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Abstract Paper discusses a mathematical model describing the vibrations of a linear oscillator forced by 
a random series of impulses. The study aims at checking how precisely the distributions of values of the 
impulses forcing the vibrations of an oscillator can be differentiated. The analysis was carried out in the 
MatLab environment with the use of hierarchical clustering algorithms of unsupervised machine learning, 
for samples generated from computer simulation. The time series are non-stationary. The studies showed 
that high precision could be achieved in distinguishing two very similar distributions forcing the vibrations, 
on the basis of an analysis of the two first moments calculated from the movement.  
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1. Introduction  

Research into the systems whose vibrations are forced by random series of impulses was carried out in 
several centres in Poland and abroad [1-8]. The investigations were based on creating of mathematical 
models for linear and non-linear systems. With the development of computers and check charts, simulation 
studies [9] and experimental ones [10] started to develop. 

Introducing the non-supervised algorithms of machine learning in the analysis of dynamic mechanical 
systems, we are starting a new level of studies on random issues. This paper discusses a mathematical 
model describing the vibrations of a linear oscillator. The vibrations are forced by a random series of 
impulses. 

The study aims at checking how precisely it is possible to differentiate the distributions of values of the 
impulses forcing the vibrations of an oscillator with the use of algorithms of unsupervised machine learning. 

2. Mathematical model for determining the impulse distributions forcing oscillator oscillations 

The vibrations of a discrete, linear system, excited by a random series of impulses (1) in the form 
of  a random series of impulses  

 𝑓𝑓(𝑡𝑡) = �𝜂𝜂𝑖𝑖𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖<𝑡𝑡

 (1) 

described by the equation (2) 
 

 𝑥𝑥(𝑡𝑡) = 1
𝑐𝑐
∑ 𝜂𝜂𝑖𝑖𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑡𝑡𝑖𝑖)0<𝑡𝑡𝑖𝑖<𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠( 𝑐𝑐(𝑡𝑡 − 𝑡𝑡𝑖𝑖)), (2) 

 
where i =1, 2, 3, ... are the impulse numbers, 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑖𝑖) are Dirac distributions at the time ti, {𝜂𝜂𝑖𝑖}−∞+∞ is 
a  sequence of independent identically random values of amplitude of i-th impulse with finite expectation, 
ti are random instants of time at which the impulses occur, x is the deflection of the system from its 
equilibrium position, b the damping coefficient and the frequency c are parameters of the vibrating system.  

The time intervals (3)       
 𝜏𝜏𝑖𝑖 = (𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1), (3) 

between impulses {𝜏𝜏𝑖𝑖}−∞+∞  are independent continuous random variables for which the function of 
probability density assumes the form of exponential distribution (4): 
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 𝑓𝑓(𝜏𝜏) = �λ𝑒𝑒
−λ𝑡𝑡   𝑓𝑓𝑓𝑓𝑓𝑓 𝜏𝜏 ≥ 0

0          𝑓𝑓𝑓𝑓𝑓𝑓 𝜏𝜏 < 0. (4) 

The constant λ is the impulse rate. The intervals between the impulses {𝜏𝜏𝑖𝑖}−∞+∞ and value of the impulses 
{𝜂𝜂𝑖𝑖}−∞+∞ are independent random variables. 

A mathematical model the inverse identification problem (5-6) that allows for determining the 
distribution of value of impulses forcing the vibrations of the system was developed [11-14] in several 
stages and was constructed on the basis of linear differential equations using the ergodic theory together 
with the basics of the theory of dynamic systems, measure theory, group theory, probability calculus and 
the theory of stochastic processes based on it, and when t→∞.  

 � p𝑖𝑖
𝑘𝑘

𝑖𝑖=1

�(𝑚𝑚𝑛𝑛𝑚𝑚1 − 𝑚𝑚𝑛𝑛+1)𝜂𝜂𝑖𝑖 + ��
𝑠𝑠
𝑗𝑗�𝑚𝑚𝑛𝑛−𝑗𝑗𝑚𝑚1𝜂𝜂𝑖𝑖

𝑗𝑗+1 𝐶𝐶(𝑗𝑗 + 1)
𝐶𝐶(1)𝑐𝑐𝑗𝑗

𝑛𝑛

𝑗𝑗=1

� = 0, (5) 

   

 ∑ p𝑖𝑖𝑘𝑘
𝑖𝑖=1 = 1, (6) 

 
where k is the number of the sought values of random variable ηk, pi is the probability of  ηi  determined 
from the vibrations x(t), mn are n-th stochastic raw moments of the random variable x(t) and C(j) are 
constants depending on the parameters of the oscillator.  
For  j>1 and even j 

 𝐶𝐶(𝑗𝑗) = 𝑗𝑗!

∏ ((𝑗𝑗𝑏𝑏/𝑐𝑐)2+(2𝑟𝑟)2)𝑗𝑗/2−1
𝑟𝑟=0

𝑐𝑐
𝑗𝑗𝑏𝑏

 , (7) 

   
where as for odd  j > 0, 

 𝐶𝐶(𝑗𝑗) = 𝑗𝑗!

∏ ((𝑗𝑗𝑏𝑏/𝑐𝑐)2+(2𝑟𝑟+1)2)(𝑗𝑗−1)/2−1
𝑟𝑟=0

 . (8) 

3. Simulation studies 

Application of a model for t <3600  seconds is limited [15-19]. Estimators of the k-th stochastic raw 
moments of the random variable x(t) calculated using the equation (8) change with the passage of time 
presented on the Fig. 1A and Fig. 1B 

 [ ] /

1( ) ( )
/

k
k

n t h
m t x nh

t h <

= ∑ , (9) 

where h is the time period of sampling, t is time. Hence the distributions of probabilities ηi determined with 
the help of equations (5-8) are burdened with uncertainty what presented on the Fig. 1C. 

