 
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Figure 1 The pendulum with oscillating suspension point 

After substituting (1), obtained 

 0f(t)][1ω 2
o =−+ ϕϕ&&   (3) 

where 

 ,
g

ζ
f(t)

&&

−=
l

g
ω 2

o =   (4) 

so 

 0)
g

cosptζp
(1ω o

2
2

o =−+ ϕϕ&&   (5) 

Differential equation (5) can be written as 

 0µcospt)2(1ω 2
o =−+ ϕϕ&&   (6) 

where 
2g

ζp
µ 0

2

=  

Coefficient µ  is a modulation depth factor. Equation (6) is a Mathieu equation 

(without damping). 
Let`s analise the case when Ω= 2p  ,  

where  
pT

p
π2

=  

   pT - period of change a parameter µ . 

From dependence Ω= 2p   we will receive  

 
T

π2
2

T

π2

p

⋅=   (7) 

where, T - pendulum period of free oscillation  
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g

l
π2T =   (8) 

From equation (7) we have 

 

T
2

T
1

p

=     so  pT2T =   (9) 

Thus, the period of free oscillation is equal to two periods of change parameter µ . 

In order to determine an instability region the solution of equation (6) was presented 
in the form 

 
2

pt
sinB(t)

2

pt
cosA(t)(t)n +=ϕ   (10)  

Where A (t), B (t) - slowly changing functions of time t such that 

 AAA 〈〈〈〈 &&&      , BBB 〈〈〈〈 &&&   (11) 

After differentiating (10) and substituting to (6) the boundary lines of the instability 
area were obtained 

 µ12
ω

p
µ12

o

+〈〈−   (12) 

Obtained dependence is identical with dependencies given in other works such as 
[1,4] 

 
The boundary lines for area described by equation (12) are shown in Fig.2. 

 

Figure 2. The boundary lines of unstable area 



296 

3.Calculation example 

Following section analyze of pendulum motion stability with the length  
cml 501 =  and cml 1002 =  an the amplitude of extortion cmo 10=ζ . In case of 

pendulum with length cml 501 =  basic on dependence (12) forcing frequency was 
obtained at which instability occurs. 

 µ1ω2p o +=′ (upper line)  (13) 

 µ1ω2p o −=′′   (down line)  (14)  

After accepting cml 501 =  obtained 

 s)1,42(Ts4,43
l

g
ω 0

1

1
o === −   (15) 

Then  stability of  pendulum motion the near the frequency was examined 
)71,0(86,82 1 sTsp po === −ω  

Based on dependences (13) and (14) obtained 

 .s6,86p,s10,48p 11 −− =′′=′   (16)  

So in above example dependence was obtained 

 ppp ′〈〈′′  (17) 

where 

 111 s10,48s8,86s6,86 −−− 〈〈  (18) 

In above conduction pendulum move will be unstable.Then adopted pendulum with 
length cml 1002 =  Proceeding as above were obtained sequentially  

 11
0

1
o s5,6p;s6,81p0,2;µs);2(Ts3,13ω −−− =′′=′===  (19) 

Thus, as previously obtained dependence 

 ppp ′〈〈′′   (20) 

because  

 111 s6,81s6,28s5,6 −−− 〈〈  (21) 

Here pendulum motion will be also unstable 
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4. Conclusions 

Stability of a mathematical pendulum with oscillating point of suspension depends on 
forcing frequency range. There is a range of frequencies at which the pendulum motion 
is unstable. Those frequencies determine so-called areas of instability. Width of these 
areas increases with increasing depth modulation factor. 
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Abstract 

In the paper the transversal vibration of a toothed gear is studied by means of numerical simulation methods. 
At first, we focus on preparing a simplified vibration model of a gear, where the teeth are omitted. The 
accuracy of the approximate model is assessed by the frequency error criterion. Therefore a benchmark 
solution is calculated by performing the vibration analysis for the full model, which contains all essential 
elements of the real system. Next, the simplified model of a gear featuring cyclic symmetry is analyzed. All 
numerical models in this paper are formulated in terms of finite element representations, the computations are 
carried out in ANSYS. The problems discussed here may be useful for researchers dealing with dynamics of 
rotating systems. 

Keywords: toothed gear, transverse vibration, natural frequencies, cyclic symmetry model  

1. Introduction 

Problems of transverse vibration of toothed gears are the subject of many recent 
investigations [2, 3, 6]. This is due to the fact that gears, as systems of rotating bodies, 
are widely used in various engineering applications, such as aircraft engines, 
automobiles, machine tools and others. Theoretical investigations of the transverse 
vibration of gears have been performed in the last century for some problems of fast 
rotating circular and annular plates. In a recent article [2] the finite element (FE) 
technique was utilized to work out an algorithm for the identification of the proper 
distorted mode shapes of a toothed gear, which has the shape of an annular plate with 
holes. In the work [3] the numerical (by using FE modelling approach) and exerimental 
analysis of resonant response in aviation gearing were conducted. In the paper [6] the 
authors analysed free vibration of a planetary gearbox. In [1] dynamic problems 
concerning the motion of a corrugated circular plate over a wavy base were studied. In 
the present paper, the free transverse vibration of a toothed gear, considered as an 
annular plate with geared rim installed on a hollow stepped shaft, is analysed by the 
finite element method (FEM). A simplified FE model of the toothed gear is proposed. 
Research into using the cyclic symmetry of the gear for a faster solution of the dynamic 
problem is presented. 
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2. Formulation of the problem 

The objective of this work is the presentation of a procedure for the derivation of 
simplified FE models of toothed gears. In the simplified FE model the teeth are omitted. 
However, satisfactory dynamical behavior of the simplified model of the gear wheel is to 
be maintained. For that purpose, a set of toothed gears with similar geometry but with 
different teeth numbers is analyzed. The considered set of toothed gear models is shown 
in Fig. 1. 
 

                                         

Figure 1. Geometrical models of the systems 

Each gear model is composed of an annular plate with a geared rim installed on a hollow 
stepped shaft. Primary geometrical dimensions of the analysed systems (diameters: d0, 
dw, dl, dp; lengths: lc, lb, lw, lr) are defined as shown in Fig. 2a. The remaining dimensions 
are taken according to the standard theory of toothed gears. For each gear the simplified 
model shown in Fig. 2b is adopted. 
 

 lr 

lb lb 

lw 

lc 

ød
w

 

ød
0 ød

l 

ød
p 

a) 

                   

Figure 2. (a) geometrical dimensions, (b) proposed simplified model 

The geometrical dimensions of the simplified models are taken from the gear geometry. 
In each simplified model, the outer diameter of the rim is equal the reference diameter dp 
of the corresponding gear. With the exception of Young’s modulus of the rim, it is 
assumed that the simplified models have the same technical data as the gears. For each 
simplified model, Young’s modulus of the rim is selected experimentally to be in 
accordance with the reference solution. For every single case the problem of free 
vibration is solved by the FEM. After spatial discretization of the structures under 
consideration, the ordinary differential equations of motion can be written in each case in 
the form [4] 
 0=+ KuuM &&  (1) 

b) 
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where M  is the global mass matrix, K  is the global stiffness matrix, and u  is the nodal 
displacement vector. Both global mass and stiffness matrices are obtained from the 
element matrices that are given by [4] 

 ( ) ( ) ( )
( )

( ) ( )
( )∫∫ == ee V

eTe

V

eTee dVdV BEBKNNM ,ρ  (2) 

where ρ(e) is the mass density of the element, N  is the matrix of element shape 
functions, B  is the matrix of derivatives of the element shape functions, E  is the 
material stiffness matrix, and V(e) is volume of the element. The natural frequencies of 
the system are obtained by solving the eigenvalue problem 

 ( ) 02 =− uMK ω  (3) 

where ω is the natural frequency and u  is the corresponding mode shape vector, which 
is determined up to a factor by the relation (3). The number of eigenpairs (ωi, ūi) 
corresponds to the number of degrees of freedom of the system. Because of the 
discretization and tuning process, the FE models of the simplified toothed gear models 
have to be treated as approximations of the exact systems. The error between the precise 
and the FE models is defined by 

 ( ) [ ]%100×−= eef ωωωε  (4) 

where ωf is the natural frequency obtained from the FE solution, while ωe is the natural 
frequency of the exact system. The best possibility to determine the accurate values of 
the natural frequencies is by experimental investigation. For the investigation presented 
in this paper, exemplary solutions are achieved by vibration analysis of high resolution 
toothed gear models, which contain all essential elements of the real system. 

3. Numerical analysis 

In order to obtain reference values for the natural frequencies, for each gear shown in 
Fig. 1, a high resolution FE model is set up, which contains all essential construction 
details of the real system. The parameters characterizing the systems used in calculations 
are shown in Table 1a – b. 

Table 1a. Parameters characterizing the system   

d0 
[m] 

dw 
[m] 

dl 
[m] 

lc 
[m] 

lb 
[m] 

lw 
[m] 

lr  
[m] 

E 
[Pa] 

ρ 
[kg/m3] ν 

0.025 0.043 0.039 0.076 0.02 0.006 0.018 2.08⋅1011 7.83⋅103 0.3 

Table 1b. Parameters characterizing the system   

No. 1 2 3 4 5 
z 27 40 54 67 74 

dp [mm] 140.4 140 140.4 140.7 140.6 
 

In the tables, z is the number of teeth in the gears, whereas E and ν are Young’s modulus 
of elasticity and Poisson ratio, respectively. In accordance with the circular and annular 
plate vibration theory [5], the particular natural frequencies of vibration are denoted as 
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ωmn where m refers to the number of nodal circles and n is the number of nodal diame-
diameters. Each of these geometrical models is meshed by using standard procedures of 
the ANSYS software. A 3 – D solid mesh is prepared and the ten node tetrahedral 
element (solid187) with three degrees of freedom in each node is employed to build each 
exemplary model. During the mesh generation process, it is assumed that the maximum 
length of element sides must to be equal or less than 3.5 [mm]. The most complex FE 
model represents the gear with teeth number z = 54 and includes 83124 solid elements. 
The smallest FE model relates to the gear with teeth number z = 74 and comprises 65962 
solid elements. Due to space limitation only two elaborated FE models are displayed in 
Fig. 3a – b. 
 

      

Figure 3. (a – b) complete FE models of the exemplary systems, (c – d) FE models of the 
simplified gear models, (e) simplified cyclic symmetry FE model of the system 

The same procedure as for the exemplary model cases is used to discretise the simplified 
models of the gears. Two simplified FE models are displayed in Fig. 3c – d. The mass 
density of the rim is the same as for the related complex model. The proper value of 
Young’s modulus Ei of the rim is selected experimentally to minimize the frequency 
error (4). The biggest simplified FE model includes 45450 solid elements and it 
corresponds to the gear with teeth number z = 27. Two of the FE models include each no 
more than 39000 solid elements, and the remaining ones consist of no more than 33600 
solid elements. For all models presented here, calculations were continued until the 
natural frequency ω16 was determined. Table 2 shows the values of Ei, for which 
satisfactory results were achieved by the simplified models. Due to space limitation only 
the values of natural frequencies related to the gear wheel, for which the gear teeth 
number is z = 67 are presented (see Table 3).  

Table 2. Young modulus of elasticity of the rim of the simplified gear models   

No. 1 2 3 4 5 
z 27 40 54 67 74 

Ei [Pa] 1.15*1011 1.2*1011 1.3*1011 1.36*1011 1.38*1011 

Table 3. The reference gear model (1), and the simplified gear model (2) natural 
frequencies ωmn [Hz] (for z = 67), respectively  

No. ω11 ω10 ω12 ω13 ω14 ω20 ω21 ω22 ω15 ω23 ω16 
1 1338 1618 1978 4622.5 8325 9523 10028.5 11540.5 12645.5 14322 17308.5 
2 1344 1608 2002 4673.5 8463 9598 10105 11666 12966 14531 17943.5 

 

a) b) c) d) e) 



 Vibrations in Physical Systems Vol.25 (2012) 303 

For the other cases only the values of the frequency error are displayed (see Table 4). 
For each simplified FE model, the largest difference between reference results and 
simplified FE model solutions is observed in the frequency ω16. With the exception of 
the simplified model with teeth number z = 27, the dimension of the simplified FE model 
is approximately two times smaller compared with the corresponding high resolution 
model. 

Table 4. Frequency error εmn [%] 

No.\εmn ε11 ε10 ε12 ε13 ε14 ε20 ε21 ε22 ε15 ε23 ε16 
1 -1.66 -4.91 -0.55 -0.19 2.28 -0.01 -0.22 -0.41 5.88 -0.57 10.5 
2 -0.93 -3.25 0.02 -0.63 0.26 -0.17 0 0.54 1.73 0.89 3.61 
3 -0.38 -1.61 1.29 1.28 1.95 0.45 0.6 1.25 3.01 1.8 4.29 
4 0.45 -0.62 1.21 1.1 1.66 0.79 0.76 1.09 2.53 1.46 3.67 
5 0 -0.61 1.34 1.62 2.15 0.66 0.71 1.26 2.93 1.85 4 

 

In the next part, the obtained simplified FE models of the toothed gears undergo 
verification in the case of fast rotation. We assume that the systems rotate at an angular 
velocity θ = 600 [rad/s]. The reference values of natural frequencies and the simplified 
FE models natural frequencies are generated. The rotation effect is taken into account by 
determining stress distributions due to rotation, which for each model is done during the 
computational step associated with static analysis. This stress distribution is then 
included in the computation step associated with modal analysis. Table 5 shows the 
obtained results for the validation. Due to space limitation only the values of the 
frequency error are displayed. 

Table 5. Frequency error εmn [%] (test data) 

No.\εmn ε11 ε10 ε12 ε13 ε14 ε20 ε21 ε22 ε15 ε23 ε16 
1 -1.66 -4.91 -0.57 -0.18 2.29 -0.01 -0.23 -0.41 5.88 -0.57 10.5 
2 -0.89 -3.25 0.02 -0.62 0.26 -0.17 0.01 0.53 1.73 0.89 3.61 
3 -0.34 -1.61 1.31 1.28 1.95 0.44 0.61 1.25 2.96 1.8 4.29 
4 0.41 -0.62 1.21 1.1 1.67 0.78 0.77 1.09 2.54 1.43 3.67 
5 -0.07 -0.61 1.31 1.6 2.15 0.65 0.71 1.27 2.93 1.84 3.99 

 

The table shows that the worst compatibility with the exemplary solution is observed for 
the simplified FE model case related to the gear for which the teeth number is z = 27.  

4. Cyclic symmetry modelling 

In this section we exploit the cyclic symmetry of the gears. The response behavior of a 
full circular component may be generated on the basis of solutions achieved for a single 
symmetric sector, which is a part of the circular component [7]. This allows to reduce 
the FE model size of the analyzed system considerably. The main point is to achieve 
good compatibility with the precise solution. The cyclic symmetry analysis is conducted 
for the gear wheel with the teeth number z = 67. The simplified model of the gear, 
discussed in the previous section, is taken into account. The model of the system consists 
of six sectors (see Fig. 2), which have the cyclic symmetry feature. Each single 
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symmetric sector is meshed by using the same procedures as for the simplified FE mod-
models. The developed FE model is displayed in Fig. 3e, and it consists of only 5855 
solid elements. Table 6 shows the natural frequencies and frequency errors obtained by 
using the FE model presented in Fig. 3e. 

Table 6. Natural  frequencies ωmn [Hz] (for z = 67) and frequency error εmn [%] of the 
cyclic symmetric gear model  

 ω11 ω10 ω12 ω13 ω14 ω20 ω21 ω22 ω15 ω23 ω16 
ωmn 1336 1604 2006 4704 8521 9580 10099 11685 13053 14580.5 18061.5 

 ε11 ε10 ε12 ε13 ε14 ε20 ε21 ε22 ε15 ε23 ε16 
εmn -0.15 -0.87 1.42 1.76 2.35 0.6 0.7 1.25 3.22 1.81 4.35 

 

The results are a bit worse in comparison with the solution by the simplified model (see 
Table 3 – 4), but still satisfactory. It is worth pointing out that cyclic symmetry analysis 
allows to reduce solution time and memory requirements drastically. 

5. Conclusions  

The present paper deals with free transverse vibration of a toothed gear with complex 
geometry. A simplified FE model of the gear wheel, where the teeth are omitted, is 
proposed. The simplified FE models of gears include substantially lower numbers of 
finite elements compared to the corresponding high resolution reference models. This 
results in a reduction of the required computation time and computer memory, which in 
turn allows to employ these models to conduct in advance dynamical simulations with 
satisfactory accuracy. At this stage of the research, models taking into account cyclic 
symmetry seem most promising. They provide relatively good results by FE models with 
moderate numbers of elements. 
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Abstract 

In this study the in plane flexural vibration of a system of circular ring interacting with elastic foundation is 
presented on the basis of the analytical method and numerical simulation. The elastic foundation is described 
by the Winkler model. At first the motion of the system is described by partial differential equations. The 
effect of rotary inertia and shear deformation is included. The general solution of the free vibration is derived 
by the separation of variable method and the boundary problem is solved. The second model is formulated by 
using finite element representations. The natural frequencies and natural mode shapes of vibration of the 
system are determined. The obtained results of calculation are discussed and compared for these two models. 
FE models are formulated by using ANSYS code. 
It is important to note that the data presented in the paper brings practical advice to design engineers. 

Keywords: circular ring, in plane flexural vibration, Winkler foundation, Timoshenko’s theory 

1. Introduction 

The problems of in plane flexural vibration of circular rings interacting with foundation 
find application in several practical problems [1, 7]. The fundamental theory of vibration 
of circular rings is presented in [6]. Authors of work [1] employed theory of curved 
beam with foundation to vibration analysis of railway wheels. Free vibrations of 
Timoshenko beam attached to Winkler foundation are studied in the paper [2]. In the 
work [7] authors analyse free vibration of a ring gear by using thin ring theory. In the 
papers [4, 5] the exact solution for the free vibration of annular membrane compound 
systems with Winkler foundation is given. In this paper the free in plane flexural 
vibration of a circular ring interacting with Winkler foundation are analyzed using the 
classical thin and thick ring theory, and the finite element (FE) technique. The obtained 
results of calculation are discussed and compared for elaborated models. This work 
continues the recent author’s investigations concerning vibration of systems with elastic 
foundation [3]. 

2. Theoretical formulation 

The mechanical model of the system under consideration consists of circular ring 
interacting with massless, linear, elastic foundation of a Winkler type. It is assumed that 
the ring is homogeneous and perfectly elastic, and it has constant cross – sectional area. 
It is additionally assumed that the neutral line of the ring has radius R and an element of 
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the ring, fixed by angle θ, displaces in the radial and the circumferential direction (see 
Fig. 1). The small displacements in these directions are denoted as u(θ,t) and w(θ,t), 
respectively. Making use of the classical theory of vibrating thin rings [6], the partial 
differential equations of motion for the free in – plane flexural vibrations in terms of the 
radial deflection u(θ,t), can be combined into a single equation as 
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Figure 1. Vibrating system under study 

where E denotes Young’s modulus of elasticity, I1 is the area moment of inertia of the 
rim cross section, ρ is the mass sensity, A is the cross section area, kf and kp are the radial 
and tangential stiffness modulus of a Winkler elastic foundation, respectively. 

The solution is assumed to be harmonic, i.e. 

 ( ) ( ) tieUtu ωθθ =,  (2) 

where ω is the frequency of vibration and 1−=i  is the imaginary unit. Then, Eq. (1) 
becomes 
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The general solution of Eq. (3) is assumed in the form 

 ( ) ( ) K,3,2,sin1 =+= nnDU ϕθθ  (4) 

where D1 and φ are constants. Substituting solution (4) into (3) yields the natural 
frequencies of vibration as 
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Finally the normal modes of the ring can be written in the following form 
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 ( ) ( ) ti
n

nenDtu ωϕθθ += sin, 1  (6) 

where D1 and φ can be achieved from the initial condition of the ring. 
Then the Timoshenko’s theory is employed in vibration analysis of the free in –

 plane flexural vibration of the ring interacting with the Winkler elastic foundation. 
Taking into account the effects of shear deformation and rotatory inertia, the equation of 
motion in terms of ( )tu ,θ  can be expressed as 
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and G is the modulus of elasticity in shear (Kirhoff modulus), k ′  is the shear correction 
factor. The rest of the denotations have the same meaning as for in previous case. It is 
assumed the solution of Eq. (7) to be harmonic in the form (2). This gives the equation 
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As in the previous case the solution of Eq. (9) is assumed in the form (4). It yields the 
following frequency equation 
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Equation (10) is a quadratic equation in 2
nω  and hence two frequency values are 

associated with each value of n. The smaller value of 2
nω  corresponds to the flexural 

mode, and the higher value corresponds to the thickness – shear mode. In equations (5) 
and (10) n must be an integer with a value greater than 1. As for the previous case, the 
flexural modes of the ring can be determined from the relation (6). 

3. The finite element representations 

In this section the discrete models of the system under study are formulated using the 
finite element technique (ANSYS code). These FE models are treated as an 
approximation of the exact system given by the equations (7) and (10), respectively. To 
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find the eigenpairs (eigenvalue, eigenvector) related to the natural frequencies and natu-
natural mode shapes of the ring with elastic foundation, the block Lanczos method is 
employed [3]. The essential problem of this section is prepared the FE model of the 
elastic foundation. The first FE model is realized as follows. The foundation is modelled 
by a finite number of massles spring distributed along the ring in the radial direction. In 
this model the foundation only in the radial direction is taken into consideration. The 
spring – damper (combin) element defined by two nodes is employed to realize the 
elastic layer. The element damping capability are neglected. The proper value of the 
stiffness moduls kS of each spring is selected experimentally to minimize the frequency 
error defined by [3, 4] 

 ( ) %100⋅−= c
n

c
n

f
nn ωωωε  (11) 

where f
nω  and c

nω  are the natural freqencies of the FE and precise models, respectively. 

Ring is modelled as the solid body with by taking into account the structural geometry of 
the ring. The eight node hexahedron element (solid185) with three degrees of freedom in 
each node is employed to realize the ring. The prepared model consists of 3744 solid 
elements, and 288 combin elements, respectively. 

              
Figure 2. (a) first finite element model, (b) second finite element model 

In the second FE model case, both ring and foundation are modelled as the massless 
solid body with allowing for the structural geometry of the system. The ten node 
tetrahedral element (solid187) with three degrees of freedom in each node is used to 
solve the problem. The prepared model is shown in Fig. 2b and it includes 41740 solid 
elements. 

4. Numerical analysis 

Numerical analysis results of the circular ring interacting with elastic foundation free 
vibration are obtained using the models suggested earlier. For all results presented here, 
the first seven natural frequencies and mode shapes are discussed and compared for 
these models. 

Table 1. Parameters characterizing the circular ring with foundation 

d0 [m] s0 [m] R [m] dif [m] I1 [m
4] A [m2] ρ [kg/m3] E [Pa] ν k’  

0.025 0.008 0.0875 0.03 1.0417·10-8 2⋅10-4 7.83⋅103 2.08⋅1011 0.3 5/6 

a) b) 



 Vibrations in Physical Systems Vol.25 (2012) 309 

 

In order to evaluate the accuracy of the ring FE models, in the first instance for each 
case, the computation for the free ring without the foundation (i.e. kf = 0 and kp = 0) are 
executed. Table 1 displays the parameters characterizing the system under investigation. 
In Table 1, d0 and s0 are, respectively, the depth and width of the ring; ν is the Poisson 
ratio; dif is the inner diameter of the foundation area. 

Table 2. Natural frequencies of the system under study ωn [Hz] 

n 
kf [N/m2] 

2 3 4 5 6 7 8 

the exact solution 
0 1982 5296 9483 14243 19373 24739 30254 
6·107 2149 5361 9516 14262 19385 24747 30259 
4·109 7077 8619 11482 15468 20152 25249 30592 

the thin ring solution 
0 2074 5868 11252 18197 26695 36742 48337 
6·107 2254 5942 11293 18223 26712 36755 48347 
4·109 7488 9626 13693 19833 27849 37595 48991 

 

At first to evaluate the first ring FE model the computation for the system with the 
foundation in the radial direction only (i.e. kf ≠ 0 and kp = 0) are executed. For the exact 
model the natural frequencies are determined from numerical solution of the frequency 
equation (10). For the thin ring model the results are achieved from solution of Eq. (5). 
The results of calculation of the natural frequencies are shown in Table 2. For each case 
of kf the difference between the results of the exact model and the results of the thin ring 
model grow in parallel with the increase of the number of the natural frequencies. 

Table 3. Results of computation related to the first FE model 

n 2 3 4 5 6 7 8 
kf [N/m2] kS [N/m] 

natural frequencies of the system under study ωn [Hz]  (the first FE model) 
0 0 2008 5384 9673 14575 19888 25475 31246 
6·107 4.9·104 2088 5418 9691 14587 19897 25482 31251 
4·109 6.8·106 6827 8751 11911 16133 21037 26366 31962 

frequency error εn [%]  (the first FE model) 
0 0 1.31 1.66 2 2.33 2.66 2.98 3.28 
6·107 4.9·104 -2.84 1.06 1.84 2.28 2.64 2.97 3.28 
4·109 6.8·106 -3.53 1.53 3.74 4.3 4.39 4.42 4.48 

Table 4. Results of computation related to the second FE model 

n 
kf [N/m2] 

2 3 4 5 6 7 8 

natural frequencies of the system under study ωn [Hz]  (the exact solution) 
9.82·109 10826 11885 13868 17079 21224 25966 31073 

natural frequencies of the system under study ωn [Hz]  (the second FE model) 
0 2001 5358 9611 14458 19692 25175 30813 
9.82·109 8692 12916 17221 21801 26665 31749 36984 
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frequency error εn [%]  (the second FE model) 
0 0.96 1.17 1.35 1.51 1.65 1.76 1.85 
9.82·109 -19.71 8.67 24.18 27.65 25.64 22.27 19.02 

 

Table 3 shows the result obtained for the first FE model case. For each value of kf (with 
the exception of kf = 0) the best compatibility with exact solution is obtained for natural 
frequency ω3. Results presented in Table 4 are achieved by using the second FE model 
case. In this instance the results for kf = 0 are better than in the first FE model case. The 
remaining results related to the second FE model case are compared with exact solution 
obtained with taking into account the additional foundation in the tangential direction 
(kp = 6·106 [N/m2]). These results are not satisfactory. Too large differences between the 
achieved results are noticable. 

5. Conclusions 

Based on the classical theory of vibrating rings, a comprehensive study of the free in –
 plane flexural vibration analysis of thin and thick rings interacting with the Winkler 
elastic foundation is investigated. The separation of variables method is applied to solve 
the eigenvalue problem. Two FE models of the system under consideration are 
investigated. The numerical solution results demonstrated that further investigations 
related to the rings interacting with foundation are needed. 
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Abstract 

The aim of the paper is to give a new insight into the interaction of soliton particles and their dynamics. We 
introduce the definition of a soliton, soliton particles (interacting solitons) and a theorem about the 
decomposition of multi-soliton solutions to soliton particles. In the paper we also give a theorem state that the 
motion of maxima of interacting solitons (in a special case) are roots of fourth order polynomial.   

Keywords:  Solitons, Interacting Solitons, Dynamics  

1. Introduction 

Physics as a science engages in the research of a matter and a phenomenon in the natural 
way deals with the variance of quantity. When changes propagate in space and time we 
may talk about waves. Many phenomena such as light, sounds, earthquakes can be 
described by waves. In 1923 Louis de Broglie gave a hypothesis of the wave-type nature 
of particles that started a new paradigm and physics crowded Schrödinger equation. 

In 1834 Scottish engineer John Scott Russel observed an odd wave in canal boats 
which propagate with constant speed without changing its shape. He called it 'a solitary 
wave'. After many years in 1895 Dieterlik Korteweg and Gustaw de Vries explained the 
strange wave. They found the equation of motion (this is a famous equation called 
nowadays KdV). Later on, in the twentieth century (1965) Gardner, Greene Kruskal and 
Miura discovered a method - the inverse scattering transformation of solving particular 
nonlinear equation (like the KdV). Soon after 1971, Ryogo Hirota proved the existence 
of the N-soliton solution of KdV. 

The properties of solitons encouraged physicists to apply the model of particles. The 
first theory was Skyrme model that described the interaction of nucleons. Whereas 
Rybakov and Saha [12] constructed the model of hydrogen atom where electrons were 
presented as solitons – the solution of a certain nonlinear equation. 

In this paper we will present the decomposition of the 2-soliton solution of KdV. We 
also study dynamics after decomposition (the so-called soliton particles or interacting 
solitons) and we will obtain numerically position-time chart (x-t chart). Finally, there 
will be given a theorem describing the motion of maximum of interacting solitons (in a 
special case) as the root of fourth order polynomial. 
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2. Dynamical Field Systems [5] 

By the dynamical field system we understand a PDE's of the form 

 ( )...,u,uu,K=u xxxt  (1) 

where u = u(x) is a point from manifold and K is a vector field on manifold. In the 
general case a variable u is a vector. 

Nonlinear Hamiltonian field system is integrable when posses a bi-hamiltonian 
representations. The Hamiltonian vector field is called bi-hamiltonian when exists 
Poisson operators θ0, θ1 and function (functional) H, G that: 

 ( ) dGθ=dHθ=uK 10 oo , (2) 

where d denotes differential. 
For example, for famous equation KdV we have: 

 xxxxt uu+u=u 6  (3) 

 ( ) ( ) =dxu+ud=udHθ=uK=u 3
xx0t 
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Many nonlinear integrable systems posse soliton solution and for those systems which 
has N-soliton solution we can prove following theorem [5], [7]. 
 
