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Abstract 

Elastic periodic structures with variable material and geometrical properties exhibit dynamic characteristics that 

are investigated in this contribution. The paper is devoted to analysis of geometrically linear vibrations of 
Rayleigh and Timoshenko beams with cross-sections and material properties periodically varying along the 

longitudinal axis. The period of inhomogeneity is assumed to be sufficiently small when compared to the beam 

length. Equations of motion in both beam theories under consideration have highly-oscillating coefficients. In 
order to derive the averaged model equations with constant coefficients for vibrations, the tolerance averaging 

approach is applied. The method of averaging differential operators with rapidly varying coefficients is applied 

to obtain averaged governing equations with constant coefficients. An assumed tolerance and indiscernibility 
relations and the definition of slowly varying function found the applied technique. Numerical results from the 

tolerance Rayleigh and Timoshenko beam model equations are compared. 
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1. Introduction 

The subject of this contribution is an investigation of linear vibrations of Timoshenko and 

Rayleigh beams with cross-sections periodically varying along the longitudinal axis. 

Equations of motion in both beam theories under consideration are described by 

differential equations with highly oscillating periodic coefficients. Governing equations 

of most of proposed averaged models neglect the effect of the microstructure size. Hence, 

in order to take into account this effect in model equations, the tolerance averaging 

technique is applied.  

The analysis of the periodic Timoshenko or Rayleigh beams is restricted to 

geometrically linear problems. Nevertheless, dynamic response analysis of simply 

supported beams under moving load is presented in [8]. Free and forced vibrations of the 
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Timoshenko beam are described in [5] by a single equation as a function of vibration 

amplitudes. 

The paper concerns the tolerance modelling method which is applied to obtain a 

mathematical model describing periodic beams behaviour by differential equations with 

constant coefficients. This approach enables analysis of the effect of the microstructure. 

Some applications of this method to various cases can be found in a series of monographs 

cf. [11, 13, 12]. Featured method deals well with geometrically nonlinear vibrations of 

beams with periodic structure, cf. [1, 2], where the model is based on the Rayleigh beam 

theory. Another non-asymptotic macro-model of micro-periodic elastic beams is proposed 

in [7] and used to solve a dynamic eigenvalue problem and steady state harmonic 

vibration. The tolerance modelling technique is used in [3, 4] to describe functionally 

graded plates with a special microstructure of an order of the plate thickness and 

functionally graded macrostructure along only one axis, respectively. Similarly, cf. [6], 

authors use above-mentioned technique in analysis of three-layered sandwich plates 

Hence, in the contribution, cf. [10], authors study linear-elastic thin plates behaviour with 

a tolerance-periodic structure in planes parallel to the plate midplane. The tolerance 

averaging procedure is also applied in [9] to derive governing equations with constant or 

slowly varying coefficients of dynamic problems for thin linear-elastic cylindrical shells 

having a periodic or almost-periodic structure. 

The main aim of this contribution is to derive equations of the linear tolerance model 

of vibrations of a Rayleigh and Timoshenko beams with a periodic structure. 

2. Governing equations of the model 

Objects under consideration are linearly elastic Rayleigh and Timoshenko beams having 

a periodically inhomogeneous structure. Cross-sections and material properties 

periodically varying along the longitudinal axis. The period of inhomogeneity is assumed 

to be sufficiently small when compared to the beam length. 

Let Oxyz be an orthogonal Cartesian coordinate system, the Ox axis coincides with the 

axis of the beam. The cross section of the beam is specified as a height and width along 

z and y, respectively. The problem is treated as one dimensional, so that in order to describe 

the beam geometry define Ω ≡ [0,L], where L stands for the beam length along x axis.  

The beam is assumed to be made of many repetitive small elements, called periodicity 

cells, each of which is defined as Δ(x) ≡ [–l/2,l/2], where l<<L is the length of the cell Δ 

and l is named the microstructure parameter. The transverse vibrations denoted by  

w = w(x,t) – for both Rayleigh and Timoshenko model cases and the slope of the deflection 

curve θ = θ(x,t) = ∂w-γ  – for the Timoshenko model case, are under consideration. When 

the shearing force is neglected, the angle of shear at the neutral axis γ = γ(x,t). Hence, the 

flexural stiffness EJ = E(x)J(x), where E stands for Young modulus, J for moment of 

inertia module, the Timoshenko shear stiffness kGA = kG(x)A(x), where k stands for the 

shear factor, G for the shear modulus, A for cross-section area, and the mass density  

ρ = ρ(x). 

