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Abstract  

In this note the influence of temperature on vibrations of laminated layer made of two different materials is 
presented. The macroscopic properties of this layer are changing continuously along one direction x1, 

perpendicular to the laminas. To obtain the equations describing this problem, the tolerance averaging technique 

is used [1]. In this work, three models are proposed: the tolerance and the asymptotic-tolerance model, taking 
into account the effect of the microstructure size on the overall behaviour of this type of structures, and the 

asymptotic model, which equations omit this effect. To solve the equations of these three models the finite 

difference method is used 
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1. Introduction 

The objects under consideration are laminated layers, made of two different materials, 

non-periodically distributed as microlaminas along a direction perpendicular to the 

laminas. The macroscopic properties of these structures are changing continuously along 

direction x1 (normal to the laminas). This type of structures can be called the functionally 

graded laminates [2], and a microstructure can be realised as a uniform (λ = const) or non-

uniform (λ = λ(x)) distribution of the cells. In this note the uniform distribution of the cells 

is considered, so the thickness of the cells is constant and denoted by λ, as shown in the 

Fig. 1. The basic cell in reference to these laminated layers cannot be defined in a simply 

way, and thermoelasticity issues can be considered in relation to micromechanical models 

with idealized geometry. To analyse the various problems related to the layers with 

functional gradation of properties, which are not homogeneous in microscale, the 

assumptions of idealization similar to these used to analyse periodic composites, can be 

applied. Between the methods, which are used for periodic structures, the asymptotic 

homogenization and the homogenization based on the microlocal parameters, should be 

mentioned [2, 3]. These methods can be modified and adopted to describe the structures 

with functional gradation of properties.  
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Figure 1. A cross-section of the laminate: a) the macro-level, b) the micro-scale with 

uniform distribution of cells, c) the micro-scale with non-uniform distribution of cells 

In the analysis of various problems related to the layered structures also the alternative 

methods can be used, for example the higher order theory to analyse the overall behaviour 

of functionally graded structures, the finite element method in the analysis of sandwich 

beams, layered or sandwich plates, strong form collocation method for solving laminated 

composite plates, generalized differential quadrature in the analysis of laminated doubly-

curved shells or differential quadrature finite element method in the analysis of composite 

plates [4-12].  

Unfortunately, most of the known methods do not  take into account the impact of the 

microstructure size in model equations of the functionally graded composites.  

In this work, to obtain the governing equations, which give the possibility to consider 

this influence, the tolerance averaging technique is used [13, 14]. By using this technique 

the various thermomechanical issues of periodic structures were considered [15, 16]. 

Moreover the tolerance modelling was used to investigate different thermal problems 

related to the functionally graded media [17-21]. Additionally this way of modelling was 

used to describe thermal issues in a two-phase hollow cylinder, vibrations of layered plates 

or dynamic problems for thin microstructured transversally graded and cylindrical shells 

[22-28]. 

The basic aim of this work is to obtain and present the equations of the tolerance, 

asymptotic-tolerance and asymptotic model describing the influence of the temperature on 

vibrations of laminated layer. The equations of two of them involve terms, which describe 

the effect of the microstructure size. 

2. Modelling foundations  

The considered issue can be described by the known following equations: 
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where i, j, k, l accept values 1, 2, 3, by ui and θ the unknown displacements along the xi-

axis and the temperature are denoted and the material coefficients (tensor of elasticity Cijkl, 
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tensor of heat conduction kij, tensor of thermal modules bij, mass density ρ, specific heat 

c) are non-continuous and highly-oscillating material coefficients. 

The basic concepts related to the tolerance averaging technique are averaging 

operation, tolerance-periodic, slowly-varying and highly-oscillating functions. 

The averaging operator is defined by the following equation: 
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where i accept values 0, 1, 2, xϵΩ, Ω is a space limited area in R, zϵΔ(x), Δ(x) = x + Δ is 

a cell with the centre in xϵR, Δ≡[-λ/2, λ/2] is the basic cell and to mark a periodic 

approximation of the gradient ∂if in Δ(x), a sign ~ is introduced. By Ω×Ξ the space limited 

area in R3 is denoted, where Ω is included in R and Ξ is included in R2, then the coordinates 

in Ω are denoted by x = x1 or z = z1 and coordinates in Ξ are denoted by ς = (ς1, ς2). 

By f the tolerance-periodic function in reference to the basic cell Δ and tolerance 

parameter δ is denoted. The function can be called the tolerance-periodic function, when 

the succeeding terms are fulfilled: 
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where i accept values 0, 1, 2 and H0(Δ) is a space of Δ-periodic functions, which can be 

square integrable.  

The function u can be called the slowly-varying function in reference to the basic cell 

Δ and tolerance parameter δ, when the function u is a tolerance-periodic function and the 

following term is executed:   

    ( )
( ), ( ) ,i i
xx u x u x      (4) 

where i accept values 0, 1, 2 and a periodic approximation of ∂iu(∙) is a constant function 

in an area of Δ(x) for every xϵΩ.  

By h the highly-oscillating function in reference to the basic cell Δ and tolerance 

parameter δ is denoted. The function can be called the highly-oscillating if this function is 

a tolerance periodic function and the following term is fulfilled:  

       ( )
( ), ( ) ,i i
xx h x h x      (5) 

where i accept values 0, 1, 2. 

