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Abstract Precise and efficient localization of sound sources is essential in many applications. Traditionally, 
methods that use beamforming tend to scan the entire space with fixed level of precision. Although effective, 
this approach is inefficient when searching for a single source. In this paper we propose an iterative 
algorithm for localizing a single sound source utilizing signals from a 4th order ambisonic microphone 
array. Two beamformers were implemented: one based on signals in A-format, incorporating delay-and-
sum method, commonly used for sound source localization, and the second one based on B-format, 
operating in the spherical harmonic domain. By utilizing an iterative algorithm, we have significantly 
decreased the number of points to be evaluated to localize the sound source. For the delay-and-sum 
beamformer, the best outcome was obtained by using all 32 channels in every iteration. For the spherical-
harmonics-based beamformer, the best strategy was to use first-order harmonics in the initial iteration and 
fourth-order harmonics in subsequent iterations. 
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1. Introduction  

The localization of sound sources is crucial in many acoustic applications, such as designing hearing aids 
and cochlear implants [1], speech recognition systems [2], surveillance and security systems [3], robotics 
[4] and even wildlife and environmental monitoring [5]. A category of techniques used for this purpose 
includes Steered Response Power (SRP) methods, beamforming-based methods and Multiple Signal 
Classification (MUSIC) method. The Steered Response Power method involves the calculation of 
Generalized Cross-Correlation (GCC) between every pair of microphones in the array [6]. The key idea 
behind MUSIC is that the signal subspace, which is the subspace spanned by the signal eigenvectors, is 
orthogonal to the noise subspace, which is the subspace spanned by the noise eigenvectors. By projecting 
the received signals onto the signal subspace, it is possible to estimate the direction of arrival of the signals 
[7]. In beamforming-based approaches, the signals from the microphone array are processed to obtain 
directional information. A microphone matrix is a collection of microphone capsules arranged in specific 
locations with established geometric relationships between them. The most commonly used shapes for 
microphone arrays include linear, planar, circular and spherical, which offer one-, two- and three-
dimensional processing respectively.  

One of arrays that can be used for this purpose is the mh acoustics Eigenmike® em32, which can 
accurately capture the sound field using 32 raw microphone signals. It is a 4th order ambisonic microphone 
array, meaning that the microphones are spaced so that an accurate transformation into spherical 
harmonics domain is possible. The signals after such transformation become ambisonic signals (also called 
'eigenbeams'), which can be combined to create microphone beam patterns [8]. This beamforming process 
allows for steering the beam in any direction in 3D space and focusing on specific directions of sound arrival. 

Output of this microphone array can also be used directly for traditional beamforming methods, such as 
for example delay-and-sum (DAS). There have been attempts to find the best beamforming method for 
spherical arrays, focusing mostly on their spatial efficiency [9-11]. However, to use the beamformer for 
signal amplification (or suppressing noise), one needs to identify the direction of the sound source.  
If a beamformer is used for that, oftentimes the whole space is searched -- the beam is steered towards each 
direction, with given resolution, and a map of acoustic energy in these directions is created, called the 
pseudospectrum (whenever the term pseudospectrum is used within the scope of this article, it means the 
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above-mentioned acoustic energy map). This method guarantees finding the global maximum of energy, but 
requires a lot of calculations. For one dominant sound source, an optimization algorithm might work better 
– performing a general scan of space to roughly identify the source direction and then scan more thoroughly 
only this subspace. 

The field of beamformer scanning is still an active area of research, with various optimization algorithms 
being investigated. There have been some attempts to apply techniques such as gradient descent [12] and 
space subpartition [13–15]. The latter, also referred to as hierarchical search, has been widely used, as it 
greatly reduces the required number of directions to evaluate; however, the algorithm is relatively simple 
and unflexible and thus further research is needed to find the most effective methods. 

In this work, we propose an iterative algorithm to find the sound source using less computational 
resources than brute search, by using beamformers of different widths. For this work two beamformers for 
the spherical em32 microphone array were implemented: the simple DAS and spherical-harmonic-based 
(SHB) beamformer. The beamformers are firstly compared in terms of localization precision and then their 
usability in the iterative algorithm is tested. 

