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Abstract 

In this paper the model of four degree-of-freedom mechanical sliding system with dry friction is considered. 

One of the components of the mentioned system rides on driving belt, which is driven at constant velocity. 

This model corresponds to a row of carriage laying on a guideway, which moves at constant velocity with 
respect to the guideway as a foundation. From a mathematical point of view the analyzed problem is governed 

by four second order differential equations of motion, and numerical analysis is performed in Mathematica 

software. Some interesting behaviors are detected and reported using Phase Portraits, Poincaré Maps and 
Lyapunov Exponents. Moreover, Power Spectral Densities obtained by the Fast Fourier Transform technique 

are reported. The presented results show different behaviors of the system, including periodic, quasi-periodic 

and chaotic orbits. 
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1. Introduction 

The comprehension and characterization of dynamical systems belong to a challenging 

subject in recent years [1], and also nowadays these investigations are still continued. In 

many real systems (for instance, sliding linear guide systems, brakes, clutches, piston 

rings in a cylinder, and many other) friction phenomenon and stick-slip effect as a result 

of relative sliding velocity between surfaces of bodies rubbing themselves have a great 

impact on the strength of mechanical elements of these systems as well as their 

dynamics. And although there are numerous papers related to the mentioned problems in 

the literature, not all effects, associated with the friction phenomenon, have been 

sufficiently understood so far. In many cases, the presence and the manifestation of some 

effects depends on the structure of the considered system. In general, friction belongs to 

the complex processes and depends on various parameters like relative sliding velocity, 
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normal load or surface properties. As an example, a review on different applied in the 

literature dry friction models can be found in [4], or in the recent paper [5]. 

The presented in this paper studies are a continuation and extension of research 

related to the mechanical model presented in [2,3]. In comparison to the mentioned 

papers, here other new numerical simulations obtained for other system parameters are 

presented and discussed. In addition, in contrary to the previous numerical 

investigations, beyond using Phase Portraits and Lyapunov Exponents, also other 

methods are used and applied like Poincaré Maps and Power Spectral Densities (PSDs). 
The rest of the paper is organized as follows. In section 2 mechanical model of the 

considered system and its equations of motion in the non-dimensional form are 

introduced. In section 3 assumptions of numerical computations, the applied 

approximations of non-smooth functions, as well as parameters of the considered system 

are introduced. Numerical results of our investigations are presented in section 4. 

Finally, conclusions of our investigations are presented in the last section 5. 

2. Mechanical Model and Non-Dimensional Form 

The analyzed in this paper four degrees-of-freedom model is shown in Fig. 1. 
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Figure 1. The considered 4-DOF model with dry friction 

The state of the considered dynamical system is described by the following variables: 

1x , 11 xv &= , 1y , 11 yz &= , j , jw &= , 2x  and 22 xv &= . The body of mass 1m  can rotate 

about the pivot axis S  (moment of inertia about the pivot axis S  of this mass is equal to 

I ). The whole system is characterized by lengths il  ( i = 1,2,...,6) and springs with 

stiffness coefficients ixk , jyk  ( i =1,2,4,5,6; j =3,4,5,6). Moreover, additional body of 
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mass 2m  is placed on the belt as a foundation, which moves with a constant velocity 0v . 

Between the mentioned mass 2m  and the belt dry friction force occurs, which is a 

function of the relative sliding velocity 20 xv &- . Equations of motion of the system are 

obtained using the second kind of Lagrange equations (presented in detail in [2]) and 

have the following non-dimensional form 
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where 1x , 1x& , 1y , 1y& , j , j& , 2x , 2x&  denote now non-dimensional state variables. 

Other non-dimensional parameters and functions of Eqn. (1) are introduced in section 3. 

3. The Applied Approximations and Parameters 

Numerical simulations are obtained in Mathematica software via the fourth order Runge-

Kutta method, and the trajectories are started from zeros initial conditions. The values of 

non-dimensional system parameters are as follows: 

 

08.01 =a , 03.02 =a , 04.03 =a , 09.01 =b , 03.02 =b , 03.01 =c , 03.02 =c , 

06.03 =c , 03.04 =c , 01.0=gf , 38.11 =e , 47.02 =e , .var0 =v , 

 

and their estimation is explained in [2]. Kinetic friction function )( 20 vvfk -  in our 

model is described by the Stribeck function. Since the classical signum function is 

discontinuous, it has been approximated by the hyperbolic tangent function with control 

parameter e  in the following way 
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with fixed parameters 8.00 =m , 59,15=a , 12,4252=b  and 
410-=e . Because the unit 

step function ))(( 211 jeyefg --1  is also discontinuous, the following approximation is 

also applied in our computations 
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4. Results 

Figs. 2-4 present numerical simulations for different parameter 0v . The presented results 

vary from each other, depending on the used value of 0v  parameter. 
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Figure 2. Phase portraits (a,b,c,d), Poincaré sections (e,f,g,h) and PSDs (i,j,k,l) for 

