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Abstract 

This paper presents a dynamic analysis of earlier optimized auxetic structure. This optimization based on the 
distribution of two materials in such way to obtain a minimal value of Poisson’s ratio (PR), which indicates the 

auxetic properties. The initial optimized shape was so-called star structure, which if is made from one material 

has the PR close to 0.188. After optimization with the goal function of PR-minimization, the obtained value 
was equal to -9.5043. Then the eigenfrequencies for the optimized structure were investigated. The calculations 

were carried out by means of  Finite Element Method (FEM). For optimization of the value of Poisson’s ratio 

was used algorithm MMA (Method of Moving Asymptotes). The computing of single material properties (PR, 

Young’s modulus, density) for the whole shape was made by means of SIMP method (Solid Isotropic Method 

with Penalization).  
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1. Introduction  

Dynamic analysis is one of the most important parts of investigations of structures and 

constructions. It allows evaluating their real behaviours under influence of real forces. The 

carrying out of dynamic simulations is mainly important during the first step of the design 

process to find out how the newly designed structure or shape will behave under dynamic 

exerting forces. 

The first step for dynamic analysis is computing of eigenfrequencies. Natural 

frequencies are the frequencies at which a system tends to oscillate in the absence of any 

driving or damping force. The calculating of eigenfrequencies allows checking how the 

structure will behave after load and how will cooperate with other elements of the system. 

It is the initial stage of the checking the usefulness of the shape for the industrial 

applications. 

The most common auxetic metamaterials are cell structures which are consisted of 

many repeated single cells. These structures are constantly developed because of their 

advantageous properties like low density, beneficial damping behaviour, energy 

absorption and many others. The examples of auxetic cellular metamaterials are: re-entrant 

honeycombs (Fig. 1), rotating units (Fig. 2.), star-shaped structures (Fig. 3.), “missing rib” 

(Fig. 4.) “double arrowhead” (Fig. 5.), chiral and anti-chiral structures (Fig. 6.). 
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Figure 1. Re-entrant honeycomb υ = -0.39 [1]   Figure 2. Rotating squares υ = -0.963 [2]  

     

Figure 3. Star  structure υ = -0.25 ÷ -0.35 [3]    Figure 4. Missing rib structure υ = -0.6 [4] 

     

    Figure 5. Double arrow head topology           Figure 6. Chiral honeycomb υ = -0.98 [5] 

As presented above the values of negative PR for homogenous cellular structures is 

not less than -1. But through material distribution by means of topology optimization, the 

two-phase auxetic cell can have the value of PR on the level -9.5. 

In the literature, there are many examples of dynamic analysis of auxetics. First works 

about deformation mechanism of structures with negative PR were presented by Gibson 

[6] and the inventor of name “auxetic” - R. Lakes in his papers [7-9]. Scarpa [10] shows 

various dynamic characteristics of open cell compliant polyurethane foam with auxetic 

behavior. In the works [11, 12] was shown the dynamic analysis of periodic auxetic chiral 

structures. The authors numerically and experimentally proved that the chiral structures 

deform when were excited at one of its eigenfrequencies. This is particularly important 
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because resonance can be used to minimize the power required for the occurrence of 

localized deformations. 

The most common analysis is connected with simulations and experiments which 

confirm whether the structures with negative PR have favourable properties for damping 

the vibrations or acoustic isolations. It is also defined the specific ratios for checking the 

damping’s properties like VTL (Vibration Transmission Loss) or STL (Sound 

Transmission Loss) [13-15]. The natural frequencies for the earlier optimized structure 

with the criterion of minimal internal energy were described in the papers [16, 24]. 

The auxetics are also checked to find out which deformation will take place under 

influence of harmonic loading force and to compute the value of crushing strength of the 

structure. Dynamic comparing analysis of re-entrant honeycomb (negative PR) and 

hexagonal honeycomb (positive PR) proves the relation between negative PR and crushing 

strength [17]. 

The dynamic behaviour of the composite with auxetic core is presented in work [18]. 

Authors presented effective properties and dynamic response of a sandwich panel made 

of two face sheets and core. 

Other optimized shapes with the goal function of minimization of the Poisson’s ratio 

were shown in the papers [22, 23]. 

2. Properties and methods 

To compute the effective values of parameters (Young's modulus, Poisson's ratio, density) 

of the two-phase shape cell is used effective interpolation method. Here it’s used the solid 

isotropic material with a penalization (SIMP) scheme. The most important part of SIMP 

is the insertion of an interpolation function as a function of the continuous variable. This 

interpolation function defines the mechanical properties. The particular parameters in 

SIMP method for the minimization of PR fulfill the equations: 

prEEErE )()( 121   (1) 

prr )()( 121    (2) 

where: r = r(x) – control variable for computing the effective values of properties, 

p – penalization parameter, which in optimizations is equal to 3 (previous works about 

SIMP recognize penalization parameter equal to 3 as the most effective), E1, E2, υ1, 

υ2 – Young's moduli and Poisson's ratios of first and second material. Density of material 

represents continuous variable 0 < r < 1. In this method, the continuous variables are 

described as material densities. SIMP also can evaluate bulk and shear moduli and other 

physical properties. 