2. Methods 

2.1. Note on coordinate systems 

Depending on the application, different spherical coordinates conventions are used. The one used in this 
paper is shown in Fig. 1, with the horizontal (azimuth) angle φ increasing counter-clockwise from the X axis 
from 0 to π and the vertical (elevation) angle ϑ equal to 0 at the horizontal plane (equator of the sphere) 
and π /2 and −π /2 at north and south pole, respectively; r denotes the distance from the centre of the 
coordinate system. Therefore, translation to the Cartesian coordinate system follows: 

𝑥𝑥 = 𝑟𝑟 cos 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, (1) 

𝑦𝑦 = 𝑟𝑟 cos 𝜃𝜃 sin𝑐𝑐, (2) 

𝑧𝑧 = 𝑟𝑟 sin𝜃𝜃. (3) 

2.2. Delay and sum beamforming 

In acoustic applications, DAS beamforming is a method used to focus sound waves in a particular direction. 
It involves using multiple microphones to pick up sound waves and then delaying and summing the signals 
from each microphone. This creates constructive interference in the desired direction and destructive 
interference in other directions. To determine the direction of a plane wave impinging on an array, we need 
to define the steering vector, which is based on the time differences between the microphones. To calculate 
those delays geometric relations between adjacent microphones are used. The positions of each 
microphone in the array are specified in EigenStudio® User Manual [16]. Delay values can be computed 
according to formula: 

𝜏𝜏𝑞𝑞 = −1
𝑐𝑐
�cos𝜃𝜃 cos𝑐𝑐 ⋅ 𝑥𝑥𝑞𝑞 + cos 𝜃𝜃 sin𝑐𝑐 ⋅ 𝑦𝑦𝑞𝑞 + sin 𝜃𝜃 ⋅ 𝑧𝑧𝑞𝑞� , (4) 

where xq, yq, zq are Cartesian coordinates of q-th microphone. 
Having calculated these values, we can define the steering vector as: 

𝑎𝑎(𝑓𝑓,𝜃𝜃,𝑐𝑐) = �𝐴𝐴0𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜏𝜏0(𝜃𝜃,𝜙𝜙), 𝐴𝐴1𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜏𝜏1(𝜃𝜃,𝜙𝜙), … , 𝐴𝐴Q−1𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜏𝜏Q−1(𝜃𝜃,𝜙𝜙)�, (5) 

where Aq is amplitude gain of signal from q-th microphone and 𝑗𝑗 = √−1. 
In our scenario, according to the far-field assumption, Aq for the q-th microphone was equal to 1. 

Therefore, the steering vector for a given direction yields: 

𝑎𝑎(𝑓𝑓,𝜃𝜃,  𝑐𝑐)  =  �e−𝑗𝑗2𝜋𝜋 𝜋𝜋𝜏𝜏0(𝜃𝜃,𝜙𝜙) ,  e−𝑗𝑗2𝜋𝜋 𝜋𝜋𝜏𝜏1(𝜃𝜃,𝜙𝜙),  …   ,  e−𝑗𝑗2𝜋𝜋 𝜋𝜋𝜏𝜏Q−1(𝜃𝜃,𝜙𝜙)�. (6) 

To obtain the output signal, we must perform a spatial filtering operation by applying filter weights to 
each signal from Q microphones. The filter coefficients are determined by the values of the steering vector: 

ℎ(𝑓𝑓, 𝜃𝜃,  𝑐𝑐)  =  
1
𝑄𝑄
𝑎𝑎(𝑓𝑓, 𝜃𝜃,  𝑐𝑐). (7) 
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2.3. Spherical harmonic beamforming 

Processing spherical microphone array in the spherical harmonic domain comes from solving the wave 
equation in the spherical coordinate system and decomposition of a plane wave on a sphere, as described 
e.g. in [10, 17, 18]. 

