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Abstract 

The paper introduces a method of discrete-continuous systems modelling. In the proposed method a three-
dimensional system is divided into finite elements in only two directions, with the third direction remaining 
continuous. The thus obtained discrete-continuous model is described by a set of partial differential equations. 
General difference equations of discrete system are obtained using the rigid finite element method. The limit of 
these equations leads to partial differential equations. The derived equations, expressed in matrix form, allow 
for the creation of a global matrix for the whole system. The equations are solved using the distributed transfer 
function method. Proposed approach is illustrated with the example of a simple beam fixed at both ends. 

Keywords: modelling, model reduction, modal analysis, mechanical system, dynamic systems, 
vibration. 

1. Introduction 

Many different methods for modelling dynamic systems are known [1,2,5]. However, 
there is no universal approach which is both accurate and applicable to the wide range of 
dynamic systems. One of the most commonly used approaches is the finite element 
method, which is particularly useful in providing approximate models of the real sys-
tems. Its accuracy depends on the number of finite elements. The greater their number, 
the more accurate the model. However, there is an optimal division density, above which 
rounding errors start to seriously affect numerical calculation. The use of finite element 
methods for slender elements or structures is inefficient and basically ineffective, as 
maintaining appropriate proportions would require a very fine mesh, leading to the said 
rounding errors in numerical calculations. A very large number of finite elements also 
means creating a high-order model. Such models are not suitable for designing control 
systems. Additionally, the exact analytical solutions for a slender elements, such as 
strings, bars and beams, are already known and therefore more suitable for continuous 
models.  

This paper proposes a hybrid method of modelling that combines the advantages of 
spatial discretization methods with the advantages of continuous systems modelling 
method. In the classical finite element method, the body is divided into all three spatial 
directions (Fig. 1a, 1c). In the proposed method, the same body is divided into one (Fig. 
1b) or two (Fig. 1d) spatial directions, with one direction remaining continuous. Such 
a division results in finite elements with parameters distributed along one of the axes. 
Two-dimensional elements are called strips (Fig. 1b) and three-dimensional elements are 
called prisms (Fig. 1d). Both these elements are one-dimensional distributed systems and 
are therefore described by second order partial differential equations. However, these 
equations also have terms related to interactions between elements. Hence, the given 
system is described by coupled second order partial differential equations. 
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Figure 1. Spatial discretization of 2D and 3D body: a), c) conventional finite element 
method, b), d) proposed hybrid method 

2. General model of discrete-continuous system 

In order to derive a general model of the discrete-continuous system, let us consider two 
prisms, r and p, connected together by a layer of spring-damping elements, k, with dis-
tributed parameters (Fig. 2a). Such a discrete model is shown in Fig. 2b. Each element 
has 6 degrees of freedom. By applying the rigid finite element method to this discrete 
model, one obtains an appropriate system of ordinary differential equations for prism r. 
Such an FEM model may be transformed into a continuous model by letting dx→0. In 
this way small differences, divided by dx, become derivatives. After these transfor-
mations, the following six differential equations of the r-th prism are obtained: 
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where: E – Young’s modulus, G – shear modulus, Iαβ – geometric moment of inertia of 
cross section area perpendicular to the β axis about α axis, ∆y, ∆z – elementary dimen-
sions of finite element (Fig. 2b), κ – numerical shape factor of cross section, ρ – mass 
per unit volume, qi – transverse displacements in i direction, fr,i – distributed general 
force applied at r-th element (excitation) in i direction , i=1,2,…,6, sα,β,γ – distance be-
tween body α and distributed spring-damping element β in γ direction, cxα,β – distributed 
stiffness coefficient of spring element α in β direction. 

 

Figure 2. General model of considered system: a) discrete-continuous, b) discrete  

In the same way equations for the p element can be determined. These p element 
equations can also be obtained from equations (1÷6) by replacing r indices with p indi-
ces and p indices with r indices. Equations (1÷6) for the r element and the corresponding 
equations for the p element may be written in matrix form: 
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with boundary conditions 
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T
rpkprk KK = , matrices ppkK  and p10A  are obtained from rrkK  and r10A  by replacing indices r 

with p. 
A global model for the whole system is built the same way as the FEM model. Glob-

al matrices A02, A20, A10 include sub-matrices of each prism element, located on their 
main diagonal. Matrix A00 is formed by summing the stiffness matrices of each prism 
element in the global system. 

The solution of these equations with appropriate boundary conditions gives semi-
analytical results for the tree-dimensional structure. To solve partial differential equation 
(7), the distributed transfer function method was used [2,4].  
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The proposed approach may be applied in modelling 1D, 2D and 3D continuous sys-
tems. In the case of a 1D system, there are of course no interactions between prisms.  

3. Example of method application  

As a simple example, let us consider a beam fixed at both ends (Fig. 3) with the follow-

ing parameters: 11102⋅=E [Pa], 10108 ⋅=G [Pa], 8000=ρ [kg/m3], ∆y=0.15 [m], 

∆z=0.15 [m], l=1 [m], 2.1=κ . 
 

 

Figure 3. Fixed beam 

The beam is divided into four prisms (Fig. 4) and four distributed spring elements. 
Each prism has three degrees of freedom – displacement along x1 and x2 axes and rota-
tion angle around x3 axis.  

For this example the frequency responses of the proposed model are compared with 
those of  Euler and Timoshenko beam models (Fig. 5).  

The beam frequency responses (Fig. 5) are obtained for the unit step force input sig-
nal acting at beam point x=0.1 [m] (Fig. 3) and the displacement output signal is ob-
served at the x=0.4 [m] point. 

 

 

Figure 4. Discrete model of beam: a) general scheme, b) equivalent scheme 

The characteristic in Fig. 5 shows that the first two frequencies of the proposed mod-
el and that of the Timoshenko beam model are very similar. This proves that the pro-
posed model is correct. The later trend shows that the frequencies in the proposed model 
are even more to the left than in Timoshenko’s model. The characteristic of the Euler 
beam model differs significantly from the other two. This is because the Euler beam 
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model does not take into account the effect of shear deformation and is therefore less 
accurate. Timoshenko included shear deformation to produce a more accurate model 
than Euler, with a frequency trend more to the left. The beam model proposed in this 
paper is closer to Timoshenko’s model but the subsequent frequency trend is even more 
to the left. In the future, these results will be verified and compared with a corresponding 
FEM model. 

 

 
 

Figure 5. Frequency characteristics 

4. Conclusions 

This paper has presented a discrete-continuous modelling method. For the proposed 
method, general partial differential equations were derived. These equations were next 
written in a formalized matrix form that is very easily applied in computer algorithms. 
A beam fixed at both ends was used to illustrate the general concept. The obtained nu-
merical calculation results show that the proposed method is efficient and applicable to 
discrete-continuous dynamic system modelling. 
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