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Abstract 

Dynamics of the spacecraft with giro-gravitational system of stabilisation, in which the pantograph design 
deployed in an orbit and containing on the end the concentrated mass is used as the gravitational stabilizer and 
the carrier of solar batteries, is investigated. The analysis of the obtained information is carried out and graphs 
that illustrate behaviour of characteristic variables are discussed. 
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1. Introduction 

The deployment of spacecraft delivered into orbit in a compact form perturbs their atti-
tude. The study of such transformed configurations is required for minimization of de-
ployment duration, mass, and power resources, for analysis of the effect of such struc-
tures on the spacecraft attitude motion. There exist a large number of studies in the lit-
erature dedicated to the deployment of elastic appendages of different shape from the 
fixed basis as well as from a rotating SC. A short review of these publications is con-
tained in [1]. 

Works, except for work [2], which would investigate the dynamics of deployment in 
orbit of pantograph designs, are unknown to the author. This research generalises the 
work [2] by the additional account of transversal displacements of the deployed panto-
graph design with objective to study their effect on the dynamics of the SC and its ele-
ments. 

2. Physical model of system 

Here the SC that includes the gyro-gravitational system of stabilization is studied during 
the deployment of the flexible pantograph structure according to the program motion 
into the elongated flexible gravitational stabilizer (GS). It serves also as the carrier of 
solar batteries and tip mass. The SC includes two gyro-dampers (GD) which are installed 
for attitude stabilization. The SC is injected in a circular earth orbit with altitude 400 km. 
Basic elements of the SC are shown in Fig. (1). Here, element 1 is the SC main module, 
element 2 is the spatial structure that consists of two plain coupled pantographs, ele-
ments 3 and 4 represent the GD. 

The deployment is initiated when the points joining each plain pantograph to the 
main module start to approach synchronously. The distance between these points in each 
pantograph is ( )b t . The dynamics of the deployment actuating drive are not taken into 
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consideration here since this mechanism is very simple and may be realized as a device 
that has no effect on the SC dynamics.  

 

 

Figure 1. Basic elements of the spacecraft 

The deployable structures possess considerable flexibility. Because of requirements 
to maintain the shape of the gravitational stabilizer, some restrictions must be imposed 
on the deployment and design parameters. They can be determined via the process of 
numerical simulations. The GD role in the process of deployment and after its comple-
tion is also studied further. 

3. Mechanical model of system 

The generalized mechanical model of the system under consideration may be represent-
ed as a main rigid body S1 and body S2 of variable configuration attached to it. The body 
S1 is the gyro-static part and includes the GD, which do not change the rotational body 
inertia. The motion of the body S1 is defined by the velocity vector vO of the point O and 
vector of absolute angular velocity ω . 

The following frames of reference will be useful for the problem statement: CXYZ is 
an earth-centered inertial reference frame; Oxyz is the body S1 fixed reference frame 
(Figure 1) with Oz  along the design position of the GS axis; the orbital frame of refer-
ence or or orCx y z  is fixed in the SC mass centre. These frames are introduced in such a 

way as in Ref. [3].  
The position vector r defines the location of the arbitrary point P with respect to the 

reference frame CXYZ , and the position vector 'r  – with respect to the reference frame 
Oxyz. In contrast to the problem of the relative motion of attached bodies described by 
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Lurie [5], here one has the more general case when the expression for 'r  depends on 
time t explicitly, and not only through the generalized coordinates:  

 1' '( , , , )nq q t=r r K  (1) 

As a result, 'r varies during deployment even in the absence of the relative elastic 
motion of the design.  

Each of two pantographs is made of elastic rods in length 2a and mass 2ma(i), where 
index i is used for the numbering of tiers that form full rhombuses. These rods are con-

nected at the joints ( ) ( )
( ) ( ),  , ( 0, )R L
i iE E i N= , where N is the number of the tiers, and at 

points ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),  , ,  , ( 1, )R L R L
i i i iH H F F i N= , where the superscripts identify the pantograph 

as per Figure 1. 
The pantograph structure has a compact form in the beginning (a transport condi-

tion). The inclination angles of the rods of all pantograph tiers with respect to axis Ox 

are equal to 5o . After deployment of the design, values of the specified angles reach 75o .  
Elastic rods of the physical model have been replaced in the mechanical model by 

equivalent constructions of two rigid rods connected by the spring-bias cylindrical hing-
es with damping. Damping is used in order to approach the dynamics to reality at least in 
a qualitative sense. Stiffness of the springs in the hinges is defined from the condition of 
equal deflections of two constructions (Figure 2) under equal loads. The equivalent con-
struction (in Figure 2 below) has the same deflection when spring resistance cjoint in the 
hinge is equal to 3EJ/(2a). Such a replacement is completely justified, as the configura-
tion of the design is defined by mutual positions of the middle and end points of the rods. 
Besides, all dynamic values for the real design and its mechanical model at identical 
positions and velocities of mentioned above points with the same name are almost iden-
tical. It is applicable to the expressions for their tensor of inertia, moment of momentum, 
kinetic energy, and potential energy. 

