
Vibrations in Physical Systems Vol.26 (2014) 

Modal Analysis of Viscous Flow and Reduced Order Models 

Michał NOWAK 
Poznan University of Technology, Division of Virtual Engineering 

ul. Piotrowo 3, Poznan, Poland 
michal.nowak@put.poznan.pl 

Witold STANKIEWICZ 
Poznan University of Technology, Division of Virtual Engineering 

ul. Piotrowo 3, Poznan, Poland 
witold.stankiewicz@put.poznan.pl 

Marek MORZYŃSKI 
Poznan University of Technology, Division of Virtual Engineering 

ul. Piotrowo 3, Poznan, Poland 
marek.morzynski@put.poznan.pl 

Abstract  

Phenomena occurring in the flows are very complex. Their interpretation, as well as an effective impact on 
them in the flow control is often only possible with the use of modal analysis and low-dimensional models. 
In this paper, the selected modal decomposition techniques, namely Proper Orthogonal Decomposition (POD), 
Dynamic Mode Decomposition (DMD) and global stability analysis, are briefly introduced. The design of 
Reduced Order models basing on Galerkin projection is presented on the example of the flow past a bluff body. 
Finally, the issues of widening of the application of the models are addressed. 
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1. Introduction 

The progress in the aerospace and automotive industry is possible by improvement of 
newly-designed vehicles. The reduction of aerodynamic drag, generated noise and ex-
haust fumes emission, as well as the increase of lift and the growth of performance might 
be achieved by the change in the flow phenomena, that might be obtained by the means 
of flow control. Such control is expected to be the most effective when the operation of 
the actuators is in accordance with the state/phase of the flow, measured by the sensors 
and processed by the controller with proper model of the flow. 

The high-fidelity solution based on Navier-Stokes, LES/DES, RANS or even Euler 
equations, is very time-consuming. Real-life problems consisting of millions of degrees 
of freedom are possible to be solved only on parallel machines like computer clusters. 
Due to the high computational complexity of the high-fidelity flow models, an essential 
element of the closed-loop controller is low dimensional model of the flow. Such a mod-
el strongly depends on the proper choice of modal basis used in the approximation and 
projection stages. 

In this paper, a short overview of the methods of modal analysis of viscous flows, de-
scribed by incompressible Navier-Stokes equations (1) is presented, and a design of 
Reduced Order Models of the flow basing on the modal decomposition is described.  
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Finally, the methods of the design of broadband Galerkin models, capable to cover 
wide range of operating and boundary conditions, are briefly discussed. 

2. Modal decomposition techniques  

The most popular method of modal analysis is Proper Orthogonal Decomposition (POD) 
[1,2]. In this method, the M flow vectors (snapshots), resulting from experiment or nu-
merical analysis, are centred using time-averaged solution U0:  
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Next, the auto-correlation matrix for the matrix containing fluctuation vectors is cal-
culated:  
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The eigenvectors of the auto-correlation matrix (POD modes, fig. 1), related to 
the eigenvalues of the largest module, might be used in Reduced Order Modelling of 
the flow.  

 

 

Figure 1. The most dominant POD mode for a flow past a sphere. Iso-surfaces of 
transverse velocity Vy are depicted 

Another, physical mode basis results from global, linear stability analysis of the flow 
[3,4]. The decomposition of the instantaneous flow field onto base (steady or time-

averaged) solutionV  and small, oscillatory disturbance:  
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and the linearization of the resulting equation leads to the generalized eigenvalue prob-
lem:  
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Complex eigenvectors of such problem (global stability eigenmodes, Fig. 2) repre-
sent the behaviour of the dynamical system close to fixed point, describing, for example, 
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the transition between symmetrical wake and von Karman street of vortices in the case 
of bluff body wakes. 
 

 

Figure 2. Real part of the most dominant eigenmode for a flow past a sphere. Iso-
surfaces of transverse velocity Vy are depicted 

The two aforementioned methods for modal basis design have very important draw-
backs. For example, as will be discussed in further section of this paper, POD modes 
represent very narrow range of the conditions of the flow. Additionally, there might be 
problems to obtain correct modes outside the limit cycle, when the oscillation is ampli-
fied or suppressed. On the other hand, eigenmodes of global stability analysis are very 
difficult to obtain, particularly for 3D flows. 

