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Abstract  

This paper concerns a substitute model of the metal-elastomer vibroinsulator that can find use in the 

mathematical description of vibration machine suspensions. In the case of a plane system, the flexibility matrix 

of the vibroinsulator was derived and two typical configurations of machine suspensions: symmetrical and 
asymmetrical, were analysed. For the case of a spatial motion, the elastic matrix of the vibroinsulator and the 

method of determining its elements was specified. Due to the non-linear character of the vibroinsulator's work, 

which is caused by large deformations of elastomeric elements under static loads, the analysis was limited to 
the surroundings of the work point and linear model. The results of theoretical analyses were confirmed by 

experimental tests. 
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1. Introduction 

Due to the character of their work, vibratory machines are based on elastic elements. This 

type of elements can include e.g.: helical springs, parallel leaf-springs, rubber connectors 

or metal-elastomer vibroinsulators. The last ones, are different from the others, due to their 

more complicated construction and operation character [1,2]. Strong couplings between 

the directions of the movement, make it impossible to easily discern fixed axes of 

operation, as for example in the case of helical springs. Such an element, even under an 

influence of a constant force, deforms in a complex way by taking a spatial shape. The 

proper mathematical description of the vibroinsulators is fundamental for a proper 

description of the machine operation, mainly due to the natural frequencies of the machine 

- suspension system. They perform a key role in the synchronization process of the inertial 

vibrators [3,4], as well as in the transition states associated with the start-up and run-down 

of the machine [5,6,7]. The energy loss in the element during its long term continuous 

running is also significant. 

 This paper takes on the task of formulating such model. The basic criterion for the 

model was to represent the properties of the element in the form of a discrete model that 

includes the elasticity of the element. The model should be simple enough to provide an 

engineering method to determine its physical parameters. The elastomer, which is the 

active part of a vibroinsulator, is generally subjected to two kinds of deformation: a strong 

one, caused by a static load of the machine and a small one, related to the machine 

vibrations. The first, may introduce elastomer into the non-linear work, while the second 

causes the virtually linear work.  



Vibrations in Physical Systems 2020, 31, 2020204  (2 of 13) 

In this paper the linear model of the vibroinsulator, which is limiting itself to working 

around the static deflection point of the element, was adopted. This is a widely used 

approach, related to the linearization of non-linear force-displacement characteristics of 

the element in the work point area. The force-displacement characteristics may be 

determined using the finite element method implementing hyperelastic materials. After 

determining the appropriate gradients, it is possible to determine the elasticity matrix. This 

matrix describes the vibroinsulator by 36 coefficients and allows to model its operation in 

a spatial motion. With an engineering drawing of the vibroinsulator (usually provided by 

the manufacturers), and an elastomer model (linear, nonlinear) the process of determining 

the matrix coefficients can be algorithmized. 

A very important issue is a system in which vibroinsulators work. The parameters of 

the elastic matrix of a single vibroinsulator do not easily convert into the parameters of 

the elastic matrix of the suspension system. Therefore, in the first part of the paper the 

analysis of two typical configurations of metal-elastomeric vibration insulators - used in 

vibration machine suspensions - was performed.  

The results of the theoretical analyses were compared with the results of laboratory 

measurements and with the parameters presented in the manufacturer's catalogue. 

2. Model of the metal-elastomer vibroinsulator in a plane system 

A typical metal-elastomer vibroinsulator is shown in Fig. 1. It consists of metal arms and 

fixing elements, connected with each other by elastomeric inserts. The construction of the 

vibroinsulator in the form of an oscillating pantograph allows for a high deflection under 

load. It causes a low natural vibration frequencies of the vibro-insulated mass and 

therefore a high vibration efficiency. In turn, the great lateral stability of the 

vibroinsulators prevents lateral fluctuations of the vibro-insulated mass that occur e.g. 

during passing through resonance frequencies (so characteristic of helical springs [8]). Fig. 

2 shows the model of the vibroinsulator corresponding to Fig. 1. It consists of four arms 

connected by joints exposed to angular springs which represent elastomeric inserts. The 

upper arm, with which the vibroinsulator is attached to the body of the machine, is loaded 

with force and the moment of force. 