 

 

Figure 2. Beams with equivalent bending stiffness 

4. Mathematical model of system 

The equations of motion of the system under consideration become the most compact 
and convenient for numerical integration, if one chooses the instantaneous position of 
the mass centre C as an origin. Then one can obtain the following Lagrange’s equations 
of the second kind for the generalized co-ordinates qs: 
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The equation of the attitude motion may be obtained as the Euler-Lagrange equation 
[4] 

 
*

( )C C C C C
r⋅ + ⋅ + × ⋅ + × =Θ ω Θ ω ω Θ ω ω K m&  (3) 

The following notations are used here: CΘ is the inertia tensor of the whole system 

with respect to point C , 
* *

' ' ' 'C
r C C

m

dm M= × − ×∫K r r r r  is the relative moment of momen-

tum of the deployed part with respect to point C; '
Cr  is position vector of the instant 

position of the mass centre C in the frame of reference Oxyz; the symbol * denotes time 
differentiation in the reference frame Oxyz; M is the total mass of the system; O

rT is the 

kinetic energy of the relative motion of the carried bodies calculated under condition of 
definition of relative velocities of their points with respect to O; Qs are generalized forc-
es that take into account the elastic and dissipative characteristics of the construction;

( ) ( )
( )j

j j

d
E

dt q q

∂ ⋅ ∂ ⋅
⋅ = −

∂ ∂&
 is the Euler’s operator; 

( ) ( )
( )

j

j j

E
t q q

∗ ∂ ∂ ⋅ ∂ ⋅
⋅ = −

∂ ∂ ∂&
is also the Euler’s 

operator, but the time differentiation is performed in the reference frame Oxyz;  Cm is 
the gravitational torque; symbols × and ⋅  in Eqs. (2), (3) denote vector and scalar prod-
uct respectively. 

If to supplement Eqs. (2), (3) with the kinematical equations, one obtains a closed 
system of equations of motion. The parameters of Rodrigues-Hamilton were chosen as 
the attitude parameters [4]. Further, it is necessary to choose proper generalized co-

ordinates qs and determine expressions for c′r , CΘ , C
rT , C

rK , Π  and all their deriva-

tives with respect to time and generalized co-ordinates, which appear into expressions 
for factors of the equations (2), (3). 

During deployment, Coriolis forces act on the material points because of the rota-
tional-translational motion. These forces can produce deformations of an elastic structure 
in the transverse direction. At the same time, transverse forces are absent in the direction 
of the orbit binormal. Hence, the displacements of the design along the axis Oy can be 
neglected. 

In this study, values of co-ordinates ,   ( 1, )i ix z i N=  of points iE  of each tier, lying 

on axis Oz on the straight lines connecting points ( ) ( )
( ) ( ),  L R
i iE E , and angles kβ% (k=1,2) 

(Figure 1) have been chosen as the generalized co-ordinates. (Note that zi = zi,p(t) + zi,e, 
where zi,p(t) are prescribed functions of time and zi,e  are independent variables). The 
pantograph structures having 20 tiers were studied. 

The original computation package is developed for the numerical integration of the 
obtained ordinary differential equations in the frame of the Cauchy problem. The majori-
ty of operators of the program is obtained as Fortran-expressions in Mathematica5© in 
the codes written specifically for the system studied. 
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It is obvious that the dynamics of a complex flexible structure depend on the time 
history of the deployment. Two such time histories were used here. The deployment of 
space designs often used such a law b(t) that the velocity time history of an actuating 

motor ( )b t&  looks like the line 1 in Figure 3. Such a function ( )b t&  has two angular points, 

and a function ( )b t&&  (so and a function of an actuating force or torque) has four points of 

discontinuities. Action of such a force on an oscillating system brings additional pertur-
bations in its dynamics. 

Therefore, the alternative law of deployment of the design was considered. For this 

law ( )b t&&  does not contain points of discontinuities. Such a law can be constructed using 

the solution of the optimal control problem (see [6], Special Case II). It brings essentially 
less perturbation in the dynamics of the system than the first one as the numerical simu-
lations had shown. 

 

 

Figure 3. Laws of deployment 

5. Numerical simulation 

The torque of the central Newtonian field, corresponding to a circular orbit of 600 km 
altitude was considered as the external perturbing torque. Though the SC movement 
along an orbit is not considered here, the orbit parameters are used to calculate the gravi-
tational torque and projections of the total SC moment of momentum to the inertial 
frame of reference. It is necessary for the monitoring of errors of the numerical integra-
tion of the initial value problem. Expressions governing the change of the total moment 
of momentum of the system are derived and numerically integrated along with the equa-
tions of motion for the system dynamics in order to identify mistakes in the code. The 
results agree within eight significant figures for each projection during monitoring. 