Theorem 1 On the soliton submanifold hamiltonian vector fields K can be represented as 

 ( ) ∑
i

iiN Bc=uK , (6) 

where Bi denotes eigenvector of recursion operator ( ) 1-  
01θθ=uΦ  (page 68 in [5]). 

3. Solitons and soliton particles 

Soliton [6] is the solution of the nonlinear differential equation (or the system of 
differential equations) which fulfils the properties below: 

• the solution is a wave with a permanent shape, 
• is localized, decayed or arrived with the constant value at infinity, 
• strongly interacts with other solitons; they preserve their shape after a collision. 

One of the more simple methods of obtaining the soliton solution from the nonlinear 
equation is a bilinear Hirota method [4], [9]. The formula of the two-soliton u2 solution 
is expressed as 

 ( )( ) ( ) 2η1η
12

2η1η
x

+
eA+e+e+=tx,F        ,tx,F=u 1ln2 2

2 ∂  (7) 
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where ( ) iiiiiii q,c=χ ,t+q+x=η  
2
1

4χ2χ 2  – velocity and the asymptotic phase, 

{ } 12A ,i 1,2∈ - an interaction parameter. 

The equation interaction parameter for KdV is equal to 
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χχ
=A  (8) 

The interacting soliton u(i), (or soliton particle) [3] is defined by  

 ( )
i

i
x B=u∂ , (9) 

In particular for a 2-soliton solution there is: 1,22 =i,u=B
iqi ∂ . From the previous con-

sideration we have the following implications: 

 ( ) ( )
( )

( )
2

1
1from

1 u=uB=uB=u
iqx

i
Theoremix

i
i

i
x ∂∂→→∂→∂ −−  (10) 

The last expression in (10) with the arbitrary value of an interaction parameter ena-
bles obtained for u2 =  u(1) + u(2) following figures 1, 2 (compare to [8]). 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Evolution in time 2 soliton particles u(1), u(2) with A12 = exp(-20) – bold line 
u(2), thick line u(1) 
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Figure 2. Evolution in time 2 soliton particles for u(1), u(2)with A12 = exp(5) – bold line 
u(2), thin line u(1) 

4. Dynamics of interacting solitons 

By dynamics of interacting solitons we understand motion of peaks (extremes) in time. 
This problem (for 2-soliton solution) comes down to determinate root of following equa-
tion 

 ( )( ) ( )( ) 0        0, 21 =tx,u=tx,u xx ∂∂ . (11) 

In the case of KdV, (7) with k1 = 1, k2 = 2, q1 = q2 = 0, results are set in Fig. 3. The nu-
merical computation was done in Maple by means of RealDomain [Solve] command. 
In addition, the trajectory of a minimum (curve b) has been also obtained by the analyti-
cal method: 
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Finally, in the case χ2 = 2 χ1 it can be shown that the trajectories of maxima of a slower 
particle have roots of fourth order polynomial (14). 
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Figure 3. Chart x-t for KdV with (8) – bold line - maximum u(2), thin lines – extremes u(1) 

(3 curves a, b, d, two maxima, one minimum)  

5. Conclusions 

Various the decomposition of the soliton solution is known from the literature [2], [3], 
[8], [11]. Nevertheless, the one represented in the paper seems to be more natural than 
the other (Theorem 1) [8], as its origin is of geometric nature (eigenvector of Φ*). As-
suming the arbitrary value of interaction parameter, it reveals a very interesting phenom-
enon (figure 1, 2) which can be the new understanding of  interaction mechanics. 

The authors hope that the presented results will give a new insight. Furthermore, po-
tential applications and the obtained formulas (12), (13), (14) will be helpful to connect 
the infinite dimensional manifold with the finite dimensional manifold (the differential 
equation of soliton particles trajectory). 
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Abstract  

The paper discusses vibrations of a discrete system with damping, which are caused by impulses with a sto-
chastic value of an impulse and stochastic moments of excitation of the movement. The analysis of the record-
ed trajectory of vibrations of the oscillator showed that the parameters of the system's responses to subsequent 
hits undergo changes. The changes of the parameters of the system depend on the duration of work of the 
oscillator, the intensity of the impulses as well as the temperature of the environment. The study attempts to 
approximate these changes so that it becomes possible to determine the distribution of stochastic impulses. 

Keywords: stochastic impulses, stochastic moments, distributions of impulses 

1. Introduction  

Methodology by which the distributions of the values of stochastic impulses forcing 
vibrations of discrete mechanical systems are determined has been presented in the 
works [1-6]. In the present study a fragment of the above mentioned methodology, 
namely an approximation of a trajectory recorded during an experiment, which allows 
for determining of stochastic moments mn from the motion trajectory of the vibrating 
system, will be discussed in detail. For t→∞  

 ( )
1

1 k
n

n
i

m x ih
k =

≅ ∑  (1) 

where: 

•  mn(x) is the n-th stochastic moment of the random variable x, 
•  x is the deviation the  mechanical system from the balanced position,  
• h is the interval of time between successive measurements. 

The problem under consideration is the vibration of a discrete system with damping 
forced by a series of random impulses. An analysis of vibrations of such a system poses 
several challenges to the researcher. One of them consists in execution of impulses in a 
physical system. Another one is approximation of responses of the physical system to a 
single impulse so that the difference between particular stochastic moments mn comput-
ed from the experiment and from the model is as small as possible. Another difficulty [6] 
that occurs during an experiment with an RLC system involves the parameters of the 
system's response to stochastic forcing, which change during the movement. Hence the 
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approximation of the response of the system must be performed separately for each tra-
jectory 

2. Approximation of vibrations of a discrete system with damping forced by a single 
impulse  

With the help of a detailed analysis of the character of the load and the response of the 
oscillator to this load we construct a model of a system that includes substitute rigidity 
with a definite elasticity constant k, substitute damping c with the force response propor-
tional to the relative velocity, and substitute mass M. Free vibrations of the system are 
recorded with linear differential equations  

 ( ) ( ) ( ) 0Mx t cx t kx t+ + =&& & . (2) 

A single hit is modeled [7-9] with the help of mathematical methods using the fact 
that its duration is much shorter than the duration of the system's own vibrations. This 
force F(t) is substituted with an impulse and recorded with the help of  

 ( ) ( )tF t I tδ=  (3) 

where  δt is a Dirac distribution at t, δt= δ(t−τ), Ι − is the time-effect F(t) [9]. 
In the system which initially was at rest, the impulse [8] working in a short period of 

time causes an increase of velocity, and therefore the initial conditions assume the form

0(0) 0, (0) /x x v I M= = =& . The parameters of the vibrations are selected so that we 

have to do with a case of subcritical damping / /c M k M< . Taking into account the 
above assumptions, the system's vibrations forced by a single impulse have the form   

 ( )( ) exp( )sin
I

x t ht t
M

ω
ϖ

= −  (4) 

where h=c/2m, ( )2 2/k m hϖ = − , t  is present time. 

Using electromechanical analogy, the vibrations of a system forced by a single im-
pulse and by a series of impulses will be executed in an RLC system. A detailed descrip-
tion of the experiment can be found in the studies [4, 6]. The single impulse is executed 
with the help of single samples of the shortest executable duration of 2·10-6 s, issuing 
from the sampling rate of the card NI USB-6251. 

Unfortunately, the physical system does not fully satisfy the mathematical assump-
tions. During the impulse the condenser is being charged (Fig. 1), thus the first sample 
should be excluded from the data assigned for approximation. Additionally, the recoded 
signal is burdened with a certain imprecision of measurements.  

An approximation of the recorded course is aimed at minimizing of the differences 
between the stochastic moments calculated from the trajectory of motion taken from the 
experiment mnE and the model mnM, and it is executed in the MATLAB environment  
with the help of the function fit with the following parameters: ‘fourier1’ and ‘exp1’. 
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In order to minimize the difference fragments of the recorded course were taken into 
account, due to the noises whose impact increases with the damping of the vibrations 
(Fig. 1). 

 

 

Figure 1.  Approximation of the system's response to a single impulse of the value 10[V] 
for RLC oscillator with capacity C= 2 [nF] and inductivity L=5[mH] that was applied  

The calculations that allow for estimation of the impact of the noise on the first two 
stochastic moments for the system whose approximation is shown in Fig. 1 have been 
presented in Table 1. 

Table 1. An analysis of values for the first and second  stochastic moments 

Number of 
elements in the 

analyzed 
sample 

900 800 700 600 500 400 

m1M  0.0104 0.0117 0.0134 0.0157 0.0187 0.0234 
m1M - m1E  1.49e-005 -5.23e-006 -3.15e-005 -1.14e-004 -1.44e-004 -4.38e-004 
m2M  0.2272 0.2556 0.2921 0.3408 0.4089   0.5106 
m2M – m2E  -4.94e-004 -5.56e-004 -6.35e-004 -7.39e-004 -8.78e-004 -0.0010 

     
The largest deviations from the actual value occur at m1, since its value is the least. 

Hence the greatest difficulties occur at determining of the first stochastic moment. The 
vibrations of the system decay after 900 measuring samples and all those samples are 
significant for determining of the moments. Noises occur as early as the 600th measuring 
sample and if the samples carrying the error are taken into account in the analysis, the 
difference between m1M and m1E increases ten times. This is a serious difficulty since the 
subsequent impulse may occur before the former one decays. The higher the intensity of 
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hits is the greater is the error connected with the search for the minimum of m1M - m1E. 
To cope with this difficulty it is necessary to approximate the responses of the system to 
all those fragments of trajectory that undergo summation. 

3. Movement of a discrete system forced by stochastic impulses.  

When the system (1) is forced by stochastic impulses in the form  

 ( )
i

i

i t
t t

f t η δ
<

= ∑  (5) 

where /i iI Mη = , the trajectory of movement of the oscillator is a random variable. 

For the following assumptions regarding the stochastic values of impulse ηi and sto-
chastic moments of excitation of the movement of the oscillator ti : 
ηi , i=1,2… is a sequence of independent  identically distributed  random variables with 
finite expectation,    

1i i it tτ −= − , i=1,2… is the time between two impulses, which is a sequence of inde-

pendent  identically distributed  random variables with exponential distribution 
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λ− − ≥
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<
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where the constant λ is the intensity of impulses and sequences  { }it
∞

−∞ ,{ }iη ∞

−∞  are 

stochastically independent. The movement of an oscillator with damping x(t) is already 
a stationary process for large t [3]. The movement of an oscillator with damping excited 
by stochastic impulses is expressed by the formula  

 ( )1
( ) exp( ( ))sin ( )

i

i i i
t t

x t h t t t tη ω
ω <

= − − −∑  (7) 

The process (7) is also ergodic [5], therefore it is possible to determine the stochastic 
moments from a single trajectory of movement. Meanwhile the experiments carried out 
for an RCL system record the parameters of the system's response to the stochastic forc-
ing, which change during the movement. These changes depend on the duration of work 
of the oscillator, the intensity of the impulses as well as the temperature of the environ-
ment. Finding of substitute parameters of the system's response, which could be used in 
a mathematical model presented above is possible [6] for low intensities of the hits. They 
should be determined on the basis of stochastic moments calculated from the trajectory 
of movement of the physical system. For high intensities of the hits the phenomenon of 
change of the substitute parameters of the system's response (Fig. 2) can be seen after 
a time.  

The same substitute parameters ω and h were used in the model during the approxi-
mation of the whole course. It can be noticed (Fig. 2) that they determine the first sto-
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chastic moment correctly only for the fragment of the course of vibrations between 
the 25th and 35th second of movement, where the difference between m1M - m1E is close 
to zero. 

 

Figure 2.  The first moment for an RLC oscillator with capacity C= 2 [nF] and 
inductivity L=5[mH] and for λ=500  

4. Conclusions  

The paper discusses the problems encountered by researchers while analyzing the vibra-
tions of a system forced by stochastic impulses. The models used by scientists [2-3, 10-
13] are described with the help of linear differential equations and the interpretation of 
the data obtained in experiments indicates that the vibrations of the systems are nonline-
ar. The nonlinear model of this phenomenon is an open problem now. Substituting it 
with a linear model allows for a description and interpretation of the physical phenome-
non for low intensity of impulses. For certain systems with high intensity of hits the 
linear model is merely an approximation of a certain fragment of the trajectory, often too 
small to be used for determining of distributions of values of stochastic impulses. 
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Abstract 

This work is devoted to the development a new multilevel vibration control system of aviation gas-turbine 
engines (GTE). The bases of the new system are: existing aboard vibration control system for current control 
and awareness about actual levels of vibration at the harmonics of the rotor rotation (main level); complemen-
tary dedicated microcontroller for analysis of “normal vibration” in order to predict or detect small damages of 
engine systems and details (auxiliary level); signal processing methods for damages diagnosis and decision 
making about GTE condition. The efficiency of the proposed system and using the signal processing methods 
is demonstrated by the results of computer simulation of the processes of receiving the information about the 
GTE vibrating condition, transformation and analysis of it at the main and auxiliary levels. 

Keywords: vibration control, gas-turbine engine, dedicated microcontroller, signal processing  

1. Introduction 

The aircraft gas-turbine engines (GTE) are characterized by the structure and operation 

complexity. The problem of prolongation of GTE working life and increasing their relia-
bility is the issue of the day. This problem may be solved using the improved existent 
and new methods and diagnostic instruments. We propose to solve this problem by using 
the improved techniques of the vibration control system, since the most critical damages 
of the GTE rotor components are directly connected with the vibration processes which 
take place in an operating engine. On the other hand, vibration and vibroacoustical 
methods provide a possibility to diagnose and non-destructive evaluate defects without 
disassembling the engine [1].  

There are many sources of vibration and noise in the GTE, such as the rotor vibration 
caused by unbalance of rotor elements; turbine and compressor stages; gearboxes; bear-
ings; aerodynamic oscillations; vibration in a gas-air path. The rotating rotor is a basic 
source of mechanical vibration. It generates vibration on the basic rotor harmonic (it is 
equal to a rotor rotational frequency) and on multiple harmonics. The character of 
change of rotor vibration is determined by the inertia-elastic properties of system "rotor-
case" at rotational frequency change. The amplitudes of vibration depend on the unbal-
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ance magnitude, damping and a relationship of the critical and working rotational fre-
quencies. The amplitudes of rotor vibration components can change considerably in case 
of change of a rotational frequency at the non-steady-state modes of GTE [1].  

The rotor harmonics are the most informative components of a spectrum of the en-
gine vibration. Their levels are analyzed for the estimation of a vibration condition of the 
GTE. The existing aboard vibration control system is intended for the current control and 
awareness about the actual levels of vibration at the harmonics of the rotor rotation.  

However, many dangerous phenomena (unbalance, unstable oscillatory modes, non-
stationary vibration perturbations, etc.) result in occurrence of components on higher 
rotor harmonics in a spectrum of GTE vibration, while the origination of initial defects 
of rotor elements (microcracks of shafts, blades, disks) practically do not generate 
changes in a spectrum of vibration and cannot be detected at early stages of the crack 
development.  

The purpose of this work is the development a new multilevel vibration control sys-
tem of aviation GTE for the enhancement of sensitivity and diagnostic accuracy.  

2. System development 

The block scheme of the developed system is shown in Fig. 1. 
 

 
Figure 1. Block scheme of the vibration control system 
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Generally, the developed vibration control system consists of the following compo-
nents: 

• existing aboard vibration control system for the current control and awareness 
about the actual levels of vibration at the harmonics of the rotor rotation (main 
level); 

• complementary dedicated microcontroller for analysis of  the “normal vibration” 
in order to predict or detect small damages of engine systems and details (auxilia-
ry level);  

• software for signal processing of “normal vibration” for damages diagnosis, pre-
diction and decision making about GTE condition. 

On the main level, the signals are conveyed from the sensors of vibration to the ana-
logue-to-digital converter (ADC) after preliminary conversion and filtering, and then the 
digital data are conveyed to the microcontroller MC1 through the parallel data bus (DB). 
The signals from sensors of rotation frequency are also conveyed to the microcontroller 
MC1. The vibration data and signals of rotation frequency are used for determination of 
magnitudes of vibration on rotor harmonics. The value of current frequency of rotor 
rotation is used as the central frequency of the tracking band-pass filter for selection of 
vibration on rotor harmonics. The central frequency of the tracking band-pass filter is 
changing synchronously with the change of a rotational frequency on non-steady-state 
modes of GTE. For this purpose the executive signal with variable frequency comes to 
the digital entries of МC1. The received values of vibration (vibration velocity) on rotor 
harmonics are compared with the installed threshold values for making the decision on 
the current vibration condition of the GTE. First of all, the value of vibration is com-
pared to the threshold value of the “dangerous vibration”. Then, if the mentioned thresh-
old value is not exceeded, the value of vibration is compared to the threshold value of 
the “excessive vibration”. The signal about the current value of rotor vibration is con-
veyed to the informational panel of the pilot and, if the vibration signal exceeds the 
threshold value of the “dangerous vibration“ or  the “excess vibration“, the signal is 
conveyed from the exit МК1 through a DAC to the engine control units. 

The complementary level of the vibration control system is designated for the analy-
sis of the “normal vibration” in order to predict or detect small damages of engine sys-
tems and details. For this purpose the complementary dedicated microcontroller MC2 is 
used with the special software for signal processing. We propose to use the following 
signal processing methods: a) preliminary Wavelet Decomposition (WD) of signals, and 
b) determination of spectrum and statistics for each component of WD. In order to detect 
the initial cracks in turbine engine blades, it is possible to use Higher-Order Spectral 
analysis and determination of Dimensionless Peak Characteristics [2]. The results of 
signal processing are conveyed to the external information networks and/or are saved in 
a non-volatile memory.  

The principle of operation of the development system is explained by the algorithm 
in Fig. 2. 

The efficiency of the proposed system and using the signal processing methods is 
verified by the results of computer simulation and the analysis of vibration at the main 



326 

and auxiliary levels. The tracking band-pass filter with finite impulse response (equir-
ipple filter [3]) is designed for the main level of the vibration control system. The ampli-
tude-frequency characteristic of narrowband equiripple filter (central frequency of pass 
band is 100 Hz, minimal order is equal to 250, frequency rejection out of a pass band is 
30 dB) is shown in Fig. 3. 

 

 

Figure 2. Algorithm of operation of the vibration control system 

The software and user interface are designed for simulation and signal processing at 
the auxiliary level.We used the preliminary WD of vibration signals and signal of fre-
quency rotation, spectral analysis and statistical analysis for auxiliary level. The wave-



 Vibrations in Physical Systems Vol.25 (2012) 327 

lets of Daubechies family db10 and 5 levels of decomposition are used for the prelimi-
nary WD. The results of WD are used as a sample from each decomposition level for the 
next spectral analysis and statistical analysis.  

For instance, Fig.4 represents the user interface and the results of simulation and sig-
nal processing of vibration at the steady-state mode of GTE (constant value of the rotor 
rotation frequency).  

 

 
Figure 3. Amplitude-frequency characteristic of designed narrowband equiripple filter 

 

 

Figure 4. User interface and results of simulation and signal processing of vibration at 
the steady-state mode of GTE 

As shown, the detail of the first level of WD is analyzed (pressed button (5,1)). Fig. 5 
represents the user interface and results of simulation and signal processing of the rotor 
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rotation frequency at the non-steady-state mode of GTE (fast increase of the rotor rota-
tion frequency). The detail of the first level of WD is also analyzed in this instance.  

 

 

Figure 5. User interface and results of simulation and signal processing of the rotor 
rotation frequency at the non-steady-state mode of GTE 

All time plots (signal and WD component) are represented in the relative scale on the 
ordinate axis (percentage of maximum value) and in seconds on the abscissa. The di-
mension of frequency is Hertz for plots of spectrum.   

3. Conclusions  

The developed multilevel system will allow ensuring the GTE current control and 
awareness and increasing the reliability and rapidity of detection of the initial damages 
when the vibration of the GTE is normal. 
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Abstract   

In the paper semi-active control of torsional vibrations of the rotating machine drive system driven by an 
electric motor is performed by means of rotary actuators with the magneto-rheological fluid. The main purpose 
of these studies is a minimisation of vibration amplitudes in order to increase the fatigue durability of the most 
responsible elements, assure possibly precise motion of the driven machine working tool as well as to reduce a 
generated noise level. For suppression of steady-state torsional vibrations excited by dynamic external torques 
generated by the motor and by the driven object there are proposed control strategies based on a principle of 
optimum current damping coefficient values realized by the magneto-rheological fluid. The theoretical control 
concepts are experimentally verified using the laboratory test rig in the form of drive system co-operating with 
two asynchronous motors generating properly programmed driving and retarding electromagnetic torques.  

Keywords: semi-active control, torsional vibrations, rotary actuators, magneto-rheological fluid  

1. Introduction  

Active vibration control of drive systems of machines, mechanisms and vehicles creates 
new possibilities of improvement of their effective operation. From among various kinds 
of vibrations occurring in the drive systems the torsional ones are very important as 
naturally associated with their fundamental rotational motion. Torsional vibrations are in 
general rather difficult to control not only from the viewpoint of proper control torque 
generation, but also from the point of view of a convenient technique of imposing the 
control torques on quickly rotating parts of the drive-systems. Unfortunately, one can 
find not so many published results of research in this field, apart of some attempts per-
formed in [1] by active control of shaft torsional vibrations using piezo-electric actua-
tors. But in such cases relatively small values of control torques can be generated and 
thus the piezo-electric actuators can be usually applied to low-power drive systems. In 
[2] there is proposed the semi-active control technique based on the actuators in the form 
of rotary actuators with the magneto-rheological fluid (MRF). In these actuators between 
the shaft and the inertial ring, which is freely rotating with a velocity close or equal to 
the system average rotational speed, the magneto-rheological fluid of adjustable viscosi-
ty is used. Such actuators generate control torques that are functions of the shaft actual 
rotational speed, which consist of the average component corresponding to the rigid 
body motion and of the fluctuating component caused by torsional vibrations.  

The general target of this paper is an experimental verification of the presented in [2] 
theoretical concept of semi-active control of torsional vibration using the rotary actuators 
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with the magneto-rheological fluid. Thus, for this purpose the proper test-rig has been 
built, using which the measurement results have been compared with theoretical ones 
determined by means of two mechanical models of identical structure as the real object. 

2. Assumptions for the mechanical models and formulation of the problem 

In the considered laboratory drive system imitating operation of the rotating machine 
power is transmitted from the servo-asynchronous motor to the driven machine tool in 
the form of electric brake by means of the two multi-disk elastic couplings with built-in 
torque-meters, electromagnetic overload coupling and by the shaft segments. Moreover, 
this system is equipped by two rotary magneto-rheological actuators and two inertial 
disks of adjustable mass moments of inertia and axial positions, which enable us to tune-
up the drive train to the proper natural frequency values. The considered real laboratory 
drive system is presented in Fig. 1.  

 
 

 
 
 
 
 
 
 

Figure 1. Laboratory drive system 
 

 

Figure 2. Mechanical model of the laboratory drive system 

In order to perform a theoretical investigation of the semi-active control applied for 
this mechanical system, a reliable and computationally efficient mechanical model is 
required. In this paper dynamic investigations of the entire drive system are performed 
by means of two structural models consisting of torsionally deformable one-dimensional 
beam-type finite elements and rigid bodies, as shown in Fig 2. These are the discrete-
continuous (hybrid) model and the classical beam finite element one. Both models are 
employed here for eigenvalue analyses as well as for numerical simulations of torsional 
vibrations of the drive train. In the hybrid model successive cylindrical segments of the 
stepped rotor-shaft are substituted by the cylindrical macro-elements of continuously 
distributed inertial-visco-elastic properties. However, in the finite element model these 
continuous macro-elements have been discretized with a proper mesh density assuring a 
sufficient accuracy of results. In the proposed hybrid and FEM model of the rotating 

torque - meter inertial ring adjustable inertial ring driving motor 

M-R actuator(1 or 2) torque - meter overload coupling 

electric brake 
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machine drive system inertias of the inertial disks are represented by rigid bodies at-
tached to the appropriate macro-element extreme cross-sections, which should assure a 
reasonable accuracy for practical purposes. Torsional motion of cross-sections of each 
visco-elastic macro-element in the hybrid model is governed by the hyperbolic partial 
differential equations of the wave type. Mutual connections of the successive macro-
elements creating the stepped shaft as well as their interactions with the rigid bodies are 
described by equations of boundary conditions. These equations contain geometrical 
conditions of conformity for rotational displacements of the extreme cross sections. The 
second group of boundary conditions are dynamic ones, which contain equations of 
equilibrium for external and control torques as well as for inertial, elastic and external 
damping moments.  

Similarly as in [2], the solution for forced vibration analysis has been obtained using 
the analytical - computational approach. Solving the differential eigenvalue problem and 
an application of the Fourier solution in the form of series in the orthogonal eigenfunc-
tions lead to the set of uncoupled modal equations for time coordinates ξm(t). In the as-
sumed model the control damping torques genereded by one rotary actuator with the 
MRF can be regarded as the response-dependent external excitations. Then, by a trans-
formation of them into the space of modal coordinates ξm(t) and upon a proper rear-
rangements the following set of coupled modal equations is yielded:  

 )),(,()(0)())(),(()(0 ttttttjkt rFrKrrDrM &&&&& =++  (1) 

where      .2,1)),(),((C0))(( =+= jttjkt rDDrD &&  

The symbols M0, K0 and D0 denote, respectively, the constant diagonal modal mass, 
stiffness and damping matrices. The full matrix DC(kj(t),ŕ(t)) plays here a role of the 
semi-active control matrix and the symbol F(t,ŕ(t)) denotes the response dependent ex-
ternal excitation vector due to the electromagnetic torque generated by the electric motor 
and due to the retarding torque produced by the driven imitated rotating machine. The 
Lagrange coordinate vector r(t) consists of the unknown time functions ξm(t) in the Fou-
rier solutions, m = 1,2,… . The number of equations (1) corresponds to the number of 
torsional eigenmodes taken into consideration in the range of frequency of interest. The-
se equations are mutually coupled by the out-of-diagonal terms in matrix D regarded as 
external excitations expanded in series in the base of orthogonal analytical eigenfunc-
tions. A fast convergence of the applied Fourier solution enables us to reduce the appro-
priate number of the modal equations to solve in order to obtain a sufficient accuracy of 
results in the given range of frequency. Here, it is necessary to solve only 6÷10 coupled 
modal equations (1), contrary to the classical one-dimensional rod finite element formu-
lation leading in general to a relatively large number of motion equations in the general-
ized coordinates.  

For the assumed analogous linear finite element model the mathematical description 
of its motion has the classical form of a set of coupled ordinary differential equations in 
general coordinates, which can be found e.g. in [2]. 

In order to develop a proper control algorithm for the given vibrating drive system 
the electromagnetic external excitation produced by the motor should be described pos-
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sibly accurately. Thus, the electromechanical coupling between the electric motor and 
the torsional train ought to be taken into consideration. In the considered case of the 
symmetrical three-phase asynchronous motor, electric current oscillations in its windings 
are described by six voltage equations, transformed next into the system of four Park’s 
equations in the so called ‘αβ-dq’ reference system, form of which can be found e.g. in 
[3]. Then, the electromagnetic torque generated by such a motor can be expressed by the 
following formula 

 ,
2

3





 ⋅−⋅= r

qi
sir

di
sipMelT αβ  (2) 

where M denotes the relative rotor-to-stator coil inductance, p is the number of pairs of 
the motor magnetic poles and iα

s, iβ
s are the electric currents in the stator reduced to the 

electric field equivalent axes α and β and id
r, iq

r are the electric currents in the rotor re-
duced to the electric field equivalent axes d and q, [3].  

From the abovementioned system of voltage equations as well as from formula (2) it 
follows that the coupling between the electric and the mechanical system is non-linear in 
character, which leads to very complicated analytical description resulting in rather 
harmful computer implementation. Thus, this electromechanical coupling has been real-
ized here by means of the step-by-step numerical extrapolation technique, which for 
relatively small direct integration steps for motion equations results in very effective, 
stable and reliable computer simulation. 

4. Computational and experimental example 

The experimental investigations are going to be carried out by means of the described 
above test-rig equipped with the proper measurement-control system, the scheme of 
which is presented in Fig. 3. This system consists of the voltage amplifier controlled by 
the real-time computer using the appropriate converting system. Such measurement-
control system enables us to monitor and register all results of measurements using the 
control-communication unit by means of the TCP/IP protocol. Basing on the obtained 
on-line measurement results of the dynamic torques transmitted by the shown in Fig 1 
shaft segments adjacent to the torque-meters, the properly developed control algorithm 
determines in real time the current values of damping coefficients of the magneto-
rheological fluid in both rotary actuators.  

The measurement results of dynamic torsional responses have been registered for the 
steady-state operating conditions at constant nominal rotational speeds, respectively for 
the passive (without control) and semi-actively controlled drive system excited by the 
harmonic fluctuating component of the retarding torque within the frequency range 0-
150 Hz. Fig. 4 presents exemplary time-histories obtained for the passive system (grey 
line) and the semi-actively controlled one (black line), both for the excitation frequency 
54 Hz corresponding to the first natural system frequency. In Fig. 5 there are shown 
plots of dynamic response amplitudes of the passive (grey line) and semi-active system 
(black line) determined by means of measurements, Figs. 4a, and by numerical simula-
tions, Fig. 4b.  
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Figure 3. Scheme of the test-rig measurement system 
 

 

Figure 4. Measured time-histories of the dynamic torque transmitted by the input-shaft 
 

 

 

Figure 5. Amplitude characteristics of the dynamic responses of the passive (grey line) 
and semi-active (black line) system obtained using experiment (a) and simulation (b) 

a) 

b) 
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From the experimentally and theoretically obtained plots it follows that the rotary ac-
tuators with the magneto-rheological fluid can effectively suppress torsional vibration 
level, particularly for the resonance oscillation frequencies, e.g. corresponding to the 
first, fundamental eigenmode, for the properly selected control voltage value based on 
the respective minimum of the frequency response function determined for the consid-
ered mechanical system. 

