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Abstract 

A beam structure under natural vibration in presence of crack undergoes a sharp change in its dynamic 
characteristics. In the present study the changes in two important modal vibration parameters like mode shapes 

and natural frequencies have been extensively studied for crack diagnosis in presence and absence of crack. 

Numerical and experimental investigations have been carried out using an aluminium Free-Free beam structure 
with and without crack. The crack presence is indicative of a decrease in local flexibility at crack location and a 

variation in mode shapes and natural frequencies are noticed. These variations in modal parameters have been 

used as the tools for crack diagnosis. In the present paper, efforts are made to analyse the presence of a crack 
using the application of fuzzy logic methodology. Here relative natural frequencies preferably first three are 

derived from experimental and theoretical investigations are utilised as input data to the fuzzy controller with 

Gaussian membership functions to obtain crack position and crack depth as output data. The resulted output data 

from fuzzy logic and the result from corresponding experimental and numerical analysis have been 

compared.The deviation of result of fuzzy logic from numerical and experimental results have been found to be 

within a limit of 3% . 
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1. Introduction 

Maintaining structural integrity is highly essential as cracks are one of the internal damage 

within the beam structure and its early detection can prevent further degeneration of beam 

structure. The presence or development of crack in a structure subjected to dynamic 

vibration is detrimental to the entire system and may lead to decrease in life expectancy. 

Crack investigation of a structure based on the changes in its vibration parameters 

under a dynamic vibration condition have been the area of research since last few decades. 

In present study, efforts have been made to diagnose the presence of crack in an aluminum 

beam based on concept of Fuzzy Logic as one of the artificial intelligent techniques and 

the result outcome is compared with the experimental and theoretical result. 
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Shen et al. [1] have presented a procedure to evaluate the difference between two 

corresponding modal characteristics i.e. mode shapes of the beam and its natural 

frequencies that lead to the identification of crack in a damaged beam. They have 

simulated the crack by considering an equivalent spring at the crack position. The papers 

[2, 3] have discussed on related crack characteristics with that of corresponding natural 

frequencies of the damaged structure. They have compared the result of their methodology 

with the corresponding result of finite element method to establish the effectiveness of 

their proposed methodology. Muller et al. [4] have presented a numerical solution that can 

locate the existence of crack in a rotating shaft–turbo combined rotor assembly. They have 

established a clear relationship between cracks in the shaft of a turbo-rotor assembly and 

vibration parameters. The purpose of their study is to show a non-linear effect of the 

proposed model. The papers [5-7] have introduced a local flexibility at the location of a 

dynamically vibrating cracked structure and have studied its vibration responses. T Sai et 

al. [13] have developed a methodology for investigating crack position and crack depth of 

a vibrating beam structure with an open transverse crack of a stationary shaft without its 

disengagement from its system assuming a local spring at the crack position. Gounaris et 

al. [14] have established a suitable methodology for damaged detection in a beam having 

a transverse cracks which is under a state of dynamic vibration assuming the crack as a 

transverse open crack. They have presented a co-relation between crack location, crack 

depth and their corresponding mode difference. The methodology uses Eigen modes of 

beam structure under vibration mode. Chodros et al. [15] have formulated a model for a 

Euler-Bernoulli cantilever beam having an edge crack to study the modal characteristics. 

They have obtained both mode shapes and their corresponding natural frequencies for 

different crack locations and depths using an Euler-Bernoulli cantilever beam model. They 

have presented their observation considering variation in crack locations and crack depths. 

Kisa et al. [16] have established a numerical based procedure for modal analysis of a 

uniform circular stepped beam with crack. They have demonstrated their combined 

component mode based synthesis methodology with that of finite element applied to the 

stepped beam subjected to free vibration. They have established the accuracy by solving 

some numerical problems. Fabrizio et al. [17] have taken measured value of natural 

frequency to locate and diagnose the extent of damage in the cracked beam. Duffey et al. 

[18] have established a novel procedure for crack diagnosis in a vibrating beam structure 

that exhibits both axial and torsional responses. The proposed methodology can be utilized 

to investigate the locations of any linear crack in the dynamically vibrating structural beam 

element using the evaluated modal characteristics. The papers [19, 20] have discussed a 

crack beam element method for dynamic analysis of cracked vibrating structures. A local 

flexibility at the crack location site is induced that brings a variation in the dynamic 

response of a damaged structure which can result in the identification of the crack position 

and in turn estimation of crack depth. Yang et al. [21] have analyzed the impact of open 

transverse crack on vibration characteristics of a damaged beam structure. They have 

presented a suitable numerical method to calculate strain energy possessed by a beam in 

presence of a crack and computed the equivalent bending stiffness. 

