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Abstract In the case of the piezoelectric actuators of the cube-shaped installed symmetrically and perfectly 
bonded on both external surfaces of the plate-like structures, the symmetric and shear horizontal elastic 
wave modes are excited at the same time. The current work concerns the numerical simulation of the 
coupling of the above-mentioned elastic wave modes in a composite plate of angle ply configuration. In the 
first step, the dispersion curves for all studied composite configurations are estimated. Next, for the 
arbitrary chosen fixed frequency of the excitation, finite element simulations are performed. As a result of 
these simulations, the group velocities of the observed elastic modes are estimated. Next, the appropriate 
wave modes are identified by the comparison of the group velocities obtained from the analysis of the 
dispersion curves and from the simulations. In the cases for which the identification is possible, a good 
agreement between analytical and simulation results is observed. 
 
Keywords: shear horizontal wave mode, symmetric wave mode, dispersion curves, finite element method. 

1. Introduction 

The phenomenon of the propagation of the elastic wave in composite structures is nowadays frequently 
used as a fundament of different structural health monitoring (SHM) systems [1-2]. The crucial impact on 
the effectiveness of such systems possesses the way how the elastic waves are excited and further propagate 
through the interrogated structure. In order to detect the specified types of damage, the particular elastic 
wave mode has to be excited. It seems that the simplest solution is to use the fundamental anti-symmetric 
mode [3]. However, in some cases, the most effective way is to apply the fundamental symmetric wave 
mode. The important advantage of this approach is that for relatively small excitation frequency this mode 
is almost not dispersive. The above fact essentially simplifies the process of interpretation of the registered 
response of the analysed structure, especially when the SHM system works according to the pulse-echo 
configuration. In these kinds of systems, the main problem concerns the way how to excite selectively the 
symmetric wave mode. It seems that the most effective way is to install identical piezoelectric elements on 
both sides of the interrogated structure (for example composite plate) and excite them by the identical 
electric signals. However, in the case of perfectly bonded cube-shaped sensors, as it will be shown further, 
besides the expected symmetric wave mode the shear horizontal wave mode is also excited. Moreover, for 
some composite configurations, these modes due to similar values of the phase and group velocity overlap 
each other. This fact radically hinders the appropriate design of the effective SHM system. 

Generally, the first step of the design process of the SHM system is to determine the dispersion 
characteristic of the composite structure, which will be analysed with the use of elastic waves, so-called 
dispersion curves. It should be stressed here that in the case of multi-layered composite materials it is a 
challenging task. The most frequently used methods are so-called matrix methods, namely the transfer 
matrix method (TMM) [4-7], the global matrix method (GMM) [8], or the stiffness matrix method (SMM) [9-
10]. According to the experience of authors [11-13], the last mentioned method seems to be the most 
effective and robust. Moreover, in comparison with the other mentioned matrix methods is unconditionally 
numerically stable. In order to automatically generate the dispersion curves for the arbitrarily chosen 
configuration of the composite material, our own software, DisperseWin, has been developed. This software 
uses the SMM approach. 

Having determined the dynamic properties of the composite structure, next the phenomenon of the 
selected elastic wave modes propagation has to be studied. Such an analysis could be performed 
experimentally or by carrying out specific numerical simulations. The main disadvantage of the first 
approach is that it requires the use of very expensive measurement equipment and the preparation of a real 
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model of the structure. The second approach seems to be very effective in the preliminary stage of the SHM 
system design. Most frequently, the standard software (ANSYS, ABAQUS, LS-DYNA) [14, 15] based on the 
finite element (FE) method is used. However, some other methods are also developed [16-18]. As a result 
of the numerical simulation, not only the dynamic response of the structure in the selected points are 
registered but also the shape of the wavefront of the elastic wave can be studied as the function of time. 

In the current work for the composite plate of the arbitrarily chosen configuration the dynamic 
properties are determined and next several numerical simulations are performed in order to study the 
coupling of the fundamental symmetric mode and the fundamental shear horizontal mode. The mentioned 
coupling is caused by the way how the elastic wave is excited. The particular wave modes are identified by 
the enveloped method or by the cross-correlation method. 

