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Abstract The paper studies the dynamic behavior of the vibratory sieving conveyor equipped with the twin 
crank-slider excitation mechanism. The main purpose of this research consists in substantiating the 
possibilities of implementing the improved drive for providing the controllable vibration parameters of the 
working member (conveying tray, sieve, etc.) in accordance with the specific technological requirements 
set for different materials to be sieved and conveyed. In order to reach the goal set above, the following 
objectives are established: analyzing the design peculiarities of the vibratory sieving conveyor; deriving the 
mathematical model describing the conveyor’s oscillatory system dynamic behavior; studying the system 
kinematic, dynamic, and power characteristics. The system motion is described using the Lagrange-
d’Alembert principle, and the numerical modeling is carried out in the Mathematica software with the help 
of the Runge-Kutta methods. The influence of the vibratory system's geometrical parameters on the motion 
conditions of the conveyor’s working member (conveying tray and sieve) is analyzed. 
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1. Introduction 

The vibratory equipment is widely used for sieving, screening, and conveying of various loose, bulky, and 
piecewise products. Among a great variety of vibration exciters, the inertial (unbalanced), electromagnetic, 
and crank-type ones are of the most commonly used in vibratory conveyors and screens. The problems of 
studying the dynamic behavior of vibratory machines equipped with different drives are of significant 
interest among scientists, technologists, and engineers all over the world.  

The possibilities of providing the controllable elliptical oscillations of the vibratory screen by equipping 
it with two independent inertial exciters characterized by the changeable angular velocities are thoroughly 
analyzed in [1]. A similar vibration exciter with two coaxially rotating unbalanced masses set into motion 
by one electric motor is studied in [2]. The paper [3] is dedicated to investigating the dynamic behavior of 
the same coaxial double-mass exciter with two independent driving motors. The influence of different 
angular speed ratios of the kinematically synchronized unbalanced bodies on the dynamic behavior of the 
oscillatory system equipped with the doubled coaxial inertial vibration exciter is investigated in [4]. 

One more type of inertial vibration exciter equipped with passive auto-balancers is considered in the 
papers [5] and [6]. In [5], the authors studied the operational conditions of the three-mass anti-resonance 
vibratory machine controlled by changing both the unbalanced rotor speed and the forces of viscous 
resistance applied between the oscillating bodies. The paper [6] considers the dynamic behavior of the 
single-mass vibratory machine whose operation is based on the Sommerfeld effect. 

A thorough analysis of different types of centrifugal (inertial) vibration exciters is carried out in [7], 
where the authors paid special attention to studying the dynamics of the asymmetric planetary vibration 
exciter. In [8], there is proposed a similar idea of developing the adjustable planetary vibration exciter with 
two satellite unbalanced rollers whose angular positions are synchronized by the chain gear. Another novel 
design of the directed vibration generating system equipped with the heavy eccentric pendulum-like mass 
being rotated and exciting the circular vibrations of the working member is studied in [9].  

In distinction from the inertially driven machines considered in [1–9], the wide range of vibratory 
equipment uses the crank-type exciters [10–13]. The dynamics of the single-mass vibratory conveyor 
driven by the crank-and-rod vibration exciter is studied in [10]. A similar conveyor is considered in [11], 
where the author analyzed the dynamic parameters and the stress-strain state of the conveyor’s hinges and 
rods. In [12], the authors investigated the translational locomotion of the semidefinite vibro-impact system 
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driven by the twin crank-slider exciter. The paper [13] is devoted to studying the kinematic characteristics 
of the shaking conveyor equipped with the crank-type vibration exciter. 

The problems of the electric motor adjustment according to the operational conditions of the vibratory 
system with the rotating unbalanced mass are investigated in [14]. A similar problem is studied in [15], 
where the authors analyzed the dynamics of the single-degree-of-freedom reciprocating system driven by 
the DC motor and crank-slider mechanism. In addition, there are numerous investigations, e.g. [16], 
studying the possibilities of equipping various vibratory equipment with induction (asynchronous) motors 
with the corresponding control strategies. The basic aspects of predicting the safe fatigue life and failure 
diagnostics of the vibratory machines’ springs are thoroughly investigated in [17]. 