Using the spherical harmonic transform (SHT, also called spherical Fourier transform) for a finite 
maximum order N, the output of the spherical array with Q microphones can be expressed as [17]: 

𝑝𝑝(𝑘𝑘𝑟𝑟) = �𝜓𝜓𝑞𝑞𝑝𝑝�𝑘𝑘𝑟𝑟,𝜃𝜃𝑞𝑞 ,𝑐𝑐𝑞𝑞�𝑤𝑤𝑛𝑛𝑛𝑛∗ �𝑘𝑘,𝜃𝜃𝑞𝑞 ,𝑐𝑐𝑞𝑞�
𝑄𝑄

𝑞𝑞=1

= 

= � � 𝑝𝑝𝑛𝑛𝑛𝑛(𝑘𝑘𝑟𝑟)𝑤𝑤𝑛𝑛𝑛𝑛∗ (𝑘𝑘)
𝑛𝑛

𝑛𝑛=−𝑛𝑛

𝑁𝑁

𝑛𝑛=0

= 

= � � 𝑏𝑏𝑛𝑛(𝑘𝑘𝑟𝑟)𝑌𝑌𝑛𝑛𝑛𝑛∗(𝜃𝜃,𝑐𝑐)𝑤𝑤𝑛𝑛𝑛𝑛∗ (𝑘𝑘)
𝑛𝑛

𝑛𝑛=−𝑛𝑛

𝑁𝑁

𝑛𝑛=0

 . 

(8) 

The wave number 𝑘𝑘 = 2𝜋𝜋𝜋𝜋
𝑐𝑐

  shows dependency on the wave frequency (f), with c denoting the speed of 
sound; 𝑌𝑌𝑛𝑛𝑛𝑛(𝜃𝜃,𝑐𝑐) are spherical harmonics of degree n and order m. Weights ψq for each microphone depend 
on their arrangement on a sphere and bn(kr) are coefficients related to the boundary conditions (rigid or 
open sphere). In case of the em32, the microphones are placed on a rigid sphere, on faces of the truncated 
icosahedron, i.e. according to a nearly uniform sampling scheme [19]. This means the weights ψq can be 
equalized while preserving orthonormality of the transformation. 

The weighting function 𝑤𝑤𝑛𝑛𝑛𝑛∗ �𝑘𝑘, 𝜃𝜃𝑗𝑗,𝑐𝑐𝑗𝑗� that appears in Eq. (8) can be generally written as [10, 17]: 

𝑤𝑤𝑛𝑛𝑛𝑛∗ = 𝑑𝑑𝑛𝑛𝑛𝑛/𝑏𝑏𝑛𝑛 . (9) 

The choice of dnm depends on the method of analysis. For the spherical beamforming [10]: 

𝑑𝑑𝑛𝑛𝑛𝑛 = 𝑑𝑑𝑛𝑛𝑌𝑌𝑛𝑛𝑛𝑛(𝜃𝜃𝑙𝑙 ,𝑐𝑐𝑙𝑙) , (10) 

where (𝜃𝜃𝑙𝑙 ,𝑐𝑐𝑙𝑙)  is the array look direction, i.e. the direction of the beam. Substituting this into Eq. (8) yields 
a formula for the spherical beamformer output: 

𝑝𝑝 = �𝑑𝑑𝑛𝑛 � 𝑌𝑌𝑛𝑛𝑛𝑛(𝜃𝜃𝑙𝑙 ,𝑐𝑐𝑙𝑙)𝑌𝑌𝑛𝑛𝑛𝑛∗(𝜃𝜃,𝑐𝑐)
𝑛𝑛

𝑛𝑛=−𝑛𝑛

𝑁𝑁

𝑛𝑛=0

 . (11) 

For the regular beam pattern, dn = 1 [18]. 𝑌𝑌𝑛𝑛𝑛𝑛∗(𝜃𝜃,𝑐𝑐) are results of the SHT. Taking advantage from the 
fact that the em32 outputs B-format signals, which correspond to the real spherical harmonics, the complex 
conjugate can be omitted. However, for consistency, the real form of spherical harmonics needs to be used, 
given by [20]: 

𝑌𝑌𝑛𝑛𝑛𝑛(𝜃𝜃,𝑐𝑐) = �(2 − 𝛿𝛿𝑛𝑛0)
(2𝑛𝑛 + 1)

4𝜋𝜋
(𝑛𝑛 − |𝑚𝑚|)!
(𝑛𝑛 + |𝑚𝑚|)!

