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Abstract  

Wheel-rail thermoelastic contact problem is analysed and numerically solved in the paper. The surface of 
the rail is assumed to consist from layers having distinct constant material parameters and a functionally grad-
ed material layer between.  Thermal and mechanical properties of the graded layer are dependent on its depth 
rather than constant as it is considered in the literature. Numerous laboratory experiments indicate that graded 
materials layers or coatings covering the conventional steel body can reduce the magnitude of contact and/or 
thermal stresses as well as the noise and the rolling contact fatigue. The contact phenomenon includes friction 
as well as frictional heat generation and wear. Quasistatic numerical approach is used to solve numerically this 
contact problem. Numerical results are provided and discussed.  
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1. Introduction  

Two-dimensional rolling contact problems including friction, frictional heat generation 
and wear are solved numerically in this paper. The unilateral contact of a rigid wheel 
with an elastic rail lying on a rigid foundation is considered.  The friction between 
the bodies is described by Coulomb law [1,2,3].  The coefficient of friction is assumed 
constant. Due to the heat conduction, the frictional heat flow is directed into the coated 
medium [4].  We employ Archard's law of wear [5]. In the model the wear is identified 
as an increase in the gap between bodies.  

The thermoelastic contact or rolling contact problems were  considered by many au-
thors (see references in [1,3,6,7,8,9,10,11,12]).  Numerous laboratory experiments indi-
cate [2,8] that the use of a coating material attached to the conventional steel body re-
duce the magnitude of residual or thermal stresses. It leads to the reduction of the rolling 
contact fatigue and noise. However in a conventional coating structure homogeneous 
materials are used. The abrupt change in the mechanical properties of the materials at 
the surface coating-substrate interface results in stress concentration or degraded bond-
ing strength [9]. Thermoelastic rolling contact problem with two layer surface model 
with the material properties governed by the power law are considered in [12].     
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In this paper, following [13], we assume that between the homogeneous coating layer 
and the homogeneous substrate there exists the graded interlayer which properties de-
pend on its depth according to the exponential law.    We consider also thermoelastic 
contact phenomenon with the frictional heat flow rather than elastic contact model as in 
[13].   

In the paper we take special features of this rolling contact problem and use so-called 
quasistatic approach [14] to solve it numerically. In this approach the inertial terms in 
elastic and heat equations are replaced by the stationary terms reflecting the dynamics of 
the body and heat transfer rather than completely neglect them as in the classical qua-
sistatic formulation.  Therefore, after brief introduction of the thermoelastic model of the 
rolling contact problem with friction and wear in the framework of two-dimensional 
linear elasticity theory the general coupled time dependent system describing this physi-
cal phenomenon is formulated. This system is transformed into equivalent stationary 
system in so-called quasistatic formulation  To solve numerically this stationary system 
we will decouple it into mechanical and  thermal parts. Finite element method is used as 
a discretization method. The numerical results including the distribution of temperature 
field in the contact zone are provided and discussed. 

2.  Problem formulation  

Consider deformations of an elastic strip lying on a rigid foundation (see Figure 1). 
The strip has constant height h and occupies domain Ω ⊂  R2 with the boundary Γ.  
 

 
 

Figure 1. Wheel rolling over the strip 
 

Figure 2. Three-layers model 

A wheel rolls along the upper surface ΓC of the strip. The wheel has radius r0, rotating 
speed ω and linear velocity V. The axis of the wheel is moving along a straight line at 
a constant altitude h0 where h0< h+r0, i.e., the wheel is pressed in the elastic strip. It is 
assumed, that the head and tail ends of the strip are clamped, i.e., we assume that 
the length of the strip is much bigger than the radius of the wheel. Moreover it is as-
sumed, that there is no mass forces in the strip.  The body is clamped along a portion Γ0 
of the boundary Γ of the domain Ω. The contact conditions are prescribed on a portion 
ΓC of the boundary Γ. Moreover, ∅=Γ∩Γ C0

