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Abstract The parts of speech influenced by glottal pulse excitation, the vocal tract, and the speaker's lips 
shape the voiced components of the speech signal. On the other hand, semantic information in speech is 
primarily shaped by the vocal tract. However, the irregularity of the glottal excitation's periodicity 
contributes to a significant dispersion of the parameterization coefficients, introducing fluctuations into the 
amplitude spectrum. This study proposes a technique to mitigate the impact of this irregularity on the 
feature vector. It involves using a variable signal frame length synchronized with the fundamental period 
𝑇𝑇0 and averaging amplitude spectra over a single period to minimize noise effects, smooth out the 
characteristics, and reduce the estimator variance. By utilizing the derived HFCC parameters, statistical 
models representing individual Polish vowels were created using mixtures of Gaussian distributions. 
Additionally, the impact of these correction concepts on the classification accuracy of speech frames 
containing Polish vowels was examined. 
 
Keywords: automatic speech recognition, robust parameterization, spectrum correction, GMM model  

1. Introduction  

In general, the aim of Automatic Speech Recognition (ASR) is to determine the most likely sentence 
(word sequence) W that transcribes the speech audio A [1,2,3]. The system consists of an Acoustic Model 
(AM) which takes audio as the input and produces words W as output, and a language model which takes 
words W as input and generates a sequence of words as output. The AM architecture consists of cascade of 
5 elements [2]: (i) Feature Extraction (FE) block which process audio speech A into observations O, (ii) 
Frame Classification (FC) block with sequence states Q at the output, (iii) Sequence Model (SM) block which 
produces phonemes L, and (iv) Lexicon Model (LM) of frame classification process with words W at the 
output as a bridge between the acoustic and language models. In the field of ASR, three distinct classes of 
solutions can be identified [3]: (i) classical models based on Hidden Markov Models (HMMs), (ii) End-to-
End Deep Models, and (iii) Attention based models. In classical HMM-based approaches, two fundamental 
solutions can be distinguished: the GMM-HMM model [1, 2, 3] and DNN-Deep Models with HMM [4, 5, 6, 7], 
that utilize discriminative training to minimize wors and phoneme error rates. To the second class of ASR 
belong End-to-End Deep Models with the output of the FE block in the form of waveform or spectrogram, 
the FC block with RNN (Recurrent Neural Network) [10,11,12] and the SM block based on Connectionist 
Temporal Classification (CTC) [13]. Finally the third class- Attention based models- plays a crucial role in 
modeling long sequences. These models directly predict character sequences and simultaneously integrate 
the FC, SM, and LM blocks, utilizing different forms of acoustic features as input [15,16]. In most of the ASR 
solutions presented above (including commercial implementations based on patents [8,9,14]), their 
operation requires a preprocessing stage in the Feature Extraction (FE) block. This stage determines a 
compact representation for individual segments of the speech signal. The Acoustic Model component of ASR 
systems must compensate for various undesirable factors affecting speech, including: (i) environmental and 
technical conditions, (ii) intrapersonal variability (e.g., mood, emotion, health status), (iii) interpersonal 
variability expressed in differences in age, gender, or speech organ structure, and (iv) contextuality and 
regional and cultural differences.  

In classical GMM-HMM solutions, performance degradation due to these factors can be mitigated by 
speaker clustering [17,18,19], normalization of parameterization coefficients using cepstral mean and 
variance normalization (CMVN) [20], and robust parameterization techniques such as RASTA filtering [21]. 
On the other hand, deep models in both classical and End-to-End ASR systems do not necessarily require 
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high-level features [3,4]. However, the literature also includes cases where cepstral parameter 
normalization techniques, such as cepstral mean normalization (CMN) [22], are applied to reduce acoustic 
channel distortions, as well as global transformation approaches [5]. The present study should be 
considered in the context of robust parameterization, where the primary objective is to propose low-level 
feature extraction algorithms that yield parameter sets with low variance and minimal variability under the 
influence of individual factors, noise, and interference. In particular, our research focused on enhancing the 
quality of highly distorted STFT spectrograms while simultaneously improving the statistical properties of 
cepstral parameterization vectors, especially in relation to voiced phonemes. The nature of these phonemes 
is governed by time-varying periodic excitation (pitch). Unfortunately, this characteristic significantly 
distorts the amplitude spectrum of such phonemes, which should ideally provide a reliable representation 
of the instantaneous spectral characteristics of the vocal tract, including easily identifiable formant 
frequencies. 