Ganguli et al. [22] have used fuzzy logic application to a damaged model structure 

using the concept of decreased stiffness at the damaged site specifically designed for on 

ground diagnosis of a rotor mounted blade of a helicopter. Behera et al. [23] have 
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discussed about behavior of crack rotor in viscous liquid. Sazonov et al. [24] have 

established using fuzzy logic application with the concept of finite element methodology 

for a simple beam structure and have presented an effective methodology for damage 

diagnosis. Pawar et al. [25] have intensively studied the variation in the natural frequencies 

in a damaged structure and modeled it for a cantilever beam in presence of crack using 

finite element methods and also used genetic fuzzy hybrid technique to locate the crack 

and estimated the crack size effectively. Skarlatos et al. [26] have studied and presented a 

simple fuzzy logic technique to diagnose the defects developed in railway wheels by 

vibration measurements under variable train speed using both healthy and defective wheel 

separately. De et al. [27] have formulated a module that can be applied to detect and 

diagnose the severity of damage in laboratory models and equipment leading to the 

minimization of uncertainties in the measurement associated with input and output 

parameters in a vibrating structures. Kim et al. [28] have demonstrated an online crack 

identification procedure for existing concrete structures by taking the concept of artificial 

intelligence technique in fuzzy environment. They have designed their fuzzy inference 

system using the symptoms of presence of crack and their characteristics. They have 

presented the result of the application of their proposed system and found the result of the 

proposed system is matching to the corresponding result of the expert system. Kim et al. 

[29] have established a computerized assisted programmer using fuzzy set theory that will 

ensure the symptoms of presence of crack and their characteristics for a reinforced 

concrete structures. Das and Parhi [30, 31], have studied a Fuzzy logic approach based 

research paper to locate crack position and to estimate the crack severity by diagnosing 

the crack depth of a dynamically vibrating beam and have successfully used the first three 

relative mode shapes and their corresponding relative natural frequencies as data input 

parameters to the developed Fuzzy inference systems and obtained two relative output 

parameters as crack position and depth of crack. They have arrived at a conclusion that 

the output result matched precisely with the experimental values. Sasmal et al. [34] have 

presented a systematic methodology based on analytical hierarchy approach in a fuzzy 

surroundings for condition monitoring of constructed bridges to eliminate any imprecision 

and associated uncertainties in the measurements. Saravanan et al. [35] have studied the 

dynamic characteristics of machine parts in running condition and monitor the health 

conditions of inaccessible parts and components effectively. To formulate the rules 

automatically, they have proposed a model, developed using fuzzy classifier and decision 

tree. The result of the developed fuzzy inference engine using representative data have 

been found to be quite encouraging. Chandrashekhar et al. [36] have applied the fuzzy 

logic approach to avoid any uncertainties in geometry and measurements during the 

investigation of damage diagnosis. They have shown that the fuzzy logic together with 

probabilistic analysis can remove the uncertainties in the measurements due to geometry 

of damaged structures. The paper combines the purviews of probabilistic analysis and 

theory fuzzy logic to rectify uncertainties associated with structural crack diagnosis. 

Chandrashekhar et al. [37] have presented a novel concept by exploring a relationship 

between the changes in material properties and corresponding changes in vibration 

parameters (frequency) and have presented a fuzzy based model with a novel defuzzifier 

for crack diagnosis. Beena et al. [38] have used a novel algorithmic based approach on 

fuzzy cognitive map (FCM), appropriate for structural damage diagnosis. They have used 
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relative changes in frequency deviations as input parameters for the FCM and the result 

of output parameters are the possible relative crack locations in the damaged structure. 

The papers [39-51] have presented a discussion about use of various artificial intelligence 

techniques in engineering problems. In the current paper a systematic AI approach has 

been used to locate a crack and its depth using natural frequencies as one of the modal 

characteristics of a beam under vibration.  