For the system formulated in this way, the equilibrium conditions between the 

extortion and the angular movements of the vibroinsulator arms can be presented in the 

form of a relation (1.a-d). 
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Figure 1. Photography of the vibroinsulator Figure 2. Model of the vibroinsolator 

 

𝑘𝜑(2 ∙ 𝛿𝜑1 + 𝛽) = 𝑎 ∙ (𝑃𝑥 ∙ sin𝜑1 + 𝑃𝑦 ∙ cos 𝜑1) (1.a) 

𝑘𝜑(𝛿𝜑1 + 2 ∙ 𝛽 − 𝛿𝜑2) = −𝑑 ∙ (𝑃𝑥 ∙ cos 𝛽 + 𝑃𝑦 ∙ sin 𝛽) (1.b) 

𝑘𝜑(2 ∙ 𝛿𝜑2 − 𝛽 + 𝛿𝜑3) = 𝑎 ∙ (𝑃𝑦 ∙ cos𝜑2 − 𝑃𝑥 ∙ sin𝜑2) (1.c) 

𝑘𝜑(𝛿𝜑3 + 𝛿𝜑2) = 𝑀 (1.d) 

  

These relations lead to: 

 

[

𝛿𝑥𝑝

𝛿𝑦𝑝

𝛿𝜑3

] = [

𝑑11 𝑑12 𝑑13

𝑑12 𝑑22 𝑑23

𝑑13 𝑑23 𝑑33

] [
𝑃𝑥

𝑃𝑦

𝑀

] (2) 

  

𝑑11 =
6𝑎2sin⁡(𝜑2)2+6𝑎𝑑 cos(𝛽) 𝑠𝑖𝑛(𝜑2)+2𝑑2cos⁡(𝛽)2

𝑘𝜑
 (2.a) 

𝑑12 = −
(2𝑎2 cos(𝜑2)−3𝑎𝑑 sin(𝛽)) sin(𝜑2)+𝑎𝑑 cos(𝛽) cos(𝜑2)−2𝑑2 cos(𝛽) sin(𝛽)

𝑘𝜑
 (2.b) 

𝐷13 =
4𝑎 sin(𝜑2)+2𝑑 cos(𝜑2)

𝑘𝜑
 (2.c) 

𝑑22 =
2𝑎2 cos(𝜑2)2−2𝑎𝑑 sin(𝛽)cos(𝜑2)+2𝑑2 sin(𝛽)2

𝑘𝜑
 (2.d) 

𝑑23 = −
2𝑎 cos(𝜑2)−2𝑑 sin(𝛽)

𝑘𝜑
 (2.e) 

𝑑33 =
4

𝑘𝜑

 (2.f) 

in which [D] represents the flexibility matrix of the vibration insulator. The inverse 

matrix 

[𝐾] = [𝐷]−1 (3) 

shows the elastic matrix and it can be used to determine the potential energy of 

the vibroinsulator. 

The main difficulty in the practical application of this model is the lack of knowledge 

of the angular coefficient kφ. In general, the technical documentation provided by the 

producer includes the averaged values of linear elastic coefficients (for vertical and 
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horizontal direction) and the natural vibration frequency range of the vibro-insulated mass. 

Without proper relations, such values do not allow for a mutual conversion of coefficients. 

In addition, the matter is further complicated by the non-linear character of the elastic 

coefficients depending on the load value [9]. 

Figures 3 and 4 show the results of the compression process in the vertical axis of the 

ROSTA ABI 15 vibroinsulator. The vertical displacement of the upper mounting plane of 

the vibroinsulator was determined within a range from 0 to 0.048 m, which corresponded 

to the full range of its work. The courses of forces and moments of the vibroinsulator's 

impact with fixation have linear waveforms, and the characteristic of the force Fz 

corresponds to the almost linear characteristic of the vibroinsulator presented in the 

manufacturer's catalogue. 

 

 

Figure 3. Model of the vibroinsulator in finite elements 

a) b) 

  
Figure 4. Dependence of reaction forces (a) and the moment of forces M 

 (b) of the static deflection ∆𝑧 

With the force-deflection characteristics the elastic matrix coefficients can be 

determined by calculating the derivatives related to their slope. The results of such an 

operation are: 𝑘22 ≅ 4.0 kN
m⁄ , 𝑘12 ≅ 0.09 kN

m⁄ , 𝑘23 ≅ −0.10 kNm
m⁄  . 
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Due to relation (3), the coefficients of the matrix of elasticity expressed in analytical 

form can be compared with those obtained from the numerical analysis. In this way, the 

coefficient  𝑘22 can be related to the angular elasticity coefficient kφ by relation (4). 