𝑃𝑃𝑛𝑛
|𝑛𝑛|(sin𝜃𝜃)𝑦𝑦𝑛𝑛(𝑐𝑐), (12) 

with δm0 denoting the Kronecker delta, 𝑃𝑃𝑛𝑛𝑛𝑛  being the associated Legendre function and: 

𝑦𝑦𝑛𝑛(𝑐𝑐)  =   �
 sin (|𝑚𝑚|𝑐𝑐)  𝑚𝑚 < 0,

1  𝑚𝑚 = 0,
 cos (𝑚𝑚𝑐𝑐)  𝑚𝑚 > 0.

 (13) 

Therefore, in practice, for N-th order processing the values of all real spherical harmonics up to this order 
are calculated for the beamformer look direction (𝜃𝜃𝑙𝑙 ,𝑐𝑐𝑙𝑙) . They are then multiplied by each channel of the 
B-format signal and summed to obtain the filtered one-dimensional signal in time domain. 

2.4. Iterative algorithm 

To compute pseudospectra, beamformers need to be directed at a large number of positions, most of which 
are far away from the searched sound source and thus do not carry important information. To reduce the 
number of redundant evaluation points, an iterative approach was proposed. The basic assumption is that 
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in each iteration a few beamformers are designed for such look direction and width that they cover a part 
of the sphere including the search direction. Then, based on power of the signal filtered by each of 
beamformers in a current iteration, an estimate of sound source location is returned and the searching 
continues around that estimate. 

In the first iteration, the entire sphere needs to be covered. In order to do that, a wide beamformer is 
needed and the initial directions to evaluate lie on vertices of a tetrahedron inscribed in a sphere. The unit 
vectors representing these directions in the Cartesian coordinate system are as follows: 

𝐯𝐯1 =
1
√3

[1,1,−1], 

𝐯𝐯2 =
1
√3

[1,−1,1], 

𝐯𝐯3 =
1
√3

[−1,1,1], 

𝐯𝐯4 =
1
√3

[−1,−1,−1] . 

(14) 

For each of the unit vectors, the power is computed: 

𝑃𝑃𝑖𝑖 =
1
𝐿𝐿
�(𝑆𝑆𝑖𝑖[𝑙𝑙])2
𝐿𝐿−1

𝑙𝑙=0

 , (15) 

where Si is the signal resulting from filtering multi-channel signal with a beamformer pointing at direction 
vi. Then, an estimate of the sound source location can be derived as a weighted sum of the unit vectors: 

𝐯𝐯� = �𝑃𝑃𝑖𝑖𝐯𝐯𝑖𝑖
𝑖𝑖

 . (16) 

In the following iterations, only a small part of the sphere is searched. To do that, the estimation is 
repeated, but a narrower beamformer is used and instead of the initial points from Eq. (14), three new 
points are taken lying in even intervals on a circle around the estimate defined by angle α (half the apex 
angle of a cone whose base is the circle). To find these points, a new coordinate system (x', y', z') needs to 
be defined. Let z' be pointing in the direction of the estimate: 

𝐳𝐳′ =
𝐯𝐯�

|𝐯𝐯�| . 
(17) 

To find a vector orthogonal to z', a random vector r is generated and orthonormalized: 

𝐲𝐲′ =
𝐫𝐫 − (𝐫𝐫 ⋅ 𝐳𝐳′)𝐳𝐳′

|𝐫𝐫 − (𝐫𝐫 ⋅ 𝐳𝐳′)𝐳𝐳′|
 . (18) 

Finally, the third vector x' has to be orthogonal to both y' and z', so it can be found as the cross product of 
these two: 

𝐱𝐱′ = 𝐲𝐲′ × 𝐳𝐳′ . (19) 

Within the new coordinate system, the unit vectors for the three new directions to evaluate are given as: 

𝐯𝐯𝑖𝑖 = sin α (𝐱𝐱′ cos𝛽𝛽𝑖𝑖 + 𝐲𝐲′ sin𝛽𝛽𝑖𝑖) + 𝐳𝐳′ cosα , (20) 

where βi describes the position on the circle surrounding 𝐯𝐯� and is equal to 0°, 120° and 240° for i = 1, 2, 3, 
respectively. The position of the unit vectors within the new coordinate system in relation to α and β is 
portrayed in Fig. 1. Value of α (controlling the circle radius) should be chosen with respect to expected 
current accuracy of estimation. 
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Figure 1. Updated coordinate system with new unit vectors for evaluation. 