2. Theoretical Analysis for the determination of beam modal characteristics in  

     the existence of a transverse single crack 

A theoretical analysis of a beam with free-free end having a transverse crack subjected to 

both bending and axial load has been considered in the present study. The stiffness matrix 

in presence of crack is derived as the inverse of compliance matrix. An equivalent 

compliance matrix is derived assuming crack node as a cracked element having no mass 

and length. 

Let Ui = additional displacement due to bending load and axial load. 

Vt = beam strain energy in presence of crack. 

Let Ui = additional or extra displacement due to both axial and bending load. 

Vt = strain energy in presence of the crack. 
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The components of local flexibility matrix per unit width can be expressed as 
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The resulting flexibility matrix 
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ij ] over the total breadth B for the beam with edge crack can be written as 
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As per (Tada. 1973); the expression for release rate of strain energy at crack location is 

written as 
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 (plane strain and plane stress based condition) 

Factors affecting stress intensity represented as K11, K12 for mode I (crack opening) 

subjected under the load P1 and P2 defined as axial and bending load respectively. 

Mathematically the Factors affecting stress intensity be expressed in the form as below; 
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where 
i  is stress at the cross location of crack due to axial and bending load, so, 
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Using equation (6) for strain energy release rate and putting it in equation (4), the 

flexibility matrix can be mathematically written as: 
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The inversion of compliance matrix gives rise to a local stiffness matrix expressed below 

as 
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Figure 1 Represents a free-free beam with amplitudes in longitudinal vibration for the 

sections as U1, U2 and vibrational amplitudes under the application of bending at the 

sections as Y1, Y2 respectively. In following Figure 1, L1 and L represent crack distance 

from one end of free-free beam and length of the respectively. 

 

Figure 1. Free-free beam 

normal function defined for of the system 

                                              
1 1 u 2 u=C cos(K x)+C sin(K x)U                                      (15a) 

                                              
2 3 u 4 u=C cos(K x)+C sin(K x)U                                     (15b) 

                      
1 5 y 6 y 7 y 8(x)=C cosh(K x)+C sinh(K x)+C cos(K x)+C sin(K x)yY        (15c) 

                    2 9 y 10 y 11 y 12(x)=C cosh(K x)+C sinh(K x)+C cos(K x)+C sin(K x) yY           (15d) 
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are constants and its values can be calculated using following boundary conditions. 
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Also at the section of the crack i.e. at distance L1, due to absence of axial displacement on 

both left side and right side of the location of the crack, we have: 

1 1 2 1 1 1
11 2 1 12 12 11 1 1

(L ) (L ) (L )
U (L ) (L )

dU dY dY
AE K K K K U

dX dX dX

 
    

 
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 in the expression above, we get 

21 2 2 1 2 1 1M '( ) ( ) M Y ( ) M ( )M U M U Y      
 

Similarly, at crack location due to slope discontinuity at both sides of the crack 

2

1 1 2 1 1 1
21 2 1 21 1 1 22 222

(L ) (L ) (L )
( U (L ) (L )) K K

d Y dY dY
EI K K U

dX dX dX

 
    

 
 

Multiplying, the term 
2

22 21

EI

L K K
 on both sides of the expression above , we get 

2 13 4 1 3 3 4 2 4 1M ''( ) ( ) ( ) M Y ( ) M ( )M Y M U M U Y          

where,  

1 2 3 4 2

11 12 22 21

, , ,
AE AE EI EI

M M M M
LK K LK L K

     

The boundary conditions as defined above and normal functions along with equation (15) 

result in the system characteristic equation as 

                                                                 0                           (16) 

where ψ is a 12x12 matrix. 
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This characteristic equation in determinant form expressed above is a function of relative 

crack position (γ), local stiffness matrix (K) , natural circular frequency (ω) and relative 

crack depth (φ). 

Figure 2 represents the pictorial view of a free-free end beam geometry with 

dimensions (a1) as crack depth, (L1) as crack location and (BxW) as cross-sectional area 

which is under the influence of axial force (P1) and a bending moment (P2) that subject 

the beam to a coupling effect. 

 
Figure 2. Beam Geometry (a) free-free beam (b) beam crossectional view 

3. Numerical calculations for natural frequencies considering parameters like 

     relative crack depths and its locations to establish its validation with that of 

     corresponding experimental result 

Tables 1-5 present a numerical analysis to calculate first three natural frequencies(relative) 

by varying crack depths (relative) at different crack locations(relative) to establish a 

database for validating the results with that of corresponding experimental results. 