Key system parameter values are: mass of main body m1 = 350 kg, rods mass 
m1 = 1 kg, bending stiffness EJ = 20–80 N m2, decrement of oscillations ϑ = 0.001, 
components of the main body inertia tensor Jxx=4000 kg m2, Jyy=5000 kg m2, 
Jzz=2000 kg m2, angular momentum of one GD rotor hrot=20 kg m2/s, GD damping coef-

ficient 
1 23 ,k β β =40 N m / s2, duration of deployment Tf =100-1000 s. 

The pantograph deployment essentially increases the components of the inertia tensor 

1,1
CΘ  and 2,2

CΘ  and decreases slightly the component 3,3
CΘ . Generally speaking, the inertia 

tensor is not a diagonal one in the presence of transverse design deviations along Ox 
axis. Because of transverse deviations, there is a nonzero component 1,3Θ , but it is neg-
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ligible small also as compared to the diagonal components of the inertia tensor and has 
no essential effect on the SC dynamics. 

The increase in the inertia tensor components leads to the sharp decrease in the 2ω  

magnitude (Figure 4) and to the SC orientation violation. Figure 5 shows how amplitude 
of 2ω  attenuate in the long-term consideration because of the GD operation.  

 

Figure 4. Time histories of absolute angular velocity projection 2ω  

 

Figure 5. Time history of absolute angular velocity projection 2ω  

in long-term consideration 

At the same time, generalized co-ordinates ( 1,20)iz i =  behave as it is shown in Fig-

ure 0. (Note that , ,( )i i p i ez z t z= + , where , ( )i pz t  are functions of time and ,i ez  are inde-

pendent variables that determine elastic oscillations.) The dash lines correspond here to 
the usual deployment law, the solid lines – to the optimal law (Figure 0). This behaviour 
shows the appreciable longitudinal oscillations of the design at the deployment stage. 
Optimization of the deployment law reduces the vibration amplitudes considerably. 
The oscillating motions are induced by excitation of elastic oscillations of the design 
rods with the spring hinges. Their amplitudes grow with increase of the number of the 
tiers. Longitudinal oscillations have noticeable influence upon the components of the 
inertia tensor (Figure 4). In Figure 6 one may see that amplitude of oscillatory compo-
nent of  z20,e (opt) is half of the same value for z20,e (nonopt).  
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The transverse relative deviations of the design longitudinal axis that are defined by 
the generalized co-ordinates x20 are shown in Figure 7. Practically all these deviations 
are directed opposite to the vector of the SC velocity under the effect of the Coriolis 
forces.  

 

 

Figure 6. General coordinates z20 vs time 
 

 

Figure 7. General coordinates ix  vs time 

SC with switched off GD enters into a condition of simple harmonic pitch oscilla-
tions under the influence of the gravitational torque. Taking into account the Coulomb 
friction in design hinges practically has no influence on damping of these oscillations 
since elastic longitudinal oscillations of the design damp quickly enough. Transverse 
vibrations, on the contrary, damp very slowly as compared to deployment duration even 
under the influence of forces of structural damping since their amplitudes and velocities 
are very small as one can see in Fig. 7. 

At twice as long deployment, the behaviour of the generalized co-ordinates becomes 
smooth enough; the oscillation amplitudes of overall design length do not exceed 0.15 
m. The transversal deviations have a smooth mode. The design replicates the behaviour 
of a cantilever beam. The oscillating components are superimposed on these deviations. 
These deviations lead to a reduction of the amplitudes of vibration because of their 
strong connectedness with the pitch oscillations, which damp through the GD effect, 
even if the structural damping is not taken into consideration. At deployment of this 
design during 500 s from very heavy ideally stabilized space station, the amplitudes and 
frequencies of longitudinal and transversal oscillations visibly decrease. 
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The deviations of the GD angles iβ%  during the stabilization process do not exceed 0.1 

rad.  

6. Conclusions 

The present study deals with the exploration of the dynamics of the gyro-gravitational 
stabilized spacecraft in the mode of the deployment of the flexible pantograph structure. 
A novel mathematical model, computer simulations, new control profile for design de-
ployment is presented. Novelty of the approach consists in the taking into account addi-
tional internal degrees of freedom of the pantograph design in comparison with known 
earlier settings of the problem; in using the developed by author method of  derivation of 
the dynamic equations of mechanical systems with internal degrees of freedom and non-
stationary connections; in using optimum with respect to damping of elastic oscillations 
control profile for deployment of flexible designs. A detailed simulation study has al-
lowed to analyze the dynamic behaviour of the design at various values of parameters 
both the spacecraft with flexible pantograph structure and the laws of deployment. Data 
obtained permit the designer to select the most appropriate deployment, structure and 
gyro-dampers parameters. The results obtained from using the optimum control profile 
have been compared with those of the standard control profile. The comparison demon-
strates that the proposed profile can significantly reduce the vibration of the flexible 
structure during deployment operations.  

The developed computational FORTRAN code may be easily adopted for other de-
ployed systems.  
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