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Abstract The study explored the performance of vowel recognition using an acoustic model built on Audio 
Fingerprint techniques [1]. The research compares the performance of Support Vector Machines (SVMs), 
Hidden Markov Models (HMMs), Artificial Neural Networks (ANNs) and k-Nearest Neighbours (k-NN) 
classifiers in the recognition of isolated and within-word vowels and investigates the importance  
of different types of acoustic speech features in this process. Temporal, spectral, cepstral, formant, LPC  
and perceptual features of speech were examined. Importance of features was tested using a random forest 
classifier. Vowel classification was tested at three confidence levels for feature importance: 90%, 95%  
and 99%. Two author databases consisting of a total of 1,200 samples from 20 speakers, recorded under 
household conditions, were used. The classifiers were evaluated by confusion matrix, accuracy, precision, 
sensitivity and F1 score. A segmentation of words into speech sounds was carried out using a tool based  
on BiLSTM recurrent neural networks and the BIC criterion. Three most important features  
were determined: power spectral density, spectral cut-off, and Power-Normalised Cepstral Coefficients.  
In the isolated vowel recognition task, the SVM classifier was the most effective with a feature significance 
confidence level of 95% obtaining accuracy = 81%, precision = 81%, sensitivity = 81%, F1 score = 80%.  
In the task of recognising a vowel within a word, it was verified if the algorithm detected the presence  
of vowels in the correct segment and if it recognised the correct vowel within it. The best results  
were obtained by the k-NN classifier (statistical confidence level of feature importance of 99.9%). However, 
these results were low, correct recognition of the vowel in the word: A, E, U: 20%, I, O: 7%, Y: 23%.  
This indicates strong influence of the neighbourhood of other speech sounds in speech on the acoustic 
model of vowels and their recognition. 
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1. Introduction 

Among automatic speech recognition (ASR) systems, there are two main architectures: conventional  
and End-To-End (E2E). The conventional approach is based on acoustic (AM) and language (LM) models 
and a lexicon. In the E2E approach, recognition is carried out by a single, integrated model built on deep 
neural networks. Parameters of the speech signal in such model are given to the input and on the output  
is a speech transcription. In conventional architecture, AM and LM can also be deep models, but existing 
solutions for Polish are mainly based on Hidden Markov Models (AM) and statistical methods (LM).  
In each of these architectures, parametrisation of the speech signal is required. In E2E systems, the most 
common approach is to represent the speech signal as a mel-spectrograms. In conventional systems, wide 
range of speech features of the speech signal are used. This paper describes an acoustic model of speech 
containing vowels in Polish, composed of various features, used for classification with the decoders widely 
used in conventional models: Hidden Markov Models (HMM) [2], Support Vector Machine (SVM) [3], 
artificial neural networks (ANN) [4] and k-nearest neighbours (k-NN) [5]. 
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Figure 1. A block diagram of the workflow of a conventional automatic speech recognition  

system based on an acoustic, language and pronunciation model. 

 

 

Figure 2. A block diagram of the workflow of a modern End-To-End  
automatic speech recognition system in Encoder-Decoder architecture. 

 

2. Speech signal features 

An acoustic model of speech was proposed using recognition concepts based on Audio Fingerprint. 
Research was performed on single vowels, which did not require the use of a language model  
for classification. The number of classes was assumed to be equal to the number of recognised vowels.  
Each vowel was assigned a feature vector. This allowed classification based on the acoustic model alone, 
using classifiers typical of conventional systems. I used speech features such as: temporal (zero crossing 
density), spectral (power spectral density, roll-off, spread, flatness and special cases of spectral moments: 
centroid, skewness, kurtosis, flatness), cepstral (linear frequency cepstral coefficients LFCC,  
power-normalised cepstral coefficients PNCC), perceptual (mel-cepstral coefficients MFCC), formant (first 
three formant frequencies) and linear predictive coding (linear predictive coefficients LPC, perceptual 
predictive coefficients PLP). 

2.1. Zero-crossing density 

The parameter results from the measurement of the points at which a change in the sign of the speech signal. 
The zero-crossing density is represented by a normalised vector defined for N time intervals [7]. 