5. Conclusions  

In the paper a semi-active control of steady-state torsional vibrations of the laboratory 
drive system driven by the asynchronous motor has been experimentally and computa-
tionally performed by means of rotary actuators with the magneto-rheological fluid 
(MRF). As it follows from the measurement and numerical examples, in both cases the 
optimum control carried out by means of the applied actuators with the MRF can effec-
tively reduce the steady-state vibrations of the successive shaft segments to the quasi-
static level of the loading transmitted by the drive system, where dynamic amplifications 
of the responses due to resonance effects have been almost completely suppressed. 
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Abstract  

Vibrations in printing machines are serious problem, which influences on the run of printing process and the 
quality of the printouts as well. Ones of the most important sources of vibrations are printing units, in which 
periodically changing stiffness excites parametric vibrations.  
In this paper, printing unit of offset printing machine is modelled as a two degree-of-freedom system, which is 
described by a system of parametric differential equations. Some analyses of this model’s behaviour are pre-
sented as well as conditions, in which parametric resonance in such systems may occur. 

Keywords: parametric vibrations, parametric resonance, two degree-of-freedom, offset printing unit 

1. Introduction 

Offset printing unit consists of free cylinders: plate, blanket and the impression cylinder 
(Fig. 1.). The picture, which is going to be printed, is situated on the printing form on the 
plate cylinder. After inking, the picture is transferred onto blanket cylinder, which is 
covered with a rubber blanket. Finally, the picture is printed on the paper, which is 
spread on the impression cylinder. 

 

Figure 1 Construction of offset printing unit 
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2. Model 

One of the most frequently mentioned source of vibrations in offset printing units is so 
called canal schock effect [1, 2, 3]. The reason of this phenomenon is rolling over of 
canals, that are in the plate and blanket cylinders (Fig. 1.). During printing, plate and 
blanket cylinders are stressed each other. When the canals meet each other, the stress 
disappears and it comes to sudden change of the stiffness of the printing unit. At this 
moment vibration exciting force appears. 

This phenomenon may be described by the model of printing unit shown in Fig. 2 
and system of equations (1) 
 

 
Figure 2 Model of printing unit 
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where: m1, m2 – masses of the plate and blanket cylinder, respectively; c12, c1, c2,– vis-
cous damping coefficients of the dampers, which represent damping properties of the 
offset blanket and the press frame, respectively; k12, k1, k2,– stiffness coefficients of the 
springs, which represent stiffness of the offset blanket and the press frame, respectively; 
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k(t) = kf(t) – in time changing stiffness of the blanket force; c(t) = cf(t) – in time chang-
ing viscous damping of the blanket. 
 

 

Figure 3 Characteristic of system’s stiffness and damping changes 
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Matrix )(ˆ tA  is a periodic, i.e. )(ˆ)(ˆ tTt AA =+ , so equation (5) is a parametric one 

(Hill’s equation) [5, 8, 9]. 

Matrix )(ˆ tA may be written in the following form: 
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In this way modified system with constant parameters is obtained 

 )(ˆ)( 0 tt zAz =& , (11) 

for which natural frequencies 1Ω , 2Ω  and roots of characteristic equation 0ˆˆ
0 =− IA s  

were calculated. 
Areas of instability of one degree-of-freedom parametric systems should be looked 

for parameters which satisfy equation (12). We made an assumption that this condition 
should be satisfied for two degree-of freedom systems as well. This kind of resonance is 
called simple resonance [5]. 

 
n

iΩ
=

2
ω , K,3,2,1=n ; 2,1=i  (12) 

where: ω – frequency of machine’s work, iΩ  – eigenfrequencies of the modified (with 

constant parameters) system.  
Parametric resonance may also occur for parameters satisfying condition (13). 

 
n

21 Ω±Ω
=ω , K,3,2,1=n  (13) 

Resonances, which satisfy equation (13) are called combination parametric resonances 
additive or subtractive type [6, 7].  

 Numerical simulations were carried out for two cases. First, in which cylinder bear-
ers (Fig. 1) were not taken into account and second one – in which plate and blanket 
cylinders were equipped with cylinder bearers. In calculations following parameters [3, 
4] were used: 

kg851 =m , kg1052 =m , 9
1 1094.2 ⋅=k 1mN − , 19

2 mN1016.3 −⋅=k , 18 mN1005.2 −⋅=k  

012 =k , 124
21 msN109,4 −⋅== cc , 012 =c , 123 msN1096.1 −⋅=c . 
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In the first considered case (without cylinder bearers, k12=0 1mN − ) natural frequen-

cies of the system are equal Ω1 = 5585.14 s-1 and Ω2 = 6130.34 s-1. 
In figure 3 one can see, that for the lower of system’s natural frequencies, parametric 

resonance does not occur, although condition (12) is satisfied (ω = 2Ω1/1,    
ω = 5585.16 s-1). 

 

 

Figure 3 Evolution of cylinders’ displacement Z(t) = z1(t) – z2(t) for initial conditions 
z1(0) = 0.1 mm, z2(0) = 0, z3(0) = 0, z4(0) = 0 

However, parametric resonance occurs for the bigger of natural frequencies Ω2, when 
condition (12) is satisfied and for n = 1,2,...7. When condition (13) is satisfied – for  
n = 1,2,...5.  

As the examples, numerical analyses for ω = 2Ω2/2 (a) and ω = (Ω1+Ω2)/5 (b) in 
Fig. 4 are shown.  

 

   (a)     (b) 

       
Figure 4 Evolution of cylinders’ displacement Z(t) = z1(t) – z2(t) for initial conditions 

z1(0) = 0.1 mm, z2(0) = 0, z3(0) = 0, z4(0) = 0 
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For n=8 (eq. (12) satisfied) and n=6 (eq. (13) satisfied) parametric resonance already 
does not occur. 

When stiffness of cylinder bearers is taken into account (k12 = 5.09·109 Nm-1), the 
stiffness of a whole system grows up. In this case parametric resonance does not occur, 
even when condition (12) and (13) are satisfied. 

3. Conclusions 

Analyses of parametric two degree-of-freedom system showed, that parametric reso-
nance may occur when the bigger of two natural frequencies of modified system and the 
sum of system’s natural frequencies are multiplicities of the parameters’ changes fre-
quency. 

Moreover, if offset printing unit were not equipped with cylinder bearers, parametric 
vibrations and parametric resonance could occur. When cylinder bearers are used, para-
metric resonance never occurs. 
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Abstract 

The paper presents planar model of human middle ear, which is described by differential equations of motion 
and solved numerically using the MD Adams software. First, dynamic behaviour of intact ossicular chain is 
analysed, next, incus is removed and partial ossicular replacement prosthesis is used to reconstruct middle ear. 
Then, natural frequencies of the system are analysed as a function of mass and length of the prosthesis.  

Keywords: middle ear model, nonlinear vibrations, middle ear prostheses  

1. Introduction  

A human middle ear consists of only three small ossicles: the malleus, the incus and the 
stapes. They create a very complex spatial vibrating system. Therefore, scientists have 
been looking for a proper model to represent a middle ear since the last half of twenty 
century. The first study in this field was published in 1961 by Mőller [1]. He presented a 
simple middle ear mechanism and, on this base, built the first analogue electrical circuit. 
Similar electrical model has also been investigated by Zwislocki [2]. Both of them based 
on Bárány theory which claims that the ossicles rotate around an axis lead through the 
head of the malleus and the short process of the incus. Zwislocki assumed that there is a 
rigid coupling between malleus and incus, then he omitted this joint in the analog circuit.   

In the last decades mechanical models were also developed, where ossicles were rep-
resented by lumped masses, connected with springs and dashpots. Usually, in the litera-
ture, simple three [3] or four [4] degrees of freedom (dof) models were investigated, but 
sometimes more advanced – even six dof models [5] were developed. All of them con-
sisted of lumped masses which performed planar translational motion. Although, one can 
find middle ear model which is built on the grounds of four bar linkage [6] the analysis 
is in fact limited only to kinematic dependencies.  

Generally, models presented in the literature, focus on kinematics of the middle ear, 
except the work of Feng et al. [5], where the authors analyse dynamic behaviour as well. 
New possibilities of middle ear modelling appeared when Finite Element Method (FEM) 
was introduced as an engineering tool. In 1978, the first model of FEM was used to 
study spatial vibrations of tympanic membrane and next also the ossicles. The results of 
FEM analysis can be found in [1, 2, 7–14]. Despite the fact that FEM can describe geo-
metrical details very accurately, the method cannot explain full dynamics behaviour 
because this does not give us dynamic equations governing middle ear system. There-
fore, it is still very important to find proper mechanical model described by means of 
mathematical functions. The main problem occurring in modelling is identification of 
system parameters. Damping and stiffness coefficients cannot be easily found in experi-
mental tests because of many reasons, which make experimental tests difficult. Some-
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times, the stiffness and damping coefficient reported in various literature differ meaning-
fully [15]. Usually, middle ear models present intact ossicular chain. Therefore, there is a 
lack of models which could simulate middle ear with prostheses. One of the most inter-
esting approaches is presented by Eiber and collaborates [16]. They applied multibody 
system to investigate dynamical behaviour of middle ear. Their multibody approach 
assumes, that the motions of each ossicles, as well as of the prosthesis can be treated as a 
rigid body motion. As far as middle ear model with prosthesis is concerned, the most 
often FEM is used in order to simulate the ossicles behaviour but there are numerous 
papers that present experimental investigations as well [17–20]. 

In this paper, the planar model of human middle ear is analysed where the malleus, 
the incus and the stapes are treated as rigid bodies connected to each other and fixed to a 
temporal bone by tendons. Firstly, the intact ossicular chain is investigated, next recon-
structed middle ear with prosthesis is analysed with the help of MD Adams. 

2. Analysis of middle ear model  

The human middle ear mechanism which is very complex system, can be modeled in 
several ways. Here, planar six degree of freedom (6-dof) model is demonstrated (Fig.1a). 
Three ossicles: the malleus, the incus, and the stapes are represented by rigid bodies 
characterised by masses mm, mi, ms suspended with ten springs and dashpots. The malle-
us (mM) is jointed to the tympanic membrane (TM) with a spring kTM and a dashpot cTM. 
The anterior malleal ligament (AML) and the tensor tympani tendon (TT) suspending the 
malleus are modelled by the springs kAML, kTT and the dashpots cAML, cTT. The malleus is 
connected with the incus by incudomalleal joint (IMJ) represented by spring kIMJ and 
dashpot cIMJ. Next, the incus is supported by posterior and superior incudal ligament 
(PIL and SIL), and the stapes by annular ligament (AL) that are  
 

Figure 1. Six degree of freedom model of the middle ear (a), prostheses type 1 and 2 (b) 

modelled as springs with stiffness kPIL, kSIL and kAL,  and dashpots cPIL, cSIL and cAL. The 
incudostapedial joint is represented by a spring kISJ and a dashpot cISJ. The stapes motion 
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is transferred to the cochlea (C) with stiffness and damping represented by a spring kC 
and a dashpot cC. The malleus motion is stimulated by sound source acting on tympanic 
membrane. The malleus can translate and rotate about the point 2. The incus similarly 
can perform translation and rotation about the point 4, whereas the stapes moves like a 
piston what is described in the literature [3] and additionally can swing around the point 
10. Thus, the model possesses 6 degrees of freedom (6-dof): three translations (xm, xi, xs) 
and three rotations (φm, φi, φs). The system is governed by six differential equations of 
motion, which can be obtained from the Lagrange equations of the second kind:  

 0
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where, T and V mean kinetic and potential energy, respectively. D is a dissipation func-
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energy is defined: 
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where, cm, ci, cs, determine the distance between centre of mass and the point of rotation, 
and rm,  rm,  rm, are gyration radius. Assuming, that kTT and kPIL do not take part in sound 
transmission, and also that the ossicles mass centre are located as in Fig.1 and that very 
small ossicles’ masses do not influence the change of potential energy, the total potential 
energy of the system can be presented as follows: 
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The assumption about the change of potential energy caused by the gravity force is justi-
fied because the elastic potential of these springs is about nineteen hundred times bigger 
than the potential of gravitation. The system presented in Fig. 1 is geometrically nonlin-
ear by nature. The differential equations of natural vibrations, which are obtained after 
putting equations (2) and (3) into (1), are expressed as:  

 ( ) ( ) ( )12cos 2sin 0m m m m m m AML TM IMJ TM M IMJ
mm x c x k k k k L k Lϕϕ ϕ+ + + + + + =&&&&  (4) 
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The equations of motions from (4) to (9) are nonlinear and coupled. Therefore, their 
analytical solution is a challenging task. Here, the nonlinear model of middle ear is simu-
lated in MD Adams with parameters presented in Tab. 1, which are taken from [15] but 
some of them marked with an asterisk are assumed on the basis of own numerical re-
searches.  

Table 1. Parameters of the middle ear used in simulations  

Symbol Unit Value Symbol Unit Value Symbol Unit Value 
mm mg 25 cTM Ns/m 0.005 kTM N/m 200 
mi mg 28 cAML Ns/m 0.0432 KAML N/m 620* 

ms mg 1,78 cIMJ Ns/m 0.0036 KIMJ N/m 1000000 
   cISJ Ns/m 0.6 kISJ N/m 1200 
   cPIL Ns/m 0.02 kPIL N/m 620* 
   cAL Ns/m 0.0036 kAL N/m 625 
   cC Ns/m 0.06 kC N/m 200 
   cTT Ns/m 0.005* kTT N/m 300* 
   cSIL Ns/m 0.005* kSIL N/m 62000* 

 

  

Figure 2. Natural frequencies; the first (a), the second (b) 
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The natural undamped frequencies of intact ossicular chain (IOC) represented by the 
model shown in Fig. 1a, are 0.45 kHz, 71 kHz, 0.76 kHz, 1.98 kHz, 9 kHz and 36.8 kHz, 
but the first two do not exist in the damped system. Therefore, 0.76, 1.98 kHz are the 
most important in audiology. In case of the incus damage, partially ossicular replacement 
prosthesis (PORP) is used in medical practice. Then, the position and the mass of the 
prosthesis is still a disputable problem. Here, two PORP positions are analysed (Fig. 1b) 
and three prosthesis masses 3.2 mg, 32 mg, and 62 mg, which are typical for ceramics, 
gold and titanium prostheses, respectively [16]. Comparison of the first and the second 
natural frequency is depicted in Fig. 2. The lower mass prosthesis is the best because its 
frequencies are close to those of intact ossicular chain (IOC) which is represented by 
horizontal dashed line in Fig. 2. As far as prosthesis position is concerned, the position 
type 1 is better than type 2. Generally, PORP type 2 gives lower natural frequencies than 
OIC. 

3. Conclusions  

The planar 6-dof model of the middle ear seems to be adequate to simulate dynamic 
behaviour of auditory ossicles and useful to estimate the kind of prosthesis and its posi-
tion in living human body. The results of the numerical simulations are convergent with 
experimental research reported in the literature [16] which proves that prosthesis mass 
below 5mg is the best for reconstruction of the ossicular chain. 
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Abstract 

The problem of modelling of middle ear auditory chain functioning is still very difficult to be made precisely 
in comparison with the real ossicles’ behaviour observed experimentally. The main reason for this is geomet-
rical complexity and a number of material characteristics of the ossicles themselves. Here, FEM is engaged to 
model human middle ear work because this method allows for reconfiguring of complex auditory chain geom-
etry, various material models etc. and provides good accuracy.  

Keywords: auditory chain mechanics, middle ear dynamics, FE model, modal analysis  

1. Introduction 

The Finite Elements Method (FEM) allows for detailed modelling of the human ear 
complicated auditory chain [1]. It allows for changing and comparing different configu-
rations (angles) of the ossicles, changing material models (e.g. tympanic membrane can 
by isotropic, anisotropic, hyper elastic etc.). Also some details of ossicles’ suspension 
(tendons and ligaments) as well as other agents (air inertia, the cochlear fluid etc.) can be 
taken into account [1,2]. From practical point of view, a special importance has the pos-
sibility of simulating work of any prostheses incorporated into the human auditory 
chain [3–5]. 

Even though in the open literature one can find many approaches to modelling of the 
middle ear dynamics [1–10] there are still some important problems to be solved, such as 
bypassing difficulties connected with individual differences of human being ossicular 
chain. As indicated by other researchers (e.g. [1]) the identification of parameters by in 
situ measurements are difficult to perform for many reasons. Even though there is a 
number of material data given in the literature [1, 2,4,6,7,9], there is still an unsolved 
problem of individual variety of characteristics of human beings. The method of FE 
gives here a strong and desirable possibilities to vary many characteristics of the audito-
ry chain, what is enormously advantageous in understanding the dynamics of the ossicles 
and the whole system.  
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As it was observed during the STL generation by tomography, even though the ossi-
cles are very small they are not solid, as it is generally accepted in modelling [2,6]. 
Namely, they can have empty spaces (pores) inside, what has significant influence on 
their strength [11,12] and other mechanical characteristics (for example the center of 
mass can be moved from the geometrical center) and thus the common assumption of the 
homogeneity, isotropy etc. are no longer valid. Again, in this situation FE modelling in 
connection with tomography gives many possibilities to simulate precisely auditory 
chain mechanics. 

As other authors say, the most important variables in middle-ear modelling is the be-
haviour of the eardrum (tympanic membrane) and the interaction of the stapedius with 
the cochlear fluid [1,4,6,7,9]. Of course a number of studies can be found on precise 
modelling of the ossicles’ suspension – muscles, tendons and ligaments [1–4,6–10]. 
However, it is hard to find in the open literature wider studies on the eigenproblems of 
the whole auditory chain, even though some researchers performed modal analysis of the 
eardrum [1,4,6]. Our model covers estimation of eigenmodes and eigenfrequencies for 
the whole middle-ear auditory chain. 

2. Method 

The geometry of ossicles were obtained from computer micro-tomography. Next, the 
IGES files containing the main parts of the auditory chain were imported into 
ABAQUS/CAE® environment ver. 6.10.2. Then, the ossicles were joined together in the 
ossicular chain and meshed using automated seeding process. The mesh consisted of 
C3D4 linear tetrahedral elements of total number of 44119 with smaller elements around 
bigger curvatures and so on. Having all parts (ossicles and tissues) read, meshed and 
prepared for analysis a complete auditory chain was established in one assembly. The 
mutual location and orientation of the parts was tuned to the one given in a separate 
IGES file containing the spatial configuration of all ossicles. The only way to improve 
the geometry was to disassemble the auditory chain, to improve all parts separately and 
to assemble them again without redundant geometrical entities, what in fact was done. 
The material data for all elements of the auditory chain was taken from the literature 
[1,2,4,6,7,9] in order to match them to requirements of our model (see Table 1). All 
ossicles, the eardrum and the two joint tissues were assumed to be isotropic and homo-
geneous solids. It is worth notifying, that there is a great difference between the two joint 
tissues: maleo-incudeal and incudeo-stapedial, what has an important influence on the 
movement at different frequency level (different eigenmodes). Namely, at lower fre-
quencies the malleus-incus couple moves as one body, as it was indicated in [1] among 
others. At higher frequencies (generally above 3kHz) the incus tends to rotate because of 
its considerable inertia and a tendency to minimize the energy used to move and this is 
specific for human ear, as other – smaller mammals have simpler kinematics of the ossi-
cles [4,7]. 

A set of suspensory elements was added to the ossicles in the form of springs S1-S7, 
where S1 stands for superior malleal ligament, S2 – lateral malleal ligament, S3 – posteri-
or incudal ligament, S4 – anterior malleal ligament, S5 – posterior stapedial tendon, S6 



 Vibrations in Physical Systems Vol.25 (2012) 349 

reflects cochlear fluid elasticity (only for this part damping is also considered) and S7 
simulates the reaction of tensor tympani tendon. 

Table 1. Material characteristics of the human middle-ear ossicles 

Auditory-chain element 
Material characteristics 

Modulus of elasticity, 
MPa 

Poisson ratio 
Mass density,  

kg/m3 

Eardrum 35.0 0.35 1 200 
Malleus, Incus, Stapedius 14 100.0 0.30 3 590, 3 230, 2 200 

maleo-incudeal tissue 14 100.0 0.30 3 200 
incudeo-stapedial tissue 0.6 0.30 1 200 

 

Note, that stapedial annular ligament was included in S6 for simplicity, which is one of 
the desired features of our model. All suspensory elements were attached and oriented 
similarly to [9] and each spring Si (i=1...7) was characterized by its respective stiffness 
coefficient ki. The basic mechanical data for S6 was taken from [9], i.e. the stiffness 
coefficient K6=209N/m and the damping coefficient c=0.06Ns/m. Here, capital “K” 
means the reference constant value, as k6 is a variable stiffness and also other ki (i=1...5, 
7) were given various values, as farther described. The D6 damper was connected in a 
series with the S6 spring (Maxwell model). 
As it was mentioned before, the stapedial annular ligament was incorporated in the S6 
spring. However, the piston-like movement of the stapedius [1,4,6,7,9] was enforced by 
restraining respective degrees of freedom. This kind of stapedius movement is observed 
at least within the 0-3000Hz frequency interval [4] and in our paper we consider only 
first five eigenfrequencies, generally not exceeding 3kHz. In addition the eardrum was 
encastered (for simplicity) at the whole tympanic ring. Such approach is used by some 
authors (e.g. [4]), even though other treatments are possible [1,3]. All elements were 
joined by tie constraints with surface to node region method. The last element in the 
middle-ear auditory chain was the stapedius. In reality it is connected to the inner ear 
(cochlea) and this connection can be modelled in several ways [1,9]. In this paper a vis-
co-elastic joint was used, as described above. Some authors say [4], that this is the best 
modelling of the fluid inertia of the cochlea. 
During the FE simulation six values of ki to K6 ratio were used: 1/3, 1, 10/3, 10, 100/3, 
100, in order to analyze the influence of springs’ stiffnesses on eigenfrequencies of the 
whole auditory chain. This analysis was the main goal of our research at this stage and it 
was realized as a Static-Linear Perturbation step in Abaqus/CAE by the following proce-
dure. First, eigenfrequencies of the connected ossicles was performed with boundary 
conditions for the eardrum and the stapedius footplate as described above and no suspen-
sory springs at all. Next, the S6 spring was introduced and again the first five eigenfre-
quencies were found numerically for different values of k6, i.e. k6=(1/3, 1, ... 100)xK6. In 
the third step different values of the damping coefficient of D6 were tested, but they had 
no effect on eigenfrequencies at all. This raises doubts about the necessity of considering 
damping of the cochlea with the accepted model assumptions. Subsequently, a compari-
son of other springs was performed in two ways: 
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Figure 1. Comparison of the suspensory element stiffness’ influence on the auditory 
chain eigenfrequencies 
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1. each spring S1 – S5 and S7 employed simultaneously with S6 at k6=K6 and the ki to 
K6 ratios equal 1/3, 1, 10/3, ..., 100, subsequently (6x6=36 cases), 

2. all springs working at a time, with S6 at k6=K6 and all other springs having the 
same stiffnesses k1=k2=k3=k4=k5=k7, changed subsequently from 1/3xK6 up to 
100xK6, as in the previous item, which gave another 6 analysis cases. 

The results of these analyses are presented in the next section (see Fig. 1). 

3. Results and discussion  

The first five eigenfrequencies for the auditory chain with ascribed boundary conditions 
and no suspension were f1=177.01Hz, f2=350.66Hz, f3=1121.50Hz, f4=1495.20Hz and 
f5=2394.50Hz. After introducing the S6 spring all the frequencies increased, the more the 
stiffness was enlarged. For k6=209N/m (=K6) the respective frequencies were 
f1=223.86Hz, f2=352.07Hz, f3=1138.70Hz, f4=1559.40Hz and f5=2427.50Hz and they 
were subsequently used as reference values at the graphs in Fig. 1. As shown in Fig. 1 
the influence of the suspension in the form of springs was successfully found with the 
FE model of the human middle-ear auditory chain. Fig. 1a depicts the influence of the 
cochlea elastic properties on the relative difference (dfj, j=1, 2, ..., 5) of the first five 
eigenfrequencies (f1 – f5) in comparison to the frequencies of the system with only 
boundary conditions and the S6 spring activated (k6=K6=209N/m). This influence is 
particularly strong in case of the first eigenfrequency. Note, that the intensity of the 
influence is not proportional to the subsequent number of the frequency. Consecutive 
graphs (b – g) say, that the influence of the separate springs (S1 – S5, S7) working at the 
same time with the S6 spring is generally important, even though in each case the five 
eigenfrequencies are differently sensitive to the change of the particular spring’s stiff-
ness. For example, the highest frequency (f5) is affected only by tensor tympani tendon 
stiffness (S7) more seriously. In other cases (S1 – S5) the value of f5 is practically un-
touched by any change of these springs’ stiffness coefficients. On the other hand the 
second eigenfrequency (f2) reacts strongly for stiffening of the four ligaments (S1 – S4) 
and the posterior stapedial tendon (S5), but not for the tensor tympani tendon (S7). 

Figure 1f exhibits, that S5 has no influence on the eigenfrequencies irrespective to its 
stiffness. The last plot (Fig. 1h) indicates the influence of the stiffness’ changes of all the 
springs acting simultaneously, when only the stiffness of S6 is kept constant and equal to 
K6=209N/m is strong (or even huge - for the second frequency (f2)) over a wide span of 
ki to K6 ratio (up to 100). This can be treated as a proof, that even the simplest FE model 
can give significant information about the complicated mechanics of the human auditory 
chain. 

4. Conclusions  

The FE modal analysis of the human middle-ear auditory chain showed, that FE is a 
powerful, convenient and reliable technique of modelling complicated dynamic behav-
iour of biomechanical systems [13,14]. It is known, that on the contrary to other mam-
mals’ ear system [4], the movement of the human one is more complicated and behaves 
in various ways, depending on the transmitted frequency [4]. This is connected to the 



352 

fact, that the human ossicles are heavier and have higher moments of inertia [4]. Thus, 
the ossicles move in such a way that is the most effective from the energetical point of 
view at different frequencies [4]. The results presented here are in good agreement with 
the reality and the other authors’ results, as subsequent eigenmodes show different 
moves of the ossicles. Introducing a simplified set of suspension in the form of springs 
having different properties, where directions of them and attachment points were similar 
to those given in [9] shows that considering suspension does substantially change the 
eigenfrequencies and the dynamical behaviour of the human auditory chain. If only the 
lower frequencies are taken into account, when the stapedius moves like a piston, the 
cochlear fluid’s damping properties can be neglected. In that case the proposed simpli-
fied middle-ear model can give satisfactory results. 
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Abstract  

Attempt to raise train speed involves application of greater braking power i.e. braking systems rapidly absorb-
ing and dispersing stored heat energy. To maintain high efficiency of braking system in the whole operational 
process, it is necessary to control the friction set: brake and pad before reaching limit wear particularly of 
friction pads [5]. The purpose of this article is to present possibility to diagnose the friction set of disc brake by 
using selected frequency characteristics of vibration signal generated by brake caliper with friction pads. 
 
Keywords: railway disc brake, wear of friction pad, diagnostics of brake, frequency analysis. 

1. Introduction  

Because of complex braking system in rail cars and locomotive, most often consisting of 
8 individual brake cylinders, application of one diagnostic system to assess the wear of 
all friction sets is impeded [7]. A system for visual inspection and diagnostics worked 
out in Rail Vehicle Institut TABOR in Poznan is the most advanced system do diagnose 
disc brake. Diagnosing system [1] provides complete information about the wear of 
friction pads and brake disc in each operation moment. Worked out solutions, becasue of 
complex and expensive measuring set consisting of a digital film camera and a software 
to convert the picture, after successful tests at reasearch station, have not been applied by 
railway industry yet.  

In rail technique, also rail track stations are used to diagnose the wear of friction pad. 
At these stations friction set consisting of disc brake and friction pad is photograhed 
during train ride. However, it is not a very precise method because, on the basis of 
recorded pictures the thickness of frction pads of disc brake is only assessed. When 
pads’ thickness amounts to approx. 10 mm tram driver receives information that limit 
acceptable wear of pads on a certain axle of axle set has been reached. Rail track stations 
to diagnose the wear of friction pads are used by German, British and French railways.  

In railway vehicles, systems signaling braking process and turning off braking 
process, visible for the service from the inside and outside of the vehicle, are the most 
often applied. Those systems enable to check during train ride in which car braking 
system is bloked. Nevertheless, rail technique lacks an objective method of quantitive 
assessment of the wear of friction pads.  

The purpose of this research is to apply vibration signal of pad calipers to assess the 
wear of friction pads of disc brake. 
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Figure. 1. Station for tests of railway brakes; a) pad caliper with accelerometer, b) view 
of equipment set of vibrations generated by caliper with pads, c) diagram of 

measurement track of  vibrations generated by caliper with pads, 1-accelerometer, 2-
measuring case type B&K 3050-A-060 , 3- System software PULSE 16.0 

2. Methodology and research object 

The research was carried out at internal testing for tests of railway brakes. A brake disc 
type 610×110 with ventilation vanes made by Kovis and three sets of pads type 200 
FR20H.2 made by Frenoplast constitute the research object. One set was new - 35 mm 
thick and two sets were worn to thickness of 25 mm and 15 mm. A reasearch program C 
(fast ride) according to instructions of UIC 541-3 was applied. The brakings were carried 
out from speed of 50, 80, 120, 160 and 200 km/h. During the research pad’s pressures to 
disc N of 28 and 44kN were realized as well as braking masses per one disc of M=4.4T 
and 7.5T. Vibration transducer were mounted on pad calipers with a mounting clip, 
which is presented in Fig. 1a. During the research signals of vibration accelerations were 
registered in three reciprocally orthogonal directions. To acquire vibration signal a 
measuring system consisting of piezoelectric vibration accelerations transducer and 
measuring case type B&K 3050-A-060 with system software PULSE 16.0 was used. Fig. 
1b presents the view of the measuring track.  
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Brüel&Kjær’s the vibration transducer type 4504 were selected on the basis of 
instructions included in paper [3], the linear frequency of converter transit amounted to 
13 kHz. During diagnostic tests signals in frequency from 0.7 Hz to 9 kHz [2] were 
registered. Sampling frequency was set at 32 kHz. This means that the frequency that 
was subject of the analysis in accordance with Nyquist relation amounted to 16 kHz. 