Here and thereafter coefficients related to the Timoshenko beam model are denoted 

by underline, however for the Rayleigh beam model will be assumed as neglected. Thus, 
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the strain – displacement relations: the radius of curvature κ remains for both Rayleigh 

and Timoshenko beams: 

 . w  (1) 

Therefore, internal forces: the bending moment and shear force, are given respectively:  

.,  kGAQEJM  (2) 

The external damping force is assumed in the form: 

).,()(),,( txwxctxpp   (3) 

In the framework of Rayleigh and Timoshenko beam theory, strain energy function U, 

kinetic energy K and potential of external loading F defines the Lagrangian functional. 

which is given by 

,FKUL   (4) 

where: 
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The equations of motion are obtained from the extended (Woźniak et al., 2010) 

principle of stationary action A = A(w) formulated as: 
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3. Basic assumptions and introductory concepts of the tolerance averaging 

      technique 

The averaged equations of periodic beams are derived using the concepts and assumptions 

of the tolerance modelling technique, see [12]. The fundamental concepts are: the 

tolerance system, averaging operation and certain classes of functions such as tolerance-

periodic (TP), slowly-varying (SV), highly oscillating (HO) and fluctuation shape (FS) 

functions. The highest order of function derivative that can be included into a certain 

function class is denoted by α. Let Δ(x) = x + Δ, ΩΔ = {x ∈ Ω : Δ(x) ⊂ Ω} be a cell with 

its center at x ∈ ΩΔ. The averaging operator for an arbitrary integrable function f is defined 

by 
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The first of the basic assumptions is the micro-macro decomposition of the unknown 

transverse deflection and longitudinal displacement 
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New unknown macro-displacements and fluctuation amplitudes are given 

respectively: 
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The highly oscillating fluctuation shape functions (FSFs) hA and pR are proposed 

a priori for each problem under consideration. 

4. Equations of the tolerance model 

Substituting micro-macro decompositions (8) into Lagrangian (4), and averaging over an 

arbitrary periodicity cell in (7) the averaged action functional has the following form: 
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Then, we derive the system of equations for the Timoshenko beam model in (11) 
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(11) 

and Rayleigh beam model in (12) 

.0

2

,0

2

2

22







AABBA

ABBAAAA

AAAA

qhMhVhh

WhVhhWhhMhM

qVhWVhWM







 

(12) 

 



Vibrations in Physical Systems 2018, 29, 2018035 (5 of 7) 

5. Solution methods 

As an example there is considered a simply supported beam, which fragment and 

periodicity cell is shown in Fig. 1. The beam’s cross section, moment of inertia, Young’s 

modulus and mass per unit length are variable in this analysis. It is assumed that cross 

section of the beam is rectangular.  

 

Figure 1. Fragment of considered beam 

The fluctuation shape functions play important role in the analysis. These functions 

represent the oscillations of displacements in the periodicity cell. The common practice is 

to use approximate functions, defined by trigonometric sine and cosine functions. 

Transverse and longitudinal approximate l-periodic trigonometric functions are introduced 

for the symmetric periodicity cell: 
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6. Application 

The beam length is L = 1 m, shear factor k = 5/6, the mass density of the material 

ρ = 7850 kg/m3, Young’s modulus E = 210 GPa. The cross-section is rectangular. The 

saturation parameter α changes in range 0.1-0.9, section height is hR = 8 mm, hM = {4 mm, 

5 mm, 6 mm}. The number of the cells is 10. 
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7. Linear vibrations 

The first natural frequency is computed for different values of cross section height, Fig. 2. 

The frequency gap between 9th and 10th natural frequency is the largest for the α 

parameter being around 0.7. The thicker the considered beam is, the frequency gap is 

smaller. Both Rayleigh and Timoshenko results give satisfying accuracy.  

 

 

Figure 2. Section height sensitivity: Rayleigh (solid line) and Timoshenko (dashed line) 

8. Conlusions 

In this paper linear vibrations of a Timoshenko and Rayleigh beam have been presented. 

Equations of motion consists of differential equations with constant coefficients, which 

explicitly depend on the microstructure parameter. The proposed method may be 

applicable in parametric analysis of natural vibrations. The differences between Rayleigh 

and Timoshenko solutions increase with increasing cross-section height and with number 

of half-waves of considered eigenmodes.  

This contribution is supported by the National Science Centre of Poland under grant 

No. 2014/15/B/ST8/03155. 
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