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Abstract To ensure that any time series data is appropriately interpreted, it should be analyzed with 
proper signal processing tools. The most common analysis methods are kernel-based transforms, which 
use base functions and their modifications to represent time series data. This work discusses an analysis 
of audio data and two of those transforms - the Fourier transform and the wavelet transform based on a 
priori assumptions about the signal's linearity and stationarity. In audio engineering, these assumptions 
are invalid because the statistical parameters of most audio signals change with time and cannot be 
treated as an output of the LTI system. That is why recent approaches involve decomposition of a signal 
into different modes in a data-dependent and adaptive way, which may provide advantages over kernel-
based transforms. Examples of such methods include empirical mode decomposition (EMD), ensemble 
EMD (EEMD), variational mode decomposition (VMD), or singular spectrum analysis (SSA). Simulations 
were performed with speech signal for kernel-based and data-dependent decomposition methods, which 
revealed that evaluated decomposition methods are promising approaches to analyzing non-stationary 
audio data. 
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1. Introduction 

Time-frequency analysis is an essential data processing tool for analyzing and extracting information from 
signals. Various time-frequency analysis methods decompose a signal into important time-varying 
features that describe an underlying system's intrinsic behavior, determine parameters needed to 
construct  
a system model, or confirm that the constructed model represents the actual system properly. Historically, 
Fourier spectral analysis has provided a general method for visualizing the global energy-frequency 
distributions, while spectrogram (Fourier spectral analysis in a limited time window width) is the most 
basic method to get time-frequency distribution. Fourier transform is valid under some extremely general 
conditions [1], but Fourier spectral analysis will have a physical meaning only when the analyzed system 
is linear and the data is strictly periodic or stationary [2]. Signals acquired for analysis, whether from 
physical measurements or numerical modeling, are most likely non-stationary, represent a nonlinear 
process, and the total signal span is most likely too short for proper analysis [2]. Wide-sense stationarity 
requirement is,  

𝐸𝐸(|𝑋𝑋(𝑡𝑡)2|) < ∞,

𝐸𝐸(|𝑋𝑋(𝑡𝑡)|) = 𝑚𝑚,

𝐶𝐶�𝑋𝑋(𝑡𝑡1),𝑋𝑋(𝑡𝑡2)� = 𝐶𝐶�𝑋𝑋(𝑡𝑡1 + 𝜏𝜏),𝑋𝑋(𝑡𝑡2 + 𝜏𝜏)� = 𝐶𝐶(𝑡𝑡1 − 𝑡𝑡2),

 (1) 

for all 𝑡𝑡, in which 𝐸𝐸(∙) is the expected value defined as an ensemble average and 𝐶𝐶(∙) is a covariance 
function. A less rigorous definition is for piecewise stationarity when a signal is stationary within a limited 
time span [2]. In practice, real-world data (including audio signals) is always acquired and analyzed in a 
finite and limited time span. Thus, it's not stationary [3]. Nonlinearity is an intrinsic feature of many 
natural phenomena. It is compounded with numerical models, numerical errors, or imperfection of 
measurement probes, detectors, and acquisition systems. Although linear systems can approximate real-
world processes, the previously mentioned complications can make the final data nonlinear. Therefore 
Fourier-based spectral analysis methods are of limited use and may give misleading results when non-
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stationary and nonlinear data is approximated with simpler models. There are two main reasons for that. 
First, the Fourier spectrum needs many additional harmonic components to simulate non-stationary data 
that are non-uniform globally. These components might make sense mathematically but not physically. 
Second, Fourier spectral analysis utilizes a linear combination of trigonometric functions (kernel) [2]. 
Therefore, whenever the form of the analyzed data is different than a pure sine or cosine function, the 
spectrum will contain some harmonics which are not necessarily related to an energy-frequency 
distribution of a signal. 

Audio data, such as music or speech, which are non-stationary over time, cannot be described by  
a mathematical expression or approximated by a linear system. That is why recent approaches to 
analyzing audio data involve the decomposition of a signal into different modes in a data-dependent and 
adaptive way, which may provide advantages over kernel-based transforms. The empirical mode 
decomposition (EMD) [2] is an example of such a method and has been shown to be useful in a wide range 
of signal processing applications. In particular, EMD-based methods decompose a given signal into 
intrinsic mode functions (IMFs), which carry information at varying frequency scales by detecting local 
extrema and estimating upper and lower envelopes. IMFs have well-behaved Hilbert transforms, from 
which the instantaneous frequencies can be calculated. Thus, any event in the analyzed signal can be 
localized in time and frequency axes [2]. As it will be shown, the standard EMD method suffers from some 
problems, including mode-mixing, noise sensitivity, and data sampling. Still, some modifications of EMD 
were adopted to mitigate these problems. 