The mathematical model of the Fant's source-filter type for a discrete-time speech signal 𝑠𝑠(𝑛𝑛) can 
be expressed as follows [25]: 

𝑠𝑠(𝑛𝑛) = 𝑣𝑣(𝑛𝑛) ∗ 𝑙𝑙(𝑛𝑛) ∗ 𝑥𝑥(𝑛𝑛) = ℎ(𝑛𝑛) ∗ 𝑥𝑥(𝑛𝑛), (1) 

where 𝑥𝑥(𝑛𝑛) is the excitation, 𝑣𝑣(𝑛𝑛) the impulse response of the filter modelling the vocal tract, 𝑙𝑙(𝑛𝑛) describes 
the form of speech emission by a speaker, and ∗ is the discrete convolution operator [3]. The semantic 
information in speech is primarily influenced by the vocal tract. Conversely, the quasiperiodicity of the 
glottal excitation adds variability and significant scatter to the resulting coefficients by introducing 
significant fluctuations in the amplitude spectrum [26]. This is closely related to the signal windowing 
operation. (see Sect. 2.2).  

This paper presents a method to mitigate the impact of glottal excitation through using a varying signal 
frame length synchronized with the fundamental period 𝑇𝑇0 and averaging amplitude spectra over a single 
period to minimize noise effects, smooth out the characteristics, and reduce the estimator variance (see 
Sect. 2.3). A key aspect in the proposed method is to compute the fundamental frequency estimator 𝑓𝑓0 
as precisely and accurately as possible (see Sect. 2.4).  

To evaluate the effectiveness of the proposed parameterization methods, statistical models 
for individual phonemes in Polish speech were developed using a Gaussian Mixture Model (see Sect. 2.5). 
The goal of the corrections was to narrow the GMM distributions of the amplitude spectrum while 
increasing the distance between them. According to the detection theory, this approach generally minimizes 
classification errors. The effectiveness of the corrections was evalueted by comparing Frame Error Rate 
(FER) measurements before and after applying the correction algorithm (see Sect. 3). 

 

2. Theory 

2.1. Short-term feature extraction 

Among the many parameterization techniques available, those utilizing time-frequency transforms 
and cepstral representations are considered some of the most widely used and effective methods [27]. 
These include Mel Frequency Cepstral Coefficients (MFCC) [28], Human Factor Cepstral Coefficients (HFCC) 
[29, 30], Basilar-Membrane Frequency-Band Cepstral Coefficients (BFCC) [31], and Gammatone Cepstral 
Coefficients (GTCC) [32]. In this study, the HFCC representation was selected for its effectiveness in noisy 
or adverse acoustic conditions, making it valuable for applications in speech and speaker recognition, 
speech synthesis, and acoustic scene analysis [7,8]. The parameterization produces the feature vector 
(cepstral coefficients) c(t,m): 

 
𝑐𝑐(𝑡𝑡,𝑚𝑚) = �𝑌𝑌𝑙𝑙  (𝑡𝑡, 𝑗𝑗) cos �𝑚𝑚 �𝑗𝑗 −

1
2
�
𝜋𝜋
𝑗𝑗
� ;  𝑚𝑚 = 1, … ,𝑀𝑀

𝐽𝐽

𝑗𝑗=1

 (2) 

where 𝑌𝑌𝑙𝑙(𝑡𝑡, 𝑗𝑗) represents the logarithm of the signal spectrum in the Equivalent Rectangular Bandwidth 
(ERB) scale 𝑌𝑌(𝑡𝑡, 𝑗𝑗) derived from the amplitude spectrum of speech frame after corrections. Here, 𝑡𝑡 denotes 
the frame number, 𝑗𝑗 is the frequency band number in the ERB scale, 𝐽𝐽 represents the total number 
of frequency bands and 𝑀𝑀 is the total number of HFCC coefficients. The HFCC parametrization technique 
employs a bank of ERB-scaled triangular filters designed to emulate the human auditory system's non-
linear frequency perception. This method aggregates spectral energy into frequency bands to align with 
human hearing characteristics. The energy logarithm in each frequency band is used to mirror the human 
auditory system's logarithmic perception of loudness. The HFCC approach for extracting speech features 
is elaborated in details in [30]. 
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2.2. The influence of fundamental frequency 𝑓𝑓0 on feature vector  