The previous authors’ investigations on similar problems dedicated to the development of the enhanced 
inertial vibration exciters are presented in [18–20]. The paper [18] is focused on studying the dynamics of 
the single-mass oscillatory system actuated by the asymmetric self-adjustable planetary-type vibration 
exciter. Similar designs of two excitation mechanisms of the symmetric structure are thoroughly studied in 
[19]. In addition, the possibilities of generating various trajectories of the single-mass vibratory system 
equipped with the proposed exciters are considered. The paper [20] investigates the kinematics of the 
controllable crank-type mechanism intended for actuating inertial or eccentric vibration exciters. 

Unlike numerous scientific publications dedicated to studying the drive dynamics of various vibratory 
equipment, in particular those [1–20] considered above, the main idea of the present research consists in 
implementing the twin crank-slider mechanism for exciting oscillations of the vibratory sieving conveyor. 
The following investigations are aimed at substantiating the possibilities of providing multi-regime 
operational conditions that can be controlled in accordance with the specific technological requirements 
set for different materials to be sieved and conveyed. The practical implementation of the proposed ideas 
is presented in the developed general design of the vibratory sieving conveyor (see Fig. 1). 

 

Figure 1. General design of the vibratory sieving conveyer. 

The conveyor’s body with four legs 1 is mounted on the foundation using the supports 2 and coil springs 
3 (Fig. 1). The working member consists of the lower conveying tray 4 and the upper sieve 5, which have 
separate discharging holes 6 and 7, respectively. The vibrations are excited by the twin crank-slider 
mechanism 8 setting the disturbing bodies 9 and 10 into the rectilinear oscillatory motion with the help of 
the flat springs 11 and 12, respectively. The disturbing bodies 9 and 10 are equipped with the linear (pilot) 
bearings and slide along the corresponding guide rods 13, 14, whose angular positions with respect to the 
conveyor’s body can be controlled. The whole exciter is mounted on the plate 15 fixed to the lower 
conveying tray 4. In order to reduce the parasitic angular oscillations, the intersection point of the 
disturbing bodies’ guide axes must coincide with the mass center of the conveyor’s body. 

The main objectives of this research are the following: constructing the dynamic diagram of the 
conveyer’s oscillatory system; deriving the differential equations describing the system motion; 
synthesizing the stiffness parameters providing the near-resonance vibrational conditions of the disturbing 
bodies and non-resonant (far-over-resonance) operation of the working member; analyzing the kinematic 
parameters of the vibratory system; studying the system’s dynamic and power characteristics. 
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2. Research methodology 

2.1. Dynamic diagram of the vibratory system 

The conveyor’s vibratory system consists of three movable bodies whose inertial parameters are 
characterized by the corresponding masses m1, m2, and m3 (see Fig. 2). The working member (conveying 
tray, screen, or sieve) is set into the oscillatory motion due to the crank OA rotation providing the rectilinear 
vibrations of the masses m2 and m3 along the axes Ox2 and Ox3, respectively. In order to restrict the angular 
oscillations of the mass m1 the working member is elastically mounted on the movable platform using the 
independent vertical and horizontal spring-damper elements. The latter are characterized by the stiffness 
coefficients k1x, k1y, and damping coefficients c1x, c1y, respectively. 

The considered vibratory system (see Fig. 2) is characterized by five degrees of freedom. The rectilinear 
motions of the oscillating masses m2 and m3 relative to the working member (mass m1) are described by the 
corresponding coordinates x2 and x3. The relative motion of the excitation mechanism is characterized by 
the angular position φ of the crank OA with respect to the horizontal axis Ox1. The vibrations of the working 
member are described by the corresponding horizontal and vertical displacements x1 and y1. Therefore, the 
system motion can be uniquely modelled by five differential equations. 

 

Figure 2. Dynamic diagram of the vibratory system. 