005.00 =v  in time interval )22000,20000(Ît  

As can be seen, for 005.00 =v  the character of motion is chaotic. Presented in Fig. 2 

phase portraits, Poincaré sections and PSDs confirm its irregular dynamics. The chaotic 

attractor has different forms on different Poincaré maps. Moreover, it should be 

emphasized that the characters of motion differ is very sensitive to the changes of the 

belt velocity 0v . In particular stick-slip chaotic dynamics is clearly exhibited by the 

phase portrait shown in Fig. 2c and the Poincaré map reported in Fig. 2g. 
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Figure 3. Phase portraits (a,b,c,d), Poincaré sections (e,f,g,h) and PSDs (i,j,k,l) for 

025.00 =v  in time interval )22000,20000(Ît  

When 0.0250 =v , for variable 1x  there is a periodic-two cycle orbit, which is 

represented by two points in the Poincaré section (Fig. 3e) and is depicted as the 

trajectory crosses itself in phase portrait (Fig. 3a). The same situation occurs for state 

variable 2x . While for 1y  a period-one harmonic appears (Fig. 3f), it is worth noting 

that this is a closed curve in the phase plane (Fig. 3b). A three cycle period behavior is 

presented for w  (Fig. 3d,h). 

Frequencies, at which the energies are strong and at which variations energies are weak, 

are shown in the Fig. 3 (i,j,k,l) for 025.00 =v . For the following state variables: 1x , 1y , 

2x  and w  the energy is the strongest at two, single, two and three frequencies, 

respectively. 
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Figure 4. Trajectories of the system for 05.00 =v  in time interval )12000,10000(Ît  

  

Figure 5. Poincaré sections for 05.00 =v  in time interval )22000,20000(Ît  

Another character of motion is detected for 05.00 =v . Fig. 4 shows the transient states 

for chosen time interval, which indicate that the trajectories of the system go to the fixed 

points. After avoiding the mentioned transient states, the Poincaré sections are also 
obtained and presented in Fig. 5, and they prove that the system goes to steady state. 

Table 1. Lyapunov exponents for different parameter 0v  

0v  1l  2l  3l  4l  5l  6l  7l  8l  

0.005 0.0069 0.0027 0.0001 -0.0010 -0.0030 -0.0077 -0.0206 -33.00 

0.025 0.0000 -0.0026 -0.0027 -0.0095 -0.0358 -0.0384 -0.0960 -19.52 

0.032 0.0002 -0.0004 -0.0011 -0.0080 -0.0149 -0.0324 -0.1333 -15.81 

0.04 0.0000 -0.0022 -0.0026 -0.0160 -0.0198 -0.0421 -0.0850 -7.8248 

0.05 -0.0043 -0.0045 -0.0100 -0.0102 -0.1195 -0.1197 -0.1764 -2.2371 

 

Our numerical investigations are also conducted by calculations of the max. Lyapunov 

exponents, which are depicted in Tab. 1. Moreover, as an example, time histories of 

max. Lyapunov exponents for two different parameter 0v  are reported in Fig. 6. The 
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Lyapunov exponents for each values of 0v  has been obtained using the Gram-Schmidt 

reorthonormalization time 5.0=DT , after avoiding the transition state and starting 

numerical computations from zeros initial conditions. Chaotic characters of motions are 

detected for 0v  equal to 0.005 and 0.032, while the periodic behavior are detected for 

0v  equal to 0.025, 0.04 and 0.05. For 05.00 =v  the trajectories goes to the fixed points. 

 

 
(a) 

 
(b) 

Figure 6. Time histories of max. Lyapunov exponents of the system for different values 

of velocity 0v  equal to: (a) 0.005 and (b) 0.05 

5. Conclusions 

Mathematical model of 4-DOF mechanical sliding systems with dry friction is 

considered. From a mathematical point of view the mentioned system is presented as a 

nonlinear system of equations of motion. Dynamics of the analyzed system is carried out 

for a set of system parameters and various non-dimensional control parameter. 

Interesting dynamics behaviors of the considered system are reported using standard 

tools dedicated to the both qualitative and quantitative theories of nonlinear differential 

equations. There are many technical devices in engineering applications, where we deal 

with stick-slip induced vibrations. The considered in this paper system can be treated as 

a model, which corresponds to a row of carriage laying on a guideway and moved at 

constant velocity with respect to the guideway as a foundation. As this paper shows, 

there are many possible behaviors of this system, and also it is very sensitive to the 

changes of the belt (foundation) velocity. It is therefore can be anticipated that also the 

movement of the real system of this type with various velocities of foundation, may vary 

considerably. In result, it can cause strongly nonlinear vibrations (regular or chaotic) that 

moving to the various components of the system may lead to its damage. Therefore the 

considered system can be used in engineering practice to predict its vibrations, and 

consequently to its protection. 
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