2. Review of non-stationary data processing methods 

Available methods for non-stationary data processing can be generally divided into kernel-based and 
data-dependent (adaptive). Kernel-based methods have an a priori selected basis (such as trigonometric 
functions in Fourier analysis or a specific wavelet function in wavelet analysis) and assume that the 
analyzed signal is a combination of these basis functions. Data-dependent methods decompose a signal 
into a set of intrinsic mode functions. Decomposition is based on the direct extraction of the energy 
associated with various intrinsic time scales, so these methods don't make any assumptions about the 
nature of the analyzed signal.  

2.1. The spectrogram 

Classical short-time Fourier transform (STFT) extracts a time-varying representation by localizing the 
signal in time using a finite window length and applying the Fourier transform to each localized segment 
[4]. STFT can be expressed as: 

STFT{𝑥𝑥(𝑡𝑡)}(𝑡𝑡,𝜔𝜔) = � 𝑥𝑥(𝑡𝑡)
∞

−∞

ℎ∗(𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡, (2) 

where ℎ∗ is a specific window function. Since it relies on Fourier analysis and the window size is fixed, it is 
assumed that data is piecewise stationary, and the resulting analysis has a uniform time-frequency 
resolution. Furthermore, to precisely localize an event in time, the window width must be narrow, which 
on the other hand, results in poor frequency resolution. 

2.2. The wavelet analysis 

The wavelet transform [5] constructs a representation of the signal using a variable time window by 
scaling the basic wavelet function, thus creating a multiscale signal representation. Wavelet transform can 
be expressed with the following general definition: 

W(𝑠𝑠,𝑢𝑢) = � 𝑥𝑥(𝑡𝑡)
1
√𝑠𝑠

∞

−∞

𝜓𝜓∗ �
𝑡𝑡 − 𝑢𝑢
𝑠𝑠

� 𝑑𝑑𝑡𝑡, (3) 

in which 𝜓𝜓∗(∙) is the basic wavelet function that satisfies certain general conditions, namely, it is 
orthonormal, and its mean value is zero, 𝑢𝑢 is a translation of the origin (which gives a temporal time 
location of an event) and 1 √𝑠𝑠⁄  gives a frequency scale [2]. Wavelet analysis provides a uniform resolution 
for all the scales, which is the main advantage over STFT. 
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2.3. Empirical mode decomposition 

The empirical mode decomposition is an adaptive time-frequency method for analyzing and decomposing 
signals into intrinsic mode functions (IMFs), where each IMF must satisfy two conditions: the number of 
extrema must be equal or differ by one (at most) in relation to the number of zero-crossings and the mean 
value of the envelope defined by the local maxima and the envelope defined by the local minima is zero 
[2]. Each IMF component is determined as a difference between the signal and the mean of its envelope 
(average between upper and lower envelope, see Figure 1): 

𝑢𝑢𝑖𝑖 = 𝑠𝑠(𝑡𝑡) −𝑚𝑚𝑖𝑖 , (4) 

where 𝑚𝑚𝑖𝑖  is a signal's mean of the envelope. 

 
Figure 1. Average of the upper and lower envelope of the input signal. 

After the first IMF is calculated and it fulfills the previously mentioned requirements, it is subtracted 
from the input signal 𝑠𝑠(𝑡𝑡) and the whole process is repeated with residual signal 𝑟𝑟1: 

𝑟𝑟1 = 𝑠𝑠(𝑡𝑡) − 𝑢𝑢1 (5) 

Thus, the analyzed signal is decomposed into a set of 𝑛𝑛 components and the last residual 𝑟𝑟𝑛𝑛: 

𝑠𝑠(𝑡𝑡) = �𝑢𝑢𝑗𝑗

𝑛𝑛

𝑗𝑗=1

+ 𝑟𝑟𝑛𝑛 , (6) 

where 𝑟𝑟𝑛𝑛 is dc offset or general trend in the analyzed signal. 

2.4. Ensemble empirical mode decomposition 

Classic EMD suffers from some problems, including mode-mixing, i.e., the appearance of similar frequency 
information shared between different IMFs. It is particularly evident with some high-frequency content 
bursts present in the analyzed signal. 

