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Abstract The article consists of two parts: analytical and experimental. The first part discusses the theory 
of signal analysis in nonlinear systems, particularly in the context of sliding bearings. The second part 
describes an experiment where a mechanical system achieves stable operation. Three types of signals 
reflecting different states of bearing operation are identified: unstable, transient and stable operation. The 
study showed that the value of DisEn (indicator) is related to the operating state of the bearing. This allows 
easier diagnosis of the bearing's condition and suggests the possibility of dispensing with a single sensor. 
In addition, a decrease in the difference between DisEn values for the x and y axes was noted in unstable 
operation. 
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1. Introduction  

Modern design solutions require bearing nodes based on hydrodynamic plain bearings. The nonlinearity of 
their operating characteristics is driving the development of advanced algorithms for monitoring diagnostic 
signals to assess technical conditions and operating conditions. The unusual operating conditions of plain 
bearings require the use of innovative designs, materials and lubricants [1]. As a result, it becomes 
necessary to introduce innovative approaches to monitoring their condition. 

The presence and severity of faults in rotating machines significantly impact their dynamics, leading to 
distinctive time series patterns in rotor vibrations. Analyzing these vibration signals provides a valuable 
method for detecting various types of faults in rotating machinery [2]. Given the nonlinear nature of rotating 
machines, the vibration time series often exhibit nonlinear behavior. As a result, nonlinear approaches are 
employed to identify fault-related features. Several nonlinear techniques have been developed for this 
purpose, reflecting the complex dynamics of rotating machinery. The Lyapunov exponent measures the rate 
of divergence of nearby trajectories in the system. It is used to quantify the system's sensitivity to initial 
conditions, providing insights into its chaotic behavior [3]. Fractal dimension is a measure of the irregularity 
and complexity of a signal. In the context of vibration signals, it helps characterize the intricate, self-
repeating patterns associated with faults [4]. Teager-Kaiser Energy Operator enhances the detection of 
impulsive components in a signal, making it particularly useful for identifying sudden changes or anomalies 
in the vibration patterns related to faults [5]. Artificial Neural Network are employed to model the complex 
relationships within vibration data, allowing for the detection of fault-related patterns that may not be 
apparent through traditional methods [6]. Linear decimation involves systematically reducing the data 
points in a signal. This method aids in simplifying the analysis while preserving critical fault-related 
information [7]. Permutation Entropy-Based Methods is a measure of signal irregularity, providing insights 
into the complexity and disorder within the vibration time series [8]. Fuzzy entropy measures the 
uncertainty and randomness in a signal, making it suitable for capturing the unpredictable nature of fault-
induced vibrations [9]. Multi-Scale Entropy approach involves analyzing the signal at multiple time scales, 
allowing for the detection of faults at different levels of complexity and frequency [10]. 

Claude Shannon extended Boltzmann's concept of entropy from thermodynamics to information theory, 
where it is used as a measure of uncertainty. The concept of entropy characterises the degree of irregularity 
or randomness in a time series. The higher the entropy value, the greater is the irregularity or randomness 
[11]. Approximate entropy and permutation entropy are two widely used in various scientific disciplines. 

Approximate entropy and Permutation entropy have been widely used in a number of studies to 
diagnose and monitor the condition of rotating machinery. Approximate entropy has been used to detect 
cracks in a rotating shaft using signals from the cracked shaft obtained from numerical simulations of the 
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rotor [12]. Rolling bearing damage diagnosis and service life prediction has been thoroughly discussed in 
the literature [13]. Additionally, rolling bearing damage detection based on real and simulated signals using 
Approximate Entropy and modal decomposition methods has been investigated [14]. Gearbox failure 
diagnosis, utilizing local mean decomposition, permutation entropy, and extreme learning machine 
techniques, is covered in another study [15]. Furthermore, Sliding Dispersion Entropy has been applied for 
damage diagnosis of diaphragm pump components [16] Another method called fuzzy dispersion entropy 
has been used to diagnose rolling element bearings [17]. 