Updated estimate could be again obtained from Eq. (16); however, when values of Pi are on a similar 
level, the estimate will change only slightly and the convergence, although successful, will be slow. To 
counter this phenomenon, a modified formula for the weighted sum was implemented: 

𝐯𝐯� = ��
𝑃𝑃𝑖𝑖 − min

𝑖𝑖
{𝑃𝑃𝑖𝑖}

max
𝑖𝑖

{𝑃𝑃𝑖𝑖}
+ 𝛾𝛾�𝐯𝐯𝑖𝑖

𝑖𝑖

 , (21) 

where γ is a convergence coefficient. This way, new estimate is moved closer to the circle  surrounding the 
old estimate, but still staying within its borders. The convergence only slows down when γ becomes 
significant compared to the differences in normalized power values, i.e. when the estimate gets very close 
to the maximum of the pseudospectrum. The value of γ can be fine-tuned to balance between stability 
(higher γ) and speed of convergence (lower γ). The optimal value of γ varies depending on the width of 
beam and the value of α. 

Since vectors from Eq. (14) add up to 0, they are invariant to multiplying by or adding constant values; 
thus, the formula (21) can be applied from the first iteration, since it returns the same results as Eq. (16). 
The iterative algorithm can be summed up in the following steps: 
1) Compute power of the signal filtered with a wide beamformer at the directions defined by unit vectors 

from Eq. (14). 
2) Find new estimate by taking weighted sum of the unit vectors using Eq. (21). 
3) Find three points around the estimate by following Eqs. (17) – (20). 
4) Compute power of the signal filtered with a narrow beamformer at the directions defined by the points 

around the estimate. 
5) Repeat steps 2-4 until estimate accuracy is satisfactory. 

2.5. Experiment design 

Both beamformers and the iterative algorithm described in Section 2 were implemented in Python 3.10 
using mainly functions from the numpy and scipy packages. To test the implemented beamformers, 
recordings with known source localization were used. 

Two groups of recordings were used, collected using the Eigenmike® em32 microphone. All recordings 
were acquired with sample rate of 48 000 Hz, either in A-format and B-format simultaneously, or in A-
format and later converted to B-format, in both cases utilizing the capabilities of the EigenStudio® software 
[16]. The source positions were set and written down but not measured precisely. 

The first group of recordings, for initial algorithm tests, were impulses obtained by a hand clap in  
a room with acoustic adaptation and reverberation time of 0.2 s (denoted as '6E'). There were four source 
positions around the microphone: in front of it (𝑐𝑐 ≈ 0°), to the left (𝑐𝑐 ≈ 105°), behind (𝑐𝑐 ≈ 180°), and to 
the right (𝑐𝑐 ≈ 270°). The height of the clapping hands was approximately equal to the height of the centre 
of the microphone (𝜃𝜃 ≈ 0°). Each recording was cut to create an 8192-sample impulse response (i.e. 
approximately 170 ms). 
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The second group consisted of speech recordings acquired in the same room, with the same source 
positions as mentioned above and microphone placed in the same place in the room. The speaker was 
female, the microphone height was approximately aligned with her head centre. In this case, signals of 2 
lengths were analysed: a one-word recordings of 120 – 241 ms and the initial 4096 samples (approx. 85 
ms) of each of them. 

The third group were again hand claps recorded in a 5.6 m × 10.5 m conference room with tables 
removed (denoted as '103'). Approximate source positions, including source-microphone distance d, were: 

𝑆𝑆1(𝑐𝑐 ≈ 0°,𝜃𝜃 ≈ 0°,𝑑𝑑 = 1.5 m), 
𝑆𝑆2(𝑐𝑐 ≈ 300°,𝜃𝜃 ≈ 0°,𝑑𝑑 = 3 m), 

𝑆𝑆3(𝑐𝑐 ≈ 90°, 𝜃𝜃 ≈ −45°,𝑑𝑑 = 1.5 m), 
𝑆𝑆4(𝑐𝑐 ≈ 60°,𝜃𝜃 ≈ 0°,𝑑𝑑 = 4 m). 

(22) 

In this case also "full-length" signals (20372 samples on average, approximately 424 ms) and their 4096-
sample excerpts were analysed. 