The Poisson’s ratio for the homogenous, isotropic elastic solid material is the negative 

ratio of transverse to longitudinal strain at every point in a body under longitudinal 

loading. In a material with two phases where the ratios may be changed classic definition 

Poisson’s ratio isn’t possible to use. The new definition of Poisson’s ratio was described 

by many authors and introduces small change to an equation and it is calculated as a 

negative ratio of the average transverse to longitudinal strains [19]: 
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where: t  – average transverse strain, l  – average longitudinal strain. When the force is 

applied along the y-axis, the average transverse strain is defined as: 

𝜀𝑡̅ =
∫ 𝑢1𝑑𝛤

 

𝛤1

𝐿𝑥 ∫ 𝑑𝛤
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where 𝛤1 is the boundary parallel (𝑥 = 𝐿𝑥 = 0.4) to the boundary with prescribed 

displacement applied. The average longitudinal strain is defined as: 

𝜀𝑙̅ =
∫ 𝑢2𝑑𝛤

 

𝛤2

𝐿𝑦 ∫ 𝑑𝛤
 

𝛤2

 (5) 

where 𝛤2 is the boundary (𝑦 = 𝐿𝑦 = 0.4) where a load is applied. 

Because of using SIMP scheme effective Poisson’s ratio must be dependent on control 

variable r, like in the equation (6): 
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SIMP scheme for control variable function must have two constraints - pointwise 

inequality (7) and integral inequality (8), which are given below: 

1)(0  xr  for Sx  (7) 
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S

  )(0  
(8) 

where: x - defined coordinate, Af – fraction of the second material of the domain S. The 

order of optimization order is as follows: FEM – discretization, the redefinition of 

minimization function with applied constraints and at the end the value of control variable 

is calculated at every mesh node as: 


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where: )(xi  are the shape functions, i – is the number of an element node, N – is the 

amount of all nodes. 
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3. Equation of motion of the solid  

The Navier’s equation of motion of solid has the form [20]: 

0
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u

t
  (10) 

where: u – the vector of displacements, ρ - the density, σ - the stress tensor and is defined 

as [21]: 

εIuDεσ  2)(   (11) 

where: D – constitutive matrix, I – identity matrix, ε – the strain tensor, defined as: 
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and µ, λ – Lame constants, which fulfills the equations: 
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where: E is Young's modulus, G is shear modulus, υ is Poisson's ratio. 

The Navier's equation of motion with linear constitutive relation between stresses and 

deformations [20] is: 

0))(( 2

2

2





uu

u


t
 (14) 

A harmonic displacement is defined by equation as below: 
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where: ω – frequency. The displacement vector has the complex form and is defined as: 

)()()( xixx 21 uuu   (16) 

where the harmonic displacement is a real part of complex form: 

])(Re[),( tiet  xuxu  (17) 

According to aforementioned equations the harmonic equation of motion fulfills the 

formula: 

0))(( 22  uuu  . (18) 
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4. Numerical results 

Optimized star-shape structure with the criterion of minimal PR by means of distribution 

of two materials is shown in Figure 7 (material 1 – green colour and material 2 – blue 

colour). Deformation of the compressed structure is presented in Figure 8. The parameters 

of materials 1 and 2 are presented in Table 2. The minimal effective PR after optimization 

has the value: -9.5043. The optimization Method of Moving Asymptotes (MMA) and 

Solid Isotropic Method with Penalization (SIMP) were used to received two-phase 

structures with lower Poisson's ratio [22]. 

 

Figure 7. Distribution of two materials in star-shape structure with the minimal PR 

 

Figure 8. Deformation of structure with minimal PR 
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Table 1. Material properties of two-phase structure  

No. Material 1 Material 2 

Poisson’s ratio 0.1 0.33 

Young’s modulus [MPa] 1e7 1e11 

Dynamic analysis of optimized shape consists in the investigation of the deformations 

after the harmonic load. The seven eigenfrequencies of the structure were determined – in 

table 2 are the values of each eigenfrequency. To compare the values for two-phase 

structure presented in table 2, the results for homogenous one-phase structure are also 

presented. The mode shapes for each natural frequency are shown in the Figures 9-15 

(color figures available only online). 

Table 2. Values of eigenfrequecies for structures  

No. of 

eigenfrequency 
1 2 3 4 5 6 7 

Two-

phase 

Value 

[Hz] 
20.472 55.239 71.912 117.17 151.83 158.53 186 

One-

phase 

Value 

[Hz] 
96.63 351.64 443.02 620.82 800.53 944.99 1088.7 

 

Figure 9. Mode shape for the quarter of optimized structure  

(eigenfrequency 20.472 Hz) 
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Figure 10. Mode shape for the quarter of optimized structure  

(eigenfrequency 55.239 Hz) 

 

Figure 11. Mode shape for the quarter of optimized structure  

(eigenfrequency 71.912 Hz) 

 

Figure 12. Mode shape for the quarter of optimized structure  

(eigenfrequency 117.71 Hz) 
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Figure 13. Mode shape for the quarter of optimized structure  

(eigenfrequency 151.83 Hz) 

 

Figure 14. Mode shape for the quarter of optimized structure  

(eigenfrequency 158.53 Hz) 

 

Figure 15. Mode shape for the quarter of optimized structure  

(eigenfrequency 186 Hz) 
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5. Conclusions 

Dynamic properties of the auxetic structure composed of two materials were investigated. 

The eigenfrequencies of minimized shape and amplitude of forced vibration were 

determined. 

The knowledge about these dynamic properties can be useful for deciding how 

serviceable will be the whole structure. In the future may be possible to apply analyzed or 

similar structure to the industrial applications. 
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