2.2. Mathematical model describing the system motion 

The differential equations describing the vibratory system motion were derived using the Lagrange-
d'Alembert principle and can be presented as follows: 

(𝑚𝑚1 + 𝑚𝑚2 + 𝑚𝑚3)�̈�𝑥1 + 𝑐𝑐1𝑥𝑥�̇�𝑥1 + 𝑘𝑘1𝑥𝑥𝑥𝑥1 + 𝑘𝑘2 cos(𝛼𝛼 + 𝛽𝛽) ∙ (𝑥𝑥2𝐶𝐶 − 𝑥𝑥2) + 𝑘𝑘3 cos𝛼𝛼 ∙ (𝑥𝑥3𝐵𝐵 − 𝑥𝑥3)
= −𝑚𝑚2�̈�𝑥2 cos(𝛼𝛼 + 𝛽𝛽) −𝑚𝑚3�̈�𝑥3 cos𝛼𝛼 ; 

(1) 

(𝑚𝑚1 + 𝑚𝑚2 + 𝑚𝑚3)�̈�𝑦1 + 𝑐𝑐1𝑦𝑦�̇�𝑦1 + 𝑘𝑘1𝑦𝑦𝑦𝑦1 + 𝑘𝑘2 sin(𝛼𝛼 + 𝛽𝛽) ∙ (𝑥𝑥2𝐶𝐶 − 𝑥𝑥2) + 𝑘𝑘3 sin𝛼𝛼 ∙ (𝑥𝑥3𝐵𝐵 − 𝑥𝑥3)
= 𝑚𝑚2�̈�𝑥2 sin(𝛼𝛼 + 𝛽𝛽) + 𝑚𝑚3�̈�𝑥3 sin𝛼𝛼 ; 

(2) 

𝑚𝑚2�̈�𝑥2 + 𝑐𝑐2(�̇�𝑥2 − �̇�𝑥2𝐶𝐶) + 𝑘𝑘2(𝑥𝑥2 − 𝑥𝑥2𝐶𝐶) = 𝑚𝑚2(�̈�𝑦1 sin(𝛼𝛼 + 𝛽𝛽) − �̈�𝑥1 cos(𝛼𝛼 + 𝛽𝛽)); (3) 

𝑚𝑚3�̈�𝑥3 + 𝑐𝑐3(�̇�𝑥3 − �̇�𝑥3𝐵𝐵) + 𝑘𝑘3(𝑥𝑥3 − 𝑥𝑥3𝐵𝐵) = 𝑚𝑚3(�̈�𝑦1 sin𝛼𝛼 − �̈�𝑥1 cos𝛼𝛼); (4) 

𝐽𝐽𝑂𝑂�̈�𝜑 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙 , (5) 

where m1, m2, m3 are the masses of the oscillating bodies, c1x, c1y, c2, c3 and k1x, k1y, k2, k3 are the damping and 
stiffness coefficients of the corresponding springs (see Fig. 2), α is the angle between the horizontal axis Ox1 
and the axis Ox3 (the guideline of the slider B), β is the angle between the axes Ox3 and Ox2 (i.e., between the 
guidelines of the sliders B and C), x2C, x3B are the coordinates describing the relative positions of the 
corresponding sliders (C and B), JO is the equivalent moment of inertia reduced to the crank (motor) shaft, 
Tmot, Tload are the driving and loading torques applied to the crank (motor) shaft. 
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The relative positions of the sliders B and C can be described by the following dependencies: 

𝑥𝑥2𝐶𝐶 = 𝑙𝑙𝑂𝑂𝑂𝑂 cos(𝛼𝛼 + 𝛽𝛽 − 𝜑𝜑) + �𝑙𝑙𝑂𝑂𝐶𝐶2 − (𝑙𝑙𝑂𝑂𝑂𝑂 sin(𝛼𝛼 + 𝛽𝛽 − 𝜑𝜑))2 ≈
𝑙𝑙𝐴𝐴𝐴𝐴≫𝑙𝑙𝑂𝑂𝐴𝐴

𝑙𝑙𝑂𝑂𝑂𝑂 cos(𝛼𝛼 + 𝛽𝛽 − 𝜑𝜑) + 𝑙𝑙𝑂𝑂𝐶𝐶 ; (6) 