To evaluate the performance, first, pseudospectra for both beamformers were computed. For DAS, using 
either all 32 microphone channels and also using only every third microphone in an attempt to widen the 
beam. For SHB, either all 25 channels of B-format were utilized (4th order ambisonics) or only first four 
(1st order) to obtain narrower and wider beamformers, respectively. Then, both designs were incorporated 
in the iterative algorithm, with its parameters fine-tuned depending on the information obtained by plotting 
pseudospectra. Angular error is calculated after each iteration, following the formula: 

𝜖𝜖 = cos−1�sin𝜃𝜃� sin𝜃𝜃𝑐𝑐 + cos 𝜃𝜃� cos 𝜃𝜃𝐶𝐶 cos�𝑐𝑐� − 𝑐𝑐𝐶𝐶�� , (23) 

where �𝑐𝑐� , 𝜃𝜃�� are estimated sound source coordinates, while (𝑐𝑐𝐶𝐶 ,𝜃𝜃𝐶𝐶)  are coordinates to which the 
algorithm should converge. 

3. Results 

3.1. Part 1 – 4092-sample impulses 

Pseudospectra were computed and plotted for both designs and for two preset numbers of channels each; 
they are shown in Fig. 2 and 3 for DAS and SHB, respectively. 32-microphone DAS appeared to have a clean 
characteristic, but also a relatively wide beam. 11-microphone DAS beamformer was supposed to yield even 
wider beam, but instead the most notable change are distortions in the spatial characteristic. The artifacts 
are likely caused by the directivity of microphones – DAS is supposed to be used with omnidirectional 
microphones of uniform sensitivity. Eigenmike® em32 is designed so that the 32 microphones together 
cover the entire sphere uniformly, but it is no longer true for an arbitrary selected subset of channels. 

In case of the pseudospectra plotted for SHB, there is a clear difference in beam width between 1st and 
4th order ambisonics. The latter is much narrower and so is expected to yield better precision although the 
pseudospectrum features multiple local maxima outside of the main lobe, which could potentially cause 
problems with convergence. 

The sound source location is estimated as maximum of the pseudospectra for 32-microphone DAS and 
4th order SHB, with 1 degree precision (Tab. 1). It can be noticed that, even though the results are obtained 
from the same signal (only preprocessed to different formats), the estimates are slightly different, up to 
over 10° in both azimuth and elevation for the third recording (S3). Although we expect SHB to be more 
accurate, it is not entirely clear what is the true sound source location. Nevertheless, in order to compare 
the results of the iterative algorithm with pseudospectrum approach, the maxima from Table 1 are 
considered ground truth. 

Table 1. Estimated directions for 32-microphone DAS and 4th order SHB. 

Source position DAS (ϕ, ϴ) SHB (ϕ, ϴ) 
S1 (358, -4) (1, -1) 
S2 (108, -8) (107, -1) 
S3 (172, -19) (183, -7) 
S4 (273, -7) (274, -5) 
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a) 

 

b) 

 
Figure 2. Pseudospectra for DAS: a) 32-microphone, b) 11-microphone. 

a) 

 

b) 

 
Figure 3. Pseudospectra for SHB: a) 4th order (25 channels), b) 1st order (4 channels). 

Since the beam for 32-microphone DAS is quite wide and reducing the number of microphones only 
introduces undesired artifacts, all channels are used in the algorithm when incorporating DAS design. For 
the SH beamforming, however, first iteration employs only four channels (1st order ambisonics) in order to 
cover the entire sphere, and in all the following iterations, the narrower beamformer is used (25 channels 
4th order). To account for the difference in the width for the two designs, values of α were set to 20° and 
10° for DAS and SHB, respectively. In both cases, manual tests showed that γ = 0.001 was effective for a 
quick and stable convergence below 2°, which was considered satisfactory given limited accuracy of the 
beamformers. 

The iterative algorithm was run with random seed in numpy.random set to 1, although using default 
seeding yielded similar and repeatable performance (random number generator is used only for orientation 
of β). The results are gathered in Tables 2 and 3 for DAS and SHB, respectively. 

Table 2. Angular error (in degrees) after each iteration for DAS beamformer. 

