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Abstract The study of the system composed of the inner disc and wheel rim of the 105Na type railway 
wheel, used in Polish Konstal streetcars, was aimed at determining the dynamic parameters of the object, 
such as the form and frequency of natural vibrations, and at evaluating the effectiveness of the method at 
given analysis settings. The experiment was conducted using triaxial piezoelectric transducers and a modal 
hammer with an aluminum head. A multiple-input, multiple-output (MIMO) testing approach was used 
because of the multiple excitation points and vibration measurements. A Fast Fourier Transform (FFT) of 
the measurements was performed in BK Connect software and the frequency response function (FRF) value 
waveforms were determined. The Rational Fraction Polynomial-Z method was used to extract modes from 
the frequency spectrum. In addition, the Complex Mode Indicator Function method was used, which 
resulted in the decomposition of the principal components of the FRF value matrix, allowing the 
identification of individual modes. The selection of the natural frequencies was performed on the basis of 
the obtained FRF and CMIF characteristics of the vibroacoustic response. Visualization of the form of the 
natural vibration was also performed. The result of the experiment was a set of comprehensive information 
on the modal properties of the studied object, which allowed to confirm the effectiveness of the selected 
method of analysis.   
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1. Introduction  

An objective indicator of technical condition can be the results of analysis of dynamic properties of objects, 
i.e. modal analysis. It is based on precise measurement of vibrations of the object, excited mechanically or 
electrodynamically, and allows to determine the relationship between geometry and material and technical 
condition on the basis of the values of free vibration parameters and their form [1]. The objectives of using 
modal analysis include diagnosis of the object state, synthesis of control during active vibration reduction, 
verification and validation of numerical models and, consequently, modification of the structure. As a result 
of modal analysis, a modal model is obtained, i.e. a set of natural frequencies and their forms and damping 
coefficients. This model can be obtained theoretically, by solving a numerical structural model using a finite 
element mesh, or experimentally, by measuring the values of excitations and vibroacoustic responses. In 
the case of the experimental way, the results of the measurements are digitally processed by computational 
algorithms that estimate the model parameters. The vibration excitation can be realized by means of 
exciters or modal hammers - then we speak about impulse excitation. It is possible to measure the driving 
force thanks to built-in force sensors in the hammer, and the replaceable hammer tip allows to choose the 
appropriate stiffness (which changes the local impact conditions). In addition, tuning the hammer to the 
expected frequency range by using additional mass makes it easier to excite vibrations with specific 
parameters in the system. 

Modal analysis is widely used in the diagnosis of railway vehicle components and subassemblies. 
Frequently used modal parameters in the frequency domain are the forms and frequencies of natural 
vibrations and damping coefficients corresponding to them. The analysis of the properties of the solid, its 
mass, stiffness and interaction with the environment allows to determine the resonance conditions and the 
influence of the created or propagating defects [2]. Experimental comparative studies of wheel structure 
types have shown that modal analysis for determining the frequency and form of natural vibration is an 
effective tool not only for determining the resonance conditions and damage diagnosis, but also for studying 
the vibroacoustic effects of the vehicle on its surroundings [3]. Moreover, modal analysis allows to build a 
model, which then can be tuned with the theoretical model, determined analytically. The numerical modal 
analysis of the streetcar monoblock wheel itself, was described in [4], and allowed the determination of 
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modes distinguishing the transverse, longitudinal and vertical excitations, which were related to the 
dynamics of the moving vehicle.  

The aim of the described study was to experimentally determine the dynamic parameters of the system 
of elements of a railway vehicle wheelset using the MIMO (multiple input, multiple output) method, and 
ultimately to verify the effectiveness of the selected methodology and analysis settings.  
 

2. Research methodology  

2.1. Research object 

The selected object of research was a 105Na type railway wheel, used in Polish Konstal streetcars. The 
experimental modal analysis was performed on the system of the rim and inner disc (wheel rim). Both parts 
are made of carbon steel, and there is a press fit between them. Simplifying the structure of the test object 
by removing additional elements of the wheel, such as damping inserts, bolts, and outer discs, allowed the 
elimination of secondary vibrations that could result from the interaction of parts, which could interfere 
with the measurement of parameters for the whole object.   

The BK Connect environment was used as the software for the experimental study. First, a geometric 
model had to be created to mark the locations of the applied excitations and the measurement points where 
the vibration transducers were located. Figure 1a shows the test object and Figure 1b shows the 
corresponding geometric model.  

a) 

 

b) 

 
Figure 1. (a) Real test object and (b) geometric model in BK Connect software. 