Table 1. Relative natural frequencies for fixed crack location = 0.15 

 at various crack depths 

Free-Free 

Relative 

crack depth 

crack location(relative) = 0.15 

Relative 1st natural 

frequency 

Relative 2nd natural 

frequency  

Relative 3rd natural 

frequency  

0.05 0.96427 0.97409 0.95994 

0.15 0.96204 0.97248 0.95744 

0.25 0.95982 0.97087 0.95495 

0.35 0.95759 0.96925 0.95245 

0.45 0.95537 0.96764 0.94996 

0.55 0.95314 0.96603 0.94746 
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Y axis 

Z axis 

     X axis 

Motion direction 
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Table 2. Relative natural frequencies for fixed crack location = 0.25 

at various crack depths 

Free-Free 

Relative 

crack depth 

crack location(relative) = 0.25 

Relative 1st natural 

frequency 

Relative 2nd natural 

frequency 

Relative 3rd natural 

frequency 

0.05 0.98238 0.93647 0.93146 

0.15 0.98128 0.93251 0.92720 

0.25 0.98018 0.92856 0.92293 

0.35 0.97909 0.92460 0.91866 

0.45 0.97799 0.92065 0.91439 

0.55 0.97689 0.91669 0.91012 

Table 3. Relative natural frequencies for fixed crack location = 0.35 

 at various crack depths 

Free-Free 

Crack depth 

(relative) 

crack location(relative) = 0.35 

Relative 1st natural 

frequency 

Relative 2nd natural 

frequency 

Relative 3rd natural 

frequency 

0.05 0.96076 0.93628 0.97909 

0.15 0.95795 0.93232 0.97779 

0.25 0.95549 0.92835 0.97649 

0.35 0.95330 0.92438 0.97518 

0.45 0.95056 0.92041 0.97388 

0.55 0.94809 0.91644 0.97258 

Table 4. Relative natural frequencies for fixed crack location = 0.45 

 at various crack depths 

Free-Free beam 

Relative 

crack depth 

crack location(relative) = 0.45 

Relative 1st natural 

frequency) 

Relative 2nd natural 

frequency) 

Relative 3rd natural 

frequency 

0.05 0.93660 0.95338 0.93502 

0.15 0.93265 0.95048 0.93097 

0.25 0.92869 0.94758 0.92692 

0.35 0.92475 0.94468 0.92287 

0.45 0.92080 0.94177 0.91883 

0.55 0.91685 0.93887 0.91478 
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Table 5. Relative natural frequencies for fixed crack location = 0.55 

 at various crack depths 

Free-Free beam 

Crack depth 

(relative) 

crack location(relative) = 0.55 

Relative first natural 

frequency 

Relative second 

natural frequency 

Relative third 

natural frequency 

0.05 0.93642 0.95151 0.93596 

0.15 0.92959 0.94849 0.93197 

0.25 0.92546 0.94547 0.92798 

0.35 0.92133 0.94245 0.92399 

0.45 0.91720 0.93943 0.92000 

0.55 0.91308 0.93641 0.91601 

4. Experimental procedure 

Initially an aluminum Free-Free beam specimen of length 100cm, width 50mm and 

thickness 8 mm is prepared for the purpose of carrying out experiment. Before the 

experiment is carried out, a transverse crack is created using a wire cut electrode discharge 

machine. Following the same procedure, a no of specimen is made with cracks at different 

relative crack locations from fix end (0.15, 0.25, 0.35, 0.45, 0.55) with different relative 

crack depths (0.15, 0.25, 0.35, 0.45, 0.55) in each specimen. The specimen under test is a 

free-free beam. The specimen was put to test to study its vibration characteristics. A 

vibration testing machine (pulse lite 3560-L machine) was used as a part of the 

experimental procedure to study the variations in mode shapes and natural frequency of a 

vibrating beam with and without a crack. Specific experiments were conducted step by 

step with varying locations and crack depths in a systematic manner. As a part of 

experimental procedure, the specimen was placed in a test rig fig. (3) with proper end 

conditions and tests were conducted systematically considering different parameters like 

crack locations, and crack depths. The initial excitation was given on the middle span of 

the beam using a specialized hammer. To register the 1st, 2nd and 3rd modes of vibration, a 

piezoelectric accelerometer was placed along the length of beam. The signals representing 

natural frequency and mode shapes were captured in a vibration analyzer consisting of 

frequency response spectrum, printer and a desk top computer with dual channel analyzer. 
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Figure 3. Experimental setup of a free-free aluminum beam 