2.2. Power spectral density 

In the process of generating and receiving a speech signal, humans operate on the signal in the frequency 
domain. During speech articulation, is shaped the amplitude-frequency envelope. In receiving, before  
the speech signal is processed by the neurons, occurs signal frequency components extraction.  
With the power spectral density function, we can calculate the total power present in each spectral 
contribution of the signal [6]. 

2.3. Spectral roll-off 

Spectral roll-off characterises the slope of a signal's spectrum. Is defined as the frequency under  
which a certain percentage of the signal's spectral energy accumulates [8, 9]. 

2.4. Spectral spread 

The spectral spread (spectral width) can be defined in several ways: 
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• a non-negative real-valued spectral density of a given signal represented as a function  
of frequency, defined for all frequencies; 

• RMS spectral width, which is determined as the standard deviation of the signal density  
as a function of frequency (Brms);   

• equivalent rectangular spectral width, which is determined as the fit of the area under a signal function 
in the frequency domain to the area of a rectangle of height equal to the maximum value of that function 
and width 2B (Ber); 

• 3 dB slope spectral width, which indicates the "value off" at which the signal spectrum has a value 
equal to half its peak value (B3dB); 

• x Fractional Power Bandwidth (BxF) defined as:  
     

� 𝑆𝑆(𝑓𝑓)𝑑𝑑𝑓𝑓 = 𝑥𝑥
𝐵𝐵𝑥𝑥𝐹𝐹

−𝐵𝐵𝑥𝑥𝐹𝐹
 (1) 

 x is a particular number in the range 0 < 𝑥𝑥 ≤ 1 
 

Brms, Ber, B3db and BxF are measures of the 'half-width' of a signal as a function of frequency,  
the nominal width of which is 2B, the signal having most of its area in the region between the positive  
and negative bandwidths [10]. 

2.5. Spectral moments 

The first three spectral moments, zeroth, first and second, respectively, are measures of energy, frequency, 
and bandwidth [11]. The research used: 

• spectral centroid: the centre mass of the spectrum, a normalised first spectral moment [12]; 

• spectral skewness: the normalised central spectral moment of the third order; 

• spectral flattening (kurtosis): the normalised central spectral moment of the fourth order divided by 
the square of the variance [13]. 

2.6. Spectral flatness measure 

Spectral flatness determines how similar a sound is to noise, as opposed to tone. A high spectral flatness 
(closer to 1) indicates that the spectrum is similar to white noise [14]. 

2.7. Linear frequency cepstral coefficients 

LFCC is a linear cepstral representation of sound. The cepstrum is the inverse of the Fourier transform  
of the signal spectrum, expressed on a logarithmic scale. The linear coefficients are determined using  
a linear filter bank, which has good resolution in the higher frequency regions [15]. 

2.8. Power-normalized cepstral coefficients 

PNCC uses power law nonlinearities, which replaces the traditional logarithmic nonlinearity used  
in mel-cepstral coefficients (MFCC). It uses a noise reduction algorithm based on asymmetric filtering, 
which suppresses background excitations, and a module that implements temporal masking [16]. 

2.9. Mel-frequency cepstral coefficients 

The human ear non-linearly recognises frequencies over the sound spectrum, therefore filter bank analysis 
is more relevant than linear predictive coding (LPC) analysis. Mel scale is a measure of the perceived 
frequency (pitch) of a tone. It is based on a frequency division derived from the frequency resolution  
of the human ear. MFCC coefficients are extracted from the cepstrum of the mel-scale signal by using  
a transformation of the signal spectrum through mel-scale filters, extraction of the logarithms of the 
energies of the respective bands, and a discrete cosine transform [17]. 
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2.10. Linear prediction coefficients 

LPC imitate the human vocal tract. The technique involves approximating the formants, removing its effects 
from the speech signal and estimating the concentration and frequency of the remaining bandwidth.  
Each signal sample is treated as a direct incorporation of previous samples. To separate the remaining 
bands from the formants and determine their coefficients, a formant measurement is used. The formant 
positions in the speech signal are predicted by linear prediction coefficients in a sliding window and finding 
maxima in the spectrum of successive linear prediction filters [18]. 