𝑥𝑥3𝐵𝐵 = 𝑙𝑙𝑂𝑂𝑂𝑂 cos(𝛼𝛼 − 𝜑𝜑) + �𝑙𝑙𝑂𝑂𝐵𝐵2 − (𝑙𝑙𝑂𝑂𝑂𝑂 sin(𝛼𝛼 − 𝜑𝜑))2 ≈
𝑙𝑙𝐴𝐴𝐴𝐴≫𝑙𝑙𝑂𝑂𝐴𝐴

𝑙𝑙𝑂𝑂𝑂𝑂 cos(𝛼𝛼 − 𝜑𝜑) + 𝑙𝑙𝑂𝑂𝐵𝐵 , (7) 

where lOA, lAC, lAB are the lengths of the corresponding rods of the excitation mechanism (see Fig. 2). 
While performing further investigations, let us consider the simplified case of the system operation. This 

means that the crank angular velocity ω is assumed to be constant, and the differential equation (5) can be 
neglected. The considered simplifying assumption is valid in the cases of implementing the permanent-
magnet direct-current motors characterized by high starting torque and equipped with the additional 
systems of speed or torque control [13, 14]. Therefore, the angular position φ of the crank OA with respect 
to the horizontal axis Ox1 can be presented as a function of time: 𝜑𝜑 = 𝜔𝜔 ∙ 𝑡𝑡. 

2.3. Synthesis of the system parameters 

The parametric synthesis of the considered vibratory system is aimed at providing the near-resonance 
vibrational conditions of the disturbing bodies (masses m2, m3), and non-resonant (far-over-resonance) 
operation of the working member (mass m1). Adopting the natural frequencies of the masses m2, m3 almost 
equal to the forced frequency of the oscillatory systems, the stiffness parameters k2, k3 of the corresponding 
springs (see Fig. 2) can be calculated as follows: 

𝑘𝑘𝑖𝑖 = 𝑚𝑚1−𝑖𝑖𝜉𝜉𝑖𝑖2𝜔𝜔2 + 𝑐𝑐𝑖𝑖2 (4𝑚𝑚1−𝑖𝑖)⁄ , 𝑖𝑖 = 2, 3, (8) 

where 𝑚𝑚1−2 = 𝑚𝑚1𝑚𝑚2 (𝑚𝑚1 + 𝑚𝑚2)⁄ , 𝑚𝑚1−3 = 𝑚𝑚1𝑚𝑚3 (𝑚𝑚1 + 𝑚𝑚3)⁄  are the reduced (equivalent) masses of the 
corresponding spring systems (see Fig. 2), ξ2, ξ3 are the correction coefficients providing the near-resonance 
vibrational conditions of the corresponding oscillating masses (𝜉𝜉𝑖𝑖 = 0.95 … 0.99). 

Considering the fact that the working member (conveying tray, screen or sieve) is elastically mounted 
on the foundation using the independent vertical and horizontal spring-damper elements, the non-resonant 
(far-over-resonance) vibrational conditions must be provided to reduce the negative influence of the 
working member upon the foundation. In such a case, the corresponding stiffness coefficients k1x, k1y are to 
be determined using the following expressions: 

𝑘𝑘1𝑗𝑗 = (𝑚𝑚1 + 𝑚𝑚2 + 𝑚𝑚3)𝜉𝜉1𝑗𝑗2 𝜔𝜔2 + 𝑐𝑐1𝑗𝑗2 (4(𝑚𝑚1 + 𝑚𝑚2 + 𝑚𝑚3))⁄ , 𝑗𝑗 = 𝑥𝑥,𝑦𝑦, (9) 

where ξ1j are the correction coefficients providing the far-over-resonance vibrational conditions of the 
working member (𝜉𝜉1𝑗𝑗 = 0.15 … 0.4). 