5. Graphical presentation of relative mode shapes of experimental and numerical  

        result 

In the following section a graphical presentation of 1st, 2nd and 3rd mode shapes resulted 

from numerical and experimental investigations have been presented systematically to 

understand the influence of locations and depths of crack on its mode shapes in a vibrating 

beam structures. The significant variations in the modal parameter like mode shapes will 

assist in locating the crack and estimating the crack depth. 

The following figures (Figures 4-12) represent a graphical presentation of 1st, 2nd and 

3rd modes of transverse vibration for validating numerical and experimental results at 

various relative crack locations and depths in presence of a transverse edged crack. A 

significant variation in relative amplitudes are observed beyond the crack location for any 

given relative crack location and depth. 

 
Figure 4. View of 1st mode of vibration for free-free beam with RCD = 0.05, RCL = 0.15 
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Figure 5. View of 1st mode of vibration for free-free beam with RCD = 0.05, RCL = 0.55 

 
Figure 6. View of 1st mode of vibration for free-free beam with RCD = 0.25, RCL = 0.65 

 
Figure 7. View of 2nd mode of vibration for free-free beam with RCD = 0.25, RCL = 0.25 

 
Figure 8. View of 2nd mode of vibration for free-free beam with RCD = 0.35, RCL = 0.25 
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Figure 9. View of 2nd mode of vibration for free-free beam with RCD = 0.45, RCL = 0.35 

 
Figure 10. View of 3rd mode of vibration for free-free beam with RCD = 0.25, RCL = 0.15 

 
Figure 11. View of 3rd mode of vibration for free-free beam with RCD = 0.50, RCL = 0.55 

 
Figure 12. View of 3rd mode of vibration for free-free beam with RCD = 0.45, RCL = 0.25 
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6. Application of fuzzy Logic for crack diagnosis 

Fuzzy logic refers to a computing based approach that considers quantity of truths without 

assigning numerical for true or false i.e. (1,0). This approach uses specific functions for 

its linguistic variables. Fuzzy logic has wide area of applications ranging from control 

theory to artificial intelligence. Traditional computing makes use of precise data with 

certainty but soft computing can use imprecise data and can compute to generate precise 

output. Fuzzy logic employs words rather than numbers for defining certain mapping 

rules. 

In this present chapter, an algorithm for crack detection using the concept of fuzzy 

logic has been formulated. This formulation uses three no of input modal data i.e. three 

initial relative natural frequencies to obtain two output parameters i.e. first two relative 

crack positions and first two relative crack intensity or depth. The fuzzy system has been 

designed using the modal characteristic vibration data of a cracked beam under transverse 

vibration with different end conditions. The current chapter presents a brief account of a 

working of a fuzzy logic system which is categorized under fuzzy inference system. Figs 

13(a), 13(b) and 13(c) represent trapezoidal, Gaussian and triangular membership 

functions which use first three input data as relative natural frequencies and give rise to 

two output data as relative crack location and depth. Fig 14 represents a fuzzy inference 

system. Table 6 represents the comparison of output of different membership functions 

with that of Experimental results in an attempt to search for a particular membership 

functions that has close output results as with that of experimental results. The result using 

Gaussian membership function controller are closely matching with the experimental 

results. Table 7 shows the comparative result of Fuzzy logic, numerical and experimental 

investigations considering five different test samples.  

a) 

 
b) 

 
c) 

 

Figure 13. Fuzzy controller: a) Trapezoidal, b) Gaussian, c) Triangular 
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Figure 14. Flow diagram of a Fuzzy inference system 

Table 6. The comparative results from theoretical and various Fuzzy Controller Analysis 

for free-free beam 

Relative 

1st natural 

frequency 
“rfnf” 

Relative 

2nd natural 

frequency 
“rsnf” 

Relative 

3rd natural 

frequency 
“rtnf” 

