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Abstract  

This paper concerns the free vibrations of a simply supported plate in contact with liquid on one side. The 

plate is placed into a hole of an infinite rigid wall. The analysed problem is a coupled problem of the fluid-

structure type. It is assumed that the fluid is inviscid and incompressible. The boundary integral equation is 
used for describing the hydrodynamic pressure. The plate equation is formulated in the form of two harmonic 

equations. The surface of the plate is discretized using triangular curvilinear 6-node elements of the membrane 
type. These elements are simultaneously the finite elements for the plate and the boundary elements for the 

liquid. Numerical examples of the free vibrations of circular and rectangular plates are considered and are 

compared with analytical and analytical-numerical solutions. 
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1. Introduction 

This paper presents the vibration analysis of a simply supported plate in contact with 

liquid on one side. The plate is placed into a hole of an infinite rigid wall. The vibrating 

plate induces vibrations of the surrounding fluid which in turn generate additional inertia 

forces due to the fluid mass. The analyzed problem is a coupled problem of the fluid – 

structure type. Such a problem arises for example in the dynamic analysis of localized 

vibration of ships, submarine hull vibrations, and vibration of liquid containers. This 

problem is solved by analytical and numerical methods, such as the finite element 

method (FEM) and the boundary element method (BEM). 

The aim of this paper is to present a numerical method for the solution of the free 

vibration problem for a simply supported plate interacting with liquid by using 

membrane curvilinear elements. These elements are simultaneously the finite elements 

for the plate and the boundary elements for the liquid. The novelty in this paper is the 

analysis of a simply supported plate by means of curvilinear membrane elements.  

A similar problem like the one analyzed here was studied in papers [1, 2] in which free 

vibrations of circular and rectangular plates were considered by using analytical and 

analytical-numerical methods. 
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2. Problem formulation 

The plate of any shape is supported in an infinite baffle and is in contact with liquid on 

one side (see Figure 1). 

 
Figure 1.  A plate in contact with liquid 

 

The governing differential equation of the plate subjected to lateral loads p is 

𝐷∇2∇2𝑤 = 𝑝,                                                (1) 

where ∇2=
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2,  𝐷 = 𝐸ℎ3/12(1 − 𝜐2) is the flexural rigidity of the plate;  

𝜐 and E are Poisson’s ratio and Young’s modulus, respectively. 

 In the case of simply supported plates, the boundary conditions permit the 

uncoupling of the equation (1) into two harmonic equations (see: e.g. [3]). 

∇2𝑀 = −𝑝, (2) 

∇2𝑤 = −
𝑀

𝐷
, (3) 

where 𝑀 =
𝑀1+𝑀2

1+𝜈
  is the so-called moment-sum, M1 and M2 are the bending moments in 

x1 and x2 directions, respectively. 

It is interesting to note that equations (2) and (3) have a form similar to that of the 

differential equation of the membrane. In the analyzed problem, the lateral loads 

𝑝(𝑥1, 𝑥1, 𝑡) take the following form 

𝑝(𝑥1, 𝑥1, 𝑡) = −𝜇
𝜕2𝑤(𝑥1, 𝑥1, 𝑡)

𝜕𝑡2
+ 𝑝ℎ(𝑥1, 𝑥1, 𝑡), (4) 

where  is the plate unit mass, and 𝑝ℎ(𝑥1, 𝑥1, 𝑡) is the hydrodynamic pressure. 
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The liquid is assumed to be inviscid, incompressible and irrotational. Then, the liquid 

motion may be defined by a velocity potential function (𝐱, 𝑡), which satisfies the 

Laplace equation 

∇2 = 0.                                                        (5) 

 The integral solution of this equation for the half-space (x30) has the form of a 

boundary integral equation. This is the Rayleigh integral equation [4] for the 

incompressible air: 

𝛷(𝑃, 𝑡) =
1

2𝜋
∫

𝜕𝛷(𝑄, 𝑡)

𝜕𝑥3
𝑠

1

𝑟(𝑃, 𝑄)
𝑑𝑆𝑄 . (6) 

The boundary condition on the surface S is of the Neumann type and is the coupling 

condition between the plate and the liquid. It is expressed by the following equation: 

𝜕𝛷

𝜕𝑥3

=
𝜕𝑤

𝜕𝑡
. (7) 

The hydrodynamic pressure acting on the surface S is expressed by: 

𝑝ℎ = −𝜌
𝜕𝛷

𝜕𝑡
, (8) 

where 𝑝ℎ = 𝑝ℎ𝑒𝑖𝜔𝑡,  is the circular frequency,  is the liquid density. 