3. Results and discussion 

3.1. Analyzing the kinematic parameters of the vibratory system 

While carrying out further numerical modeling of the vibratory system motion, let us adopt the following 
inertial and geometrical parameters based on the conveyor 3D-design (Fig. 1) developed in the SolidWorks 
software: 𝑚𝑚1 = 30 kg, 𝑚𝑚2 = 1 kg, 𝑚𝑚3 = 1 kg, 𝑙𝑙𝑂𝑂𝑂𝑂 = 0.015 m, 𝑙𝑙𝑂𝑂𝐵𝐵 = 0.08 m, 𝑙𝑙𝑂𝑂𝐶𝐶 = 0.08 m. The operational 
parameters are the following: 𝜔𝜔 = 104.7 rad/s (i.e., the motor shaft rotates at 1000 rpm),  
𝑐𝑐1𝑥𝑥 = 100 N ∙ s m⁄ , 𝑐𝑐1𝑦𝑦 = 100 N ∙ s m⁄ , 𝑐𝑐2 = 50 N ∙ s m⁄ , 𝑐𝑐3 = 50 N ∙ s m⁄ . The stiffness coefficients are 
calculated by Eqs. (8) and (9) taking into account the corresponding correction coefficients 𝜉𝜉1𝑥𝑥 = 0.36, 
𝜉𝜉1𝑦𝑦 = 0.36, 𝜉𝜉2 = 0.98, 𝜉𝜉3 = 0.98: 𝑘𝑘1𝑥𝑥 = 45400 N m⁄ , 𝑘𝑘1𝑦𝑦 = 45400 N m⁄ , 𝑘𝑘2 = 10800 N m⁄ ,  
𝑘𝑘3 = 10800 N m⁄ . 

The angles α and β are considered as the basic parameters whose influence on the system's kinematics 
and dynamics is to be studied. Substituting the mentioned above values of the conveyor’s geometrical, 
inertial, stiffness, and damping parameters in the system of the differential equations (1)–(4), the 
corresponding parametric solution (with the unknown parameters α and β) has been numerically derived 
in the Mathematica software using the Runge-Kutta methods. The latter are integrated into the Mathematica 
software by the “ExplicitRungeKutta” function allowing for solving stiff and quasi-stiff systems with the help 
of the proportional-integral step-size controller. The “ParametricNDSolve” function finds the numerical 
solution of the system of ordinary differential equations for the given functions (generalized coordinates) 
with the independent variable (time) in the prescribed range (e.g., 0…2 s) and with the changeable 



 

5 of 9 

Vibrations in Physical Systems, 2023, 34(2), 2023226 DOI: 10.21008/j.0860-6897.2023.2.26 

parameters (angles α and β). The numerically obtained Figure 3 illustrates the trajectories of the working 
member vibrations at different values of α and β: 𝛼𝛼 = 0°, 30°, 𝛽𝛽 = 0°, 30°, 60°, 90°, 120°, 150°, 180°. 

Due to changing the angle β, it is possible to provide rectilinear, elliptical, and circular oscillations of the 
working member. Rectilinear oscillations take place at 𝛽𝛽 = 0° and 𝛽𝛽 = 180°; circular oscillations – at  
𝛽𝛽 = 90°. All the other angles β provide elliptical oscillations of the working member (see Fig. 3). The change 
in the ellipse shape (focal distance, eccentricity, ratio between the minor and major axes, etc.) and the 
corresponding vibration parameters depend on the angle β value. In the case of 𝛼𝛼 = 0° (Fig. 3 a), the 
elliptical trajectories of the working member, allowing for the rightward conveying of different products, 
take place in the range of 0° < 𝛽𝛽 <  90°, while the leftward conveying can be provided at 90° < 𝛽𝛽 <  180°. 
In order to change the direction of the rectilinear vibrations, it is necessary to increase the angle α. For 
example, at 𝛼𝛼 = 30° (Fig. 3 b), the rectilinear vibrations and the major axes of the corresponding elliptical 
trajectories are counter-clockwise inclined at 30° with respect to their previous positions (at 𝛼𝛼 = 0°). 
Therefore, the implementation of the controllable twin crank-slider excitation mechanism allows for 
changing the vibration parameters of the working member. 

a) 

 
b) 

 
Figure 3. Trajectories of the working member vibrations at different values of α and β:  

a) 𝛼𝛼 = 0°, b) 𝛼𝛼 = 30°.  