2.11. Perceptual linear prediction 

PLP combines critical bands, intensity-to-volume compression and equal-volume preemphasis  
in the extraction of relevant information from speech. It is a combination of spectral analysis and linear 
prediction. Allows elimination of speaker-dependent features. It gives a representation consistent  
with a smoothed short-wavelength spectrum, which is equalised and compressed to resemble the response  
of human hearing. It uses linear predictions to smooth the spectrum. Relevant auditory features are mapped 
and the speech spectrum is approximated by an autoregressive multipole model. It allows to obtain 
minimum resolutions at high frequencies (auditory filter bank approach), but its outputs are orthogonal - 
similar to cepstral analysis [19]. 

2.12. Formants 

The highlighting of certain harmonics (overtones) of the fundamental tone results in acoustically prominent 
peaks in the spectrum. These maxima are formants, which are characterised by two values: frequency  
and amplitude. The relative spacing of formants is unique to a particular vowel [20]. 

3. Experiment 

In the study, the developed acoustic model was tested with four classifiers: HMM, SVM, ANN and k-NN.  
Their performance was evaluated using various quality measures: confusion matrix, accuracy, precision, 
sensitivity and F1 score. This chapter describes the experimental steps from the creation of the database, 
signal processing, acoustic model development to the results of the classification. 

3.1. Dataset 

A dataset consisting of recordings of 6 polish vowels and words containing these vowels was developed  
for the experiment. The dataset was recorded at a domestic environment using a Zoom H4pro digital 
recorder and a Shure SM58 cardioid dynamic microphone.  The recordings were performed in a general 
mono PCM 16 bit format with a set sampling rate of 44.1 kHz. The utterances of 20 people (10 females  
and 10 males) were recorded; 5 repetitions of each isolated vowel and word were taken from each speaker.  
The dataset contains 100 repetitions of each of the isolated vowels and each of the 6 words. There are 1200 
recordings in the dataset. Using Audacity [21], the vowels and words were isolated from the recording  
and de-noised. The dataset was divided into training and testing in a ratio of 7:3.  

3.2. Pre-processing 

Two pre-processing methods were used: normalisation and time alignment. I also segmented the vowels 
from the recordings and performed the necessary linear transformations. 

3.2.1. Normalisation 

Amplitude normalisation was applied by limiting the dynamic range of the recording to (-1,1). This allows 
the range of values to be scaled without changing the proportion of data features - the louder parts  
of the sound recordings do not dominate the quieter ones within a given recording and the entire dataset.  
For isolated vowels, no segmentation was carried out and normalisation was performed on the raw data. 
For vowels within words, segmentation into phonemes was done first, followed by normalisation. 

3.2.2. Time alignment 

Forced time alignment is required by classifiers of conventional ASR systems. In the study a time alignment 
was used for the parameter vectors for each of the sound samples to have the same length. A linear time 
alignment based on the median length (number) of samples was used. It calculated the median number  
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of samples for all isolated vowels tested, and then resampled each recording to a number of samples equal 
to the median using the Fourier method along the time axis. 
 
3.2.3. Segmentation 

For the recognition of more complex utterances (e.g. sentences), in conventional ASR systems based  
on the acoustic and language model, the recordings are divided into segments of fixed length or containing 
distinct acoustic events (e.g. phonemes). Each segment is then split into frames, where feature extraction 
takes place. In this study, for samples containing isolated vowels, the segmentation step was omitted  
and only the division of the signal into frames was performed (the vowel represents a single acoustic event). 
For words, segmentation was applied to acoustic events using a toolkit [22] based on Bayesian Information 
Criterion (BIC) [23] and Bi-directional Long Short-Term Memory recurrent neural networks (BiLSTM) [24]. 

3.2.4. Transformations 

Linear transformations are necessary for the extraction of all but temporal features. I used standard time-
to-frequency domain transformations: the short-time Fourier transform (STFT). 

3.3. Acoustic model 

The acoustic model contains all previously described features. It was created by combining the individual 
feature vectors into a single vector and standardisation. The statistical significance of the characteristics 
was then assessed. 

