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Abstract 

In phononic quasi one-dimensional structures, there is a phenomenon of a phononic bandgap (PhBG), which 

means that waves of a given frequency do not propagate in the structure. The location and size of PhBG 
depend on the thickness of the layers, the type of materials used and their distribution in space. The theoretical 

study examined the transmission properties of quasi one-dimensional structures designed using a genetic 

algorithm (GA). The objective function minimized the transmission integral and integral of the absolute value 
of the transmission functions derivative (to eliminate high transmission peaks with a small half width)  

in a given frequency range. The paper shows the minimization of transmission in various frequency bands  

for a 40-layer structure. The distribution of multilayer structure transmission was obtained through the 
Transfer Matrix Method (TMM) algorithm. Structures surrounded by water were analyzed and built of layers 

of glass and epoxy resin. 
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1. Introduction 

The beginnings of research on multilayer structures date back to the eighties of the last 

century [1, 2]. So far, the properties of multilayer structures for mechanical  

and electromagnetic waves have been analyzed [3-7]. The incident mechanical wave on 

the multilayer system propagates in it, but on each boundary of the layers there is  

a partial reflection. Due to multiple reflections and interference, the wave coming out of 

the system has different characteristics than the incident wave. For the assumed 

structure, waves of certain frequencies do not propagate through superlattice. This 

phenomenon is called phononic bandgap (PnBG). The location and size of the forbidden 

gap depends, among others, on the materials used, the thickness of individual layers, 

their distribution in space and the surrounding material [8-12]. Due to the structure, 

phononic (PnC) crystals with batch, quasiperiodic and aperiodic distribution are studied 

[6, 11, 12]. Phononic crystals can be one-, two- and three-dimensional. Various 

computational techniques are used to study the transmission properties of photonic 

crystals, such as Transfer Matrix Method (TMM) [13, 14], Finite Difference Time 

Domain algorithm (FDTD) [15-17] with Discrete Fourier Transform (DFT) [14], 
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Green’s functions [4, 5] and other. The special properties of multi-layer structures allow 

their use to noise control devices, acoustic and elastic filters, sensors, selective acoustic 

filters [18-24].  

In the work, TMM algorithm was used to determine the transmission of multilayer 

structures. The propagation of the mechanical wave in layer i is determined by  

the equation 
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where p  is the pressure of an acoustic wave, t  is a time and iv  is a phase velocity. 

In the case of a quasi one-dimensional structure, the solution to the above equation takes 

the form 
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Coefficients iA  and iB  describe respectively the wave propagating in accordance 

with the direction of propagation of the incident wave and the wave propagating in the 

opposite direction in a given layer i . The wave vector ik  of a given layer depends 

directly on the frequency f  through 

i
i

v

f
k

2
  (3) 

The transmission T  for a given frequency can be determined directly from the 

characteristic matrix   of the structure as 
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Mechanical wave propagation is described by the matrix equation (5) in which 


inP  is 

incident wave, 


inP  reflected and 

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The characteristic matrix is defined as 

outn

n

i

iiiin ,

2

,11, 







 



  (6) 



Vibrations in Physical Systems 2019, 30, 2019210 (3 of 8) 

and consists of a matrix i  describing propagation in a single layer i  for a given 

thickness id  as 
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and 1,  ii transmission matrix on the border of i  and 1i layers, where   is the mass 

density of the appropriate layer, defined by 
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The transmission properties of the structure largely depend on the distribution of 

individual material layers. The genetic algorithm (GA) is used to optimize the 

distribution of the phononic crystals structure [25, 26]. In this work, GA will be used to 

optimize the distribution of layers, and the scheme of its operation is shown in Fig. 1. 

 

Figure 1. A flowchart of genetic algorithm 
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Initially, the algorithm's work environment is initialized and a preliminary population 

is created. Then the transmission of each structure is determined using the TMM 

algorithm and the value of the objective function is determined based on the formula 
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The first normalized term is responsible for minimizing the value of the transmission 

function in a given frequency range, and the second minimizes the possibility of high 

transmission peaks with a small half width. Equation (9) was used to compare structures 

in a given population, while function (10) should be used to compare structures between 

populations. 

