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Abstract 

The paper deals with the use of the radial basis function-pseudospectral method in vibration analysis of two-
dimensional mechanical structures. The method combines meshless features of radial basis function (RBF) 
with efficiency and simplicity of the pseudospectral method. In present work the main emphasis is laid on 
appropriate assumption of the interpolant for the sought function due to the number of the boundary conditions 
in analysed problem. This interpolation function enables to obtain the weighting coefficients for derivative 
approximation in a governing equation. The method is applied to free vibration analysis of arbitrarily shaped 
membrane and plate.     
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1. Introduction  

Due to some problems encountered during the application of the mesh discretization 
numerical techniques, in recent years, some methods that discretize the domain with 
scattered nodes are strongly developed. Many formulations of these so-called meshless 
techniques have been applied to solve problems from various disciplines of science. 
An interesting overview can be found in [1,2]. Some formulations of these methods take 
advantage of radial basis functions (RBF) [3] to approximate the sought solution of 
the problem analysed. Since the work of Hardy [4], it is well-known that these types of 
functions are very useful in scattered data approximation.   

An interesting example of the mentioned methods is the approach that combines RBF 
approximation with pseudospectral method [5,6] (RBF-PS). In this approach, derivatives 
in the governing equation are approximated by a linear weighted sum of unknown func-
tion values from all over domain   
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where ( )r
ija  are the weighting coefficients for the rth order derivative and N denotes 

the number of nodes x=(x, y). With these coefficients and by the use of collocation tech-
nique, the governing equation and boundary conditions are discretized reducing the 
problem to the set of algebraic equations. Since the method involves all nodal function 
values to approximate a derivative at a node, the method leads to relatively fast conver-
gence, what has been proved by the examples [5].   
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2. RBF-PS for lower order equations 

To obtain the weighting coefficients one has to start from the approximation of 
the unknown function u by the use of RBF 
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where αj are the interpolation coefficients and ( )jϕ −x ξ denote the radial function.  

There are different types of RBS [3,5], but their common feature is the dependence on 

the distance between a collocation point x and the point jξ called as a center , n
j ∈x ξ � . 

In this method, the centers are also considered as the collocation points. 
From the interpolation problem one can express the interpolation coefficients in 

terms of function values, what can be put in the following matrix form  

 1−=α Φ u  (3) 

where α denotes the vector of interpolation coefficients, u is the vector that contains 
the function values at the nodes and the entries of the interpolation matrix has the form: 
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Computing appropriate derivative of the interpolant (2) at each node of the domain 
and introducing the expression (3) one gets the weighting coefficients for the rth order 
derivative approximation 
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Once the weighting coefficients ( ) 1r −=A Φ Φ are determined, the differential equation 
can be discretized.  

In the method, the discretization of the mathematical model of a problem is carried 
out by the collocation technique. Therefore the approach presented can be directly ap-
plied to lower order equations that possess one boundary condition at the edge.   

In the present work the method is used to solve eigenvalue problem for pre-stretched 
uniform membrane, for which the governing equation and boundary condition have 
the form  

 2 , 0 forW W W∆ = −Λ = ∈∂Γx  (5) 

where ∆ is Laplacian operator, W is the mode of vibration and TΛ = ω ρ is the wave-

number (ω – circular frequency, ρ – mass per unit length, T – uniform tension per unit 
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length). The membrane of the shape presented in Fig.1 is analysed in the work. Irregular-
ly distributed nodes are applied to discretize the domain – an example of the node distri-
bution is shown in Fig. 1.  
 

 

Figure 1. The membrane analysed in the work with an example of the node distribution 

Using multiquadrics RBF, the weighting coefficients, described in general way by 
Eq. (4), for Laplacian operator have been determined. With these coefficients Eq. (5) is 
reduced to standard eigenvalue problem of the form   

 2= −ΛAW W  (6) 

where vector W contains the nodal function values and A is the matrix reflecting 
the discrete form of the Laplacian operator.   

The wavenumbers obtained from (6) are presented in Tab. 1 and some modes of vi-
bration are shown in Fig. 2. 

Table 1. Wavenumbers of the membrane for various numbers of nodes assumed. 

    Λ1 Λ2 Λ3 Λ4 Λ5 

N = 155 2.7093 4.2283 4.3580 5.5679 5.9328 

N = 221 2.7092 4.2263 4.3577 5.5616 5.9340 

N = 314 2.7099 4.2292 4.3579 5.5676 5.9337 

N = 390 2.7096 4.2278 4.3579 5.5648 5.9336 

Reference results [9] 2.7097 4.2279 4.3579 5.5649 5.9336 

 
The results presented in Tab. 1 are in great agreement with the reference values. 

The method indicates a proper convergence trend.    
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Figure 2. First four modes of vibration of the membrane 

3. RBF-PS for higher order equations 

For higher order equation, where more than one boundary condition is defined at 
an edge, one should write more than one discrete equation for each boundary node. It 
leads to overdetermined system of algebraic equations. Although this system can be 
solved by least squares technique this approach does not reflect the main idea of 
the method based on the interpolating function.        