3. Modelling procedures  

The tolerance averaging technique based on two main assumptions. The first assumption 

is the micro-macro decomposition, where the basic unknowns can be taken as a sum of 

the averaged part and the oscillating part, which can be expressed as a product of a known 
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fluctuation shape function and fluctuation amplitude called the new basic unknown, 

according to the following equations: 
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where wi (i = 1, 2, 3) and ϑ are called the microdisplacements and the macrotemperature, 

respectively, fluctuation amplitudes of displacements and temperature are denoted by viA 

and ψB, respectively and hA and gB are known fluctuation shape functions and have to be 

defined for each analysed case. In this note one fluctuation shape function is considered 

(A = B = 1), expressed by the succeeding equation: 
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where v1(x) and v2(x) define the share of the first and the second material in the cell. The 

proposed fluctuation shape function is a saw-like function and guarantees the continuity 

of the displacements and the temperature between the layers and between the sublayers.   

The second assumption of the tolerance modelling is the periodic approximation of kth 

derivatives of considered functions, which can be expressed using the following equations: 
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where zϵΔ(x), xϵΩ. 

To obtain the equations of the proposed models, the orthogonalization method is used, 

where approximated functions are expanding in series relative to the linear-independent 

basic functions, according to the following equations:  

0 0,  ,A B
i i iA Bu h w h v g g       (9) 

where h0 = g0 = 1, A = B = 1 (one fluctuation shape function is considered) and 

macrodisplacements, macrotemperature and fluctuation amplitudes are treated as 

unknowns parameters. Then the residuum functions for the displacements and the 

temperature were formulated in the form of following equations:  

     ,  ,u j ijkl l k i j ij i ij jC u u b k c                (10) 

and the terms which have to be fulfilled by this functions, according to the succeeding 

equations: 

       0,  0,  0,  0.A B
u h g            (11) 
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4. The model equations 

By using the main equations of thermoelasticity, the orthogonalization method, the micro-

macro decomposition assumption and a few additional assumptions of the tolerance 

averaging technique, by doing some manipulations and including the asymmetrical 

character of the fluctuation shape function, the equations of the tolerance model are 

obtained in the following form: 
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 (12) 

where the underlined terms are dependent on the microstructure parameter λ and the 

double-underlined terms, responsible for the full connection between the displacements 

and the temperature, are treated as negligibly small. 

Directly from the equations of the tolerance model, by omitting the underlined terms 

(by limit passage with λ to zero), the equations of the asymptotic model can be obtained 

in the following form: 
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 (13) 

The equations of the asymptotic-tolerance model can be obtained in two steps. In the 

first step the solution of the asymptotic model is obtained: 
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then in the second step the additional micro-macro decomposition in the form of following 

equations is used for the main equations of thermoelasticity problems:   
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where the macrodisplacements wi, the macrotemperature ϑ and the fluctuation amplitudes 

of the displacements vi and the temperature ψ are assumed as known functions, riA and χB 

are the additional fluctuation amplitudes of the displacements and the temperature, 
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respectively, fA and dB are new known fluctuation shape functions. Then the additional 

equations were obtained: 
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which with the equations of the asymptotic model are treated as  the asymptotic-model 

equations, where f = fA, d = dB. 

The equations of these three models can be used in the analysis of some specific cases, 

where the distribution of the ingredients is functional, but non-periodic. The presented 

models can be used e.g. to consider the influence of the temperature on vibrations of 

laminated layer. It is possible to analyse the forced vibrations of this type of layer, caused 

by mechanical load (the stresses on the edge of this layer) only, and simultaneously by 

mechanical load and the temperature. 

The equations of presented models can be solved by using e.g. the finite difference 

method. In this method the solution is substituted by the set of functions values in nodes 

of discretized area and the derivatives of functions in nodes with appropriate coordinates 

are replaced by the differential quotients, defined in these nodes. The section along 

direction parallel to the laminas is constant, usually, and along direction perpendicular to 

the laminas the nodes have to be defined in the middle of every sublayer, between the 

sublayers and between the cells. In each of presented models the set of non-homogeneous 

discretized equations is obtained in the following form: 

   k 1 k k 1 k k 1 k1 α α α 1 α α 0,t t
         Kq Kq K q K q Q Q  (17) 

where K is a matrix of coefficients independent of time coordinate in individual equations, 

Kt is a matrix of coefficients dependent on time coordinate in individual equations, Q is a 

vector of free terms, q is a vector of unknowns order alternately at individual points and α 

is a parameter determining the approach in the context of numerical methods. The 

recommended method in similar issues is the Cranck-Nicholson method, where α is equal 

to a half.  

5. Remarks  

The tolerance modelling is a technique, which gives a possibility to replace the system of 

differential equations with non-continuous, tolerance-periodic and highly-oscillating 

coefficients, by the differential equations where coefficients are slowly-varying. These 

equations describing the behaviour of the laminated layers with functional gradation of 

properties, made of two different materials non-periodically distributed as microlaminas 

along one direction (normal to the laminas). 
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One of the most important advantages of using the tolerance averaging technique it is 

a possibility to analyse the whole structure, without necessity of analysis the problem in a 

single cell. 

By using the tolerance averaging technique the equations of three models are obtained, 

the tolerance, the asymptotic-tolerance and the asymptotic model. Two of them (the 

tolerance and the asymptotic-tolerance model) make it possible to analyse the impact of 

the microstructure size in thermoelasticity issues and the equations of these models 

describe macro- and microvibrations of considered structures. 

In the asymptotic model the influence of the microstructure size is omitted and by 

using the equations of this model only the macrovibrations can be analysed. 

The stage of further research is an analysis of the problem, described by equations with 

the full connection between the displacements and the temperature. 
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