This research was carried out in accordance with principles of active experiment. 
After carrying out a series of brakings at set speeds at the beginning of braking, pads’ 
pressures to the disc and braking masses, the friction pads were changed and values of 
instantenuous vibration accelerations were registered. 

3. Analysis of results of vibration accelerations by defining in frequency domain 

The purpose of spectrum analysis of signals of vibration accelerations was to determine 
frequency bands connected with change of pad’s thickness during operation of braking 
system. Figure 2 presents exemplary amplitude spectra of vibration accelerations for 
various pad’s thicknesses received during braking from speed of 160 km/h. Spectrum 
received on measurement of vibrations in direction perpendicular to friction surface of 
the disc (direction Y) with pad’s clamp to the disc N=44kN and braking mass M=4,4t. 

 

 
Figure. 2. Dependence of amplitude of vibration accelerations on frequencies for diffe-
rent pad’s thicknesses for speed at the beginning of braking v=120km/h in direction Y2: 
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P1-frequency band 4600-5100 Hz, P2-frequency band 6000-6700 Hz: a) pad’s thickness 
G1=35mm, b) pad’s thickness G2=25mm, c) pad’s thickness G3=15mm 

Research on measurement of vibration accelerations of brake calipers in frequency 
domain showed that it is possible to find frequency bands, in which dependence of RMS 
value of vibration accelerations aRMS (equation (1)) [4] on various pad’s thicknesses in 
considered range of speeds at the beginning of braking is observed. 

 

 ( )[ ]∫=
T

RMS dtta
T

a
0

21
 (1) 

where:   
T  - average time [s], 
a(t) - instantaneous value of vibration accelerations [m/s2]. 

  

 
Additionally, dynamics of changes according to dependence in [6] of an examined 

diagnostic parameter for a certain frequency band and at a certain speed at the beginning 
of braking and values of correlation coefficients for linear dependence of amplitude 
value of vibration accelerations on examined friction pad’s thicknesses is presented. On 
this basis it was concluded that diagnosing the wear of frictions pads can be carried out 
independently from the speed at the beginning of braking for certain frequency bands.  

 

Figure. 3. Dependence of pad’s thickness in function of  RMS value of vibrations accel-
erations for frequency band 4600-5100Hz 
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Figure. 4. Dependence of pad’s thickness in function of  RMS value of vibrations accel-
erations for frequency band 6000-6700Hz 

Figure 3 and 4 presents dependence of friction pad’s thickness of disc brake G on 
RMS value of vibration accelerations aRMS in considered frequency bands.   

On the basis of approximation function of the wear of friction pads against RMS va-
lue of vibration accelerations, linear dependences (2-7) were implemented for considered 
speeds at the beginning of braking enabling defining current friction pad’s thickness.  
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 (2) 
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 (4) 
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 ( ) ( ) ,528,8001,11 12067006000,120 +⋅−= =−= vRMSv aG
 (7)  
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7) equaled 4-7% for pad G5 and 7-12% for pad G4. Lower values of diagnose error were 
obtained for band 6000-6700Hz.  

3. Conclusions  

The reseach at internal testing of railway brakes showed that it is possible to diagnose 
the wear of friction pads by using analysis of the values of the vibration acceleration 
caliper by defining in frequency domain. 

Analysis of caliper vibrations in frequency domain enables to diagnose the wear of 
friction pads in two bands: 4600-5100 and 6000-6700Hz independently of speed at the 
beginning of braking.  

For analysis in frequency domain, coefficients of dynamics of changes equals 2.7-
7.6dB depending on the speed at the beginning of braking. Using RMS value of vibra-
tion accelerations it is possible to use diagnostic models to define the wear of friction 
pads at considered speeds at the beginning of braking.  

Analyzing signals a(t) for considered pads’ thickness, occurrence of self-excitation 
vibrations for pads worn to thickness of 15mm was observed. The effect of self-
excitation vibrations may be connected with change of dynamics properties of the 
system caused by change of caliper and pad’s mass, which is particularly visible at the 
end of braking. 
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Abstract 

The subject of the paper is vibration control of a cantilever beam with magnetorheological (MR) fluid. Based 
on the results of identification and energy analysis, a control algorithm for free vibrations damping of the beam 
was proposed. The algorithm was realized by controlling the current supplying the electromagnet. The free 
vibrations of beam were investigated for constant current and current varied according to the assumed control 
algorithm.  

Keywords: cantilever beam, MR fluid, vibration, control 

1. Introduction 

The interaction between an MR fluid and a system with continuously distributed mass 
and stiffness is in the form of a distributed load. It is realized by providing an MR fluid 
layer to continuous systems such as beams, plates and shells for the purpose of vibration 
reduction [1, 2, 5].  

In theory, damping layers, being an integral part of a continuous system, have a great 
possibility for vibration reduction. However, problems arise associated with introduction 
of an MR fluid layer to the system, its sealing and maintenance in the service conditions.  

In the first place an algorithm has to be developed for controlling the current in elec-
tromagnet coil so that properties of MR fluid could be varied under the action. The anal-
ysis of motion is mostly associated with discretization of a continuous system [6] and the 
control strategy is developed basing on the modal control approach [3, 7]. 

2. Experimental set-up 

Three-layered cantilever beam is shown schematically in Fig. 1. Two outer layers made 
of aluminium are l = 400 mm long, b = 30 mm wide and h1 = 2 mm high. The space 
between the two layers is sealed with silicone rubber h2 = 2 mm thick and g = 1.5 mm 
wide. The beam interior is filled with MR fluid of the type 132DG (Lord Corporation). 

 
Figure 1. Structure of the beam 
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Semiactive damping of the beam’s free vibrations is tested in the experimental setup 
(see Figs. 2 and 3). The magnetic field acting upon the beam is generated by an electro-
magnet whose position is defined by distance ym between the beam attachment point and 
the centre of the electromagnet core. The electromagnet is supplied with current i from a 
power amplifier. 

 

  

Figure 2. Schematic diagram of the 
experimental setup 

Figure 3.View of the experimental 
setup  

The measuring and control system incorporates a PC computer, and I/O card RT-
DAC4 (Inteco Ltd), supported by MATLAB/Simulink. A laser sensor is used to measure 
the displacement z of the beam’s end point P. 

The power amplifier [4] was used to generate magnetic field and control its strength. Two 
modes of amplifier operation are available: the voltage mode and the current mode (with 
an analogue PID controller embedded). The amplifier incorporates sensors for measuring 
the output signal u and the current i in the electromagnet coil. 

3. Reduction of the beam’s vibration 

In most cases, the free vibrations of a cantilever beam involve the first mode. According-
ly, the beam displacement is given by the formula: 

 ( ) ( )tzyYtyw =),(  (1) 

where Y(y) is the vibration mode and z(t) is the displacement of the beam’s free end. The 
equation of the beam’s vibration can be reduced to the following differential equation: 

 0=++ kzzbzm &&&  (2) 

where coefficients m, b, k stand for the modal mass, damping and stiffness, respectively.  
Reduction of the beam’s vibration through the control of its parameters consists in 

selecting the parameters b and k, depending on the state of the beam’s motion. As the 
interaction between magnetic field and the beam with MR fluid give rise to the change 
of the beam’s damping and stiffness, there is a possibility for controlling those parame-
ters such that the vibration amplitude should be reduced as quickly as possible.  

One approach to vibration reduction of the beam is that based on cyclic changes of 
the beam’s stiffness such that its potential energy should be reduced in each cycle [3, 8]. 
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This concept can be implemented through the control of magnetic field which causes the 
change of the MR fluid properties. A simple analysis of the beam’s potential and kinetic 
energy during its movement with the first mode of vibration leads to formulate the stiff-
ness switching principles. At the instant when the dead point is reached, the velocity 
becomes zero and the total energy of the system is associated only with the potential 
energy of elasticity. Reduction of stiffness at that moment gives rise to reduction of 
potential energy without an increase of kinetic energy, hence the total beam’s energy is 
decreasing. The increase of the beam’s stiffness should occur at the instant when the 
beam is not deformed. At that moment the potential energy of beam equals zero and 
kinetic energy reaches maximal level. The change in stiffness in the condition of no 
deformation does not lead to an increase of potential energy and kinetic energy does not 
change, either. Therefore, the stiffness switch should be performed four times within one 
cycle of vibration [8], in accordance with the following algorithm: 

 
0

0
h

l

zz k k

zz k k

≥ → =

< → =

&

&

 (3) 

where z is displacement of the end point of a vibrating beam, k is the  modal stiffness of 
the beam, kh denotes a high value of stiffness realised as a result of the control action, kl 
stands for the low stiffness. Assuming the vibration amplitude to be A, the energy dissi-
pated during one full cycle can be estimated from the formula: 

 ( ) 2

s h lW k k A= −  (4) 

The effectiveness of this algorithm depends on the difference between the high and 
low beam’s stiffness (kh – kl) associated with the change of magnetic field. The rate of 
the decay of vibration is proportional to this difference. 

Controlling the magnetic field causes not only variations of the beam’s modal stiff-
ness but the change of modal damping too. At each moment the damping force dissipates 
the energy of a vibrating beam. Assuming the sine vibrations with the amplitude A and 
frequency ω, energy dissipated within one full cycle is obtained from the formula: 

 ωπ bAWt
2=  (5) 

where b is the modal damping coefficient for the first vibration mode. Eq (5) indicates 
that the dissipated energy will be maximal when the value of the coefficient b becomes 
as high as possible. 

When the proposed algorithm is executed, the damping coefficient takes two values. 
Let bl denote the damping coefficient realised when the stiffness coefficient equals kl and 
bh – the damping coefficient realised when the stiffness coefficient equals kh. Hence, the 
dissipated energy is given by the formula: 

 ωπ )(5.0 2
lht bbAW +=  (6) 
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This expression takes a value lower than that based on (5), when the magnetic field 
strength is assumed to be maximal value. Then the damping coefficient can be calculated 
as b=max (bl, bh). 

It appears that in the case when the stiffness and damping cannot be separately con-
trolled, the algorithm using the stiffness changes to reduce the beam’s free vibration 
causes the decrease of energy dissipation associated with the damping coefficient. Prac-
tical application of the stiffness control algorithm will be merited if the ‘profit’ from the 
stiffness switch exceeds the ‘loss’ associated with simultaneous change of the damping 
coefficient, otherwise the free vibration will be well reduced when the value of the 
damping coefficient is assumed as high as possible. The final conclusions will be drawn 
after an experiment taking into account the non-ideal switching of the stiffness coeffi-
cient. 

4. Experiments 

The setup for testing the vibrations of sandwich beams with MR fluid and the system for 
controlling the current supplying the electromagnet are now used in testing the effects of 
control action in accordance with the control algorithm (see section 3) on the reduction 
of beam’s free vibration. Before the algorithm can be used in practical applications, 
further tests are required to find out how variation of current flowing in the electromag-
net coil should affect the beam’s stiffness. This relationship shown in Fig. 4 is based on 
research data described in [2].  

 

 

Figure 4. MR beam modal stiffness k vs. current i in the electromagnet coil  

The effectiveness of the control algorithm can be evaluated basing on the plots of the 
beam’s end displacement (Fig. 5). With control, the beam’s end displacement tends to 
decrease faster than in the case when no current flows through the electromagnet coil 
(i = 0 A). However, the displacement decreases more slowly than in the case when the 
electromagnet coils are supplied with maximal current (i = 2 A). 

Figure 6 presents the plots of the beam’s end displacement, the current ic predicted 
by control algorithm and the current i flowing in electromagnet coil. The current flowing 
in electromagnet coil differs from the predicted value due to the dynamic behaviour of 
the control system and of the power-supply. 
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Figure 5. Displacement of the beam’s end 
 

a) 

 

b) 

 

c) 

 

Figure 6. Displacement of the beam’s end a), current predicted by algorithm b),         
current in the electromagnet coil c)  

5. Conclusions 

Application of MR fluid in the sandwich beam allows the beam’s vibration to be actively 
reduced through the control of magnetic field surrounding the beam. The proposed algo-
rithm for controlling the current supplying the electromagnet utilises the changes of the 
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stiffness and damping coefficients to effect the fast reduction of the vibration amplitude. 
The purpose of this research was to determine whether the change of the beam’s stiffness 
induced by variations of magnetic field should be sufficiently large to be effectively used 
in vibration reduction algorithms. Results show that application of a stiffness control 
algorithm to vibration reduction is ineffective due to concurrent changes of damping 
coefficients, decreasing the efficiency of the control algorithm. A simple algorithm 
whereby magnetic field is generated by the maximal current supplying the electromagnet 
seems to be a better solution for vibration reduction. One has to bear in mind, however, 
that this algorithm consumes more power than the switching algorithm. 

Further work concerning new effective algorithm should focus on stiffness control 
algorithms admitting only slight modifications of the effects of variations in the damping 
coefficient. 
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Abstract 

The dynamic stability of a simply supported stepped beam with additional discrete elements was investigated 
in the paper. These elements are a rotational spring and a rotary inertia, both of which are connected to the 
beam. The discrete elements can be mounted at any chosen position along the beam length. The influence of 
step changes in the cross-section of the beam on its dynamic stability was also investigated in the paper. The 
problem of dynamic stability was solved by applying the mode summation method. Applying an orthogonal 
condition of eigenfunctions, the dynamic of the system was described with the use of the Mathieu equation. 
The obtained equation allowed the dynamic stability of the tested system to be analysed. The considered beam 
was treated as Euler- Bernoulli beam. 
 
Keywords: Dynamic stability, Mathieu equation, eigenfunctions, stepped beam.  

1. Introduction  

Many works dealing with the dynamic stability of beams with additional discrete ele-
ments and with step changes in the cross-section can be found in the literature. Al-
draihem and Baz [1] considered the dynamic stability of beams with step changes in the 
cross-section under moving loads. The dynamic stability of an elastic beam was analysed 
by Cederbaum and Mond [2]. Chen and Yeh [3] analysed the parametric instability of an 
electromagnetically excited beam. Evensen and Evan-Iwanowski [5] carried out analyti-
cal and experimental research into the influence of a mass mounted at the end of a beam 
on the dynamic stability of the beam. Gürgöze [6] analysed the influence of a mass 
mounted at the end of a beam elastically supported along its axis. Majorana and Pelle-
grino [7] analysed the dynamic stability of an elastically supported beam (rotation and 
translation springs at the ends). Sato et al. [8] investigated the parametric vibrations of a 
horizontal beam loaded by a concentrated mass, which showed the influence of the beam 
weight and the inertia of a rotational mass on the beam vibrations. Sochacki [9] investi-
gated a simply supported beam axially loaded  by a harmonic force, showing the destabi-
lising effect of the concentrated mass, spring and harmonic oscillator.  

This paper considers a simply supported stepped beam loaded by a longitudinal force 
in the form P(t)= P0+Scosνt. Additionally, a rotational spring and rotary inertia were 
connected to the beam at a chosen position between the supports. A change in the cross-
section was made at a selected place on the beam length. The considered beams were 
treated as Bernoulli – Euler beams. The problem of dynamic stability was solved using 
the mode summation method. The applied research procedure allowed the dynamics of 
the tested systems to be described with the use of the Mathieu equation. The influence of 



368 

the rotational spring and rotary inertia (values of coefficients c and Io) and their positions 
on the beam on the value of coefficient b in the Mathieu equation was investigated. 
Similarly, the influence of step changes in the cross-section of the beams and its position 
along the beam length on the value of coefficient b was investigated. In this way the 
possibility of a loss of dynamic stability by the investigated systems was determined. 

2. Mathematical model of beam vibrations 

A diagram of the considered beam is presented in Fig. 1.  

 

Figure 1. Model of the beam with step changes in the cross-section with rotary inertia (1) 
and rotational spring (2) 

The vibration equation for two parts of a beam is known and has the following form: 
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where  : P(t)  = P0+Scosνt , ν - forcing frequency,  
ρi – density, Ai – cross-section area, i = 1,2 i-th part of the beam 

Substituting into equations (1) 

 ( ) )(cos),( txWtxw niiniin ω= ,  (i = 1,2) (2) 

where: nω  is n-th natural frequency of the beam, 

 and into boundary conditions one can obtain (for S = 0): 
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 ( ) ( )0211
II WlW =  (7) 

 ( ) ( ) ( )11
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2221111 0 lWIWJElWJE I
o

IIII ω=−  (8) 

 ( ) ( ) ( ) 00222111111 =−− IIIIIII WJElcWlWJE  (9) 

 ( ) 001 =IIW ,     ( ) 022 =lW II  (10, 11) 

where the Roman numerals denote differentiation with respect to x. 
The general solution to equations (3) takes the form:  

 ( ) ( ) ( ) ( ) ( )iiniiiniiiniiiniiin xCxCxCxCxW ββαα sincossinhcosh 4321 +++=  (12) 

where Cik are integration constants (k = 1, 2, 3, 4) and: 
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The equations of vibrations (3) together with the boundary conditions (4-11) allow the 
boundary value problem of the investigated beam to be formulated. The natural frequen-
cy ωn and eigenfunctions of the beam Win(xi) are determined by solving the boundary 
value problem. 

3. The solution to the problem of the dynamic stability of the beam 

The solution to equation (1) is assumed to be in the form of an eigenfunction series [4]. 
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where: ( )tTn  are unknown time functions and ( )iin xW  are normalized eigenfunctions of 

free frequencies of i-th parts of the beams which satisfies 
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Substituting solution (15) into equation (1) one can obtain: 
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After multiplying by ( )iim xW , one can receive from equation (17): 
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From equations (3), after multiplying by ( )iim xW , one can obtain:  
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II

iniimi
IV

inii xWxWAxWxWPxWxWJE 2
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then (18) takes the following form: 
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As only the basic parametric resonance with the first natural frequency of the beam is 
taken into account in this paper, further analysis considers the first term of the sum from 
equation (20). Hence, after integrating equations (20), the following form was obtained 
for the whole beam and the first term: 
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Appropriate transformations of equation (21) and the substitution of t by a new variable 
τ = νt lead to the following form of the Mathieu equation (the subscripts i and 1 were 
omitted). 
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spect to τ . 
The periodical solutions to the Mathieu equation (22) are known [10]. These solutions 
allow us to determine the stable and unstable regions of the solutions. It must be stated 
that the probability of obtaining a stable solution is higher in case of a lower value of 
coefficient b, at the determined value of a. 

4. The results of numerical computations and discussion  

Computations were carried out assuming the following dimensionless quantities: 

cccc

oc

P

S
s

P

P
p

l

l
l

J

J
J

lA

I
I

EJ

cl
C ====== ,,,,, 01

1

2
3

1

 (23) 

where: Pc – the critical load of the tested beam with a constant cross-section,  p = 0.05  
            and s = 0.05 was assumed for computations. 
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Figure 2. The influence of the position of a spring with elasticity coefficient C mounted 
on the beam on the value of coefficient b for a = 1: C = 1       , C  = 10        , C  = 20       . 

   

Figure 3. The influence of the position of an element with rotary inertia I mounted on the 
beam on the value of coefficient b for a = 1: I = 0.1        , I = 1        , I = 2         . 

 

Figure 4. The influence of the location of changes in the cross-section l of the beam  on 
the value of coefficient b for a = 1: J = 2        , J = 5        , J = 10         . 

The results of the solution to the dynamic stability problem allows us to determine the 
values of coefficient b in the Mathieu equation for changeable coefficient of rotational 
spring C mounted at a randomly selected position on the beam (Fig. 2) and the changea-
ble values of rotary inertia I (Fig. 3). Additionally, the solution to the problem of the 
dynamic stability of the tested beams allowed us to determine the values of coefficient b 
in the Mathieu equation at changeable values of moments of inertia J1 and J2 for two 
parts of the beam (Fig. 4).  
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5. Conclusions  

The following conclusions can be drawn from the analysis of the presented results:  

• The most disadvantageous position to mount the rotational spring is in the centre 
and on the supports of the beam (independently of the values C). Each of the in-
termediate positions of the rotational spring between the supports and the mid-
point of the beam leads to a stabilization of the tested systems (lowers b).  

• The mounting position of the element with rotary inertia I on the beam has a sig-
nificant influence on the value of coefficient b. If its position is closer to the mid-
point or to the ends of the beam, the value of coefficient b is higher.  

• An increase in the values of coefficients C and I leads to an increase in coefficient 
b in the Mathieu equation (this leads to a destabilization of the system).  

• The smaller difference between moments of inertia J1 and J2 (less J) the easier is 
for the tested systems to lose dynamic stability (higher b) an increase in the beam 
lengths with a higher moment of inertia leads to a stabilization of the tested sys-
tems. 
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Abstract  

In this paper the Differential Evolution (DE) optimization algorithm is presented and applied in benchmark 
problem: minimization of Rosenbrock’s function and identification of mechanical systems parameters. DE 
optimization algorithm is also used in conjunction with a squared error measure to identify the optimal model 
parameter values of mass-spring-damper (MSD) using time series experimental data. 

Keywords: optimization, parameters identification, differential evolution  

1. Introduction 

In recent years, the technical literature has seen a significant increase of reported meth-
ods for identifying parameters of systems (modeled by ordinary or partial differential 
equations) from time series data. A natural way to evaluate the performance of such 
methods is to try them on a sufficient number of realistic test cases. However, weak 
practices in specifying identification problems and lack of commonly accepted bench-
mark problems makes it difficult to evaluate and compare different methods [1]. In pa-
per [1] authors present a collection of more than 40 benchmark problems for ODE model 
identification of cellular systems. Authors consider both problems with simulated data 
from known systems, and problems with real data.   

D’Ambrosio and coauthors discuss the problem of system identification and parame-
ters monitoring for a general class of non-linear systems [2]. Authors introduce a new 
method based on Lie series expansion. In order to use this approach, the system features 
must be modeled by analytic or sufficiently smooth functions of the state variables, in-
cluding the time parameter. 

Methods for determination of the dynamic characteristics and parameters of mechan-
ical vibrating systems by processing experimental data on controlled vibrations are pre-
sented in paper [3]. These methods are intended for construction of mathematical models 
of objects to be identified and classed as parametric and nonparametric methods. 

2. Nonlinear optimization 

Numerical algorithms for constrained nonlinear optimization can be broadly categorized 
into gradient-based methods and direct search methods [4]. Gradient-based methods use 
first derivatives (gradients) or second derivatives (Hessians). Examples are the sequen-
tial quadratic programming (SQP) method, the augmented Lagrangian method, and the 
(nonlinear) interior point method. Direct search methods do not use derivative infor-
mation. Examples are Nelder–Mead, genetic algorithm and differential evolution, and 
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simulated annealing [5, 6]. Direct search methods tend to converge more slowly, but can 
be more tolerant to the presence of noise in the function and constraints. 

Typically, algorithms only build up a local model of the problems. Furthermore, 
many such algorithms insist on certain decrease of the objective function, or decrease of 
a merit function which is a combination of the objective and constraints, to ensure con-
vergence of the iterative process. Such algorithms will, if convergent, only find local 
optima, and are called local optimization algorithms. 

Global optimization algorithms attempt to find the global optimum, typically by al-
lowing decrease as well as increase of the objective/merit function. Such algorithms are 
usually computationally more expensive.  

In this paper the differential evolution (DE) algorithm is presented and applied in 
benchmark problem: minimization of Rosenbrock’s function and identification of me-
chanical systems parameters using amplitude versus frequency experimental data. DE 
optimization algorithm is also used in conjunction with a squared error measure to iden-
tify the optimal model parameter values of mass-spring-damper (MSD) using time series 
data experimental data. MSD system is modeled by system of ordinary differential equa-
tions (ODEs). 

3. Differential Evolution (DE) algorithm 

A new heuristic approach for minimizing possibly nonlinear and non-differentiable con-
tinuous space functions is presented in papers of Storn and Price [7]. Authors demon-
strated that the new method converges faster and with more certainty than many other 
acclaimed global optimization methods. The new method requires few control variables, 
is robust, easy to use, and lends itself very well to parallel computation [7]. 

Differential Evolution is distinguished from other direct search optimization proce-
dures by the biologically inspired process which produces the trial vector. A parent vec-
tor ( parentx ) from the population of the primary array is mutated by adding noise to its 

parameters, thus helping to explore new areas of parameter space and to escape from 
local minima. The noise is taken to be the scaled difference between two other vectors (

1x and 2x ) chosen randomly from the population of the primary array 

)( 21 xxxx −+= sparentmutated , where s is a scaling factor which must be in the range 

0≤ s ≤ 1.2 for stability and whose optimal value for most problems lies in the range 
0.4 ≤ s ≤ 1.0. The vector produced by mutation and the original target vector are then 
used in a crossover operation designed to resemble the process by which a child inherits 
DNA from its two parents. 

There exists another methods generating new mutated population 
)( 21 xxxx −+= sbestmutated  or )( 4321 xxxxxx −+−+= sparentmutated . Differential 

evolution is a simple stochastic function minimizer. The algorithm maintains a popula-
tion of pop points, { }

popj
xxxx ,...,,...,

21
, where typically npop > , with n  being the num-

ber of variables. Points are from range from minx  to maxx . 
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During each iteration of the algorithm, a new population of m points is generated. 
The j-th new point is generated by picking three random points, vuw xxx , , from the old 

population, and forming )( vuws s xxxx −+= or )( vubests s xxxx −+= , where s is a 

real scaling factor and bestx  is best points at given population. Then a new point newx is 

constructed from jx and sx  by taking the i-th coordinate from sx with probability prob 

and otherwise taking the coordinate from jx . If ( ) ( )jnew ff xx < , then newx replaces jx  

in the population. The probability prob is controlled by the cross probability option. 
Moreover, ( )bestbest ff x= . If any i-th coordinate of new point is outside the range, 

the new i-th coordinate of point is generated from jxmin,  to jxmax,  range.  

The process is assumed to have converged if the difference between the best function 
values in the new and old populations, as well as the distance between the new best point 
and the old best point, are less than the tolerances provided by eps. Iteration process is 
limited also by maximum number of steps – maxstep. The differential evolution 
method is computationally expensive, but is relatively robust and tends to work well for 
problems that have more local minima. 

4. Numerical results and conclusions 

Quality of optimization procedures (those known and proposed) are frequently evaluated 
by using common standard literature benchmarks. There are several classes of such test 
functions, all of them are continuous, e.g. Rosenbrock function [8]. In this paper DE 
algorithm is applied to solve three problems: minimization of Rosenbrock function, 
parameters identification of nonlinear driven mechanical vibrating system and system 
parameters identification from time series.  

Let us consider function ( )p,xfy = , where parameters are as follow 

[ ]nofppp ,...,1=p . Let us assume that experimental data of function with unknown set of 

parameters is represented by set ( )( ){ }nofxixyxsol ii ,...,2,1,, == . For set of parameters 

p the function is represented by set ( )( ){ }nofxixyyxsolp iii ,...,2,1,,, === p . Let us de-

fine error as function of p : ( ) ( ) ( )
2/1

1

2

2/1

1

2 )(),( 









−=










−= ∑∑

==

nofx

i
ii

nofx

i
ii yytyxyerr pp . 

To find optimal values of unknown parameters we should minimize ( )perr . This can be 

done using, for example, DE algorithm. 
 
Problem 1. The Rosenbrock function minimization 
 

In mathematical optimization, the Rosenbrock function is a non-convex function used as 
a performance test problem for optimization algorithms introduced by Howard H. Ros-
enbrock in 1960 [8]. There are many ways to extend this function stochastically:
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iiii pppf εp , (1) 

where the random variables ε obey a uniform distribution from range <0,1>. 
Using DE algorithm (s = 0.5, prob = 0.8 and eps = 1e-15) one can find minimized 

parameters bestp  of the Rosenbrock function. Results of minimization of the Rosenbrock 

function using DE algorithm are presented in Table 1. 

Table 1. Bounds for parameters, best parameters, error and DE quantities 

No. i
p

min,  i
p

max,  i
ε  n  pop  )( besterr p  steps  

1 -10 10 1e-2 20 150 4.92e-05 500 
2 -10 10 1e-2 50 150 3.36e+00 500 
3 -10 10 1e-2 50 200 6.27e-03 1000 

 
Problem 2. The intensity of oscilations  
Let us consider mechanical system described by following equation 

 
)cos(

2

2

tFkx
dt

dx
b

dt

xd
m ω=++ .  (2) 

Solution of the above equation is in the form 

 ( ) ( ) ( )φωω += tAtx cos ,  (3) 

where the expression for the displacement amplitude is 

 

( )
( ) ( )222

0
2 mb

mF
A

ωωω
ω

+−
= ,  (4) 

with natural frequency mk=0ω . Vector of optimized parameters is [ ]bmF ,,, 0ω=p .  

