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Abstract 

The paper describes nonlinear vibrations of Euler-Bernoulli beams interacting with a periodic viscoelastic 

foundation. The original model equations with highly oscillating periodic coefficients are transformed using the 
tolerance modelling technique. Newly delivered equations have constant coefficients and describe macro-

dynamics of the beam including the effect of the microstructure size. The main purpose of this paper is to propose 

an equivalent approximate model describing the nonlinear vibrations of a beam interacting with a periodic 
viscoelastic subsoil. 
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1. Introduction 

The paper deals with geometrically nonlinear vibrations of beams based on a foundation 

with periodically varying properties. Dynamics of such elements is described by 

differential equations with non-continuous, highly oscillating periodic coefficients. For 

this reason, other various approximate models of such structures are proposed, e. g. those 

based on the theory of asymptotic homogenization, cf. [2, 3, 9]. 

In this paper differential equations with highly oscillating coefficients are replaced by 

equations with constant coefficients using the tolerance averaging technique (TA), (cf. the 

book edited by Cz. Woźniak, Michalak and Jędrysiak [13]). The aforementioned method 

has wide application and can be used for modelling problems, described by differential 

equations with highly oscillating coefficients such as dynamic behaviour of thin 

functionally graded [8] and periodic [10] plates. Unlike the exact models, the resultant 

equations have constant coefficients, some of which explicitly depend on the 

microstructure size. 



Vibrations in Physical Systems 2018, 29, 2018030 (2 of 9) 

The literature on the problems of linear vibrations of periodic beams is extensive. 

A wave propagation and linear vibrations in periodic Euler-Bernoulli beams were 

considered in [4] and [11]. Frequency band gaps were analysed by the differential 

quadrature method in [14]. The transfer matrix method was applied in [15] in analysis of 

flexural wave propagation in the beam on elastic foundation. In [6] a wide literature study 

on composite beam vibration can be found. In order to determine a homogenized model 

of a composite beam with small periodicity the two-scale asymptotic expansion method is 

used in [7]. 

Nonlinear vibrations of homogeneous nano-beams interacting with a homogeneous 

viscoelastic substrate were considered in [12]. Nonlinear vibration models of the Euler-

Bernoulli beam derived through FEM discretization and the finite differences method were 

compared in paper [1]. 

The main aim of this contribution is to derive equations of the nonlinear tolerance 

model of dynamics of a slender beam interacting with a periodic viscoelastic foundation 

and show an application for the special problem. 

2. Governing equations of the model 

The object under consideration is a linearly elastic prismatic beam, bilaterally interacting 

with a periodic viscoelastic foundation. Let us introduce an orthogonal Cartesian 

coordinate system Oxyz. The Ox axis is collinear with the axis of the beam, the cross 

section of the beam is symmetric with respect to the plane of the load Oxz, the load acts in 

the direction of the Oz axis. It is assumed that a small repetitive element called a 

periodicity cell can be distinguished in the beams structure. Let Ω≡[0, L], where L is the 

beam length and l << L denotes the length of the cell. Hence, there can be introduced a 

range occupied by the periodicity cell, called microstructure parameter Δ≡[–l/2, l/2]. Our 

considerations are based on the Euler-Bernoulli theory of beams with von Kármán type 

nonlinearity. It is assumed that vibrations take place only in transverse direction, so the 

effect of axial inertia is neglected from further considerations. The following notation is 

introduced: ∂k = ∂k/∂xk is the k – th derivative with respect to the x coordinate and overdot 

stands for the derivative with respect to time. Let w = w(x,t) be the transverse deflection, 

u0 = u0(x,t) longitudinal displacement, EA = E(x)A(x) and EJ = E(x)J(x) tensile and flexural 

stiffness, k = k(x) and c = c(x) – elasticity and damping coefficients of the foundation, 

μ=μ(x) mass per unit length and q = q(x,t) – transverse load. Thus, the strain and kinetic 

energy density per unit length of the beam are: 
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The Kelvin-Voight model is applied for the subsoil and the dissipative force is assumed 

in the form: 

).,()(),,( txwxctxpp   (2) 

The equations of motion can be obtained from the extended (Woźniak et al., 2010) 

principle of stationary action A = A(u0,w) formulated as: 
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where the Lagrangian is 
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As a result the system of nonlinear coupled partial differential equations for the 

longitudinal displacements u0 and the transverse deflection w is obtained: 
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The coefficients EA, EJ, k, µ, c are highly oscillating non-continuous functions of the 

x-coordinate. 

