Numerical Analysis of an Auxetic Anti-tetrachiral Sandwich Panel Subjected to Steady-state Harmonic Base Motion

Abstract:
In this paper, the authors show the results of numerical simulations representing the test of an aluminum sandwich panel with an auxetic anti-tetrachiral core on an exciter. Steady-state vibration analyses utilizing modal superposition (linear dynamics) were performed. The bottom of the panel had all the degrees of freedom constrained and excitation in form of base acceleration in the vertical direction was applied. The obtained results were in form of contour plots of selected output variables in the frequency domain. In addition, curves showing the variation of acceleration, velocity and displacement of a selected representative point in frequency were generated. The results were compared with those obtained for the panel with a non-auxetic core, in the form of a standard hexagonal honeycomb. It was found that the auxetic panel is not superior in the whole range of frequencies but a workflow useful in the design of sandwich panels for operating conditions involving vibrations was developed.