3.3.1. Combination of feature vectors 

The extracted feature vectors have different lengths, so combining them into one feature matrix would 
result in the shorter features having to be filled with zeros. To avoid this, the vectors of all the features  
of a given sample were combined into one long vector (18308 elements) - each sample corresponds to  
a feature vector of the same length. The final feature vector (before the feature selection step based on their 
importance - see Section 3.3.3) consisted of 146 acoustic parameters. It contained the parameters: zero-
crossing density, spectral (power spectral density, roll-off, flatness, centroid, contrast, bandwidth, skewness, 
kurtosis), first 4 formant frequencies, coefficient (13 PNCC, 40 LFCC, 40 MFCC, 20 LPC and 20 PLP). 

3.3.2. Standardisation 

Standardization is required to prevent the variability of individual characteristics from affecting  
the classification results. In the case that any of the characteristics had a wider range, the classifier could 
find that this characteristic is more relevant than the others, even if this would not be consistent  
with practice. Applied standardization involves transforming each of the results to obtain a normalized 
measure, with a mean (expected value) of 0 and a variance of 1 [25]. 

3.3.3. Statistical features importance 

The features importance was tested using a random forest (forest of multiple decision trees) classifier.  
A class RandomForestClassifier from the ensemble module of the Scikit-learn library was used. The features 
importance is defined by the random tree attribute feature_importances_, defined as the mean and standard 
deviation of the accumulation of impurity decrease within each random tree. Three levels of confidence 
were used: 90%, 95% and 99%. For a confidence level of 99.9%, the 3 statistically most significant features 
were determined: spectral power density, spectral cut-off and PNCC coefficients. 
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Figure 3. Statistical acoustic features importance depending on the confidence level applied  

(red 90%, yellow 95%, green 99%). 

The vertical axis indicates the number of features and the horizontal shows their importance. The efficiency 
of the models was tested for the above confidence levels of statistical importance of acoustics features.  
To train and test models with an index of 90, 1831-element vector, 95 916-element vector and 99 a 184-
element vector was used. 

3.4. Classification 

The acoustic model of vowels was used to classify speech using HMM, SVM, k-NN and ANN.  
Their effectiveness was evaluated using quality measures: confusion matrix, accuracy, precision, sensitivity, 
and F-1 score. The results of the classification are shown in Table 1. 

3.4.1. Classifiers' characteristics 

Classifiers [26] on the basis of parametric methods (based on known or estimated a'priori information - 
HMM, SVM, ANN) and non-parametric methods (without requiring initial assumptions and estimation of 
a'priori information, known as minimum distance algorithms - k-NN) were used [27]. The following sections 
describe the characteristics of the classifiers used in the study. 

3.4.1.1. Hidden Markov model 

In HMM recognised classes are described through states, transition probabilities between them  
and probabilities of observations (parameter vectors). In ASR, individual states can be assigned phonemes 
and word recognition is based on the transition between them [2].  The study used an implementation  
of the HMM with Gaussian emissions [28].  A separate HMM model was created for each class. The models 
were learned in a configuration of 1 class against the others. Different numbers of states (2,3,4,6) and two 
types of covariance [31] were examined - "spherical" (each state uses a single variance value that applies to 
all functions) and "diag" (each state uses a diagonal covariance matrix). A Viterbi decoder [29]  
and a forward-backward algorithm with logarithms were used [30]. The best classifiers (results in attached 
tables) used "diag" covariance, and the number of states differs depending on the number of features 
considered in the classification: HMM90 and HMM99 - 4 states, HMM95 - 3 states. 

3.4.1.2. Support vector machines 

SVM selects a small number of critical boundary samples from each class and builds a linear discriminant 
function that separates them as widely as possible. There is a kernel that maps the data into a high-
dimensional feature space, in which a nonlinear task is transformed into a linear disjoint one. The algorithm 
seeks optimal hyperplanes that maximize the margin between data classes and minimize errors [3].  
The study tested an SVM algorithm with linear and radial basis function (RBF) [32] kernel with a gamma 
coefficient of 1/number of features. Balanced class weighting was used - automatically adjusting the weights 
inversely proportional to the frequency of classes in the input data. The best classifiers (results in attached 
tables) depending on the number of features considered in the classification, differed in the selected kernel: 
SVM90 and SVM95 - RBF, SVM99 - linear. 
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3.4.1.3. Artificial neural network 