.  
CΓ∪Γ=Γ 0

.     
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We denote by u=(u1,u2), u = u(x, t),  depending on the spatial variables x=(x1,x2) ∈   
Ω,  and time variable t∈  [0,T],  T>0,  a  displacement  of the strip and by θ the absolute  
temperature of the strip. Assume Ω=Ω1 ∪Ω2 ∪Ω3  where  Ω1, Ω2 and Ω3  denote 
the homogeneous coating layer, graded interlayer, and substrate layer, respectively. 
The heights of these layers are h1, h2, h3, respectively. In the middle layer Ω2 material 
parameters depend on the height of the layer according to the exponential law. The dis-
placement u of the strip satisfies  the evolution equation  [9] in  the cylinder   Ω × (0,T) : 
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The temperature θ of the strip satisfies the parabolic equation in the cylinder   Ω × (0,T) :   
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The following initial and boundary conditions are imposed:  

 u(0)= u0i ,     u’(0)= u1i ,   i=1,2,   θ(0) = θ0  in   Ω, (3)  

 u = 0  on  Γ0 × (0,T)  and  B*D Au = F    on ΓC × (0,T), (4)  
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where u(0)=u(x,0), u’ = du/dt, u0i and u1i θ0 q(t) are given functions, ρ is a mass density 
of the strip material,  α is a coefficient of thermal expansion, κ is a thermal conductivity  
coefficient, cp is a heat capacity coefficient, Γ0 = Γ \ ΓC.  The operators A, B and D are 
defined as follows [10]  
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where n=(n1,n2) is the outward normal versor to the boundary Γ of the domain Ω, λ and γ 
are Lame coefficients, A* denotes a transpose of A. In Ω2 operator D is assumed to de-
pend on the depth of the graded interlayer according to the exponential law. By σ=(σ11, 
σ22, σ12) and F we denote the stress tensor in  domain Ω and surface traction vector on 
the boundary Γ, respectively. The surface traction vector  F=(F1,F2) on the boundary ΓC 
is a priori unknown and is given by conditions of contact and friction. Under the assump-
tions that the strip displacement is small  the contact conditions on  the boundary ΓC× 
(0,T)  take a form:  

             u2+gr + w ≤ 0,  F2 ≤ 0,    (u2+gr + w)F2 = 0,    gr=h-h0+ 2
11

2
0 )( xur +− , (7) 
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 | F1 | ≤  µ | F2 |,  F1  ≤ 0,  (| F1 |- µ | F2 |)  = 0,  (8) 

where µ is a friction coefficient. Conditions (5)-(6) describe the non-penetration condi-
tion as well as Coulomb law of friction, respectively [1,6]. Assuming that the dimen-
sional wear coefficient  k>0 is given the wear w=w(x,t)  is governed by the equation [4]:  

 = k V F2. (9) 

Remark, in (7) the wear w increases  the gap between the contacting surfaces.   

2.1 Material properties of functionally graded materials  

In subdomains Ω1 and  Ω3  the operator D characterizing the properties of the material 
occupying strip Ω or the conductivity coefficient take different constant values, respec-
tively (see Figure 2). In the subdomain Ω2  the operator D or the conductivity coefficient 
are assumed to depend on the depth of the layer. This dependence is governed by 
the exponential law   [8,9]:  

 P(x2) = PΩ1   exp (n ),   x2  ∈  [-h2-h1, -h1], (10)  

where n=log(PΩ1/PΩ3),  h1, h2 are given parameters,  x2 denotes the spatial variable and 
P(x2), PΩ1,  PΩ3 denote the height dependent material property (material density, conduc-
tivity coefficient or Young modulus) of layer Ω2 as well as  the material properties of 
layers Ω1 and Ω3, respectively. The continuity of the displacements, temperatures and 
the stresses along the interfaces  ∂Ω1∩ ∂Ω2 and ∂Ω2∩ ∂Ω3  are assumed.  

3. Quasistatic formulation   

Taking into account the special features of the contact problem (1)-(9)  one can reformu-
late it in the framework of the quasistatic approach. This approach is based on the as-
sumption that for the observer moving with a wheel its displacement does not depend on 
time [14].   