2. Analysed composite plate 

The dispersion curves are determined for the laminate made of carbon fibre/epoxy resin (fibres T300, 
matrix N5208). The mechanical properties of the layers are as follows: E1 = 181 GPa, E2=10.3 GPa,  
G12 = 7.17 GPa, v12 = 0.28, and density ρ = 1.6 g/cm³. The laminate consists of 8 layers of identical thickness, 
where ti = 0.25 mm. Thus the total thickness of the composite material is tc = 2 mm. It is assumed that the 
studied laminate is of the angle-ply configuration, namely [±θ]4, where θ denotes the angle between the 
fibres in a particular layer and the X1 is the direction of the global coordinate system, which is shown in Fig. 
1. The dispersion curves are determined for the following fibre orientation angles, namely θ = [0°, 5°, 15°, 
25°, ... , 75°, 85°, 90°]. It should be noted the composites of fibre orientation angle 
θ = 0° and 90° are single-layer composite material. Moreover, it is assumed that the elastic wavefront 
propagates in the direction, which is perpendicular to the X1 axis of the global Cartesian coordinate system. 

 

 
Figure 1. The layer (X’1, X’2, X’3) and the global (X1, X2, X3) Cartesian coordinate system for the studied 

carbon laminate, where the X1 is the direction of the elastic wave propagation. 

In Figure 2, there are shown the dispersion curves for the fundamental modes S0, A0, SH0, and the first 
higher mode H1. For clarity, the rest of the higher modes have been neglected. Together with the increasing 
value of the fibre orientation angle θ, the phase velocity of the fundamental symmetric mode S0 decreases. 
However, in the range of frequency limited by the occurrence of the first higher mode, the phase velocity of 
the mode S0 remains almost constant for all analysed cases. Moreover, for the angle 
θ = 55°, 65°, and 75° the phase velocity of the symmetric mode S0 is lower in comparison with the phase 
velocity of the fundamental shear horizontal mode SH0, which can be quite surprising. The dispersion 
curves, which describe the SH0 modes are no longer constant. Initially, the value of the phase velocity of 
SH0 mode increases, and at the fibre orientation angle, θ = 45° reaches the global maximum, where c = 5.5 
km/s for the beginning frequency f = 0.005 MHz. The dispersion curves describing the fundamental 
antisymmetric wave mode A0 are not very sensitive to the variations of the fibre orientation angle θ. Finally, 
it is worth noting that the value of the frequency at which the first higher wave mode appears, varies also 
not significantly. The highest frequency is observed for the fibre orientation angle θ = 45° and the 
corresponding value of frequency f = 0.6 MHz. In Figure 3, there is depicted the phase c and group velocity 
cg of the fundamental elastic wave modes as a function of the fibre orientation angle θ. Because of the fact 
that in further finite element simulations of the elastic wave propagation the central frequency of the 
excitation signal is fc = 125 kHz. In Table 1 there are presented the values of the phase c and group cg 
velocities for all studied laminate configurations for the assumed frequency value. It is worth noting that 
only in the case of the anti-symmetric fundamental wave mode A0 the value of the group velocity cg is 
slightly greater in comparison with the value of the phase velocity c. 
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Figure 2. Dispersion curves generated for the studied set of composite configurations. 

 

 
Figure 3. Phase c and group cg velocities as a function of the fibre orientation angle θ. 

Table 1. Phase c and group cg [km/s] velocities of the fundamental modes, f = 125 [kHz]. 

Composite 
configuration 

Mode A0 Mode SH0 Mode S0 
c cg c cg c cg 

[±   5°]4 1.618 2.119 2.282 2.276 10.585 10.582 
[±15°]4 1.567 2.054 3.247 3.219 10.012 10.006 
[± 25°]4 1.486 1.957 4.335 4.305 8.941 8.930 
[± 35°]4 1.383 1.846 5.109 5.085 7.517 7.501 
[± 45°]4 1.264 1.736 5.388 5.371 5.942 5.923 
[± 55°]4 1.138 1.631 5.118 5.108 4.460 4.443 
[± 65°]4 1.022 1.533 4.350 4.346 3.333 3.320 
[± 75°]4 0.946 1.459 3.262 3.261 2.732 2.723 
[± 85°]4 0.919 1.428 2.286 2.286 2.553 2.545 

 
Due to the fact that the observed differences in the value of phase c and group cg velocities for the fibre 

angle orientation θ = 0° and θ = 5° as well as θ = 85° and θ = 90° are almost identical thus the further analysis 
will be performed with the neglection the composite configuration where θ = 0°, 90°. 