Approximate entropy, although widely used, is characterised by unreliable results for short signals. 
Another pointed drawback of this method is the computational complexity that precludes its use in real-
time applications, for the analysis of long signals [18]. 

In order to improve the method, a method called Entropy of dispersion (DisEn) was introduced for 
accurately determining the degree of uncertainty in time series. Studies have shown that DisEn, compared 
to existing methods, does not generate unreliable values for short signals, has less computational 
complexity, and exhibits low sensitivity to noise [19]. Rosteghi's research has also shown the impact of 
dimension embedding, class count, signal length and time delay in DisEn. In addition, the effects of additive 
noise, changes in the frequency and amplitude of signals, and changes from periodicity to non-periodic 
nonlinearity on DisEn were studied. These studies demonstrated the usefulness of DisEn for detecting 
changes in the nonlinear dynamics of vibration signals in rotating machinery. 

The paper presents the application of DisEn to diagnose the operating condition of hydrodynamic plain 
bearings and is compared with a typical method of assessing operating stability. 

2. Dispersion entropy 

DisEn is derived from Shannon entropy and is used to measure anomalies quickly. The concept of symbolic 
dynamics stems from the simplification of measurements, a time series is transformed into  
a new signal containing only a few different elements. The study of signal dynamics is reduced to the 
analysis of a sequence of symbols, which may result in the loss of some detailed information, but preserves 
some invariant, solid features of the dynamics [20]. 

When all signal elements are assigned to a single class, the series becomes completely predictable, 
resulting in an entropy of zero. In contrast, when all possible dispersion patterns have a uniform probability 
distribution, all values of the series become independent and have a random distribution, resulting in a 
maximum entropy value. The best-known methods based on the entropy of symbols are Approximate 
entropy and PerEn, as well as the DisEn method used in this paper. 

For a given one-dimensional signal of length N: x = {x1, x2, ..., xN}, the DisEn algorithm involves 4 main 
steps [21]: 

Step 1: At the beginning, xj (j = 1, 2, ..., N) are assigned to c classes labelled from 1 to c. A number of linear 
and nonlinear approaches are used. Although the linear mapping algorithm is fastest when the maximum 
and/or minimum values of the time series are much larger or smaller than the mean/median value of the 
signal, most xi are assigned to only a few classes. Therefore, we first use the normal distribution function to 
map x to y = {y1, y2, ..., yN} in the range from 0 to 1. We then use the linear algorithm to assign each yj an 
integer from 1 to c using the formula 𝑧𝑧𝑗𝑗𝐶𝐶 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑐𝑐 ∙ 𝑦𝑦𝑗𝑗 + 0.5), where 𝑧𝑧𝑗𝑗𝐶𝐶denotes the jth element of the 
classified time series. The rounding procedure involves adjusting the number to the nearest digit. This step 
can also be performed using other linear and nonlinear mapping techniques. 

Step 2: Identify possible patterns or features. Each embedding vector 𝑚𝑚𝑐𝑐𝑖𝑖𝑧𝑧 embedding dimension m and 
time delay d is formed according to the equation 𝑚𝑚𝑐𝑐𝑖𝑖𝑧𝑧 = �𝑧𝑧𝑖𝑖+(𝑐𝑐−1)𝑑𝑑 , 𝑧𝑧𝑖𝑖+(𝑐𝑐−2)𝑑𝑑 , … , 𝑧𝑧𝑖𝑖�, where i = 1, 2, …, N – (m 
– 1)d. Each time series 𝑚𝑚𝑐𝑐𝑖𝑖𝑧𝑧 is mapped to a dispersion pattern 𝛱𝛱𝑚𝑚−1, where 𝛱𝛱𝑚𝑚−1 = {𝑣𝑣0,𝑣𝑣1, … , 𝑣𝑣𝑚𝑚−1}. Where 
𝑣𝑣0 = 𝑐𝑐𝑖𝑖𝑧𝑧 oraz 𝑉𝑉𝑗𝑗 = 𝑐𝑐𝑖𝑖+(𝑚𝑚−𝑗𝑗)𝑑𝑑