The objects of our interest in this work are the voiced fragments of speech for which the excitation model 
x(n) takes an impulse form: 

 
𝑥𝑥(𝑛𝑛) = 𝑔𝑔(𝑛𝑛) ∗ 𝑝𝑝(𝑛𝑛) =  �𝑔𝑔(𝑛𝑛𝑇𝑇 − 𝑘𝑘𝑇𝑇0)

+∞

𝑘𝑘=0

 (3) 

and speech signal s(n): 

 
𝑠𝑠(𝑛𝑛) =  �𝑠𝑠𝑝𝑝(𝑛𝑛𝑇𝑇 − 𝑘𝑘𝑇𝑇0),

+∞

𝑘𝑘=0

 (4) 

where 𝑔𝑔(𝑛𝑛) is the shape of a single excitation pulse, 𝑝𝑝(𝑛𝑛) =  ∑ 𝛿𝛿(𝑛𝑛𝑇𝑇 − 𝑘𝑘𝑇𝑇0)+∞
𝑘𝑘=0  is a pulse train with 

a repetition time 𝑇𝑇0 (pitch), 𝑠𝑠𝑝𝑝(𝑛𝑛) is the response of the modelling system to a single excitation pulse 𝛿𝛿(𝑛𝑛), 
while T is the sampling interval. 

In practical applications, we use a finite-time representation of the speech signal 𝑠𝑠(𝑛𝑛), i.e. 𝑠𝑠𝑤𝑤(𝑛𝑛), which 
is the result of a windowing operation with the function 𝑤𝑤(𝑛𝑛) of a signal: 

 𝑠𝑠𝑤𝑤(𝑛𝑛) = 𝑠𝑠(𝑛𝑛) ∙ 𝑤𝑤(𝑛𝑛) (5) 

As a result of this operation, the spectral representation of the signal analysed in the frame is changed to the 
form: 

                   𝑆𝑆𝑤𝑤(𝜔𝜔) = 𝐷𝐷𝑇𝑇𝐷𝐷𝑇𝑇{𝑠𝑠𝑤𝑤(𝑛𝑛)} = 𝐷𝐷𝑇𝑇𝐷𝐷𝑇𝑇{𝑠𝑠(𝑛𝑛)} ∗ 𝐷𝐷𝑇𝑇𝐷𝐷𝑇𝑇{𝑤𝑤(𝑛𝑛)} = 𝑆𝑆(𝜔𝜔) ∗ 𝑊𝑊(𝜔𝜔), (6) 

where DTFT{∙} is the Discrete Time Fourier Transform (DTFT) operator [23, 24]. In general, the impact 
of windowing operations in the form of the 𝑊𝑊(𝜔𝜔) term can only be compensated for by selecting 
an appropriate window (e.g. Hamming) and other sophisticated techniques using, for example, amplitude 
spectrum correction functions determined from inverse filtering methods and estimators of the amplitude 
of the vocal tract transfer function [33, 34]. 

For illustration purposes, Fig. 1 presents the amplitude spectra of consecutive frames of the phoneme 
"a," extracted from longer utterances by the same speaker recorded under identical conditions but differing 
in fundamental frequencies 𝑓𝑓0. The main difference in these spectral representations lies in the varying 
locations of the local maxima, which are multiples of the fundamental frequency 𝑓𝑓0. Due to the presence 
of ripples, the formants are not distinctly visible, although the approximate frequencies of two first 
formants are 800 Hz and 1.3 kHz. Dotted lines in these figures indicate filterbank with center frequencies 
corresponding to the mel scale, as used in the HFCC parameterization. The fundamental frequency was 
calculated using YIN algorithm described in section 2.4. 