Using DE algorithm (s = 0.1, prob = 0.8 and eps = 1e-15) one can find optimized pa-
rameters 

best
p  using experimental data for amplitude. Three cases of problem were con-

sidered in this subsection. Cases are different due to bounds for parameters. Results are 
presented in Table 2 and in Fig. 1. Figure presents experimental amplitude of vibrating 
system and error between experimental and optimized data.  

Table 2. Bounds for parameters, best parameters, error and DE quantities 

No. min
p  

max
p  

best
p  )(

best
err p  pop

 
steps
 

1 1.0, 0.1, 5.0, 0.1 100, 1, 500, 10 52.28, 0.52, 49.99, 5.22 1.25e-06 50 500 
2 5, 0.05, 25, 0.5 50, 0.5, 250, 5 35.48, 0.35, 49.99, 3.54 1.25e-06 50 500 
3 9, 0.09, 45, 0.9 11, 0.11, 55, 0.1 9.38, 0.09, 49.99, 0.93 1.25e-06 50 500 
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Figure 1. Experimental amplitude (left) and error between experimental  
and optimized amplitude (right) for parameters [ ]0.93 49.99, 0.09, 9.38,=

best
p   

(vertical axis - amplitude value (left) and error (right); horizontal axis - frequency) 

Problem 3. Identification of system parameters from time series 
In recent years, the technical literature has seen a significant increase of reported meth-
ods for identifying parameters of systems (modeled by ordinary or partial  differential 
equations) from time series data. 

Let us consider first order ODEs system ( )pyy ,,tf=&

 with initial conditions 

( ) 00 yy =t  where [ ]
N

yyy ,...,,
21

=y and vector of parameters [ ]
nofp

ppp ,...,,
21

=p . Let us 

assume that time series data (experimental data or solution of system of ODEs with 
unknown set of parameters) is represented by set ( )( ){ }noftittsol ii ,...,2,1,, == y . For set 

of parameters p the solution of system of ODEs is as it follows 

( )( ){ }noftittsolp
iii

,...,2,1,,, === pyy . Let us define error as function of p : 

( ) ( ) ( ) .)(),(
2/1

1 1

2

2/1

1 1

2 




 −=





 −= ∑∑∑∑

= == =

noft

i

N

j
jiji

noft

i

N

j
ijij

yytytyerr pp To find optimal values of un-

known parameters we should minimize ( )perr . 

DE algorithms can be used for example for identification of chosen parameters of 
mechanical systems. Dynamical and advanced mechanics problems are stated, illustrated 
and discussed in book [9]. In Figure. 2 a simple mechanical system MSD is presented.  

 

Figure 2. Simple mechanical system MSD 
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C
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The behavior of MSD system can be described by differential equation 

 )()(
)()(2

tutky
dt

tdy
c

dt

tyd
m =++  (5) 

where: y(t) – an instantaneous displacement of mass m, c – coefficient of damping, k – 
spring constant. We assumed that a force acting on this system is: ( )tptu ωsin)( = . 

Above equation one can write in matrix form 

 )(
1

010

2

1

2

1 tu
my

y

mcmky

y

dt

d








+

















−−
=








. (6) 

It is easy to implement DE algorithm and optimize parameters like m, c, k, p and ω 
using the Differential Evolution Algorithm. Vector of optimized parameters is 

[ ]ω,,,, pkcm=p . Using DE algorithm (s=0.1 and prob=0.8) one can find optimized 

parameters 
best

p  using experimental data for 
1

y  and  2
y . In this paper ODEs system was 

solved using COMSOL Script and the implicit time-stepping scheme DAE solver 
DASPK [10]. Results are presented in Table 3 and in Fig. 3. Figure 3 presents experi-
mental time series of vibrating system and error between experimental and optimized 
data for MSD system. 

Table 3. Bounds for parameters, best parameters, error and DE quantities 

Quantity min
p  

max
p  

best
p  )(

best
err p  pop  steps  

m 0.5 1.5 0.8722 

6.5832e-005 50 200 
c 0.05 0.15 0.0872 
k 0.05 0.15 0.0872 
p 5.0 15 8.7223 
ω 1.0 3.0 1.9999 

 

 

 

Figure 3. Experimental data (left) and error of optimized shape (right) for 
1

y  and  2
y  

for parameters 
best

p  from Table 3 (vertical axis - value of 
1

y  and  2
y  (left)  

and optimized error (right); horizontal axis - time). Error is mulitplied by 106. 
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The Differential Evolution heuristic algorithm offers an easy and efficient way to opti-
mize or identify parameters of different systems. In the present paper we have shown 
explicitly its applicability to the function and system parameters identification. 
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Abstract  

The acoustics of churches is a very important issue, especially because of the speech intelligibility. This aspect 
is very often neglected during the designing process in modern sacral architecture. Too long reverberation time 
and acoustic defects such as echo result in the lack of verbal intelligibility. Two modern churches were investi-
gated in this paper. Acoustic parameters were measured and analyzed in terms of their function. The results of 
the measurements in the objects were compared and analyzed in terms of the influence of the architecture on 
the acoustics. The results of the measurements show considerable differences in acoustic parameters in both 
churches. 

Keywords: church acoustics, reverberation time in church, acoustic investigation in church.  

1. Introduction  

The architecture of some churches is a cause of acoustic problems. It is especially seen 
in modern church architecture solutions. Above all, inappropriate architectural design 
causes lack of understanding of the spoken word. We should specifically remember that 
the word is a priority in a liturgy of a Catholic church; therefore, the basic function of the 
liturgy cannot be fulfilled. Hence, it is very important to see what architectural factors 
influence such a situation. The problem of church acoustics is discussed inter alia in 
papers [2-6]. 

The main problem is excessive reverberance of church interiors, i.e. too long rever-
beration time. Reverberation time is proportional to cubature, i.e the bigger cubature, the 
longer reverberation time is. The influence of applied materials is connected with α coef-
ficient. Absorption coefficients are used to rate material’s effectiveness in absorbing 
sound. The absorption coefficient of a material varies with frequency. [4]. The required 
reverberation time of a particular interior depends on its function. The greater participa-
tion of speech, the lower reverberation time the room should have (Table 1). 

Table 1. Recommended values of reverberation time for different kinds of sound 
production according to Meyer and Neuman [5]. 

Type of sound production Reverberation time [s] 
 Speech:     cabaret 
                  performances, lectures 
   Music:   chamber music 
                 opera 
                 concert 
                 organ music 

0.8 
1.0 
1. to 1.5 
1.3  to 1.6 
1.7  to 2.1 
2.5  to 3.0 
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Figure 1 shows recommended reverberation time for churches. The line graph shows 
mutual dependence between the optimum reverberation time and the cubature of an 
interior. The upper section of the graph refers to cathedrals and churches with a consid-
erable amount of organ music; the lower section refers to churches where speech is more 
important. 

 

 

Figure 1. Range of optimum reverberation time for churches [on the basis of 4] 

Minimalism in architecture, vast areas and application of traditional materials such as 
stone, glass, and plaster contribute to the fact that contemporary churches excess rec-
ommended reverberation time values. Architectural styles of historic churches, particu-
larly the Baroque style rich in detail, facilitate sound diffusion. Likewise, transepts and 
aisles as sub-areas influence the decrease of reverberation time in church. Contemporary 
designs of churches offer aisless interiors with scanty detailing, while they disregard 
workable contemporary solutions, such as application of acoustic plaster. 

The question of acoustics in churches is a complex issue as church interiors must fa-
cilitate functions with entirely different acoustic requirements. First and foremost, an 
utterance must be understood since the spoken word is the foundation of liturgy in the 
Catholic Church. The liturgy, however, is often accompanied by the pipe organ. The 
recommended acoustic parameters for organ music entirely differ from the parameters 
suitable for a speech. The recommended reverberation time for churches is more suitable 
for organ music; yet, with the introduction of artificial reinforcement, a church provides 
favourable conditions for speeches too. In contrast, if the recommended reverberation 
time in a church interior is exceeded, organ music may sound good enough, but sound 
reinforcement applied in order to facilitate comprehension of an utterance will pose a 
considerable difficulty (in most cases, it can be virtually impossible due to prohibitive 
costs). 
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2. Acoustic investigation of churches 

Two contemporary churches – the Name of Mary Church in Poznan (Fig. 2) and the 
Christ the Only Saviour  Church in Swarzedz (Fig. 4) – underwent acoustic investiga-
tion. 

The Name of Mary Church in Poznan was erected in place of a former church found-
ed in 1937. The consecration of the newer and bigger temple took place in 1982. The 
walls of the old choir were preserved, but the new walls do not correspond with the style 
of the former building. The cubature of the church is about 5100 m³. The walls are cov-
ered with traditional plaster and fleecy texture plaster. The side walls have huge win-
dows, between which there are wooden pillars. The suspended ceiling is made of bulky 
wooden panels. Wood is also part of the choir banister in the back of the church. The 
wood is a system of panels, constituting sound diffusing structure. In the church there is 
also a vast pipe organ. Its pipes are both in the choir and on the back wall. Figure 3 
shows a view of the church with the distribution of measuring points and the sound 
source.  

The Christ the Only Saviour Church is at the final finishing stage. In 2005, the erec-
tion of the church was accomplished. At present, its ceiling is covered with oiled wood; 
the floor is made of marble; the walls are plastered and have huge windows; the benches 
have upholstered seats. The choir, situated at the back of the church, changes into narrow 
side balconies along the aisle. The church does not have a pipe organ as an electronic 
instrument is used. The cubature of the church is about 7100 m³. Figure 5 shows a view 
with the distribution of measuring points. Both churches are of an aisleless type. Due to 
the symmetry in both churches, measuring points were determined on one side only. The 
sound source was placed at the altar. 

The measuring equipment consists of a sound measuring device SVAN 945A, con-
nected to the DIRAC programme. The Brüel & Kjær ZE-0948 USB Audio Interface was 
used. To receive the impulse response of the room, a gun shot was applied. The DIRAC 
programme calculates the following acoustic parameters: RT, Ts, C80, C50, STI. 

Table 2 shows the results of the measurements taken in both churches. Figure 6 
shows frequency characteristic of mean reverberation time. 

Table 2. Results of the measurements  

Parameters Name of Mary Church Christ the Only Saviour Church 
RT [s] 1.82 4.65 

1000500−RT  [s] 1.97 5.17 

Ts [ms] 148 344 
C80 [dB] first row - 2.0               - 8.1 
C80 [dB] back row - 4.6 - 8.6 

C50 [dB] - 5.2 -12.5 
STI female, first row 0.47 0.33 
STI male, first row 0.47 0.33 
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Figure 2.The Name of Mary Church in 
Poznan [8] 

  

Figure 3. View of the church with 
marked points of the observation and 

the sound source 

Figure 4. The Christ the Only Saviour 
Church [7] 

  

Figure 5. View of the church with 
marked points of the observation and 

the sound source 
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Figure 6. Frequency characteristic of mean reverberation time 

3. The analysis of the results 

For the Name of Mary Church, reverberation time RT amounts to 1.82 s and remains in 
accordance with recommended values (Fig. 1). For the Christ the Only Saviour Church, 
reverberation Time RT amounts to 4.65 s, which considerably exceeds recommended 
values. For the frequency of 500-1000 Hz, results for reverberation time are similar,  

1000500−RT  is 1.97 s and 5.17 s respectively. The recommended 1000500−RT  for churches with 
prevalence of organ music amounts to 1.5 s – 2.2 s. For churches where speech and mu-
sic are equally important, RT amounts to 1.3 s – 1.75 s. 

Center time Ts is the center of gravity along the time axis of the squared impulse re-
sponse [1]. It is used for evaluation of sound clarity of music. The recommended value 
for liturgic churches with cubature up to 15 000 m³ amounts to 70-120 ms. For organ 
music, the value is Ts = 180 ms. In the Christ the Only Saviour Church, Ts amounts to 
344 ms, which exceeds acceptable values. In contrast, in the Name of Mary Church, Ts 
amounts to 148 ms, which is within the permissible range for organ music in churches. 

 The clarity indicator C80 is used to determine the quality of music sound. It consists 
in the capability of differentiating between details in a received piece of music. The 
indicator is calculated from the impulse response of an interior. Clarity, measured in 
decibels is the difference between the sound energy in the first 80 ms, and the late rever-
beration energy arriving after the first 80 ms [4]. According to the recommendations in 
reference books C80 was averaged for 0.5, 1, 2 kHz. It is recommended that C80 > 2 for 
front rows and C80 > 0 for back rows. The measurements in both churches show that 
their interiors do not fulfill the criterion; moreover, the Christ the Only Saviour Church 
in Swarzedz considerably exceeds recommended values with its C80 amounting to -8 
dB. By contrast, Marshall suggests that C80 < -3 dB for organ music [6]. The Name of 
Mary Church fulfils the criterion for front rows. 

To evaluate intelligibility of an utterance, an array of parameters is applied. In this 
paper, two parameters, C50 and STI, were applied. The clarity indicator C50 is analogi-
cally defined in the same way as C80. The measurements are used to calculate a 
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weighted value of the C50 coefficient. Octave bands 0.5, 1, 2, 4 kHz are multiplied by 
the weight coefficient amounting to 0.15, 0.25, 0.35, 0.25 for each octave band respec-
tively. It is recommended that thus calculated parameter C50 > -2. The STI parameter 
(Speech Transmission Index) amounts from 0 to 1, where STI = 1 indicates that the intel-
ligibility of speech is perfect, while STI = 0 indicates complete unintelligibility. The 
recommended STI is 0.45 for speech without reinforcement systems for front rows [6]. 
In the Name of Mary Church, the STI = 0.47 fulfils the recommendations, while C50 = -
5.2 dB exceeds the recommended value. In the Christ the Only Saviour Church, neither 
of the recommended values is fulfilled: STI = 0.33,  C50 = -12.5 dB. Especially the C50 
substantially exceeds the allowed values. 

4. Conclusions  

The results indicate huge acoustic differences between the churches. The Name of Mary 
Church meets acoustic recommendations for such parameters as RT, STI, Ts for organ 
music, and C80 for front rows. The other parameters are close to the recommended val-
ues. In contrast, in the Christ the Only Saviour Church, no acoustic parameter meets the 
recommendations. The main parameter, which is reverberation time RT is substantially 
exceeded. Also, Ts and C50 considerably deviate from the recommended values. A se-
ries of factors has an impact on such results. First of all, the cubature of the Christ the 
Only Saviour Church is bigger than the one of the Name of Mary Church. In addition, 
finishes of the interior, such as big surfaces of plain walls and an inconsiderable amount 
of surface texture in the church in Swarzedz, have an impact on the results. In the Name 
of Mary Church, the interior is more diverse. Here, the sound diffusion elements are pipe 
organs, finishes of the back wall and of the banisters of the choir with extended panels, 
and pillars between the windows.  
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Abstract  

The results of numerical computations and theoretical research into the free vibrations of a column subjected to 
the generalized load by a force directed towards the positive pole are presented in this paper. The total mechan-
ical energy of the column was formulated by taking into account the physical model of the system and the 
constructional solution of the loading head. The equations of motion and the boundary conditions of the con-
sidered system are determined. The curve courses of changes in the eigenvalues in the plane: load – natural 
frequency are shown on the basis of the solution to the boundary problem, which is obtained by considering the 
kinetic criterion of the stability. The changes in natural frequencies were determined for the chosen values of 
the geometrical parameters of the loading head. The accepted distribution of the bending rigidity along the 
length of the column corresponds to the systems with maximum values of the critical load at the assumed 
optimization condition of constant volume of the structure. 

Keywords: column, specific load, free vibrations 

1. Introduction  

Many scientific publications have been dedicated to analysis of the free transverse vibra-
tions of columns and beams with changeable cross-section. The problems of the free 
vibrations of systems consisting of segments with changeable cross-sectional area 
(comp. [1-3]) and columns or beams where the cross-section was changed continuously 
along the length (comp. [4, 5]) were considered. Detailed literature review of specified 
subject area has been presented in monograph [6]. The solution to the vibration problem 
is also considered in research into the optimisation of slender system forms  
(comp. [3, 7]).  

2. The physical model of the column.  

The physical model of the column for the chosen version of specific load which was 
formulated by L. Tomski (comp. [8]) is presented in Fig. 1a. Column � is subjected to 
the generalized load by the force directed towards the positive pole in the constructional 
solution of the loading head � and receiving head � with circular profile (constant 
curvature). Direction of an external force P passes through the constant point O1 (the 
centre of curvature of the receiving head) and through the constant point O (the centre of 
curvature of the loading head). Points O and O1 are placed in the distance R and r from 
the free end of the column, respectively. The column is rigidly mounted from one side 



388 

(x1 = 0) and is connected to the receiving head at the free end (xn = l) (elements of the 
loading head are infinitely rigid). The system is divided into smaller segments  
(Fig. 1b) with flexural rigidity (EJi) (indexes i = 1.. n), where Ji is a moment of inertia of 
the cross section of the i – th segment of the column in relation to the neutral bending 
axis. Segments are described by the length l and by transverse displacement  Wi(xi, t). 
The following assumptions and denotations are applied in work (comp. [3, 7]): 

• constant total length of column  L and constant length of its elements  li = l 
(L = n l), 

• constant value of Young’s modulus E and material density ρ of all segments of 
the column, 

• constant total volume  v of all segments describing form of the column (comp. 
equation (1a)). 

 

 
Figure 1. The physical model of the column: a) at the generalized load by the force 
directed towards the positive pole, b) division of the columns into segments (comp. 

[7,8]) 

Exemplary denotations of the columns considered in this paper are introduced: 

• CO(Ro
* 0.3,∆r0.1) – optimized column subjected to the generalized load by the 

force directed towards the positive pole with the changeable bending rigidity at 
the parameter of the loading head Ro

*  = 0.3 and at the parameter of the receiving 
head ∆r=0.1, 

• CP(Ro
* 0.2,∆r0.1) – column with the constant bending rigidity (EJ)p (comparative) 

subjected to the generalized load by the force directed towards the positive pole at 
the parameter of the loading head Ro

*  = 0.2 and at the parameter of the receiving 
head ∆r=0.1. 
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Dimensionless parameters Ro
*  , ∆r of the heads subjected to the load are described by 

equations (1b,c). 

 *

1

, ,
n

i o
i

R R r
v v R r

L L=

−
= = ∆ =∑  (1a÷c) 

Volume of the column CP(Ro
* j,∆rk) is identical to the total volume of all segments de-

scribing the form of the system CO(Ro
* j,∆rk) (comp. equation (1a)). 

3. Formulation of and solution to the boundary problem 

The boundary problem is formulated on the basis of the Hamilton’s principle which for 
conservative systems takes the form: 
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where: δ is operator of variation. 
The kinetic energy T of the considered column CO(Ro

*  j,∆rk) is a sum of kinetic ener-
gy of its individual segments and kinetic energy of elements going into composition of 
the receiving head (body with mass m): 
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where Ai is cross-sectional area of the i – th segment of the optimized column. 
The total potential energy V is described by the relationship: 
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Displacements ∆1, ∆2 and angles β, ϕ are given by the relationships: 
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Commutation of integration (in relation to space coordinates xi and time t) and computa-
tion of variation is used in Hamilton’s principle (2). After computing variation of the 
kinetic energy (3), variation of potential energy (4) and after separation of variables of 
function Wi(xi, t) in relation to variables xi and t : 
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 ( ) ( ) ( )txytxW iiii ωcos, = , (5) 

one can obtain: 

• equations of motion for the considered system: 

 ( ) ( ) ( )2 2 0, 1... ,IV II
i i i i i i i iy x k y x y x i nΩ+ − = =  (6) 

• the boundary conditions for the column: in relation to mounting point (x0 = 0), at 
the free end (xn = l) and continuity conditions between individual segments of the 
column: 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 10 0 0, 0 , 0 ,I I Iy y y l y y l yζ ζ ζ ζ+ += = = =  (7a-d) 

 ( ) ( ) ( ) ( )1 1 1 10 , 0 ,II II III IIIy l y y l yζ ζ ζ ζ ζ ζχ χ+ + + += =  (7e-f) 
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where: ζ = 1,...,(n-1), ( ) ( ) ( ) ( ) ( )jjjiiiii EJEJEJAEJPk 11
222 ,,/ ++ === χωρΩ . 

Substitution of equation solutions (6) into the boundary conditions (7a-h) leads into 
transcendental equation for natural frequency ω. 

4. Results of numerical computations 

The results of computations concerning optimization of the form of the column 
CO(Ro

* j,∆rk) are presented in work [7]. Taking into account the static criterion of the 
stability and modified algorithm of simulated annealing, the values of geometrical pa-
rameters of the individual segments of the column were determined. Maximal value of 
the critical load was obtained for the mentioned above parameters. 
 

 

 

Figure 2. The form of optimized column CO(Ro
*  j, ∆r 0.333) for changeable value of 

parameter  Ro
*   of the loading head [7] 
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Exemplary forms of the optimized column at division into n = 128 segments and for 
chosen parameters R, r of the loading head are presented in Fig. 2. The form of compara-
tive column CP(Ro

* j,∆rk) is shown by broken lines. 
Additionally, the value of critical load λoc of the considered system (comp. equation 
(8a)) and percentage increase δo (comp. equation (8b)) in the critical force of the column 
CO(Ro

* j,∆rk) in relation to prismatic column were given. The value of critical load refers 
to the total length of the column L and flexural rigidity of comparative column EJ, that 
is: 
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oc R j r oc R j rkr
oc o
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∆ ∆

∆

−
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The course of changes in natural frequencies ω of the column CO(Ro
* j,∆rk) in relation to 

external load taking into account changeable flexural rigidity along the column length is 
determined in this paper (comp. Fig. 2) on the basis of publication [7]. Research was 
limited (Fig. 3) to determination of the first two basic natural frequencies in 
dimensionless form (Ωo1, Ωo2) in relation to dimensionless load parameter λo for the 
chosen values of geometrical parameters of the loading head. In numerical computations 
zero value of the concentrated mass m at the free end of the column was assumed, which 
is to say: 
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Figure 3. Curves in the plane: load parameter λo - parameter of natural frequency Ωo 

(system CO(Ro
*  j, ∆r 0.333)) [7] 

The value of critical load of the considered column in the case of given geometrical 
parameters of the loading heads was obtained at parameter Ωo1 = 0. The presented cours-
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es of base natural frequency Ωo1 can have negative, positive or zero slope in the plane 
λo - Ωo in dependence on the values of geometrical parameters of the loading and receiv-
ing heads. 

5. Conclusions 

Regarding the influence of the external load and the geometrical parameters of the load-
ing and receiving heads on the changes in natural frequencies, the considered column 
was rated as divergence or divergence pseudo-flutter type of the systems. The values of 
critical parameter of the load obtained on the basis of the kinetic criterion of stability are 
identical as for application of the static criterion. 
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Abstract  

The results of numerical computations and theoretical research into optimization of the shape and the free 
vibrations of a cantilever column subjected to a load by the follower force directed towards the positive pole 
are presented in this paper. The systems of equations: of motion and of cross-sectional area of the considered 
column were determined on the basis of the total mechanical energy and Hamilton’s principle. Taking into 
account the formulated boundary conditions, optimized shapes of the systems were determined for the chosen 
values of geometrical parameter of a head subjected to a load. The values of natural frequency of the consid-
ered system were obtained taking into account distribution of flexural rigidity along the column length while 
the values of critical load of optimized column were obtained on the basis of curves of changes in the basic 
natural frequency in relation to external load. The results of numerical computations were presented in the case 
of one from three classes of the systems – versatile uniformly convergence column for the assumed criterion of 
constant volume of the system. 

Keywords: column, specific load, free vibrations, optimization 

1. Introduction 

The critical load is a base quantity describing stability of slender systems. The critical 
force, which value is indispensable for correct design of mechanical systems, is deter-
mined using one from two criteria of stability determination: energetic method and vi-
bration method (comp. [1, 2]). In the case of energetic method, such a load of the system 
is being sought for which potential energy of the system stops being positively deter-
mined. Applying vibration method, such a load value is being determined for which the 
free movement of the system stops being limited. Research into optimization of the 
shape of slender systems is aimed to find maximum critical load at the given constant 
mass of the system (comp. [3]) or is aimed to find a solution to reciprocal problem. In 
this case, the lowest weight of the column is determined for the assumed constant value 
of critical load (comp. [4]). In [5] a modified algorithm of simulated annealing was ap-
plied to determine an optimum shape of the column loaded by the follower force directed 
towards the positive pole (the case of specific load formulated by L. Tomski (comp. 
[6])). The values of the critical load of the optimised system were obtained on the basis 
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of energetic method. In this paper, research into optimization of the shape was carried 
out using the variational method on the basis of A. Gajewski and M. Życzkowski publi-
cations (comp. [7]). The value of the critical force was received on the basis of a vibra-
tion method. 

2. The physical model of the column 

The physical model of the column loaded by the follower force directed towards the 
positive pole (comp. [5, 6]) in the constructional version of loading head and receiving 
load built of circular elements (constant curvature) is presented in Fig. 1. The column 
was loaded by the force P passing through the constant point O – the centre of loading � 
and receiving � heads. Pole O is placed in the distance R from the free end of the col-
umn. It was assumed that elements of receiving heads are infinitely rigid. Rod of the 
column � was rigidly mounted from one side (x = 0) and connected to the receiving 
head at the free end (x = l). 
 

–  

Figure 1. The physical model of the column loaded by the force directed towards the 
positive pole 

Exemplary denotations of the considered system are introduced: 

• COi(0.1) – optimized column with the continuously changeable bending rigidity 
along the system length at the parameter of loading and receiving heads R*= 0.1. 

• CP(0.2) – prismatic column (comparative) with the constant bending rigidity 
along the system length, at the parameter of loading and receiving heads R*= 0.2, 
where: R*= R/l. 

Additionally, the following constants: total length l, volume Vobj, value of Young’s mod-
ulus E and material density ρ of the optimized column and corresponding comparative 
column were assumed. The column was described by moment of inertia of cross-section 
J(x), cross-sectional area A(x) and transverse displacement W (x,t). 
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3. Formulation of and solution to the boundary problem 

The boundary problem is formulated on the basis of the Hamilton’s principle (1a) to-
gether with condition of constant volume of the column (1b): 

 ( ) ( ) ( )
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t

T H dt H V t V A x dxδ λ
 

− = = + −  
 

∫ ∫ , (1a,b) 

where: δ(.) is operator of variation, λ1(t) is a certain function dependent on time. 
Kinetic energy T and potential energy V of the considered column COi(R*) are equal 

to: 
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where m is the reduced mass of the receiving head. 
Applying relationships (1b), (2a,b) in Hamilton’s principle (1a) the system of equations 
was received: 
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After separation of variables of function W(x, t) in relation to variables x and t (4a) and 
after substitution of (4b): 

 ( ) ( ) ( ) ( ) ( )2
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W x t y x t t t
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ω λ ω
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one can obtain: 

 ( ) ( ) ( ) ( ) ( )2 0E J x y x Py x A x y xω ρ′′′′ ′′+ − =   , (5a) 

 ( ) ( ) ( ) ( )0.5 2 2 0.52
2 0J x y x E y x J xρ ω λ

− −
′′+ + =               , (5b) 

where: ω - natural frequency of the system, λ2 is a certain constant dependent on the 
boundary conditions. 
The geometrical boundary conditions of the considered column are described by the 
relationships: 

 ( ) ( ) ( ) ( )0 0 0, 0y y y l Ry l′ ′= = − =  (6a÷c) 
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Missing natural boundary condition was obtained on the basis of equation (1a) after 
considering relationships (6a÷c): 

 ( ) ( )( ) ( ) ( ) ( )
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0
x l

Rm
R J x y x J x y x y x

E

ω

=

 ′′′ ′′− − = 
 

 (6d) 

Taking into account the considered case of load, column loses its stability due to buck-
ling. Therefore the value of the critical load is obtained for condition ω = 0. Distribution 
of moment of inertia along the column length in relation to maximum of critical force for 
the assumed criterion of the constant volume of the system was determined on the basis 
of equations (5a,b) considering the described character of stability loss. Adequate rela-
tionships were written in the parametric form: 

 

( ) ( )

( ) ( )

4

3 2

sin

1
sin 2 ,

2

oJ J

x l B B

ϕ ϕ

ϕ ϕ ϕ

 =

   = + −   
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where: Jo – moment of inertia in relation to neutral bending axis in the reference point 
xod = x(π/2). 
Constants B2, B3 were determined on the basis of the boundary conditions (6a÷d). The 
values ϕ0, ϕ1 of independent variable ϕ∈〈ϕ0, ϕ1〉 (connected to variable x), correspond-
ing to mounting and loading points of the column, were obtained on the basis of relation-
ship (7b). 

4. Results of numerical computations 

As a result of solution of the boundary problem the range of changes in critical load (Pc)o 

of the optimized column COi(R*) and its shape for the rod of versatile uniformly conver-
gence system was determined. Numerical computations were carried out for the chosen 
value of radius R of the loading head in the range from zero to the length of the column l 
(R*∈〈0,1〉). The shapes of models of optimized columns obtained on the basis of 
equations (7a,b) for the assumed criterion of the constant volume of the system are 
presented in Fig. 2. Contour of the prismatic column (comparative) is stated by broken 
line. The shape of column model for Euler’s load is presented in special case R*= 0  
(Fig. 2a). Presence of singular points of cross-section (J(x(ϕ)) = 0) along the column 
length is the characteristic feature of the all presented shapes. Placement of these points 
is dependent on the value of geometrical parameter R* of the head subjected to the 
discussed case of the specific load. 

