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Abstract 

This paper presents modelling and a FEM analysis of dynamic properties of a thermally optimal two-phase 
composite structure. Simulations were provided for 2D models. At the first step, topology optimization was 
performed, where an internal energy was minimized. At the second step, analysis of dynamic properties was 
executed. Calculations allowed to determine eigenfrequencies and the mode shape of the structure. Solid 
isotropic material with penalization (SIMP) model was used to find the optimal solution. The optimization 
algorithm was based on SNOPT method and Finite Element Method. 
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1. Introduction 

Determination of natural frequencies and mode shapes of the structure are usual first 
steps in performing a dynamic analysis. It is caused by the fact that these factors show 
how the structure will respond to dynamic load.  

Natural frequencies of a structure are the frequencies at which system tends to oscil-
late without the absence of damping or driving force, whereas the mode shape (normal 
mode of vibration) is a deformed shape of the structure which appears at a specific natu-
ral frequency of vibration. Natural frequencies and mode shapes are functions of bound-
ary conditions and structural properties.  

There are many reasons why the analysis of dynamic properties is executed. One of 
them is to determine the dynamic interaction between a component and a structure to 
which it is attached, like for example, an air conditioner installed on the roof of a build-
ing. In this case, it is essential to check if the operating frequency of the rotating fan is 
not too close to the eigenfrequency of the building. Another example is comparing 
the results of the analysis with results obtained in real tests. Thereby, the results of the 
analysis can support the experiment, e.g. showing areas where accelerometers should be 
placed. Determination of eigenfrequencies and mode shapes is also used in the design 
process. It is necessary to check the influence of particular design changes of the struc-
ture on the dynamic parameters. 
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There are many examples of analysis of dynamic properties in literature. Paper [1] 
presents an investigation into the frequency dependant viscoelastic dynamics of a multi-
functional composite structure from a finite element analysis and experimental valida-
tion. After model parameter identification, a numerical simulations were carried out. 
Thereby, the damping behaviour of first two vibrations modes was predicted. At the next 
step, the numerical results were validated by the experimental tests on the layered com-
posite beam. 

The dynamic problem of reinforced concrete slabs stiffened by steel beams with de-
formable connection including creep and shrinkage effect is considered in [2]. In 
the papers, authors took into consideration the in-plane forces and deformations of 
the plate in the adopted models and also the axial forces and deformations of the beam. 
The mode shapes and eigenfrequencies of the stiffened concrete slab were determined. 

In papers [3], a four types of integral finite elements were developed and used to es-
timate the dynamical characteristics of elastic-viscoelastic composite structures. 
The composite structures were sandwich beam, plate and shell structures with viscoelas-
tic materials as core layers. The results from the direct frequency response method and 
experiment were compared to the results of the integral finite element prediction, which 
revealed that integral finite elements are passable regarding to engineering applications. 

An analysis of the dynamic properties of multiple damping layer, laminated compo-
site beams with anisotropic stiffness layers was investigated in [4]. For this purpose 
the finite-element-based modal strain energy method was used. In this study the varia-
tion of resonance frequencies and modal loss factors of various beam samples with tem-
perature were analyzed. 

The dynamic behaviour of fibre reinforced plastic sandwich plates with PCV foam 
core was considered in [5]. The equations of motion, which were obtained by authors, 
are used to perform steady state analysis and to determine the natural frequencies and 
modal loss factors of specific composite sandwich plates. 

Study [6] is intended to analyze the damping of PVC foams under flexural vibrations 
of clamped free beams. A finite element analysis based on the sandwich theory was used 
to model the natural frequencies and the damping of the beams. Authors took into ac-
count the numerical and experimental results to derive the shear modulus and the damp-
ing of PVC foams as functions of the frequency. 

Papers [7] were devoted to examination of the viscoelastic damping model of the cy-
lindrical hybrid panels with co-cured, free and constrained layers. For this purpose, 
the refined finite element method based on the layerwise shell theory was used. In this 
study, the damped natural frequencies, modal loss factors and frequency response func-
tions of cylindrical viscoelastic hybrid panels were determined and compared with those 
of the base composite panel without a viscoelastic layer. 