The model consisted of twelve segments, included the rim and flange, and reflected the proportions of the 
real object. However, it did not take into account the holes found in the real wheel, nor the complex 
geometry of the rolling surface, because it was intended only to locate the excitation and response points 
and define the analysis conditions, not to graphically represent the object.  

2.2. Measurement station 

It was assumed that the range of expected values of natural frequencies of the tested object is in the range 
of 1-3000 Hz. Ten triaxial piezoelectric transducers from Brüel & Kjær were used to measure the vibration 
response: four transducers type 4504 A (min. range of measured frequencies is 1-11000 Hz), three 
transducers type 4529 B (min. range of measured frequencies is 0.3-6000 Hz), two transducers type 4524 
B (min. range of measured frequencies is 0.25-3000 Hz) and one single-axis transducer type 4507 B (min. 
range of measured frequencies is 0.1-6000 Hz). All transducers met the range and sensitivity requirements.   

Three transducers were placed, every 120 degrees, on the disc near the hole (measurement points #4, 
8, 9), three on the outer plane of the rim (measurement points #3, 7), three on the rim, including a uniaxial 
measuring vibrations in the tangential direction (measurement points #1, 5, 11), and 2 on the rolling surface 
(measurement points #2, 6).  Figure 2b shows a visualization of the measurement points in BK Connect, 
against the model geometry. As a local coordinate system, the X-axis is assumed to be radial to the center of 
the wheel, the Y-axis is tangential and clockwise, and the Z-axis is vertical with an upward direction. 
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a) b) 

Figure 2. Location of measurement points (a) and location of excitation points, 
(b) against the geometric model. 

Figure 2b shows the locations of the excitation points. A total of 44 force application locations were 
selected, of which: 9 each on the rim and rim surface parallel to the disc, 10 on the rolling surface, and 12 
on the inner surface of the wheel disc rim. The choice of points depended on the location of the transducers 
(the excitations should not be too close to them) and the location of the additional holes that are in the real 
disc. At each of these points the vibrations were forced four times and the response values were then 
linearly averaged. Because of the multiple excitation and measurement points, this testing approach is 
referred to as MIMO (multiple-input, multiple-output)[5]. 

A Data Acquisition System (DAQ) consisting of three 12-channel modules from Brüel & Kjær type 3053-
B-12 was used as the measurement apparatus, which allowed vibration measurements in the range of 0-
25600 Hz. The synchronization and data transfer was made possible by PULSE Measurement System Switch 
UL-0265. 

 

Figure 3. Scheme of the measurement path. 

A Brüel & Kjær modal hammer, type 8206-002, with a sensitivity of 2.27 mV/N and a maximum driving 
force of 2200 N was used to perform controlled acoustic response excitations, a photograph of which can 
be found in Figure 4.8. An aluminum head was used, as this solution allowed vibration measurements to be 
made over the expected wide frequency range of the test.  

2.3. Measurement and signal processing methods 

By using the Fast Fourier Transform (FFT), it is possible to move from the time function, in which measurements 
are made, to the frequency function. Analysis in the time domain allows one to determine the values of the signal, 
while in the frequency domain the energy of the signal is considered, which is much more useful for describing 
structural dynamics phenomena. Thus, the signal can be analyzed from a different perspective, determining its 
components and dominant vibration frequencies and, consequently, determining the dynamic parameters of the 
object [6].  
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In the BK Connect program, FFT analysis of the measurements was performed and FRF characteristic 
waveforms were determined both for the vibrations measured by individual transducers and for the whole system. 
Table 1 shows selected values of the analysis settings. 

Table 1. Selected parameters of BK Connect analysis settings. 

Frequency range  3200 Hz 
Frequency resolution  1 Hz 

FFT lines 3200 
Averaging domain Line averaging 

Excitation time window 10 s 

In the case of two-channel analysis, i.e. when testing the vibration signal or acoustic pressure induced by a 
specific excitation, both the value of the excitation and the parameters of the obtained signal are recorded. 
The Frequency Response Function (FRF) [7] is then applied, which describes the ratio of the spectrum of 
the output signal, i.e. the vibroacoustic response to the excitation, to the spectrum of the input signal, i.e. the 
hammer force on the test object. The FRF is a mathematical, signal-independent descriptor of the system, 
which is defined by the formula: 

𝐻𝐻(𝜔𝜔) = 𝑋𝑋(𝜔𝜔)
𝐹𝐹(𝜔𝜔)