𝑘22 =
2𝑎 sin𝜑2 (𝑎 sin𝜑2 + 𝑑 cos 𝛽) + 𝑑2 cos 𝛽2

(2𝑎4 cos 𝜑2
2 + 𝑎2𝑑2 sin 𝛽2) sin𝜑2

2 + 𝑎2𝑑 cos𝜑2
2 cos 𝛽 (2𝑎 sin𝜑2 + 𝑑 cos 𝛽)

∙ 𝑘𝜑 (4) 

 

 Based on dependence (4), the 𝑘𝜑 coefficient was determined for the ABI 15 

vibroinsulator. It reached 0.37 Nm/°. This value allowed to identify the element which 

builds up the vibration insulator (15x40 ‘Rubmix 10’) and to correct the kφ value 

according to the static load.  

The corrected value equivalent to 140 N load is set at 0.55 Nm/° and was used in the 

calculations in Chapter 3. 

3. Suspensions of vibratory machines. Plane systems 

Metal-elastomer vibroinsulators can be used in suspensions of vibratory machines in two 

ways: symmetrically (Fig. 5a) or asymmetrically (Fig. 5b). Due to the presence of 

mutual couplings, the systems are described by different equations. It should lead to a 

different behavior of the system. In order to check the differences between them, both 

systems were analyzed in more detail. 

a) 

 

b) 

 
Figure 5. Symmetrical system (a). Asymmetrical system (b). xC, yC – coordinates of 

center of mass, α – rotation of the body 

 

The potential energy accumulated in the vibroinsulator described by the matrix 

of elasticity [K] can be noted in the form of a relation: 

 

⁡𝑉 =
1

2
[𝛿𝑥𝑝 𝛿𝑦𝑝 𝛿𝜑3] [

𝑘11 𝑘12 𝑘13

𝑘21 𝑘22 𝑘23

𝑘31 𝑘32 𝑘33

] [

𝛿𝑥𝑝

𝛿𝑦𝑝

𝛿𝜑3

] =
1

2
𝑘11𝛿𝑥𝑝

2 +
1

2
𝑘22𝛿𝑦𝑝

2 +

+
1

2
𝑘33𝛿𝜑3

2 + 𝑘12𝛿𝑥𝑝𝛿𝑦𝑝 + 𝑘13𝛿𝑥𝑝𝛿𝜑3 + 𝑘23𝛿𝑦𝑝𝛿𝜑3 

(5) 

 

In the case of a symmetrical system, it will take the form: 

𝑉𝑠𝑦𝑚 =
1

2
𝑘11𝑥1

2 +
1

2
𝑘22𝑦1

2 +
1

2
𝑘33𝛼

2 + 𝑘12𝑥1𝑦1 + 𝑘13𝑥1𝛼 + 𝑘23𝑦1𝛼 +

+
1

2
𝑘11(−𝑥2)

2 +
1

2
𝑘22𝑦2

2 +
1

2
𝑘33(−𝛼)2 + 𝑘12(−𝑥2)𝑦2 + 𝑘13(−𝑥2)(−𝛼) +

𝑘23𝑦2(−𝛼) 

(6) 
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and in the case of an asymmetrical system, the form: 

 

𝑉𝑎𝑠𝑦𝑚 =
1

2
𝑘11𝑥1

2 +
1

2
𝑘22𝑦1

2 +
1

2
𝑘33𝛼

2 + 𝑘12𝑥1𝑦1 + 𝑘13𝑥1𝛼 + 𝑘23𝑦1𝛼 +

+
1

2
𝑘11𝑥2

2 +
1

2
𝑘22𝑦2

2 +
1

2
𝑘33𝛼

2 + 𝑘12𝑥2𝑦2 + 𝑘13𝑥2𝛼 + 𝑘23𝑦2𝛼 

(7) 

where: 

𝛿𝑥1 = 𝛿𝑥𝑐 − ℎ ∙ 𝛿𝛼 (8.a) 

𝛿𝑦1 = 𝛿𝑦𝑐 + 𝑏 ∙ 𝛿𝛼 (8.b) 

𝛿𝑥2 = 𝛿𝑥𝑐 − ℎ ∙ 𝛿𝛼 (8.c) 

𝛿𝑦2 = 𝛿𝑦𝑐 − 𝑏 ∙ 𝛿𝛼 (8.d) 

Based, for example, on the Lagrangian method of II kind, it is possible to determine 

dynamic motion equations for both cases [10]. On their basis, frequencies and forms of 

natural vibrations were determined. For parameters of the laboratory stand shown in Fig. 