3. Basic assumptions of the tolerance averaging technique 

The tolerance averaging technique (TA) is based on a set of the following concepts: 

tolerance relations, slowly-varying functions and fluctuation shape functions. For the 

purpose of this article, only the most important assumptions of this method will be 

presented. 

The averaging operation over a region of periodicity cell for an arbitrary integrable 

function f is defined as 
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xf
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where a cell at ΔΩx  is denoted by }Ω)(Δ:Ω{Ω,Δ)(Δ Δ  xxxx . 

The micro-macro decomposition is based on the observation that the response of 

a periodic structure is periodic-like. Thus, the unknown transverse deflection and axial 

displacement can be decomposed into their slowly-varying and tolerance periodic parts 

(here and hereafter a summation convention is used): 
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The new unknowns: averaged transverse deflection, axial displacement and their 

fluctuation amplitudes are slowly varying functions of second and first kind respectively: 
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and the corresponding l-periodic highly oscillating fluctuation shape functions: 
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The highly oscillating fluctuation shape functions (FSFs) hA and gK are proposed 

a priori for each problem under consideration. The FSFs describe the unknown fields 

oscillations caused by the structure inhomogeneity and have to ensure the l-periodicity 

constraint and provide the following conditions: 
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4. Tolerance model of the beam 

After substitution of micro-macro decompositions (7) into Lagrangian (4), the averaging 

over an arbitrary periodicity cell is performed (6) applying the aforementioned 

approximations (10). 

The averaged action functional has the following form: 
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Under assumed boundary conditions it leads to a system of Euler-Lagrange equations: 
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After some manipulations we derive the following system of equations in dimensionless 

form: 

,0
~

~
,0

~

22222

444

22

2









A
τ

A
ττ

AA
ξξ

ABAB

ξ
A

ττ
BAB

τ
BABBABBAB

ττ
AA

τττ
AA

τ

ξ
AA

ξξ
AA

ξξ
AA

ξξξξ

QλwCλwMλwKλwDvNλ

wNλvMλvCλvKλvD

QvMλMwvCλCw

vNλwNvKλKwvDDw

 (13) 

where coefficients in (13) are introduced in [5] 

In contrast to the exact formulation (5), obtained system of partial differential 

equations for the macrodisplacements U(·), W(·) and for the fluctuation amplitudes of the 

axial displacement TK(·) and of the deflection VA(·) has constant coefficients. Underlined 

coefficients depend on the microstructure parameter l. 
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5. Solution methods 

As an example there is considered a hinged-hinged beam with immovable ends, which 

fragment is shown in Fig. 1. The beam’s cross section, Young’s modulus and mass density 

are constant. It is assumed that cross section of the beam is rectangular. The beam is based 

on a viscoelastic foundation which stiffness and damping coefficient are varying 

periodically along the beams axis. The periodicity cell has symmetrical shape, see Fig. 2. 

 
Figure 1. Fragment of considered Euler-Bernoulli beam 

The fluctuation shape functions play a crucial role in the analysis. These functions 

represent the oscillations of displacements in the periodicity cell. The common practice is 

to use approximate functions, defined by trigonometric sine and cosine functions. 