Ensemble EMD (EEMD) attempts to overcome the mode-mixing problem by averaging the 
decomposition results over an ensemble of noisy versions of the original signal [6]. This can be seen in the 
Figure 2 where mode-mixing is almost completely reduced, but the noise remains present in IMFs, which 
can lead to various IMF realizations for the same input signal. 
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Figure 2. Mode-mixing problem of EMD is partially resolved with EEMD analysis. 

In order to overcome these problems, the CEEMDAN (complete ensemble EMD with adaptive noise) 
method was proposed in [7] and improved in [8]. The idea is that particular noise is added at each stage of 
the decomposition and a unique residue is computed to obtain each IMF mode. 

2.5. Variational mode decomposition 

The variational mode decomposition (VMD) allows adaptive decomposition of the signal into various 
modes by identifying a compact frequency support around its central frequency [9]. Thus, VMD 
decomposes a signal into a given number of modes, either exactly or in a least squares sense, such that 
each individual mode has limited bandwidth. The mode's bandwidth is estimated as the squared 𝐻𝐻1 norm 
of its Hilbert complemented analytic signal with only positive frequencies, shifted to baseband by mixing 
with a complex exponential of the current center frequency estimate. The variational problem is solved 
very efficiently in a classical ADMM approach [10]. Various applications of VMD are described, for 
example, in [9] and [11]. VMD decomposition of an example signal with three different frequencies and 
amplitudes plus noise is shown in Figure 3. 
 

 
Figure 3. VMD decomposition of harmonic signal plus noise into a set of 4 IMFs. 
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2.6. Masked and iterated masked EMD  

Some drawbacks of the EMD were briefly discussed in Sect. 2.3 and Sect. 2.4 along with a description of 
noise-assisted methods (EEMD and CEEMDAN) which alleviate these drawbacks. Noise-assisted methods 
create an ensemble of many sifts processes, each with different or the same noise injected. Then, the final 
IMFs are computed as an average across this ensemble. Still, these methods suffer from some degree of 
mode-mixing, unwanted residual noise, or splitting the signal between modes [12].  

Recently, another approach was proposed for improving EMD decomposition. Masked EMD [13] works 
by injecting a masking signal into input before sifting. This reduces mode-mixing by making the sift ignore 
signal content slower than the frequency of the masking signal [12]. With a mask, any signal content with 
frequencies much lower than the masking frequency will be ignored by the sift in that iteration and 
replaced by the mask. The mask is finally removed, which allows recovering intermittent activity correctly 
[12]. The choice of masking signals remains an area of active research, still, it remains a manual process in 
many cases. This requires experience and may introduce subjective bias [13-17]. 

The problem with the choice of masking signal was recently reduced with iterated masked EMD 
(itEMD) proposed in [12]. itEMD is a sifting method that automates the choice of mask signal frequencies 
based on the data. It can automatically identify oscillations and minimizes mode-mixing without 
specifying masking signals. 

2.7. Hilbert-Huang transform 

The Hilbert-Huang transform describes how the energy or power within a signal is distributed across 
frequency and time. It uses Hilbert spectral analysis (HSA) [2,18] as a method for examining the input 
signal's instantaneous frequency as a function of time. Thus, this transform is well suited for examining 
non-stationary data. Instantaneous frequency can be calculated with Hilbert transform, and then the 
signal can be expressed by: 

𝑠𝑠(𝑡𝑡) = 𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅 ��𝑅𝑅𝑗𝑗(𝑡𝑡)exp �𝑖𝑖 �𝜔𝜔𝑗𝑗(𝑡𝑡) 𝑑𝑑𝑡𝑡�
𝑛𝑛

𝑗𝑗=1

�, (7) 

where 𝑅𝑅𝑗𝑗(𝑡𝑡) and 𝜔𝜔𝑗𝑗(𝑡𝑡) are instantaneous amplitude and frequency, respectively. To make this analysis 
possible, the input signal needs to meet specific conditions, which are satisfied by each of the IMFs 
decomposed with EMD-based methods. The final result is a frequency-time distribution of signal 
amplitude (or energy), which permits the identification of localized features. As an example, the Hilbert-
Huang transform of the nonlinear and non-stationary signal is shown in Figure 4 below. 

  
Figure 4. Nonlinear and non-stationary synthetic signal and Hilbert-Huang transform for EMD decomposition. 