𝑧𝑧 − 𝑐𝑐𝑖𝑖+(𝑚𝑚−(𝑗𝑗+1))𝑑𝑑
𝑧𝑧  dla 𝑗𝑗 = 1,2, … ,𝑚𝑚− 1. The number of possible dispersion 

patterns that can be assigned to each time series 𝑧𝑧𝑖𝑖
𝑚𝑚,𝑐𝑐 is 𝑐𝑐𝑚𝑚 because the signal consists of m elements and 

each element can take one of the integers from 1 to c. 
Step 3: Calculation of frequency of occurrence. Calculate the frequency of occurrence of each pattern or 

feature divided by the number of total observations. For each of the c, m potential scatter patterns, the 
relative frequency is obtained as follows:  

 

𝑝𝑝�𝛱𝛱𝑣𝑣0𝑣𝑣1…𝑣𝑣𝑚𝑚−1� =
𝑁𝑁𝑟𝑟𝑚𝑚𝑁𝑁𝑁𝑁𝑟𝑟{𝑖𝑖|𝑖𝑖 ≤ 𝑁𝑁 − (𝑚𝑚 − 1)𝑟𝑟, 𝑧𝑧𝑖𝑖

𝑚𝑚,𝑐𝑐 has type 𝛱𝛱𝑣𝑣0𝑣𝑣1…𝑣𝑣𝑚𝑚−1}
𝑁𝑁 − (𝑚𝑚− 1)𝑟𝑟

. (1) 

In fact, the expression 𝑝𝑝�𝛱𝛱𝑣𝑣0𝑣𝑣1…𝑣𝑣𝑚𝑚−1� shows the number of dispersion patterns 𝛱𝛱𝑣𝑣0𝑣𝑣1…𝑣𝑣𝑚𝑚−1 to which 𝑧𝑧𝑖𝑖
𝑚𝑚,𝑐𝑐 

are assigned, divided by the total number of embedding signals of embedding dimension m. 



 

3 of 10 

Vibrations in Physical Systems, 2024, 35(2), 2024217 DOI: 10.21008/j.0860-6897.2024.2.17 

Step 4: Calculation of entropy. Based on Shannon's definition of entropy [11], the value of DE with 
embedding dimension m, time delay d and number of classes c is calculated as follows: 

𝐷𝐷𝐷𝐷(𝑥𝑥,𝑚𝑚, 𝑐𝑐,𝑟𝑟) = −�𝑝𝑝(
𝑐𝑐𝑚𝑚

𝛱𝛱=1

𝛱𝛱𝑣𝑣0𝑣𝑣1…𝑣𝑣𝑚𝑚−1) ∙ n (𝑝𝑝(𝛱𝛱𝑣𝑣0𝑣𝑣1…𝑣𝑣𝑚𝑚−1)) (2) 

In any entropy method, there is a need to select appropriate parameter values. There are three 
parameters in DisEn, namely the embedding dimension m, the number of classes c and the time delay d. 
Based on the study of the application of DisEn in the study of rolling bearings [19] for the study of the 
hydrodynamic stability of the sliding bearing operation, the parameters were selected: 

• classes = 10 – theoretically, when c is too small, two amplitude values that are very far apart can be 
assigned to a similar class, while when c is large, a very small change can change their class, making 
the DisEn method sensitive to noise. Moreover, when m or c is too large, the computation time is 
high. In addition, if the embedding dimension m is large, it may cause the DisEn algorithm to be 
unable to observe small changes. 

• emb_dim = 2 – studies have shown that when the embedding dimension m is small and the number 
of classes c is large, NDisEn leads to more reliable results. The longer the signal, the greater the 
stability of profiles based on NDisEn. Therefore, the study used m = 2.  

