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Abstract 

Dynamic properties of the three degrees of freedom autoparametric system with spherical pendulum including 

the magnetorheological (MR) damper are investigated. It was assumed that the spherical pendulum is suspended 
to the oscillator excited harmonically in the vertical direction. The influence of damping force described by 

Bingham’s model on the energy transfer can be modified by magnetic field. The equation of motion have been 

solved numerically. In this type system one mode of vibration may excite or damp another one, and for except 
different kinds of periodic vibrations there may also appear chaotic vibration. Results show that MR damper 

can be used to change the dynamic behavior of the autoparametric system with spherical pendulum giving 

semiactive control possibilities. 
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1. Introduction 

The presented work deal with nonlinear dynamics of a three degree of freedom system 

with a spherical pendulum when magnetorheological damping is using to semiactive 

control. The spherical pendulum is similar to the simple pendulum, but it moves in  

3-dimensional space. This system was presented by the authors in the previous paper by 

Sado et al [3, 4] where the position of the pendulum was described by the coordinate z and 

two angles: θ and φ where the angle θ was the deflection of the pendulum measured from 

the vertical position and angle φ describes the rotation of the pendulum in the horizontal 

space. Another model where the position of the main body is described by the coordinate 

z and position of the pendulum is described two angles: θ and φ in the vertical planes 

(Leung and Kuang [2], Witkowski [7], Sado and Bobrowska [5]). When we change the 

generalized coordinates from typically modelled spherical pendulum to fixed spherical 

coordinates, we get interesting results of the motion. Magnetorheological (MR) damper 

used to investigate semiactive control of an autoparametric vibration absorber with simple 

pendulum is presented by Kecik and Warmiński [1]. In this paper we investigate influence 

of MR damper on semiactive control of an autoparametric system with a spherical 

pendulum. 

 

 



Vibrations in Physical Systems 2018, 29, 2018016 (2 of 8) 

2. System description and equation of motion 

The investigated system is shown in Figure 1. The position of the oscillator of mass m1 

and element characterized by linear elasticity and magnetorheological damping of 

modified Bingham model used by Tang et al. [6], with viscotic damping coefficients c1 

and dry friction coefficient c2 is described by coordinate z and position of the pendulum 

of mass m2 and length l is describe by coordinates: z, θ, φ. Coordinate z is the vertical 

displacement of the body of mass m1 measured from the static position of equilibrium. The 

angle θ is the angle between the vertical axis and the deflection of the pendulum on the 

space xz . The angle φ is the angle between the deflections of the pendulum on the space 

xz and the pendulum The body of mass m1 is subjected to the harmonic vertical excitation 

F(t) = P1cosν1t. 

 

Figure 1. Schematic diagram of the system 

The Cartesian coordinates have the form: 

stzzz
zlz

ly
lx







1

12

2

2

coscos
sin

sincos






  (1) 

Assuming that: 
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The equations of the motion of the system derived as Lagrange’s equations are as 

follow: 
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The following dimensionless time and dimensionless parameters have been 

introduced: 
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After transformation, the equations of motion can be written in the dimensionless form: 
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3. Numerical results 

The equations of motion in dimensionless form (5) have been solved numerically using 

Runge-Kutta method with a variable step length. The calculations are carried out for 

different values of parameters of the MR damper. Exemplary time histories of 

displacements z, θ and φ of forced vibrations without damping for parameters of the 

system: 1,0001.0,0,482.0,5.0 1121   Aa and for the initial conditions: 

0)0()0()0(,005.0)0()0(,0)0(   zz  are presented in the Fig.2. 

We can observe the energy transfer. As it can be seen from the presented diagrams, the 

amplitude z diminishes almost to zero and the amplitudes angles θ and φ grow. After the 

fixed period the opposite effect occurs. 
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Figure 2. Time histories for: a = 0.5, β = 0.482, γ1 = γ2= 0, A1 = 0.0001, 

 µ1 = 1, 0)0()0()0(,005.0)0()0(,0)0(   zz  
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Figure 3. Time histories for z: a = 0.5, β = 0.482, γ1 = 0, A1 = 0.0001,  

µ1 = 1, 0)0()0()0(,005.0)0()0(,0)0(   zz   

and γ2= 0.00005 (a), γ2= 0.0001(b) 
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Figure 4. Time histories for φ: a = 0.5, β = 0.482, γ1=0, A1 = 0.0001,  

µ1 = 1, 0)0()0()0(,005.0)0()0(,0)0(   zz   

and γ2 = 0.00005 (a), γ2 = 0.0001(b) 

Next the influence of damping force in MR damper on the phenomenon of energy 

transfer has been studied. Exemplary results for displacement z are presented in Fig. 3 and 

for displacement φ are presented in Fig. 4 ( for displacement θ results are similar to φ). 

The motion of the oscillator and of the spherical pendulum may be periodic, 

quasiperiodic or chaotic. So the Poincaré maps and maximal exponents of Lyapunov for 

different damping parameters are studied. Exemplary Poincaré maps and maximal 

exponents of Lyapunov (Fig. 5) are presented for value of damping parameters  

γ1= 0.0001 and γ2= 0.00005. 
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Figure 5. Poincare maps (a, c, e) and max. exp. of Lyapunov (b, d, f) for: a = 0.5,  

β = 0.5, γ1 = 0.0001, A1 = 0.00222, µ1 = 1.01 

As it can be seen from these diagrams the Poincaré maps trace the strange atractors 

and the maximum exponents of Lyapunov are positive, so the motions of all coordinates 

are chaotic. 

4. Conclusions  

The spherical pendulum is more similar to the real system than the simple pendulum. We 

can observe the energy transfer between all modes of vibration in a closed cycle. The time 

of this cycle depends on the values of the damper parameters. Besides the regular 

behaviour of the spherical pendulum, near the internal and external area of the resonance 

chaotic vibrations may occur for all coordinates. The magnetorheological damper 

activated by magnetic field can be used to change the dynamic behaviour of the 
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autoparametric system with spherical pendulum giving reliable semiactive control 

possibilities. 
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