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Abstract

The problem of motion of a unicycle — unicyclissgm in 3D is studied. The equations of motionystam
have been derived using the Boltzmann-Hamel equatid description of the unicycle — unicyclist gst
dynamical model, simulation results and experimerghdation of the system are presented in theepap
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1. Introduction

1.1. Unicycle — one-wheel vehicle

Unicycle, one-wheel vehicle, is a specific typesofgle track, which is a bicycle. It has
only one road wheel. Unicycle is shown in the fegbelow [1].

Figure 1. Typical unicycle [2]

The main feature of unicycle is fixed gear. Therefahe rotation of the cranks
directly controls the rotation of the wheel, andsiions of unicyclist's legs. Riding
without pedalling is impossible. Riding a unicydke more difficult than on regular
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bicycle, due to the fact that there is only onenpof support. For this reason, a balance
must be simultaneously maintained in two planes)sverse and parallel to the direction
of moving, so that the centre of gravity oscilladd®ve the fulcrum of the wheel.

In technical aspect unicycle-unicyclist system, barconsidered as a moving double
inverted spherical pendulum with follow-up contsgktem.

1.2. Boltzmann-Hamel equations

The Boltzmann-Hamel equations are rarely used Isecaf complicated formulae
containing Hamel coefficients and complex relatlops for the determination of these
coefficients [3, 4, 5, 6, 7]. The classic form d¢ietBoltzmann-Hamel equations for
a system with the number of coordinates equélisoas follows [3, 4]
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Matrix form of Boltzmann-Hamel equations
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allows to automate generation of Hamel coefficieatsl eliminates all difficulties
associated with a determination of these quan{i@gs

2. Description of the analysed model

For the unicycle-unicyclist model description wee dixed inertial frameDxyz(Fig. 2).
We also use no inertial framagiz, inertial frames&xii and parallel frames'yiz' or
&'ni'¢ related to each link<£ 1,...,7), attached at the end of it.

Table 1. Model of the unicycle-unicyclist system

[ 1 2 3 4 5 6 7
mark w f b tir thr til thl
link | wheel | frame| body| tibiarighi thighright tibiaft | thigh left

To consider motion of the system, we introduce fodowing generalized
coordinates

q:[xw1 yw’ Zw’aw’lgw’yw’af’abiﬁb]T’ (3)

wherexy, Yw, Zv are the coordinates of the wheel contact poird,tha remaining ones are
the Euler angles describing spatial orientatiomwéspect to the particular frame, Fig. 2.
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Figure 2. Model of the system (some axes are odnitiereasons of clarity)



296

A unicyclist leg which is used in this model comsi®f thigh and tibia. Foot
is omitted due to the specific and complex motimpme rotational cycle, which does not
aspect significantly in a ride. Thereby, pedal axescovered up with ankle. Therefore,
the leg can be treated as a crank mechanism andghmsition is clearly defined by
anda;s [9].
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Figure 3. Leg positions and coordinates,anexample of the right leg

Quasi-velocities (Fig. 2) defining the model vet@s are assumed in the form;

'w|] [1 00 O Orcowm, O O Ox,]|
W, [0 10 O Orsim, 0 0 Qy,
w,| (001 0 0 0 00 Qqz
w,/ |[000 O 1 0 00 Qa,
w=|w, |[=[0 0 0 sing, O 0 0 0 04, |=Aqg. ()
W,| [0 00 cog8, 0O 1 0 0 (y,
w,| [0 00 cog8, 0O 0 1 0 (d,
w/ (000 O 0 0 00 1a,
w,] [O00O0O O 0 0 014 4]

wherer is the radius of the wheel. Equations (4) aredvalnder assumption that the
wheel is a rigid hoop making point contact with tbad and it rolls without longitudinal
slip on a flat surface. It means that the constraguations for the wheel aren=0,
w>=0 andws=0. Kinetic energy, with respect to mass canterthefsystem is obtained
using the formula

Tz}iviTMivi +}iwfh0% , (n=1...,7). (5)
2i=1 2i=l
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wherev; is the vector of linear velocitied]; is the mass matrixp; is the vector of

angular velocities and are the moments of inertia standing in the madsixma

The equations of model dynamics based on Boltznkéaomel equation (2) were

generated automatically and solved usivglfram Mathematica

3. Simulation results

Results of numerical simulation for the unicycldayalist model motion are shown in
Figs. 4—-6. The most important initial conditions gimulations are the vertical position
and the constants of wheel velocity. It is a wiredel; which means that every link is a
rigid rod, except the wheel regarded here as d dgcular hoop. Appropriate damping
in the nodes provides that the system does not @iatedy collapse and small values of

masses of legs epitomize control of the unicycla lyicyclist.
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Figure 4. Time histories of legs coordinates. Right(blue) and left leg (red)
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2D wheel trajectory
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Figure 5. Wheel 2D trajectory and time historieshaf system Euler angels
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Figure 6. 3D trajectories of the system

4. Experimental validation

To capture motion of the real object, a high spesdera was used. A duration of single
attempt is about two seconds. The quadrant symmmadrkers were used. To process the
movies, theTEMA software was used. An experiment in 2D was madeder to check,

if the way of modelling is correct. Below there asbown the parametric plots
of positions of the characteristics point of thedeio
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Figure 7. 2D trajectories of the motion captur¢hef real object

By comparing Fig. 6. with Fig. 7. it can be sedmttirajectories of characteristic points
have very similar courses. Dissimilarities may e tb the fact that the experiment was
made in 2D, while the real object moves in 3D.
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5. Conclusions

The matrix notation of Boltzmann-Hamel equationsnglates drawbacks occurring
with the classical formulation of these equatidtsapplication allows an automation of
generation process of motion equations.

It is clearly shown that the model during movemesitgngs around an unstable
equilibrium. Because of unbalance caused by legk caanks with pedals, the wheel
moves in a “snake style”. To sum up, our model bebalike a real object. It is
confirmed by a comparison of the trajectory of dateristic points, by 2D motion
capture of the real object.

In the future, in this model also a tire will bé&ea into consideration as well as and a
system control method are going to be introducegorthose steps, the 3D motion
capture will be made to validate the final model.
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