The ANN generally consists of three types of layers: input, hidden and output. Each layer can have several 
nodes (neurons) performing basic operations, and the overall output is a weighted sum of these operations. 
Each neuron must be trained so that a given set of inputs generates the desired output of the network. 
Training can be done by providing the network with learning patterns and allowing it to adjust  
the weighting function according to predefined learning rules. The study used the Multi-layer Perceptron 
(MLP) architecture [33] with 40 hidden layers. Two activation functions have been tested [34]: ReLu  
and Tanh. Two types of learning rate schedule were tested for updating the weights: constant and adaptive 
[35] (keeps the learning rate constant if the learning loss decreases). The best classifiers (results in attached 
tables) used a constant-type learning rate of 0.001, and the activation function differs, depending  
on the number of features considered in the classification: ANN90 and ANN95 - ReLu, ANN99 - Tanh. 

3.4.1.4. k-nearest neighbours 

The k-NN algorithm determines the number of k nearest neighbours of the sample and verifies which class 
most of them belong to. This is performed by calculating the distance between the unknown sample vector 
and all learning vectors using a distance or proximity function [5]. The k-NN classifier was tested  for various 
numbers of k nearest neighbours: 3, 4, 5, 6, 7, 8, 9 and 10. Two types of distance were tested: Manhattan 
and Euclidean [36]. In prediction, were tested two types of weighting functions: uniform, for which all points 
in each neighbourhood are weighted equally, and distance weighting points by the inverse of their distance. 
The best classifiers (results in attached tables) used Manhattan distance, distance weighting function and 
the number of neighbours k varied, depending on the number of features considered in the classification: 
KNN90 and KNN95 - 9, KNN99 - 6. 

3.4.2. Classification results 

Tables 1-5 and 11-12 show the results for isolated vowels (best classifier), and Tables 6-10 for vowels 
within words. Table 1 shows the accuracy, precision, sensitivity and F-1 score for the best of the classifiers 
tested. Tables 2-5 show the diagonal confusion matrices for these classifiers. Index is the assumed 
confidence level of feature importance. Tables II-VI show the values from the diagonal confusion matrix for 
isolated vowel recognition. 

Table 1. Classification of vowels. 

Quality [%] SVM95 HMM99 ANN90 k-NN95 
Accuracy 81 58 74 74 
Precision 80 63 73 74 
Sensitivity 81 58 74 74 
F-1 score 80 58 73 74 

Table 2. SVM confusion matrix diagonal. 

Vowel SVM90 [%] SVM95 [%] SVM99 [%] 
A 53 53 57 
E 67 73 73 
I 93 97 97 
O 80 80 67 
U 100 100 97 
Y 70 80 77 

Table 3. HMM confusion matrix diagonal. 

Vowel HMM90 [%] HMM95 [%] HMM99 [%] 
A 0 30 43 
E 90 60 60 
I 43 77 93 
O 43 43 43 
U 67 70 67 
Y 27 50 77 
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Table 4. ANN confusion matrix diagonal. 

Vowel ANN90 [%] ANN95 [%] ANN99 [%] 
A 63 47 47 
E 53 53 70 
I 80 87 97 
O 77 77 60 
U 100 100 90 
Y 70 53 57 

Table 5. k-NN confusion matrix diagonal. 

Vowel k-NN90 [%] k-NN95 [%] k-NN99 [%] 
A 57 57 50 
E 73 67 63 
I 90 93 97 
O 70 80 63 
U 100 97 93 
Y 37 53 60 

 
By using the parts of the dataset with words containing the vowels under study, it was examined how 

the influence of neighbouring phonemes affects recognition. In this case, the aim was to classify vowels 
within a word in such a way that the results allow the following questions to be answered: 

1. How many vowels were correctly recognised (the correct vowel in the correct segment). 
2. For how many words is the probability of occurrence of the searched vowel the highest  

(even if the wrong segment is selected). 
3. For how many words was the desired vowel indicated in the wrong segment? 
4. For how many words were the desired vowel not recognised in any of the segments? 
5. To what extent was the desired vowel in the correct segment confused with other vowels? 

 
The results are influenced not only by the performance of the classifiers, but also by the extent  

of correct segmentation, which varied due to the speakers and the phonetic content of the word. 
In this part of the study, only the k-NN classifier was used. 