6: m = 59 kg, JC = 6.26 kgm2, b = 0.4 m, a = 0.08 m, d = 0.025 m, h = 0.15 m, the 

system's characteristic equation is as follows: 

– for a symmetrical system: 

−[
59 0 0
0 59 0
0 0 6,26

]𝜔2 + [
2,85 ∙ 104 0 −5,57 ∙ 103

0 2,38 ∙ 104 0

−5,57 ∙ 103 0 5,65 ∙ 103

] = 0 (9) 

– for asymmetrical system: 

−[
59 0 0
0 59 0
0 0 6,26

] 𝜔2 + [
2,85 ∙ 104 0 −5,57 ∙ 103

0 2,38 ∙ 104 8,68 ∙ 102

−5,57 ∙ 103 8,68 ∙ 102 4,96 ∙ 103

] = 0 (10) 

 

The natural frequencies (eigenvalues in Hz) and the corresponding eigenvectors [11] are 

respectively: 

– for the symmetrical system: 

[
2.91 0 0
0 3.20 0
0 0 5.16

]Hz 𝑉𝑠𝑦𝑚 = [
−0.116 0 −0.059

0 0.130 0
−0.182 0 0.356

] 

 

– for the asymmetrical system: 

[
2.77 0 0
0 3.21 0
0 0 4.95

]Hz 𝑉𝑎𝑠𝑦𝑚 = [
−0.108 0.030 −0.067
⁡⁡⁡⁡0.030 0.126 0.009
−0.205 0.025 0.342

] 

 

As we can see, the differences between the natural frequencies, although they exist, 

are small and practically irrelevant. The comparison of the natural frequencies with the 

results of experimental measurements is similarly good. The following results were 

obtained for four measurement series: 
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– for the symmetrical system: f0(horizontal) =2.88 Hz and f0(vertical) = 3.15 Hz 

– for the asymmetrical system: f0(horizontal)= 2.98 Hz and f0(vertical) = 3.21 Hz 

 

 
Figure 6. Photograph of the research stand. The suspension system based on AB 15 

vibroinsulators 

4. The potential energy of a spatial vibroinsulator 

The potential energy of a spatial vibroinsulator in the work point can be expressed by 

a relation: 

𝑉 =
1

2

[
 
 
 
 
 
𝛿𝑥𝑃

𝛿𝑦𝑃

𝛿𝑧𝑃

𝛿𝜑𝑥

𝛿𝜑𝑦

𝛿𝜑𝑧]
 
 
 
 
 
𝑇

[
 
 
 
 
 
 
𝑘11 𝑘12 𝑘13 𝑘14 𝑘15 𝑘16

𝑘12 𝑘22 𝑘23 𝑘24 𝑘25 𝑘26

𝑘13 𝑘23 𝑘33 𝑘34 𝑘35 𝑘36

𝑘14 𝑘24 𝑘34 𝑘44 𝑘45 𝑘46

𝑘15 𝑘25 𝑘35 𝑘45 𝑘55 𝑘56

𝑘16 𝑘26 𝑘36 𝑘46 𝑘56 𝑘66]
 
 
 
 
 
 

∙

[
 
 
 
 
 
𝛿𝑥𝑃

𝛿𝑦𝑃

𝛿𝑧𝑃

𝛿𝜑𝑥

𝛿𝜑𝑦

𝛿𝜑𝑧]
 
 
 
 
 

 (11) 

where: 𝛿𝑥𝑃 , 𝛿𝑦𝑃 , 𝛿𝑧𝑃 , 𝛿𝜑𝑥 , 𝛿𝜑𝑦 , 𝛿𝜑𝑧 describe the displacement coordinates of the 

unrestrained end (P) of the vibroinsolator, Fig. 7. 

a) 

 

b) 

  

Figure 7. Model of a spatial spring. a) Coordinates and forces b) The orientation of the 

coordinate system used in the FEM analysis. In the figure, vibration isolator AB-D 18 