At the present level of knowledge, execution of an experiment in which Dirac Delta would occur at the 
impulse and the restitution coefficient would not be necessarily taken into account in the model is 
practically impossible. However, it is possible to execute simulated studies, which are an approximation of 
the modelled phenomenon, and in these studies the qualitative analysis is used to prepare the experiments 
in the proper way. In this article we introduce application of unsupervised learning algorithms to solve the 
problem of recognizing the distribution of impulses generated for two different distributions values 
of  impulses:  

 
Φ1: p(η1=130) = 0.5, p(η2=20) = 0.5. 

Φ2: p(η1=140) = 0.5, p(η2=10) = 0.5. 
(10) 

The distributions Φ1 and Φ2 were characterized by two events of different force of impact. The value of 
η1 symbolizes an impulse of a great force of impact while the value of η2 an impulse of a little force of impact 
on the oscillator. Distributions were selected so that the mean value was the same in all two cases, stochastic 
raw moments of the second order (and subsequent orders) are different. 

The study is supposed to check how precisely two distributions with the same mean value and similar 
subsequent stochastic moments can be differentiated.  Fig. 2 shows estimators of the first two raw moments 
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(8) for the distributions Φ1 and Φ2 for 100 different samples. In the distribution Φ1, 48 samples were 
generated while the second distribution gave 52 samples.  
 

A B C 

   
 

Figure 1. The first stochastic raw moment (A) and the second one (B) computed on the basis of x(t) for 
3600 seconds for one sample from Φ1 distribution and one sample from Φ2 distribution. (C) The 

probability calculated from the model of impulses. 
 

For further study that is supposed to achieve the intended goal , the method of unsupervised learning, 
connected with data clustering, was selected. Similarities between elements – expressed with the help of 
metrics like Manhattan, Euclidean, Chebyshev or Minkowski distance, etc., were adopted as the basis for 
clustering. Apart from the metric, the algorithm requires also selection of the method of clustering. In 
MatLab environment, in which the study was carried out, agglomerative analysis can use the following 
methods: average, centroid, complete, median, single, ward and weighted. 

For the samples generated between the 600th and the 1800th seconds, the estimators of the first 
moment have different statistical parameters describing non-stationary time series for both considered 
distributions even though the distributions forcing the vibrations of the oscillator are of the same mean 
value presented on the Fig. 2.  In turn, the estimators of the second moment start differing in statistical 
values of time series as late as after the 1800th second. The differences between mean values for the 
samples obtained from the distributions Φ1 and Φ2 are smaller than 0.1 for the estimators of the first 
moment and five times as big, amounting to 0.5, for the estimators of the second moment.  

In cluster analysis an algorithms works as follows: at the beginning, each observation generates a one-
element cluster. Then, pairs of clusters are merged – a graphic representation of the executed analysis has 
the form of a dendrogram presented on Fig. 3.  

The study investigated various connections between the metric and the method in the context of 
division of the set into two groups. The following statistical parameters of time series were used in the 
study: mean value, median, mode, standard deviation, maximum, minimum, and skewness. All variables 
were standardized. Thanks to the fact that the samples were generated in simulation investigations, it was 
possible to label them and verification of the applied algorithms could be executed with the use of confusion 
matrix [20] for the accuracy calculation purposes. 

Table 1 shows conclusion of the study. It presents the combinations of metrics and methods which, both 
in the time series from the 800th to the 1400th second and in that between the 2400th and 3000th second 
revealed that unsupervised clustering is fully compatible with the labels of particular samples. It should be 
remembered, however, that the results are compatible only when in the segmentations algorithm it is 
assumed that two clusters are searched for Fig. 3.  

 

Table 1. Methods and metrics that ensured 100% precision in clustering in both time intervals – the one 
from 800 to 1400 sec and the other from 2400 to 3000 sec. 

 

method metrics method metrics method metrics 

ward 

Euclidean 

Chebychev 

average 

cosine 

average 
squaredEuclidean centroid centroid 

seuclidean complete complete 
mahalanobis median median 

cityblock single single 
 ward ward 
 weighted weighted 

 

For these and only these samples the differences between the estimators of the first moment and the 
second one were distributed in this time series. In order to check with what precision the cluster algorithms 
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will differentiate between the distributions Φ1 and Φ2 and investigations should be executed also in other 
time intervals. For the next step, for the classification purposes set ward method and Euclidean metrics. 
From 300s, the statistics for the five-minute time interval are calculated every minute. It can be noticed that 
after 900s archived 100% correct classification in each time period as presented on the Fig. 6.  

 

 
 

Figure 2. The first stochastic raw moment (9) and the second one computed on the basis of x(t) for 3600 
seconds for 48 samples from Φ1 distribution and 52 samples from Φ2 distribution. 

 

 
 

Figure 3. Dendrogram for ward method combined with Euclidean metric defined for the time period 
between 800 seconds to 1400 seconds. 

 
 

 
Figure 4. Summary after data classification using data clustering algorithm for interval set to 300 seconds. 
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4. Conclusion and summary 

The paper discusses the first attempts at application of machine learning algorithms in the analysis of 
random vibrations of an oscillator. These algorithms have connections in the sets and allow for decision 
making on the basis of the shared data. Time series used in the work, which contain two first raw moments 
calculated from the movements of vibrations of the oscillator are non-stationary. Cluster analysis were 
selected for the study. The investigations showed that the distributions forcing the vibrations of the 
oscillator can be differentiated highly precisely on the basis of an analysis of the two first moments. The 
only weakness of this method is determining at the final stage of the analysis how many groups are sought. 
Removal of this limitation and conduction investigations for a larger number of distributions with more 
complex structures will be the object of further analyses. 
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