A classification of isolated vowels was also carried out at for k-NN with a feature importance level  
of 99.9 (to compare recognition performance of articulated vowels in a word with isolated vowels). 
 

Table 6. Correct vowel in correct segment. 

Vowel Word Correct recognition [%] 
A BAT 20 
E JEŻ 20 
I NIT 7 
O ROK 7 
U CUD 20 
Y DYM 23 

Table 7. The correct vowel most probably (regardless of the segment indicated). 

Vowel Word Highest probability [%] 
A BAT 20 
E JEŻ 13 
I NIT 23 
O ROK 17 
U CUD 47 
Y DYM 57 
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Table 8. Indication of the occurrence of the desired vowel in the word (regardless of if the correct 
segment was indicated and if this vowel obtained the highest probability of occurrence). 

Vowel Word Occurs in any segment [%] 
A BAT 40 
E JEŻ 67 
I NIT 57 
O ROK 17 
U CUD 47 
Y DYM 77 

Table 9. A searched vowel is not found in any of the segments. 

Vowel Word Doesn't occur in any segment [%] 
A BAT 60 
E JEŻ 33 
I NIT 43 
O ROK 83 
U CUD 53 
Y DYM 23 

 

Table 10. Confusion rate in the correct segment for the searched vowel. 

Vowel 
Word Correct Recognized [%] 

BAT A E I O U Y 
20 0 3 37 20 

JEŻ E 
A I O U Y 
7 7 0 3 83 

NIT I A E O U Y 
0 10 0 23 67 

ROK O A E I U Y 
20 37 0 20 20 

CUD U A E I O Y 
3 27 7 0 40 

DYM Y A E I O U 
10 40 3 0 23 

 

Table 11. k-NN confusion matrix diagonal with a confidence level of feature importance = 99.9%. 

Vowel k-NN99.9 [%] 
A 60 
E 60 
I 87 
O 50 
U 73 
Y 57 

Table 12. k-NN quality evaluation (confidence level of feature importance = 99.9 %). 

Quality [%] k-NN99.9 
Accuracy 64 
Precision 66 
Sensitivity 65 
F-1 score 65 

 

4. Conclusions 

The developed acoustic model can be used to recognise isolated vowels, as indicated by the classification 
results using the SVM95 classifier. In the case of in-word vowel detection, there was a significant 
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classification degradation. Based on a comparison of the recognition of isolated vowels and their detection 
inside the word using the k-NN99.9 classifier, it was found that the articulation of vowels  
in the neighbourhood of other phonemes has a substantial (negative) effect on the recognition performed. 
This is since the neighbourhood of successive phonemes in an utterance influences the phonetics of a given 
phoneme (e.g., a voiceless sound becomes more sonorous under the influence  of a voiced neighbour). 
Acoustic models of ASR systems use, e.g., triphones (a set of three consecutive phonemes). Firstly, recording 
isolated phonemes into the database is difficult (especially consonants),  and secondly, this considers the 
mutual influence of neighbouring phonemes. The quality  of detection of the correct vowel in the correct 
segment also depends on the quality of segmentation  of the sample. The quality of segmentation was not 
the same for every sample. It is affected  by the phonetic content of the word in question (the influence of 
successive phonemes on each other) and the way the speaker pronounces it. 

Acknowledgment 

This endeavour would not have been possible without Stefan Brachmański, BEng, PhD (Wrocław University 
of Science and Technology), his inspiration to conduct research in the field of speech acoustics and support 
at the outset of my scientific journey. I would like to express my deepest gratitude to the head of the Facility 
of Electroacoustics at the Warsaw University of Technology, Jan Żera BEng, PhD, DSc, ProfTit,  
for the opportunity to continue my research with his team. I would also like to express my sincere thanks 
to my supervisor and mentor Piotr Bilski, BEng, PhD, DSc. 

Additional information  

The author(s) declare: no competing financial interests and that all material taken from other sources 
(including their own published works) is clearly cited and that appropriate permits are obtained. 