Based on the methodology presented in Chapter 2, we determined selected coefficients 

of the elastic matrix of the AB-D 18 vibroinsulator.  The value of the static deflection of 

the vibroinsulator was set at 16 mm, which is equivalent to one of the laboratory test loads. 
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On the basis of simple geometrical relations, the inclination angles of the vibroinsulator's 

arms φ1 = φ2 = 26.7° and the corresponding rotation Δφ = 18.3° were determined. On the 

basis of the catalogue characteristics kφ = f(Δφ), Table 1, the coefficient of angular 

elasticity of the element 18x50 forming the vibration insulator was determined. It 

amounted to 1.16 Nm/°. 

Table 1. Catalogue data of ROSTA components [12] 

Elament 

Nominal 

size x 

Length 

Torque 

Md [Nm] 

angle ±𝛼° 

Cardanic 

Mk [Nm] 

angle ±𝛽° 

Radial Axial 

Deflection 

sr 

Load 

Fr 

Deflection 

sa 

Load 

Fa 

 5 10 15 20 25 30 1 [mm] [N] [mm] [N] 

18 x 30 1.9 4.5 7.5 11.0 15.0 20.6 1.6 

0.25 

400 

0.25 

80 

 50 3.2 7.5 12.5 18.3 25.0 43.4 7.0 700 160 

 80 5.1 12.0 20.0 29.3 40.0 55.0 28.0 1000 300 

 

Based on the relation (4), for a = 0.3 m b = 0.5 m the value of  

𝑘33 = 86.6⁡ kN m⁄     (12) 

(k22 in formula (4) corresponds to k33 in the elastic matrix. Such determined coefficient 

became the basis for the calibration of the Young's modulus in the FEM model. In this 

way, the modulus E = 1.67 MPa - corresponding to the elasticity of the elastomer at the 

point of its work - is determined. Fig. 8 shows the courses of forces and moments of forces 

during one-directional deformation of the vibroinsulator in Y direction, transverse to the 

proper working plane.  
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a) b) 

  
Figure 8. Courses of forces (a) and moments of forces (b) of the vibration insulator at 

the point of work, as a function of displacement Δy 

 

Based on the characteristics slope angle, the following values were determined: k12 = 182 

N/m, k22 = 49.7 kN/m, k23 = -173.5 kN/m, k24 = -3.4 kNm/m, k25 = 39.8 Nm/m, k26 = -5 

Nm/m. The remaining coefficients can be determined analogically by assigning shifts to 

individual coordinates 𝛿𝑥𝑃 , 𝛿𝑧𝑃 , 𝛿𝜑𝑥, 𝛿𝜑𝑦 , 𝛿𝜑𝑧 . 

In order to verify the correctness of the taken approach, experimental tests were carried 

out to confirm the value of the transverse elasticity coefficient k22. 

5. Experimental determination of the quasi-static lateral characteristics of AB-D 18 

vibroinsulator 

The test of the lateral stiffness of vibroinsulators was carried out on a test stand prepared 

for this purpose. The two tested vibroinsulators were placed in a frame made of Bosh-

Rexroth strut profiles 45x45L, as shown in Fig. 9a. The tested vibroinsulators were 

connected in series with four screws. A steel plate was placed between the thrust surfaces. 

The overhanging part of the plate was then fixed in the holder of the HT-2402 testing 

machine (Fig. 9b). The external vibroinsulator bases were also attached to the frame with 

four screws. This system was fixed in the testing machine and by moving the holder, which 

holds the mounting plate, lateral oscillations of the vibroinsulators were forced. The lateral 

stiffness of the two vibroinsulators was thus measured under the conditions of double-

sided clamping. Such attachment method reflects well the operating conditions of 

vibroinsulators where the machine vibrates in accordance with their working plane. 
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a) 

 

b) 

 
Figure 9. a) Tested system of two vibroinsulators at three different preloaded values. 

b) Test stand with attached tested system 

 

During a single test, the machine's actuator, connected to the vibroinsulators system, 

performed 5 cycles of reciprocating motion with an amplitude of 8 mm. The speed of 

movement of the executive element was 25 mm/min and the sampling frequency was 0.1 s. 

The tests were performed for three different values of static deflection as shown in Fig. 