• delay = 1 – the time delay d after exceeding the value of 4 makes the standard deviation of DisEn of 
the signals larger. In this study, a time delay of d = 1 was used. 

3. Experiments on laboratory test stand 

In order to conduct tests on the real signal, an experiment was designed. It was carried out on a laboratory 
test stand. Figure 1 shows the laboratory test stand, which consists of a speed-controlled electric motor, a 
coupling that connects the motor to a shaft that is supported by roller bearings at both ends. In the centre 
of the shaft is a plain bearing under test with two mounted eddy current sensors. The bearing used has a 
rubber lining with longitudinal grooves. This bearing, also known as a cutless or stern tube bearing or a 
water-lubricated bearing, is a type of marine bearing used to support rotating shafts in boats and ships. 
These bearings are commonly used in small watercrafts such as electric boats, as well as larger vessels, due 
to their reliability, durability, and low maintenance requirements. This is a commercial bearing designed to 
fit a 20 mm diameter shaft. The eddy current sensors act as distance sensors, allowing the trajectory of the 
shaft axis (orbit, trajectory of the centre of the shaft) to be directly tracked. A laser tachometer measures 
the speed of the shaft. The lubrication system works on the principle of closed circulation of water as a 
lubricant, with water supply and drainage to the bearing from a tank. Measurement data, such as the signal 
from the tachometer and the x and y displacements from eddy current sensors, are recorded using a 
measurement card with a sampling frequency of 4200 Hz and a 16-bit analog-to-digital converter.  

The signal analysed in measurement systems using eddy current sensors is disturbed by 
inhomogeneities in the shape and physical properties of the shaft surface. In the literature, the disturbance 
associated with eddy current measurement is referred to as “runout”. Mechanical runout and electrical 
runout can be distinguished [22]. Mechanical runout is related to imperfections in the shape of the shaft 
under test, i.e. surface roughness, corrugations, the presence of scratches, dents or other deformations. 
Electrical runout is related to magnetic inhomogeneities of the surface of the shaft under test. The lack of 
constant magnetic characteristics of the surface is the result of mechanical machining processes (e.g. 
turning). This machining creates residual stresses, which are the direct cause of the observed variation in 
electrical runout of the shaft surface. Due to mentioned interferences, the signal is filtered using a bandpass 
Butterworth filter. In the experiment, the analysis was carried out by observing the frequency 
corresponding to the rotor rotation and several of its harmonics from 0.3 to 2.4 of the rotational frequency. 
Diagnostic information about the stability of the journal bearing operation, which can be identified on the 
rotational trajectory. Proprietary software allows data recording, elimination of runout phenomenon, 
plotting of rotational trajectories of shaft axes. Calculations needed to determine DisEn were made after the 
completion of the experiment. 
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Figure 1. Test stand: 1 – motor with speed control system; 2 – non-contact digital laser tachometer;  
3 – clutch; 4, 10 – rolling bearing; 5 – shaft; 6 – slipping bearing; 7 – bearing loading system;  

8 – lubricant supply and discharge valves; 9 – eddy current sensors;  
11 – pump forcing lubricant circulation; 12 – lubricant tank; 13 – rotor disc used for balancing. 

 
Figure 2. Vibration monitoring system of sliding bearing nodes. 