 ,      (1) 

where: X(ω) is the output signal in the frequency domain, and F(ω) – input signal in the frequency domain. 
Linearity and invariance of the model are assumed in such analyses [8]. The FRF matrix is understood as a 
frequency-domain representation of the linear structural dynamics, in which the linear spectra of the input 
signals are multiplied by the corresponding matrix elements to obtain the linear spectra of the output 
signals. This creates pairs of input and output values for successive degrees of freedom of the structure [9]. 
Depending on the nature of the noise and disturbances during the measurement, a specific estimator for 
FRF analysis is used to minimize the errors. For the case of modal hammer excitations, the H1 estimator is 
used for the noise in the output signal [10]. The value of the estimator is determined from the relation: 

𝐻𝐻1(𝜔𝜔) = 𝐺𝐺𝐹𝐹𝐹𝐹(𝜔𝜔)
𝐺𝐺𝐹𝐹𝐹𝐹(𝜔𝜔)

,        (2) 

where 𝐺𝐺𝐺𝐺𝐺𝐺(𝜔𝜔) is the cross-spectral density of the input (excitation) and output (response) signals in the 
frequency domain, a 𝐺𝐺𝐺𝐺𝐺𝐺(𝜔𝜔) describes the spectral density of its own input signal (excitation) in the 
frequency domain 

The Rational Fraction Polynomial-Z method, which is recommended for systems with many degrees of 
freedom and small disturbances [11], was used for mod estimation. It involves representing the function in 
terms of a measurable ratio of two polynomials such that the numerator and denominator values are of 
independent orders. This analytical form is numerically fitted to the FRF values obtained in the 
measurements by selecting appropriate coefficients and solving the roots of the polynomials [12], which 
allows for the extraction of the frequency and form of natural vibrations from the spectrum.  

In addition to the standard use of the FRF function, the CMIF method - Complex Mode Indicator Function 
- was also used to analyze the results. It is based on the SVD (Singular Value Decomposition) decomposition 
of the normal matrix, formed from the FRF matrix [13], for each spectral line, to raise the determined 
components (singular values) to the second power. The SVD decomposition itself consists in decomposing 
the given matrix into the product of two orthogonal matrices and one diagonal matrix, in order to reduce 
its dimension and identify the repeating values. In this way, it is possible to identify individual modes, 
determine their magnitudes, forms and damping coefficients, as well as global modal parameters [14]. 

2.4. Results  

The results of the experimental study are both FRF transition function plots, CMIF function plots, 
visualization of displacements in natural vibration forms, and correlation matrices between modes. 

The frequency spectra showing the relationship between the values of the transition function on the 
ordinate axis, expressed in units of (m/s2)/N, and the vibration frequency on the cut-off axis (in kHz) are 
presented as a "linear magnitude" visualization, which shows only the positive values of the spectrum on a 
linear scale for easy interpretation. The unit of (m/s2)/N relates to the ratio of the output signal (vibration 
acceleration, expressed in m/s2 ) to the input signal (modal hammer force, expressed in N). 
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Figure 4 shows the FRF spectrum for the total measurements (data from all transducers measured in 
the three directions were automatically averaged by the BK Connect program). The amplitude has a 
different magnitude than the spectra for individual measurement points because the FRF values depend 
directly on the hammer force, which was not constant for all measurements (so when averaging the entire 
measurement, the amplitude maintained only proportions). 
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Figure 4. FRF characteristics averaged over data from all transducers and all excitation points. 

Figure 5a shows the CMIF characteristics for the entire frequency range (and all excitation-response 
pairs), and Figure 5b shows the selected 400-600 Hz interval. The decibel scale is on the ordinate axis (the 
lack of unit is due to the nature of the CMIF function, while the notation dB/1 stands for the decibel scale 
with a reference value of 1 in the BK Connect program), and the frequency is on the cut-off axis.  

The CMIF characteristics for the whole investigated range allows to evaluate the effectiveness of the 
vibration response measurement by given transducers and, consequently, to validate the choice of 
measurement point locations. It is possible to notice which signals indicating the natural frequency forcing 
were received by given transducers. The graph allows observation of the course of the function of selected 
transducers in comparison to the remaining ones, identification of the captured modes and also noticing 
the deviation of the results for some measurement points. 

   
a) 

       b)  

  
Figure 5. CMIF characteristics for: a) the entire frequency range tested b) the selected range 400-600 Hz. 
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Plotting the CMIF values in the selected range allows noticing the recurring amplitude increase for each 
transducer for the frequency of about 525 Hz and identifying the measurement points and vibration 
measurement directions characterized by the largest increase in amplitude (in this case red and blue 
courses correspond to measurement point No. 1, located at the periphery, and measurements in tangential 
and radial directions, respectively). This distinct extreme occurring at the frequency of 525 Hz clearly 
reflects the 2nd form of natural vibrations.  