2.8. Other methods 

The synchrosqueezed transform (SST) [19] improves over the wavelet analysis by calculating 
instantaneous frequencies and "squeezing" them through a reassignment algorithm, namely, shifting them 
to the center of the time-frequency region [20]. This leads to sharper time-frequency representations than 
the STFT and wavelet analysis, which are often limited by the finite sampling lengths and can create 
spectral smearing. In addition, the sharpening essentially prunes the unnecessary wavelet coefficients, 
thus leading to a sparser representation. 

Another method is Singular Spectrum Analysis [21] which decomposes the original time series into the 
sum of a small number of independent and interpretable components such as a slowly varying trend, 
oscillatory components and a structureless noise. SSA is based on the singular value decomposition (SVD) 
of a specific matrix constructed upon the time series. Neither a parametric model nor stationarity-type 
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conditions have to be assumed for the time series. This makes SSA a model-free method and hence 
enables SSA to have a very wide range of applicability. 

Other methods are Intrinsic-Time Scale Decomposition (ITD) [22] or Fourier Decomposition method 
(FDM) [23]. 

3. Application of EMD-based methods to speech audio data 

The speech signal is generated by a complex psycho-acoustic process developed as a result of thousands 
of years of human evolution. It contains a multitude of information like the speaker's age, height, emotion, 
accent, health and physiological disorders, identity, etc., which give rise to the various fields of Speech 
Processing [24-25]. However, speech is a highly nonlinear and non-stationary signal [26], and hence 
extracting such information is not a trivial task [25,27]. EMD-based methods could reveal more 
information about speech signals than traditional Fourier and wavelet-based approach 

The analyzed signal was a letter 'A' spoken by a female and recorded at 48 kHz in 16 bits. Waveform 
and Fourier spectrum of speech signal are shown in Figure 5. STFT and wavelet analysis are shown in 
Figure 6 (left and right panel, respectively). All transforms reveal that this speech signal has fundamental 
frequency and harmonics at about 200, 400, 600, 800, 950, 1050 and 1100 Hz. However, this kind of 
analysis cannot indicate how components interact with each other or how their parameters change with 
time. 

 
Figure 5. Speech signal – female voice, letter 'A, its waveform in left panel, and FFT in right panel. 

 
Figure 6. Short-time Fourier transform (left panel) and wavelet transform (right panel)  

of speech signal (letter 'A'). 

EMD decomposition gives slightly different results, shown in Figure 7. Each decomposed mode is  
a characteristic AM-FM modulated signal, but it is clearly seen on left panel in Figure 7 that IMF1-IMF3 
represents one of the main drawbacks of the classic EMD, namely mode-mixing (the same narrow-band 
energy is contained in all three components over time). 

Ensemble EMD improves the analysis by adding some noise to each of the components before the 
sifting process. All IMFs are AM-FM narrow-band representations of the whole signal, but each 
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component's instantaneous frequency is still not stable and is smeared over a frequency range near 1kHz 
(see Figure 8). 

VMD method gives the best time-frequency resolution of decomposed IMFs, shown in Figure 9. The 
main energy is focused around 1kHz and there is evident AM-FM modulation in each component. 

 
Figure 7. EMD decomposition and HSA of speech signal (letter 'A' spoken by a female). 

 
Figure 8. EEMD decomposition and HSA of speech signal (letter 'A' spoken by a female). 

 
Figure 9. VMD decomposition and HSA of speech signal (letter 'A' spoken by a female). 

4. Conclusions 

This paper briefly describes the analysis and processing of data (speech signal as an example) from  
a nonlinear and non-stationary point of view, as opposed to the traditional short-time linear and 
stationary analysis. Audio data, such as music or speech, are inherently non-stationary over time and 
cannot be described by a mathematical expression or approximated by a linear system. This motivates 
AM-FM representation of audio data, which models audio as being constituted of an ensemble of AM-FM 
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signals.  
A speech signal is only one of many audio data that cannot be approximated with a linear model. For 
example, quantization noise is always modeled as a white noise added to the system, but it is a strictly 
non-stationary, input-dependent, and nonlinear error signal. Another example is time series data of state 
variables in all systems with feedback (modulators, adaptive filters, prediction algorithms, IIR filters) 
which are prone to changing their parameters over time. Methods based on EMD decomposition are 
naturally empirical and each approach described in a paper has some drawbacks. Thus, these kinds of 
time-frequency analysis methods remain an active research area. 

Future work will focus on the investigation of Holo-Hilbert spectral analysis (HHSA) [28], which dives 
deeper into a decomposition of signals and can reveal so far unknown information in data. HHSA has been 
successfully adopted in biomedical and neuroscience data analysis [29–32], so it could also be used in 
audio data analysis. 
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