During the experiment, the operation of a sliding bearing loaded with a force of 100 N in the horizontal 
plane at a rotational speed of 4304 RPM was recorded. This speed corresponds to the resonant frequency 
of the system under test. The resonance which was identified before the experiment. Prior to the 
measurements, the bench was set up to reach operating temperature to minimise the effect of temperature 
on the planned experiment. This is a speed closely related to the resonant frequency of the system under 
study. The tachometer signal and the displacement signal in the x and y axes of the shaft relative to the 
sliding bearing pan were recorded. The displacement signal comes from eddy-current sensors and is a 
standard signal used for slide bearing analysis. These are relative vibrations. This is in contrast to most 
machine diagnostic methods, which are based on analysing the signal from an accelerometer that records 
absolute vibrations. However, in machines equipped with journal bearings, such as hydrodynamic or 
hydrostatic bearings, relative vibration sensors are often utilised. These sensors detect the relative motion 
between components, such as the shaft and the bearing housing, providing insights into the dynamic 
behavior of the bearing system. Figure 3 shows the recorded signals during the experiment. The bearing 
ran unstably and after about 15 seconds it began to run correctly. In order to achieve such a course, a 
lubricant of increasing viscosity was fed into the bearing. The optimum viscosity of the lubricant depends 
on the load, speed, temperature, bearing design and the requirements for operational stability. A high 
viscosity grease can provide better separation between surfaces, which can be beneficial for bearings 
operating under high loads or low speeds. High viscosity can help maintain a lubricating film when high 
loads occur. A lower-viscosity lubricant may be preferred for bearings operating under high-speed 
conditions, where high viscosity can lead to greater friction resistance and heat generation. 
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Figure 3. Signals from the tachometer and the shaft axis displacement signal in the x and y plane.  

4. Identification of hydrodynamic states 

Based on the recorded x and y signal, a series of rotational trajectories were obtained, one trajectory for 
every two rotations. The rotational trajectory is the primary method for evaluating the performance of a 
plain bearing at the stage of simulation studies for design purposes and at the stage of operation for 
evaluating the performance of a plain bearing [23]. As an example, three trajectories are shown, marked as 
trajectories 1, 2 and 3.  

Figure 4 shows a typical x and y signal waveform and the trajectory determined from it, recorded up to 
the 15th second when the system was operating unstably. The characteristics of such a signal are high 
amplitude and irregularities within the signal. A characteristic feature of the Orbit plot for such operation 
is the non-overlapping of successive trajectories and phase markers of 0, 360 and 720 degrees. Typically, 
trajectories are also characterised by a larger spread.  

Figure 5 shows a typical waveform of the x and y signal and the trajectory determined from it, recorded 
around the 20th second when the system begins to work more and more steadily but does not yet achieve 
stable operation. The characteristics of such a signal are a smaller amplitude of oscillation than in the case 
of an unstable state and decreasing irregularities in the signal. A characteristic feature of the Orbit plot for 
such operation is the partial overlap of successive trajectories and phase markers of 0, 360 and 720 
degrees. In the analysed trajectory, the first and last phase markers overlapped.  

Figure 6 shows a typical waveform of the x and y signal and the trajectory determined from it, recorded 
after the 25th second when the system begins to operate stably. The characteristics of such a signal are 
small amplitude of oscillation and high regularity of the signal. The characteristic of the Orbit plot for stable 
operation is the overlapping of successive trajectories and phase markers of 0, 360 and 720 degrees. 
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Figure 4. Unstable trajectory. 

 
Figure 5. Transitional trajectory. 

 

 
Figure 6. Stable trajectory. 
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5. Application of DisEn to assess the stability of plain bearing operation 

Dispersion entropy is a measure of randomness or disorder in dynamic signals. In the context of analysing 
the trajectories of movement of the shaft relative to the bearing pan, the entropy of dispersion is an indicator 
that reflects the complexity of these trajectories. To facilitate the interpretation of DisEn, consecutive parts 
of the signal describing two complete rotations were analysed. Figures 4–6 and 7–9 show three example 
waveforms corresponding to an unstable, transient and stable trajectory. Figure 7–9 shows the signal along 
with the determined DisEn for both x and y signals. For each trajectory, the DisEn values analysed for the x 
signal (green), the y signal (red) were analysed separately, additionally the mean value of the dispersion 
values for the x and y axes (black) was calculated. According to theory, these signals are characterised by a 
variable value of DisEn. The conducted experiment shows that three trajectories can be characterised based 
on the value of DisEn. The first, unstable one is characterised by chaotic and unpredictable changes. In this 
case, the changes are very random and difficult to predict. The second, transient, is a type of trajectory in 
which a mixture of regular and random changes is observed. In this case, although there is a certain degree 
of regularity, there are also irregular patterns. The third, stable, is characterised by regular and repetitive 
changes. This is a type of trajectory in which there is limited variability, and the system is able to maintain 
itself under specific conditions.  