 
 

df
f

fT
dffTF

f

f

f

f

C  




max

min

max

min

 '  (10) 

Then a new population is built based on the sorted structures array by objective 

function and mixed (the two best structures remain unchanged), after which it undergoes 

a mutation process with a 1% chance of changing genes. Then the value of the objective 

function of the new population is determined again and the cycle is repeated. After  

a certain number of steps, the algorithm stops. 

   
100%

 
max

min
maxmax

dffT
fT

F

f

f

T   (11) 

The ratio of the transmission area filling TF  is described by equation (10). 

2. Research 

The theoretical study analyzed multilayers made of glass (layer A,  sm 4000Av , 

 3mkg 3880 A ) and epoxy resin (material B,  sm 2535Bv , 

 3mkg 1180 B ) surrounded by water (  sm 1480wv ,  3mkg 1000 w ) [7, 

27]. The objective function was minimized for four frequency bands  kHz  in the ranges 

0-5, 5-10, 10-15 and 15-20. The 40-layers structure were considered with a single layer 

thickness of 1 cm. Each population consisted of 20 structures. 
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Figure 2. The objective function values of the best individuals (without normalisation) 

for each generation for subsequent analyzed bands 

 

Figure 3. The density plots with transmission for the best individuals for each generation 

in searches for subsequent analyzed bands a) 0 kHz – 5 kHz, b) 5 kHz – 10 kHz, 

c) 10 kHz – 15 kHz, a) 15 kHz – 20 kHz 

a)                                                          b) 
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Fig. 2 shows how the function determined by equation (10) changed for the best 

structures of each generation. The value of the objective function on the graphs is 

presented on a logarithmic scale. Below 200 algorithm steps, the value of the objective 

function stabilized and the program reached the local minimum of solutions space. Small 

peaks after stabilization of the objective function were caused by the effect of the 

mutation on the entire population. Fig. 3 shows the transmission of structures with the 

lowest objective function from a given population. White means full transmission, and 

black means no transmission for a given frequency. The drawings show the evolutionary 

process and stabilization of the transmission structure after reaching the minimum of the 

objective function. 

 

 
Figure 4. Transmission for the best found structures for each band a) 0 kHz – 5 kHz, 

b) 5 kHz – 10 kHz, c) 10 kHz – 15 kHz, a) 15 kHz – 20 kHz 

Table 1. Best found structures for each band and the transmission integral for this band 

Frequency 

range 

[kHz] 

Transmission 

integral 
Best found structure 

Number  

of layers 

0 – 5 1.89 * 10-1 A26B14 2 

5 – 10 1.78 * 10-3 A7B9A9B9A6 5 

10 – 15 5.81 * 10-6 A6B5A6B5A7B5A6 7 

15 – 20 7.30 * 10-8 A3B3A4B3A4B4A4B4A4B3A4 11 
 

Fig. 4 presents transmission charts for structures with the minimum objective 

function value determined using a genetic algorithm. All graphs had high transmission 

peaks, but except for Fig. 4a, they had a low half width value. Table 1 shows the 

simplified notation of the structures found for the given bands (the value of subscript is 

the number of the layer repeats). It should be noted that the transmission integral  

a)                                                          b) 
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in subsequent bands significantly decreases when the number of layers in the structure 

increases. The total structure thickness was constant for all cases. 

3. Conclusions  

The paper shows that it is possible to use a genetic algorithm to search for multilayer 

structures with given transmission properties. The algorithm allowed to find multilayer 

structures built of glass and epoxy resin for four frequency bands where the objective 

function was to reduce transmission and eliminate high transmission peaks with a small 

half width. Such structures can be used as mechanical wave filters and noise control 

devices.  

In the work, finding the optimal assumed structure took less than 200 iterations of the 

algorithm. The higher the band the smaller the transmission integral in the analyzed 

frequency range. The high value of the transmission integral for a band below 5 kHz 

results from the fact that the structure is thin compared to the wavelength of  

the propagating mechanical waves in this frequency range. For higher frequency bands, 

the number of layers of the found structure increased. 

It is planned to verify the obtained data by using 4 microphones impedance tube. 
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