In [13] authors present computational analysis of sandwich-structured composites 
with an auxetic phase. The total energy strain is analyzed. In papers the application of 
SIMP model was used to find the optimal distribution of a given amount of materials in 
sandwich-structured composite. Authors also propose a multilayered composite structure 
in which internal layers surfaces are wavy. 
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2. Optimization of the average internal energy 

The first step in presented effort was to optimize the average internal energy in consid-
ered two-phase structure. The average internal energy Ei½¾¿ is calculated using equa-
tion 1: 

 Jf{À� � �
�I Jf± 3Ω  (1) 

Here Ω refers to the design domain, Ei is the internal energy and A is the area of 
the domain. 
The objective function of the considered design optimization problem depends on 
the design variable � � ��$� as follows: 

 Jf{À���� � �
�I Jf± ���3Ω (2) 

The internal energy of the solid was calculated by the following equation:  

 Jf{À���� � '�r��� (3) 

where cÁ is the heat capacity and T�r� is the temperature. 
The temperature is calculated using Fourier's equation 4 (Fourier's law of steady state 
pure conduction) [12]: 

 �Ã ∙ �X���Ãr� � Ä, (4) 

where k�r� is the thermal conductivity and Q is the heat source. 
Using the Solid Isotropic Material with Penalization (SIMP) model in topology op-

timization in a two-phase structure [8], one can write the generalized thermal conductivi-
ty in the form of: 

 X��� � X� � �X� � X�� ∙ ��, Q > 1, X� ² X� (5) 

Here � is a control variable (design variable), Q is a penalty parameter, X� and X� are 
thermal conductivity values of the first and the second material respectively. 

In the considered case, the control variable is related to thermal conductivity parame-
ter of the isotropic material and is interpolated from 0 to 1, which corresponds to the first 
and the second material respectively, using penalty scheme which affects the material 
distribution. The value of the penalty parameter above 1 ensures that density values of 0 
(first material) or 1 (second material) are favoured ahead of the intermediate values. 

One can interpret a control (design) variable � � ��$� as a generalized material den-
sity which satisfies the following constraints: 

 0 ≤ I ��$�Ç 3È ≤ É,  0 ≤ ��$� ≤ 1, (6) 

where V is the second material's volume available for distribution. 
In the considered structure, the optimal material distribution is found for a given ob-

jective and constraints by assigning each element an individual control variable value. 
For the purposes of this research, Sparse Nonlinear Optimizer (SNOPT) code was used. 
This gradient optimization algorithm was developed by P. E. Gill, W. Murray and M. A. 
Sunders [9]. In this method, the objective function can have any form and any con-
straints can be applied. SNOPT is suitable for large-scale linear and quadratic program-
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ming and for linearly constrained optimization, as well as for general nonlinear pro-
grams. This algorithm minimizes a linear or nonlinear function subject to bounds on the 
variables and sparse linear or nonlinear constraints. 

3. Equation of motion of the solid 

For the purpose of calculation the Navier's equation of motion was used which takes 
a form of [10]: 

 Ë *PÌ
*5P � ∇ ∙ Î � 0 (7) 

where the force has been omitted, u is the displacement vector, Ë is the density, # is 
the stress tensor and can be written as [11]:  

 Î � ÐÑ � x�∇ ∙ Ì�Ò � 2&Ñ. (8) 

Here I is the identity matrix, ε � �
� �∇ ∙ u � �∇ ∙ u�Õ� is the strain tensor, x i & are Lame 

parameters presented in the equation: 

 & � � � �
���0Ö�, x � �∙Ö

����Ö���0Ö� (9) 

where J – Young's modulus, � – shear modulus, × – Poisson's ratio. 
Using the aforementioned equation one can write Navier's equation of motion for iso-

tropic solid for the linear constitutive relation between stresses and deformations [10] as:  

 Ë *PÌ
*5P � �&∇�Ì � �x � &�∇∇ ∙ Ì� � Ø. (10) 

A real harmonic displacement satisfies the equation: 

 
*PÌ
*5P � �w�Ì. (11) 

where ω is the circular frequency with period 2π/ω. 
The displacement vector can be written in the complex form of: 

 Ì�$� � Ì��$� � fÌ��$�. (12) 

Here the harmonic displacement became a real part of complex field: 

 Ì�Ü, 8� � ℛℯ[Ì�Ü�ß���5]. (13) 

Pursuant to the above equations the harmonic equation of motion satisfies formula: 

 �Ëw�Ì � �&∇�Ì � �x � &�∇∇ ∙ Ì� � 0. (14) 

The foregoing equation can be viewed as an eigenvalue equation for the operator 
&δ!á∇� � �x � &�∇!∇á with eigenfunction u�x� and eigenvalue in the form of �Ëw� [10]. 