References 

1. P. Cano, E. Batlle, T. Kalker, J. Haitsma; A review of audio fingerprinting; 2002 IEEE Workshop on 
Multimedia Signal Processing, 169-173, 2003; DOI: 10.1109/MMSP.2002.1203274  

2. M.J.F. Gales,  S. Young, The application of hidden Markov models in speech recognition; Foundations 
and Trends in Signal Processing, 2007, 1(3), 195–304; DOI: 10.1561/2000000004  

3. I. Steinwart, A. Christmann; Support vector machines; Wiley Interdisciplinary Reviews: Computational 
Statistics, 2008 

4. J.M. Tebelskis; Speech recognition using neural networks; Carnegie Mellon University, 1995  
5. L. Golipour.  D. O’Shaughnessy; Context-independent phoneme recognition using a k-nearest 

neighbour classification approach; In: 2009 IEEE Int. Conf. on Acoustics, Speech and Signal Proc. IEEE, 
2009, 1341–1344; DOI: 10.1109/ICASSP.2009.4959840 

6. J. Saini, R. Mehra; Power spectral density analysis of speech signal using window techniques; 
International Journal of Computer Applications, 2015,131(14), 33–36 

7. L.R.Rabiner, M.R.Sambur; An algorithm for determining the endpoints of isolated utterances; Bell 
System Technical Journal, 1975, 54(2), 297–315; DOI: 10.1002/j.1538-7305.1975.tb02840.x 

8. M. Kos, Z. Kačič, D. Vlaj; Speech bandwidth classification using general acoustic features, modified 
spectral roll-off and artificial neural network; In: Mathematical models and methods in modern 
science Conf., 14th, Mathematical models and methods in modern science, 2012, 212–217 

9. M. Kos, Z. Kačič, D. Vlaj; Acoustic classification and segmentation using modified spectral roll-off and 
variance-based features; Digital Signal Processing, 2013, 23(2), 659–674 

10. R.A. Scholtz; How do you define bandwidth?; International Telemetering Conf. Proc, 1972, 8 
11. P. Tsiakoulis, A. Potamianos, D. Dimitriadis; Spectral moment features augmented by low order 

cepstral coefficients for robust asr; IEEE Signal Processing Letters, 2010, 17(6), 551–554; 
 DOI: 10.1109/LSP.2010.2046349 

12. B. McFee, C. Raffel, D. Liang, D.P. Ellis, M. McVicar, E. Battenberg, O. Nieto; librosa: Audio and music 
signal analysis in Python; In: Proc. of the 14th Python in science conf., 2015, 8, 18–25 

13. P. Virtanen et. al.; SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python; Nature 
Methods, 2020, 17, 261–272; DOI: 10.1038/s41592-019-0686-2 

14. A. Gray, J. Markel; A spectral-flatness measure for studying the autocorrelation method of linear 
prediction of speech analysis; IEEE Transactions on Acoustics, Speech, and Signal Processing, 1974, 
22(3), 207–217; DOI: 10.1109/TASSP.1974.1162572 



 

11 of 11 

Vibrations in Physical Systems, 2024, 35(1), 2024101 DOI: 10.21008/j.0860-6897.2024.1.01 

15. J.J. Noda, C.M. Travieso-González, D. Sánchez-Rodríguez, J.B. Alonso-Hernández; Acoustic classification 
of singing insects based on mfcc/lfcc fusion; Applied Sciences, 2019, 9(19), 4097;  
DOI: 10.3390/app9194097 

16. C. Kim and R.M. Stern; Power-normalized cepstral coefficients (pncc) for robust speech recognition; 
IEEE/ACM Transactions on audio, speech, and language processing, 2016, 24(7), 1315–1329;  
DOI: 10.1109/TASLP.2016.2545928 

17. C.K. On, P.M. Pandiyan, S. Yaacob, and A. Saudi; Mel-frequency cepstral coefficient analysis in speech 
recognition; in 2006 Int. Conf. on Computing & Informatics. IEEE, 2009, 1–5;  
DOI: 10.1109/ICOCI.2006.5276486 

18. U. Shrawankar, V.M. Thakare; Techniques for feature extraction in speech recognition system:  
A comparative study; arXiv (Cornell University), 2013; DOI: 10.48550/arXiv.1305.1145 

19. H. Hermansky; Perceptual linear predictive (plp) analysis of speech; the Journal of the Acoustical 
Society of America, 1990, 87(4), 1738–1752; DOI: 10.1121/1.399423 

