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Abstract 

The problem of motion of a unicycle – unicyclist system in 3D is studied. The equations of motion of system 
have been derived using the Boltzmann-Hamel equations. A description of the unicycle – unicyclist system 
dynamical model, simulation results and experimental validation of the system are presented in the paper.  
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1. Introduction 

1.1. Unicycle – one-wheel vehicle 

Unicycle, one-wheel vehicle, is a specific type of single track, which is a bicycle. It has 
only one road wheel. Unicycle is shown in the figure below [1]. 

 

Figure 1. Typical unicycle [2] 

The main feature of unicycle is fixed gear. Therefore, the rotation of the cranks 
directly controls the rotation of the wheel, and positions of unicyclist’s legs. Riding 
without pedalling is impossible. Riding a unicycle is more difficult than on regular 
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bicycle, due to the fact that there is only one point of support. For this reason, a balance 
must be simultaneously maintained in two planes, transverse and parallel to the direction 
of moving, so that the centre of gravity oscillates above the fulcrum of the wheel. 

In technical aspect unicycle-unicyclist system, can be considered as a moving double 
inverted spherical pendulum with follow-up control system. 

1.2. Boltzmann-Hamel equations 

The Boltzmann-Hamel equations are rarely used because of complicated formulae 
containing Hamel coefficients and complex relationships for the determination of these 
coefficients [3, 4, 5, 6, 7]. The classic form of the Boltzmann-Hamel equations for 
a system with the number of coordinates equal to k is as follows [3, 4] 
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Matrix form of Boltzmann-Hamel equations  
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allows to automate generation of Hamel coefficients and eliminates all difficulties 
associated with a determination of these quantities [8].  

2. Description of the analysed model  

For the unicycle-unicyclist model description we use fixed inertial frame Oxyz (Fig. 2). 
We also use no inertial frames xiyizi, inertial frames ξiηiζi and parallel frames xi

’yi
’zi

’ or 
ξi

’ηi
’ζi

’ related to each link (i= 1,…,7), attached at the end of it. 

Table 1. Model of the unicycle-unicyclist system 

i 1 2 3 4 5 6 7 
mark w f b tir thr til thl 
link wheel frame body tibia right thigh right tibia left thigh left 

To consider motion of the system, we introduce the following generalized 
coordinates 

[ , , , , , , , , ]Tw w w w w w f b bx y z α β γ α α β=q , (3) 

where xw, yw, zw are the coordinates of the wheel contact point, and the remaining ones are 
the Euler angles describing spatial orientation with respect to the particular frame, Fig. 2.  



Vibrations in Physical Systems Vol. 27 (2016) 295 

 
 

Figure 2. Model of the system (some axes are omitted for reasons of clarity) 
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A unicyclist leg which is used in this model consists of thigh and tibia. Foot 
is omitted due to the specific and complex motion in one rotational cycle, which does not 
aspect significantly in a ride. Thereby, pedal axes are covered up with ankle. Therefore, 
the leg can be treated as a crank mechanism and the leg position is clearly defined by γw 
and αf [9]. 

 

Figure 3. Leg positions and coordinates, on an example of the right leg 

Quasi-velocities (Fig. 2) defining the model velocities are assumed in the form: 
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(4) 

where r is the radius of the wheel. Equations (4) are valid under assumption that the 
wheel is a rigid hoop making point contact with the road and it rolls without longitudinal 
slip on a flat surface. It means that the constraint equations for the wheel are: w1=0, 
w2=0 and w3=0. Kinetic energy, with respect to mass canters of the system is obtained 
using the formula 
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where vi is the vector of linear velocities, M i is the mass matrix, ωi is the vector of 
angular velocities and I i are the moments of inertia standing in the mass matrix. 

The equations of model dynamics based on Boltzmann-Hamel equation (2) were 
generated automatically and solved using Wolfram Mathematica. 

3. Simulation results  

Results of numerical simulation for the unicycle-unicyclist model motion are shown in 
Figs. 4–6. The most important initial conditions for simulations are the vertical position 
and the constants of wheel velocity. It is a wire model; which means that every link is a 
rigid rod, except the wheel regarded here as a rigid circular hoop. Appropriate damping 
in the nodes provides that the system does not immediately collapse and small values of 
masses of legs epitomize control of the unicycle by a unicyclist. 

 

 

 

 

Figure 4. Time histories of legs coordinates. Right leg (blue) and left leg (red) 
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Figure 5. Wheel 2D trajectory and time histories of the system Euler angels 
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Figure 6. 3D trajectories of the system 

4. Experimental validation 

To capture motion of the real object, a high speed camera was used. A duration of single 
attempt is about two seconds. The quadrant symmetry markers were used. To process the 
movies, the TEMA software was used. An experiment in 2D was made in order to check, 
if the way of modelling is correct. Below there are shown the parametric plots 
of positions of the characteristics point of the model. 

 

Figure 7. 2D trajectories of the motion capture of the real object 

By comparing Fig. 6. with Fig. 7. it can be seen, that trajectories of characteristic points 
have very similar courses. Dissimilarities may be due to the fact that the experiment was 
made in 2D, while the real object moves in 3D. 
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5. Conclusions 

The matrix notation of Boltzmann-Hamel equations eliminates drawbacks occurring 
with the classical formulation of these equations. Its application allows an automation of 
generation process of motion equations. 

It is clearly shown that the model during movements swings around an unstable 
equilibrium. Because of unbalance caused by legs and cranks with pedals, the wheel 
moves in a “snake style”. To sum up, our model behaves like a real object. It is 
confirmed by a comparison of the trajectory of characteristic points, by 2D motion 
capture of the real object. 

In the future, in this model also a tire will be taken into consideration as well as and a 
system control method are going to be introduced. Upon those steps, the 3D motion 
capture will be made to validate the final model. 
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