As can be observed, the value of phase c and group cg velocity of the fundamental symmetric mode S0 
monotonically decreases together with the increase of the fibre orientation angle. What should be stressed 
here, the curves obtained for different values of frequency are almost identical. For the fibre orientation  
θ = 48° the phase c and group cg velocities of the symmetric mode, S0 are significantly lower in comparison 
with the corresponding quantities for the fundamental shear horizontal mode SH0. In the case of the 
fundamental shear horizontal wave mode SH0 the clear global maximum is observed for the value of fibre 
orientation angle θ = 45° and the corresponding maximal value of the phase velocity equals c = 5.5 km/s. 

2. Finite element simulation 

In all conducted simulation the input signal is excited by the two actuators of the cubic shape, which are 
perfectly installed in the same position on both external surfaces of the composite plate. In the FE 
simulations (ANSYS), they are modelled by the solid (volume) elements SOLID186. On the appropriate walls 
of these sensors acts the external pressure p, which causes the deformation of the sensors and, in 
consequence, excites the elastic wave. The value of the external pressure p varies according to a five-cycle 
sine wave (tone burst) modulated with the Hanning window of central frequency fc = 125 kHz. 
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The composite plate is modelled with the use of four-nodes, rectangular-shaped, multi-layered shell 
elements SHELL181 (ANSYS). The transient FE analysis is performed according to Newmark's implicit 
schema. In order to obtain the appropriate accuracy of the numerical simulations, the element size and time 
step size has to satisfy the following conditions [16, 17]. The time step size Δt should be of the following 
value: Δt = 1/(ε·fmax), where fmax is the highest frequency component of the excitation (input) signal, and  
ε = 20. The corresponding maximal element size le should be assumed as le = λmin/20, where λmin is the 
shortest wavelength component of the exciting elastic wave. Due to significant variations of the phase c and 
group velocity cg of the fundamental elastic wave modes, especially symmetric S0, depending on the fibre 
orientation angle θ (see Tab. 1), the numerical simulations are carried out in two variants. It is necessary in 
order to fulfil the above-mentioned conditions concerning the optimal time step Δt and length of the finite 
element le. In the first variant the symmetric fundamental wave mode is identified and in the second the 
fundamental shear horizontal wave mode is identified.  

 

Figure 4. Model of the composite plate used for the simulation of fundamental symmetric wave mode S0: 
the geometrical dimensions with the location of sensors and the schematic view of the actuator  

and the way how the symmetric wave mode S0 is excited. 

Table 2. Variable parameters of FE simulations of the propagation  
of the fundamental symmetric wave mode S0. 

Laminate 
configuration 

Wavelength 
λS0 [mm] 

Total time of simulation 
tc·10-4 [s] 

Time step 
Δt·10-7 [s] 

[±   5°]4 84.680 1.181 1.890 
[±15°]4 80.094 1.249 1.999 
[± 25°]4 71.524 1.400 2.240 
[± 35°]4 60.136 1.666 2.666 
[± 45°]4 47.534 2.110 3.376 
[± 55°]4 40.941 2.447 3.915 
[± 65°]4 34.801 2.876 4.602 
[± 75°]4 26.096 3.833 6.133 
[± 85°]4 20.424 9.823 15.717 

For the first variant the geometrical dimensions of the structure are shown in Fig. 4. The locations of the 
actuator A and sensors S1 and S2 are constant for all performed numerical experiments. The elastic wave 
is excited by actuator A and the dynamic response of the structure is registered by the sensors S1 and S2. 
All these sensors are laying along the line, which is parallel to the X-axis of the global Cartesian coordinate 
system. It is worth stressing here that the fibre orientation angle θ in the analysed composite material is 
also defined with respect to this axis. The considered composite plate is divided into the FE elements of 
square shape with edge length le = 3.5 mm (identical for all performed simulations). The actuators (installed 
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on both sides of the plate as depicted in Fig. 4) are modelled by four solid elements thus their geometrical 
dimensions are 7 × 7 × 3.5 mm. The time step Δt, and the total time of simulation tc are changeable. They 
are set individually for each performed simulation. The only parameter, which is identical for all simulations 
is the total number of time steps n = 625. The values of the time step Δt, total times of simulations tc, and 
the wavelength λS0 with respect to the composite configuration are presented in Tab. 2.  