 

a) 

 

b) 

 
Figure 1. Amplitude spectra of consecutive frames of phoneme ‘a’ with applied filterbank; 

 the fundamental frequency a) about 130Hz b) about 195Hz. The frequency resolution was 11.72 Hz. 

The different positions of the local maxima in the spectrum result in varying energy levels across 
successive frequency bands, leading to different ERB-scale spectra at different 𝑓𝑓0 values. This is illustrated 
by the ERB-scale spectra plots in Fig. 2, where particularly large differences are observed in band 4.  
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a) 

 

b) 

 
Figure 2. Spectra of consecutive ERB-scale frames of phoneme a; 

 the fundamental frequency is a) about 130Hz, b) about 195Hz. 

Consequently, there are significant variations in the cepstral coefficients for the two cases considered, 
as shown in Fig. 3. 

a) 

 

b) 

 
 

Figure 3. Cepstra of consecutive ERB-scale frames of phoneme a;  
the fundamental frequency is a) about 130Hz, b) about 195Hz. 

2.3. Varying length of the signal analysis window 

We limit our further consideration to the special case in which we assume that the length of the analysis 
window satisfies the condition 𝑇𝑇𝑤𝑤 = 𝑁𝑁 ∙ 𝑇𝑇0,  i.e. is an integral multiple of the period of the fundamental 
period. In this situation, assuming the local stationarity of 𝑇𝑇0 in the frame region, we can write: 

 
𝑠𝑠𝑤𝑤(𝑛𝑛) =  �𝑠𝑠𝑝𝑝(𝑛𝑛𝑇𝑇 − 𝑘𝑘𝑇𝑇0),

𝑁𝑁−1

𝑘𝑘=0

 (7) 

which implies the following spectral representation: 

 
𝑆𝑆𝑤𝑤(𝜔𝜔) = 𝑆𝑆(𝜔𝜔) ∙  �𝑒𝑒−𝑗𝑗𝑗𝑗𝑘𝑘∙𝑇𝑇0 = 𝑆𝑆(𝜔𝜔) 

sin (𝜔𝜔𝑇𝑇0 ∙
𝑁𝑁
2)

sin (𝜔𝜔𝑇𝑇0 ∙
1
2)

∙ 𝑒𝑒−𝑗𝑗𝑗𝑗
𝑁𝑁−1
2 𝑇𝑇0 ,

𝑁𝑁−1

𝑘𝑘=0

 (8) 

which fully illustrates the problem of significant ripples in the amplitude spectrum of the analysed frame 
signal 𝑠𝑠𝑤𝑤(𝑛𝑛) even in such a specific case. Fortunately, for N=1 the effect of the window on the spectrum 
of 𝑆𝑆𝑤𝑤(𝜔𝜔) completely disappears, but unfortunately implies the need for estimation of the current value 
of  𝑇𝑇0. In practice, we use the discrete form of the DTFT transform for the speech signal frame, the Discrete 
Fourier Transform (DFT), and the Fast Fourier Transform (FFT) algorithm is used to calculate it effectively. 
In addition, for the preservation identical resolution in the discrete spectral representation of successive 
frames with a varying period length of the fundamental period 𝑇𝑇0, the classical zero-padding technique was 
used. 
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2.4. Fundamental frequency estimation 

The requirement for full knowledge of the present value of the fundamental period 𝑇𝑇0 (or fundamental 
frequency 𝑓𝑓0 = 1

𝑇𝑇0
) enforces the practical use of a simple and efficient method for its estimation. Traditional 

solutions to the problem of determining the current value of 𝑇𝑇0 use the samples from the analysis frame 
or their power spectrum directly [35]. One of the most commonly used solutions is the YIN algorithm [36], 
together with its statistically improved version [37]. The version of the algorithm used in the numerical 
experiments in this paper is based on cumulative mean normalized difference function (step 3 of error 
reduction in [37]) given in the form: 

 

𝑑𝑑′𝑡𝑡(𝜏𝜏) = �

1, 𝑖𝑖𝑓𝑓 𝜏𝜏 = 0 

𝑑𝑑𝑡𝑡(𝜏𝜏)
1
𝜏𝜏
�𝑑𝑑𝑡𝑡(𝑗𝑗)
𝜏𝜏

𝑗𝑗=1

�  (9) 

where: 𝑑𝑑𝑡𝑡(𝜏𝜏) is difference function: 
 