To overcome these problems, the idea of Dynamic Mode Decomposition [5,6] has 
been proposed. In DMD, it is assumed that any instantaneous solution might be obtained 
from a linear combination of previous solutions:  
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The product of previous state vectors and a linear operator tAeA ∆≈
~

 might be ap-
proximated using the product:  
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where V0..n is the sequence of known solutions and S is the companion matrix as defined 
below:  
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The coefficients c0...cn are obtained from the solution of the over-determined system 
of equations (1). The eigenvectors of matrix S are used to obtain the DMD modes 
(Fig. 3), while the eigenvalues determine modal growth ratios (real part) and frequencies 
(imaginary parts). 
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Figure 3. Real part of the most dominant DMD mode for a flow past a sphere. 
Iso-surfaces of transverse velocity Vy are depicted 

3. Reduced Order Models  

Reduction of dimension of the flow model is based on the assumption that the velocity 
field might be decomposed onto the sum of the base flow U0 and n products of spatial 
modes Uj and temporal coefficients aj (9):  
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Such decomposition leads to approximated governing equation. Truncation of mode 
basis to a limited (preferably small) number of modes results in the residuum:  
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Projection of the residuum onto the space spanned by the modes, called Galerkin pro-
jection [7], is equivalent in Hilbert space to the zeroing of the integrals of the products of 
modes and the residuum:  
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The result of this projection is a system of ODEs, called Galerkin system:  

 kj

N

j

N

k
ijkj

N

j
iji aaqala ∑∑∑

= ==

+=
0 00Re

1
& , (12) 

where linear and quadratic terms are derived as follows:  
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The proper choice of mode basis makes the resulting model comparable to the high-
fidelity data from Direct Numerical Simulation (DNS) of Navier-Stokes equations. 

4. Enhanced Galerkin models 

Reduction of fluid model by projection of governing equations onto orthonormal mode 
basis (Galerkin Projection) results in approximate flow solution. Truncation of mode 
basis, as well as differences between low-dimensional model formulation and high-
dimensional data used in mode expansion (like the neglection of pressure term, assump-
tion of incompressibility, etc.), result in the deterioration of model quality.  
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To improve the quality of the Reduced Order Models of fluid flow, corrections to 
the linear and quadratic terms might be added, as computed in Genetic Algorithm-based 
calibration [8]:  
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Mode basis used in Galerkin expansion allows reconstruction of the flow for a given 
set boundary and operating conditions. In the case of changing flow conditions, used 
mode basis has to be adjusted, for example using hybrid models [7] designed with 
the basis consisting of both empirical and physical modes, or mode parameterization, for 
example with some kind of look-up table [9] or Double-POD [10] approach. Another 
choice is Continuous Mode Interpolation [11], where the mode bases for two or more 
operating/boundary conditions are interpolated by referring to the Fredholm eigen-
problem in space domain:  
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with autocorrelation function (kernel) A:  
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In the case of interpolation between two states, the Fredholm kernel is linearly inter-

polated in [ ]1;0∈κ :  

 ( )010 AAAA −+= κκ  (17) 

The approach presented above allows smooth and continuous interpolation between 
corresponding structures (modes) for different operating conditions, enabling e.g. the 
modelling of the transition from fixed point dynamics to limit-cycle oscillations (Fig. 4). 

 

   
Figure 4. Phase portraits of Galerkin models, compared to reference data (thick black 
line): empirical POD-based (left), stability-based models (center) and the model using 

Continuous Mode Interpolation (right) for a flow past a NACA-0012 airfoil [12] 

5. Conclusions  

Modal analysis of the flow and its Reduced Order Models are key enablers for feedback 
flow control. In this paper basic issues related to the model order reduction and Galerkin 
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projection are presented and the most popular methods for obtaining the mode basis, 
such as POD, global stability analysis and DMD, are described. Modelling of the flow in 
changing boundary and operating conditions is possible with the use of parameterization 
methods such as Continuous Mode Interpolation. 
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