Based on the FRF and CMIF characteristics, a selection of 10 frequencies and natural vibration forms of 
the test object was made. In order to visualize the form of vibrations in BK Connect software, the 
distribution of resultant relative displacement amplitude was used (larger local displacements take 
increasingly lighter colors relative to the rest of the model). 

 

Table 2. Forms and frequencies of natural vibrations of the system under test. 

Number of mode I II III IV 

Natural Frequency f  [Hz] 11 524 904 1218 

Form of natural vibration 

    

 

Number of mode V VI VII VIII 

Natural Frequency f  [Hz] 1433 2018 2387 2495 

Form of natural vibration 

    
 

Number of mode IX X 

Natural Frequency f  [Hz] 2586 2945 

Form of natural vibration 
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Table 3 shows the damping coefficients corresponding to the selected natural frequencies. Proportional 
damping results in real modes and oscillation in phase of the degrees of freedom determined in the study 
(the nodes of the modal model where the excitation occurs and the response is measured), while otherwise 
the forms of the natural vibration take on an imaginary character and the oscillations are out of phase [15].  

 

Table 3. Damping coefficients corresponding to selected forms of natural vibration. 

Number 
of mode 

Frequency  
f [Hz] 

Damping 
coefficient c [-] 

I 11 1.966 

II 525 0.002 

III 904 0.312 

IV 1218 0.017 

V 1433 0.242 

VI 2018 0.194 

VII 2388 0.262 

VIII 2495 0.077 

IX 2586 0.093 

X 2945 0.373 

The highest damping occurs for the form with the lowest frequency, while for the other modes it does not 
exceed the value of 0.4, so it is relatively small.  

3. Interpretation of results 

In the studied range of 0-3000 Hz, 10 forms of natural vibration were determined from the FRF and CMIF 
characteristics with frequencies: 11, 525, 904, 1218, 1433, 2018, 2388, 2495, 2586 and 2945 Hz, with the 
highest averaged vibration acceleration amplitudes corresponding to the bands fII=525 Hz, fIV=1218 Hz, 
fV=1433 Hz and fIX=2586 Hz. The density of the natural frequency bands occurs in the second half of the FRF 
spectrum, particularly in the 2000-2600 Hz range. The FRF makes it possible to determine the dominant 
frequencies, while the CMIF characteristics represent which transducers best picked up the signals 
indicative of the modes, making it possible to accurately identify the locations of the measurement points 
most sensitive in determining the dynamic parameters of a given test object. The transducers located on the 
flange and rolling surface best measured the vibration response to the vertical forcing, which was likely 
related to the damping of the disc vibration by the support.  

Some of the determined natural vibration forms take very large local relative displacements. Especially 
modes I, II, IV and X show the greatest susceptibility to impulsive forcing and involve the structure of the 
whole object.  Modes V and VI are characterized by displacement in the area close to the disc bore edge, and 
mode VIII concerns mainly the rim.  

Except for the form of natural vibration with the lowest frequency, the dimensionless damping 
coefficients reached low values.  

4. Conclusion  

The aim of this work was to determine the frequency and form of natural vibrations of the wheel rim-disc 
system, used in Polish Konstal 105Na streetcars, by means of experimental modal analysis using the MIMO 
assumption.  In order to identify dynamic parameters of the research object, it was necessary to extract 
modes from the vibration spectrum using the CMIF method. It allowed the decomposition of FRF matrix and 
obtaining the information about the recurring data indicating the occurrence of free vibrations. The 
experiment also required making a geometric model in the BK Connect program and determining its 
degrees of freedom, as well as the excitation points (locations of modal hammer impacts) and response 
measurement points (locations of attachment of piezoelectric vibration transducers). After the analysis of 
FRF and CMIF characteristics of measurement results, 10 forms of natural vibrations were selected, which 
differ in amplitudes and areas of vibration displacement and damping coefficients.   
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Modal analysis allows to identify dynamic properties of the object in an effective and reliable way, both 
for the assessment of its technical condition, but also to determine the operating conditions. In the case of 
rail transport, the operating conditions influence the wear rate of the components, the comfort of the travel, 
and consequently also the traffic safety. 
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