Figure 4 presents the time response curves of the vibratory system’s oscillating bodies at 𝛽𝛽 = 90° and 
𝛼𝛼 = 0° … 90°, i.e., under the conditions of the working member circular oscillations. Such operational 
conditions allow for providing the effective shaking and sieving processes of various loose and bulky 
products. The vibration amplitudes (x2ampl, x3ampl) of the disturbing bodies reach 35 mm, while the working 
member performs the circular oscillations characterized by the radius of about 1.2 mm, i.e., the phase shift 
between the vertical and horizontal oscillations of the working member equals π/2 rad. By means of 
changing the angles α and β, the trajectory shape of the working member can be controlled in accordance 
with the specific technological requirements set for different materials to be sieved and conveyed. 



 

6 of 9 

Vibrations in Physical Systems, 2023, 34(2), 2023226 DOI: 10.21008/j.0860-6897.2023.2.26 

a) 

 
b) 

 
Figure 4. Time response curves of the corresponding oscillating masses at 𝛽𝛽 = 90° and 𝛼𝛼 = 0° … 90°:  

a) working member (mass m1), b) disturbing bodies (masses m2, m3).  

As a second example, let us consider the system oscillations at 𝛼𝛼 = 30° and 𝛽𝛽 = 0° (see Fig. 5), i.e., when 
the working member performs the directed (rectilinear) oscillations. In such a case, the effective conveying 
and sieving processes of various piecewise products can be provided. The amplitudes (x2ampl, x3ampl) of the 
disturbing bodies are about 35 mm, while the working member oscillates rectilinearly with the horizontal 
and vertical amplitudes of 𝑥𝑥1𝑙𝑙𝑚𝑚𝑎𝑎𝑙𝑙 = 2 mm and 𝑦𝑦1𝑙𝑙𝑚𝑚𝑎𝑎𝑙𝑙 = 1.2 mm, respectively. By means of changing the 
angle α, it is possible to control the throwing (pitching) angle of the working member (conveying tray and 
sieve) in order to improve the sieving and conveying efficiency for different piecewise and bulky products. 

a) 

 
b) 

 
Figure 5. Time response curves of the corresponding oscillating masses at 𝛼𝛼 = 30° and 𝛽𝛽 = 0°:  

a) working member (mass m1), b) disturbing bodies (masses m2, m3).  

3.2. Studying the dynamic and power characteristics 

The second stage of the present research consists in the following tasks: analyzing the working member 
vertical acceleration and vibration intensity factor (Fig. 6); studying the drive loading torque (Fig. 7) and 
power consumption under different operational conditions. Considering the case when 𝛼𝛼 = 0° (Fig. 6 a), the 
largest values of the vibration intensity factor (W) and vertical acceleration (�̈�𝑦1) of the working member 
take place at 𝛽𝛽 = 90° (circular oscillations) and reach 1.25 and 12.5 m/s2, respectively. 

Under the conditions of 𝛼𝛼 = 30° (Fig. 6 b), the working member vertical acceleration and vibration 
intensity factor take the amplitude values of about 17 m/s2 and 1.7, respectively, at 𝛽𝛽 = 30° and 𝛽𝛽 = 60° 
(elliptical oscillations). In the case when 𝛼𝛼 = 30°, 𝛽𝛽 = 90° (circular oscillations), the considered dynamic 
characteristics of the working member vibrations are similar to the ones obtained for 𝛼𝛼 = 0°, 𝛽𝛽 = 90°. 
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Therefore, it can be stated that the proposed twin crank-slider excitation mechanism allows for changing 
the vibratory conveyer dynamic parameters in accordance with the specific technological requirements set 
for different materials to be sieved and conveyed. 

a) 

 
b) 

 
Figure 6. Time dependencies of the working member vibration intensity factor and vertical acceleration 

at different values of α and β: a) 𝛼𝛼 = 0°, b) 𝛼𝛼 = 30°.  