Differentiating (6) with respect to time and using (7) and (8), we can rewrite (6) in the 

form of: 

𝑝ℎ(𝑃) =
𝜔2𝜌

2𝜋
∫ 𝑤̃(𝑄)

𝑠

1

𝑟(𝑃, 𝑄)
𝑑𝑆𝑄 , (9) 

where 𝑤(𝑄, 𝑡) = 𝑤̃(𝑄)𝑒𝑖𝜔𝑡. 

3. Numerical solution of the problem 

The analysed problem is described by one boundary integral equation (9) and differential 

equations (2), (3) and (4). 

 The finite element method is used to solve differential equations (2)-(4). The finite 

element equations are formulated by the method of weighted residuals with Galerkin’s 

criterion [5]. The solution of the boundary integral equation (9) is determined by means 

of the boundary element method [6]. The surface of the plate is discretized by using six-

node isoparametric curvilinear triangular elements. These elements are simultaneously 

the boundary elements for the liquid and the finite elements for the plate. Using the FEM 

to solve equations (2)-(4), one obtains the set of algebraic equations 

(𝐁2 + 𝐁3)𝐦̃ = −𝐁1𝐩, (10) 

(𝐁2 + 𝐁3)𝐰̃ = −
1

𝐷
𝐁1𝐦̃, (11) 

𝐁1𝐩 = 𝐁1(𝜔2𝜇𝐰̃ + 𝐩ℎ), (12) 
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where 𝐰̃, 𝐦̃, 𝐩 and 𝐩ℎ are the quantities in the element nodes forming the vectors. The 

matrices B1, B2 and B3 are constructed from the finite element matrices 𝐁1
𝑒 , 𝐁2

𝑒 and 𝐁3
𝑒 

which are expressed by: 

𝐁1
𝑒 = ∫ 𝐍T

𝑆𝑒

𝐍 𝑑𝑆𝑒 , 𝐁2
𝑒 = − ∫

∂𝐍T

∂𝑥1
𝑆𝑒

∂𝐍

∂𝑥1

 𝑑𝑆𝑒 ,   

𝐁3
𝑒 = − ∫

∂𝐍T

∂𝑥2
𝑆𝑒

∂𝐍

∂𝑥2

 𝑑𝑆𝑒 , 

(13) 

where N = [N1, ..., N6] is the matrix of element shape functions. 

The integrals (13) are computed numerically by using 7-Gauss integration points. 

 The boundary element discretization of equation (9) results in the matrix equation 

𝐩ℎ = 𝜔𝟐𝜌𝐀𝐰̃.                                                 (14) 

 

 
Figure 2.  The notation for equation (15) 

 

The elements 𝐴𝑛𝑚 of the matrix A are given by (see Figure 2) 

𝐴𝑛𝑚 =
1

2𝜋
∑ ∫ 𝑁𝑛

(𝑗) 1

𝑟(𝑚, 𝑄)
𝑑𝑆𝑄

𝑆𝑗

,

𝑒

𝑗=1

 (15) 

where 𝑁𝑛
(𝑗)

 is the interpolation function for element j specified at the nth node  

and e denotes the number of elements coincident with node n. The integrals (15) are 

computed numerically by using 25-Gauss integration points. For m=n a singularity of 1/r 

type occurs and special analytical – numerical integrations are adapted [7]. 