Carried out numerical computations were aimed to display the course of changes in 
the values of natural frequency ω in relation to the function of external load P of 
columns COi(R*) and CP(R*) for zero value of mass m of the loading head, taking into 
account the obtained distribution of moment of inertia (J(x(ϕ)) (comp. Fig. 2). Character 
of changes in the basic natural frequency of the system in dimensionless form (Ωo1), in 
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relation to dimensionless load parameter βo (comp. equation (8c,d)), for the chosen val-
ues of parameter R*, was determined considering equation (5a), whereas: 
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EJ EJ EJ EJ

ρ ω
β β β Ω= = = =  (8a÷d) 

The value of critical parameter of critical load of optimized (βc)o and prismatic (βc)pr 

systems (comp. eqs. (8a,b)) of the discussed column was obtained for parameter Ωo1= 0. 
The range of changes in critical parameter of column load in relation to parameter R* of 
the head subjected to the load is presented in Fig. 4 on the basis of the obtained curves of 
eigenvalues. 
 

 

Figure 2. Shape of optimized column  COi(R* ) for the chosen values of parameter  R*   of 
the loading head 

 

 

Figure 3. Curves in the plane load parameter βo - parameter of natural frequency Ωo1 (the 
systems: COi(R* ), CP(R*)) 

 

 

Figure 4. Change in the critical parameter of load (βc)o, (βc)pr  in relation to the value of 
parameter R* of the systems COi(R*), CP(R*) 
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5. Conclusions 

Determined character of changes in the critical load of the optimised and prismatic col-
umns was characterised by a presence of maximum values of the critical force for the 
considered range of the values of radius R of the loading head. The values of the critical 
load presented in work [5] and obtained in this paper by variational method are compa-
rable. As a result of carried out theoretical research and numerical computations into 
optimization of the system, the shapes of the column were obtained, which were charac-
terised by a presence of the zero cross-section along its length. 
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Abstract 

Drive systems of several machines driven by the electric motors commonly indicate diverse sensitivity to 
resonances resulting from their purely mechanical eigenvibration properties. Thus, in order to explain better 
these phenomena, in the paper dynamic electromechanical interaction between the rotating machine drive 
system and the asynchronous motor is considered. The investigations are performed by means of the circuit 
model of the asynchronous motor as well as using an advanced structural hybrid (discrete-continuous) model 
of the drive system. By means of the analytical-computational approach the electromechanical interaction 
between the successive torsional eigenmodes and the driving and retarding torques are studied in order to 
determine the frequency zones of greater sensitivity to amplification of torsional vibrations as well as the 
frequency zones of significant attenuating activity of the electromagnetic damping.  

Keywords:  drive system, electromechanical interaction, asynchronous motor, dynamic analysis 

1. Introduction 

Currently observed fast development of machines and mechanisms driven by electric 
motors requires bigger and bigger knowledge about dynamic interaction between the 
mechanical and electrical part of the entire system. This problem has been already stud-
ied for many years and by many authors, but in majority of cases using insufficiently 
accurate electromechanical models, where usually the drive system was represented in a 
very simplified form of one or at most few rigid disks mutually connected by torsional 
springs. In the case of synchronous motors the complex torque coefficients method is 
commonly applied in order to determine the torsional vibration frequency dependent 
electromagnetic stiffness and damping coefficient, where negative value zones of the 
latter indicate a probability of dynamic instabilities, [1]. The abovementioned stiffness 
and damping coefficient have been also determined in [2] for the synchronous and sev-
eral asynchronous motors using the spatial finite element model of the electromagnetic 
flux between the stator and the rotor, where the torsional perturbations were excited by 
the use of test impulses. 

As it follows from numerous observations, drive systems of several working ma-
chines driven by the asynchronous motors commonly indicate diverse sensitivity to res-
onances resulting from mechanical eigenvibration properties. It is suspected that for 
almost complete attenuation of resonances at resonant frequencies of excitation induced 
by the driven object retarding torque as well as for unexpected severe amplification of 
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torsional vibration amplitudes at non-resonant excitation there are responsible the 
abovementioned additional torsional elasticity and viscosity introduced into the mechan-
ical system by the electromagnetic flux generated in the electric motor. In order to ex-
plain better such dynamic behavior, in the paper there is performed a qualitative analysis 
of the electromechanical coupling effects for the drive system of the rotating machine 
driven by the asynchronous motor during its steady-state operation. The investigations 
are carried out by means of the circuit model of the electric motor and using the ad-
vanced structural hybrid model of the mechanical system.  

2. Modeling of the electromechanical system 

In order to investigate a character of the electromechanical coupling, the possibly realis-
tic and reliable physical and mathematical model of the mechanical system should be 
applied. Majority of commonly applied in an engineering practice methods of modeling, 
e.g. hybrid (discrete-continuous), multi-body or finite-element modeling, upon solving 
their differential eigenvalue problems for the orthogonal linear systems, usually lead to 
the set of modal ordinary differential equations: 

 ( ) ( ) ,...2,1,)()(
2
1

)(2)(2)( =⋅−⋅=+++ mtrMR
mXtelTS

mX
m

tmtmtm
γ

ξωξτωβξ &&&  (1) 

where ωm are the successive natural frequencies of the mechanical system, β denotes the 
coefficient of external damping assumed here as proportional one to the modal masses 
γm

2, τ is the shaft material retardation time, Tel(t) denotes the external torque generated 
by the electric motor, Mr(t) is the driven machine retarding torque and Xm

S, Xm
R are the 

modal displacements corresponding respectively to the electric motor and driven ma-
chine working tool locations in the physical model.  

From the viewpoint of electromechanical coupling investigation, the properly ad-
vanced circuit model of the electric motor seems to be sufficiently accurate. In the case 
of the symmetrical three-phase asynchronous motor electric current oscillations in its 
windings are described by the six circuit voltage equations transformed next into the 
system of four Park’s equations in the so called ‘αβ-dq’ reference system, form of which 
can be found e.g. in [3]. Then, the electromagnetic torque generated by such a motor can 
be expressed by the following formula 

 ,
2

3





 ⋅−⋅= r

qi
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di
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where M denotes the relative rotor-to-stator coil inductance, p is the number of pairs of 
the motor magnetic poles and iα

s, iβ
s are the electric currents in the stator reduced to the 

electric field equivalent axes α and β and id
r, iq

r are the electric currents in the rotor re-
duced to the electric field equivalent axes d and q, [3].  

From the system of Park’s equations, [3], as well as from formula (2) it follows that 
the coupling between the electric and the mechanical system is non-linear in character, 
particularly for significantly varying motor rotational speed Ω(t), which leads to very 
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complicated analytical description resulting in rather harmful computer implementation. 
Nevertheless, for steady-state operating conditions with the constant average motor rota-
tional speed Ωn, i.e. for Ω(t)=Ωn+Θ(t), where |Θ(t)|<<Ωn, in order to obtain more qualita-
tive information about the character of electromechanical coupling in the drive system, 
the harmonic balance method has been applied for an approximate analytical solution for 
currents in Park’s equations. In the first step, this solution used for various rotational 
speeds Ω(t)=Ωn=const enables us to determine by means of (2) the static torque charac-
teristic of the asynchronous motor. In the next step, for the assumed sinusoidal external 
excitation generated by the driven machine Mr(t)=R⋅sin(ωt), the fluctuating component 
of the motor rotational speed Ω(t) is expected also in the harmonic form: 
Θ(t)=G⋅sin(ωt)+H⋅cos(ωt), where |G|,|H|<<Ωn. Then, for Ω(t)=Ωn+Θ(t) an application of 
the harmonic balance method leads to the following system of 16×16 linear algebraic 
equations: 

 ),,(),,n( HGe BEDC =⋅Ω ωω , (3) 

where C denotes the matrix of circuit resistances and inductances, ωe is the circular 
frequency of the power supply, D=col(…Cµ

ν…,… Dµ
ν…,…Eµ

ν…,… Fµ
ν…,), Cµ

ν, Dµ
ν, 

Eµ
ν, Fµ

ν  are the constant unknown coefficients standing in the assumed analytical solu-
tion for Ω(t)=Ωn+Θ(t), B=col(…Φµ

ν…,… Ψµ
ν…), Φµ

ν, Ψµ
ν are the already determined 

constant coefficients standing in the analytical solution which satisfies Park’s equations 
for Ω(t)=Ωn=const,  µ=α, β for ν=s and µ=d, q for ν=r, and E is the input vector of the 
sine- and cosine-amplitudes of the fluctuating component of the motor rotational speed 
Θ(t). By solving (3), substituting components of vector D into (2) and upon neglecting 
small terms of higher order, the sine- and cosine-amplitude of the fluctuating component 
of the motor torque is obtained in the following form:  

 ),cos()()sin()()(var tTtStelT ωωωω ⋅+⋅=  (4) 
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In this way the fluctuating component of the electromagnetic torque induced by the 
drive system torsional oscillations has been separated from the average torque value. For 
the abovementioned harmonic retarding torque generated by the driven machine and for 
the obtained harmonic electromagnetic motor torque, the external excitation of modal 
equations (1) becomes also harmonic. By means of the well known analytical solutions 
of such ordinary differential equations and using the Fourier solution dynamic responses 
of the considered mechanical system can be determined. For example, the sine- and 
cosine-amplitudes of the fluctuating component of the motor rotational speed Θ(t) are 
then obtained in the following form:  
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Then, by expressing S(ω) and T(ω) as in (4), substituting them into (5) and by insert-
ing (5) into (3), upon proper rearrangements one obtains the following system of 16×16 
linear algebraic equations describing electromechanical coupling in the drive system:  

  ),,,,2,(),,2,,,,n( Rmmmme ωτβγωτβγωωω FDC =⋅Ω . (6) 

Here, matrix C as well as input vector F became functions of the mechanical system 
dynamic parameters. Solutions of (6) for various retarding torque fluctuation frequencies 
ω and amplitudes R enables us to determine using (4) the sine- and cosine-amplitude of 
the oscillating component of the asynchronous motor torque. By projecting the sine- and 
cosine-components of the electromagnetic torque and of the rotor rotation angle respec-
tively on the complex plane real and imaginary axes and using the definitions given e.g. 
in [2] the electromagnetic torsional stiffness ke(ω) and coefficient of damping de(ω) 
generated by the asynchronous motor are determined in the following form:  
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where the sine- and cosine- angular displacement amplitudes U and W have been already 
defined in (5). The above expressions (3)-(7) derived by means of the proposed analyti-
cal-computational approach enable us to determine dynamic characteristics of the cou-
pled electromechanical system, which are going to be presented below. 

3. Computational example 

In the computational example the rotating machine drive system is considered. This 
machine is driven by the 22 kW asynchronous motor by means of the reduction plane-
tary gear. The static characteristic of this motor as well as the drive system first torsional 
eigenform of frequency 4.2 Hz are shown in Figs. 1a and 1b, respectively. The consider-
ations are going to be focused on the interaction frequency range ω containing the fun-
damental first torsional eigen-frequency induced by sinusoidal external excitation gener-
ated by the driven machine with the assumed test amplitude R. From results of numerical 
simulation performed for the resonant frequency of the retarding torque fluctuation it 
follows that completely no resonance effects are obtained, The maximal amplification of 
the system dynamic response has been obtained for the retarding torque fluctuation fre-
quency 2.2 Hz. In order to explain this phenomenon the qualitative analysis of the con-
sidered electromechanical system has been carried out, results of which are presented in 
Fig. 2. Here, in Fig. 2a for a comparison the frequency response function of the purely 
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mechanical system is shown with the significant peak corresponding to the first torsional 
natural frequency 4.2 Hz. Also in the retarding torque 
 

 
a)       rotational speed [rad/s] 

 
b)            drive system length [-] 

Figure 1: Static characteristic of the driving motor (a) and the drive system first        
eigenform (b) 

 
 

 
b)                            frequency [Hz] 

 
d)                    frequency [Hz] 

 

Figure 2: Frequency response function of the mechanical system (a), amplitude 
characteristics of the electromagnetic torque (black) and mechanical torque (grey) 

obtained using simulation (b) and the analytical solution (c), electromagnetic stiffness 
(black)    and damping coefficient (grey) (d)  

fluctuation frequency domain in Fig. 2b the plots of steady-state dynamic response oscil-
lation amplitudes determined by simulations are shown, where by the black and grey 
lines respectively the motor-torque and the input shaft dynamic torque amplitudes are 
plotted. These almost entirely mutually overlying curves are characterized by the pre-
dominant amplitude peak of the abovementioned frequency 2.2 Hz. The simulation re-
sult presented in Fig. 2b has been confirmed analytically by solving Eqs. (6), which 
follows from the analogous plots in Fig. 2c. Moreover, in Fig. 2d, also in the retarding 
torque fluctuation frequency domain, there are presented by the black and grey lines, 
respectively, the plots of electromagnetic stiffness and damping coefficient determined 
using formulae (7). From the stiffness characteristic in Fig. 2d it follows that at the max-
imum dynamic response frequency 2.2 Hz the electromagnetic stiffness introduced by 
the asynchronous motor is equal ca. 0.180 kNm/rad, which exceeds the mechanical sys-
tem first modal torsional stiffness ω1

2⋅γ1
2=0.169 kNm/rad, to reach much greater values 

for higher interaction frequencies. Thus, the considered drive system is not a so called 
‘free-free’ one, but it becomes visco-elastically clamped by the electromagnetic flux 
between the motor rotor and the stator. In general, this feature can significantly change 
system natural frequency values and corresponding to them torsional eigneforms. In the 
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considered case such electromagnetic visco-elastic spring has completely attenuated the 
resonance effect with the first eigenfrequency because of relatively very high electro-
magnetic damping generated at low interaction frequencies, see Fig. 2d. It is to empha-
size that the plot of the electromagnetic damping shown in Fig. 2d indicates a negative 
damping zone in the range between 35-50 Hz, which for very small drive system me-
chanical damping can lead to operational instabilities. In the considered case the as-
sumed level of shaft material damping protects the entire electromechanical system 
against instabilities and severe resonances, which follows from the respective amplitude 
characteristics shown in Figs. 2b and 2c. However, for very small material damping 
typical for majority of torsionally vibrating shafts, the negative electromagnetic damping 
becomes significant and leads to gradual rise of the electromechanical dynamic response 
amplitudes obtained for the second resonant interaction frequency 40.3 Hz.  

4. Final remarks 

In the paper dynamic electromechanical coupling between the structural model of the 
mechanical system and the circuit model of the asynchronous motor has been investigat-
ed. By means of the analytical-computational approach an interaction between the fun-
damental torsional eigenmodes and the driving electromagnetic torque was studied in 
order to determine the frequency zones of greater sensitivity to amplification of torsional 
vibrations as well as the frequency zones of significant attenuating activity of the elec-
tromagnetic damping. For this purpose an influence of electromagnetic and retarding 
torque fluctuation on torsional vibration amplitudes was investigated for given 
eigenmodes of the mechanical system. As objects of considerations there was applied the 
rotating machine drive system driven by the asynchronous motor. From the obtained 
results of computations it follows that the coupling effects between the mechanical and 
electrical part are significant because of drive system very small fundamental torsional 
natural frequency resulting in relatively small modal stiffness becoming sensitive to 
effective stiffening by the electromagnetic stiffness generated by the driving motor. 
Moreover, also negative electromagnetic damping occurred, which can lead to dangerous 
instabilities for weakly damped mechanical systems.  
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Abstract   

The study of vibroacoustic properties of small wind turbines with a vertical axis laboratory test conditions used 
in the form of an anechoic chamber in the Acoustics Laboratory, Institute of Energy, Department of Heat in. 
Anechoic chamber design allowed the installation of a duct through which the airflow is adjusted by means of 
a centrifugal fan mounted at the inlet of the waveguide. The paper presents the identification of the acoustic 
parameters of acoustic small wind turbines with a vertical axis comprising: 

a) determination of sound power levels for different classes of frequency characteristics and test wind 
turbines work 

b) identification of the components of the spectrum frequency - amplitude associated mainly with turbine 
speeds and frequencies of their own, such as duct 

The result of research was to obtain input data to define a more dedicated to the identification of measurement 
noise and vibration characteristics of wind turbines such as the efficiency of vibroacoustic, cepstrum analysis 
or dimensional analysis. 

Keywords: wind turbines noise, VAWT turbines, sound power level, sound preesure level.  

1. Research methodology   

The study of acoustic properties of small turbines VAWT work took place on the 
PULSE system platform from B & K, using the four channels. Metrics used for the anal-
ysis of the sound spectrum was 1/12 octave in the measurement range from 1 Hz - 10 
kHz. In addition, for each class of wind speed measured with the FFT in the range 1 Hz - 
1 kHz, with a fixed bandwidth, resulting resolution 6400 line measurements. During the 
study examined identification turbine noise for 12 classes of wind speed by adjusting the 
air stream by means of a centrifugal fan inverter. Physical parameters recorded during 
the study included the current reading speed turbines, voltage produced by the turbine 
generator working and reading speed centrifugal fan generating airflow.Preparation of 
test bench generation assumed the air stream in a very limited area.  

The tunnel itself had dimensions for indoor square with sides of 0.4 mx 0.4 m, which 
meant that the location of measuring microphones on the floor was "free" from the influ-
ence of wind. 

Diagram of the measuring platform production PULSE B&K included the use of four 
channels of low-frequency microphones production GRAS 40AN and 26AK preamplifi-
er, enabling linear audio recording levels on the frequency of 0.5 Hz with an accuracy of 
+/- 2 dB. 
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Figure 1. Location of measurement points in an anechoic chamber and a diagram of the 
measuring circuit. 

The measurement procedure was based on an analysis of the research work of the 
acoustic small wind turbine mounted on a shaft for ventilation supplied to an anechoic 
chamber. Variable speed drive centrifugal fan inlet air stream into the chamber followed 
by the inverter. This allowed to obtain stable wind speed on the forehead channel, which 
was measured manually using a digital anemometer anemometer's Testo 410-2. Meas-
ured the rotational speed of the turbine digital tachometer NDN-838 with a resolution of 
0.1 rev/min and a sampling time of 1 second. Range of wind speeds ranged from 6 m/s 
to about 14 m/s. 

2. The scope and frequency analysis of sound power levels of the turbines for 
different wind speeds 

As previously mentioned acoustic tests were performed for the frequency range from 
1 Hz to 10 kHz in the analysis of 1/12 octave and 1 kHz using FFT analysis with a fixed 
bandwidth. All signals presented a linear measurement of sound levels, which were 
made on the basis of further analysis and acoustic correction. One such analysis was to 
provide sound levels obtained for different wind speeds to determine the levels and fur-
ther equivalent sound power level for the frequency A, C and G. 

Selection of measurement points was to place them on a special plate on the substrate 
located at a distance from the turbine, related to its dimensions. The microphone was on 
the plate was measured and sheltered from the wind with additional transmitters for the 
purpose of eliminating the acoustic impact of wind on the outcome of the study. The 
following is a graphic guidelines for the location of the microphone relative to the tur-
bine and the scheme of arrangement of the measuring board. For the tests concerned the 
distance Ro was 2 meters (1.7 meters from the axis of the turbine to the ground and 0.3 
meters in diameter turbine), while distance R1 was 2.62 meters. ISO 61400-11 specifies 
the method of acoustic analysis, which is further used to determine the sound power 
level, the designation of source directivity and its tonality. 
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Figure 2. The distance measuring points and their location relative to the test turbine 

To determine the sound power level used for sound levels obtained from the meas-
urement point 1 (channel 1), considered as a reference point according to the guidelines 
standard 61400-11. The sound power level, LW, are based on sound pressure levels ob-
tained from the measurement point P1 (position of reference - the turbine), for the stud-
ied range of wind speed, using the following formula: 

 ( ) ( )( )0
2
1, /4log106 SRLL eqiW π+−= , (1) 

where: 
Li,eq is a linear sound pressure level, 

 R1 is measured in an oblique direction and distance in meters from the microphone  
 inside the rotor , 
 So is the reference surface So = 1 m2. 

 
Constant 6 dB, in equation (1), with around two-fold increase in pressure when the 
sound level measurements on the ground. 

3. Conclusions from the study 

Using equation (1) enabled the determination of sound power levels for the studied range 
of turbines VAWT wind stream velocity of 6 m/s to 14 m/s Determination of sound 
power levels for each frequency characteristics allowed the fuller reasoning associated 
with different wind speeds and studied stream turbines. 

The x-axis contains the Frequency [Hz], in the range from 1 Hz to 10 kHz, and the y-
axis, the left graph shows the Sound pressure level in [dB] on the right side of the chart-
weighted Sound power level [dB] for different frequency characteristics. 

For the turbine H-rotor 3-arm images and spectral sound power levels are as follows: 
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Figure 3. The spectrum of sound and sound power level 
of the turbine 3 arm of the wind speed 9.4 m/s 

Analyzing these results it should be noted both on the same spectral shape and sound 
levels for different frequencies. Next on the difference in sound pressure level for the 
different channels of sound power levels, the corrected line-level frequency characteris-
tics. 

For the turbine H-rotor 3-arm images and spectral sound power levels are as follows: 
 

 

Figure 4. The spectrum of sound and sound power level 
of the turbine 3 arm of the wind speed 9.3 m/s 

The obtained results the following conclusions: 

1. The spectrum of the amplitude - frequency can be clearly seen "moving" peak 
sound levels associated with the rotational frequency of the turbine. The rela-
tionship particularly evident for the higher speed wind stream. 

2. Sound power levels, the designated sound level of a linear channel 1 (reference 
point) behave under different values of the frequency characteristics, and only 
vary in their levels for the next stream velocity of the wind. These changes are 
linear with respect to the increasing wind. 

3. The sound power level A corrected for wind classes from 1 to 5 is a very similar, 
only the 5 class wind speed turbine with five arms is characterized by higher 
levels of approximately 7 - 9 dB, the highest class of wind. Higher sound power 
level for the frequency A, 5 class wind speed is caused by the fact more likely to 
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five arms  turbine compared with the three arms turbine. Acoustic Interaction 
turbine with  five arms for wind speeds above 5 stream class, seems to be the 
most dominant right for the audible range. It can be concluded after analyzing 
the sound power levels without adjustment of frequency, where the power levels 
are in those classes of wind look very similar. 

4. Comparing the characteristics of the sound level for a test turbines, the analysis 
performed at the measuring point No. 1 show that the initial speed wind stream 
sound level is 40 dB and forth for a turbine with three arms is about 50 dB, and 
for the turbine of the five arms of about 55 dB . The result is that for higher wind 
speed turbine with five arms is louder. This is due to the shape of the sound 
spectrum and larger amplitudes in the audible range, for analyzing the audio lev-
el for the tested rope turbine does not differ substantially among themselves. 

 

 

Figure 5. Comparison of linear sound power levels 
and A levelsof H-rotor turbine 5 and 3 arm. 
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Abstract 

In this paper the problem of parametric identification of a historic masonry tower model is discussed. The 
tower leans and its foundation stiffness is a concern to authorities. The authors identified some modal charac-
teristics of the tower, natural frequencies and mode shapes. It is known, based on the first mode shape identi-
fied, that the structure behaves like a stiff solid on elastic foundation. Thus, a simple, five parameter plane 
model is considered. The unknown parameters are identified to be the solution to an optimisation problem, in 
which the sensitivity analysis and scatters of the modal identification are applied. A hierarchical process is 
formulated, where two natural frequencies are assumed to be the input data. In this approach, the number of 
unknown parameters increases incrementally, and the process changes from even-posed to under-posed succes-
sively. Such approach allows one to control the final under-posed identification problem and leads to an in-
creasingly better solution. 
 
Keywords: Identification, Modelling, Optimisation, Sensitivity analysis, Masonry tower 

1. Introduction  

This paper discusses the problem of parameters identification of the Vistula Mounting 
tower model (see Fig.1). The tower dates back to the 15th century, however it was dam-
aged several times in military conflicts. Nowadays it is 22.65 m high, and its external 
diameter is 7.7 m. The structure has seven floors with concrete reinforced ceilings. Its 
walls were built using masonry and were restored at different times. The average wall 
thickness is 1.25 m. The tower was founded on weak and layered subsoil. The founda-
tions were made of boulders and lie just below the ground level. This is probably a 
cause, why the tower leans. This behaviour of the structure is now a concern of authori-
ties.  

The author’s task is to estimate foundation stiffness of the tower and create the model 
of the structure. For that purpose dynamic measurements were taken and some modal 
characteristics have been identified. Basing on the first mode shape a the type of a tower 
model was selected. A rigid solid body resting upon elastic foundation is considered to 
be a good approximation of the structure, since a considerable rotation - in comparison 
to the tower structural deformation - about the tower base is observable. Natural fre-
quencies of the first and the second coplanar mode shapes, and two coordinates of the 
first mode shape are used as the data in the model parameters identification. In order to 
solve this problem, a least square error function was formulated as the objective func-
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tion. Important elements of this task are scatters of the structure’s measured modal char-
acteristics. They are used to accurately define the optimisation problem. 

2. Experimental modal identification  

The Peak Picking method (see [1]) was used for modal identification of the tower. The 
method is suitable for any signals, also for low-energy vibrations, which occur in the 
tower. The method was selected for the investigation also because of the possibility of 
determining statistical errors of identified modal characteristics. This feature of the 
method was useful for this investigation. 

The mode shapes errors arise from the fact that only estimates of the auto-spectra, 
which are basic functions in the Peak Picking method, can be calculated. Real values of 
the functions could be obtained for signals infinite in time and that is practically impos-

sible. The estimates are affected by statistical errors, bias bε  and random rε , which give 

a final error b rε ε ε= + . They are presented in [1] and [2]. The formulae are: 
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 where ˆ ( )ppG f  is the estimate of auto-spectrum calculated for signal measured in a 

structural point p,  f∆  denotes the frequency resolution of the analyzed spectra, 

( )ˆ ( ) ''ppG f  is the second derivative of the  function ˆ ( )ppG f and dn  is a number of  sig-

nals ( )p t analyzed. 

If coordinates of a mode shape associated with the resonant frequency mf  are calcu-

lated according to the formula (2) (see [1]): 
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where ˆ ( )p mfφ  denotes the estimated mode shape coordinate at a discretization point p 

and ˆ ( )rr mG f  is the auto-spectrum value for mf , calculated for a signal ( )r t , measured at 

the structural reference point r, then the statistical error of the mode shape coordinates is 
calculated from the following formula: 

 ( )1ˆ ˆ ˆ
2p pp rrG Gε φ ε ε     = +       (3) 

The error of the measured natural frequencies has two components: the digitalisation 
error equal to the half of the spectrum resolution, and the random error calculated using 
dispersion of the measured resonant frequencies. 

Accelerations of points selected across the tower were measured during ambient vi-
brations according to the above-presented rules of the Peak Picking method. Wind and 
water waves from the nearby situated river (Fig. 1) caused major environmental excita-
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tion. The measuring points were arranged along two opposite walls at the tower height 
on nine levels. Accelerations in two horizontal directions, East-West (parallel to the wall 
surfaces) and North-South (perpendicular to the wall surfaces) were recorded at each 
point. Thus, 36 measuring points were set. Each measurement took 1024 seconds, 256 
samples were collected per second, so each signal consisted of 262144 samples. In order 
to estimate the signal spectra, time histories were divided into 32 sections ( 32dn = ).  

Only one resonant frequency of the tower was identified using signals measured 
across the North-South plane, whereas three were determined using time series measured 
in the East-West direction. Nature of related mode shapes was also specified using the 
analysis of phase shifts between signals measured at different structural points. Addi-
tionally, coordinates of two first mode shapes in two perpendicular planes were deter-
mined. Hence, it is known that 1 1.416 HzN Sf − =  and 1 1.446 HzE Wf − =  refer to the first 

two lateral mode shapes in two perpendicular directions: North-South and East-West, 
respectively. The mode shape associated with 1

E Wf −  is presented in Fig.2. Then, fre-

quencies identified in the East-West direction are 4.485 Hztf = , which relates to the 

torsional mode, and 2 6.570 HzE Wf − = , connected with the second lateral mode shape in 

this plane.  
 The following values of the errors were obtained for the tower’s natural fre-

quencies 1 0.00322N Sfε −  =  , 1 0.00337E Wfε −  =  , [ ] 0.00689tfε = and

2 0.00871E Wfε −  =  . The error for all the modes is the same and amounts to

[ ] [ ] 0.177rε φ ε φ= = , because [ ]bε φ  is negligibly small as it is of the 0.001 order (see 

also [3]). 
 

 
 

Figure 1. The Vistula Mounting Fortress 
Figure 2. Mode shape of the first resonant 
frequency of the tower in the East-West 

plane 

  



414 

3. Mathematical model of the tower and its identification  

In case of the Vistula Mounting Fortress tower the type of model is determined based on 
first mode shapes measured. The mode shape (Fig. 2) shows that the tower leans almost 
like a stiff solid therefore a model of a rigid solid body resting on an elastic foundations 
can be a reasonable mathematical approximation of the building’s behaviour. A small 
number of parameters is the advantage of this model. It is convenient because only a few 
modal characteristics of the tower are to be used as state variables in the model paramet-
ric identification. 

The plane model is the subject of interest. Therefore there are two dynamic degrees 
of freedom, namely: the displacement across the x axis and rotationϕ , relative to the y 

axis. The foothold of the Cartesian coordinate system xyz is placed in the centre of gravi-
ty of the structure. The following equation of motion is valid: 
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with the following five parameters: m mass of the tower, yJ  the tower mass moment of 

inertia with respect to y axis, cz  coordinate of the tower’s centre of gravity, and , xk kϕ  

foundation stiffness modules. Those five parameters are to be determined based on 
measured tower modal characteristics 

In the task of parametric identification of the mathematical model, an optimisation 
problem was formulated. The square error function is assumed to be the objective func-
tion: 

 ( )2

1

ˆ( ) ( )
i S

i i i
i

F s sα
=

=

= −∑b b , (5) 

where b denotes a vector of the design variables (the sought-after parameters of the 
model), ( )is b  stands for the state variables of the model, îs  represents measured state 

variables of the tower and iα  is a weight coefficient determined for each state variable. 