20. N. Kraus, T. Nicol; Brainstem origins for cortical ‘what’and ‘where’pathways in the auditory system; 
Trends in neurosciences, 2005, 28(4), 176–181; DOI: 10.1016/j.tins.2005.02.003 

21.  Audacity® software is copyright © 1999-2021 audacity team. the name audacity® is a registered 
trademark.” accessed on: Jun. 2023, Available: https://audacityteam.org/  

22.  A toolkit to implement segmentation on speech based on bic and nerual network, such as bilstm; 
https://github.com/wblgers/py_speech_seg (accessed on 2023.06.20) 

23. S. Chen, P. Gopalakrishnan et al.; Speaker, environment and channel change detection and clustering 
via the bayesian information criterion; In: Proc. DARPA broadcast news transcription and 
understanding workshop, Landsdowne Conference Resort, Landsdowne, 1998, 8, 127–132.  

24. R. Yin, H. Bredin, C. Barras; Speaker change detection in broadcast tv using bidirectional long short-
term memory networks; In: Interspeech 2017. ISCA, 2017; DOI: 10.21437/Interspeech.2017-65 

25. F. Pedregosa et al.; Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 
2011, 12, 2825–2830 

26. M.S Sonwane, C.A Dhawale; Evaluation and analysis of few parametric and nonparametric 
classification methods; In 2016 Second International Conference on Computational Intelligence & 
Communication Technology (CICT), Ghaziabad, India, 2016, 14–21; DOI: 10.1109/CICT.2016.13 

27.   C.Zhang, C. Liu, X. Zhang, G. Almpanidis; An up-to-date comparison of state-of-the-art classification 
algorithms; Expert Systems with Applications, 2017, 128-150; DOI 10.1016/j.eswa.2017.04.003 

28. J. Bilmes; Gaussian models in automatic speech recognition; In: D. Havelock, S. Kuwano, M. Vorländer, 
Eds. Handbook of Signal Processing in Acoustics. Springer, New York, 2008 521-555;  
DOI :10.1007/978-0-387-30441-0_29 

29. Y.R. Kumar, A.V. Babu, K.N. Kumar, J.S.R. Alex; Modified Viterbi decoder for HMM based speech 
recognition system; In 2014 Int. Conf. on Control, Instrumentation, Communication and 
Computational Technologies (ICCICCT), 2014, 470–474  

30. VM. Ilic; Entropy semiring forward-backward algorithm for HMM entropy computation; arXiv (Cornell 
University), 2021; DOI: 10.48550/arXiv.1108.0347 

31. H.Lu, Y.J. Wu, K. Tokuda, L.R. Dai, R.H. Wang; Full covariance state duration modeling for HMM-based 
speech synthesis; In: 2009 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, IEEE, 2009, 
4033-4036; DOI: 10.1109/ICASSP.2009.4960513 

32. A. Patle, D.S. Chouhan; SVM kernel functions for classification; In: 2013 Int. Conf. on advances in 
technology and engineering (ICATE); IEEE, 2013, 1–9  

33. A.Ahad, A. Fayyaz, T. Mehmood; Speech recognition using multilayer perceptron; In: IEEE Students 
Conf., ISCON'02. Proc., IEEE, 2022, 1, 103–109; DOI: 10.1109/ISCON.2002.1215948 

34. S. Sharma, S, S. Sharma, A. Athaiya; Activation functions in neural networks; Int. Journal of 
Engineering Applied Sciences and Technology, 2020, 4(12),  310–316 

35. X. Wu, X. R. Ward, L. Bottou; Wngrad: Learn the learning rate in gradient descent; arXiv (Cornell 
University), 2018; DOI: 10.48550/arXiv.1803.02865 

36. M. Mohibullah, M.Z Hossain, M. Hasan; Comparison of euclidean distance function and manhattan 
distance function using k-mediods; Int. Journal of Computer Science and Information Security (IJCSIS), 
2015, 13(10), 61–71  

 
© 2024 by the Authors. Licensee Poznan University of Technology (Poznan, Poland). This article is an open 
access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) 
license (http://creativecommons.org/licenses/by/4.0/). 


	Additional information
	References