The exemplary results of the simulation for the laminate of configuration [±5°]4 are presented in Fig. 5. 
As it can be observed there are two different wave modes. The strongly elongated elliptical wavefront can 
be considered as the fundamental symmetric mode S0. The elongation of the wavefront is in the direction 
of the X-axis of the global coordinate system. In this direction, the in-plane stiffness of the composite plate 
is the highest and, in consequence, the wave speed is also the highest. However, another approximately 
circular wavefront is also visible, which is localized around actuator A1. Taking into consideration the cubic 
shape of the actuator and the way how the elastic wave is excited, this additional wave can be considered 
as the fundamental shear horizontal wave mode SH0. In order to clearly identify this wave mode the special 
model of the actuator will be presented in the next section. Now it is worth noting the strong interaction 
between these two modes in the direction of the Y-axis of the global coordinate system. Unfortunately, this 
fact significantly impedes or even precludes correct distinguishing between the in-plane wave modes, 
namely the symmetric modes S and shear the horizontal modes SH and it also confirms that for the fibre 
orientation angle θ > 45° the phase c and group cg velocity of these modes are very similar as it is shown in 
Fig. 3. The dynamic response of the studied plate (a component of displacement UX, and UZ) registered by 
the sensors S1 and S2 is presented in Fig. 6.  

The estimation of the group velocity cg for this variant of simulations is shown in Tab. 3. Both applied 
methods, namely the enveloped method (EMM) and the cross-correlation method (CCM), provides very 
accurate result in comparison with the theoretical values presented in Tab. 1. The error is about 1 %. In the 
case of the other studied laminate configurations, the accuracy is similar however, the value of the error 
increases. In the case of laminate configuration [± 45°]4 the wave velocities, c and cg, are comparable (Tab. 
1) and the symmetric wave mode S0 and the shear horizontal wave mode SH0 overlap almost perfectly with 
each other, and the mode identification by comparison of the group velocities is still possible. 

 

 

Figure 5. Propagation of the fundamental shear horizontal SH0 and the symmetric S0 wave modes in the 
case of [±5°]4 configuration for 250-th and 350-th time steps. 
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Figure 6. Dynamic response of the plate of configuration [±5º]4 registered by sensors S1 and S2. 

Table 3. Results of the identification of the fundamental elastic wave mode S0. 

Laminate 
configuration 

Envelope moment EMM Cross-correlation CCM  

Group velocity 
cgEM [km/s] 

Relative error 
|cgEM - cg|/cg [%] 

Group velocity 
cgEM [km/s] 

Relative error 
|cgEM - cg|/cg [%] 

[±   5°]4 10.698 1.094 10.641 0.559 
[±15°]4 10.118 1.127 10.065 0.592 
[± 25°]4 9.133 2.277 8.988 0.653 
[± 35°]4 7.663 2.151 7.581 1.064 
[± 45°]4 6.117 3.261 6.019 1.060 
[± 55°]4 4.781 6.404 4.578 10.377 
[± 65°]4 

No possibility of identification of the fundamental wave mode S0 [± 75°]4 

[± 85°]4 

 
Figure 7 represents the considered composite plate with the geometrical dimensions and the position 

of the actuator and sensors in the case of the second variant of simulation, where the fundamental shear 
horizontal mode is identified. This picture also shows the schema of the actuator and the way how the elastic 
wave is excited. The values of the variable geometrical dimensions with respect to the laminate 
configuration are collected in Tab. 4, where there are shown only these laminate configurations for which 
the fundamental shear horizontal wave mode SH0 identification is possible. 