 Source position 
Iteration S1 S2 S3 S4 

1 1.16 6.26 7.28 5.26 
2  1.41 1.31 0.61 

Table 3. Angular error (in degrees) after each iteration for SHB. 

 Source position 
Iteration S1 S2 S3 S4 

1 2.70 7.40 9.00 13.40 
2 2.47 4.03 6.46 10.45 
3 0.74 0.77 3.51 5.94 
4   1.13 3.22 
5    0.52 
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The algorithm successfully converged for both designs, although the results for DAS are better both in 
terms of initial estimation and speed of convergence. However, since the sound source location was 
estimated only based on a wide beamforming, the end results are less reliable than for SHB. 32-microphone 
DAS had slightly wider beam than 1st order SHB, which might have resulted in better initial estimation. The 
estimation for SHB is still quite accurate, but it might be improved by designing wider beam by utilizing 
higher order ambisonics in the first iteration. 32-microphone DAS appeared to be very well-fitted in that 
regard, in one case even stopping the algorithm after the first iteration, since the initial estimation was 
already accurate enough. 

The importance of proper beam width can be showcased when SHB is run with the narrow beamformer 
from the start (Tab. 4). The error after first iteration is then much higher (25° to 45°) and thus up to 16 
iterations were needed to converge. Moreover, although for all four samples the algorithm successfully 
found the global maximum, very rough initial estimation causes risk of stopping at a local maximum. An 
exemplary convergence is showed in Fig. 4. 

Table 4. Angular error after 1st iteration using 4th order SHB. 

 Source position 
 S1 S2 S3 S4 
Angular error after 1st iteration 25.35 27.81 38.36 44.70 
No. of iterations to converge 9 9 12 16 

 
 

a) 

 

b) 

 
Figure 4. Convergence of results when using 4th order SHB in all iterations: a) full picture,  

b) zoomed in on the region of interest. Light blue point (far right-bottom) marks  
the initial estimate while the dark brown one marks the final sound source location estimation. 

3.2. Part 2 – longer impulses and speech signals 

The analysis described in the previous section would be more valuable if the same method could be used 
not only for short parts of an impulse but also for real-life continuous signals. Source localization was 
estimated for 4096-samples excerpts of the second set of impulses and speech signals, using firstly 
pseudospectrum with 1° resolution, followed by the iterative algorithm. As presented above, localization 
estimated using pseudospectrum of those short excerpts was taken as a reference for the algorithm. 
Figure 5 shows angular error after each iteration for all cases, including those presented in the previous 
section. Description of rooms and source positions is given in Sect. 2.5. 

In case of DAS, for 'long' samples, the pseudospectrum maximum from short excerpts was used as  
a reference direction. This was accurate for impulse samples, but for speech, in one case, the algorithm did 
not converge (source position S1), meaning the maximum was shifted more than 2° related to the short 
excerpt. 

In most cases, the algorithm using DAS, with a median number of iterations of 3, converges faster than 
SHB, which needs 6 iterations. The angular error for DAS usually decreases over the iterations, although e.g. 
for S3 in room 6E it increased after 3rd iteration, doubling the number of iterations to converge. Also, for 
S4 in room 103 the estimation went away in the wrong direction, before coming down to the aimed position. 
For the SHB, in all cases but one the angular error was decreasing over iterations. However, for S2 in room 
103 the number of iterations to converge was much higher than in other cases (16–17 related to a median 
of 6). Hence it is difficult to define the number of iterations needed to localize the source.  
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A more detailed study on the algorithm parameters (γ, α and beam width) would be needed to use it for 
source localization without preliminary cues. 

The algorithm converges similarly regardless of the signal length, which is especially important for DAS, 
which uses the Fourier transform in its implementation and so increasing signal length impacts the 
performance dramatically. Comparing average angular error after the first iteration (Tabs. 5 and 6) it can 
be noticed that the SHB starts off further from the desired direction and, because of a narrower band, it 
takes more iterations to converge; however, at the same time, this makes the estimate more precise. 

 

a) 

 
b) 

 
Figure 5. Angular error in subsequent iterations for different signals when using: a) DAS, b) SHB. 

Single points denote cases where algorithm converged after one iteration. 
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Table 5. Average angular error after 1st and last iteration for DAS. 

