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Abstract Continuous wavelet transform is a powerful and versatile tool for signal analysis, outperforming 
short-time Fourier transform in the task of non-stationary, transient signals analysis.  However, the 
method’s performance is heavily influenced by the choice of a mother wavelet function, which is most often 
made by the experience-supported intuition, followed by the trial-and-error procedure. Numerous 
attempts to optimize the problem are not universal by any means, as its solution is determined by  
a particular application, acquired data, and other system requirements. One very specific example is 
wavelet-based statistical analysis, performed for the needs of the stochastic resynthesis of sound textures, 
which requires minimal decomposition and precise time localization of the individual acoustic events, 
components of a complex texture. This work presents the automated mother wavelet function optimization 
system, which performs the optimal selection based on the reference audio signal. The algorithm iterates 
through a wide set of commonly used functions and compares the wavelet packet decomposition trees in 
search of the single node, containing the most information possible, with the use of the entropy-based 
criterion. After performing the procedure, reference signal is resynthesized with coefficients of the selected 
wavelet function and then calculation of normalized root mean square error serves as a verification of the 
results. Conclusions contain both the advantages and the limitations of the proposed solution together with 
the possible improvements and the directions of future research. 
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1. Introduction 

While there isn’t a universal and accepted definition of sound texture, most sources seem to agree on their 
basic properties. They are usually described as a complex sound, a superposition of a multitude of shorter 
acoustic events, similar to each other, with somewhat random, irregular organization in time. Importantly, 
sound textures exhibit so-called temporal homogeneity, which makes them recognizable with time-
averaged statistics [1]. The consequence of this property is presented in Figure 1, which illustrates gradually 
gained statistical knowledge about the given texture. 

Amongst the most popular examples of such sounds are the raindrops hitting the surface, the crackling 
fire or the chirping crickets, but also the engine roar, thermal noise in electronic circuits or the complex, 
noisy urban soundscape. Textures can perform different functions; they often carry important information 
about the surroundings, and exposition to such sounds can have a substantial influence, positive or negative, 
on concentration or well-being [3]. Some of the most important applications of sound texture analysis and 
synthesis are noise-reduction techniques, active noise cancellation, speech recognition and synthesis, also 
mechanical fault [4] and disease diagnostics [5]. What is more, texture synthesis is also used for sound 
design in movies and games, as well as for creating virtual music instruments [6]. 

Given the transient and non-stationary characteristics of sound textures, known shortcomings of  
a traditional Fourier analysis applied to their analysis become evident. In its basic form, the transform 
decomposes signals into linear superpositions of stationary and infinite periodic functions, which is the 
opposite of non-stationary, stochastic sound textures, containing many, irregularly distributed transients. 
An efficient way to resolve the issue is to analyze the signal with the continuous wavelet transform (CWT).  
The method performs the decomposition with a compactly supported mother wavelet function, which is 
being scaled and dilated in the time domain. Calculation of the correlation between the wavelet function 
and the analyzed signal, with regard to the time and scale, creates a scalogram, a detailed representation of 
the signal's local similarity to the given wavelet function. In effect, wavelet transform offers a more natural 
and flexible compromise of the time-frequency resolution, than in the case of the short-time Fourier 
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transform (STFT). Finally, the choice of the continuous wavelet transform basis is arbitrary, making it  
a versatile and highly configurable tool. 

 
Figure 1. Illustrative graph of the perceptive information content in noise, sound textures and 

speech or music [2], with regard to the duration of the stimuli. 

On the other hand, this advantage of nearly unrestricted choice of decomposition basis might be  
a serious difficulty, as there isn’t a universal solution to the problem. Several previous approaches to the 
problem focused on either examining parametrized mother wavelet performance [7], maximizing the 
sparsity measure [8] using genetic algorithm (GA) or comparing a wavelet functions performance in  
a very specific task [9]. 

This work presents a specialized approach to the optimal mother wavelet selection for the task of 
stochastic resynthesis of sound textures and is an essential preliminary step of a statistical analysis of the 
signals to be resynthesized. It is based on a reference signal decomposition into a wavelet packet tree and 
maximization of the information contained in a single node, using the entropy criterion [10]. The algorithm 
iterates through a wide set of commonly used wavelet functions and the method’s performance is compared 
for several types of real-world, recorded sound textures. 

2. Method 

Developed optimization procedure searches for the best wavelet function to offer minimal decomposition. 
It is based on a discrete method of the wavelet packet transform [11], which decomposes the signal into 
subsets of wavelet function coefficients by repeatedly splitting the signal into a low and a high-pass 
component at each level of the transform. The result can be presented in a form of a decomposition tree, as 
shown in Figure 2a. Each node of the tree represents the coefficients vector and each of the terminal nodes’ 
wavelet functions form an orthogonal basis. 