A higher value of entropy of dispersion means that the signal has more variety or more random changes, 
suggesting greater randomness in the dynamics of this data. With a higher entropy of dispersion, changes 
in the signal displacement over time of a mechanical system may be more difficult to predict because they 
are more random or chaotic. This can suggest a less stable or more erratic behaviour of the system or 
phenomenon that the analysed signal describes. The dispersion entropy value alone does not provide a 
complete interpretive context and is dependent on the mechanical system and its operating parameters. 
When evaluating the entropy gain of dispersion, it is important to compare the entropy values for different 
trajectories. In the experiment presented here, the observed relationship of the state of the rotational 
trajectory to the value of DisEn. DisEn allows to characterize the operation of a sliding bearing, the higher 
the value of DisEn the less stable the bearing operates.  

A noticeable difference of a few per cent, between the DisEn value depending on the operating condition 
of the bearing and its trajectory allows a single indicator to be obtained to describe the shape of the 
trajectory. Replacing the graphical interpretation of the trajectory shape with a single indicator allows for 
simple and repeatable implementation of an alarm in the event of a change in the trajectory shape. It was 
observed that the mean values of DisEn for the x signal and the y signals in the case of an unstable state are 
not only higher, but overlap. Additionally, a difference between the two appears in the stable state, which 
can also be an object of observation. 

 
Figure 7. Dispersion Entropy for unstable signals. 
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Figure 8. Dispersion Entropy for transitional signals. 

 
Figure 9. Dispersion Entropy for stable signals. 

6. Conclusions 

The article consists of two parts, first analytical and second experimental. In the first, the theory related to 
the analysis of signals resulting from the operation of nonlinear systems, which include the sliding bearing, 
is presented. The first part presents the existing application of DisEn in machine diagnostics and 
demonstrates the advantages that justify its use in sliding bearing diagnostics.  

In the second part, based on the conclusions of previous research work related to the use of DisEn in 
data analysis, an experiment was designed in which the mechanical system gains stable operation at 
constant speed. From the signal, 3 parts were extracted which characterise the operating state of the sliding 
bearing as unstable, transient and stable. From these 3 signals, rotational trajectories were determined, 
which are the diagnostic symptoms in the classical analysis of sliding bearing operation. The trajectories 
corresponding to unstable operation of the sliding bearing showed different dynamics of signal variation, 
which directly led to an increase in the value of DisEn. The analysis of a single indicator value is much 
simpler than the analysis of rotational trajectories. The increase in DisEn corresponds to both x-axis and y-
axis signals, which leads us to assume that a single sensor can be dispensed within the diagnostic system. A 
decrease in the difference between DisEn values for the x-axis and DisEn values for the y-axis was also 
observed for unstable operation. The analysis showed that it was possible to define the shape of the 
trajectory using the DisEn value. During the tests, individual trajectories for the various 3 operating states 
of the bearing were specified and the signal was clipped so that it described exactly two trajectories, which 
is standard procedure in journal bearing diagnostics. Both signals were also filtered in the same way and 
described with the same number of samples. The selected parameters were taken from previous studies 
using DisEn in machine diagnostics.  

Further research on the usability of DisEn in machine diagnostics is planned, the problem of appropriate 
signal length in the ability to describe the phenomenon need further investigation. Research on the full 
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signal describing the experiment using a sliding-window dispersion entropy indicates the instability of 
DisEn values depending on the length of the adopted measurement window and sampling frequency. The 
use of the DisEn indicator in bearing diagnostics is a promising and novel method. Further research and 
validation could lead to the widespread application of this technique in industry, which will translate into 
improved safety and efficiency in machine operation. 
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