10a. The L dimension determines the total height of the two vibroinsulators system 

including the mounting plate. The height of a single unloaded vibroinsulator was 

A = 137 mm. The tests were carried out for the following values of the total system height: 

L = 277 mm (preloaded shock absorbers: ΔA = 0), L = 261 mm (pre-bent absorbers, 

single shock absorber deflection is ΔA = 8 mm) and L = 245 mm (pre-bent absorbers, 

ΔA = 16 mm). The manufacturer states that the maximum pre-sagging value of a single 

vibroinsulator is 25 mm. 

Fig. 10a shows examples of test results of vibroinsulators without a preload. We can 

see that the system response to extortion stabilizes relatively quickly and the results for all 

five cycles are very similar. The result of the tests also indicates small damping properties 

of the system at the tested rate of the actuator displacement. 

In order to determine the quasi-static lateral stiffness of the vibroinsulators, tested 

under the conditions of bilateral restraint, the results of the fifth load cycle were used for 

each of the three pre-deflection values defined by dimension L. Fig. 10b presents the 

summary results of the lateral force-displacement courses obtained during the fifth load 

cycle for all three pre-deflection values. 
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a) b) 

  
 

Figure 10. a) Response of tested system without preload  

(L = 277 mm) to lateral force - recording all five load cycles  
b) Summary of the fifth load cycle for all three values of ΔA 

 

Based on the results presented in Fig. 10b, the linearized stiffness of a single 

vibroinsulator k22 and the energy dissipation coefficient , defined as the quotient of the 

energy dissipated for the entire load cycle to the maximum elastic energy, were 

determined. The obtained values are presented in Table 2. 

 

Table 2. Lateral stiffness and the energy dissipation of vibroinsulators 

 ΔA = 0 ΔA = 8 [mm] ΔA = 16 mm 

k22 [N/mm] 51.6 53.1 58.5 

  0.4 0.45 0.56 

 

Analyzing the results, it can be seen that with the increase of the static deflection of 

shock absorbers, their lateral stiffness as well as their energy dissipation coefficient are 

increasing. 

6. Conclusions  

The paper presents theoretical models and tests of metal-elastomer vibration insulators 

used in suspensions of vibratory machines. In the case of a vibroinsulator with the structure 

of a pantograph, operating in a plane system, the substitute model was proposed and on its 

basis the elements of the flexibility matrix were determined. The matrix became the 

starting point for determining the potential energy of the vibroinsulator. On these basis, it 

is possible to determine the forces of the interaction or include it in the case of construction 

complex systems in the Lagrange function. Two typical configurations of vibroinsulators 

used in machine suspensions were analyzed: symmetrical and asymmetrical, and 

differences between them were shown. There were presented the numerical analyses based 
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on the finite element method, on the basis of which the coefficients of elasticity matrix of 

the vibroinsulator can be directly determined and combined with the parameters of the 

substitute model. Experimental tests, based on the natural vibration frequencies of the 

machine, confirmed the high compatibility of theoretical calculations and experimental 

tests.  

In the case of a spatial system, the potential energy of a vibration insulator is expressed 

by means of the 36-element elastic matrix. The matrix coefficients could be determined 

on the basis of force-displacement characteristics determined for a given static load. Due 

to the lack of material parameters in the technical documentation, necessary to perform 

numerical tests based on the finite element method, the authored method to determine the 

substitute Young's modulus of an elastomer, was developed. For this purpose, analytical 

relations derived for the model of the substitute vibroinsulator and angular elasticity 

characteristics of the part available in the manufacturer's catalogue were combined. 

Experimental tests for verifying the theoretical model have confirmed its usefulness. 

For comparison of the transverse elasticity coefficient of a vibration insulator, the error 

below 16% was obtained (
58,5−49,7

58,5
). Should be noted, that the deflection values shown in 

catalogue specifications should be understood as approximate values [12]. In order to 

obtain results with lesser errors, it is necessary to use an appropriate, testified material 

model with experimentally obtained material parameters. 

The method presented in the paper allows, by means of an uncomplicated linear model 

of a vibroinsulator expressed in finite elements and calibrated on the basis of an angular 

elasticity parameter (provided by the manufacturer), to formulate the potential energy of 

the vibroinsulator as a function of motion coordinates, and therefore also to include the 

vibroinsulator in dynamic equations of movements of machines and equipment. 
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