The proposed model of the actuator A1 acts in the following way. In the direction, which is parallel to 
the X-axis of the global coordinate system the fundamental symmetric wave mode S0 is excited. However, 
in the direction which is parallel to the Y-axis, the fundamental shear horizontal wave mode SH0 is to be 
expected. Therefore, in order to identify the SH0 modes, the component of displacement UY registered by 
the sensors S1 and S2 are analysed. As before, the pair of actuators are installed on both surfaces of the 
plate. Moreover, each of the actuators is modelled with the use of four solid elements of dimensions identical 
to the shell elements, which create the composite plate. Now the only parameter, which is identical for all 
simulations is the time step size Δt = 3.5·10-7 s. The appropriate wavelengths λSH0 and total times of 
simulations tc are presented in Tab. 5. 
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Figure 7. Model of the composite plate used for the simulation of the fundamental shear horizontal wave 
mode SH0: the geometrical dimensions with the location of the sensors and the schematic view  

of the actuator and the way how symmetric wave mode S0 is excited.  

Table 4. Geometrical dimensions of the studied composite plates. 

Laminate 
configuration 

Plate Element size  
le [mm] dy1 [mm] dy2 [mm] 

Lx [mm] Ly [mm] 
[±55°]4 700 1000 2.0 100 100 
[±65°]4 500 1000 2.0 50 100 
[±75°]4 450 1500 1.5 50 100 
[±85°]4 450 1500 1.5 50 100 

Table 5. Geometrical dimensions of the studied composite plates. 

Laminate 
configuration 

Wavelength  
λSH0 [mm] 

Total time of simulation 
tc·10-4 [s] Number of time steps nt 

[±55°]4 40.875 0.805 230 
[±65°]4 34.683 1.120 320 
[±75°]4 25.972 1.190 340 
[±85°]4 18.259 1.190 340 

 
The exemplary pattern of resultant displacement for the laminate configuration [±75°]4 is shown in Fig. 

8, where there are presented the results obtained for 150, 200, 250, and 300 time steps of the simulation.  
A clearly visible ring around the actuator is the fundamental shear horizontal elastic wave mode SH0. In this 
picture, there is also visible the fundamental symmetric wave mode S0. Unfortunately, together with 
decreasing value of the fibre orientation angle θ, the pattern of the propagating fundamental wave modes 
changes dramatically. In Figure 9, there is shown the pattern of the resultant displacement obtained for 100, 
150, 200, and 250 time steps of the simulation for composite configuration [±65°]4. 
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Figure 8. Propagation of the fundamental shear horizontal SH0 and symmetric S0 wave modes  
in the case of [±75°]4 configuration for 150, 200, …, 300 time steps. 

 

 

Figure 9. Propagation of the fundamental shear horizontal SH0 and symmetric S0 wave modes  
in the case of [±65°]4 configuration for 100, 150, … , 250 time steps. 

As the consequence of the interaction between the present wave modes, the results of the estimation of 
the group velocity cg are getting worse, and the relative error increases (Tab. 6). The last laminate 
configuration, for which the estimation of the group velocity could be done, is [±55°]4. However, it should 
be stressed that this estimation should be concerned as not reliable although the obtained value of relative 
error is not very high (Tab. 6). 

Table 6. Results of the identification of the fundamental elastic wave mode SH0. 

Laminate 
configuration 

Envelope moment EMM Cross-correlation CCM  

Group velocity 
cgEM [km/s] 

Relative error 
|cgEM - cg|/cg [%] 

Group velocity 
cgEM [km/s] 

Relative error 
|cgEM - cg|/cg [%] 

[±55°]4 – – 5.102 0.343 
[±65°]4 4.535 5.351 4.202 2.395 
[±75°]4 3.322 3.212 3.284 2.026 
[±85°]4 2.361 3.737 2.323 2.050 

4. Conclusions  

It should be stressed here that in the case of simulations of the fundamental symmetric and the shear 
horizontal elastic wave modes S0 and SH0 the input signals are excited with the use of cubic-shaped models 
of actuators. This model of actuators causes that together with the symmetric wave mode S0 the shear 
horizontal wave mode SH0 is also excited. Therefore, for the fibre orientation angle θ > 45° in the case of 
simulation of the symmetric wave mode S0, it is very difficult or even impossible to distinguish between 
these modes. For the other values of the angle θ the fundamental elastic wave modes are identified with 
relatively high precision. 
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