To make the method be conveniently applied for higher order equations, one can ex-
tend the interpolation formula (2) introducing the additional degrees of freedom. These 
quantities should correspond to differential operators contained in boundary conditions. 
The approach can be viewed as a Hermite interpolation problem defined for RBF and in 
the case of two boundary conditions can be generally written as  
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where NI and NB denote the numbers of interior ( I
ix ) and boundary ( B

ix ) nodes, respec-

tively, 1Bξ and 2Bξ are differential operators that act on the radial function treated as 

a function of ξξξξ variable. 
Following the same procedure as previous one can solve interpolation problem (7) 

and express the interpolation coefficients αj, βj, γj in terms of function values as well as 
the values of the derivatives of the function defined at boundaries. Then, by computing 
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appropriate derivative of the interpolant (7) at each interior node of the domain and in-
troducing the expression for interpolation coefficients one obtains 

 ( ) ( ) 1r r −=u Φ Φ u  (8) 

where the objects from Eq. (8) have the forms 
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In the above expressions Lx is the differential operator corresponding to the rth order 

derivative contained in governing equation, 1Bx and 2Bx  denote the same differential 

operators as 1Bξ and 2Bξ , but acting on the radial function viewed as a function of x varia-

ble. The details of the approach as well as the entries of the objects presented can be 
found in [7].    

Since vector u  in Eq. (8) contains the values of the derivatives defined at boundary 
nodes, all boundary conditions can be directly involved during discretization process.  

The approach presented has been used in the work to solve the free vibration problem 
for thin, isotropic, plate of the shape presented in Fig. 3. Governing equation for this 
problem is as follows 

 2 2w w∆ = Ω  (9) 

where w denotes the form of vibration and Ω is the free vibration parameter related to 

free vibration frequency by the formula 2a h Dω ρΩ =  (ρ – density of the plate mate-

rial, D –  plate stiffness, h – plate thickness, a – characteristic plate dimension). 
 

 

Figure 3. Triangular plate with corner cutout with an example of node distribution 
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In present paper, the plates with combination of simply supported and clamped 
boundary conditions are considered  

 0, 0 forw B w= = ∂Γx  (10) 

For simply supported edge (S) differential operator Bx has the form 
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and for the clamped edge (C) Bx is as follows 
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where θ is the angle between the normal to the plate boundary and the x-axis. 
Adapting the approach presented in this section one can reduce Eq. (9) to algebraic 

problem of the following form 

 2= ΩAw w  (11) 

where vector w contains the nodal function values at the inner nodes and the values of 
the function as well as the values of derivatives at boundary nodes and A is the matrix 
reflecting the discrete form of the biharmonic operator. 

Taking into account that only function values at interior nodes can have non zero 
values, appropriate columns of the matrix A has to be deleted and then standard, algebra-
ic eigenvalue problem can be solved.  

The eigenvalues obtained for various configurations of boundary conditions are pre-
sented in the Tab. 2 and some chosen form of vibration are shown in Fig. 4.  

Table 2. Results for the triangular plate with corner cutout 

 Ω1 Ω2 Ω3 Ω4 Ω5 

SSSS 

N =235, NI =175  22.262 45.692 58.994 77.843 96.239 

N =323, NI =256  23.198 47.163 60.624 79.699 98.017 

Reference results  22.365 47.187 58.968 80.812 97.498 

CCCC 

N =235, NI =175 41.655 71.250 87.967 110.389 130.327 

N =323, NI =256 41.786 71.256 87.915 110.685 130.421 

Reference results  41.787 71.256 87.896 110.688 130.415 

SCSC 

N =323, NI =256 28.761 55.707 70.089 89.372 113.577 

Reference results 28.869 57.071 69.634 91.974 113.957 
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Figure 4. First four modes of vibration of triangular plate with corner cutout 

The reference results presented in Tab. 2 have been obtained by the differential quad-
rature method combined with coordinate transformation. The details of this approach can 
be found in [8]. 

The results presented in Tab. 2 show great agreement with reference values. Regard-
less of the node distribution, the eigenvalues computed are very close to reference results 
for each configuration of boundary conditions assumed in the work.  

4. Conclusions 

In the paper the RBF-PS method is applied to free vibration analysis of two-dimensional 
structures. The basic approach of this method can be easily used for lower order equa-
tions, while an extension of this method can be conveniently applied for higher order 
equations that possess more than one boundary conditions at an edge. Due to the use of 
RBF, the discretization of the domain can be done by irregularly (randomly) distributed 
nodes. This feature facilitates the analysis of arbitrarily shaped structures. To show 
the usefulness of the method, the free vibration analysis for irregularly shaped membrane 
and plate has been carried out. The results indicate that the method has a potential to 
become an effective, meshless, numerical technique for wide range of problems.   
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