 Average Std. deviation 
Angular error after 1st iteration 9.75 5.62 
Angular error after last iteration 1.27 0.48 

Median number of iterations to converge: 3 

Table 6. Average angular error after 1st and last iteration for SHB  
(1st order in the 1st iteration, 4th order in subsequent ones). 

 Average Std. deviation 
Angular error after 1st iteration 14.65 8.29 
Angular error after last iteration 1.14 0.53 

Median number of iterations to converge: 6 

4. Discussion 

For all cases but one, the iterative algorithm successfully found the global maximum with 2° precision 
requiring only 1 to 7 iterations, yielding 4 to 22 total evaluations (4 in the first iteration and 3 in each 
subsequent one). For comparison, to obtain comparable precision with a standard approach of computing 
pseudospectrum on an equiangular grid, about 3° resolution would be needed (maximum possible error 
would be then equal to √2

2
⋅ 3° ≈ 2.12°), which yields a total of 21482 directions to evaluate. Even when 

employing more efficient equidistant grids, it would still require hundreds times more points than our 
iterative algorithm to achieve comparable precision. 

When using hierarchical search, reaching the 2° precision in 3D far-field subspace requires about 25 
evaluations, which is also a low number, although still higher than the results for our algorithm in most of 
cases. Furthermore, the precision increase for the hierarchical search is fixed, which means that the initial 
estimates are very rough, while our solution provides about 10 – 15° precision already after the first 
iteration. Finally, the algorithm can be fine-tuned by adjusting the beam width and the convergence 
parameters, which could further improve its performance. Obtaining satisfactory results even with 
somewhat simplistic setup shows that the proposed method has applicatory potential. 

Pseudospectrum provides full information on the distribution of power around the microphone. The 
algorithm is intended to only find the location of a single, most prominent sound source around the 
microphone array. It is thus a more specialized approach, much more efficient in its niche, but less universal 
overall. Furthermore, the iterative algorithm was designed to work in environments where there is only 
one dominant sound source. If there are multiple sound sources of similar power, the initial estimation will 
be less accurate and thus more prone to land near a minor local maximum. It is possible to adjust 
parameters of the algorithm (γ, α and beam width) to make it more robust at the expense of the speed of 
convergence. This should be considered in scope of further research in this area. 

DAS needs less iterations to converge, but also the convergence threshold was relative to its own 
pseudospectrum estimate, which is less precise due to larger beam width. SHB, on the other hand, is more 
reliable in that regard and also enables straightforward control on the beam width. This potentially allows 
for designing more robust algorithm that utilizes continuous updates to beam width rather than switching 
between only two preset widths. 

Precision of the SHB can also be improved by processing the signal in bands – the magnitude of higher 
order harmonics (N > 1) is frequency dependent, meaning that in lower frequencies the output of the SHT 
is noisy. On the other hand, above certain frequencies, spatial aliasing occurs, where spherical harmonics of 
higher order than the array is able to process reach significant magnitude. Both frequency limits depend on 
the geometry of the array (radius and spacing between microphones) [8]. Filtering the signals would result 
in a more precise beam. However, bandwidth of the beamformer could also be improved for the DAS, 
therefore such processing was excluded from the project. 

5. Conclusions 

We have implemented two beamformers for the spherical microphone array, DAS and SHB. By utilizing an 
iterative algorithm, we were able to greatly decrease the number of points necessary for localization of the 
sound source with each beamformer. For DAS the optimal results were achieved by utilizing all 32 channels 
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in every iteration. The angular error below 2 degrees was obtained in no more than 3 iterations for half of 
the 20 tested cases. For the spherical-harmonics-based beamformer, the most effective approach involved 
using first-order spherical harmonics in the initial iteration and fourth-order harmonics in all subsequent 
iterations. 

The number of iterations needed to achieve a satisfactory outcome varied between 3 and 5 for a single 
impulse sound source placed in one of the main directions (front-left-rear-right) and reached up to 17 for 
other cases. Further investigation is necessary to confirm effectiveness of the method for other directions – 
preferably with more precise measurement of actual source direction, to also verify estimation accuracy of 
both beamformers. Additional research is necessary to evaluate and improve the performance for 
localization of multiple sources. 

Additional information  
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