Experimental 
Fuzzy Triangular 

Controller 

Fuzzy Trapezoidal 

Controller 

Fuzzy Gaussian 

Controller 

Relative 

crack 
depth 

Relative 

crack 
location 

Relative 

crack 
depth 

Relative 

crack 
location 

Relative 

crack 
depth 

Relative 

crack 
location 

Relative 

crack 
depth 

Relative 

crack 
location 

0.98187 0.93305 0.92793 0.14718 0.24607 0.14429 0.24338 0.14441 0.24356 0.14467 0.24377 

0.95818 0.93311 0.97832 0.14529 0.34796 0.14234 0.34357 0.14249 0.34381 0.14286 0.34394 

0.92913 0.94803 0.92738 0.24706 0.44901 0.24427 0.44549 0.24442 0.44553 0.24467 0.44579 

0.92278 0.94391 0.92481 0.34391 0.54311 0.34219 0.54220 0.34227 0.54234 0.34248 0.54251 

0.91344 0.93667 0.91666 0.54833 0.54858 0.54344 0.54488 0.54359 0.54499 0.54386 0.54528 

Table 7. The percentage deviation of fuzzy result from experimental result  

in a free-free beam 

Relative 

1st natural 

frequency 
“rfnf”” 
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crack 
depth 

Relative 

crack 
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0.98187 0.93305 0.92793 0.14467 0.24377 0.14701 0.24603 0.14718 0.24607 1.73 0.94 

0.95818 0.93311 0.97832 0.14286 0.34394 0.14507 0.34789 0.14529 0.34796 1.70 1.16 

0.92913 0.94803 0.92738 0.24467 0.44579 0.24687 0.44889 0.24706 0.44901 0.97 0.72 

0.92278 0.94391 0.92481 0.34248 0.54251 0.34379 0.54288 0.34391 0.54311 0.41 0.11 

0.91344 0.93667 0.91666 0.54386 0.54528 0.54811 0.54840 0.54833 0.54858 0.82 0.60 
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Figure 15(a)-(b) present a graph of the relative crack depths and locations against no. of 

test samples for Fuzzy logic, numerical and experimental results. 

a)                                                                     b) 
 

        

Figure 15. a) Crack depth; b) Crack location of different samples for experimental, 

numerical and fuzzy-logic technique 

7. Conclusion 

The objective of the present paper aims at establishing an effective technique to diagnose 

cracks in the damaged vibrating beam structure under a complex loading pattern. So a 

systematic study has been conducted to ensure changes on modal characteristics of 

vibrating beam. As an initial step numerical result has been validated with that of 

corresponding experimental results with and without crack. It may be established here that 

a local flexibility is induced at the crack location leading to a change in the structural 

integrity sensitive indicators like relative mode shapes and relative natural frequency. 

It may be noted that the depth of crack and position of the crack influence both mode 

shapes and natural frequencies in a damaged beam structure under dynamic vibration. In 

present research efforts have been made to locate the position of crack and its severity by 

adopting fuzzy logic as one of the artificial intelligence technique. In such techniques 

relative natural frequencies obtained from numerical data are used as inputs to a reverse 

inference engine controller for securing crack locations and estimating crack depths. 

Further to state here that the relative natural frequency drops with higher crack depths 

irrespective of crack locations. 

A noticeable variation in the relative natural frequencies and mode shapes have been 

found following a change in the crack locations and depths. Changes become prominent 

in the relative natural frequencies with higher crack depths. The presence of crack brings 

a noticeable variation in its relative mode shapes. 

The whole study aims at developing an effective crack diagnostic tool for correct 

prediction of crack depths and its locations in a damaged beam like structure. The 

influence of modal characteristics like relative natural frequencies and mode shapes in a 

vibrating beam in crack presence have been studied successfully using the proposed 

artificial intelligence technique. 

It may be noted that the Gaussian fuzzy controller gives more accurate result as 

compared to trapezoidal and triangular fuzzy controllers as evident from the Table 6.  
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The deviation in the result of output parameters i.e. crack depths and crack locations 

calculated experimentally and numerically have been compared with that of corresponding 

Fuzzy logic and the computed deviation percentage does not exceed beyond 3% percent 

as evident from the Table 7. 

Application 

1) The model designed using fuzzy logic technique can be employed for crack diagnosis 

in fatigue crack, turbo machinery, ship and plane structures, robots etc. 

2) Since this is a non-destructive technique for crack diagnosis, so the present study will 

be quite useful for crack diagnosis and on line condition monitoring of structural 

members. 
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