 

Figure 2. Wavelet packet tree (a) and its reduced, optimal form (b). The red dot indicates the node  
with the highest Shannon entropy value. 
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Then, the wavelet packet tree can be reduced to form an optimal decomposition basis by merging the 
children nodes containing more information than its parent. It involves comparing the individual nodes 
with the criterion based on a Shannon entropy formula: 

 
𝐻𝐻(𝑋𝑋) = −∑ 𝑃𝑃(𝑋𝑋 = 𝑥𝑥𝑖𝑖) ln�𝑃𝑃(𝑋𝑋 = 𝑥𝑥𝑖𝑖)� 

𝑖𝑖 , (1) 

where each node’s wavelet coefficient vector is treated as an empirical probability distribution of  
a random variable X. Remaining tree nodes form an optimal decomposition basis (Fig. 2b), with wavelet 
functions of different scales. 

The algorithm iterates through the given set of the wavelet and scaling function pairs, related to the high 
and low-frequency components. It compares the maximal relative entropy of the terminal nodes of each 
decomposition. As a result, the best node and the corresponding wavelet function are selected, which 
provide the most information about the signal structure. Table 1 depicts the wavelet families used for 
optimization, together with their brief descriptions. All of the used wavelet functions, 62 in total, have the 
important property of being orthogonal or biorthogonal and a compact support. 

Table 1. Summary of the wavelet functions used in the optimization procedure. 

Family name Description Wavelet functions used 

Haar Simplest and oldest wavelet, built of quantised steps. 
Symmetric and useful for detecting non-continuity. 

'haar' 

Daubechies Extremal phase and highest number of vanishing 
moments for a given support width. Associated scaling 
filters are minimum-phase filters. Parametrized with 
the number of vanishing moments. 

'db1', 'db2', 'db3', 'db4', 'db5', 
'db6', 'db7', 'db8', 'db9', 'db10' 
 

Symlet Least asymmetry and highest number of vanishing 
moments for a given support width. Associated scaling 
filters are near linear-phase filters. Parametrized with 
the number of vanishing moments 

'sym2', 'sym3', 'sym4', 'sym5', 
'sym6', 'sym7', 'sym8', 'sym9', 
'sym10' 
 

Coiflet Highest number of vanishing moments for both the 
scaling and the wavelet function for a given support 
width. Parametrized with the number of vanishing 
moments. 

'coif1', 'coif2', 'coif3', 'coif4', 
'coif5' 
 

Biorthogonal Biorthogonal spline wavelets with linear phase, for 
which symmetry and exact reconstruction are possible 
with FIR filters. Parametrized by the number of 
vanishing moments for the reconstruction and 
decomposition filters respectively. 

'bior1.1', 'bior1.3', 'bior1.5', 
'bior2.2', 'bior2.4', 'bior2.6', 
'bior2.8', 'bior3.1', 'bior3.3', 
'bior3.5', 'bior3.7', 'bior3.9', 
'bior4.4', 'bior5.5', 'bior6.8' 

Reverse 
biorthogonal 

Biorthogonal spline wavelets with linear phase, for 
which symmetry and exact reconstruction are possible 
with FIR filters. Parametrized by the number of 
vanishing moments for the reconstruction and 
decomposition filters respectively. 

'rbio1.1', 'rbio1.3', 'rbio1.5', 
'rbio2.2', 'rbio2.4', 'rbio2.6', 
'rbio2.8', 'rbio3.1', 'rbio3.3', 
'rbio3.5', 'rbio3.7', 'rbio3.9', 
'rbio4.4', 'rbio5.5', 'rbio6.8' 

Discrete Meyer FIR based approximation of the Meyer wavelet, 
infinitely regular orthogonal wavelet. 

'dmey' 

Fejer-Korovkin Minimal difference between a valid scaling filter and 
the ideal sinc lowpass filter, especially useful in 
discrete (decimated and undecimated) wavelet packet 
transforms. Parametrized with the number of filter 
coefficients. 

'fk4', 'fk6', 'fk8', 'fk14', 'fk18', 
'fk22' 
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3. Results 

The set of reference signals used to test the optimization procedure comprises 5 audio files, with a sampling 
frequency of 48 kHz and a bit depth of 24. All files are monophonic, and their length was trimmed to 131072 
samples, which equals the 17th power of two, as required by the wavelet packet transform. The length of 
the audio file corresponds to about 2.73 seconds of recording, which proved enough to ensure similar 
results with different realizations of the same sound texture. 

