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Abstract  

The paper presents the results of theoretical research and numerical calculations of the vibration and the stabil-
ity of a twin rod flat frame subjected to the Euler's load. Considering the total mechanical energy of the system 
and using the kinematic stability criterion (Hamilton's principle) is determined by the equations of motion and 
boundary conditions considered system. The results of numerical calculations are presented at selected geomet-
rical and physical parameters in the system for selected values of the rotary spring stiffness modeling the 
structural rigidity of the node connecting bolt with the column of frame. 
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1. Introduction 

In the scientific literature concerning the stability of slender elastic systems stands 
out conservative and non-conservative load. Euler load and a force directed to the pole 
are classified as a conservative load type [1]. However Beck's generalized load [2] and 
Reut's load [3] are the cases of non-conservative load. Euler's load is a load by the longi-
tudinal force and have a fixed anchor point and the direction who does not change during 
buckling. 

In the case the conservative load there are also the system realizing a specific load 
[4]. The cases of this load formulated by L. Tomski [4, 5] combine the features of gener-
alized load [6] or tracking load [2] and the load with force directed to the pole [7]. 

The flat frames are classified as open or closed. At the ends of closed frame system 
[11, 12] has been installed the support or heads which are carrying the load. In case 
when one of the ends of the system is free this system is called an open frame [8]. Most 
of scientific publications are considered a simple frames type Г who have got the form 
of angle [8], three-rod type T [10, 15] and portal systems which is built of several simple 
framework [14]. In many scientific papers many of the theoretical and numerical re-
search of framework due to the type of system load and the criteria of loss of stability 
had been drawned. In paper were presented the range of variation of the natural frequen-
cies of system as a function of the external force [9] and the changes in the value of the 
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critical load [17] for the selected parameters of carrying load  heads. In the studied issues 
of stability of flat frame also had been considered the initial inaccuracies of systems in 
the form of an eccentric load application [15] the elasticity of structural components 
(translational and rotational springs ) for the method of connection the pole and bolt 
frame [16] or fixing these elements in the supports [8,12]. Shows the results of analysis 
of the influence of geometric imperfections in the form of right angle to the stability of 
the flat frames. 

In this paper had been studied the impact of structural node connecting the bolt and 
the column to its own vibration and stability of twin rod closed flat frame type  Г treated 
Euler's load. Based on the kinetic stability criterion determined the equation of motion 
and the boundary conditions necessary to solve the boundary value problem. Taking into 
account the adopted geometric and physical parameters of the system the results theoret-
ical  and numerical calculations had been showed.  

2. The physical model  

Figure 1 shows the diagram of a flat frame type  Γ subjected to the Euler's load.  
 

 

Figure 1. The physical model of frame type Γ subjected to Euler's load 

The frame bolt of flexural rigidity (EJ)2 was fixed rigidly but there is a possibility to 
longitudinal displacement  however the pole of flexural rigidity (EJ)1 was fixed rigidly 
without a possibility to longitudinal displacement. Both of them are connected by using       
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C - rigid spring. In the considered load case the pole of frame was charged by conserva-
tive force P which the direction of action passes through the pole and bolt connection. 

3. Mechanical energy of systems, the equations of motion, boundary conditions 

The kinetic energy T of  contemplated flat frame is the sum of the kinetic energy of its 
individual bars: 
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The V- potential energy recording takes into account the elasticity of bending of the 
individual rods the direction of the external load and susceptibility structural node of 
flatframe (C-spring stiffness): 
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Considering the total mechanical energy of the system defined by (1), (2), the equation 
of motion  and the boundary conditions of a frame were determined using principle of 
Hamilton [14]: 
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The equation of motion: 
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Geometrical boundary conditions: 
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Natural boundary conditions: 
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in which:   
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4. The results of numerical calculations 

In this part of the paper the results of numerical calculations was presented. They were 
made on the basis of the solution of boundary value problem, while taking a constant 
flexural rigidity of the frame (EJ)1 + (EJ)2 = const and a fixed sum of lengths of the bars 
of the l1+l2 = const. The results were presented using the following dimensionless size: 
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The results of numerical simulations concerning the course of changes in the critical 
load parameter λ* as a function of the parameter µ was presented in relation to the pa-
rameter of elasticity of the structural node c* (Fig. 2). Taking into account a variable 
value of the parameter µ and maximum value of critical parameter of load  λ* obtained 
with the rigid connection of the column and the bolt of frame (1/c*= 0). The nature of the 
presented curves mainly due to the assumed condition of constant bending stiffness of 
the system. 

Figure 3 shows the sequence of changes in the critical load parameter λ* as a function 
of the parameter of elasticity of the structural node c*. The results are shown for various 
asymmetry value of the bending stiffness of the column and the bolt of frame µ. In any 
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case, you can determine the value of c* above which the value of the critical load is only 
slightly modified. The graph curves 1.a - 4.a presents the stabilization of critical load λ* 
with increasing rigidity of structural node. This occurs irrespective of the value of the 
asymmetry factor bending stiffness of the column and the bolt frame µ. 

 

 

Figure 2. change the critical load parameter λ* as a function of the parameter µ 
 

 

Figure 3. Change of the critical parameter of load λ* as a function of c* parameter 



302 

Figure 4 presents the results of numerical calculations for the free vibration of the 
frame. Illustrated are the relationship of the dimensionless external load parameter λ* as 
a function of the dimensionless parameter  frequency of free vibrations Ω*. In terms of 
numerical calculations the nature of changes in the value of the first two fundamental 
natural frequencies Ω1

*, Ω2
* was determined. Constant asymmetry value of the bending 

stiffness of the column and lock the frame and the constant µ asymmetry value of the 
length of the bolt to the length of the pole frame φ was assumed. In the case of presented 
the course of changes in frequency of free vibrations, the value of the critical load λ* 
obtained with the parameter frequency of free vibrations Ω1

*= 0 The results obtained 
parameter values of the critical load obtained on the basis of the kinetic stability criterion 
are the same as when using the static stability criterion. 

 

 

Figure 4. The curves in the plane: load parameter λ*, the parameter resonance frequency 
Ω* for a variable elasticity of connecting the pole with bolt of frame c* 

5. Conclusions  

This paper presents the results of theoretical studies and numerical calculations on the 
twin rod  flat frame type Γ vibration subjected to Euler's load. Taken into account the 
total mechanical energy of the system and based on kinematic stability criterion deter-
mined the equations of motion and boundary conditions considered system. Numerical 
calculations were performed at different valuesof the parameters under consideration, 
which include the asymmetry coefficient µ bending stiffness and rigidity of the structural 
node c* connecting the pole with bolt frame. Taking into account the structural rigidity 
of the node connecting bolt to the column increases the critical load. The diagram 



 Vibrations in Physical Systems Vol.26 (2014) 303 

changes in frequency of free vibrations corresponds to systems with a load of slender 
conservative (divergent type system). 
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