𝑑𝑑𝑡𝑡(𝜏𝜏) = �(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗+𝜏𝜏)2
𝑊𝑊

𝑗𝑗=1

 (10) 

and 𝑊𝑊 is analysis window size. The choice of such a solution ensures the normalization of the 𝑑𝑑𝑡𝑡(𝜏𝜏) function 
and, at the same time, effectively compensates for some of the significant estimation errors especially 
in the situation of proximity of the fundamental frequency 𝑓𝑓0 and the frequency of the first formant 
of the vocal tract. The use of cumulative mean normalized difference function reduces the errors associated 
with estimating a doubled value of the fundamental frequency 𝑓𝑓0. 
 
2.5. Correction quality measure 

To evaluate the performance of the proposed modifications to HFCC parameterization, a study was 
conducted on the Polish speech vowels. Creating the above concept necessitated developing acoustic 
models for these vowels using GMM probability distributions. Evaluation of compensation effectiveness was 
done using the single frame recognition error measure. At the frame recognition phase, GMM acoustic 
models comprised a mixture of K=7 multivariate normal probability distributions with a diagonal 
covariance matrix Σ determined through the Expectation-Maximization (EM) algorithm: 

 
𝑝𝑝𝑓𝑓(𝑜𝑜) =  �𝑤𝑤𝑓𝑓𝑓𝑓𝒩𝒩�𝑜𝑜,𝑚𝑚𝑓𝑓𝑓𝑓 ,𝛴𝛴𝑓𝑓𝑓𝑓�,

𝐾𝐾

𝑓𝑓=1

 (11) 

where 𝒘𝒘𝒇𝒇𝒇𝒇, 𝒎𝒎𝒇𝒇𝒇𝒇denotes the mixture 𝒇𝒇𝒕𝒕𝒕𝒕component weights and means for 𝒇𝒇𝒕𝒕𝒕𝒕 phoneme. The EM algorithm 
iteratively maximizes the likelihood function of the vectors formed in the process of parameterization 
of speech signal frames to their statistical model in the form of mixed multivariate normal distributions 
(GMM). In each step, the algorithm performs operations to average the data vectors and determine their 
autocovariance matrices for the full GMM model (Maximization step) based on the arrays of conditional 
probabilities of belonging of these vectors to all components of the estimated GMM mixture previously 
determined in the Expectation step. The detailed description of the EM algorithm can be found in [38]. 
Frame Error Rate (FER) is typically used to evaluate the quality of speech recognition at the individual 
frame level and is defined as 

 𝐷𝐷𝐹𝐹𝐹𝐹 =  
𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒
𝑇𝑇

∙ 100%, (12) 

where 𝑻𝑻 is the number of all frames to be recognized and 𝑻𝑻𝒆𝒆𝒆𝒆𝒆𝒆 is the number of  incorrectly recognized 
frames [26]. 

3. Experiments and results 

The database for the experiments comprises recordings of 36 adult male voices from different Polish cities. 
Each speaker recorded 150 Polish words, out of which speech segments containing vowels from 43 words 
were selected for the experiment. The database of recordings consists of single words selected purposively 
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to include a wide range of phonetic contexts, allowing the study of acoustic variation in the speech signal 
resulting from a variety of phoneme neighborhoods. The words range from short, monosyllabic forms such 
as “dwa,” “tak,” and “kot,” to more complex structures such as “czepek,” “żaba” and “zapamiętaj.” Thanks 
to this diversity, it is possible to capture changes in the parameters of the speech signal, which are 
determined by both the length of the word and its phonetic structure. 

An important element in the construction of the database was the consideration of the statistical properties 
of the Polish language. Words were selected based on the frequency of occurrence of particular phonemes 
in Polish speech, in accordance with the results of analyses presented in [41]. Such a selection of material 
ensures phonetic representativeness and makes it possible to study the signal under conditions similar 
to natural speech. This is particularly important in the context of speech signal processing and classification, 
where articulatory and contextual complexity are key challenges. 