4. Numerical results 

This section presents an analysis of dynamic properties for a two-phase structure whose 
topology was optimized. The considered model consists of steel and polyurethane foam. 
The thermal and mechanical properties are presented in Table 1. 

As it was mentioned above, the first step was to minimize the average internal ener-
gy. For this purpose, a 2D model, with applied boundary conditions, was prepared (see 
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Figure 1). A fraction of the domain to use for the distribution of the second material is 
equal to Afrac and took the value of 0.4. 

Table 1. Thermal and mechanical properties of the model 

Property Material 1– Polyurethane foam Material 2 – Steel 
J [Pa]

 
4e9 2e11 

× 0.4  0.25 
Ë [kg/m3] 50 8000 
X [W/mK] 0.03 58 

 

 

Figure 1. Boundary conditions for topology optimization 

During the optimization process, a distribution of the control variable was obtained, 
as it is presented in Figure 2. In the figure below, value 1 is assigned to material 2 (white 
colour) with higher thermal conductivity, and value 0 is assigned to material 1 (black 
colour) [14]. 

 

Figure 2. Distribution of control variable for Afrac=0.4 
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In Figure 3, boundary conditions for analysis of dynamic properties are presented. At 
the top of the model, boundary load d�8� was applied, additionally the model was fixed 
on two sections at the bottom boundary. 

At the second step of calculations, six eigenfrequencies were determined. The values 
of the eigenfrequencies are presented in Table 2. In Figures 4–9, the amplitude of 
the forced vibration and mode shapes are presented for each eigenfrequency.  

Table 2. Determined eigenfreqiencies 

No. 1 2 3 4 5 6 
Value of eigenfrequency [Hz] 5502.93 7712.40 14618.93 15047.05 17713.10 19548.60 

 

 

Figure 3. Boundary conditions for analysis of dynamic properties 

The boundary load can be written as: 

 d�8� � d£â{s sin�w8�, (15) 

where d£â{s � 10000	[ã/��]. 
For the purpose of the analysis of dynamic properties Young modulus, Poisson's ratio 

and material density were written in the form of interpolation scheme SIMP for isotropic 
materials, as it is presented in formulas (16), (17) and (18). 

 J��� � J� � �J� � J�� ∙ ��, Q > 1	, 			J� ² J� (16) 

 ×��� � ×� � �×� � ×�� ∙ ��, Q > 1	, 			×� > ×� (17) 

 Ë��� � Ë� � �Ë� � Ë�� ∙ ��, Q > 1	, 			Ë� ² Ë� (18) 

where: E� and E� are Young's moduli, ν� and ν� are Poisson's ratios, ρ� and ρ� are den-
sities for the first and the second material respectively. 
 

 
Figure 4. a)The amplitude of the forced vibration 

 
Figure 4. b) Mode shape for the first eigenvalue 
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Figure 5. a) The amplitude of the forced vibration 

 
Figure 5. b) Mode shape for the second eigenvalue 

 
Figure 6. a) The amplitude of the forced vibration 

 
Figure 6. b) Mode shape for the third eigenvalue 

 
Figure 7. a) The amplitude of the forced vibration 

 
Figure 7. b) Mode shape for the fourth eigenvalue 

 
Figure 8. a) The amplitude of the forced vibration 

 
Figure 8. b) Mode shape for the fifth eigenvalue 

 
Figure 9. a) The amplitude of the forced vibration 

 
Figure 9. b) mode shape for the sixth eigenvalue 

5. Conclusions 

The paper presents an analysis of the dynamic properties of a thermally optimal two-
phase structure. In the first stage of the calculations, a 2D model of a two-phase structure 
was optimized. Thereby, the minimum average internal energy was achieved. At 
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the second step, six eigenfrequencies were determined for the model with the optimal 
topology. Subsequently, the amplitude of the forced vibration and mode shapes are pre-
sented for each eigenfrequency. 
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