The equivalent loading torque applied to the crank (motor) shaft is proportional to the restoring forces 
of the disturbing bodies’ springs and can be calculated using the following simplified expression: 

𝑇𝑇𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙 ≈ �𝑚𝑚2𝑔𝑔 sin(𝛼𝛼 + 𝛽𝛽) + 𝑘𝑘2(𝑥𝑥2 − 𝑥𝑥2𝐶𝐶)�𝑙𝑙𝑂𝑂𝑂𝑂 sin(𝜑𝜑 − 𝛼𝛼 − 𝛽𝛽)
+ �𝑚𝑚3𝑔𝑔 sin(𝛼𝛼) + 𝑘𝑘3(𝑥𝑥3 − 𝑥𝑥3𝐵𝐵)�𝑙𝑙𝑂𝑂𝑂𝑂 sin(𝜑𝜑 − 𝛼𝛼), 

(10) 

where g is the free fall (gravitational) acceleration. 

a) 

 
b) 

 
Figure 7. Time dependencies of the loading torque applied to the crank (motor) shaft at different values 

of α and β: a) 𝛼𝛼 = 0°, 𝛽𝛽 = 0° … 180°, b) 𝛼𝛼 = 90°, 𝛽𝛽 = 0°.  
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The results of the loading torque numerical modeling carried out in the Mathematica software using 
Eq. (10) are presented in Fig. 7. In the hardest (extreme) operational conditions (when 𝛼𝛼 = 90°, 𝛽𝛽 = 0°, i.e., 
the working member performs vertical rectilinear oscillations at the amplitude of 2.2 mm and the 
acceleration of 25 m/s2), the maximal loading torque reaches 11 N·m, while its minimal value is zero. The 
average value of the torque was calculated as 𝑇𝑇𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙.𝑙𝑙𝑎𝑎 = 𝜔𝜔

2𝜋𝜋 ∫ 𝑇𝑇𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙 𝑑𝑑𝑡𝑡
𝑚𝑚1+2𝜋𝜋 𝜔𝜔⁄
𝑚𝑚1

 and is about 5.2 N·m. 
The maximal and minimal instantaneous values of the loading power (𝑁𝑁 = 𝜔𝜔𝑇𝑇𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙) are about 1100 W 

and 0 W (Fig. 7). The average power consumption was calculated as 𝑁𝑁𝑙𝑙𝑎𝑎. = 𝜔𝜔2

2𝜋𝜋 ∫ 𝑇𝑇𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙 𝑑𝑑𝑡𝑡
𝑚𝑚1+2𝜋𝜋 𝜔𝜔⁄
𝑚𝑚1

 under 
different operational conditions. In the hardest (extreme) operational conditions considered above (i.e., 𝛼𝛼 =
90°, 𝛽𝛽 = 0°), the average power needed to be supplied by the conveyor’s drive is equal to 540 W. 

4. Conclusions  

The paper considers the improved design of the vibratory sieving conveyor equipped with the twin crank-
slider excitation mechanism (Fig. 1). The implementation of such a drive provides the possibility of 
controlling the vibration parameters of the working member in accordance with the technological 
requirements set for different loose, bulky, and piecewise products to be sieved and conveyed. Based on the 
dynamic diagram of the conveyor’s oscillatory system (Fig. 2), the mathematical model describing the 
system motion was derived (Eqs. (1)-(7)). The analytical expressions for determining the stiffness 
parameters of the corresponding springs of the vibratory system were deduced (Eqs. (8) and (9)) based on 
the assumptions of providing the near-resonance vibrational conditions of the disturbing bodies (masses 
m2, m3) and non-resonant (far-over-resonance) operation of the working member (mass m1). 

The numerical modelling of the conveyor operation was carried out at different values of the angles α 
and β defining the vibration directions of the disturbing bodies (see Fig. 2). The conditions of providing the 
rectilinear (directed), elliptical, and circular oscillations of the conveyor’s working member were analyzed 
(see Figs. 3, 4, and 5), and its vertical acceleration and vibration intensity factor were studied (see Fig. 6). 
The loading torque applied to the crank (motor) shaft and the corresponding power consumption of the 
conveyor’s drive were calculated under different operational conditions (circular, elliptical, horizontal, 
inclined, and vertical rectilinear oscillations) of the working member (see Fig. 7). 
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