The recordings had a sampling rate of 12 kHz. The results discussed in this study pertain to recordings with 
a signal-to-noise ratio of 35 dB. All recordings were manually segmented and labelled based on phonetic 
units, namely phonemes. The frame length was synchronized with fundamental period 𝑻𝑻𝟎𝟎 with the 10 ms 
shift. The number of cepstral coefficients was 14. The speakers were grouped based on cepstral coefficients 
of the vowels, following a criterion outlined in the paper using the Universal Background Model (UBM) [19]. 

3.1. Examplary results 

The chapter presents example results of the proposed method of the varying frame length of the speech 
signal synchronised to the fundamental period 𝑇𝑇0.  Figs. 4-5. show the amplitude spectra calculated 
for several consecutive frames of the speech signal of the phoneme ‘a’ of Polish speech. In particular, Fig. 4. 
presents the amplitude spectra of the original signal, while Fig. 5. presents the amplitude spectra calculated 
from a frame of the speech signal, the length of which was selected as a multiple of fundamental period 𝑇𝑇0 
(according to the methodology presented in Sect. 2.3). The cepstral coefficients were calculated from 
the two amplitude spectra indicated above. Comparison of Figs. 4-5 shows the evident effectiveness 
of the proposed method and the removal of the amplitude spectrum ripples caused by the quasi-periodicity 
of the excitation. 

 
Figure 4. Amplitude spectra of several consecutive frames of phoneme “a” before correction. 
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Figure 5. . Example results of the proposed method for several consecutive frames of phoneme “a”. 

In turn, Figs 6- 7. show the standard deviations of the values of the individual cepstral coefficients 
for the two selected states analysed: the vowel ‘e’ (Fig. 6.) and ‘a’(Fig.7) from the whole analysed database. 

 
Figure 6. Standard deviations of cepstral coefficient estimators for the vowel ‘e’. 

 

Figure 7. Standard deviations of cepstral coefficient estimators for the vowel ‘a’. 

 

The blue curve indicates the standard deviation of the successive HFCC parameterisation coefficients 
determined from the amplitude spectrum of the original speech signal, while the red curve indicates 
the standard deviation of the amplitude spectrum calculated after applying frame length synchronisation 
to the 𝑇𝑇0. As can easily be seen in the graphs above, the standard deviations shown in the red curves are 
smaller for each feature vector coefficient. 
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3.2. Global error analysis 

A global (for the whole database) analysis of recognition errors at the level of single frames of the speech 
signal is presented in Fig. 8. For each analysed vowel of Polish speech, the FER was calculated. To emphasise 
the correctness and effectiveness of the proposed method, the performance of two classifiers in such 
conditions was shown: an acoustic model calculated using the GMM model and a decision tree classifier 
[39]. The blue and black curves show the recognition errors based on the coefficients determined from 
the original signal, while the red and green curves show the classification errors using the correction 
method proposed in this paper. 

 

Figure 8. Global FER values for Polish speech vowels. 

It is not difficult to see that in both cases improvements were obtained for each condition, nevertheless 
a more spectacular improvement of classification was obtained using decision trees instead of a few percent 
of improvement obtained with GMM classifier. 

4. Conclusions  

The methodology for processing signals representing Polish vowels proposed in this paper, consistent 
with the instantaneous value of the fundamental period, results in a reduction in the variance of the feature 
vector’s parameters, which leads to an increase in the efficiency of the classification task. The approach 
discussed in this paper is a continuation of the research proposed in the work [33, 34] and the presented 
results on real signals show even better recognition quality. The level of classification accuracy was 
achieved using a significantly smaller number of feature vector parameters than in the traditional approach, 
which implies a smaller model representation and lower computational complexity of the signal processing 
algorithms, i.e. reduced resource requirements.  

As is well known, a complete ASR system consists of many different subsystems and algorithms. If a few 
percent increase in recognition accuracy is achieved at each processing stage, with a low computational 
effort, the total gain in the ASR system will already be significant. It is also worth remembering that 
the speech signal, due to its randomness and high variability, is also burdened by other factors affecting 
the feature vector and recognition quality, i.e. inter- and intrapersonal variability, contextuality, technical 
and environmental factors. 
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