In order to find the minimum of the objective function (5) an iterative procedure is pro-
posed and the optimization problem is reformulated as minimisation of the objective 
function in relation to the design variables vector variations: 
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where ( ),k k k
isδ δb b  is the first variation of the state variable with respect to the design 

variable vector. Variations kδ b , calculated at each stage k are used for updating the b 

vector. Calculations continue until the relative variations kδ b  are smaller than the as-
sumed accuracies. The mathematically complicated relation ( , )isδ δb b  is substituted by 

approximation ( )T

i sbsδ δ= w b  determined by means of sensitivity analysis.  
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In this approach the radial natural frequencies squared λ
i
 and the coordinates of the 

first mode shape 1nφφφφ  are the state variables. Thus, the objective function is formulated as 

follows: 
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 (7) 
where the vector bλw  and the matrix bWφφφφ  consist of the relative first variations of the 

radial natural frequency squared λ  and of the mode shape φφφφ  relative to the variations of 

the design variables, respectively. The coefficients are derived from the equation of 
motion for a discrete system and are presented for example in [4]  

The following values of state variables ( ) ( )
2 2

1 1
ˆ 2 81.99 rad/ sE Wfλ π −= =  determined 

from experiments were used in the optimisation procedure: 

( ) ( )
2 2

2 2
ˆ 2 1703.34 rad/ sE Wfλ π −= = , , 1

ˆ 1.806 [ ]E W
tφ − = − , 1

ˆ 0.453 [ ]E W
bφ − = − . Errors in 

measured state variables are used to specify weighted coefficients of state variables so 

that their sum is equal to 1. Hence, the values are: ( )1
ˆ 0.869α λ = , ( )2

ˆ 0.119α λ =  and 

( ) ( )1 1
ˆ ˆ 0.00588E W E W

t bα φ α φ− −= = . 

The final criterion for identification is defined by a relative difference between the 
measured and the calculated state variables. For each variable this difference must be 
smaller than its error obtained from the modal identification. Therefore, the criterion 

consists of the following conditions: ( ) 1 1
1

1

ˆ
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The result obtained in the optimization is assessed by calculating the Normalized Modal 
Difference (NMD) between the first mode shape calculated for the model and the meas-
ured mode shape of the tower. 
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             Identified 
            parameters 
                  
 
The  
parameter name 

Starting 
value 

Boundary 
condition 

Identification 
result 

Number 
of itera-

tion steps 

NMD 
[%] 

St
ar

tin
g 

va
lu

es
 kϕ  [Nm] 1.00·101

0 
100 - ∞ 1.239·1010 

10 4.666 
kx  [N/m] 4.00·108 100 - ∞ 4.264·108 

zc [m] 10.00 0 – 15.00 9.921 
Jy [kg·m2] 4.30·107 106- ∞ 4.115·107 

m [kg] 
9.000·10

5 
(9-10) 
·105 

9.202·105 
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Abstract 

This paper presents the possibilities in using of vibration signal parameters to evaluate the clearance in fas-
tening of suspension elements to the body of an automobile. The application of spectrum of vibration signal to 
determine frequency band connected with proper vibrations of the car body generated by impacts of vehicle 
suspension elements in case of clearance in fastening of suspension elements to the car body. 

Keywords: vibroacoustic diagnostics, vehicle suspension 

1. Introduction 

Technical test of the vehicle suspension system performed at the Vehicles Inspection 
Station is done by means of the equipment constituting diagnostic line. Repeatability of 
results achieved by means of the above mentioned equipment is not satisfactory in all 
cases – therefore, to find new and more precise examination methods which would allow 
to do detailed analysis of vehicle suspension system efficiency, the specific researching 
attempts were taken.  

The method which can be used in this area of examination is a method focused on 
analysis of vehicle body vibration signals, i.e. the changes in frequency of the vibrations. 

2. Analysis of signals in the domain of frequency 

In the domain of frequency a spectrum selection was performed and it was carried out in 
order to isolate and expose the frequency bands or its respective components in the sig-
nal. Apart from spectrum selecting performed with the low-pass and high-pass filters, 
band elimination filters, and comb filters, the following things are also used: tracking 
filters and advanced techniques (among others order analysis) or polyharmonic recurrent 
filtration [1]. 

Frequency characteristics present amplitude or signal phase in the frequency domain. 
In vibration diagnostic testing, in order to evaluate technical condition of the object, the 
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relation of the amplitude with the frequency (amplitude spectra, power spectra, product 
spectra, power density spectra and others) is used. On the basis of spectral analysis, the 
damaged technical assembly can be easily identified, because those technical assemblies 
generate vibrations of different frequencies. To analyse the vibration signals in the do-
main of frequency, various types of analysers are used. The spectral analysis can be 
performed with absolute or relative constant of analysis band. Vibration signals spectra 
can be achieved in analogue manner or signal timing digital processing. 

The analysis of signals by analogue means includes sequential or parallel filtration 
the band of signals. Filter parameters and details of this type of signal processing is pre-
sented in works [3, 5]. 

In relation to dynamic development the IT technologies, nowadays the digital meth-
ods of processing and analysis of vibration signals are used. In digital methods of signal 
analysis for the transformation of timing in the domain of frequency, expansion of func-
tion into Fourier’s series is used in accordance with the relationship:   

 , (1) 

The a0, ak and bk coefficients of expansion of function into Fourier’s series can be de-
termined as coefficients of correlation between the x(t) function, and orthogonal base 
functions by means of the following relationship [4]: 
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where: 
s(t) – time history, 
t – time, 
T – time range, 
k – harmonic number (k = 1,2,3…), 
f – frequency 
a0 – constant component of signal, 
ak, bk – coefficients of expanding the function into Fourier’s series. 

 
The amplitude and frequency estimation error for local maximum values of a map 

can be minimized by using amplitude – frequency correction AFC [2]. 
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In order to enable presentation of the timing in the form of Fourier’s series, one fac-
tor has to be met i.e. signal timing has to fulfill the Dirchlet’s conditions which are for-
mulated in the following manner [4]: 

1. Any given time range “t” with the “T” width can be divided into finite number of 
ranges in which this function is determined, continuous and monotonic. 

2. The number of discontinuity points must be specified, and in each point of dis-
continuity, there is a right and left-hand side limit. 

3. The value of the function in a singular point is equal to an arithmetic average of 
the limits. 

In this dissertation [1] the author states that every vibroacoustic signal meets the 
Dirchlet’s conditions.  

The ak and bk coefficients are composite spectra of the signal. The amplitude spec-
trum is described by the equation (5) whereas phase spectrum can be determined pursu-
ant to the dependence (6). 

 
( ) 22

kk bakA +=
, (5) 

 ( ) 







=

k

k

a

b
arctgkθ , (6) 

where: 
A(k) – amplitude spectrum, 
θ(k) – phase spectrum, 
k – harmonic number (k = 1,2,3…), 
ak, bk – coefficients of expanding the function into Fourier’s series. 

3. Methodology and course of research 

The examination was performed for a medium class motor car – Renault Clio III, 2008 
year of manufacture, engine cubic capacity of 1 200 cm3. The vehicle had chassis sys-
tems, including suspension, in good working order. The tyres met required technical 
conditions (the depth of tyre tread and pressure inside tyre) – all those elements con-
formed to the legal requirements. The tyre dimensions were compliant with the vehicle 
manufacturer’s recommendations. 

The examination was performed with active experiment principles. The experiment 
was conducted by means of MAHA diagnostic equipment which is used for testing tech-
nical condition of dampers embedded in vehicles. That equipment allowed us to get the 
frequency of vibrations within the range of 0 to 15 Hz. For an analysis of vibrations in 
the suspension system, the PULSE 3050 A60 and 4504 type Brüel & Kjaar vibration 
converters [5, 6, 7] were used. The equipment was located on the body of the vehicle 
(Fig. 1a). Suspension system vibrations were forced by means of the diagnostic station 
panel. The scope of frequencies generated by the station’s panel was in the range of 0-15 
Hz. 
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Vibrations measurements were made for the upper part of the left front absorber’s 
column (Fig. 1a). Each time, the clearance of the nut and the column was increased by a 
half of the turn, which was equal to the pitch of the thread of 0.5 mm. Vehicle on the 
inspection station is presented in Fig. 2b. The test was repeated till the moment when the 
absorber’s clearance was 5 mm.  

a) b) 

 
Figure 2.  The view of: a) the location of accelerometer, b) the vehicle at the test station 

4. Results and their analysis 

In order to determine the impact of the clearance between the absorber and the body, the 
analyses of the recorded vibration signal were conducted. Such analyses comprised of 
determining frequency characteristics. The analyses results are presented in Figures 2 
and 3. On the basis of spectral characteristics presented in Figure 2, it has been stated 
that in order to determine the relationship between the absorber’s clearance fastening 
with the chassis, the frequency band of 1.2 – 1.6 kHz is the most appropriate. 

 

            a) b) 

     
Figure 2. Vibration signal spectrum in case: a) when there is no clearance,  

b) with maximum clearance 
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In order to develop a model of diagnostic testing to evaluate absorber’s chassis fas-
tening clearance, the spectral analysis was performed for different values of the clear-
ance. Frequency characteristics in the band from 1.2 to 1.6 kHz for various clearance 
values are presented in Figure 3a.  

Figure 3b presents the maximum value of A max from vibrations spectrum in the band 
of 1.2-1.6 kHz, in the domain of clearance, for the upper column of the left front absorb-
er of the examined vehicle. The calculated maximum values of vibration spectrum are 
circled.  
a) b) 

 
Figure 3. Vibration signal spectrum for different clearance values in the band of 1.2-

1.6 kHz (a);  the dependence of A max 1.2-1.6 kHz on the clearance (b) 

The presented dependencies were approximated (by means of the least squares meth-
od) with the linear function. As a result of approximation, a mathematical model was 
achieved which is described with the equation (7). The approximation curve is presented 
in Figure 4b, as a full line.  

 1.145-31.342 kHz 1.6-1.2max  L A ⋅=  (7) 

where: 
A max 1.2-1.6 kHz – maximum value from vibrations acceleration spectrum in the band of 
1.2-1.6 kHz [mm/s2], 
L – clearance [mm]. 
A basic element of the aforementioned test, based on the known vibration accelera-

tion values was to achieve the relationship between the maximum value of acceleration 
of the vibrations and the clearance in the place where the upper column of the vehicle’s 
front absorber is fastened. For that purpose, the clearance calculations were performed 
on the basis of approximation curves, in order to determine functions helping estimate 
McPherson’s column clearance on the basis of calculated values of vibrations A max 1,2 -

 1,6 kHz.  In the equation, the maximum value of vibrations acceleration was assumed as 
explanatory variable. The response variable was the clearance between the absorber and 
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the chassis. As a result of approximation coefficients calculations, we obtained a curve 
described by the following dependence (8): 

 0602.00.0313 kHz 1.6-1.2max +⋅= AL  (8) 

where: 
A max 1.2-1.6 kHz – maximum value of vibration acceleration spectrum in the band of 1.2-
1.6 kHz [mm/s2], 
L – clearance [mm]. 
The value of R2 coefficient obtained is based on the comparison of clearance meas-

urement results between the absorber and chassis with the use of relationship (8) –   
clearance between the absorber and the chassis was 0.98, which means a very good   
representation of actual measurements in the mathematical model describing changes of 
the clearance depending on the maximum value of vibrations acceleration. Diagnostic 
parameter of dynamics changes in the band of 1.2-1.6 kHz was approximately 27 dB. 

5. Conclusion 

From the performed tests, it has been concluded that in order to estimate the clearance 
between the absorber and the body, for the presented object a method focused on the 
vibration spectral analysis can be used. 

Figure 5 presents that in order to assess the clearance between the absorber and the 
body, vibration signal in the band of 1.2-1.6 kHz must be filtered. 

On the basis of the recorded vibration signals analyses, it has been concluded that for 
the purpose of clearance assessment (between left front absorber and the body) in a 
model based on the peak value of the vibration acceleration in the band of 1.2-1.6 kHz,   
dynamics in instance of the peak value is approximately 27 dB. 
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Abstract  

The boundary value problem concerning the free vibrations of a slender system subjected to Beck’s general-
ized load was formulated and solved in the work. The considered column was elastically supported by a spring 
with linear characteristic at the loaded end. The critical load of the system, both divergence and flutter, and the 
regions of presence of divergence and flutter instability were determined on the basis of the boundary problem 
concerning the free vibrations (the kinetic criterion of stability). Numerical calculations have been assigned to 
different values of the parameters of the considered system for which the follower factor, the rigidity parameter 
of a spring supporting column, the parameter of the translational inertia of the body mounted at the loaded end 
of the column are ranked. 

Keywords: column, free vibrations, kinetic criterion of stability, flutter and divergence instability  

1. Introduction 

Slender systems subjected to non-conservative compression load can lose stability due to 
oscillations with growing amplitude (flutter instability) or due to buckling (divergence 
instability). These systems were called hybrid systems by Leipholz [1]. The method of 
stability losing is dependent on parameters of the system. The parameters can be divided 
into two groups: parameters connected to the load and structural parameters. The follow-
er factor η [2] is the parameter connected to load. Hybrid system can be subjected to 
simultaneous action of two forces: follower force (Beck’s) and Euler’s force [3]. 

The structural parameters are as follows: rigidities of translational [2, 4] or rotational 
[5] springs, a system of translational and rotational dampers [6], mass of the body 
mounted at the loaded end of the column (comp. [7]), and in the case of complex sys-
tems - pre-stressing [8] and flexural rigidity asymmetry factor [9]. 

Sundararajan [4] considered the column subjected to the follower force (Beck’s) sup-
ported by a linear spring at the loaded end of this column. Sundararajan determined the 
critical load, both flutter and divergence, of the system in relations to the rigidity of the 
spring supporting the column. Tomski and Przybylski [2] also considered the column 
supported by a spring with linear characteristic at the loaded end subjected to Beck’s 
generalized load. The authors determined the divergence critical forces depending on the 
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support rigidity for different values of the follower coefficient η. The rotational spring 
limiting the rotation of the loaded end also has an influence on the way in which stability 
is lost (divergence or flutter) (comp. [5]). In work [5] the authors determined the diver-
gence and flutter critical loads depending on the system parameters, and identified re-
gions of occurrence of divergence and flutter instability. Research into influence of mass 
and the mass moment of inertia of the body present at the loaded end of the column on 
the value of flutter critical load can be found in [5, 7]. An increase in the value of mass 
of the body mounted at the loaded end of the column leads to an increase in the value of 
flutter critical load. The mass moment of inertia destabilizes the system (flutter critical 
force lowers together with a rise in the mass moment of inertia). 

Damping, both external and internal, is the next parameter influencing the value of 
the critical flutter load. External damping caused an increase in the critical flutter load 
(por. [10]). The extent of this increase is dependent on the values of the remaining pa-
rameters of the considered system. Internal damping destabilizes the system (comp. [11]) 
(flutter critical force lowers together with a rise in this type of damping). 

2. The boundary problem connected to free vibrations 

The system shown in Fig. 1 is considered in this paper. This system was presented by 
Tomski and Przybylski in [2]. Detailed numerical research into determination of system 
parameters corresponding to divergence and flutter instability is the aim of this paper. 
The considered column is subjected to Beck’s generalized load and elastically supported 
by a spring with linear characteristic (C − spring rigidity). The direction of force P is 
determined by the follower factor η.  

The kinetic criterion of stability was applied to define the critical load and regions of 
divergence and flutter instability. The differential equation of motion and the boundary 
conditions of the considered system are as follows (comp. [2]): 

• differential equation of motion:  
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• geometrical boundary condition: 
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Figure 1. Considered column loaded by generalized Beck’s load 

Considerations were carried out taking into account the following dimensionless quanti-
ties: 
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where: EJ − the flexural rigidity of the column, ω − free vibration frequency, m − mass 
of the body mounted at the loaded end of the column, t − time, ρAl − mass of the col-
umn, C0 − rigidity of the mounting.   

After separation of variables using relationship: 

 ( ) ( ) τξτξ cos, yw =  (6) 

the solution to differential equation is defined by the following dependence: 

 ( ) ( ) ( ) ( ) ( )βξβξαξαξξ sincossinhcosh dddd DCBAy +++=  (7) 

In the solution (7), Ad, Bd, Cd, Dd are integration constants of differential equation (1), 
while quantities α, β  are given by equations:  
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 2
42

42
Ω++−=

kk
α , 2

42

42
Ω++=

kk
β  (8) 

By substituting formulae (7) into the boundary conditions (2)-(5) and after separating 
variables, a system of equations is obtained: 

 [ ]{ } 0,,, =ddddij DCBAa  (9) 

The matrix determinant of coefficients of the above equation, as equated to zero, is the 
transcendental equation for the natural frequency: 

 0=ija  (10) 

3. Results of numerical research  

The boundary value of rigidity parameter of spring supported system for which the 
change in the type of instability (divergence and flutter instability) took place is present-
ed in Figs. 2 and 3. The considered system can be characterised by two boundary rigidi-
ties (cbI i cbII) or by only one boundary rigidity (cbII).  
 

 
Figure 2. Boundary value of spring rigidity parameter cb in relation to parameter η   

In the case of the system characterised by two boundary rigidities cbI and cbII flutter 
instability, flutter instability of the column is present for c ∈ (cbI, cbII) while divergence 
instability is present for c < cbI and for c > cbII. In the case of the system characterised by 
only one boundary rigidity cbII, flutter instability is present for c < cbII , while divergence 
instability is present for c > cbII. If the rigidity of a spring supported the system is equal 
to the boundary rigidity (c = cbI lub c = cbII), two critical forces (flutter and divergence) 
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exist at the same time. The boundary values of rigidity of spring supporting the system 
cbI lorcbII in relation to the follower factor of a load η are presented in Fog. 2. The nu-
merical computations were carried out for different values of the rigid mounting of the 
column c0.  
 

 
Figure 3. Boundary value of spring rigidity parameter cb in relation to parameter ζm 

The influence of mass parameter of the body mounted at the loaded end of the col-
umn ζm on the value of the boundary rigidity parameter of the spring supported cb  is 
presented in figure 3. In this case, the numerical computations were carried out for dif-
ferent values of the follower factor η and for rigid mounting of the column 1/c0 = 0. In 
Figs. 2 and 3, the rigidities cbII  are denoted by solid lines while rigidities cbI are denoted 
by broken lines. 

4. Conclusions 

The problem applied to the free vibrations of a slender system subjected to Beck’s gen-
eralized load and supported at the loaded end by translational spring with linear charac-
teristics was solved in this paper. The boundary values of rigidities of the spring support-
ing column were determined on the basis of the kinetic criterion of stability where the 
change in instability type (divergence and flutter) took place. Numerical computations 
were carried out for different values of the system parameters such as: the follower fac-
tor, parameter of mounting rigidity and mass parameter of the body mounted at the load-
ed end of the column. One (cbII) or two (cbI, cbII) values of the boundary rigidity of the 
spring supported the column are present in relation to the system parameters. Divergence 
instability is present if c < cbI and c > cbII, while flutter instability is present if cbI < c < 
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cbII and c < cbII. The value cbI  decreases with an increase in the follower factor η. The 
value  cbII  is changing less intensively in relation to the follower factor comparing to cbI.  
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Abstract 

This work concerns an application of the method of fundamental solutions to the calculation of the eigenfre-
quencies of the torsional natural vibrations of the bars. The problem of the torsional free vibrations of the bar is 
an initial-boundary value problem. In the solution process of this problem, the method of variables separation 
is used. The boundary value problem is solved by the method of fundamental solutions. The different shapes of 
the bar cross-section are taken into account. The numerical calculations are performed for the rods made of the 
materials with the different characteristics (mass, density, shear modulus, etc.). To check the accuracy of the 
proposed methods the results of numerical experiment are included. 

Keywords: method of fundamental solutions; eigenfrequencies problem, Bessel functions 

1. Introduction 

Taking into account in calculations the various type of vibrations is a challenging issue 
and often requires the complicated mathematical or the numerical method using. The 
vibrations of the bars belong to the important problems of dynamic, because the bars are 
elements of many machines and constructions. In our considerations we concentrate on 
the free torsional vibrations of a prismatic bar. A formulation of this problem one can 
find in some monographies [1, 3, 8, 16]. Here we use the formulae based on elasticity 
equations of motion according to Nowacki [16]. The problem of the torsional waves 
propagating in a bar is described by a partial differential equation of second order and 
appropriate initial and boundary conditions. In the solution process of this problem, the 
method of variables separation is used. The boundary value problem is solved by the 
method of fundamental solutions. The method of fundamental solutions (MFS) is a 
meshfree numerical method [14].The idea for MFS was first proposed by Kupradze and 
Aleksidze [13] in 1964, and Mathon and Johnston carried out its numerical implementa-
tion [15]. In MFS the assumed solution is a linear combination of the fundamental solu-
tions. The comprehensive reviews of the MFS for the various applications can be found 
in [4, 5, 20]. The method of fundamental solutions has been also used for solving torsion 
problems of bars. An implementation of MFS for elasto-statics torsion of prismatic ho-
mogenous bars is presented in works [6, 7] and in case of inhomogeneous bars, made 
with functionally graded materials (FGM) in [21, 22]. Recently the work [12] about an 
application the methods of fundamental solutions for torsion of homogeneous prismatic 
bars in the area of elasto-plastic static was publicated too. As regards the application of 
MFS for solving the dynamic torsion of bars, we undertook the problem of free torsional 
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vibrations of a functionally graded bar in paper from 2010 [19]. In this paper the method 
of finite differences was used in order to approximation of the time derivation. In this 
way for each time step the boundary value problem has been obtained. The method of 
fundamental solutions supported by the Picard iterations and approximation by radial 
basis functions and monomials was proposed for solving the problem. The influence of 
the method’s parameters on the convergence of this complex procedure, was investigat-
ed.  

The aim of this study is an application of the method of fundamental solutions for 
calculation of the eigenfrequencies of the natural vibrations of a bar subjected the dy-
namic torsion. The knowledge of the eigenfrequencies problem is helpful in engineering 
practice, in designing structural elements of constructions and exploiting of the ma-
chines. The concept of using MFS for the calculation of eigenvalues of the Helmholtz 
equation was presented by Karageorghis in his paper [10] and Reutskiy applied the MFS 
in physical problem of free vibrations of plates [18]. The undoubtedly advantage of the 
MFS consists in avoiding the integration over the boundary. Therefore the implementa-
tion of the MFS is quite easy on the contrary to the method of boundary elements 
(BEM), the one of the most popular method used in analysis of torsional free vibrations 
of bars [2, 9, 17]. 

2. Formulation of the initial-boundary value problem 

The problem of the torsional vibrations of a bar is formulated on the ground of theory of 
elasticity. A homogeneous and an infinitely long cylinder with a solid circular cross-
section of radius a is taken into account. In the cylindrical coordinates the components of 
displacement are ur, uθ, uz and the components of stress are σrr, σrθ, σrz, etc. The torsion-
al waves propagating in a cylinder involve only a uθ - circumferential displacement 
which is independent of θ. 

The partial differential equation of the dynamical torsion of a bar, in the axi-
symmetric case, has the following form (see [1, 16]): 
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where ∂Ω is the boundary of the region Ω. 
Moreover it is necessary to assume that the displacement at r = 0 is finite. 
The initial conditions are given as: 
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3. The method of solution 

The considered problem is solved by the method of variables separation. The assumed 
solution has the form: 

 ( ) ( ) tezrUtzru ω
θθ

−⋅= ,,,  for ( ) Ω∈zr,  and 0≥t .  (5) 

As a result of substituting the above formula to the equation (1) and dividing by e-ωt we 
get the following equation: 
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Now the boundary condition (2) has the form: 
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Of course, we still remember that the displacement Uθ , is finite for r = 0. 
So, in this way we obtained the boundary value problem to solve, which leads to ei-

genvalues problem. The problem is described by modified Helmholtz equation in axi-
symmetric case and the boundary condition. This problem is solved by the Method of 
Fundamental Solutions (MFS) (see [10]). The aim of this study is to find the values k for 
which the problem has a nontrivial solution. 

In the Method of Fundamental Solutions the assumed solution is a linear combination 
of fundamental solutions: 

 ( ) ( ) ( )∑
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i
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where ( ) ( )( )s
i

s
ii zzrrkfszrkfs −−= ,,,,  is the fundamental solution of the equation (9), 

where ⋅  is a distance in sense of an Euclidean norm. Points ( ) Ω∂∪Ω∈zr,  are approx-

imation points and ( ){ }Ns
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i zr 1, =  is a set of points outside the region Ω . The points 
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=
 are the boundary points (see Fig. 1).  

In case of axisymmetric problems with modified Helmholtz operator the fundamental 
solution is expressed in terms of complete elliptic integrals (see [11]). 
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Figure 1. The sets of boundary and source points [13] 
 

The unknown coefficients ci are determined from the boundary condition (8): 
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The above homogeneous linear system of equation can be written in the general 
form: 

 ( ) 0cA =⋅k ,  (11) 
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for i=1,…,Ns and j=1,…,Nb. 
In order to obtain a nontrivial solution of equation (6) the determinant of the matrix A(k) 
must be equal zero: 

 ( )( ) 0det =kA , (14) 

Therefore the values of parameter k are the eigenvalues of problem (6)-(8). 
Finally, the values of the eigenfrequencies ω we calculate from a condition (7). 

4. Summary 

The method of fundamental solutions has been applied to the calculation of eigenfre-
quencies of free torsion vibrations of a bar. To check the accuracy of the proposed meth-
ods the numerical experiment has been performed. The obtained results agree with ex-
pected ones and they will be presented during the symposium. The proposed method 
shows a high precision and this is a good tool for solved problem. An implementation of 
the MFS for investigated problem is quite easy and the computer calculations are not 
very time-consuming. 
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Abstract  

The boundary problem concerning the free vibrations of a geometrically non-linear slender system subjected to 
a load by a force, unchanging in its direction (Euler’s force), is formulated and solved in the work. The consid-
ered column is a pipe with a focally mounted rod. A layer made of viscoelastic material is placed between the 
pipe and the rod. The Kelvin-Voigt model of this layer is taken into account to formulate the boundary prob-
lem. Numerical calculations connected to the free vibrations of the considered system are carried out on the 
basis of the boundary problem. Numerical simulations are assigned to different values of the parameters of the 
system for which the rigidity and damping parameters of the viscoelastic layer are ranked. 

Keywords: column, free vibrations, Euler load, Kelvin-Voigt model  

1. Introduction 

Slender systems consisting of two elements with different flexural and compressional 
rigidities are geometrically non-linear systems due to application of non-linear theory to 
formulate the boundary problem (comp. [1-6]). The solution to the boundary problem 
concerning stability of geometrically non-linear system was first presented by Tomski in 
work [1]. The considered systems are characterised by rectilinear and curvilinear form of 
static equilibrium, local and global instability and non-linear natural frequency in de-
pendence on amplitude. Non-linear natural frequency of geometrically non-linear system 
(in dependence on amplitude of vibrations) was determined in works [4, 5]. The geomet-
rically non-linear system can consist of symmetrically located rods (flat frame – comp. 
[2, 3, 5]) or of a pipe and coaxially located rod (comp. [1, 4, 6]). 

Many authors carried out research into influence of additional discrete elements in 
the form of springs or dampers on the stability and the free vibrations of the columns as 
well as on the free vibrations of beams (comp. [7-10]). The Kelvin-Voigt model is fre-
quently used to formulate the boundary problems of the systems built of viscoelastic 
elements. The rigidity parameter of viscoelastic element has an influence on the value of 
critical load and on natural frequency while the damping parameter can have influence 
only on natural frequency. 

Research into influence of parameters of viscoelastic layer on the value of natural 
frequency for geometrically non-linear system is the aim of this paper. 

2. The boundary problem connected to the free vibrations 

The considered in the paper geometrically non-linear system, built of a pipe and rod, is 
presented in Fig. 1. An elastic layer of δ in length (where δ << l) made of viscoelastic 
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material is taken into account in the system. This layer is placed between a pipe and the 
central rod. The Kelvin-Voigt model was applied to formulate the boundary problem of 
the considered system. This model is built of connected in parallel: spring (rigidity pa-
rameter C) and damper (damping parameter D). The column is hinged at two ends and 
subjected to Euler’s load (external force P does not change direction of action). 
 

 
Figure 2. Considered slender system 

The boundary problem connected to the free vibrations of the considered non-
conservative system (the system is non-conservative due to damping) was formulated on 
the basis of Hamilton’s principle in the following form: 
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where: T − kinetic energy, V − potential energy, δL − virtual work of non-conservative 
forces originating from damping. Energies: kinetic, potential and virtual work of non-
conservative forces are defined by the following relationships: 
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In this paper an order of partial derivative in relations to a space coordinate is denoted by 
Roman numeral while an order of partial derivative in respect of time is denoted by dots. 
The following denotations were introduced: Uik(xik,t), Wik(xik,t) − displacement longitudi-
nal and transversal, respectively, of the individual elements of the column corresponding 
to coordinate xik, (EJ)ik, (EA)ik, (ρA)ik − flexural rigidity, compressional rigidity, mass per 
unit length of the individual elements of the column (while (EJ)11 = (EJ)12, (EJ)21 = 
(EJ)22, (EA)11 = (EA)12, (EA)21 = (EA)22, (ρA)11 = (ρA)12, (ρA)21 = (ρA)22 and (EJ)11 + 
(EJ)21 = idem), m − mass of viscoelastic layer, t − time, i – index corresponding to pipe (i 
= 1) or rod (i = 2), k − index corresponding to an adequate segment of the pipe and rod (k 
= 1 − segment below viscoelastic layer, k = 2 − segment above viscoelastic layer). 