After performing the optimization, the input signal can be reconstructed using the selected wavelet 
function and the vector of coefficients. This allows not only to audibly and visually inspect the result but 
also to measure the optimization performance with a root mean square error normalized by the root mean 
square of a reference signal (NRMSE). Figures 3 – 8 contain the results in form of the reference and 
reconstructed signal’s waveform, the chosen wavelet function, and the relative entropy of all terminal 
nodes, which helps in the assessment of how the information is spread across different nodes of the 
decomposition tree. 
 

Figure 3. Selected wavelet (’fk22’ in the node (3,0)) and the reconstruction of the vinyl record’s noise.  
The relative entropy of the best node is 0.8018 and the reconstruction NRMSE is 0.3066. 

Figure 4. Selected wavelet (’db9‘ in the node (2,1)) and the reconstruction of the sound of the crackling 
fire. The relative entropy of the best node is 0.3911 and the NRMSE is 0.7195. 
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Figure 5. Selected wavelet ('rbio3.3’ in the node (1,1)) and the reconstruction of the sound of the rain.  
The relative entropy of the best node is 0.2217 and the reconstruction NRMSE is 0.9958. 

Figure 6. Selected wavelet ('db10' in the node (8,6)) and the reconstruction of the constant hum inside  
an airplane. The relative entropy of the best node is 0.3498 and the reconstruction NRMSE is 0.9998. 

The accuracy of the chosen solution cannot be easily estimated, but it definitely should be based on 
multiple measures. Comparison of the signals’ waveforms allows for an intuitive comparison, however, it 
certainly lacks important details. A deeper insight could be gained by the analysis of the entropy distribution 
between terminal nodes. Many peaks, which are comparable in height (i.e. Fig. 5d), suggest similarly 
important, but disjoined components of the signal and undermine the reasonability of choosing an 
individual wavelet function. On the other hand, one, distinctive peak in the entropy distribution confirms 
the quality of the selection. 

However, even with the obvious candidate for the best-suited wavelet function, the reconstructed signal 
and the reconstruction NRMSE don’t necessarily reflect such situation. It is crucial to emphasize, that the 
signal is re-synthesized with wavelets of only one scale, which means inevitable discrepancies with the 
original, complex sound texture. For example, the algorithm neglects the low-frequency components of the 
signal, especially observed in reference signals’ waveforms in Figs. 5 and 8, as it primarily searches for the 
best shape of the wavelet function. 
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The general observation is that the sounds with sparser time distribution and more pronounced 
transients (such as the sound of fire or vinyl record noise) were assigned wavelet functions more 
successfully. This is equally visible in the chosen node entropy and the NRMSE of the reconstruction, as well 
as in the reconstructed sound file. The most difficult textures are composite sounds, with the decomposition 
tree containing many terminal nodes, such as the sound of the city bus (Fig. 8).  

Figure 7. Selected wavelet ('bior2.8' in the node (3,1)) and the reconstruction of the sound of sea waves. 
The relative entropy of the best node is 0.3670 and the reconstruction NRMSE is 0.9664. 

Figure 8. Selected wavelet ('rbio2.6’ in the node (3,1)) and the reconstruction of the sound of the city bus. 
The relative entropy of the best node is 0.2425 and the reconstruction NRMSE is 0.9928. 

4. Conclusions and further research 

The result of the work is an efficient algorithm, which compromises its complexity with a reasonable 
performance. The presented approach gives a logical foundation for the selection of wavelet function for 
the stochastic resynthesis of sound textures. However, there are some relevant limitations and, more 
importantly, possible solutions and improvements. 

An essential requirement for the method is to reduce the decomposition basis to the individual wavelet 
function. However, very often the information was spread across several nodes of the decomposition tree, 
which could be observed in the distribution of the entropy of the terminal nodes. The next step to consider 
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is to explore the correlation between the coefficient vectors of different wavelet functions and possibly 
combine matching wavelets. 

Wavelet packet transform seems to be a well-suited tool for the task, however, it has some important 
disadvantages. Decimation performed with each level of the decomposition greatly reduces the resolution, 
and implementation of the maximal overlap discrete wavelet transform (MODWT) could indicate how this 
flaw influences the final results. Also, WPT chooses decomposition scales independently of the source signal. 
An ideal solution should adapt to the signal’s frequency content, as is the case in the empirical wavelet 
transform (EWT) [12]. Lastly, the complex, multi-level structure of sound textures especially difficult in the 
analysis could potentially be reflected in hierarchical dependencies between different wavelet functions. 
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