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Abstract  

In this paper the geometrically nonlinear system subjected to compressive external Euler's load has been inves-
tigated. The column is composed of pipe and rod. The rod is concentrically installed in the pipe. Between pipe 
and rod at given distance from the end of the column the two-parametric elastic connector has been placed. The 
numerical calculations were performed for different parameters of the system on the basis of free vibration 
boundary problem. The parameters are as follows: spring stiffness (translational and rotational) which models 
elastic connector, coefficient of asymmetry flexural rigidity, location of the connector. 
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1. Introduction 

In the investigations on slender supporting systems the discrete elements (rotational and 
translational springs, dumpers) are being considered. These elements have an influence 
on critical or bifurcation load magnitude and natural vibration frequency of the systems. 
When the non-conservative load is taken into account the discrete elements have an 
effect on type of instability (see [3-10]). By means of these elements an influence of real 
life elements on instability and free vibrations can be modeled. In the literature the pa-
pers devoted to instability and free vibrations with consideration of elastic and viscoelas-
tic supports can be found (see [1,2]).  

In [12] the investigations of one-parametric elastic connector on vibration and insta-
bility of a system built out pipe and rod have been presented. Elastic connector has been 
placed between pipe and rod. It has been shown that the translational stiffness of elastic 
connector at specific magnitude of coefficient of asymmetry flexural rigidity causes the 
increase of bifurcation load. This element of elastic connector has an influence on vibra-
tion frequency and change of buckling mode. In the case when the system is character-
ized by the local instability the presence of the elastic connector becomes more signifi-
cant. The viscoelastic connector has been taken into account in [11]. In this paper an 
influence of the connector on first vibration frequency in the range of external load from 
zero up to bifurcation force has been investigated. In the mathematical model the Kelvin 
- Voigt model of viscoelastic connector was considered. An increase of connector dump-
ing factor causes an increase of the first vibration frequency magnitude. 

The main scope to this paper is to study an influence of two-parametric elastic con-
nector on natural vibrations of the system built out pipe and rod. Particularly the parame-
ter of rotational elasticity has been investigated. 
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2. Boundary problem formulation on the basis of Hamilton's principle  

The column composed of pipe and rod is presented in the Figure 1. The system is sub-
jected to Euler's compressive load. Between pipe and rod the two-parametric elastic 
connector has been modeled. This connector consists of two springs: translational (CT 

stiffness) and rotational (CR stiffness). The length l11 describes connector location. The 
column is hinged on both ends. The model of the system is created by means of four 
elements. Elements marked as 11 and 22 corresponds to pipe while 21 and 22 stands for 
rod. 
 

   

Figure 1. Considered column loaded by Euler's load: a) mathematical model, 
b) column consists of pipe and rod 

The differential equations of motion in the transversal direction of the investigated sys-
tem are as follows: (comp. [11]): 
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Moreover the differential equations of motion in the transversal direction (1) there exists 
the differential equation of longitudinal displacements. Performing mathematical opera-
tions on it allows one to obtain (see [12]): 
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In equations (1) and (2) the following designations were made: Wij(xij,t), Uij(xij,t) – trans-
versal and longitudinal displacements respectively, (EJ)ij, (EA)ij, (ρA)ij – bending, com-
pression stiffness, mass attributable to length unit of each member, Sij – longitudinal 
force in element of the system. The investigated column is characterized by: 

• geometrical boundary conditions: 
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• natural boundary conditions: 
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The equation of longitudinal displacements is a non-linear one. Due to geometrical non-
linearities the small parameter method has been used to solve the boundary problem (see 
[12]). The non-linear equations are being written in a power series of small parameter. 
Rectilinear and curvilinear forms of static equilibrium are present in the investigated 
system. The power series for each form are different. In this paper the rectilinear form of 
static equilibrium has been considered. The power series are as follows: 
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where: ω – natural vibration frequency. 
The power series (5-8) are being introduced into equations (1-2) and boundary condi-

tions. The coefficients at the same power of small parameter are being collected what 
leads to sequences of equations with corresponding boundary conditions. In this paper 
the basic vibration frequency ω(0) has been presented (obtained on the basis of equations 
at zero and first power of the small parameter). The first components of expansions 
(Wij(1)(xij,t), Uij(0)(xij), Sij(0)) are only considered in computations of basic vibration fre-
quency. Separating space and time variables in the form: 

 ( )( ) ( )( ) ( )txYtxW ijijijij ωcos, 11 =  (9) 

allows one to write the differential equation of transversal displacements:  
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The distribution of internal forces S11(0) i S21(0) can be calculated from equation (2). 
The relation between forces is as follows: 
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The solution of equations (10) can be presented as a function:  
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where: B1ij(1), B2ij(1) ), B3ij(1) ), B4ij(1) are constants of integration and αij(1), αij(1) are quanti-
ties obtained from the characteristic differential equations (10). Introducing solution (12) 
into boundary condition allows on to write system of equations. The determinant 
of the matrix of coefficients equated to zero leads to transcendental equation on the basis 
of which the vibration frequency ω(0) can be calculated. 

3. Results of numerical calculations 

In Figures 2 and 3 the characteristic curves on the plane external load - natural vibration 
frequency have been plotted. Numerical calculations were performed at different magni-
tude of the rotational spring. Graphs presented in Figures 2 and 3 have been created for 
different magnitudes of coefficient of asymmetry flexural rigidity µ = 0.004 and µ = 0.5. 
Parameters at which the numerical calculations were performed are as follows: 
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The total flexural stiffness of the system (EJ) is constant. It has been shown that with 
lower magnitude of coefficient of asymmetry flexural rigidity the mode of free vibration 
is changing. The mode of free vibration depends on rotational spring stiffness cR. 
At smaller stiffness of cR the investigated system is characterized by buckling mode M3. 
At greater rotational spring stiffness the mode M1 is present. The characteristic curve 
corresponding to mode M3 may cross the ones related to modes M2 and M1. At greater 
magnitude of coefficient of asymmetry flexural rigidity the mode of free vibrations does 
not change. The modes of free vibrations were plotted in the Figure 4. An influence 
of the rotational spring stiffness on investigated parameters is greater at lower magnitude 
of coefficient µ. The characteristic curves related to modes M1 and M2 do not depend 
on rotational spring stiffness. 



316 

 

Figure 2. Parameter of loading force λ in relation to parameter of free vibration 
frequency Ω at µ = 0.004  

 

 

Figure 3. Parameter of loading force λ in relation to parameter of free vibration 
frequency Ω at µ = 0.5 
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Figure 4. Modes of free vibrations  

4. Conclutions 

In this paper the result of theoretical study and numerical calculations of slender system 
built out pipe and rod have been presented. Between pipe and rod the two-parametric 
elastic connector is placed. The main purpose of numerical studies was to describe an 
influence of rotational stiffness of elastic connector on vibration frequency. It can be 
concluded that at smaller magnitude of coefficient of asymmetry flexural rigidity an 
influence of rotational stiffness of elastic connector on vibration frequency becomes 
intensified than at greater magnitudes of µ coefficient. There exist modes of vibrations 
irrespective of considered stiffness. 
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