Inserting equation (14) into (12) and then into (10), we can obtain 

𝐁𝐦̃ = −𝜔2(𝐌𝑝 + 𝐌𝑤)𝐰̃, (16) 

where  𝐁 = 𝐁2 + 𝐁3, 𝐌𝑝 = 𝜇𝐁1 is the mass matrix of the plate, 𝐌𝑤 = 𝜌𝐁1𝐀 is the 

liquid mass matrix. 
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Now using equations (16) and (11), we can obtain 

(𝐊 − 𝜆𝐌)𝐰̃ = 𝟎, (17) 

where  𝜆 = 𝜔𝟐, 𝐊 = 𝐷𝐁𝐁1
−1𝐁  is the stiffness matrix of the plate, 𝐌 = 𝐌𝑝 + 𝐌𝑤  is the 

mass matrix of the coupled system plate and liquid. 

Equation (17) represents a generalized eigenvalue problem. The eigenvectors express the 

vibration modes of the plate and the eigenvalues  enable calculation of the natural 

circular frequencies  of the coupled system plate-liquid. 

4. Numerical results 

Based on the problem formulation given in sections 2 and 3, computer programs were 

developed. The calculations were performed for two types of plates: circular and 

rectangular. The results are compared with references [1] and [2]. In the analysis of the 

plate vibration in contact with liquid, the nondimensional added virtual mass increment, 

, (NAVMI factor) is used. This factor is described by the following equation 

𝛤 =
1

𝛽
(

𝑓𝑎
2

𝑓𝑤
2

− 1), (18) 

where fw is the natural frequency in liquid, fa is the natural frequency in vacuum,  
𝛽 = 𝜌𝑎/𝜇 is a nondimensional parameter in which  is the liquid density,  is the plate 

unit mass and a is the width for rectangular plates and the radius for circular plates. 

The NAVMI factors idea based on the hypothesis that wet made shapes are equal to dry 

made shapes. Then, the natural frequencies of free vibration in liquid, fw, can be related 

to natural frequencies vacuum, fa, by the following formula 

𝑓𝑤 =
𝑓𝑎

√1 + 𝛽𝛤
. (19) 

Example 1. The circular plate 

 The plate is discretized by 18 elements (Figure 3). The system has 31 degrees of 

freedom. The values of the NAVMI factors for the lowest four frequencies in 

comparison with the analytical solutions (Ref. [2]) are presented in Table 1.  

The agreement between the results is good. 

Table 1. NAVMI factors for simply supported circular plates ( = 0.3) 

in 00 01 10 02 

Present 0.7540 0.3349 0.2432 0.2277 

Ref. [ 1 ] 0.7554 0.3322 0.2568 0.2268 

i = number of nodal circles 

n = numbers of nodal diameters 
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Figure 3.  The discretization of a circular plate 

 

Example 2. The rectangular plate 

 The plate is discretized by 32 elements (Figure 4) for the length – to – width ratio 

a/b=1.0, 1.5 or 2.0. The system has 49 degrees of freedom. The relation of the NAVMI 

factors for the lowest three frequencies s the ratio b/a in comparison with Ref. [1] is 

given in Figure 5. The agreement of the results is good. 

 

 
Figure 4.  The discretization of a rectangular plate 
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Figure 5. NAVMI factors for simply supported rectangular plates ( =0.3):  

solid line-Ref. [1]; points – present work 

 

5. Conclusions 

A numerical method has been proposed for the determination of natural frequencies of a 

simply supported plate interacting with liquid. The hydrodynamic pressure associated 

with the plate deformation is described by the boundary integral equation. The most 

important in the boundary integral equation formulation is the reduction of 

computational dimension by one. Three-dimensional problems are solved as the two-

dimensional ones. The plate equation is formulated in the form of two harmonic 

equations, so the membrane type elements are used for calculating the plate mass and 

stiffness matrices. These membrane triangular curvilinear 6-node elements are also the 

boundary elements for the liquid. Typically, for a plate in bending each finite element 

nodal point has three degrees of freedom, but for a membrane transversally loading it has 

only one degree of freedom. Thus, the presented formulation leads to three times smaller 

numbers of unknowns. 

 The effect of the liquid on the natural frequencies of the plate is significant. For the 

higher frequencies, the influence of the liquid is less pronounced. Numerical examples of 

the free vibration of circular and rectangular plates gives good agreement with solutions 

in Ref. [1,2]. 
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