Consider an observer moving with the wheel with the constant linear velocity V. We 
introduce the new Cartesian coordinate system O’x1’x2’ hooked in the middle of 
the wheel. The systems O’x1’x2’ and Ox1x2 are related by: x1’ =  x1 – V t and  x2’ =  x2. 
Therefore  the displacement u(x1’,x2’) does not depend on time [14] and  we obtain:  
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Using the same arguments for the temperature field we obtain 
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Using (12)-(13) the inertial terms in equations (1)-(2) are  replaced by the stationary 
terms depending on the wheel velocity and spatial derivatives of displacement or tem-
perature fields and reflecting the dynamics of the moving body rather than completely 
neglected it as in the classical quasistatic formulation [1].  Taking into account (12)-(13), 
quasistatic approximation of the contact problem  (1)-(10) takes the form: find displace-
ment u and temperature θ satisfying:   

 A*D(x)Au – ρV2u1,1  – α(3λ + 2γ) θ∇  = 0  in Ω, (14) 
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as well as the boundary conditions 

u = 0   on  Γ0,    B*D(x) Au = F      on  ΓC,  (16)  

u2+gr + w ≤ 0,   F2 ≤ 0,     (u2+gr + w)F2 = 0,    on  ΓC ,  (17) 

 F1 | ≤  µ | F2 |,   F1 u1,1 ≤ 0,   (| F1 |- µ | F2 |) u1,1 = 0,    on  ΓC , (18) 
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  = -k  F2,                        on ΓC ,  (20) 

where ui, j =  , ui,jk =  , i,j,k=1,2 and r denotes thermal resistant constant. 

Moreover,  u0i = u1i = 0 is set in (2).    

3.1 Friction Regularization 

In order to ensure the existence of solutions to the problem (14)-(20) we have to regular-
ize it,  i.e.,  we will consider it as the problem with the prescribed friction.  Let ε >  0 be 
a regularization parameter. We use the following formula relating tangential and normal 
tractions on the contact boundary  ΓC  [14]:  

 F1 = F1(ε, F2, u1 ) =  - µ | F2 | arc tan . (21)  

4. Numerical methods and results    

Finite element method is used to approximate thermoelastic contact problem (14)-(21) as 
the approximation method. Problem (14)-(21) is a coupled thermoelastic problem. Re-
mark, the contact traction depends on the thermal distortion of the bodies and wear pro-
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cess. On the other hand, the amount of heat generated due to friction depends on 
the contact traction. The main solution strategies for coupled problems are global solu-
tion algorithms where the differential systems for the different variables are solved to-
gether or operator splitting methods. In this paper we employ operator split algorithm. 
The numerical algorithm consists first in calculating for a given temperature field and 
wear the corresponding displacement and stress fields, i.e., in solving the mechanical 
subproblem. Next for the calculated displacement and stress fields we solve the thermal 
part of the system and calculate wear. The algorithm is terminated when the calculated 
temperature becomes steady, i.e., the temperature changes from iteration to iteration are 
less than the prescribed tolerance. The convergence of the operator split algorithm is 
shown using Fixed Point Theorem (see references in [12]). For details of the method see 
[14].    

The obtained distributions of normal and tangential temperature distributions in 
the contact zone for different values of parameter n=0.28, 0, -0.28 are displayed in Fig-
ures 3 and 4, respectively. These distributions are strongly dependent on parameter η. 
The temperature is rapidly decreasing inside the strip and in front of the wheel. Behind 
the wheel the decrease of temperature is mild.   
 

 

Figure 3. Rail temperature distribution along x2 direction 
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Figure 4. Rail temperature distribution along x1 direction 

 5. Conclusions  

The thermoelastic rolling contact problem where the properties of the elastic layer be-
tween the homogeneous surface coating and the substrate of the rail are dependent on its 
depth is solved numerically using the quasistatic approach. The material properties of 
the graded layer are assumed to be governed by the exponential law. The applied expo-
nential model of the graded material allows to control the normal contact pressure, tem-
perature and the size of the contact area comparing to the pure homogeneous case. 
The dependence of the obtained stress distributions on the parameter n is stronger than 
on the nonhomogenity index in power law (see [12]). The decrease in the non-
homogeneity index n reduces the maximum normal contact pressure and temperature at 
a cost of the widening of the contact area.  The relationship between the applied normal 
load and the size of the contact zone is nonlinear. Remark also, that using the quasistatic 
approach we can observe dynamic phenomena of the rolling wheel.   
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