Geometrical boundary conditions of the considered system are as follows: 
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By substituting the kinetic energy (3) and potential energy (4) into Hamilton’s prin-
ciple (2) and using geometrical boundary conditions, the following relationships were 
obtained 

By substituting relationships (2), (3) i (4) into Hamilton’s principle and after taking 
into account the geometrical boundary conditions the following relationships were ob-
tained: 

• the differential equation of motion in the transversal direction 

 ( ) ( ) ( ) ( ) ( ) ( ) 0,,, =++ txWAtxWtStxWEJ ikikikik
II

ikikik
IV

ikik
&&ρ  (9) 

• the differential equation of longitudinal displacements (non-linear equation) 
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• natural boundary conditions 
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After integrating twice, and after considering the geometrical boundary conditions con-
nected to longitudinal displacement, the equation of longitudinal displacement can be 
written in the following form: 
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Due to the non-linearity occurring in Eq. (16), the straightforward expansion method is 
used to formulate finally the boundary problem. This method relies on the expansion of 
all non-linear terms of the differential equations into a power series of small parameter. 
In this paper, the considerations were limited to rectilinear form of static equilibrium 
corresponding to external load changing from zero to bifurcation force. The considera-
tions were also limited to determination the linear term of natural vibrations irrespective-
ly of amplitude of vibrations. Only the terms of expansions into a power series of the 
small parameter of the individual non-linear expressions, which make it possible to carry 
out numerical computations of the linear term of the free vibrations in the case of recti-
linear form of the static equilibrium, are presented in this paper. The considered terms of 
expansions are as follows: 

 ( ) ( )( )txWtxW ikikikik ,, 1ε= , ( ) ( )( )ikikikik xUtxU 0, = , ( ) ( )0ikik StS = , 0ωω =  (17) 

where: 
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In the solution (18) j is the imaginary unit and natural frequency ω0 is a complex number 
in the form: 

 Im0Re00 ωωω j+=  (19) 
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Equations (17) are substituted into the differential equations and into boundary condi-
tions. After grouping the terms of obtained relationships in relation to identical powers 
of small parameter (ε0 and ε1), the final form of the boundary problem connected to the 
free vibrations was received. Internal forces in the individual elements of the system 
were determined on the basis of equations connected to the zero power of the small pa-
rameter (ε0) in the case of rectilinear form of the static equilibrium. Linear (independent 
on amplitude) component of natural frequency ω0 (both real (ω0Re) and imaginary (ω0Im)) 
was determined on the basis of equations connected to the first power of the small pa-
rameter (ε1) in the case rectilinear form of the static equilibrium. 

3. The results of numerical computations 

The results of numerical computations connected to natural frequency were presented 
using dimensionless quantities defined in the following way: 
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where: ωref = 1 [rad/s], Ω0ND is the parameter of natural frequency at zero value of damp-
ing, Pb is bifurcation load of the system. 

Change in parameter ζω in relations to parameter ζλ is shown in Figure 3. The results 
of numerical computations are presented in the load range corresponding to the value of 
parameter ζω > 1.  
  

 
Figure 2. Parameter ζλ in relation to parameter ζω 

4. Conclusions 

The problem of the free vibrations of a geometrically non-linear slender system, which 
consists of a pipe and a focally mounted rod considering viscoelastic layer, was formu-
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lated in the paper. The Kelvin-Voigt model of viscoelastic layer was applied to build 
mathematical model. Natural frequencies for different parameters of the system were 
determined on the basis of the boundary problem. Value of external load, location coef-
ficient of viscoelastic layer, asymmetry factor of the flexural rigidity for pipe and rod, 
the rigidity and damping parameters of the viscoelastic layer are ranked for the parame-
ters of the system. On the basis of carried out numerical computations, it was stated that 
parameter ζω is dependent on the value of external load of the system. Rapid decrease in 
the value of parameter ζω is observed for the load closed to the bifurcation load. Influ-
ence of damping on natural frequency is more significant if viscoelastic layer is located 
further from mounting of the system. 
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Abstract  

The paper presents the free vibration analysis of non-planar asymmetric shear wall structures with connecting 
and stiffening beams. The stiff beams incorporated at various levels of coupled shear walls improve 
the stiffness of the structural system of the building. The analysis is based on a variant of the continuous con-
nection method for three-dimensional shear wall structures having stepwise changes in cross-section. The mass 
matrix including flexural and torsional inertia is generated. As a result of solving eigenproblem, which corre-
sponds to free vibration equation, natural frequencies and mode shapes of vibration have been received. The 
results obtained by this method have been compared with those available in literature and a satisfactory match 
has been observed. 

Keywords: dynamic analysis, coupled shear walls, continuous connection method, stiffening beams  

1. Introduction 

Reinforced concrete coupled shear walls are structural members that are widely used 
in multi-storey buildings to increase the overall rigidity and resist the lateral loads due to 
wind and earthquakes. The free vibration response of such structures is of interest 
in force vibration predictions using the modal analysis.  

For the dynamic analysis of the shear wall structures it is convenient to use 
a continuous-discrete approach [8, 1, 10, 6, 11]. In this approach the continuous connec-
tion method is employed to find the structural flexibility matrix, whereas the structure 
mass matrix is found with the lumped mass assumption. In the continuous connection 
method (CCM) the shear forces in connecting beams are modelled as continuously dis-
tributed functions along the height of a structure. 

In practice the depth of connecting beams is limited and coupling effect provided 
by the lintel beams on structural walls may not be sufficient. The behaviour of coupled 
shear walls can be improved by incorporating deep stiffening beams, called “stiffeners”, 
at various levels along the structure height. The dynamic analysis of planar coupled 
shear walls with stiffening beams has been presented in many papers [8, 6, 7, 1, 3, 2, 4]. 
Turkozer et al. [9] has studied the dynamic analysis of stiffened non-planar coupled 
shear walls with one band of connecting beams.  

The aim of this paper is to present the free-vibration analysis of non-planar shear 
wall structures with connecting and stiffening beams, using a variant of the continuous 
connection method for structures of variable cross-section [12]. 
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2. Theoretical background 

The analysis is based on the following main assumptions: 

• The floor slabs are taken as diaphragms with infinite in-plane stiffness.  
• The out-of-plane stiffness of the floor slabs can be modelled by connecting beams 

of appropriate stiffness spanning between shear walls. 
• Vlasov’s theory for thin walled beams of an open section is taken to be valid 

for the individual shear walls. 
• The walls and beams are assumed to be linearly elastic. 
• The geometric and mechanical properties of the structure are constant throughout 

the height of each segment. 

In our analysis the continuous connection method has been used in conjunction with 
Vlasov’s theory of thin-walled beams. To simplify the analysis, the effect of St. Venant’s 
torsion has been neglected. The dynamic model with masses in the form of rigid floor 
slabs has been adopted since over a half of building total mass is usually concentrated on 
the floor levels. The coupled torsional-flexural vibrations have been taken into consider-
ation because torsional response of buildings during  ambient and earthquake response is 
significant.  

For shear wall multi-storey structure it is more natural to determine the flexibility 
matrix D rather than stiffness matrix K [5]. To find the flexibility matrix D each lumped 
mass is loaded with a unit horizontal generalized force and the corresponding horizontal 
displacement vector is found by the continuous connection method. The following rela-
tion describes the free vibration of a structure: 

 0=+uuMD &&  (1) 

Where: D and M are flexibility and mass matrices, respectively; u is d-element vector of 
generalised coordinates; and d is the number of dynamic degrees of freedom of 
a structure.  

3. Analysis 

The flexibility matrix D is generated from the solution of the governing differential 
equations for three-dimensional continuous model of the shear wall structure with varia-
ble cross-section [12]. A structure, which changes its cross-section along the height, can 
be divided into nh segments, each one of the constant cross-sections. For k-th segment, 
the differential equations can be stated as follows: 

 )()()( zzz fnAnB NN +=′′  (2) 

 )()()( zzz NNKTG nVtVv −=′′′  (3) 

where the following notation applies: z Є (hk-1,hk >,  hk is the height of the upper bounda-
ry of k-th segment of the constant cross-section, (k = 1, … nh),  nh is the number of seg-
ments of the constant cross-section; nw is the number of continuous connections;  B is 
nw × nw diagonal matrix containing flexibilities of connecting beams; nN(z) is the vector 
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containing unknown functions of the shear force intensity in continuous connections 
which substitute connecting beams; A, VT, VN are the matrices dependent on a structure, 
f(z) is a vector formed on the basis of given lateral loads; tK(z) is the vector of the func-
tions of shear forces and a torque due to the action of lateral loads, tK(z) = col [tX(z), 
tY(z), mS(z)] and vG(z) is the vector containing the functions of horizontal displacements 
of the structure measured in the global coordinate system OXYZ,  vG(z) = col [vX(z), vY 
(z),φ(z)]. 

The boundary conditions for Eq. (2) and Eq. (3) at the bottom and at the top of the 
shear wall structure can be stated as follows: 

 ,0)( =′ HNn             ,0)0( =Nn  (4) 

 ,0)0( =Gv           ,0)0( =′Gv           0)( =′′ HGv . (5) 

The boundary conditions for shear force intensity functions at the plane of contiguity, 
at which a change in cross-section occurs, have been derived on the basis of compatibil-
ity conditions at the mid-points of the connecting beams and equilibrium consideration 
in shear walls [12].  

In the analysis of stiffened shear wall structures, storeys with stiffening beams are 
considered as the individual segments of the constant cross-section. 

The mass matrix M is generated exactly according to real distribution of floor slabs, 
walls, connecting and stiffening beams, including flexural and torsional inertia, in the 
following form: 

 )...,,1(),( knkdiag == kMM ,  (6) 

where:  nk – number of storeys,   Mk – symmetrical matrix of the order three. 
The generalized eigenvalue problem corresponding to the Eq. (1) is solved by using 

the procedure geig, created on thy basis of the procedures: reduc2, tred2, tql2 , rebaka , 
included in [13]. On the basis of the prepared algorithm the software in Object Pascal 
of Delphi 5 environment has been implemented and included in the DAMB (Dynamic 
Analysis of Multi-Storey Buildings) program for the dynamic analysis of shear wall tall 
buildings [10, 11]. 

4. Numerical results 

To verify the present method the non-planar, non-symmetrical coupled shear wall with 
and without the stiffening beam, solved previously in [9], has been analysed (Fig. 1). 
The total height of the shear wall is 48 m and the storey height is 3 m. 

The mass density and the elasticity and shear modules are as follows: ρ = 2400kg/m3, 
E = 2.85GPa and G = 1.056 GPa. The height of the connecting beams is 0.4 m. 
The thickness of the connecting beams and walls in the right part is 0.4 m and 0.2 m 
in the left part. The stiffening beam of 3.0 m height was placed at the height of 30 m 
on the tenth storey. 
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 The mass of the typical storey, including a connecting beam, equals to 104.3×103 kg 
and the total mass of building, including stiffener, is 1673.9×103 kg. The mass of floor 
slabs has not been considered in this example for comparison purposes. 

 

Figure 1. Cross-sectional view of the non-planar shear wall structure [9] 

It may be noted, that in the present analysis the shear deformation of the walls has 
been neglected due to the assumption in Vlasov’s theory. The same assumption has been 
made in the analysis presented in [9] and for comparison purposes the shear deformation 
was neglected in SAP2000 applications as well.  

Table 1 and Table 2 compare the first ten natural frequencies corresponding to each 
mode found by the present method (program DAMB) and given in [9], obtained by 
SAP2000 structural analysis program, using MacLeod’s frame method, for unstiffened 
and stiffened case, respectively.  

The torsional modes are omitted in the results given in [9] because of the assumption 
that the mass is lumped in nodes, which have no rotational inertia [9], but for the other 
frequencies a good match has been observed. 

Table 1. Comparison of the first ten natural frequencies (NF) found by present 
method (CCM) and SAP2000 [9] for unstiffened case 

Mode 
Predominant 

mode 

Present method  
(CCM) 
NF (Hz) 

SAP2000 [9] 
NF (Hz) 

% Difference 

1 First mode X 0.4748 0.50047 -5.13 
2 First mode Y 0.6656 0.66117 0.67 
3 First torsional mode 1.0022   
4 Second mode X 2.4180 2.46396 -1.87 
5 Second mode Y 4.1799 4.11839 1.49 
6 Second torsional mode 6.2020   
7 Third mode X 6.4394 6.47507 -0.55 
8 Third mode Y 11.729 11.45595 2.38 
9 Fourth mode X 12.456 12.37532 0.65 

10 Third torsional mode 17.265   
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Table 2. Comparison of the first ten natural frequencies (NF) found by present 
method (CCM) and SAP2000 [9] for stiffened case 

Mode 
Predominant 

mode 

Present method  
(CCM) 
NF (Hz) 

SAP2000 [9] 
NF (Hz) 

Diff.(%) 
(CCM-SAP) 

/SAP 
1 First mode X 0.5751 0.62284 -7.58 
2 First mode Y 0.6663 0.66030 0.91 
3 First torsional mode 1.0852   
4 Second mode X 2.5131 2.58037 -2.61 
5 Second mode Y 4.1700 4.11147 1.42 
6 Second torsional mode 6.2229   
7 Third mode X 6.6740 6.57733 1.47 
8 Third mode Y 11.721 11.43606 2.49 
9 Fourth mode X 12.827 12.77066 0.44 

10 Third torsional mode 17.324   
 
It is demonstrated that the natural frequencies of coupled shear walls increase with 

the contribution of stiffening beams, which indicates the improvement in stiffness 
of coupled shear walls due to the incorporation of stiffening beams. 

Figure 2 presents the first, second and third mode shapes of the non-planar shear wall 
structure with stiffening beam found by the present method, using DAMB program. 

 

                 
 

Figure 2. The first, second and third mode shapes of the non-planar shear wall structure 
with stiffening beam, obtained by the present method  

5. Conclusions 

The paper presents the free vibration analysis of non-planar shear wall structures with 
stiffening beams, using a variant of the continuous connection method for structures of 
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variable cross section. The results obtained by the above-mentioned method have been 
compared with those obtained using the SAP2000 structural analysis program, given in 
literature, and a satisfactory match has been observed. The proposed method is efficient 
and can be very useful, particularly, at the preliminary design stage when quick checks 
with different structural arrangements and dimensions are needed. 
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Abstract   

The paper presents a problem of local vibrations in a vehicle as one of physical factors occurring at the driver’s 
place. Influence of tires used in a car on local vibrations generated in a steering mechanism has been consid-
ered here. The analysis of local vibration hazards was carried out based on experimental results published in 
[1]. The measurement results obtained for five types of tires differing, among other things, from one another in 
tread depth, degree of wear and use were analyzed. The analysis has revealed significant influence of tires on 
the level of local vibrations transmitted through the steering mechanism into driver’s hands.  

Keywords: local vibrations, steering mechanism, physical factors in the workplace 

1. Introduction  

In the workplaces the work is adjusted to psychophysical capabilities of a human being 
considering improvement of working conditions at a minimum biological cost. The im-
provement is achieved mainly by elimination of sources of occupational diseases [2, 3]. 
Different types of harmful factors occur in the workplace. These can be divided into 
three groups: chemical substances, dust, and physical factors. In case of drivers the first 
two groups may appear, but they do not pose any direct danger. The most important here 
are physical factors, such as general vibrations, local vibrations and noise. They occur in 
the discussed workplace simultaneously and have a significant influence on assessment 
of occupational hazard related to the exposure to them [4, 5]. 

The paper presents results of measurements obtained for local vibrations occurring 
while driving a vehicle. Operators of hand-held tools used, for example, in construction 
industry are mainly exposed to mechanical vibrations acting locally on a human body. 
Drivers, however, who have contact with a vibrating element, such as a steering wheel of 
a vehicle, may also be rated among the exposed ones. 

Mechanical vibrations may cause many ailments and diseases, even irreversible ones. 
One of the diseases caused by vibrations is vibration syndrome, which in Poland has 
already been rated among occupational diseases since 1968. Research with human be-
ings as research participants has confirmed that the neural system and cardiovascular 
system are the most sensible to vibrations [4, 6]. Ailments caused by vibrations may, 
therefore, manifest themselves in paroxymal vasoconstrictions, dysaesthesia, labyrinth 
disorders, dystrophic changes of muscles, and formation of bone cysts. A complex of 
such disorders depends on individual susceptibility [7]. 

In the process of creation of ergonomic conditions in the workplace one should fulfill 
strong requirements set by the human being included in ergonomics principles and safety 
regulations [8]. Minimization or eliminations of hazards are the main activities per-
formed to meet these requirements. 
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Occurrence of general and local vibrations and noise at the driver’s place is condi-
tioned on several factors. Aside from the construction and technical state of the vehicle 
they may include the state of the pavement, where the vehicular traffic occurs and the 
type of tires in use. The state of pavement depends on the type of the road (e.g. on the 
material it is made of), its wear, and, in particular, on weather conditions.  

Based on experimental results presented in [1] only local vibrations have been ana-
lyzed and results of experimental research carried out for a small commercial vehicle are 
presented (Figure 1). The influence of tires on the levels of vibration acceleration trans-
mitted through the steering wheel into driver’s hands was investigated. The measure-
ments were performed for three ranges of speed, including driving in built-up areas and 
on local roads. 

 

  
Figure 1. Commercial vehicle used for research and the road used for measurements [1] 

Five types of commonly used tires with different treads, different purpose, and hav-
ing been used for two seasons were used during research. 

2. Field research 

Field research was performed on an asphalt concrete pavement (Fig. 1), and it consisted 
of recording values of steering wheel vibration acceleration for three ranges of vehicle 
speed: 50-60 km/h, 60-70 km/h and 70-80 km/h. The measurements were carried out at 
constant weather conditions, which guaranteed good driving conditions (dry pavement). 
The outdoor temperature was +25˚C, and the relative humidity was about 21%.  

Five types of tires classified according to their purpose, depth and shape of tread, 
tested on the same steel R14 rims were used for the investigation (Table 1). Air pressure 
was selected individually for each tire, according to producer’s recommendations. The 
tires were installed and removed using specialist machinery. After every change of tires 
the wheels were balanced. 
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Table 1. Tires used for research [1] 

Pos. Type  
Tread depth 

[mm] 
Tread shape 

I summer 4,5 asymmetric 

II all-season 6 directional 

III summer 5,5 asymmetric 

IV summer 6 directional 

V winter 6 directional 

 
An all-season tire, winter tire, and summer tires, appropriate for the period of time, 

when the research was performed were examined. The summer tires had asymmetric and 
directional tread shapes and they differed from one another in tread depth.  

The analysis of local vibrations was carried out based on the research presented in 
[1], which contains results of measurement of weighted values of acceleration of vibra-
tions transmitted through the steering system into driver’s hands, measured in three per-
pendicular directions. The measurements shown in [1] were carried out according to ISO 
5349 standard [9] and based on [10], using Brüel&Kjær Integrating Vibration Meter 
Type 2513 and vibration acceleration sensors. The sensors were mounted on a clamping 
ring installed on the vehicle steering wheel (Fig. 2). 

The asphalt concrete pavement was free from bends and unevenness that could influ-
ence the measurement results significantly. The length of the road section used for 
measurement was equal to about 7 kilometers. For each type of tires five measurements 
of the weighted value of vibration acceleration were taken, and than they were averaged. 

 

  
Figure 2. B&K meter used for research 

The mean value determined in [1] was used to compute the quantity characterizing 
vibrations occurring in the workplaces, i.e. the vector sum of frequency weighted rms 
values of vibration acceleration measured in three directions x, y and z. The obtained 
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results were compared with the permissible value of 2.8 m/s2, valid for eight-hour expo-
sure of the human body to local vibrations [4]. 

3. Analysis of research results  

Table 2 shows the vector sum of weighted rms values of vibration acceleration in x, y 
and z directions obtained for three ranges of speed for different types of tires measured 
on the steering wheel of the investigated vehicle. From the directional components the 
vector sum for each tire was determined using the formula: 

 2
,,

2
,,

2
,,, RMSzwRMSywRMSxwsw aaaa ++=  (1) 

where: aw,x,RMS, aw,y,RMS, aw,z,RMS, – weighted rms values of vibration acceleration meas-
ured in x, y and z directions [11]. 

Table 2. The vector sum of vibration acceleration of three directional components            
x, y, z for three ranges of speed for the investigated tires 

Tire num-
ber 

Vector sum 
for directions x, y and z [m/s2] 

50 – 60 km/h 60 – 70 km/h 70 – 80 km/h 
I 5,9 5,9 5,6 

II 6,3 5,0 3,3 
III 3,2 3,0 2,4 
IV 3,8 4,2 2,8 
V 5,8 4,0 2,9 

 
Analyzing the results obtained for different types of tires one can observe small in-

fluence of tread shape on the level of the recorded vibrations (see Table 2 – tires III and 
IV). The results also indicate, that in case of summer tires (I and IV) the tread depth may 
be of great importance in propagation of vibrations through the steering system. 

Computation results put together in Table 2 show that different purpose tires (sum-
mer tire IV and winter tire V) having the same tread shape and depth have similar values 
of vector sums, aside from the speed range of 50-60 km/h. To complete the analysis it 
would be worthwhile to examine the winter tire in conditions it has been made for. For 
safety reasons (pavement covered with ice or snow), however, such an attempt has not 
been made.  

Table 2 and Fig. 3 show that the higher speed the lower are the vibration levels inde-
pendently of the type of the tire in use. There is one exception, tire IV, for which at the 
speed range 60 – 70 km/h a little higher value of vibration acceleration was obtained.  

The obtained values of the vector sum for the chosen speed ranges were compared 
with the permissible value of 2.8 m/s2 shown in Fig. 3. 

Analyzing the results for different types of tires it can be observed that the winter tire 
(V) and the all-season tire (II) behave similarly. For both types of tires the decrease in 
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vibrations is almost identical. Between tires (III) and (IV) significant differences in vi-
bration levels can be observed for speed ranges of 50 – 60 km/h and 60 – 70 km/h. For 
the speed range of 70 – 80 km/h the permissible value has not been exceeded.  

 
 

 

Figure 3. Vibration acceleration of the steering wheel for the investigated tires obtained 
for three speed ranges referenced to the permissible level 

The most unfavorably appears the summer tire (I) for which almost twofold excess of 
the permissible value can be observed independently of the vehicle speed. For tire (III) 
small excesses of the permissible value can be observed. 

5. Conclusions 

The paper has shown that local vibrations occurring in a vehicle are closely dependent 
on tires in use and also on vehicle speed.  

The obtained values of vibration acceleration of the steering wheel depend only to a 
small degree on tire tread shape and tire type (summer, winter, all-season). The choice of 
tires is determined, however, by the season and driving safety. Hence, it is impossible to 
choose the type of tires using only the local vibrations criterion. The analysis has shown 
that only one of the five investigated tires meets the requirements of the standard. Thus, 
the problem exists and cannot be solved in a simple way, because when designing tires 
many factors should be taken into account simultaneously. The overriding goal is safety, 
and the driving comfort is less important. 

The performed investigations confirm the need for taking local vibrations into ac-
count when assessing the occupational risk connected with the exposure to this factor. 
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Abstract  

The paper presents methodology of measurements and results of vibration research on a demolition hammer 
weighing 15.5 kg. The measurements of vibrations for the chosen measuring points have been carried out using 
a Photron FastCam 1024 PCI high-speed camera on a stand prepared for testing hand-held tools. To ensure 
signal stability and to reduce the influence of an operator the research was carried out with the hammer mount-
ed in a special fixture enabling holding a tool with symmetric layout of handles. The measurement results are 
to be used for verification of a model assumed for a human being – tool system. 

Keywords: local vibrations, hand-held tools, high-speed camera  

1. Introduction  

Hand-held tools commonly used, for example, in construction industry are sources of 
vibrations of very high levels exceeding many times acceptable norms. Work in such 
conditions may contribute to many illnesses and deterioration of health. One of the first 
symptoms of harmful influence of local vibrations entering the human body through the 
upper limbs is the loss of sensation in palms and finger whitening as a result of vascular 
disturbances [1, 2, 10]. 

Depending on the character of work performed tools with different types of handles 
are used. The layout of handles determines arising of pain in both limbs equally or in 
each one differently. Harmfulness of vibrations transmitted into the human body causes 
that research involving human beings should, if possible, be avoided. In such cases real 
objects, such as machines or tools, are replaced by physical or mathematical models. The 
models should then be verified experimentally, which enables to continue research and 
to carry out analyses without doing harm to any human being. On the other hand, per-
forming appropriate measurements enables, at least partially, such adjustment of model 
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parameters, that its behavior is to the highest degree similar to the behavior of the mod-
eled object. 

The paper presents results of vibration research on a demolition hammer weighing 
over 10 kg and having a T-shape handle, which means that it is a big tool requiring the 
use of both hands to operate it (Fig. 1). Such a posture of operator at work causes sym-
metric force distribution and vibration propagation in both upper limbs. 

The performed measurements were meant to be used for verification of a model built 
to analyze a human being – tool system described in [3, 4, 5, 6, 7, 8].  

2. Laboratory research 

The experimental research was carried out for a pneumatic demolition hammer with a 
symmetric handle, weighing 15,5 kg. The tool was mounted on a test stand for testing 
hand-held impact tools using a special two-jaw fixture (Fig. 1). The research was carried 
out on the foundation made according to ISO/FDIS 8662 [9] (Fig. 1). 
 

 

Figure. 1. Test stand for testing hand-held impact tools  
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The fixture enables fastening the hammer handles and work with a controlled force 
of pressuring the hammer against the foundation generated by the initial spring tension. 
The fixture ensured stability of signals and elimination of the operator’s influence, which 
guaranteed repeatability of measurements on a satisfactory level. 

On the test stand displacements of different points on the object and test stand 
marked with markers were recorded. The locations of markers are shown in Figure 2. 

The research was carried out using a Photron 1024 PCI 100KC camera with a Nikon 
50 mm, 1: 1,4D lens (see Fig. 2). Acquisition parameters 1000 frames per second, dis-
play resolution 256 x 1024. The operating frequency of the hammer was about 25 Hz. 
Finally, only two components of the displacement signal were significant in the recorded 
signal (about 25 Hz and 50 Hz – see Fig. 3). Thanks to the chosen recording speed one 
vibration period with the fundamental frequency of motion of the hammer was repre-
sented by about 40 samples and the second harmonic by about 20 samples.  It was as-
sumed, that the quantities which would be used for initial adjustment (initial verification) 
of the model were rms values of the signal (and not the time function itself). Thus, the 
obtained digital representation was assumed as sufficient to obtain good estimation of 
the rms value. 

The measuring system was equipped with the camera, two sources of strong halogen 
light with power of 500 W each, and a computer with a software for data acquisition 
(Fig. 2). 

 

 
Figure 2. Measuring apparatus used for research  

1 

2 3 
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The camera recorded displacements only in Z-direction, because of restrictions of 
motion in other directions caused by the used fixture. It was assumed that it was the 
direction, where the biggest displacements could be expected and also the only one, 
where the displacements were measurable using a camera with the previously mentioned 
resolution and with the available lens. 

3. Analysis of the research results  

Figure 3 shows examples of displacement, velocity and acceleration values obtained for 
the marker placed on the demolition hammer handle, recorded in Z-direction.  
 

Figure 3. Displacement, velocity and acceleration of the handle, and their spectra 

The camera enables direct measurement of vibration displacement only. To obtain 
velocity and acceleration it is necessary to compute respective time derivatives. 
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The computations may be done in frequency domain using a complex spectrum, and in 
the next step using the reverse Fourier transform, determining the time courses of vibra-
tion velocities or accelerations (after applying the procedure twice).  

The table shows the rms values of displacement, velocity and acceleration of vibra-
tions of the hammer handle, its body, and the fixture.  

Table 1. RMS values of displacement, velocity and acceleration of vibrations of the 
hammer handle and its body determined in Z-direction 

Measuring point Displacement [m] Velocity [m/s] Acceleration [m/s2] 

Handle 
0.0009 
0.0003 

0.172 
0.137 

157 
160 

Hammer body 
0.0005 
0.0002 

0.240 
0.152 

411 
267 

Fixture 
0.0017 
0.0010 

0.196 
0.168 

293 
231 

 

The table shows the results for different tests (with different values of pressure sup-
plied to the hammer). The hammer was operated under laboratory conditions (lack of 
influence of an operator). Hence, differences in results were caused only by differences 
in pressure supplied to the hammer. It concerns, however, mainly the vibration dis-
placement. In case of acceleration, because of the fact that higher frequency bands also 
become significant, this difference decreases. It should, however, be mentioned that the 
process of computation of consecutive derivatives of displacement itself introduces some 
numerical errors.  

4. Conclusions 

The conducted vibration research on a hammer mounted in a stable fixture on a laborato-
ry test stand have confirmed the impulse character of force exciting vibrations of the 
hammer body. 

The recorded values of acceleration, velocity and displacement enable simulative 
generation of impulse forces exciting vibrations of the demolition hammer body. Obtain-
ing conformity of rms amplitudes of the determined parameters will enable adjustment 
of the model to a real object and continuation of research on minimization of vibrations 
generated by a tool. 

One of advantages of a measurement performed by means of a high-speed camera is 
that it can be simply carried out for any point on the structure, which motion can be 
observed. It is not always possible to mount transducers directly to any point of a struc-
ture. Contactless measurement using a camera eliminates this inconvenience. Another 
advantage is a relatively low cost of such a solution in comparison with methods based 
on laser measurements. Among significant disadvantages one can rate low accuracy of 
direct measurements caused by resolution of the camera transducer and lens in use.  
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