Transverse and longitudinal approximate l-periodic trigonometric functions are introduced 

for the symmetric periodicity cell: 
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6. Calculational results 

6.1. Problem statement 

As an example there is considered a hinged-hinged beam with immovable ends. It is 

assumed that the considered beam is made of a linearly elastic homogeneous material with 

Young’s modulus E = 205 GPa and density ρ = 7850 kg/m3. The beam under consideration 

has length L = 1 m. The following ratios between its geometrical properties b/h = 1, h/l = 

1/5 and λ = l/L = 1/10 are introduced, where b, h and l are beam’s cross section width, 

beam’s cross section height and the length of the periodicity cell, respectively. 

 
Figure 2. Considered periodicity cell 
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The properties of the substratum are assumed to change in a periodic manner.  

The stiffness of the foundation k1 = 2000 kPa and the damping coefficient c1 = 1.  

The l – periodic functions of the substratum are assumed in the form: 

k(y) = k1 + k2(1 + cos(2πy/l)), c(y) = c1 + c2(1 + cos(2πy/l)) for y∈Δ(x). For the purposes of 

this work there are introduced the following dimensionless ratios: α = k2/k1 and β = c2/c1. 

Firstly the linear eigenfrequencies of the beam are investigated. After that the beam is 

forced with vibrations frequencies close to the linear eigenfrequencies of the beam. 

6.2. Linear eigenfrequencies 

In order to calculate the linear eigenfrequencies of the beam we restrict to consider  

only the first term of Fourier series (m = 1) and one FSF (N = 1) so that the model has 

m(1+N) = 2 degrees of freedom. As a result we derive the averaged dimensionless 

coefficients of equations (13): 

 

 

.

2

2
,

2

1
0

1

,

8

0

1

21
4

2
4

21
4

11

1

11

1

411

1




























































































































EJ

kkL

EJ

kL

EJ

kkL

K

K

K

M

M

M

πD

D

D

 (15) 

We assume solutions in the following form: 
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As a result the following algebraic system of equations is derived: 
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The formula for eigenfrequencies ω– (lower) and ω+ (higher) is: 
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The solutions derived from the TA method are compared with the Ritz method in Table 1. 



Vibrations in Physical Systems 2018, 29, 2018030 (7 of 9) 

Table 1. Linear eigenfrequencies of the beam 

  linear vibration frequency ω (dimensionless) 

Case α β 
ω– ω+ 

Ritz TA Ritz TA 

1÷8 25 0÷64 116.433 116.435 15585473.59 15585473.60 

9 5 

2 

101.799 101.801 15585458.96 15585458.96 

10 10 105.457 105.460 15585462.61 15585462.62 

11 20 112.775 112.777 15585469.93 15585469.94 

12 40 127.409 127.411 15585484.57 15585484.57 

13 80 156.677 156.679 15585513.84 15585513.84 

14 160 215.214 215.213 15585572.37 15585572.38 

15 320 332.285 332.286 15585689.44 15585689.45 

16 640 566.426 566.428 15585923.59 15585923.60 

6.3. Nonlinear vibrations 

After finding the free vibration frequencies, the beam is forced with a harmonic load 

frequency ΩF. The deflection w(L/2) in the middle of the beam span as a function of the 

number of excitation periods T for the 1. case is presented in Fig. 3 and Fig. 4, for ΩF = ω– 

and ΩF = ω+, respectively. 

 
Figure 3. Deflection of the beam for a harmonic load frequency ΩF = ω– as a function of 

the number of excitation periods T for case 1 
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Figure 4. Deflection of the beam for a harmonic load frequency ΩF = ω+ as a function of 

the number of excitation periods T for case 1 

7. Conclusions 

In this paper the geometrically nonlinear vibrations of a beam interacting with a periodic 

viscoelastic substratum has been presented. The model equations are obtained by 

implementing the tolerance averaging technique. It can be observed that the proposed 

tolerance model makes it possible to investigate nonlinear dynamic problems of structures 

with periodically varying properties. 

This contribution is supported by the National Science Centre of Poland under grant 

No. 2014/15/B/STS/03155. 
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